| 1 | //************************************ bs::framework - Copyright 2018 Marko Pintera **************************************// |
| 2 | //*********** Licensed under the MIT license. See LICENSE.md for full terms. This notice is not to be removed. ***********// |
| 3 | #include "Particles/BsParticleManager.h" |
| 4 | #include "Particles/BsParticleSystem.h" |
| 5 | #include "Utility/BsTime.h" |
| 6 | #include "Threading/BsTaskScheduler.h" |
| 7 | #include "Allocators/BsPoolAlloc.h" |
| 8 | #include "Private/Particles/BsParticleSet.h" |
| 9 | #include "Animation/BsAnimationManager.h" |
| 10 | #include "Image/BsPixelUtil.h" |
| 11 | |
| 12 | namespace bs |
| 13 | { |
| 14 | /** Helper method used for writing particle data into the @p pixels buffer. */ |
| 15 | template<class T, class PR> |
| 16 | void iterateOverPixels(PixelData& pixels, UINT32 count, UINT32 stride, PR predicate) |
| 17 | { |
| 18 | auto dest = (UINT8*)pixels.getData(); |
| 19 | |
| 20 | UINT32 x = 0; |
| 21 | for (UINT32 i = 0; i < count; i++) |
| 22 | { |
| 23 | predicate((T*)dest, i); |
| 24 | |
| 25 | dest += stride; |
| 26 | x++; |
| 27 | |
| 28 | if (x >= pixels.getWidth()) |
| 29 | { |
| 30 | x = 0; |
| 31 | dest += pixels.getRowSkip() * PixelUtil::getNumElemBytes(pixels.getFormat());; |
| 32 | } |
| 33 | } |
| 34 | } |
| 35 | |
| 36 | /** Helper method used for writing particle data into the @p pixels buffer. */ |
| 37 | template<class T, class PR> |
| 38 | void iterateOverPixels(PixelData& pixels, UINT32 count, PR predicate) |
| 39 | { |
| 40 | iterateOverPixels<T>(pixels, count, sizeof(T), predicate); |
| 41 | } |
| 42 | |
| 43 | /** |
| 44 | * Maintains a pool of buffers that are used for passing results of particle simulation from the simulation to the |
| 45 | * core thread. |
| 46 | */ |
| 47 | class ParticleSimulationDataPool |
| 48 | { |
| 49 | /** Contains a list of buffers for the specified size. */ |
| 50 | struct BuffersPerSize |
| 51 | { |
| 52 | Vector<ParticleRenderData*> buffers; |
| 53 | UINT32 nextFreeIdx = 0; |
| 54 | }; |
| 55 | |
| 56 | public: |
| 57 | ~ParticleSimulationDataPool() |
| 58 | { |
| 59 | Lock lock(mMutex); |
| 60 | |
| 61 | for (auto& sizeEntry : mBillboardBufferList) |
| 62 | { |
| 63 | for (auto& entry : sizeEntry.second.buffers) |
| 64 | mBillboardAlloc.destruct(static_cast<ParticleBillboardRenderData*>(entry)); |
| 65 | } |
| 66 | |
| 67 | for (auto& sizeEntry : mMeshBufferList) |
| 68 | { |
| 69 | for (auto& entry : sizeEntry.second.buffers) |
| 70 | mMeshAlloc.destruct(static_cast<ParticleMeshRenderData*>(entry)); |
| 71 | } |
| 72 | |
| 73 | for (auto& entry : mGPUBufferList) |
| 74 | mGPUAlloc.destruct(entry); |
| 75 | } |
| 76 | |
| 77 | /** |
| 78 | * Returns a set of buffers containing particle data from the provided particle set. Usable for rendering the |
| 79 | * results of the CPU particle simulation as billboards. |
| 80 | */ |
| 81 | ParticleBillboardRenderData* allocCPUBillboard(const ParticleSet& particleSet) |
| 82 | { |
| 83 | const UINT32 size = particleSet.determineTextureSize(); |
| 84 | |
| 85 | ParticleBillboardRenderData* output = nullptr; |
| 86 | |
| 87 | { |
| 88 | Lock lock(mMutex); |
| 89 | |
| 90 | BuffersPerSize& buffers = mBillboardBufferList[size]; |
