1 | // Copyright 2005 Google Inc. All Rights Reserved. |
2 | |
3 | #include "s2cell.h" |
4 | |
5 | #include "base/integral_types.h" |
6 | #include "base/logging.h" |
7 | #include "s2.h" |
8 | #include "s2cap.h" |
9 | #include "s2latlngrect.h" |
10 | #include "util/math/vector2-inl.h" |
11 | |
12 | // Since S2Cells are copied by value, the following assertion is a reminder |
13 | // not to add fields unnecessarily. An S2Cell currently consists of 43 data |
14 | // bytes, one vtable pointer, plus alignment overhead. This works out to 48 |
15 | // bytes on 32 bit architectures and 56 bytes on 64 bit architectures. |
16 | // |
17 | // The expression below rounds up (43 + sizeof(void*)) to the nearest |
18 | // multiple of sizeof(void*). |
19 | COMPILE_ASSERT(sizeof(S2Cell) <= ((43+2*sizeof(void*)-1) & -sizeof(void*)), |
20 | S2Cell_is_getting_bloated); |
21 | |
22 | S2Point S2Cell::GetVertexRaw(int k) const { |
23 | // Vertices are returned in the order SW, SE, NE, NW. |
24 | return S2::FaceUVtoXYZ(face_, uv_[0][(k>>1) ^ (k&1)], uv_[1][k>>1]); |
25 | } |
26 | |
27 | S2Point S2Cell::GetEdgeRaw(int k) const { |
28 | switch (k) { |
29 | case 0: return S2::GetVNorm(face_, uv_[1][0]); // South |
30 | case 1: return S2::GetUNorm(face_, uv_[0][1]); // East |
31 | case 2: return -S2::GetVNorm(face_, uv_[1][1]); // North |
32 | default: return -S2::GetUNorm(face_, uv_[0][0]); // West |
33 | } |
34 | } |
35 | |
36 | void S2Cell::Init(S2CellId const& id) { |
37 | id_ = id; |
38 | int ij[2], orientation; |
39 | face_ = id.ToFaceIJOrientation(&ij[0], &ij[1], &orientation); |
40 | orientation_ = orientation; // Compress int to a byte. |
41 | level_ = id.level(); |
42 | int cellSize = GetSizeIJ(); // Depends on level_. |
43 | for (int d = 0; d < 2; ++d) { |
44 | int ij_lo = ij[d] & -cellSize; |
45 | int ij_hi = ij_lo + cellSize; |
46 | uv_[d][0] = S2::STtoUV((1.0 / S2CellId::kMaxSize) * ij_lo); |
47 | uv_[d][1] = S2::STtoUV((1.0 / S2CellId::kMaxSize) * ij_hi); |
48 | } |
49 | } |
50 | |
51 | bool S2Cell::Subdivide(S2Cell children[4]) const { |
52 | // This function is equivalent to just iterating over the child cell ids |
53 | // and calling the S2Cell constructor, but it is about 2.5 times faster. |
54 | |
55 | if (id_.is_leaf()) return false; |
56 | |
57 | // Compute the cell midpoint in uv-space. |
58 | Vector2_d uv_mid = id_.GetCenterUV(); |
59 | |
60 | // Create four children with the appropriate bounds. |
61 | S2CellId id = id_.child_begin(); |
62 | for (int pos = 0; pos < 4; ++pos, id = id.next()) { |
63 | S2Cell *child = &children[pos]; |
64 | child->face_ = face_; |
65 | child->level_ = level_ + 1; |
66 | child->orientation_ = orientation_ ^ S2::kPosToOrientation[pos]; |
67 | child->id_ = id; |
68 | // We want to split the cell in half in "u" and "v". To decide which |
69 | // side to set equal to the midpoint value, we look at cell's (i,j) |
70 | // position within its parent. The index for "i" is in bit 1 of ij. |
71 | int ij = S2::kPosToIJ[orientation_][pos]; |
72 | int i = ij >> 1; |
73 | int j = ij & 1; |
74 | child->uv_[0][i] = uv_[0][i]; |
75 | child->uv_[0][1-i] = uv_mid[0]; |
76 | child->uv_[1][j] = uv_[1][j]; |
77 | child->uv_[1][1-j] = uv_mid[1]; |
78 | } |
79 | return true; |
80 | } |
81 | |
82 | S2Point S2Cell::GetCenterRaw() const { |
