| 1 | // Licensed to the .NET Foundation under one or more agreements. |
| 2 | // The .NET Foundation licenses this file to you under the MIT license. |
| 3 | // See the LICENSE file in the project root for more information. |
| 4 | |
| 5 | /*XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
| 6 | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
| 7 | XX XX |
| 8 | XX Arm64 Code Generator XX |
| 9 | XX XX |
| 10 | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
| 11 | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
| 12 | */ |
| 13 | #include "jitpch.h" |
| 14 | #ifdef _MSC_VER |
| 15 | #pragma hdrstop |
| 16 | #endif |
| 17 | |
| 18 | #ifdef _TARGET_ARM64_ |
| 19 | #include "emit.h" |
| 20 | #include "codegen.h" |
| 21 | #include "lower.h" |
| 22 | #include "gcinfo.h" |
| 23 | #include "gcinfoencoder.h" |
| 24 | |
| 25 | /* |
| 26 | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
| 27 | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
| 28 | XX XX |
| 29 | XX Prolog / Epilog XX |
| 30 | XX XX |
| 31 | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
| 32 | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
| 33 | */ |
| 34 | |
| 35 | //------------------------------------------------------------------------ |
| 36 | // genInstrWithConstant: we will typically generate one instruction |
| 37 | // |
| 38 | // ins reg1, reg2, imm |
| 39 | // |
| 40 | // However the imm might not fit as a directly encodable immediate, |
| 41 | // when it doesn't fit we generate extra instruction(s) that sets up |
| 42 | // the 'regTmp' with the proper immediate value. |
| 43 | // |
| 44 | // mov regTmp, imm |
| 45 | // ins reg1, reg2, regTmp |
| 46 | // |
| 47 | // Arguments: |
| 48 | // ins - instruction |
| 49 | // attr - operation size and GC attribute |
| 50 | // reg1, reg2 - first and second register operands |
| 51 | // imm - immediate value (third operand when it fits) |
| 52 | // tmpReg - temp register to use when the 'imm' doesn't fit |
| 53 | // inUnwindRegion - true if we are in a prolog/epilog region with unwind codes |
| 54 | // |
| 55 | // Return Value: |
| 56 | // returns true if the immediate was too large and tmpReg was used and modified. |
| 57 | // |
| 58 | bool CodeGen::genInstrWithConstant(instruction ins, |
| 59 | emitAttr attr, |
| 60 | regNumber reg1, |
| 61 | regNumber reg2, |
| 62 | ssize_t imm, |
| 63 | regNumber tmpReg, |
| 64 | bool inUnwindRegion /* = false */) |
| 65 | { |
| 66 | bool immFitsInIns = false; |
| 67 | emitAttr size = EA_SIZE(attr); |
| 68 | |
| 69 | // reg1 is usually a dest register |
| 70 | // reg2 is always source register |
| 71 | assert(tmpReg != reg2); // regTmp can not match any source register |
| 72 | |
| 73 | switch (ins) |
| 74 | { |
| 75 | case INS_add: |
| 76 | case INS_sub: |
| 77 | if (imm < 0) |
| 78 | { |
| 79 | imm = -imm; |
| 80 | ins = (ins == INS_add) ? INS_sub : INS_add; |
| 81 | } |
| 82 | immFitsInIns = emitter::emitIns_valid_imm_for_add(imm, size); |
| 83 | break; |
| 84 | |
| 85 | case INS_strb: |
| 86 | case INS_strh: |
| 87 | case INS_str: |
| 88 | // reg1 is a source register for store instructions |
| 89 | assert(tmpReg != reg1); // regTmp can not match any source register |
| 90 | immFitsInIns = emitter::emitIns_valid_imm_for_ldst_offset(imm, size); |
| 91 | break; |
| 92 | |
| 93 | case INS_ldrsb: |
| 94 | case INS_ldrsh: |
| 95 | case INS_ldrsw: |
| 96 | case INS_ldrb: |
| 97 | case INS_ldrh: |
| 98 | case INS_ldr: |
| 99 | immFitsInIns = emitter::emitIns_valid_imm_for_ldst_offset(imm, size); |
| 100 | break; |
| 101 | |
| 102 | default: |
| 103 | assert(!"Unexpected instruction in genInstrWithConstant" ); |
| 104 | break; |
| 105 | } |
| 106 | |
| 107 | if (immFitsInIns) |
| 108 | { |
| 109 | // generate a single instruction that encodes the immediate directly |
| 110 | getEmitter()->emitIns_R_R_I(ins, attr, reg1, reg2, imm); |
| 111 | } |
| 112 | else |
| 113 | { |
| 114 | // caller can specify REG_NA for tmpReg, when it "knows" that the immediate will always fit |
| 115 | assert(tmpReg != REG_NA); |
| 116 | |
| 117 | // generate two or more instructions |
| 118 | |
| 119 | // first we load the immediate into tmpReg |
| 120 | instGen_Set_Reg_To_Imm(size, tmpReg, imm); |
| 121 | regSet.verifyRegUsed(tmpReg); |
| 122 | |
| 123 | // when we are in an unwind code region |
| 124 | // we record the extra instructions using unwindPadding() |
| 125 | if (inUnwindRegion) |
| 126 | { |
| 127 | compiler->unwindPadding(); |
| 128 | } |
| 129 | |
| 130 | // generate the instruction using a three register encoding with the immediate in tmpReg |
| 131 | getEmitter()->emitIns_R_R_R(ins, attr, reg1, reg2, tmpReg); |
| 132 | } |
| 133 | return immFitsInIns; |
| 134 | } |
| 135 | |
| 136 | //------------------------------------------------------------------------ |
| 137 | // genStackPointerAdjustment: add a specified constant value to the stack pointer in either the prolog |
| 138 | // or the epilog. The unwind codes for the generated instructions are produced. An available temporary |
| 139 | // register is required to be specified, in case the constant is too large to encode in an "add" |
| 140 | // instruction (or "sub" instruction if we choose to use one), such that we need to load the constant |
| 141 | // into a register first, before using it. |
| 142 | // |
| 143 | // Arguments: |
| 144 | // spDelta - the value to add to SP (can be negative) |
| 145 | // tmpReg - an available temporary register |
| 146 | // pTmpRegIsZero - If we use tmpReg, and pTmpRegIsZero is non-null, we set *pTmpRegIsZero to 'false'. |
| 147 | // Otherwise, we don't touch it. |
| 148 | // |
| 149 | // Return Value: |
| 150 | // None. |
| 151 | |
| 152 | void CodeGen::genStackPointerAdjustment(ssize_t spDelta, regNumber tmpReg, bool* pTmpRegIsZero) |
| 153 | { |
| 154 | // Even though INS_add is specified here, the encoder will choose either |
| 155 | // an INS_add or an INS_sub and encode the immediate as a positive value |
| 156 | // |
| 157 | if (genInstrWithConstant(INS_add, EA_PTRSIZE, REG_SPBASE, REG_SPBASE, spDelta, tmpReg, true)) |
| 158 | { |
| 159 | if (pTmpRegIsZero != nullptr) |
| 160 | { |
| 161 | *pTmpRegIsZero = false; |
| 162 | } |
| 163 | } |
| 164 | |
| 165 | // spDelta is negative in the prolog, positive in the epilog, but we always tell the unwind codes the positive |
| 166 | // value. |
| 167 | ssize_t spDeltaAbs = abs(spDelta); |
| 168 | unsigned unwindSpDelta = (unsigned)spDeltaAbs; |
| 169 | assert((ssize_t)unwindSpDelta == spDeltaAbs); // make sure that it fits in a unsigned |
| 170 | |
| 171 | compiler->unwindAllocStack(unwindSpDelta); |
| 172 | } |
| 173 | |
| 174 | //------------------------------------------------------------------------ |
| 175 | // genPrologSaveRegPair: Save a pair of general-purpose or floating-point/SIMD registers in a function or funclet |
| 176 | // prolog. If possible, we use pre-indexed addressing to adjust SP and store the registers with a single instruction. |
| 177 | // The caller must ensure that we can use the STP instruction, and that spOffset will be in the legal range for that |
| 178 | // instruction. |
| 179 | // |
| 180 | // Arguments: |
| 181 | // reg1 - First register of pair to save. |
| 182 | // reg2 - Second register of pair to save. |