| 91 | if (buffers.nextFreeIdx < (UINT32)buffers.buffers.size()) |
| 92 | { |
| 93 | output = static_cast<ParticleBillboardRenderData*>(buffers.buffers[buffers.nextFreeIdx]); |
| 94 | buffers.nextFreeIdx++; |
| 95 | } |
| 96 | } |
| 97 | |
| 98 | if (!output) |
| 99 | { |
| 100 | output = createNewBillboardBuffersCPU(size); |
| 101 | |
| 102 | Lock lock(mMutex); |
| 103 | |
| 104 | BuffersPerSize& buffers = mBillboardBufferList[size]; |
| 105 | buffers.buffers.push_back(output); |
| 106 | buffers.nextFreeIdx++; |
| 107 | } |
| 108 | |
| 109 | // Populate buffer contents |
| 110 | const UINT32 count = particleSet.getParticleCount(); |
| 111 | const ParticleSetData& particles = particleSet.getParticles(); |
| 112 | |
| 113 | // TODO: Use non-temporal writes? |
| 114 | iterateOverPixels<Vector4>(output->positionAndRotation, count, |
| 115 | [&particles](Vector4* dst, UINT32 idx) |
| 116 | { |
| 117 | dst->x = particles.position[idx].x; |
| 118 | dst->y = particles.position[idx].y; |
| 119 | dst->z = particles.position[idx].z; |
| 120 | dst->w = particles.rotation[idx].x * Math::DEG2RAD; |
| 121 | |
| 122 | }); |
| 123 | |
| 124 | iterateOverPixels<RGBA>(output->color, count, |
| 125 | [&particles](RGBA* dst, UINT32 idx) |
| 126 | { |
| 127 | *dst = particles.color[idx]; |
| 128 | }); |
| 129 | |
| 130 | iterateOverPixels<UINT16>(output->sizeAndFrameIdx, count, sizeof(UINT16) * 4, |
| 131 | [&particles](UINT16* dst, UINT32 idx) |
| 132 | { |
| 133 | dst[0] = Bitwise::floatToHalf(particles.size[idx].x); |
| 134 | dst[1] = Bitwise::floatToHalf(particles.size[idx].y); |
| 135 | dst[2] = Bitwise::floatToHalf(particles.frame[idx]); |
| 136 | }); |
| 137 | |
| 138 | output->indices.clear(); |
| 139 | output->indices.resize(count); |
| 140 | |
| 141 | return output; |
| 142 | } |
| 143 | |
| 144 | /** |
| 145 | * Returns a set of buffers containing particle data from the provided particle set. Usable for rendering the |
| 146 | * results of the CPU particle simulation as 3D meshes. |
| 147 | */ |
| 148 | ParticleMeshRenderData* allocCPUMesh(const ParticleSet& particleSet) |
| 149 | { |
| 150 | const UINT32 size = particleSet.determineTextureSize(); |
| 151 | |
| 152 | ParticleMeshRenderData* output = nullptr; |
| 153 | |
| 154 | { |
| 155 | Lock lock(mMutex); |
| 156 | |
| 157 | BuffersPerSize& buffers = mMeshBufferList[size]; |
| 158 | if (buffers.nextFreeIdx < (UINT32)buffers.buffers.size()) |
| 159 | { |
| 160 | output = static_cast<ParticleMeshRenderData*>(buffers.buffers[buffers.nextFreeIdx]); |
| 161 | buffers.nextFreeIdx++; |
| 162 | } |
| 163 | } |
| 164 | |
| 165 | if (!output) |
| 166 | { |
| 167 | output = createNewMeshBuffersCPU(size); |
| 168 | |
| 169 | Lock lock(mMutex); |
| 170 | |
| 171 | BuffersPerSize& buffers = mMeshBufferList[size]; |
| 172 | buffers.buffers.push_back(output); |
| 173 | buffers.nextFreeIdx++; |
| 174 | } |
| 175 | |
| 176 | // Populate buffer contents |
| 177 | const UINT32 count = particleSet.getParticleCount(); |
| 178 | const ParticleSetData& particles = particleSet.getParticles(); |
| 179 | |
| 180 | // TODO: Use non-temporal writes? |
| 181 | iterateOverPixels<Vector4>(output->position, count, |
| 182 | [&particles](Vector4* dst, UINT32 idx) |
| 183 | { |