83 | return id_.ToPointRaw(); |
84 | } |
85 | |
86 | double S2Cell::AverageArea(int level) { |
87 | return S2::kAvgArea.GetValue(level); |
88 | } |
89 | |
90 | double S2Cell::ApproxArea() const { |
91 | // All cells at the first two levels have the same area. |
92 | if (level_ < 2) return AverageArea(level_); |
93 | |
94 | // First, compute the approximate area of the cell when projected |
95 | // perpendicular to its normal. The cross product of its diagonals gives |
96 | // the normal, and the length of the normal is twice the projected area. |
97 | double flat_area = 0.5 * (GetVertex(2) - GetVertex(0)). |
98 | CrossProd(GetVertex(3) - GetVertex(1)).Norm(); |
99 | |
100 | // Now, compensate for the curvature of the cell surface by pretending |
101 | // that the cell is shaped like a spherical cap. The ratio of the |
102 | // area of a spherical cap to the area of its projected disc turns out |
103 | // to be 2 / (1 + sqrt(1 - r*r)) where "r" is the radius of the disc. |
104 | // For example, when r=0 the ratio is 1, and when r=1 the ratio is 2. |
105 | // Here we set Pi*r*r == flat_area to find the equivalent disc. |
106 | return flat_area * 2 / (1 + sqrt(1 - min(M_1_PI * flat_area, 1.0))); |
107 | } |
108 | |
109 | double S2Cell::ExactArea() const { |
110 | S2Point v0 = GetVertex(0); |
111 | S2Point v1 = GetVertex(1); |
112 | S2Point v2 = GetVertex(2); |
113 | S2Point v3 = GetVertex(3); |
114 | return S2::Area(v0, v1, v2) + S2::Area(v0, v2, v3); |
115 | } |
116 | |
117 | S2Cell* S2Cell::Clone() const { |
118 | return new S2Cell(*this); |
119 | } |
120 | |
121 | S2Cap S2Cell::GetCapBound() const { |
122 | // Use the cell center in (u,v)-space as the cap axis. This vector is |
123 | // very close to GetCenter() and faster to compute. Neither one of these |
124 | // vectors yields the bounding cap with minimal surface area, but they |
125 | // are both pretty close. |
126 | // |
127 | // It's possible to show that the two vertices that are furthest from |
128 | // the (u,v)-origin never determine the maximum cap size (this is a |
129 | // possible future optimization). |
130 | |
131 | double u = 0.5 * (uv_[0][0] + uv_[0][1]); |
132 | double v = 0.5 * (uv_[1][0] + uv_[1][1]); |
133 | S2Cap cap = S2Cap::FromAxisHeight(S2::FaceUVtoXYZ(face_,u,v).Normalize(), 0); |
134 | for (int k = 0; k < 4; ++k) { |
135 | cap.AddPoint(GetVertex(k)); |
136 | } |
137 | return cap; |
138 | } |
139 | |
140 | inline double S2Cell::GetLatitude(int i, int j) const { |
141 | S2Point p = S2::FaceUVtoXYZ(face_, uv_[0][i], uv_[1][j]); |
142 | return S2LatLng::Latitude(p).radians(); |
143 | } |
144 | |
145 | inline double S2Cell::GetLongitude(int i, int j) const { |
146 | S2Point p = S2::FaceUVtoXYZ(face_, uv_[0][i], uv_[1][j]); |
147 | return S2LatLng::Longitude(p).radians(); |
148 | } |
149 | |
150 | S2LatLngRect S2Cell::GetRectBound() const { |
151 | if (level_ > 0) { |
152 | // Except for cells at level 0, the latitude and longitude extremes are |
153 | // attained at the vertices. Furthermore, the latitude range is |
154 | // determined by one pair of diagonally opposite vertices and the |
155 | // longitude range is determined by the other pair. |
156 | // |
157 | // We first determine which corner (i,j) of the cell has the largest |
