| 1 | /* |
| 2 | * Copyright 2019 Google Inc. |
| 3 | * |
| 4 | * Use of this source code is governed by a BSD-style license that can be |
| 5 | * found in the LICENSE file. |
| 6 | */ |
| 7 | |
| 8 | #include "include/private/SkImageInfoPriv.h" |
| 9 | #include "include/private/SkMacros.h" |
| 10 | #include "src/core/SkArenaAlloc.h" |
| 11 | #include "src/core/SkBlendModePriv.h" |
| 12 | #include "src/core/SkColorSpacePriv.h" |
| 13 | #include "src/core/SkColorSpaceXformSteps.h" |
| 14 | #include "src/core/SkCoreBlitters.h" |
| 15 | #include "src/core/SkLRUCache.h" |
| 16 | #include "src/core/SkOpts.h" |
| 17 | #include "src/core/SkVM.h" |
| 18 | #include "src/shaders/SkColorFilterShader.h" |
| 19 | |
| 20 | namespace { |
| 21 | |
| 22 | // Uniforms set by the Blitter itself, |
| 23 | // rather than by the Shader, which follow this struct in the skvm::Uniforms buffer. |
| 24 | struct BlitterUniforms { |
| 25 | int right; // First device x + blit run length n, used to get device x coordinate. |
| 26 | int y; // Device y coordinate. |
| 27 | SkColor4f paint; // In device color space. |
| 28 | }; |
| 29 | static_assert(SkIsAlign4(sizeof(BlitterUniforms)), "" ); |
| 30 | static constexpr int kBlitterUniformsCount = sizeof(BlitterUniforms) / 4; |
| 31 | |
| 32 | enum class Coverage { Full, UniformA8, MaskA8, MaskLCD16, Mask3D }; |
| 33 | |
| 34 | struct Params { |
| 35 | sk_sp<SkShader> shader; |
| 36 | sk_sp<SkShader> clip; |
| 37 | SkColorInfo dst; |
| 38 | SkBlendMode blendMode; |
| 39 | Coverage coverage; |
| 40 | SkFilterQuality quality; |
| 41 | SkMatrix ctm; |
| 42 | |
| 43 | Params withCoverage(Coverage c) const { |
| 44 | Params p = *this; |
| 45 | p.coverage = c; |
| 46 | return p; |
| 47 | } |
| 48 | }; |
| 49 | |
| 50 | SK_BEGIN_REQUIRE_DENSE; |
| 51 | struct Key { |
| 52 | uint64_t shader, |
| 53 | clip, |
| 54 | colorSpace; |
| 55 | uint8_t colorType, |
| 56 | alphaType, |
| 57 | blendMode, |
| 58 | coverage; |
| 59 | uint32_t padding{0}; |
| 60 | // Params::quality and Params::ctm are only passed to {shader,clip}->program(), |
| 61 | // not used here by the blitter itself. No need to include them in the key; |
| 62 | // they'll be folded into the shader key if used. |
| 63 | |
| 64 | bool operator==(const Key& that) const { |
| 65 | return this->shader == that.shader |
| 66 | && this->clip == that.clip |
| 67 | && this->colorSpace == that.colorSpace |
| 68 | && this->colorType == that.colorType |
| 69 | && this->alphaType == that.alphaType |
| 70 | && this->blendMode == that.blendMode |
| 71 | && this->coverage == that.coverage; |
| 72 | } |
| 73 | |
| 74 | Key withCoverage(Coverage c) const { |
| 75 | Key k = *this; |
| 76 | k.coverage = SkToU8(c); |
| 77 | return k; |
| 78 | } |
| 79 | }; |
| 80 | SK_END_REQUIRE_DENSE; |
| 81 | |
| 82 | static SkString debug_name(const Key& key) { |
| 83 | return SkStringPrintf("Shader-%llx_Clip-%llx_CS-%llx_CT-%d_AT-%d_Blend-%d_Cov-%d" , |
| 84 | key.shader, |
| 85 | key.clip, |
| 86 | key.colorSpace, |
| 87 | key.colorType, |
| 88 | key.alphaType, |
| 89 | key.blendMode, |
| 90 | key.coverage); |
| 91 | } |
| 92 | |
| 93 | static SkLRUCache<Key, skvm::Program>* try_acquire_program_cache() { |
| 94 | #if 1 && defined(SKVM_JIT) |
| 95 | thread_local static SkLRUCache<Key, skvm::Program> cache{8}; |
| 96 | return &cache; |
| 97 | #else |
| 98 | // iOS in particular does not support thread_local until iOS 9.0. |
| 99 | // On the other hand, we'll never be able to JIT there anyway. |
| 100 | // It's probably fine to not cache any interpreted programs, anywhere. |
| 101 | return nullptr; |
| 102 | #endif |
| 103 | } |
| 104 | |
| 105 | static void release_program_cache() { } |