| 184 | dst->x = particles.position[idx].x; |
| 185 | dst->y = particles.position[idx].y; |
| 186 | dst->z = particles.position[idx].z; |
| 187 | |
| 188 | }); |
| 189 | |
| 190 | iterateOverPixels<RGBA>(output->color, count, |
| 191 | [&particles](RGBA* dst, UINT32 idx) |
| 192 | { |
| 193 | *dst = particles.color[idx]; |
| 194 | }); |
| 195 | |
| 196 | iterateOverPixels<UINT16>(output->rotation, count, sizeof(UINT16) * 4, |
| 197 | [&particles](UINT16* dst, UINT32 idx) |
| 198 | { |
| 199 | dst[0] = Bitwise::floatToHalf(particles.rotation[idx].x * Math::DEG2RAD); |
| 200 | dst[1] = Bitwise::floatToHalf(particles.rotation[idx].y * Math::DEG2RAD); |
| 201 | dst[2] = Bitwise::floatToHalf(particles.rotation[idx].z * Math::DEG2RAD); |
| 202 | }); |
| 203 | |
| 204 | iterateOverPixels<UINT16>(output->size, count, sizeof(UINT16) * 4, |
| 205 | [&particles](UINT16* dst, UINT32 idx) |
| 206 | { |
| 207 | dst[0] = Bitwise::floatToHalf(particles.size[idx].x); |
| 208 | dst[1] = Bitwise::floatToHalf(particles.size[idx].y); |
| 209 | dst[2] = Bitwise::floatToHalf(particles.size[idx].z); |
| 210 | }); |
| 211 | |
| 212 | output->indices.clear(); |
| 213 | output->indices.resize(count); |
| 214 | |
| 215 | return output; |
| 216 | } |
| 217 | |
| 218 | /** |
| 219 | * Returns a list of particles from the provided particle set that may be used for inserting the particles into the |
| 220 | * GPU simulation. |
| 221 | */ |
| 222 | ParticleGPUSimulationData* allocGPU(const ParticleSet& particleSet) |
| 223 | { |
| 224 | ParticleGPUSimulationData* output = nullptr; |
| 225 | |
| 226 | { |
| 227 | Lock lock(mMutex); |
| 228 | |
| 229 | if (mNextFreeGPUBuffer < (UINT32)mGPUBufferList.size()) |
| 230 | { |
| 231 | output = mGPUBufferList[mNextFreeGPUBuffer]; |
| 232 | mNextFreeGPUBuffer++; |
| 233 | } |
| 234 | } |
| 235 | |
| 236 | if (!output) |
| 237 | { |
| 238 | output = createNewBuffersGPU(); |
| 239 | |
| 240 | Lock lock(mMutex); |
| 241 | |
| 242 | mGPUBufferList.push_back(output); |
| 243 | mNextFreeGPUBuffer++; |
| 244 | } |
| 245 | |
| 246 | // Populate buffer contents |
| 247 | const UINT32 count = particleSet.getParticleCount(); |
| 248 | const ParticleSetData& particles = particleSet.getParticles(); |
| 249 | |
| 250 | output->particles.clear(); |
| 251 | output->particles.resize(count); |
| 252 | |
| 253 | // TODO: Use non-temporal writes? |
| 254 | for (UINT32 i = 0; i < count; i++) |
| 255 | { |
| 256 | GpuParticle particle; |
| 257 | particle.position = particles.position[i]; |
| 258 | particle.lifetime = particles.lifetime[i]; |
| 259 | particle.initialLifetime = particles.initialLifetime[i]; |
| 260 | particle.velocity = particles.velocity[i]; |
| 261 | particle.size = Vector2(particles.size[i].x, particles.size[i].z); |
| 262 | particle.rotation = particles.rotation[i].z; |
| 263 | |
| 264 | output->particles[i] = particle; |
| 265 | } |
| 266 | |
| 267 | return output; |
| 268 | } |
| 269 | |
| 270 | /** Makes all the buffers available for allocations. Does not free internal buffer memory. */ |
| 271 | void clear() |
| 272 | { |
| 273 | Lock lock(mMutex); |
| 274 | |
| 275 | for(auto& buffers : mBillboardBufferList) |
| 276 | buffers.second.nextFreeIdx = 0; |
| 277 | |
| 278 | for(auto& buffers : mMeshBufferList) |