| 183 | // spOffset - The offset from SP to store reg1 (must be positive or zero). |
| 184 | // spDelta - If non-zero, the amount to add to SP before the register saves (must be negative or |
| 185 | // zero). |
| 186 | // lastSavedWasPreviousPair - True if the last prolog instruction was to save the previous register pair. This |
| 187 | // allows us to emit the "save_next" unwind code. |
| 188 | // tmpReg - An available temporary register. Needed for the case of large frames. |
| 189 | // pTmpRegIsZero - If we use tmpReg, and pTmpRegIsZero is non-null, we set *pTmpRegIsZero to 'false'. |
| 190 | // Otherwise, we don't touch it. |
| 191 | // |
| 192 | // Return Value: |
| 193 | // None. |
| 194 | |
| 195 | void CodeGen::genPrologSaveRegPair(regNumber reg1, |
| 196 | regNumber reg2, |
| 197 | int spOffset, |
| 198 | int spDelta, |
| 199 | bool lastSavedWasPreviousPair, |
| 200 | regNumber tmpReg, |
| 201 | bool* pTmpRegIsZero) |
| 202 | { |
| 203 | assert(spOffset >= 0); |
| 204 | assert(spDelta <= 0); |
| 205 | assert((spDelta % 16) == 0); // SP changes must be 16-byte aligned |
| 206 | assert(genIsValidFloatReg(reg1) == genIsValidFloatReg(reg2)); // registers must be both general-purpose, or both |
| 207 | // FP/SIMD |
| 208 | |
| 209 | bool needToSaveRegs = true; |
| 210 | if (spDelta != 0) |
| 211 | { |
| 212 | if ((spOffset == 0) && (spDelta >= -512)) |
| 213 | { |
| 214 | // We can use pre-indexed addressing. |
| 215 | // stp REG, REG + 1, [SP, #spDelta]! |
| 216 | // 64-bit STP offset range: -512 to 504, multiple of 8. |
| 217 | getEmitter()->emitIns_R_R_R_I(INS_stp, EA_PTRSIZE, reg1, reg2, REG_SPBASE, spDelta, INS_OPTS_PRE_INDEX); |
| 218 | compiler->unwindSaveRegPairPreindexed(reg1, reg2, spDelta); |
| 219 | |
| 220 | needToSaveRegs = false; |
| 221 | } |
| 222 | else // (spDelta < -512)) |
| 223 | { |
| 224 | // We need to do SP adjustment separately from the store; we can't fold in a pre-indexed addressing and the |
| 225 | // non-zero offset. |
| 226 | |
| 227 | // generate sub SP,SP,imm |
| 228 | genStackPointerAdjustment(spDelta, tmpReg, pTmpRegIsZero); |
| 229 | } |
| 230 | } |
| 231 | |
| 232 | if (needToSaveRegs) |
| 233 | { |
| 234 | // stp REG, REG + 1, [SP, #offset] |
| 235 | // 64-bit STP offset range: -512 to 504, multiple of 8. |
| 236 | assert(spOffset <= 504); |
| 237 | getEmitter()->emitIns_R_R_R_I(INS_stp, EA_PTRSIZE, reg1, reg2, REG_SPBASE, spOffset); |
| 238 | |
| 239 | if (lastSavedWasPreviousPair) |
| 240 | { |
| 241 | // This works as long as we've only been saving pairs, in order, and we've saved the previous one just |
| 242 | // before this one. |
| 243 | compiler->unwindSaveNext(); |
| 244 | } |
| 245 | else |
| 246 | { |
| 247 | compiler->unwindSaveRegPair(reg1, reg2, spOffset); |
| 248 | } |
| 249 | } |
| 250 | } |
| 251 | |
| 252 | //------------------------------------------------------------------------ |
| 253 | // genPrologSaveReg: Like genPrologSaveRegPair, but for a single register. Save a single general-purpose or |
| 254 | // floating-point/SIMD register in a function or funclet prolog. Note that if we wish to change SP (i.e., spDelta != 0), |
| 255 | // then spOffset must be 8. This is because otherwise we would create an alignment hole above the saved register, not |
| 256 | // below it, which we currently don't support. This restriction could be loosened if the callers change to handle it |
| 257 | // (and this function changes to support using pre-indexed STR addressing). The caller must ensure that we can use the |
| 258 | // STR instruction, and that spOffset will be in the legal range for that instruction. |
| 259 | // |
| 260 | // Arguments: |
| 261 | // reg1 - Register to save. |
| 262 | // spOffset - The offset from SP to store reg1 (must be positive or zero). |
| 263 | // spDelta - If non-zero, the amount to add to SP before the register saves (must be negative or |
| 264 | // zero). |
| 265 | // tmpReg - An available temporary register. Needed for the case of large frames. |
| 266 | // pTmpRegIsZero - If we use tmpReg, and pTmpRegIsZero is non-null, we set *pTmpRegIsZero to 'false'. |
| 267 | // Otherwise, we don't touch it. |
| 268 | // |
| 269 | // Return Value: |
| 270 | // None. |
| 271 | |
| 272 | void CodeGen::genPrologSaveReg(regNumber reg1, int spOffset, int spDelta, regNumber tmpReg, bool* pTmpRegIsZero) |
| 273 | { |
| 274 | assert(spOffset >= 0); |
| 275 | assert(spDelta <= 0); |
| 276 | assert((spDelta % 16) == 0); // SP changes must be 16-byte aligned |
| 277 | |
| 278 | if (spDelta != 0) |
| 279 | { |
| 280 | // generate sub SP,SP,imm |
| 281 | genStackPointerAdjustment(spDelta, tmpReg, pTmpRegIsZero); |
| 282 | } |
| 283 | |
| 284 | // str REG, [SP, #offset] |
| 285 | // 64-bit STR offset range: 0 to 32760, multiple of 8. |
| 286 | getEmitter()->emitIns_R_R_I(INS_str, EA_PTRSIZE, reg1, REG_SPBASE, spOffset); |
| 287 | compiler->unwindSaveReg(reg1, spOffset); |
| 288 | } |
| 289 | |
| 290 | //------------------------------------------------------------------------ |
| 291 | // genEpilogRestoreRegPair: This is the opposite of genPrologSaveRegPair(), run in the epilog instead of the prolog. |
| 292 | // The stack pointer adjustment, if requested, is done after the register restore, using post-index addressing. |
| 293 | // The caller must ensure that we can use the LDP instruction, and that spOffset will be in the legal range for that |
| 294 | // instruction. |
| 295 | // |
| 296 | // Arguments: |
| 297 | // reg1 - First register of pair to restore. |
| 298 | // reg2 - Second register of pair to restore. |
| 299 | // spOffset - The offset from SP to load reg1 (must be positive or zero). |
| 300 | // spDelta - If non-zero, the amount to add to SP after the register restores (must be positive or |
| 301 | // zero). |
| 302 | // tmpReg - An available temporary register. Needed for the case of large frames. |
| 303 | // pTmpRegIsZero - If we use tmpReg, and pTmpRegIsZero is non-null, we set *pTmpRegIsZero to 'false'. |
| 304 | // Otherwise, we don't touch it. |
| 305 | // |
| 306 | // Return Value: |
| 307 | // None. |
| 308 | |
| 309 | void CodeGen::genEpilogRestoreRegPair( |
| 310 | regNumber reg1, regNumber reg2, int spOffset, int spDelta, regNumber tmpReg, bool* pTmpRegIsZero) |
| 311 | { |
| 312 | assert(spOffset >= 0); |
| 313 | assert(spDelta >= 0); |
| 314 | assert((spDelta % 16) == 0); // SP changes must be 16-byte aligned |
| 315 | |
| 316 | if (spDelta != 0) |
| 317 | { |
| 318 | if ((spOffset == 0) && (spDelta <= 504)) |
| 319 | { |
| 320 | // Fold the SP change into this instruction. |
| 321 | // ldp reg1, reg2, [SP], #spDelta |
| 322 | getEmitter()->emitIns_R_R_R_I(INS_ldp, EA_PTRSIZE, reg1, reg2, REG_SPBASE, spDelta, INS_OPTS_POST_INDEX); |
| 323 | compiler->unwindSaveRegPairPreindexed(reg1, reg2, -spDelta); |
| 324 | } |
| 325 | else // (spDelta > 504)) |
| 326 | { |
| 327 | // Can't fold in the SP change; need to use a separate ADD instruction. |
| 328 | |
| 329 | // ldp reg1, reg2, [SP, #offset] |
| 330 | getEmitter()->emitIns_R_R_R_I(INS_ldp, EA_PTRSIZE, reg1, reg2, REG_SPBASE, spOffset); |
| 331 | compiler->unwindSaveRegPair(reg1, reg2, spOffset); |
| 332 | |
| 333 | // generate add SP,SP,imm |
| 334 | genStackPointerAdjustment(spDelta, tmpReg, pTmpRegIsZero); |
| 335 | } |
| 336 | } |
| 337 | else |
| 338 | { |
| 339 | // ldp reg1, reg2, [SP, #offset] |