| 106 | |
| 107 | // If build_program() can't build this program, cache_key() sets *ok to false. |
| 108 | static Key cache_key(const Params& params, |
| 109 | skvm::Uniforms* uniforms, SkArenaAlloc* alloc, bool* ok) { |
| 110 | auto hash_shader = [&](const sk_sp<SkShader>& shader) { |
| 111 | const SkShaderBase* sb = as_SB(shader); |
| 112 | skvm::Builder p; |
| 113 | |
| 114 | skvm::I32 dx = p.uniform32(uniforms->base, offsetof(BlitterUniforms, right)) |
| 115 | - p.index(), |
| 116 | dy = p.uniform32(uniforms->base, offsetof(BlitterUniforms, y)); |
| 117 | skvm::F32 x = to_f32(dx) + 0.5f, |
| 118 | y = to_f32(dy) + 0.5f; |
| 119 | |
| 120 | skvm::Color paint = { |
| 121 | p.uniformF(uniforms->base, offsetof(BlitterUniforms, paint.fR)), |
| 122 | p.uniformF(uniforms->base, offsetof(BlitterUniforms, paint.fG)), |
| 123 | p.uniformF(uniforms->base, offsetof(BlitterUniforms, paint.fB)), |
| 124 | p.uniformF(uniforms->base, offsetof(BlitterUniforms, paint.fA)), |
| 125 | }; |
| 126 | |
| 127 | uint64_t hash = 0; |
| 128 | if (auto c = sb->program(&p, |
| 129 | x,y, paint, |
| 130 | params.ctm, /*localM=*/nullptr, |
| 131 | params.quality, params.dst, |
| 132 | uniforms,alloc)) { |
| 133 | hash = p.hash(); |
| 134 | // p.hash() folds in all instructions to produce r,g,b,a but does not know |
| 135 | // precisely which value we'll treat as which channel. Imagine the shader |
| 136 | // called std::swap(*r,*b)... it draws differently, but p.hash() is unchanged. |
| 137 | // We'll fold the hash of their IDs in order to disambiguate. |
| 138 | const skvm::Val outputs[] = { c.r.id, c.g.id, c.b.id, c.a.id }; |
| 139 | hash ^= SkOpts::hash(outputs, sizeof(outputs)); |
| 140 | } else { |
| 141 | *ok = false; |
| 142 | } |
| 143 | return hash; |
| 144 | }; |
| 145 | |
| 146 | SkASSERT(params.shader); |
| 147 | uint64_t shaderHash = hash_shader(params.shader); |
| 148 | |
| 149 | uint64_t clipHash = 0; |
| 150 | if (params.clip) { |
| 151 | clipHash = hash_shader(params.clip); |
| 152 | if (clipHash == 0) { |
| 153 | clipHash = 1; |
| 154 | } |
| 155 | } |
| 156 | |
| 157 | switch (params.dst.colorType()) { |
| 158 | default: *ok = false; |
| 159 | break; |
| 160 | |
| 161 | case kRGB_565_SkColorType: |
| 162 | case kRGB_888x_SkColorType: |
| 163 | case kRGBA_8888_SkColorType: |
| 164 | case kBGRA_8888_SkColorType: |
| 165 | case kRGBA_1010102_SkColorType: |
| 166 | case kBGRA_1010102_SkColorType: |
| 167 | case kRGB_101010x_SkColorType: |
| 168 | case kBGR_101010x_SkColorType: break; |
| 169 | } |
| 170 | |
| 171 | return { |
| 172 | shaderHash, |
| 173 | clipHash, |
| 174 | params.dst.colorSpace() ? params.dst.colorSpace()->hash() : 0, |
| 175 | SkToU8(params.dst.colorType()), |
| 176 | SkToU8(params.dst.alphaType()), |
| 177 | SkToU8(params.blendMode), |
| 178 | SkToU8(params.coverage), |
| 179 | }; |
| 180 | } |
| 181 | |
| 182 | static void build_program(skvm::Builder* p, const Params& params, |
| 183 | skvm::Uniforms* uniforms, SkArenaAlloc* alloc) { |
| 184 | // First two arguments are always uniforms and the destination buffer. |
| 185 | uniforms->base = p->uniform(); |
| 186 | skvm::Arg dst_ptr = p->arg(SkColorTypeBytesPerPixel(params.dst.colorType())); |
| 187 | // Other arguments depend on params.coverage: |
| 188 | // - Full: (no more arguments) |
| 189 | // - Mask3D: mul varying, add varying, 8-bit coverage varying |
| 190 | // - MaskA8: 8-bit coverage varying |
| 191 | // - MaskLCD16: 565 coverage varying |
| 192 | // - UniformA8: 8-bit coverage uniform |
| 193 | |
| 194 | skvm::I32 dx = p->uniform32(uniforms->base, offsetof(BlitterUniforms, right)) |
| 195 | - p->index(), |
| 196 | dy = p->uniform32(uniforms->base, offsetof(BlitterUniforms, y)); |