| 279 | buffers.second.nextFreeIdx = 0; |
| 280 | |
| 281 | mNextFreeGPUBuffer = 0; |
| 282 | } |
| 283 | |
| 284 | private: |
| 285 | /** Allocates a new set of CPU buffers used for billboard rendering of the provided @p size width and height. */ |
| 286 | ParticleBillboardRenderData* createNewBillboardBuffersCPU(UINT32 size) |
| 287 | { |
| 288 | auto output = mBillboardAlloc.construct<ParticleBillboardRenderData>(); |
| 289 | |
| 290 | output->positionAndRotation = PixelData(size, size, 1, PF_RGBA32F); |
| 291 | output->color = PixelData(size, size, 1, PF_RGBA8); |
| 292 | output->sizeAndFrameIdx = PixelData(size, size, 1, PF_RGBA16F); |
| 293 | |
| 294 | // Note: Potentially allocate them all in one large block |
| 295 | output->positionAndRotation.allocateInternalBuffer(); |
| 296 | output->color.allocateInternalBuffer(); |
| 297 | output->sizeAndFrameIdx.allocateInternalBuffer(); |
| 298 | |
| 299 | return output; |
| 300 | } |
| 301 | |
| 302 | /** Allocates a new set of CPU buffers used for mesh rendering of the provided @p size width and height. */ |
| 303 | ParticleMeshRenderData* createNewMeshBuffersCPU(UINT32 size) |
| 304 | { |
| 305 | auto output = mMeshAlloc.construct<ParticleMeshRenderData>(); |
| 306 | |
| 307 | output->position = PixelData(size, size, 1, PF_RGBA32F); |
| 308 | output->color = PixelData(size, size, 1, PF_RGBA8); |
| 309 | output->size = PixelData(size, size, 1, PF_RGBA16F); |
| 310 | output->rotation = PixelData(size, size, 1, PF_RGBA16F); |
| 311 | |
| 312 | // Note: Potentially allocate them all in one large block |
| 313 | output->position.allocateInternalBuffer(); |
| 314 | output->color.allocateInternalBuffer(); |
| 315 | output->size.allocateInternalBuffer(); |
| 316 | output->rotation.allocateInternalBuffer(); |
| 317 | |
| 318 | return output; |
| 319 | } |
| 320 | |
| 321 | /** Allocates a new set of GPU buffers of the provided @p size width and height. */ |
| 322 | ParticleGPUSimulationData* createNewBuffersGPU() |
| 323 | { |
| 324 | return mGPUAlloc.construct<ParticleGPUSimulationData>(); |
| 325 | } |
| 326 | |
| 327 | UnorderedMap<UINT32, BuffersPerSize> mBillboardBufferList; |
| 328 | UnorderedMap<UINT32, BuffersPerSize> mMeshBufferList; |
| 329 | Vector<ParticleGPUSimulationData*> mGPUBufferList; |
| 330 | UINT32 mNextFreeGPUBuffer = 0; |
| 331 | |
| 332 | PoolAlloc<sizeof(ParticleBillboardRenderData), 32, 4, true> mBillboardAlloc; |
| 333 | PoolAlloc<sizeof(ParticleMeshRenderData), 32, 4, true> mMeshAlloc; |
| 334 | PoolAlloc<sizeof(ParticleGPUSimulationData), 32, 4, true> mGPUAlloc; |
| 335 | Mutex mMutex; |
| 336 | }; |
| 337 | |
| 338 | struct ParticleManager::Members |
| 339 | { |
| 340 | // TODO - Perhaps sharing one pool is better |
| 341 | ParticleSimulationDataPool simDataPool[CoreThread::NUM_SYNC_BUFFERS]; |
| 342 | }; |
| 343 | |
| 344 | ParticleManager::ParticleManager() |
| 345 | :m(bs_new<Members>()) |
| 346 | { } |
| 347 | |
| 348 | ParticleManager::~ParticleManager() |
| 349 | { |
| 350 | bs_delete(m); |
| 351 | } |
| 352 | |
| 353 | ParticlePerFrameData* ParticleManager::update(const EvaluatedAnimationData& animData) |
| 354 | { |
| 355 | // Note: Allow the worker threads to work alongside the main thread? Would require extra synchronization but |