| 340 | getEmitter()->emitIns_R_R_R_I(INS_ldp, EA_PTRSIZE, reg1, reg2, REG_SPBASE, spOffset); |
| 341 | compiler->unwindSaveRegPair(reg1, reg2, spOffset); |
| 342 | } |
| 343 | } |
| 344 | |
| 345 | //------------------------------------------------------------------------ |
| 346 | // genEpilogRestoreReg: The opposite of genPrologSaveReg(), run in the epilog instead of the prolog. |
| 347 | // |
| 348 | // Arguments: |
| 349 | // reg1 - Register to restore. |
| 350 | // spOffset - The offset from SP to restore reg1 (must be positive or zero). |
| 351 | // spDelta - If non-zero, the amount to add to SP after the register restores (must be positive or |
| 352 | // zero). |
| 353 | // tmpReg - An available temporary register. Needed for the case of large frames. |
| 354 | // pTmpRegIsZero - If we use tmpReg, and pTmpRegIsZero is non-null, we set *pTmpRegIsZero to 'false'. |
| 355 | // Otherwise, we don't touch it. |
| 356 | // |
| 357 | // Return Value: |
| 358 | // None. |
| 359 | |
| 360 | void CodeGen::genEpilogRestoreReg(regNumber reg1, int spOffset, int spDelta, regNumber tmpReg, bool* pTmpRegIsZero) |
| 361 | { |
| 362 | assert(spOffset >= 0); |
| 363 | assert(spDelta >= 0); |
| 364 | assert((spDelta % 16) == 0); // SP changes must be 16-byte aligned |
| 365 | |
| 366 | // ldr reg1, [SP, #offset] |
| 367 | getEmitter()->emitIns_R_R_I(INS_ldr, EA_PTRSIZE, reg1, REG_SPBASE, spOffset); |
| 368 | compiler->unwindSaveReg(reg1, spOffset); |
| 369 | |
| 370 | if (spDelta != 0) |
| 371 | { |
| 372 | // generate add SP,SP,imm |
| 373 | genStackPointerAdjustment(spDelta, tmpReg, pTmpRegIsZero); |
| 374 | } |
| 375 | } |
| 376 | |
| 377 | #ifdef DEBUG |
| 378 | //------------------------------------------------------------------------ |
| 379 | // genCheckSPOffset: Check Stack Pointer(SP) offset value, |
| 380 | // it must be 8 to account for alignment for the odd count |
| 381 | // or it must be 0 for the even count. |
| 382 | // |
| 383 | // Arguments: |
| 384 | // isRegsCountOdd - true if number of registers to save/restore is odd; |
| 385 | // spOffset - stack pointer offset value; |
| 386 | // slotSize - stack slot size in bytes. |
| 387 | // |
| 388 | // static |
| 389 | void CodeGen::genCheckSPOffset(bool isRegsCountOdd, int spOffset, int slotSize) |
| 390 | { |
| 391 | if (isRegsCountOdd) |
| 392 | { |
| 393 | // The offset must be 8 to account for alignment for the odd count. |
| 394 | assert(spOffset == slotSize); |
| 395 | } |
| 396 | else |
| 397 | { |
| 398 | // The offset must be 0 for the even count. |
| 399 | assert(spOffset == 0); |
| 400 | } |
| 401 | } |
| 402 | #endif // DEBUG |
| 403 | |
| 404 | //------------------------------------------------------------------------ |
| 405 | // genBuildRegPairsStack: Build a stack of register pairs for prolog/epilog save/restore for the given mask. |
| 406 | // The first register pair will contain the lowest register. Register pairs will combine neighbor |
| 407 | // registers in pairs. If it can't be done (for example if we have a hole or this is the last reg in a mask with |
| 408 | // odd number of regs) then the second element of that RegPair will be REG_NA. |
| 409 | // |
| 410 | // Arguments: |
| 411 | // regsMask - a mask of registers for prolog/epilog generation; |
| 412 | // regStack - a regStack instance to build the stack in, used to save temp copyings. |
| 413 | // |
| 414 | // Return value: |
| 415 | // no return value; the regStack argument is modified. |
| 416 | // |
| 417 | // static |
| 418 | void CodeGen::(regMaskTP regsMask, ArrayStack<RegPair>* regStack) |
| 419 | { |
| 420 | assert(regStack != nullptr); |
| 421 | assert(regStack->Height() == 0); |
| 422 | |
| 423 | unsigned regsCount = genCountBits(regsMask); |
| 424 | |
| 425 | while (regsMask != RBM_NONE) |
| 426 | { |
| 427 | regMaskTP reg1Mask = genFindLowestBit(regsMask); |
| 428 | regNumber reg1 = genRegNumFromMask(reg1Mask); |
| 429 | regsMask &= ~reg1Mask; |
| 430 | regsCount -= 1; |
| 431 | |
| 432 | bool isPairSave = false; |
| 433 | if (regsCount > 0) |
| 434 | { |
| 435 | regMaskTP reg2Mask = genFindLowestBit(regsMask); |
| 436 | regNumber reg2 = genRegNumFromMask(reg2Mask); |
| 437 | if (reg2 == REG_NEXT(reg1)) |
| 438 | { |
| 439 | isPairSave = true; |
| 440 | |
| 441 | regsMask &= ~reg2Mask; |
| 442 | regsCount -= 1; |
| 443 | |
| 444 | regStack->Push(RegPair(reg1, reg2)); |
| 445 | } |
| 446 | } |
| 447 | if (!isPairSave) |
| 448 | { |
| 449 | regStack->Push(RegPair(reg1)); |
| 450 | } |
| 451 | } |
| 452 | assert(regsCount == 0 && regsMask == RBM_NONE); |
| 453 | } |
| 454 | |
| 455 | //------------------------------------------------------------------------ |
| 456 | // genGetSlotSizeForRegsInMask: Get the stack slot size appropriate for the register type from the mask. |
| 457 | // |
| 458 | // Arguments: |
| 459 | // regsMask - a mask of registers for prolog/epilog generation. |
| 460 | // |
| 461 | // Return value: |
| 462 | // stack slot size in bytes. |
| 463 | // |
| 464 | // static |
| 465 | int CodeGen::genGetSlotSizeForRegsInMask(regMaskTP regsMask) |
| 466 | { |
| 467 | assert((regsMask & (RBM_CALLEE_SAVED | RBM_LR)) == regsMask); // Do not expect anything else. |
| 468 | |
| 469 | bool isIntMask = ((regsMask & RBM_ALLFLOAT) == 0); |
| 470 | #ifdef DEBUG |
| 471 | bool isFloatMask = ((regsMask & RBM_ALLFLOAT) == regsMask); |
| 472 | // Has to be either int or float. |
| 473 | assert(isIntMask != isFloatMask); |
| 474 | #endif // DEBUG |
| 475 | |
| 476 | int slotSize = isIntMask ? REGSIZE_BYTES : FPSAVE_REGSIZE_BYTES; |
| 477 | return slotSize; |
| 478 | } |
| 479 | |
| 480 | //------------------------------------------------------------------------ |
| 481 | // genSaveCalleeSavedRegisterGroup: Saves the group of registers described by the mask. |
| 482 | // All registers in the mask must be the same type (int or float). |
| 483 | // |
| 484 | // Arguments: |
| 485 | // regsMask - a mask of registers for prolog generation; |
| 486 | // spDelta - if non-zero, the amount to add to SP before the first register save (or together with it); |
| 487 | // spOffset - the offset from SP that is the beginning of the callee-saved register area; |
| 488 | // isRegsToSaveCountOdd - (DEBUG only) true if number of registers to save is odd. |
| 489 | // |
| 490 | // Return Value: |
| 491 | // SP offset after saving registers from this group. |
| 492 | // |
| 493 | int CodeGen::genSaveCalleeSavedRegisterGroup(regMaskTP regsMask, |
| 494 | int spDelta, |
| 495 | int spOffset DEBUGARG(bool isRegsToSaveCountOdd)) |
| 496 | { |
| 497 | const int slotSize = genGetSlotSizeForRegsInMask(regsMask); |
| 498 | |
| 499 | #ifdef DEBUG |
| 500 | if (spDelta != 0) // The first store change SP offset, check its value before. |
| 501 | { |
| 502 | genCheckSPOffset(isRegsToSaveCountOdd, spOffset, slotSize); |
| 503 | } |
| 504 | #endif // DEBUG |
| 505 | |
| 506 | ArrayStack<RegPair> regStack(compiler->getAllocator(CMK_Codegen)); |
| 507 | genBuildRegPairsStack(regsMask, ®Stack); |
| 508 | |
| 509 | bool lastSavedWasPair = false; // currently unused, see the comment below. |
| 510 | for (int i = 0; i < regStack.Height(); ++i) |
| 511 | { |
| 512 | RegPair regPair = regStack.Bottom(i); |
| 513 | if (regPair.reg2 != REG_NA) |
| 514 | { |
| 515 | // We can use a STP instruction. |