| 197 | skvm::F32 x = to_f32(dx) + 0.5f, |
| 198 | y = to_f32(dy) + 0.5f; |
| 199 | |
| 200 | skvm::Color paint = { |
| 201 | p->uniformF(uniforms->base, offsetof(BlitterUniforms, paint.fR)), |
| 202 | p->uniformF(uniforms->base, offsetof(BlitterUniforms, paint.fG)), |
| 203 | p->uniformF(uniforms->base, offsetof(BlitterUniforms, paint.fB)), |
| 204 | p->uniformF(uniforms->base, offsetof(BlitterUniforms, paint.fA)), |
| 205 | }; |
| 206 | |
| 207 | skvm::Color src = as_SB(params.shader)->program(p, x,y, paint, |
| 208 | params.ctm, /*localM=*/nullptr, |
| 209 | params.quality, params.dst, |
| 210 | uniforms, alloc); |
| 211 | SkASSERT(src); |
| 212 | if (params.coverage == Coverage::Mask3D) { |
| 213 | skvm::F32 M = from_unorm(8, p->load8(p->varying<uint8_t>())), |
| 214 | A = from_unorm(8, p->load8(p->varying<uint8_t>())); |
| 215 | |
| 216 | src.r = min(src.r * M + A, src.a); |
| 217 | src.g = min(src.g * M + A, src.a); |
| 218 | src.b = min(src.b * M + A, src.a); |
| 219 | } |
| 220 | |
| 221 | // If we can determine this we can skip a fair bit of clamping! |
| 222 | bool src_in_gamut = false; |
| 223 | |
| 224 | // Normalized premul formats can surprisingly represent some out-of-gamut |
| 225 | // values (e.g. r=0xff, a=0xee fits in unorm8 but r = 1.07), but most code |
| 226 | // working with normalized premul colors is not prepared to handle r,g,b > a. |
| 227 | // So we clamp the shader to gamut here before blending and coverage. |
| 228 | // |
| 229 | // In addition, GL clamps all its color channels to limits of the format just |
| 230 | // before the blend step (~here). To match that auto-clamp, we clamp alpha to |
| 231 | // [0,1] too, just in case someone gave us a crazy alpha. |
| 232 | if (!src_in_gamut |
| 233 | && params.dst.alphaType() == kPremul_SkAlphaType |
| 234 | && SkColorTypeIsNormalized(params.dst.colorType())) { |
| 235 | src.a = clamp(src.a, 0.0f, 1.0f); |
| 236 | src.r = clamp(src.r, 0.0f, src.a); |
| 237 | src.g = clamp(src.g, 0.0f, src.a); |
| 238 | src.b = clamp(src.b, 0.0f, src.a); |
| 239 | src_in_gamut = true; |
| 240 | } |
| 241 | |
| 242 | // There are several orderings here of when we load dst and coverage |
| 243 | // and how coverage is applied, and to complicate things, LCD coverage |
| 244 | // needs to know dst.a. We're careful to assert it's loaded in time. |
| 245 | skvm::Color dst; |
| 246 | SkDEBUGCODE(bool dst_loaded = false;) |
| 247 | |
| 248 | // load_coverage() returns false when there's no need to apply coverage. |
| 249 | auto load_coverage = [&](skvm::Color* cov) { |
| 250 | bool partial_coverage = true; |
| 251 | switch (params.coverage) { |
| 252 | case Coverage::Full: cov->r = cov->g = cov->b = cov->a = p->splat(1.0f); |
| 253 | partial_coverage = false; |
| 254 | break; |
| 255 | |
| 256 | case Coverage::UniformA8: cov->r = cov->g = cov->b = cov->a = |
| 257 | from_unorm(8, p->uniform8(p->uniform(), 0)); |
| 258 | break; |
| 259 | |
| 260 | case Coverage::Mask3D: |
| 261 | case Coverage::MaskA8: cov->r = cov->g = cov->b = cov->a = |
| 262 | from_unorm(8, p->load8(p->varying<uint8_t>())); |
| 263 | break; |
| 264 | |
| 265 | case Coverage::MaskLCD16: |
| 266 | SkASSERT(dst_loaded); |
| 267 | *cov = unpack_565(p->load16(p->varying<uint16_t>())); |
| 268 | cov->a = select(src.a < dst.a, min(cov->r, min(cov->g, cov->b)) |
| 269 | , max(cov->r, max(cov->g, cov->b))); |
| 270 | break; |
| 271 | } |
| 272 | |
| 273 | if (params.clip) { |
| 274 | skvm::Color clip = as_SB(params.clip)->program(p, x,y, paint, |
| 275 | params.ctm, /*localM=*/nullptr, |
| 276 | params.quality, params.dst, |
| 277 | uniforms, alloc); |
| 278 | SkAssertResult(clip); |