| 356 | // potentially no benefit? |
| 357 | |
| 358 | // Advance the buffers (last write buffer becomes read buffer) |
| 359 | if (mSwapBuffers) |
| 360 | { |
| 361 | mReadBufferIdx = (mReadBufferIdx + 1) % CoreThread::NUM_SYNC_BUFFERS; |
| 362 | mWriteBufferIdx = (mWriteBufferIdx + 1) % CoreThread::NUM_SYNC_BUFFERS; |
| 363 | |
| 364 | mSwapBuffers = false; |
| 365 | } |
| 366 | |
| 367 | if(mPaused) |
| 368 | return &mSimulationData[mReadBufferIdx]; |
| 369 | |
| 370 | // TODO - Perform culling (but only on deterministic particle systems). In which case cache the bounds so we don't |
| 371 | // need to recalculate them below |
| 372 | |
| 373 | // Prepare the write buffer |
| 374 | ParticlePerFrameData& simulationData = mSimulationData[mWriteBufferIdx]; |
| 375 | simulationData.cpuData.clear(); |
| 376 | simulationData.gpuData.clear(); |
| 377 | |
| 378 | // Queue evaluation tasks |
| 379 | { |
| 380 | Lock lock(mMutex); |
| 381 | mNumActiveWorkers = (UINT32)mSystems.size(); |
| 382 | } |
| 383 | |
| 384 | float timeDelta = gTime().getFrameDelta(); |
| 385 | |
| 386 | ParticleSimulationDataPool& simDataPool = m->simDataPool[mWriteBufferIdx]; |
| 387 | simDataPool.clear(); |
| 388 | |
| 389 | for (auto& system : mSystems) |
| 390 | { |
| 391 | const auto evaluateWorker = [this, timeDelta, system, &animData, &simDataPool, &simulationData]() |
| 392 | { |
| 393 | // Advance the simulation |
| 394 | system->_simulate(timeDelta, &animData); |
| 395 | |
| 396 | ParticleRenderData* simulationDataCPU = nullptr; |
| 397 | ParticleGPUSimulationData* simulationDataGPU = nullptr; |
| 398 | if(system->mParticleSet) |
| 399 | { |
| 400 | // Generate simulation data to transfer to the core thread |
| 401 | const UINT32 numParticles = system->mParticleSet->getParticleCount(); |
| 402 | const ParticleSystemSettings& settings = system->getSettings(); |
| 403 | |
| 404 | if(settings.gpuSimulation) |
| 405 | simulationDataGPU = simDataPool.allocGPU(*system->mParticleSet); |
| 406 | else |
| 407 | { |
| 408 | if(settings.renderMode == ParticleRenderMode::Billboard) |
| 409 | simulationDataCPU = simDataPool.allocCPUBillboard(*system->mParticleSet); |
| 410 | else |
| 411 | simulationDataCPU = simDataPool.allocCPUMesh(*system->mParticleSet); |
| 412 | |
| 413 | simulationDataCPU->numParticles = numParticles; |
| 414 | |
| 415 | if(settings.useAutomaticBounds) |
| 416 | simulationDataCPU->bounds = system->_calculateBounds(); |
| 417 | else |
| 418 | simulationDataCPU->bounds = settings.customBounds; |
| 419 | |
| 420 | // If using a camera-independant sorting mode, sort the particles right away |
| 421 | switch (settings.sortMode) |
| 422 | { |
| 423 | default: |
| 424 | case ParticleSortMode::None: // No sort, just point the indices back to themselves |
| 425 | for (UINT32 i = 0; i < numParticles; i++) |
| 426 | simulationDataCPU->indices[i] = i; |
| 427 | break; |
| 428 | case ParticleSortMode::OldToYoung: |
| 429 | case ParticleSortMode::YoungToOld: |
| 430 | sortParticles(*system->mParticleSet, settings.sortMode, Vector3::ZERO, simulationDataCPU->indices.data()); |
| 431 | break; |
| 432 | case ParticleSortMode::Distance: break; |
| 433 | } |
| 434 | } |
| 435 | } |
| 436 | |
| 437 | { |