| 516 | genPrologSaveRegPair(regPair.reg1, regPair.reg2, spOffset, spDelta, lastSavedWasPair, REG_IP0, nullptr); |
| 517 | |
| 518 | // TODO-ARM64-CQ: this code works in the prolog, but it's a bit weird to think about "next" when generating |
| 519 | // this epilog, to get the codes to match. Turn this off until that is better understood. |
| 520 | // lastSavedWasPair = true; |
| 521 | |
| 522 | spOffset += 2 * slotSize; |
| 523 | } |
| 524 | else |
| 525 | { |
| 526 | // No register pair; we use a STR instruction. |
| 527 | genPrologSaveReg(regPair.reg1, spOffset, spDelta, REG_IP0, nullptr); |
| 528 | |
| 529 | lastSavedWasPair = false; |
| 530 | spOffset += slotSize; |
| 531 | } |
| 532 | |
| 533 | spDelta = 0; // We've now changed SP already, if necessary; don't do it again. |
| 534 | } |
| 535 | return spOffset; |
| 536 | } |
| 537 | |
| 538 | //------------------------------------------------------------------------ |
| 539 | // genSaveCalleeSavedRegistersHelp: Save the callee-saved registers in 'regsToSaveMask' to the stack frame |
| 540 | // in the function or funclet prolog. The save set does not contain FP, since that is |
| 541 | // guaranteed to be saved separately, so we can set up chaining. We can only use the instructions |
| 542 | // that are allowed by the unwind codes. Integer registers are stored at lower addresses, |
| 543 | // FP/SIMD registers are stored at higher addresses. The caller ensures that |
| 544 | // there is enough space on the frame to store these registers, and that the store instructions |
| 545 | // we need to use (STR or STP) are encodable with the stack-pointer immediate offsets we need to |
| 546 | // use. The caller can tell us to fold in a stack pointer adjustment, which we will do with the first instruction. Note |
| 547 | // that the stack pointer adjustment must be by a multiple of 16 to preserve the invariant that the |
| 548 | // stack pointer is always 16 byte aligned. If we are saving an odd number of callee-saved |
| 549 | // registers, though, we will have an empty aligment slot somewhere. It turns out we will put |
| 550 | // it below (at a lower address) the callee-saved registers, as that is currently how we |
| 551 | // do frame layout. This means that the first stack offset will be 8 and the stack pointer |
| 552 | // adjustment must be done by a SUB, and not folded in to a pre-indexed store. |
| 553 | // |
| 554 | // Arguments: |
| 555 | // regsToSaveMask - The mask of callee-saved registers to save. If empty, this function does nothing. |
| 556 | // lowestCalleeSavedOffset - The offset from SP that is the beginning of the callee-saved register area. Note that |
| 557 | // if non-zero spDelta, then this is the offset of the first save *after* that |
| 558 | // SP adjustment. |
| 559 | // spDelta - If non-zero, the amount to add to SP before the register saves (must be negative or |
| 560 | // zero). |
| 561 | // |
| 562 | // Notes: |
| 563 | // the save set can contain LR in which case LR is saved along with the other callee-saved registers. |
| 564 | // But currently Jit doesn't use frames without frame pointer on arm64. |
| 565 | // |
| 566 | void CodeGen::genSaveCalleeSavedRegistersHelp(regMaskTP regsToSaveMask, int lowestCalleeSavedOffset, int spDelta) |
| 567 | { |
| 568 | assert(spDelta <= 0); |
| 569 | unsigned regsToSaveCount = genCountBits(regsToSaveMask); |
| 570 | if (regsToSaveCount == 0) |
| 571 | { |
| 572 | if (spDelta != 0) |
| 573 | { |
| 574 | // Currently this is the case for varargs only |
| 575 | // whose size is MAX_REG_ARG * REGSIZE_BYTES = 64 bytes. |
| 576 | genStackPointerAdjustment(spDelta, REG_NA, nullptr); |
| 577 | } |
| 578 | return; |
| 579 | } |
| 580 | |
| 581 | assert((spDelta % 16) == 0); |
| 582 | assert((regsToSaveMask & RBM_FP) == 0); // We never save FP here. |
| 583 | |
| 584 | // We also save LR, even though it is not in RBM_CALLEE_SAVED. |
| 585 | assert(regsToSaveCount <= genCountBits(RBM_CALLEE_SAVED | RBM_LR)); |
| 586 | |
| 587 | #ifdef DEBUG |
| 588 | bool isRegsToSaveCountOdd = ((regsToSaveCount % 2) != 0); |
| 589 | #endif // DEBUG |
| 590 | |
| 591 | int spOffset = lowestCalleeSavedOffset; // this is the offset *after* we change SP. |
| 592 | |
| 593 | regMaskTP maskSaveRegsFloat = regsToSaveMask & RBM_ALLFLOAT; |
| 594 | regMaskTP maskSaveRegsInt = regsToSaveMask & ~maskSaveRegsFloat; |
| 595 | |
| 596 | bool floatSavesSp = (maskSaveRegsInt == 0); |
| 597 | |
| 598 | if (maskSaveRegsInt != 0) |
| 599 | { |
| 600 | assert(!floatSavesSp); // We always change SP only once with the first save/last load. |
| 601 | |
| 602 | // Save the integer registers. |
| 603 | spOffset = genSaveCalleeSavedRegisterGroup(maskSaveRegsInt, spDelta, spOffset DEBUGARG(isRegsToSaveCountOdd)); |
| 604 | } |
| 605 | |
| 606 | if (maskSaveRegsFloat != 0) |
| 607 | { |
| 608 | int floatSpDelta = floatSavesSp ? spDelta : 0; |
| 609 | |
| 610 | // Save the floating-point/SIMD registers |
| 611 | spOffset = |
| 612 | genSaveCalleeSavedRegisterGroup(maskSaveRegsFloat, floatSpDelta, spOffset DEBUGARG(isRegsToSaveCountOdd)); |
| 613 | spDelta = 0; |
| 614 | } |
| 615 | } |
| 616 | |
| 617 | //------------------------------------------------------------------------ |
| 618 | // genRestoreCalleeSavedRegisterGroup: Saves the group of registers described by the mask. |
| 619 | // All registers in the mask must be the same type (int or float). |
| 620 | // |
| 621 | // Arguments: |
| 622 | // regsMask - a mask of registers for epilog generation; |
| 623 | // spDelta - if non-zero, the amount to add to SP after the last register restore (or together with it); |
| 624 | // spOffset - the offset from SP that is the beginning of the callee-saved register area; |
| 625 | // |
| 626 | // Return Value: |
| 627 | // SP offset after restoring registers from this group. |
| 628 | // |
| 629 | int CodeGen::genRestoreCalleeSavedRegisterGroup(regMaskTP regsMask, |
| 630 | int spDelta, |
| 631 | int spOffset DEBUGARG(bool isRegsToRestoreCountOdd)) |
| 632 | { |
| 633 | const int slotSize = genGetSlotSizeForRegsInMask(regsMask); |
| 634 | |
| 635 | ArrayStack<RegPair> regStack(compiler->getAllocator(CMK_Codegen)); |
| 636 | genBuildRegPairsStack(regsMask, ®Stack); |
| 637 | |
| 638 | int stackDelta = 0; |
| 639 | for (int i = 0; i < regStack.Height(); ++i) |
| 640 | { |
| 641 | bool lastRestoreInTheGroup = (i == regStack.Height() - 1); |
| 642 | bool updateStackDelta = lastRestoreInTheGroup && (spDelta != 0); |
| 643 | if (updateStackDelta) |
| 644 | { |
| 645 | // Update stack delta only if it is the last restore (the first save). |
| 646 | assert(stackDelta == 0); |
| 647 | stackDelta = spDelta; |
| 648 | } |
| 649 | |
| 650 | RegPair regPair = regStack.Index(i); |
| 651 | if (regPair.reg2 != REG_NA) |
| 652 | { |
| 653 | spOffset -= 2 * slotSize; |
| 654 | |
| 655 | genEpilogRestoreRegPair(regPair.reg1, regPair.reg2, spOffset, stackDelta, REG_IP1, nullptr); |
| 656 | } |
| 657 | else |
| 658 | { |
| 659 | spOffset -= slotSize; |
| 660 | genEpilogRestoreReg(regPair.reg1, spOffset, stackDelta, REG_IP1, nullptr); |
| 661 | } |
| 662 | } |
| 663 | |
| 664 | #ifdef DEBUG |
| 665 | if (stackDelta != 0) // The last restore (the first save) changes SP offset, check its value after. |
| 666 | { |