| 279 | cov->r *= clip.a; // We use the alpha channel of clip for all four. |
| 280 | cov->g *= clip.a; |
| 281 | cov->b *= clip.a; |
| 282 | cov->a *= clip.a; |
| 283 | return true; |
| 284 | } |
| 285 | |
| 286 | return partial_coverage; |
| 287 | }; |
| 288 | |
| 289 | // The math for some blend modes lets us fold coverage into src before the blend, |
| 290 | // obviating the need for the lerp afterwards. This early-coverage strategy tends |
| 291 | // to be both faster and require fewer registers. |
| 292 | bool lerp_coverage_post_blend = true; |
| 293 | if (SkBlendMode_ShouldPreScaleCoverage(params.blendMode, |
| 294 | params.coverage == Coverage::MaskLCD16)) { |
| 295 | skvm::Color cov; |
| 296 | if (load_coverage(&cov)) { |
| 297 | src.r *= cov.r; |
| 298 | src.g *= cov.g; |
| 299 | src.b *= cov.b; |
| 300 | src.a *= cov.a; |
| 301 | } |
| 302 | lerp_coverage_post_blend = false; |
| 303 | } |
| 304 | |
| 305 | // Load up the destination color. |
| 306 | SkDEBUGCODE(dst_loaded = true;) |
| 307 | switch (params.dst.colorType()) { |
| 308 | default: SkUNREACHABLE; |
| 309 | case kRGB_565_SkColorType: dst = unpack_565(p->load16(dst_ptr)); |
| 310 | break; |
| 311 | |
| 312 | case kRGB_888x_SkColorType: [[fallthrough]]; |
| 313 | case kRGBA_8888_SkColorType: dst = unpack_8888(p->load32(dst_ptr)); |
| 314 | break; |
| 315 | |
| 316 | case kBGRA_8888_SkColorType: dst = unpack_8888(p->load32(dst_ptr)); |
| 317 | std::swap(dst.r, dst.b); |
| 318 | break; |
| 319 | |
| 320 | case kRGB_101010x_SkColorType: [[fallthrough]]; |
| 321 | case kRGBA_1010102_SkColorType: dst = unpack_1010102(p->load32(dst_ptr)); |
| 322 | break; |
| 323 | |
| 324 | case kBGR_101010x_SkColorType: [[fallthrough]]; |
| 325 | case kBGRA_1010102_SkColorType: dst = unpack_1010102(p->load32(dst_ptr)); |
| 326 | std::swap(dst.r, dst.b); |
| 327 | break; |
| 328 | } |
| 329 | |
| 330 | // When a destination is known opaque, we may assume it both starts and stays fully |
| 331 | // opaque, ignoring any math that disagrees. This sometimes trims a little work. |
| 332 | if (params.dst.isOpaque()) { |
| 333 | dst.a = p->splat(1.0f); |
| 334 | } else if (params.dst.alphaType() == kUnpremul_SkAlphaType) { |
| 335 | dst = premul(dst); |
| 336 | } |
| 337 | |
| 338 | src = blend(params.blendMode, src, dst); |
| 339 | |
| 340 | // Lerp with coverage post-blend if needed. |
| 341 | if (skvm::Color cov; lerp_coverage_post_blend && load_coverage(&cov)) { |
| 342 | src.r = lerp(dst.r, src.r, cov.r); |
| 343 | src.g = lerp(dst.g, src.g, cov.g); |
| 344 | src.b = lerp(dst.b, src.b, cov.b); |
| 345 | src.a = lerp(dst.a, src.a, cov.a); |
| 346 | } |
| 347 | |
| 348 | if (params.dst.isOpaque()) { |
| 349 | src.a = p->splat(1.0f); |
| 350 | } else if (params.dst.alphaType() == kUnpremul_SkAlphaType) { |
| 351 | src = unpremul(src); |
| 352 | } |
| 353 | |
| 354 | // Clamp to fit destination color format if needed. |
| 355 | if (src_in_gamut) { |
| 356 | // An in-gamut src blended with an in-gamut dst should stay in gamut. |
| 357 | // Being in-gamut implies all channels are in [0,1], so no need to clamp. |
| 358 | // We allow one ulp error above 1.0f, and about that much (~1.2e-7) below 0. |
| 359 | skvm::F32 lo = bit_cast(p->splat(0xb400'0000)), |
| 360 | hi = bit_cast(p->splat(0x3f80'0001)); |
| 361 | assert_true(src.r == clamp(src.r, lo, hi), src.r); |
| 362 | assert_true(src.g == clamp(src.g, lo, hi), src.g); |
| 363 | assert_true(src.b == clamp(src.b, lo, hi), src.b); |
| 364 | assert_true(src.a == clamp(src.a, lo, hi), src.a); |
| 365 | } else if (SkColorTypeIsNormalized(params.dst.colorType())) { |
| 366 | src.r = clamp01(src.r); |
| 367 | src.g = clamp01(src.g); |
