1 | /* |
2 | * Copyright 2014 Google Inc. |
3 | * |
4 | * Use of this source code is governed by a BSD-style license that can be |
5 | * found in the LICENSE file. |
6 | */ |
7 | |
8 | #include "src/utils/SkPatchUtils.h" |
9 | |
10 | #include "include/core/SkVertices.h" |
11 | #include "include/private/SkColorData.h" |
12 | #include "include/private/SkTo.h" |
13 | #include "src/core/SkArenaAlloc.h" |
14 | #include "src/core/SkColorSpacePriv.h" |
15 | #include "src/core/SkConvertPixels.h" |
16 | #include "src/core/SkGeometry.h" |
17 | |
18 | namespace { |
19 | enum CubicCtrlPts { |
20 | kTopP0_CubicCtrlPts = 0, |
21 | kTopP1_CubicCtrlPts = 1, |
22 | kTopP2_CubicCtrlPts = 2, |
23 | kTopP3_CubicCtrlPts = 3, |
24 | |
25 | kRightP0_CubicCtrlPts = 3, |
26 | kRightP1_CubicCtrlPts = 4, |
27 | kRightP2_CubicCtrlPts = 5, |
28 | kRightP3_CubicCtrlPts = 6, |
29 | |
30 | kBottomP0_CubicCtrlPts = 9, |
31 | kBottomP1_CubicCtrlPts = 8, |
32 | kBottomP2_CubicCtrlPts = 7, |
33 | kBottomP3_CubicCtrlPts = 6, |
34 | |
35 | kLeftP0_CubicCtrlPts = 0, |
36 | kLeftP1_CubicCtrlPts = 11, |
37 | kLeftP2_CubicCtrlPts = 10, |
38 | kLeftP3_CubicCtrlPts = 9, |
39 | }; |
40 | |
41 | // Enum for corner also clockwise. |
42 | enum Corner { |
43 | kTopLeft_Corner = 0, |
44 | kTopRight_Corner, |
45 | kBottomRight_Corner, |
46 | kBottomLeft_Corner |
47 | }; |
48 | } |
49 | |
50 | /** |
51 | * Evaluator to sample the values of a cubic bezier using forward differences. |
52 | * Forward differences is a method for evaluating a nth degree polynomial at a uniform step by only |
53 | * adding precalculated values. |
54 | * For a linear example we have the function f(t) = m*t+b, then the value of that function at t+h |
55 | * would be f(t+h) = m*(t+h)+b. If we want to know the uniform step that we must add to the first |
56 | * evaluation f(t) then we need to substract f(t+h) - f(t) = m*t + m*h + b - m*t + b = mh. After |
57 | * obtaining this value (mh) we could just add this constant step to our first sampled point |
58 | * to compute the next one. |
59 | * |
60 | * For the cubic case the first difference gives as a result a quadratic polynomial to which we can |
61 | * apply again forward differences and get linear function to which we can apply again forward |
62 | * differences to get a constant difference. This is why we keep an array of size 4, the 0th |
63 | * position keeps the sampled value while the next ones keep the quadratic, linear and constant |
64 | * difference values. |
65 | */ |
66 | |
67 | class FwDCubicEvaluator { |
68 | |
69 | public: |
70 | |
71 | /** |
72 | * Receives the 4 control points of the cubic bezier. |
73 | */ |
74 | |
75 | explicit FwDCubicEvaluator(const SkPoint points[4]) |
76 | : fCoefs(points) { |
77 | memcpy(fPoints, points, 4 * sizeof(SkPoint)); |
78 | |
79 | this->restart(1); |
80 | } |
81 | |
82 | /** |
83 | * Restarts the forward differences evaluator to the first value of t = 0. |