| 667 | genCheckSPOffset(isRegsToRestoreCountOdd, spOffset, slotSize); |
| 668 | } |
| 669 | #endif // DEBUG |
| 670 | return spOffset; |
| 671 | } |
| 672 | |
| 673 | //------------------------------------------------------------------------ |
| 674 | // genRestoreCalleeSavedRegistersHelp: Restore the callee-saved registers in 'regsToRestoreMask' from the stack frame |
| 675 | // in the function or funclet epilog. This exactly reverses the actions of genSaveCalleeSavedRegistersHelp(). |
| 676 | // |
| 677 | // Arguments: |
| 678 | // regsToRestoreMask - The mask of callee-saved registers to restore. If empty, this function does nothing. |
| 679 | // lowestCalleeSavedOffset - The offset from SP that is the beginning of the callee-saved register area. |
| 680 | // spDelta - If non-zero, the amount to add to SP after the register restores (must be positive or |
| 681 | // zero). |
| 682 | // |
| 683 | // Here's an example restore sequence: |
| 684 | // ldp x27, x28, [sp,#96] |
| 685 | // ldp x25, x26, [sp,#80] |
| 686 | // ldp x23, x24, [sp,#64] |
| 687 | // ldp x21, x22, [sp,#48] |
| 688 | // ldp x19, x20, [sp,#32] |
| 689 | // |
| 690 | // For the case of non-zero spDelta, we assume the base of the callee-save registers to restore is at SP, and |
| 691 | // the last restore adjusts SP by the specified amount. For example: |
| 692 | // ldp x27, x28, [sp,#64] |
| 693 | // ldp x25, x26, [sp,#48] |
| 694 | // ldp x23, x24, [sp,#32] |
| 695 | // ldp x21, x22, [sp,#16] |
| 696 | // ldp x19, x20, [sp], #80 |
| 697 | // |
| 698 | // Note you call the unwind functions specifying the prolog operation that is being un-done. So, for example, when |
| 699 | // generating a post-indexed load, you call the unwind function for specifying the corresponding preindexed store. |
| 700 | // |
| 701 | // Return Value: |
| 702 | // None. |
| 703 | |
| 704 | void CodeGen::genRestoreCalleeSavedRegistersHelp(regMaskTP regsToRestoreMask, int lowestCalleeSavedOffset, int spDelta) |
| 705 | { |
| 706 | assert(spDelta >= 0); |
| 707 | unsigned regsToRestoreCount = genCountBits(regsToRestoreMask); |
| 708 | if (regsToRestoreCount == 0) |
| 709 | { |
| 710 | if (spDelta != 0) |
| 711 | { |
| 712 | // Currently this is the case for varargs only |
| 713 | // whose size is MAX_REG_ARG * REGSIZE_BYTES = 64 bytes. |
| 714 | genStackPointerAdjustment(spDelta, REG_NA, nullptr); |
| 715 | } |
| 716 | return; |
| 717 | } |
| 718 | |
| 719 | assert((spDelta % 16) == 0); |
| 720 | assert((regsToRestoreMask & RBM_FP) == 0); // We never restore FP here. |
| 721 | |
| 722 | // We also restore LR, even though it is not in RBM_CALLEE_SAVED. |
| 723 | assert(regsToRestoreCount <= genCountBits(RBM_CALLEE_SAVED | RBM_LR)); |
| 724 | |
| 725 | #ifdef DEBUG |
| 726 | bool isRegsToRestoreCountOdd = ((regsToRestoreCount % 2) != 0); |
| 727 | #endif // DEBUG |
| 728 | |
| 729 | assert(REGSIZE_BYTES == FPSAVE_REGSIZE_BYTES); |
| 730 | int spOffset = lowestCalleeSavedOffset + regsToRestoreCount * REGSIZE_BYTES; // Point past the end, to start. We |
| 731 | // predecrement to find the offset to |
| 732 | // load from. |
| 733 | |
| 734 | // We want to restore in the opposite order we saved, so the unwind codes match. Be careful to handle odd numbers of |
| 735 | // callee-saved registers properly. |
| 736 | |
| 737 | regMaskTP maskRestoreRegsFloat = regsToRestoreMask & RBM_ALLFLOAT; |
| 738 | regMaskTP maskRestoreRegsInt = regsToRestoreMask & ~maskRestoreRegsFloat; |
| 739 | |
| 740 | bool floatRestoresSp = (maskRestoreRegsInt == 0); |
| 741 | |
| 742 | if (maskRestoreRegsFloat != 0) |
| 743 | { |
| 744 | int floatSpDelta = floatRestoresSp ? spDelta : 0; |
| 745 | // Restore the floating-point/SIMD registers |
| 746 | spOffset = genRestoreCalleeSavedRegisterGroup(maskRestoreRegsFloat, floatSpDelta, |
| 747 | spOffset DEBUGARG(isRegsToRestoreCountOdd)); |
| 748 | } |
| 749 | |
| 750 | if (maskRestoreRegsInt != 0) |
| 751 | { |
| 752 | assert(!floatRestoresSp); // We always change SP only once with the first save/last load. |
| 753 | |
| 754 | // Restore the integer registers |
| 755 | spOffset = |
| 756 | genRestoreCalleeSavedRegisterGroup(maskRestoreRegsInt, spDelta, spOffset DEBUGARG(isRegsToRestoreCountOdd)); |
| 757 | } |
| 758 | } |
| 759 | |
| 760 | // clang-format off |
| 761 | /***************************************************************************** |
| 762 | * |
| 763 | * Generates code for an EH funclet prolog. |
| 764 | * |
| 765 | * Funclets have the following incoming arguments: |
| 766 | * |
| 767 | * catch: x0 = the exception object that was caught (see GT_CATCH_ARG) |
| 768 | * filter: x0 = the exception object to filter (see GT_CATCH_ARG), x1 = CallerSP of the containing function |
| 769 | * finally/fault: none |
| 770 | * |
| 771 | * Funclets set the following registers on exit: |
| 772 | * |
| 773 | * catch: x0 = the address at which execution should resume (see BBJ_EHCATCHRET) |
| 774 | * filter: x0 = non-zero if the handler should handle the exception, zero otherwise (see GT_RETFILT) |
| 775 | * finally/fault: none |
| 776 | * |
| 777 | * The ARM64 funclet prolog sequence is one of the following (Note: #framesz is total funclet frame size, |
| 778 | * including everything; #outsz is outgoing argument space. #framesz must be a multiple of 16): |
| 779 | * |
| 780 | * Frame type 1: |
| 781 | * For #outsz == 0 and #framesz <= 512: |
| 782 | * stp fp,lr,[sp,-#framesz]! ; establish the frame, save FP/LR |
| 783 | * stp x19,x20,[sp,#xxx] ; save callee-saved registers, as necessary |
| 784 | * |
| 785 | * The funclet frame is thus: |
| 786 | * |
| 787 | * | | |
| 788 | * |-----------------------| |
| 789 | * | incoming | |
| 790 | * | arguments | |
| 791 | * +=======================+ <---- Caller's SP |
| 792 | * |Callee saved registers | // multiple of 8 bytes |
| 793 | * |-----------------------| |
| 794 | * | PSP slot | // 8 bytes (omitted in CoreRT ABI) |
| 795 | * |-----------------------| |
| 796 | * ~ alignment padding ~ // To make the whole frame 16 byte aligned. |
| 797 | * |-----------------------| |
| 798 | * | Saved FP, LR | // 16 bytes |
| 799 | * |-----------------------| <---- Ambient SP |
| 800 | * | | | |
| 801 | * ~ | Stack grows ~ |
| 802 | * | | downward | |
| 803 | * V |
| 804 | * |
| 805 | * Frame type 2: |
| 806 | * For #outsz != 0 and #framesz <= 512: |
| 807 | * sub sp,sp,#framesz ; establish the frame |
| 808 | * stp fp,lr,[sp,#outsz] ; save FP/LR. |
| 809 | * stp x19,x20,[sp,#xxx] ; save callee-saved registers, as necessary |
| 810 | * |
| 811 | * The funclet frame is thus: |
| 812 | * |
| 813 | * | | |
| 814 | * |-----------------------| |
| 815 | * | incoming | |
| 816 | * | arguments | |
| 817 | * +=======================+ <---- Caller's SP |
| 818 | * |Callee saved registers | // multiple of 8 bytes |
| 819 | * |-----------------------| |
| 820 | * | PSP slot | // 8 bytes (omitted in CoreRT ABI) |
| 821 | * |-----------------------| |
| 822 | * ~ alignment padding ~ // To make the whole frame 16 byte aligned. |
| 823 | * |-----------------------| |
| 824 | * | Saved FP, LR | // 16 bytes |
| 825 | * |-----------------------| |
| 826 | * | Outgoing arg space | // multiple of 8 bytes |
| 827 | * |-----------------------| <---- Ambient SP |
| 828 | * | | | |
| 829 | * ~ | Stack grows ~ |
| 830 | * | | downward | |
| 831 | * V |