| 368 | src.b = clamp01(src.b); |
| 369 | src.a = clamp01(src.a); |
| 370 | } |
| 371 | |
| 372 | // Store back to the destination. |
| 373 | switch (params.dst.colorType()) { |
| 374 | default: SkUNREACHABLE; |
| 375 | |
| 376 | case kRGB_565_SkColorType: |
| 377 | store16(dst_ptr, pack(pack(to_unorm(5,src.b), |
| 378 | to_unorm(6,src.g), 5), |
| 379 | to_unorm(5,src.r),11)); |
| 380 | break; |
| 381 | |
| 382 | case kBGRA_8888_SkColorType: std::swap(src.r, src.b); [[fallthrough]]; |
| 383 | case kRGB_888x_SkColorType: [[fallthrough]]; |
| 384 | case kRGBA_8888_SkColorType: |
| 385 | store32(dst_ptr, pack(pack(to_unorm(8, src.r), |
| 386 | to_unorm(8, src.g), 8), |
| 387 | pack(to_unorm(8, src.b), |
| 388 | to_unorm(8, src.a), 8), 16)); |
| 389 | break; |
| 390 | |
| 391 | case kBGR_101010x_SkColorType: [[fallthrough]]; |
| 392 | case kBGRA_1010102_SkColorType: std::swap(src.r, src.b); [[fallthrough]]; |
| 393 | case kRGB_101010x_SkColorType: [[fallthrough]]; |
| 394 | case kRGBA_1010102_SkColorType: |
| 395 | store32(dst_ptr, pack(pack(to_unorm(10, src.r), |
| 396 | to_unorm(10, src.g), 10), |
| 397 | pack(to_unorm(10, src.b), |
| 398 | to_unorm( 2, src.a), 10), 20)); |
| 399 | break; |
| 400 | } |
| 401 | } |
| 402 | |
| 403 | |
| 404 | struct NoopColorFilter : public SkColorFilter { |
| 405 | skvm::Color onProgram(skvm::Builder*, skvm::Color c, |
| 406 | SkColorSpace*, skvm::Uniforms*, SkArenaAlloc*) const override { |
| 407 | return c; |
| 408 | } |
| 409 | |
| 410 | bool onAppendStages(const SkStageRec&, bool) const override { return true; } |
| 411 | |
| 412 | // Only created here, should never be flattened / unflattened. |
| 413 | Factory getFactory() const override { return nullptr; } |
| 414 | const char* getTypeName() const override { return "NoopColorFilter" ; } |
| 415 | }; |
| 416 | |
| 417 | struct DitherShader : public SkShaderBase { |
| 418 | explicit DitherShader(sk_sp<SkShader> shader) : fShader(std::move(shader)) {} |
| 419 | |
| 420 | sk_sp<SkShader> fShader; |
| 421 | |
| 422 | // Only created here temporarily... never serialized. |
| 423 | Factory getFactory() const override { return nullptr; } |
| 424 | const char* getTypeName() const override { return "DitherShader" ; } |
| 425 | |
| 426 | bool isOpaque() const override { return fShader->isOpaque(); } |
| 427 | |
| 428 | skvm::Color onProgram(skvm::Builder* p, skvm::F32 x, skvm::F32 y, skvm::Color paint, |
| 429 | const SkMatrix& ctm, const SkMatrix* localM, |
| 430 | SkFilterQuality quality, const SkColorInfo& dst, |
| 431 | skvm::Uniforms* uniforms, SkArenaAlloc* alloc) const override { |
| 432 | // Run our wrapped shader. |
| 433 | skvm::Color c = as_SB(fShader)->program(p, x,y, paint, |
| 434 | ctm,localM, quality,dst, uniforms,alloc); |
| 435 | if (!c) { |
| 436 | return {}; |
| 437 | } |
| 438 | |
| 439 | float rate = 0.0f; |
| 440 | switch (dst.colorType()) { |
| 441 | case kARGB_4444_SkColorType: rate = 1/15.0f; break; |
| 442 | case kRGB_565_SkColorType: rate = 1/63.0f; break; |
| 443 | case kGray_8_SkColorType: |
| 444 | case kRGB_888x_SkColorType: |
| 445 | case kRGBA_8888_SkColorType: |
| 446 | case kBGRA_8888_SkColorType: rate = 1/255.0f; break; |
| 447 | case kRGB_101010x_SkColorType: |
| 448 | case kRGBA_1010102_SkColorType: |
| 449 | case kBGR_101010x_SkColorType: |
| 450 | case kBGRA_1010102_SkColorType: rate = 1/1023.0f; break; |
| 451 | |
| 452 | case kUnknown_SkColorType: |
| 453 | case kAlpha_8_SkColorType: |
| 454 | case kRGBA_F16_SkColorType: |
| 455 | case kRGBA_F16Norm_SkColorType: |
| 456 | case kRGBA_F32_SkColorType: |
| 457 | case kR8G8_unorm_SkColorType: |
| 458 | case kA16_float_SkColorType: |