84 | */ |
85 | void restart(int divisions) { |
86 | fDivisions = divisions; |
87 | fCurrent = 0; |
88 | fMax = fDivisions + 1; |
89 | Sk2s h = Sk2s(1.f / fDivisions); |
90 | Sk2s h2 = h * h; |
91 | Sk2s h3 = h2 * h; |
92 | Sk2s fwDiff3 = Sk2s(6) * fCoefs.fA * h3; |
93 | fFwDiff[3] = to_point(fwDiff3); |
94 | fFwDiff[2] = to_point(fwDiff3 + times_2(fCoefs.fB) * h2); |
95 | fFwDiff[1] = to_point(fCoefs.fA * h3 + fCoefs.fB * h2 + fCoefs.fC * h); |
96 | fFwDiff[0] = to_point(fCoefs.fD); |
97 | } |
98 | |
99 | /** |
100 | * Check if the evaluator is still within the range of 0<=t<=1 |
101 | */ |
102 | bool done() const { |
103 | return fCurrent > fMax; |
104 | } |
105 | |
106 | /** |
107 | * Call next to obtain the SkPoint sampled and move to the next one. |
108 | */ |
109 | SkPoint next() { |
110 | SkPoint point = fFwDiff[0]; |
111 | fFwDiff[0] += fFwDiff[1]; |
112 | fFwDiff[1] += fFwDiff[2]; |
113 | fFwDiff[2] += fFwDiff[3]; |
114 | fCurrent++; |
115 | return point; |
116 | } |
117 | |
118 | const SkPoint* getCtrlPoints() const { |
119 | return fPoints; |
120 | } |
121 | |
122 | private: |
123 | SkCubicCoeff fCoefs; |
124 | int fMax, fCurrent, fDivisions; |
125 | SkPoint fFwDiff[4], fPoints[4]; |
126 | }; |
127 | |
128 | //////////////////////////////////////////////////////////////////////////////// |
129 | |
130 | // size in pixels of each partition per axis, adjust this knob |
131 | static const int kPartitionSize = 10; |
132 | |
133 | /** |
134 | * Calculate the approximate arc length given a bezier curve's control points. |
135 | * Returns -1 if bad calc (i.e. non-finite) |
136 | */ |
137 | static SkScalar approx_arc_length(const SkPoint points[], int count) { |
138 | if (count < 2) { |
139 | return 0; |
140 | } |
141 | SkScalar arcLength = 0; |
142 | for (int i = 0; i < count - 1; i++) { |
143 | arcLength += SkPoint::Distance(points[i], points[i + 1]); |
144 | } |
145 | return SkScalarIsFinite(arcLength) ? arcLength : -1; |
146 | } |
147 | |
148 | static SkScalar bilerp(SkScalar tx, SkScalar ty, SkScalar c00, SkScalar c10, SkScalar c01, |
149 | SkScalar c11) { |
150 | SkScalar a = c00 * (1.f - tx) + c10 * tx; |
151 | SkScalar b = c01 * (1.f - tx) + c11 * tx; |
152 | return a * (1.f - ty) + b * ty; |
153 | } |
154 | |
155 | static Sk4f bilerp(SkScalar tx, SkScalar ty, |
156 | const Sk4f& c00, const Sk4f& c10, const Sk4f& c01, const Sk4f& c11) { |
157 | Sk4f a = c00 * (1.f - tx) + c10 * tx; |
158 | Sk4f b = c01 * (1.f - tx) + c11 * tx; |
159 | return a * (1.f - ty) + b * ty; |
160 | } |
161 | |
162 | SkISize SkPatchUtils::GetLevelOfDetail(const SkPoint cubics[12], const SkMatrix* matrix) { |
163 | // Approximate length of each cubic. |
164 | SkPoint pts[kNumPtsCubic]; |
165 | SkPatchUtils::GetTopCubic(cubics, pts); |
166 | matrix->mapPoints(pts, kNumPtsCubic); |
167 | SkScalar topLength = approx_arc_length(pts, kNumPtsCubic); |