| 832 | * |
| 833 | * Frame type 3: |
| 834 | * For #framesz > 512: |
| 835 | * stp fp,lr,[sp,- (#framesz - #outsz)]! ; establish the frame, save FP/LR: note that it is guaranteed here that (#framesz - #outsz) <= 168 |
| 836 | * stp x19,x20,[sp,#xxx] ; save callee-saved registers, as necessary |
| 837 | * sub sp,sp,#outsz ; create space for outgoing argument space |
| 838 | * |
| 839 | * The funclet frame is thus: |
| 840 | * |
| 841 | * | | |
| 842 | * |-----------------------| |
| 843 | * | incoming | |
| 844 | * | arguments | |
| 845 | * +=======================+ <---- Caller's SP |
| 846 | * |Callee saved registers | // multiple of 8 bytes |
| 847 | * |-----------------------| |
| 848 | * | PSP slot | // 8 bytes (omitted in CoreRT ABI) |
| 849 | * |-----------------------| |
| 850 | * ~ alignment padding ~ // To make the first SP subtraction 16 byte aligned |
| 851 | * |-----------------------| |
| 852 | * | Saved FP, LR | // 16 bytes |
| 853 | * |-----------------------| |
| 854 | * ~ alignment padding ~ // To make the whole frame 16 byte aligned (specifically, to 16-byte align the outgoing argument space). |
| 855 | * |-----------------------| |
| 856 | * | Outgoing arg space | // multiple of 8 bytes |
| 857 | * |-----------------------| <---- Ambient SP |
| 858 | * | | | |
| 859 | * ~ | Stack grows ~ |
| 860 | * | | downward | |
| 861 | * V |
| 862 | * |
| 863 | * Both #1 and #2 only change SP once. That means that there will be a maximum of one alignment slot needed. For the general case, #3, |
| 864 | * it is possible that we will need to add alignment to both changes to SP, leading to 16 bytes of alignment. Remember that the stack |
| 865 | * pointer needs to be 16 byte aligned at all times. The size of the PSP slot plus callee-saved registers space is a maximum of 168 bytes: |
| 866 | * (1 PSP slot + 12 integer registers + 8 FP/SIMD registers) * 8 bytes. The outgoing argument size, however, can be very large, if we call a |
| 867 | * function that takes a large number of arguments (note that we currently use the same outgoing argument space size in the funclet as for the main |
| 868 | * function, even if the funclet doesn't have any calls, or has a much smaller, or larger, maximum number of outgoing arguments for any call). |
| 869 | * In that case, we need to 16-byte align the initial change to SP, before saving off the callee-saved registers and establishing the PSPsym, |
| 870 | * so we can use the limited immediate offset encodings we have available, before doing another 16-byte aligned SP adjustment to create the |
| 871 | * outgoing argument space. Both changes to SP might need to add alignment padding. |
| 872 | * |
| 873 | * Note that in all cases, the PSPSym is in exactly the same position with respect to Caller-SP, and that location is the same relative to Caller-SP |
| 874 | * as in the main function. |
| 875 | * |
| 876 | * ; After this header, fill the PSP slot, for use by the VM (it gets reported with the GC info), or by code generation of nested filters. |
| 877 | * ; This is not part of the "OS prolog"; it has no associated unwind data, and is not reversed in the funclet epilog. |
| 878 | * |
| 879 | * if (this is a filter funclet) |
| 880 | * { |
| 881 | * // x1 on entry to a filter funclet is CallerSP of the containing function: |
| 882 | * // either the main function, or the funclet for a handler that this filter is dynamically nested within. |
| 883 | * // Note that a filter can be dynamically nested within a funclet even if it is not statically within |
| 884 | * // a funclet. Consider: |
| 885 | * // |
| 886 | * // try { |
| 887 | * // try { |
| 888 | * // throw new Exception(); |
| 889 | * // } catch(Exception) { |
| 890 | * // throw new Exception(); // The exception thrown here ... |
| 891 | * // } |
| 892 | * // } filter { // ... will be processed here, while the "catch" funclet frame is still on the stack |
| 893 | * // } filter-handler { |
| 894 | * // } |
| 895 | * // |
| 896 | * // Because of this, we need a PSP in the main function anytime a filter funclet doesn't know whether the enclosing frame will |
| 897 | * // be a funclet or main function. We won't know any time there is a filter protecting nested EH. To simplify, we just always |
| 898 | * // create a main function PSP for any function with a filter. |
| 899 | * |
| 900 | * ldr x1, [x1, #CallerSP_to_PSP_slot_delta] ; Load the CallerSP of the main function (stored in the PSP of the dynamically containing funclet or function) |
| 901 | * str x1, [sp, #SP_to_PSP_slot_delta] ; store the PSP |
| 902 | * add fp, x1, #Function_CallerSP_to_FP_delta ; re-establish the frame pointer |
| 903 | * } |
| 904 | * else |
| 905 | * { |
| 906 | * // This is NOT a filter funclet. The VM re-establishes the frame pointer on entry. |
| 907 | * // TODO-ARM64-CQ: if VM set x1 to CallerSP on entry, like for filters, we could save an instruction. |
| 908 | * |
| 909 | * add x3, fp, #Function_FP_to_CallerSP_delta ; compute the CallerSP, given the frame pointer. x3 is scratch. |
| 910 | * str x3, [sp, #SP_to_PSP_slot_delta] ; store the PSP |
| 911 | * } |
| 912 | * |
| 913 | * An example epilog sequence is then: |
| 914 | * |
| 915 | * add sp,sp,#outsz ; if any outgoing argument space |
| 916 | * ... ; restore callee-saved registers |
| 917 | * ldp x19,x20,[sp,#xxx] |
| 918 | * ldp fp,lr,[sp],#framesz |
| 919 | * ret lr |
| 920 | * |
| 921 | * The funclet frame is thus: |
| 922 | * |
| 923 | * | | |
| 924 | * |-----------------------| |
| 925 | * | incoming | |
| 926 | * | arguments | |
| 927 | * +=======================+ <---- Caller's SP |
| 928 | * |Callee saved registers | // multiple of 8 bytes |
| 929 | * |-----------------------| |
| 930 | * | PSP slot | // 8 bytes (omitted in CoreRT ABI) |
| 931 | * |-----------------------| |
| 932 | * | Saved FP, LR | // 16 bytes |
| 933 | * |-----------------------| |
| 934 | * ~ alignment padding ~ // To make the whole frame 16 byte aligned. |
| 935 | * |-----------------------| |
| 936 | * | Outgoing arg space | // multiple of 8 bytes |
| 937 | * |-----------------------| <---- Ambient SP |
| 938 | * | | | |
| 939 | * ~ | Stack grows ~ |
| 940 | * | | downward | |
| 941 | * V |
| 942 | */ |
| 943 | // clang-format on |
| 944 | |
| 945 | void CodeGen::genFuncletProlog(BasicBlock* block) |
| 946 | { |
| 947 | #ifdef DEBUG |
| 948 | if (verbose) |
| 949 | printf("*************** In genFuncletProlog()\n" ); |
| 950 | #endif |
| 951 | |
| 952 | assert(block != NULL); |
| 953 | assert(block->bbFlags & BBF_FUNCLET_BEG); |
| 954 | |
| 955 | ScopedSetVariable<bool> _setGeneratingProlog(&compiler->compGeneratingProlog, true); |
| 956 | |
| 957 | gcInfo.gcResetForBB(); |
| 958 | |
| 959 | compiler->unwindBegProlog(); |
| 960 | |
| 961 | regMaskTP maskSaveRegsFloat = genFuncletInfo.fiSaveRegs & RBM_ALLFLOAT; |
| 962 | regMaskTP maskSaveRegsInt = genFuncletInfo.fiSaveRegs & ~maskSaveRegsFloat; |
| 963 | |
| 964 | // Funclets must always save LR and FP, since when we have funclets we must have an FP frame. |
| 965 | assert((maskSaveRegsInt & RBM_LR) != 0); |
| 966 | assert((maskSaveRegsInt & RBM_FP) != 0); |
| 967 | |
| 968 | bool isFilter = (block->bbCatchTyp == BBCT_FILTER); |
| 969 | |
| 970 | regMaskTP maskArgRegsLiveIn; |
| 971 | if (isFilter) |
| 972 | { |
| 973 | maskArgRegsLiveIn = RBM_R0 | RBM_R1; |