| 459 | case kA16_unorm_SkColorType: |
| 460 | case kR16G16_float_SkColorType: |
| 461 | case kR16G16_unorm_SkColorType: |
| 462 | case kR16G16B16A16_unorm_SkColorType: return c; |
| 463 | } |
| 464 | |
| 465 | // See SkRasterPipeline dither stage. |
| 466 | // This is 8x8 ordered dithering. From here we'll only need dx and dx^dy. |
| 467 | skvm::I32 X = trunc(x - 0.5f), |
| 468 | Y = X ^ trunc(y - 0.5f); |
| 469 | |
| 470 | // If X's low bits are abc and Y's def, M is fcebda, |
| 471 | // 6 bits producing all values [0,63] shuffled over an 8x8 grid. |
| 472 | skvm::I32 M = shl(Y & 1, 5) |
| 473 | | shl(X & 1, 4) |
| 474 | | shl(Y & 2, 2) |
| 475 | | shl(X & 2, 1) |
| 476 | | shr(Y & 4, 1) |
| 477 | | shr(X & 4, 2); |
| 478 | |
| 479 | // Scale to [0,1) by /64, then to (-0.5,0.5) using 63/128 (~0.492) as 0.5-ε, |
| 480 | // and finally scale all that by rate. We keep dither strength strictly |
| 481 | // within ±0.5 to not change exact values like 0 or 1. |
| 482 | |
| 483 | // rate could be a uniform, but since it's based on the destination SkColorType, |
| 484 | // we can bake it in without hurting the cache hit rate. |
| 485 | float scale = rate * ( 2/128.0f), |
| 486 | bias = rate * (-63/128.0f); |
| 487 | skvm::F32 dither = to_f32(M) * scale + bias; |
| 488 | c.r += dither; |
| 489 | c.g += dither; |
| 490 | c.b += dither; |
| 491 | |
| 492 | c.r = clamp(c.r, 0.0f, c.a); |
| 493 | c.g = clamp(c.g, 0.0f, c.a); |
| 494 | c.b = clamp(c.b, 0.0f, c.a); |
| 495 | return c; |
| 496 | } |
| 497 | }; |
| 498 | |
| 499 | static Params effective_params(const SkPixmap& device, |
| 500 | const SkPaint& paint, |
| 501 | const SkMatrix& ctm, |
| 502 | sk_sp<SkShader> clip) { |
| 503 | // Color filters have been handled for us by SkBlitter::Choose(). |
| 504 | SkASSERT(!paint.getColorFilter()); |
| 505 | |
| 506 | // If there's no explicit shader, the paint color is the shader, |
| 507 | // but if there is a shader, it's modulated by the paint alpha. |
| 508 | sk_sp<SkShader> shader = paint.refShader(); |
| 509 | if (!shader) { |
| 510 | shader = SkShaders::Color(paint.getColor4f(), nullptr); |
| 511 | } else if (paint.getAlphaf() < 1.0f) { |
| 512 | shader = sk_make_sp<SkColorFilterShader>(std::move(shader), |
| 513 | paint.getAlphaf(), |
| 514 | sk_make_sp<NoopColorFilter>()); |
| 515 | } |
| 516 | |
| 517 | // Add dither to the end of the shader pipeline if requested and needed. |
| 518 | if (paint.isDither() && !as_SB(shader)->isConstant()) { |
| 519 | shader = sk_make_sp<DitherShader>(std::move(shader)); |
| 520 | } |
| 521 | |
| 522 | // The most common blend mode is SrcOver, and it can be strength-reduced |
| 523 | // _greatly_ to Src mode when the shader is opaque. |
| 524 | // |
| 525 | // In general all the information we use to make decisions here need to |
| 526 | // be reflected in Params and Key to make program caching sound, and it |
| 527 | // might appear that shader->isOpaque() is a property of the shader's |
| 528 | // uniforms than its fundamental program structure and so unsafe to use. |
| 529 | // |
| 530 | // Opacity is such a powerful property that SkShaderBase::program() |
| 531 | // forces opacity for any shader subclass that claims isOpaque(), so |
| 532 | // the opaque bit is strongly guaranteed to be part of the program and |
| 533 | // not just a property of the uniforms. The shader program hash includes |
| 534 | // this information, making it safe to use anywhere in the blitter codegen. |
| 535 | SkBlendMode blendMode = paint.getBlendMode(); |
| 536 | if (blendMode == SkBlendMode::kSrcOver && shader->isOpaque()) { |
| 537 | blendMode = SkBlendMode::kSrc; |
| 538 | } |
| 539 | |
| 540 | return { |