168 | |
169 | SkPatchUtils::GetBottomCubic(cubics, pts); |
170 | matrix->mapPoints(pts, kNumPtsCubic); |
171 | SkScalar bottomLength = approx_arc_length(pts, kNumPtsCubic); |
172 | |
173 | SkPatchUtils::GetLeftCubic(cubics, pts); |
174 | matrix->mapPoints(pts, kNumPtsCubic); |
175 | SkScalar leftLength = approx_arc_length(pts, kNumPtsCubic); |
176 | |
177 | SkPatchUtils::GetRightCubic(cubics, pts); |
178 | matrix->mapPoints(pts, kNumPtsCubic); |
179 | SkScalar rightLength = approx_arc_length(pts, kNumPtsCubic); |
180 | |
181 | if (topLength < 0 || bottomLength < 0 || leftLength < 0 || rightLength < 0) { |
182 | return {0, 0}; // negative length is a sentinel for bad length (i.e. non-finite) |
183 | } |
184 | |
185 | // Level of detail per axis, based on the larger side between top and bottom or left and right |
186 | int lodX = static_cast<int>(std::max(topLength, bottomLength) / kPartitionSize); |
187 | int lodY = static_cast<int>(std::max(leftLength, rightLength) / kPartitionSize); |
188 | |
189 | return SkISize::Make(std::max(8, lodX), std::max(8, lodY)); |
190 | } |
191 | |
192 | void SkPatchUtils::GetTopCubic(const SkPoint cubics[12], SkPoint points[4]) { |
193 | points[0] = cubics[kTopP0_CubicCtrlPts]; |
194 | points[1] = cubics[kTopP1_CubicCtrlPts]; |
195 | points[2] = cubics[kTopP2_CubicCtrlPts]; |
196 | points[3] = cubics[kTopP3_CubicCtrlPts]; |
197 | } |
198 | |
199 | void SkPatchUtils::GetBottomCubic(const SkPoint cubics[12], SkPoint points[4]) { |
200 | points[0] = cubics[kBottomP0_CubicCtrlPts]; |
201 | points[1] = cubics[kBottomP1_CubicCtrlPts]; |
202 | points[2] = cubics[kBottomP2_CubicCtrlPts]; |
203 | points[3] = cubics[kBottomP3_CubicCtrlPts]; |
204 | } |
205 | |
206 | void SkPatchUtils::GetLeftCubic(const SkPoint cubics[12], SkPoint points[4]) { |
207 | points[0] = cubics[kLeftP0_CubicCtrlPts]; |
208 | points[1] = cubics[kLeftP1_CubicCtrlPts]; |
209 | points[2] = cubics[kLeftP2_CubicCtrlPts]; |
210 | points[3] = cubics[kLeftP3_CubicCtrlPts]; |
211 | } |
212 | |
213 | void SkPatchUtils::GetRightCubic(const SkPoint cubics[12], SkPoint points[4]) { |
214 | points[0] = cubics[kRightP0_CubicCtrlPts]; |
215 | points[1] = cubics[kRightP1_CubicCtrlPts]; |
216 | points[2] = cubics[kRightP2_CubicCtrlPts]; |
217 | points[3] = cubics[kRightP3_CubicCtrlPts]; |
218 | } |
219 | |
220 | static void skcolor_to_float(SkPMColor4f* dst, const SkColor* src, int count, SkColorSpace* dstCS) { |
221 | SkImageInfo srcInfo = SkImageInfo::Make(count, 1, kBGRA_8888_SkColorType, |
222 | kUnpremul_SkAlphaType, SkColorSpace::MakeSRGB()); |
223 | SkImageInfo dstInfo = SkImageInfo::Make(count, 1, kRGBA_F32_SkColorType, |
224 | kPremul_SkAlphaType, sk_ref_sp(dstCS)); |
225 | SkConvertPixels(dstInfo, dst, 0, srcInfo, src, 0); |
226 | } |
227 | |
228 | static void float_to_skcolor(SkColor* dst, const SkPMColor4f* src, int count, SkColorSpace* srcCS) { |