| 974 | } |
| 975 | else if ((block->bbCatchTyp == BBCT_FINALLY) || (block->bbCatchTyp == BBCT_FAULT)) |
| 976 | { |
| 977 | maskArgRegsLiveIn = RBM_NONE; |
| 978 | } |
| 979 | else |
| 980 | { |
| 981 | maskArgRegsLiveIn = RBM_R0; |
| 982 | } |
| 983 | |
| 984 | int lowestCalleeSavedOffset = genFuncletInfo.fiSP_to_CalleeSave_delta; |
| 985 | |
| 986 | if (genFuncletInfo.fiFrameType == 1) |
| 987 | { |
| 988 | getEmitter()->emitIns_R_R_R_I(INS_stp, EA_PTRSIZE, REG_FP, REG_LR, REG_SPBASE, genFuncletInfo.fiSpDelta1, |
| 989 | INS_OPTS_PRE_INDEX); |
| 990 | compiler->unwindSaveRegPairPreindexed(REG_FP, REG_LR, genFuncletInfo.fiSpDelta1); |
| 991 | |
| 992 | assert(genFuncletInfo.fiSpDelta2 == 0); |
| 993 | assert(genFuncletInfo.fiSP_to_FPLR_save_delta == 0); |
| 994 | } |
| 995 | else if (genFuncletInfo.fiFrameType == 2) |
| 996 | { |
| 997 | // fiFrameType==2 constraints: |
| 998 | assert(genFuncletInfo.fiSpDelta1 < 0); |
| 999 | assert(genFuncletInfo.fiSpDelta1 >= -512); |
| 1000 | |
| 1001 | // generate sub SP,SP,imm |
| 1002 | genStackPointerAdjustment(genFuncletInfo.fiSpDelta1, REG_NA, nullptr); |
| 1003 | |
| 1004 | assert(genFuncletInfo.fiSpDelta2 == 0); |
| 1005 | |
| 1006 | getEmitter()->emitIns_R_R_R_I(INS_stp, EA_PTRSIZE, REG_FP, REG_LR, REG_SPBASE, |
| 1007 | genFuncletInfo.fiSP_to_FPLR_save_delta); |
| 1008 | compiler->unwindSaveRegPair(REG_FP, REG_LR, genFuncletInfo.fiSP_to_FPLR_save_delta); |
| 1009 | } |
| 1010 | else |
| 1011 | { |
| 1012 | assert(genFuncletInfo.fiFrameType == 3); |
| 1013 | getEmitter()->emitIns_R_R_R_I(INS_stp, EA_PTRSIZE, REG_FP, REG_LR, REG_SPBASE, genFuncletInfo.fiSpDelta1, |
| 1014 | INS_OPTS_PRE_INDEX); |
| 1015 | compiler->unwindSaveRegPairPreindexed(REG_FP, REG_LR, genFuncletInfo.fiSpDelta1); |
| 1016 | |
| 1017 | lowestCalleeSavedOffset += genFuncletInfo.fiSpDelta2; // We haven't done the second adjustment of SP yet. |
| 1018 | } |
| 1019 | maskSaveRegsInt &= ~(RBM_LR | RBM_FP); // We've saved these now |
| 1020 | |
| 1021 | genSaveCalleeSavedRegistersHelp(maskSaveRegsInt | maskSaveRegsFloat, lowestCalleeSavedOffset, 0); |
| 1022 | |
| 1023 | if (genFuncletInfo.fiFrameType == 3) |
| 1024 | { |
| 1025 | // Note that genFuncletInfo.fiSpDelta2 is always a negative value |
| 1026 | assert(genFuncletInfo.fiSpDelta2 < 0); |
| 1027 | |
| 1028 | // generate sub SP,SP,imm |
| 1029 | genStackPointerAdjustment(genFuncletInfo.fiSpDelta2, REG_R2, nullptr); |
| 1030 | } |
| 1031 | |
| 1032 | // This is the end of the OS-reported prolog for purposes of unwinding |
| 1033 | compiler->unwindEndProlog(); |
| 1034 | |
| 1035 | // If there is no PSPSym (CoreRT ABI), we are done. |
| 1036 | if (compiler->lvaPSPSym == BAD_VAR_NUM) |
| 1037 | { |
| 1038 | return; |
| 1039 | } |
| 1040 | |
| 1041 | if (isFilter) |
| 1042 | { |
| 1043 | // This is the first block of a filter |
| 1044 | // Note that register x1 = CallerSP of the containing function |
| 1045 | // X1 is overwritten by the first Load (new callerSP) |
| 1046 | // X2 is scratch when we have a large constant offset |
| 1047 | |
| 1048 | // Load the CallerSP of the main function (stored in the PSP of the dynamically containing funclet or function) |
| 1049 | genInstrWithConstant(ins_Load(TYP_I_IMPL), EA_PTRSIZE, REG_R1, REG_R1, |
| 1050 | genFuncletInfo.fiCallerSP_to_PSP_slot_delta, REG_R2, false); |
| 1051 | regSet.verifyRegUsed(REG_R1); |
| 1052 | |
| 1053 | // Store the PSP value (aka CallerSP) |
| 1054 | genInstrWithConstant(ins_Store(TYP_I_IMPL), EA_PTRSIZE, REG_R1, REG_SPBASE, |
| 1055 | genFuncletInfo.fiSP_to_PSP_slot_delta, REG_R2, false); |
| 1056 | |
| 1057 | // re-establish the frame pointer |
| 1058 | genInstrWithConstant(INS_add, EA_PTRSIZE, REG_FPBASE, REG_R1, genFuncletInfo.fiFunction_CallerSP_to_FP_delta, |
| 1059 | REG_R2, false); |
| 1060 | } |
| 1061 | else // This is a non-filter funclet |
| 1062 | { |
| 1063 | // X3 is scratch, X2 can also become scratch |
| 1064 | |
| 1065 | // compute the CallerSP, given the frame pointer. x3 is scratch. |
| 1066 | genInstrWithConstant(INS_add, EA_PTRSIZE, REG_R3, REG_FPBASE, -genFuncletInfo.fiFunction_CallerSP_to_FP_delta, |
| 1067 | REG_R2, false); |
| 1068 | regSet.verifyRegUsed(REG_R3); |
| 1069 | |
| 1070 | genInstrWithConstant(ins_Store(TYP_I_IMPL), EA_PTRSIZE, REG_R3, REG_SPBASE, |
| 1071 | genFuncletInfo.fiSP_to_PSP_slot_delta, REG_R2, false); |
| 1072 | } |
| 1073 | } |
| 1074 | |
| 1075 | /***************************************************************************** |
| 1076 | * |
| 1077 | * Generates code for an EH funclet epilog. |
| 1078 | */ |
| 1079 | |
| 1080 | void CodeGen::genFuncletEpilog() |
| 1081 | { |
| 1082 | #ifdef DEBUG |
| 1083 | if (verbose) |
| 1084 | printf("*************** In genFuncletEpilog()\n" ); |
| 1085 | #endif |
| 1086 | |
| 1087 | ScopedSetVariable<bool> _setGeneratingEpilog(&compiler->compGeneratingEpilog, true); |
| 1088 | |
| 1089 | bool unwindStarted = false; |
| 1090 | |
| 1091 | if (!unwindStarted) |
| 1092 | { |
| 1093 | // We can delay this until we know we'll generate an unwindable instruction, if necessary. |
| 1094 | compiler->unwindBegEpilog(); |
| 1095 | unwindStarted = true; |
| 1096 | } |
| 1097 | |
| 1098 | regMaskTP maskRestoreRegsFloat = genFuncletInfo.fiSaveRegs & RBM_ALLFLOAT; |
| 1099 | regMaskTP maskRestoreRegsInt = genFuncletInfo.fiSaveRegs & ~maskRestoreRegsFloat; |
| 1100 | |
| 1101 | // Funclets must always save LR and FP, since when we have funclets we must have an FP frame. |
| 1102 | assert((maskRestoreRegsInt & RBM_LR) != 0); |
| 1103 | assert((maskRestoreRegsInt & RBM_FP) != 0); |
| 1104 | |
| 1105 | maskRestoreRegsInt &= ~(RBM_LR | RBM_FP); // We restore FP/LR at the end |
| 1106 | |
| 1107 | int lowestCalleeSavedOffset = genFuncletInfo.fiSP_to_CalleeSave_delta; |
| 1108 | |
| 1109 | if (genFuncletInfo.fiFrameType == 3) |
| 1110 | { |
| 1111 | // Note that genFuncletInfo.fiSpDelta2 is always a negative value |
| 1112 | assert(genFuncletInfo.fiSpDelta2 < 0); |
| 1113 | |
| 1114 | // generate add SP,SP,imm |
| 1115 | genStackPointerAdjustment(-genFuncletInfo.fiSpDelta2, REG_R2, nullptr); |
| 1116 | |
| 1117 | lowestCalleeSavedOffset += genFuncletInfo.fiSpDelta2; |
| 1118 | } |
| 1119 | |
| 1120 | regMaskTP regsToRestoreMask = maskRestoreRegsInt | maskRestoreRegsFloat; |
| 1121 | genRestoreCalleeSavedRegistersHelp(regsToRestoreMask, lowestCalleeSavedOffset, 0); |
| 1122 | |
| 1123 | if (genFuncletInfo.fiFrameType == 1) |
| 1124 | { |
| 1125 | getEmitter()->emitIns_R_R_R_I(INS_ldp, EA_PTRSIZE, REG_FP, REG_LR, REG_SPBASE, -genFuncletInfo.fiSpDelta1, |
| 1126 | INS_OPTS_POST_INDEX); |
| 1127 | compiler->unwindSaveRegPairPreindexed(REG_FP, REG_LR, genFuncletInfo.fiSpDelta1); |
| 1128 | |
| 1129 | assert(genFuncletInfo.fiSpDelta2 == 0); |
| 1130 | assert(genFuncletInfo.fiSP_to_FPLR_save_delta == 0); |
| 1131 | } |
| 1132 | else if (genFuncletInfo.fiFrameType == 2) |
| 1133 | { |
| 1134 | getEmitter()->emitIns_R_R_R_I(INS_ldp, EA_PTRSIZE, REG_FP, REG_LR, REG_SPBASE, |
| 1135 | genFuncletInfo.fiSP_to_FPLR_save_delta); |
| 1136 | compiler->unwindSaveRegPair(REG_FP, REG_LR, genFuncletInfo.fiSP_to_FPLR_save_delta); |
| 1137 | |
| 1138 | // fiFrameType==2 constraints: |
| 1139 | assert(genFuncletInfo.fiSpDelta1 < 0); |
| 1140 | assert(genFuncletInfo.fiSpDelta1 >= -512); |
| 1141 | |