| 438 | Lock lock(mMutex); |
| 439 | |
| 440 | assert(mNumActiveWorkers > 0); |
| 441 | mNumActiveWorkers--; |
| 442 | |
| 443 | if(simulationDataCPU) |
| 444 | simulationData.cpuData[system->mId] = simulationDataCPU; |
| 445 | else if(simulationDataGPU) |
| 446 | simulationData.gpuData[system->mId] = simulationDataGPU; |
| 447 | } |
| 448 | |
| 449 | mWorkerDoneSignal.notify_one(); |
| 450 | }; |
| 451 | |
| 452 | SPtr<Task> task = Task::create("ParticleWorker" , evaluateWorker); |
| 453 | TaskScheduler::instance().addTask(task); |
| 454 | } |
| 455 | |
| 456 | // Wait for tasks to complete |
| 457 | TaskScheduler::instance().addWorker(); // Make the current core available for work (since this thread waits) |
| 458 | { |
| 459 | Lock lock(mMutex); |
| 460 | |
| 461 | while (mNumActiveWorkers > 0) |
| 462 | mWorkerDoneSignal.wait(lock); |
| 463 | } |
| 464 | TaskScheduler::instance().removeWorker(); |
| 465 | |
| 466 | mSwapBuffers = true; |
| 467 | |
| 468 | return &mSimulationData[mWriteBufferIdx]; |
| 469 | } |
| 470 | |
| 471 | void ParticleManager::sortParticles(const ParticleSet& set, ParticleSortMode sortMode, const Vector3& viewPoint, |
| 472 | UINT32* indices) |
| 473 | { |
| 474 | assert(sortMode != ParticleSortMode::None); |
| 475 | |
| 476 | struct ParticleSortData |
| 477 | { |
| 478 | ParticleSortData(float key, UINT32 idx) |
| 479 | :key(key), idx(idx) |
| 480 | { } |
| 481 | |
| 482 | float key; |
| 483 | UINT32 idx; |
| 484 | }; |
| 485 | |
| 486 | const UINT32 count = set.getParticleCount(); |
| 487 | const ParticleSetData& particles = set.getParticles(); |
| 488 | |
| 489 | bs_frame_mark(); |
| 490 | { |
| 491 | FrameVector<ParticleSortData> sortData; |
| 492 | sortData.reserve(count); |
| 493 | |
| 494 | switch(sortMode) |
| 495 | { |
| 496 | default: |
| 497 | case ParticleSortMode::Distance: |
| 498 | for(UINT32 i = 0; i < count; i++) |
| 499 | { |
| 500 | float distance = viewPoint.squaredDistance(particles.position[i]); |
| 501 | sortData.emplace_back(distance, i); |
| 502 | } |
| 503 | break; |
| 504 | case ParticleSortMode::OldToYoung: |
| 505 | for(UINT32 i = 0; i < count; i++) |
| 506 | { |
| 507 | float lifetime = particles.lifetime[i]; |
| 508 | sortData.emplace_back(lifetime, i); |
| 509 | } |
| 510 | break; |
| 511 | case ParticleSortMode::YoungToOld: |
| 512 | for(UINT32 i = 0; i < count; i++) |
| 513 | { |
| 514 | float lifetime = particles.initialLifetime[i] - particles.lifetime[i]; |
| 515 | sortData.emplace_back(lifetime, i); |
| 516 | } |
| 517 | break; |
| 518 | } |
| 519 | |
| 520 | std::sort(sortData.begin(), sortData.end(), |
| 521 | [](const ParticleSortData& lhs, const ParticleSortData& rhs) |
| 522 | { |
| 523 | return rhs.key < lhs.key; |
| 524 | }); |
| 525 | |
| 526 | for (UINT32 i = 0; i < count; i++) |
| 527 | indices[i] = sortData[i].idx; |
| 528 | } |
| 529 | bs_frame_clear(); |
| 530 | } |
| 531 | |
| 532 | UINT32 ParticleManager::registerParticleSystem(ParticleSystem* system) |
| 533 | { |
| 534 | mSystems.insert(system); |
| 535 | |
| 536 | return mNextId++; |
| 537 | } |
| 538 | |
| 539 | void ParticleManager::unregisterParticleSystem(ParticleSystem* system) |
| 540 | { |
| 541 | mSystems.erase(system); |
| 542 | } |
| 543 | } |
| 544 | |