229 | SkImageInfo srcInfo = SkImageInfo::Make(count, 1, kRGBA_F32_SkColorType, |
230 | kPremul_SkAlphaType, sk_ref_sp(srcCS)); |
231 | SkImageInfo dstInfo = SkImageInfo::Make(count, 1, kBGRA_8888_SkColorType, |
232 | kUnpremul_SkAlphaType, SkColorSpace::MakeSRGB()); |
233 | SkConvertPixels(dstInfo, dst, 0, srcInfo, src, 0); |
234 | } |
235 | |
236 | sk_sp<SkVertices> SkPatchUtils::MakeVertices(const SkPoint cubics[12], const SkColor srcColors[4], |
237 | const SkPoint srcTexCoords[4], int lodX, int lodY, |
238 | SkColorSpace* colorSpace) { |
239 | if (lodX < 1 || lodY < 1 || nullptr == cubics) { |
240 | return nullptr; |
241 | } |
242 | |
243 | // check for overflow in multiplication |
244 | const int64_t lodX64 = (lodX + 1), |
245 | lodY64 = (lodY + 1), |
246 | mult64 = lodX64 * lodY64; |
247 | if (mult64 > SK_MaxS32) { |
248 | return nullptr; |
249 | } |
250 | |
251 | // Treat null interpolation space as sRGB. |
252 | if (!colorSpace) { |
253 | colorSpace = sk_srgb_singleton(); |
254 | } |
255 | |
256 | int vertexCount = SkToS32(mult64); |
257 | // it is recommended to generate draw calls of no more than 65536 indices, so we never generate |
258 | // more than 60000 indices. To accomplish that we resize the LOD and vertex count |
259 | if (vertexCount > 10000 || lodX > 200 || lodY > 200) { |
260 | float weightX = static_cast<float>(lodX) / (lodX + lodY); |
261 | float weightY = static_cast<float>(lodY) / (lodX + lodY); |
262 | |
263 | // 200 comes from the 100 * 2 which is the max value of vertices because of the limit of |
264 | // 60000 indices ( sqrt(60000 / 6) that comes from data->fIndexCount = lodX * lodY * 6) |
265 | // Need a min of 1 since we later divide by lod |
266 | lodX = std::max(1, sk_float_floor2int_no_saturate(weightX * 200)); |
267 | lodY = std::max(1, sk_float_floor2int_no_saturate(weightY * 200)); |
268 | vertexCount = (lodX + 1) * (lodY + 1); |
269 | } |
270 | const int indexCount = lodX * lodY * 6; |
271 | uint32_t flags = 0; |
272 | if (srcTexCoords) { |
273 | flags |= SkVertices::kHasTexCoords_BuilderFlag; |
274 | } |
275 | if (srcColors) { |
276 | flags |= SkVertices::kHasColors_BuilderFlag; |
277 | } |
278 | |
279 | SkSTArenaAlloc<2048> alloc; |
280 | SkPMColor4f* cornerColors = srcColors ? alloc.makeArray<SkPMColor4f>(4) : nullptr; |
281 | SkPMColor4f* tmpColors = srcColors ? alloc.makeArray<SkPMColor4f>(vertexCount) : nullptr; |
282 | |
283 | SkVertices::Builder builder(SkVertices::kTriangles_VertexMode, vertexCount, indexCount, flags); |
284 | SkPoint* pos = builder.positions(); |
285 | SkPoint* texs = builder.texCoords(); |
286 | uint16_t* indices = builder.indices(); |
287 | |
288 | if (cornerColors) { |
289 | skcolor_to_float(cornerColors, srcColors, kNumCorners, colorSpace); |
290 | } |
291 | |
292 | SkPoint pts[kNumPtsCubic]; |
293 | SkPatchUtils::GetBottomCubic(cubics, pts); |
294 | FwDCubicEvaluator fBottom(pts); |