158 | // absolute latitude. To maximize latitude, we want to find the point in |
159 | // the cell that has the largest absolute z-coordinate and the smallest |
160 | // absolute x- and y-coordinates. To do this we look at each coordinate |
161 | // (u and v), and determine whether we want to minimize or maximize that |
162 | // coordinate based on the axis direction and the cell's (u,v) quadrant. |
163 | double u = uv_[0][0] + uv_[0][1]; |
164 | double v = uv_[1][0] + uv_[1][1]; |
165 | int i = S2::GetUAxis(face_)[2] == 0 ? (u < 0) : (u > 0); |
166 | int j = S2::GetVAxis(face_)[2] == 0 ? (v < 0) : (v > 0); |
167 | |
168 | // We grow the bounds slightly to make sure that the bounding rectangle |
169 | // also contains the normalized versions of the vertices. Note that the |
170 | // maximum result magnitude is Pi, with a floating-point exponent of 1. |
171 | // Therefore adding or subtracting 2**-51 will always change the result. |
172 | static double const kMaxError = 1.0 / (int64(1) << 51); |
173 | R1Interval lat = R1Interval::FromPointPair(GetLatitude(i, j), |
174 | GetLatitude(1-i, 1-j)); |
175 | lat = lat.Expanded(kMaxError).Intersection(S2LatLngRect::FullLat()); |
176 | if (lat.lo() == -M_PI_2 || lat.hi() == M_PI_2) { |
177 | return S2LatLngRect(lat, S1Interval::Full()); |
178 | } |
179 | S1Interval lng = S1Interval::FromPointPair(GetLongitude(i, 1-j), |
180 | GetLongitude(1-i, j)); |
181 | return S2LatLngRect(lat, lng.Expanded(kMaxError)); |
182 | } |
183 | |
184 | // The 4 cells around the equator extend to +/-45 degrees latitude at the |
185 | // midpoints of their top and bottom edges. The two cells covering the |
186 | // poles extend down to +/-35.26 degrees at their vertices. |
187 | static double const kPoleMinLat = asin(sqrt(1./3)); // 35.26 degrees |
188 | |
189 | // The face centers are the +X, +Y, +Z, -X, -Y, -Z axes in that order. |
190 | DCHECK_EQ(((face_ < 3) ? 1 : -1), S2::GetNorm(face_)[face_ % 3]); |
191 | switch (face_) { |
192 | case 0: return S2LatLngRect(R1Interval(-M_PI_4, M_PI_4), |
193 | S1Interval(-M_PI_4, M_PI_4)); |
194 | case 1: return S2LatLngRect(R1Interval(-M_PI_4, M_PI_4), |
195 | S1Interval(M_PI_4, 3*M_PI_4)); |
196 | case 2: return S2LatLngRect(R1Interval(kPoleMinLat, M_PI_2), |
197 | S1Interval(-M_PI, M_PI)); |
198 | case 3: return S2LatLngRect(R1Interval(-M_PI_4, M_PI_4), |
199 | S1Interval(3*M_PI_4, -3*M_PI_4)); |
200 | case 4: return S2LatLngRect(R1Interval(-M_PI_4, M_PI_4), |
201 | S1Interval(-3*M_PI_4, -M_PI_4)); |
202 | default: return S2LatLngRect(R1Interval(-M_PI_2, -kPoleMinLat), |
203 | S1Interval(-M_PI, M_PI)); |
204 | } |
205 | } |
206 | |
207 | bool S2Cell::MayIntersect(S2Cell const& cell) const { |
208 | return id_.intersects(cell.id_); |
209 | } |
210 | |
211 | bool S2Cell::Contains(S2Cell const& cell) const { |
212 | return id_.contains(cell.id_); |
213 | } |
214 | |
215 | bool S2Cell::Contains(S2Point const& p) const { |
216 | // We can't just call XYZtoFaceUV, because for points that lie on the |
217 | // boundary between two faces (i.e. u or v is +1/-1) we need to return |
218 | // true for both adjacent cells. |
219 | double u, v; |
220 | if (!S2::FaceXYZtoUV(face_, p, &u, &v)) return false; |
221 | return (u >= uv_[0][0] && u <= uv_[0][1] && |
222 | v >= uv_[1][0] && v <= uv_[1][1]); |
223 | } |
224 | |