| 541 | std::move(shader), |
| 542 | std::move(clip), |
| 543 | { device.colorType(), device.alphaType(), device.refColorSpace() }, |
| 544 | blendMode, |
| 545 | Coverage::Full, // Placeholder... withCoverage() will change as needed. |
| 546 | paint.getFilterQuality(), |
| 547 | ctm, |
| 548 | }; |
| 549 | } |
| 550 | |
| 551 | class Blitter final : public SkBlitter { |
| 552 | public: |
| 553 | Blitter(const SkPixmap& device, |
| 554 | const SkPaint& paint, |
| 555 | const SkMatrix& ctm, |
| 556 | sk_sp<SkShader> clip, |
| 557 | bool* ok) |
| 558 | : fDevice(device) |
| 559 | , fUniforms(kBlitterUniformsCount) |
| 560 | , fParams(effective_params(device, paint, ctm, std::move(clip))) |
| 561 | , fKey(cache_key(fParams, &fUniforms, &fAlloc, ok)) |
| 562 | , fPaint([&]{ |
| 563 | SkColor4f color = paint.getColor4f(); |
| 564 | SkColorSpaceXformSteps{sk_srgb_singleton(), kUnpremul_SkAlphaType, |
| 565 | device.colorSpace(), kUnpremul_SkAlphaType} |
| 566 | .apply(color.vec()); |
| 567 | return color; |
| 568 | }()) {} |
| 569 | |
| 570 | ~Blitter() override { |
| 571 | if (SkLRUCache<Key, skvm::Program>* cache = try_acquire_program_cache()) { |
| 572 | auto cache_program = [&](skvm::Program&& program, Coverage coverage) { |
| 573 | if (!program.empty()) { |
| 574 | Key key = fKey.withCoverage(coverage); |
| 575 | if (skvm::Program* found = cache->find(key)) { |
| 576 | *found = std::move(program); |
| 577 | } else { |
| 578 | cache->insert(key, std::move(program)); |
| 579 | } |
| 580 | } |
| 581 | }; |
| 582 | cache_program(std::move(fBlitH), Coverage::Full); |
| 583 | cache_program(std::move(fBlitAntiH), Coverage::UniformA8); |
| 584 | cache_program(std::move(fBlitMaskA8), Coverage::MaskA8); |
| 585 | cache_program(std::move(fBlitMask3D), Coverage::Mask3D); |
| 586 | cache_program(std::move(fBlitMaskLCD16), Coverage::MaskLCD16); |
| 587 | |
| 588 | release_program_cache(); |
| 589 | } |
| 590 | } |
| 591 | |
| 592 | private: |
| 593 | SkPixmap fDevice; |
| 594 | skvm::Uniforms fUniforms; // Most data is copied directly into fUniforms, |
| 595 | SkArenaAlloc fAlloc{2*sizeof(void*)}; // but a few effects need to ref large content. |
| 596 | const Params fParams; |
| 597 | const Key fKey; |
| 598 | const SkColor4f fPaint; |
| 599 | skvm::Program fBlitH, |
| 600 | fBlitAntiH, |
| 601 | fBlitMaskA8, |
| 602 | fBlitMask3D, |
| 603 | fBlitMaskLCD16; |
| 604 | |
| 605 | skvm::Program buildProgram(Coverage coverage) { |
| 606 | Key key = fKey.withCoverage(coverage); |
| 607 | { |
| 608 | skvm::Program p; |
| 609 | if (SkLRUCache<Key, skvm::Program>* cache = try_acquire_program_cache()) { |
| 610 | if (skvm::Program* found = cache->find(key)) { |
| 611 | p = std::move(*found); |
| 612 | } |
| 613 | release_program_cache(); |
| 614 | } |
| 615 | if (!p.empty()) { |
| 616 | return p; |
| 617 | } |
| 618 | } |
| 619 | // We don't really _need_ to rebuild fUniforms here. |
| 620 | // It's just more natural to have effects unconditionally emit them, |
| 621 | // and more natural to rebuild fUniforms than to emit them into a dummy buffer. |
| 622 | // fUniforms should reuse the exact same memory, so this is very cheap. |
| 623 | SkDEBUGCODE(size_t prev = fUniforms.buf.size();) |
| 624 | fUniforms.buf.resize(kBlitterUniformsCount); |
| 625 | skvm::Builder builder; |
| 626 | build_program(&builder, fParams.withCoverage(coverage), &fUniforms, &fAlloc); |
| 627 | SkASSERTF(fUniforms.buf.size() == prev, |
| 628 | "%zu, prev was %zu" , fUniforms.buf.size(), prev); |
| 629 | |
| 630 | skvm::Program program = builder.done(debug_name(key).c_str()); |
| 631 | if (false) { |
| 632 | static std::atomic<int> missed{0}, |
| 633 | total{0}; |
| 634 | if (!program.hasJIT()) { |