295 | SkPatchUtils::GetTopCubic(cubics, pts); |
296 | FwDCubicEvaluator fTop(pts); |
297 | SkPatchUtils::GetLeftCubic(cubics, pts); |
298 | FwDCubicEvaluator fLeft(pts); |
299 | SkPatchUtils::GetRightCubic(cubics, pts); |
300 | FwDCubicEvaluator fRight(pts); |
301 | |
302 | fBottom.restart(lodX); |
303 | fTop.restart(lodX); |
304 | |
305 | SkScalar u = 0.0f; |
306 | int stride = lodY + 1; |
307 | for (int x = 0; x <= lodX; x++) { |
308 | SkPoint bottom = fBottom.next(), top = fTop.next(); |
309 | fLeft.restart(lodY); |
310 | fRight.restart(lodY); |
311 | SkScalar v = 0.f; |
312 | for (int y = 0; y <= lodY; y++) { |
313 | int dataIndex = x * (lodY + 1) + y; |
314 | |
315 | SkPoint left = fLeft.next(), right = fRight.next(); |
316 | |
317 | SkPoint s0 = SkPoint::Make((1.0f - v) * top.x() + v * bottom.x(), |
318 | (1.0f - v) * top.y() + v * bottom.y()); |
319 | SkPoint s1 = SkPoint::Make((1.0f - u) * left.x() + u * right.x(), |
320 | (1.0f - u) * left.y() + u * right.y()); |
321 | SkPoint s2 = SkPoint::Make( |
322 | (1.0f - v) * ((1.0f - u) * fTop.getCtrlPoints()[0].x() |
323 | + u * fTop.getCtrlPoints()[3].x()) |
324 | + v * ((1.0f - u) * fBottom.getCtrlPoints()[0].x() |
325 | + u * fBottom.getCtrlPoints()[3].x()), |
326 | (1.0f - v) * ((1.0f - u) * fTop.getCtrlPoints()[0].y() |
327 | + u * fTop.getCtrlPoints()[3].y()) |
328 | + v * ((1.0f - u) * fBottom.getCtrlPoints()[0].y() |
329 | + u * fBottom.getCtrlPoints()[3].y())); |
330 | pos[dataIndex] = s0 + s1 - s2; |
331 | |
332 | if (cornerColors) { |
333 | bilerp(u, v, Sk4f::Load(cornerColors[kTopLeft_Corner].vec()), |
334 | Sk4f::Load(cornerColors[kTopRight_Corner].vec()), |
335 | Sk4f::Load(cornerColors[kBottomLeft_Corner].vec()), |
336 | Sk4f::Load(cornerColors[kBottomRight_Corner].vec())) |
337 | .store(tmpColors[dataIndex].vec()); |
338 | } |
339 | |
340 | if (texs) { |
341 | texs[dataIndex] = SkPoint::Make(bilerp(u, v, srcTexCoords[kTopLeft_Corner].x(), |
342 | srcTexCoords[kTopRight_Corner].x(), |
343 | srcTexCoords[kBottomLeft_Corner].x(), |
344 | srcTexCoords[kBottomRight_Corner].x()), |
345 | bilerp(u, v, srcTexCoords[kTopLeft_Corner].y(), |
346 | srcTexCoords[kTopRight_Corner].y(), |
347 | srcTexCoords[kBottomLeft_Corner].y(), |
348 | srcTexCoords[kBottomRight_Corner].y())); |
349 | |
350 | } |
351 | |
352 | if(x < lodX && y < lodY) { |
353 | int i = 6 * (x * lodY + y); |
354 | indices[i] = x * stride + y; |
355 | indices[i + 1] = x * stride + 1 + y; |
356 | indices[i + 2] = (x + 1) * stride + 1 + y; |
357 | indices[i + 3] = indices[i]; |
358 | indices[i + 4] = indices[i + 2]; |
359 | indices[i + 5] = (x + 1) * stride + y; |
360 | } |
361 | v = SkTPin(v + 1.f / lodY, 0.0f, 1.0f); |
362 | } |
363 | u = SkTPin(u + 1.f / lodX, 0.0f, 1.0f); |
364 | } |
365 | |
366 | if (tmpColors) { |
367 | float_to_skcolor(builder.colors(), tmpColors, vertexCount, colorSpace); |
368 | } |
369 | return builder.detach(); |
370 | } |
371 | |