| 635 | SkDebugf("\ncouldn't JIT %s\n" , debug_name(key).c_str()); |
| 636 | builder.dump(); |
| 637 | program.dump(); |
| 638 | |
| 639 | SkString path = SkStringPrintf("/tmp/%s.dot" , debug_name(key).c_str()); |
| 640 | SkFILEWStream tmp(path.c_str()); |
| 641 | builder.dot(&tmp, true); |
| 642 | |
| 643 | missed++; |
| 644 | } |
| 645 | if (0 == total++) { |
| 646 | atexit([]{ SkDebugf("SkVMBlitter compiled %d programs, %d without JIT.\n" , |
| 647 | total.load(), missed.load()); }); |
| 648 | } |
| 649 | } |
| 650 | return program; |
| 651 | } |
| 652 | |
| 653 | void updateUniforms(int right, int y) { |
| 654 | BlitterUniforms uniforms{right, y, fPaint}; |
| 655 | memcpy(fUniforms.buf.data(), &uniforms, sizeof(BlitterUniforms)); |
| 656 | } |
| 657 | |
| 658 | void blitH(int x, int y, int w) override { |
| 659 | if (fBlitH.empty()) { |
| 660 | fBlitH = this->buildProgram(Coverage::Full); |
| 661 | } |
| 662 | this->updateUniforms(x+w, y); |
| 663 | fBlitH.eval(w, fUniforms.buf.data(), fDevice.addr(x,y)); |
| 664 | } |
| 665 | |
| 666 | void blitAntiH(int x, int y, const SkAlpha cov[], const int16_t runs[]) override { |
| 667 | if (fBlitAntiH.empty()) { |
| 668 | fBlitAntiH = this->buildProgram(Coverage::UniformA8); |
| 669 | } |
| 670 | for (int16_t run = *runs; run > 0; run = *runs) { |
| 671 | this->updateUniforms(x+run, y); |
| 672 | fBlitAntiH.eval(run, fUniforms.buf.data(), fDevice.addr(x,y), cov); |
| 673 | |
| 674 | x += run; |
| 675 | runs += run; |
| 676 | cov += run; |
| 677 | } |
| 678 | } |
| 679 | |
| 680 | void blitMask(const SkMask& mask, const SkIRect& clip) override { |
| 681 | if (mask.fFormat == SkMask::kBW_Format) { |
| 682 | return SkBlitter::blitMask(mask, clip); |
| 683 | } |
| 684 | |
| 685 | const skvm::Program* program = nullptr; |
| 686 | switch (mask.fFormat) { |
| 687 | default: SkUNREACHABLE; // ARGB and SDF masks shouldn't make it here. |
| 688 | |
| 689 | case SkMask::k3D_Format: |
| 690 | if (fBlitMask3D.empty()) { |
| 691 | fBlitMask3D = this->buildProgram(Coverage::Mask3D); |
| 692 | } |
| 693 | program = &fBlitMask3D; |
| 694 | break; |
| 695 | |
| 696 | case SkMask::kA8_Format: |
| 697 | if (fBlitMaskA8.empty()) { |
| 698 | fBlitMaskA8 = this->buildProgram(Coverage::MaskA8); |
| 699 | } |
| 700 | program = &fBlitMaskA8; |
| 701 | break; |
| 702 | |
| 703 | case SkMask::kLCD16_Format: |
| 704 | if (fBlitMaskLCD16.empty()) { |
| 705 | fBlitMaskLCD16 = this->buildProgram(Coverage::MaskLCD16); |
| 706 | } |
| 707 | program = &fBlitMaskLCD16; |
| 708 | break; |
| 709 | } |
| 710 | |
| 711 | SkASSERT(program); |
| 712 | if (program) { |
| 713 | for (int y = clip.top(); y < clip.bottom(); y++) { |
| 714 | int x = clip.left(), |
| 715 | w = clip.width(); |
| 716 | void* dptr = fDevice.writable_addr(x,y); |
| 717 | auto mptr = (const uint8_t*)mask.getAddr(x,y); |
| 718 | this->updateUniforms(x+w,y); |
| 719 | |
| 720 | if (program == &fBlitMask3D) { |
| 721 | size_t plane = mask.computeImageSize(); |
| 722 | program->eval(w, fUniforms.buf.data(), dptr, mptr + 1*plane |
| 723 | , mptr + 2*plane |
| 724 | , mptr + 0*plane); |
| 725 | } else { |
| 726 | program->eval(w, fUniforms.buf.data(), dptr, mptr); |
| 727 | } |
| 728 | } |
| 729 | } |
| 730 | } |
| 731 | }; |
| 732 | |
| 733 | } // namespace |
| 734 | |
| 735 | SkBlitter* SkCreateSkVMBlitter(const SkPixmap& device, |
| 736 | const SkPaint& paint, |
| 737 | const SkMatrix& ctm, |
| 738 | SkArenaAlloc* alloc, |
| 739 | sk_sp<SkShader> clip) { |
| 740 | bool ok = true; |
| 741 | auto blitter = alloc->make<Blitter>(device, paint, ctm, std::move(clip), &ok); |
| 742 | return ok ? blitter : nullptr; |
| 743 | } |
| 744 | |