| 1142 | // generate add SP,SP,imm |
| 1143 | genStackPointerAdjustment(-genFuncletInfo.fiSpDelta1, REG_NA, nullptr); |
| 1144 | |
| 1145 | assert(genFuncletInfo.fiSpDelta2 == 0); |
| 1146 | } |
| 1147 | else |
| 1148 | { |
| 1149 | assert(genFuncletInfo.fiFrameType == 3); |
| 1150 | |
| 1151 | getEmitter()->emitIns_R_R_R_I(INS_ldp, EA_PTRSIZE, REG_FP, REG_LR, REG_SPBASE, -genFuncletInfo.fiSpDelta1, |
| 1152 | INS_OPTS_POST_INDEX); |
| 1153 | compiler->unwindSaveRegPairPreindexed(REG_FP, REG_LR, genFuncletInfo.fiSpDelta1); |
| 1154 | } |
| 1155 | |
| 1156 | inst_RV(INS_ret, REG_LR, TYP_I_IMPL); |
| 1157 | compiler->unwindReturn(REG_LR); |
| 1158 | |
| 1159 | compiler->unwindEndEpilog(); |
| 1160 | } |
| 1161 | |
| 1162 | /***************************************************************************** |
| 1163 | * |
| 1164 | * Capture the information used to generate the funclet prologs and epilogs. |
| 1165 | * Note that all funclet prologs are identical, and all funclet epilogs are |
| 1166 | * identical (per type: filters are identical, and non-filters are identical). |
| 1167 | * Thus, we compute the data used for these just once. |
| 1168 | * |
| 1169 | * See genFuncletProlog() for more information about the prolog/epilog sequences. |
| 1170 | */ |
| 1171 | |
| 1172 | void CodeGen::genCaptureFuncletPrologEpilogInfo() |
| 1173 | { |
| 1174 | if (!compiler->ehAnyFunclets()) |
| 1175 | return; |
| 1176 | |
| 1177 | assert(isFramePointerUsed()); |
| 1178 | assert(compiler->lvaDoneFrameLayout == Compiler::FINAL_FRAME_LAYOUT); // The frame size and offsets must be |
| 1179 | // finalized |
| 1180 | |
| 1181 | genFuncletInfo.fiFunction_CallerSP_to_FP_delta = genCallerSPtoFPdelta(); |
| 1182 | |
| 1183 | regMaskTP rsMaskSaveRegs = regSet.rsMaskCalleeSaved; |
| 1184 | assert((rsMaskSaveRegs & RBM_LR) != 0); |
| 1185 | assert((rsMaskSaveRegs & RBM_FP) != 0); |
| 1186 | |
| 1187 | unsigned PSPSize = (compiler->lvaPSPSym != BAD_VAR_NUM) ? REGSIZE_BYTES : 0; |
| 1188 | |
| 1189 | unsigned saveRegsCount = genCountBits(rsMaskSaveRegs); |
| 1190 | unsigned saveRegsPlusPSPSize = saveRegsCount * REGSIZE_BYTES + PSPSize; |
| 1191 | if (compiler->info.compIsVarArgs) |
| 1192 | { |
| 1193 | // For varargs we always save all of the integer register arguments |
| 1194 | // so that they are contiguous with the incoming stack arguments. |
| 1195 | saveRegsPlusPSPSize += MAX_REG_ARG * REGSIZE_BYTES; |
| 1196 | } |
| 1197 | unsigned saveRegsPlusPSPSizeAligned = roundUp(saveRegsPlusPSPSize, STACK_ALIGN); |
| 1198 | |
| 1199 | assert(compiler->lvaOutgoingArgSpaceSize % REGSIZE_BYTES == 0); |
| 1200 | unsigned outgoingArgSpaceAligned = roundUp(compiler->lvaOutgoingArgSpaceSize, STACK_ALIGN); |
| 1201 | |
| 1202 | unsigned maxFuncletFrameSizeAligned = saveRegsPlusPSPSizeAligned + outgoingArgSpaceAligned; |
| 1203 | assert((maxFuncletFrameSizeAligned % STACK_ALIGN) == 0); |
| 1204 | |
| 1205 | int SP_to_FPLR_save_delta; |
| 1206 | int SP_to_PSP_slot_delta; |
| 1207 | int CallerSP_to_PSP_slot_delta; |
| 1208 | |
| 1209 | if (maxFuncletFrameSizeAligned <= 512) |
| 1210 | { |
| 1211 | unsigned funcletFrameSize = saveRegsPlusPSPSize + compiler->lvaOutgoingArgSpaceSize; |
| 1212 | unsigned funcletFrameSizeAligned = roundUp(funcletFrameSize, STACK_ALIGN); |
| 1213 | assert(funcletFrameSizeAligned <= maxFuncletFrameSizeAligned); |
| 1214 | |
| 1215 | unsigned funcletFrameAlignmentPad = funcletFrameSizeAligned - funcletFrameSize; |
| 1216 | assert((funcletFrameAlignmentPad == 0) || (funcletFrameAlignmentPad == REGSIZE_BYTES)); |
| 1217 | |
| 1218 | SP_to_FPLR_save_delta = compiler->lvaOutgoingArgSpaceSize; |
| 1219 | SP_to_PSP_slot_delta = SP_to_FPLR_save_delta + 2 /* FP, LR */ * REGSIZE_BYTES + funcletFrameAlignmentPad; |
| 1220 | CallerSP_to_PSP_slot_delta = -(int)(saveRegsPlusPSPSize - 2 /* FP, LR */ * REGSIZE_BYTES); |
| 1221 | |
| 1222 | if (compiler->lvaOutgoingArgSpaceSize == 0) |
| 1223 | { |
| 1224 | genFuncletInfo.fiFrameType = 1; |
| 1225 | } |
| 1226 | else |
| 1227 | { |
| 1228 | genFuncletInfo.fiFrameType = 2; |
| 1229 | } |
| 1230 | genFuncletInfo.fiSpDelta1 = -(int)funcletFrameSizeAligned; |
| 1231 | genFuncletInfo.fiSpDelta2 = 0; |
| 1232 | |
| 1233 | assert(genFuncletInfo.fiSpDelta1 + genFuncletInfo.fiSpDelta2 == -(int)funcletFrameSizeAligned); |
| 1234 | } |
| 1235 | else |
| 1236 | { |
| 1237 | unsigned saveRegsPlusPSPAlignmentPad = saveRegsPlusPSPSizeAligned - saveRegsPlusPSPSize; |
| 1238 | assert((saveRegsPlusPSPAlignmentPad == 0) || (saveRegsPlusPSPAlignmentPad == REGSIZE_BYTES)); |
| 1239 | |
| 1240 | SP_to_FPLR_save_delta = outgoingArgSpaceAligned; |
| 1241 | SP_to_PSP_slot_delta = SP_to_FPLR_save_delta + 2 /* FP, LR */ * REGSIZE_BYTES + saveRegsPlusPSPAlignmentPad; |
| 1242 | CallerSP_to_PSP_slot_delta = |
| 1243 | -(int)(saveRegsPlusPSPSizeAligned - 2 /* FP, LR */ * REGSIZE_BYTES - saveRegsPlusPSPAlignmentPad); |
| 1244 | |
| 1245 | genFuncletInfo.fiFrameType = 3; |
| 1246 | genFuncletInfo.fiSpDelta1 = -(int)saveRegsPlusPSPSizeAligned; |
| 1247 | genFuncletInfo.fiSpDelta2 = -(int)outgoingArgSpaceAligned; |
| 1248 | |
| 1249 | assert(genFuncletInfo.fiSpDelta1 + genFuncletInfo.fiSpDelta2 == -(int)maxFuncletFrameSizeAligned); |
| 1250 | } |
| 1251 | |
| 1252 | /* Now save it for future use */ |
| 1253 | |
| 1254 | genFuncletInfo.fiSaveRegs = rsMaskSaveRegs; |
| 1255 | genFuncletInfo.fiSP_to_FPLR_save_delta = SP_to_FPLR_save_delta; |
| 1256 | genFuncletInfo.fiSP_to_PSP_slot_delta = SP_to_PSP_slot_delta; |
| 1257 | genFuncletInfo.fiSP_to_CalleeSave_delta = SP_to_PSP_slot_delta + REGSIZE_BYTES; |
| 1258 | genFuncletInfo.fiCallerSP_to_PSP_slot_delta = CallerSP_to_PSP_slot_delta; |
| 1259 | |
| 1260 | #ifdef DEBUG |
| 1261 | if (verbose) |
| 1262 | { |
| 1263 | printf("\n" ); |
| 1264 | printf("Funclet prolog / epilog info\n" ); |
| 1265 | printf(" Save regs: " ); |
| 1266 | dspRegMask(genFuncletInfo.fiSaveRegs); |
| 1267 | printf("\n" ); |
| 1268 | printf(" Function CallerSP-to-FP delta: %d\n" , genFuncletInfo.fiFunction_CallerSP_to_FP_delta); |
| 1269 | printf(" SP to FP/LR save location delta: %d\n" , genFuncletInfo.fiSP_to_FPLR_save_delta); |
| 1270 | printf(" SP to PSP slot delta: %d\n" , genFuncletInfo.fiSP_to_PSP_slot_delta); |
| 1271 | printf(" SP to callee-saved area delta: %d\n" , genFuncletInfo.fiSP_to_CalleeSave_delta); |
| 1272 | printf(" Caller SP to PSP slot delta: %d\n" , genFuncletInfo.fiCallerSP_to_PSP_slot_delta); |
| 1273 | printf(" Frame type: %d\n" , genFuncletInfo.fiFrameType); |
| 1274 | printf(" SP delta 1: %d\n" , genFuncletInfo.fiSpDelta1); |
| 1275 | printf(" SP delta 2: %d\n" , genFuncletInfo.fiSpDelta2); |
| 1276 | |
| 1277 | if (compiler->lvaPSPSym != BAD_VAR_NUM) |
| 1278 | { |
| 1279 | if (CallerSP_to_PSP_slot_delta != |
| 1280 | compiler->lvaGetCallerSPRelativeOffset(compiler->lvaPSPSym)) // for debugging |
| 1281 | { |
| 1282 | printf("lvaGetCallerSPRelativeOffset(lvaPSPSym): %d\n" , |
| 1283 | compiler->lvaGetCallerSPRelativeOffset(compiler->lvaPSPSym)); |
| 1284 | } |
| 1285 | } |
| 1286 | } |
| 1287 | |
| 1288 | assert(genFuncletInfo.fiSP_to_FPLR_save_delta >= 0); |
| 1289 | assert(genFuncletInfo.fiSP_to_PSP_slot_delta >= 0); |
| 1290 | assert(genFuncletInfo.fiSP_to_CalleeSave_delta >= 0); |
| 1291 | assert(genFuncletInfo.fiCallerSP_to_PSP_slot_delta <= 0); |
| 1292 | |
| 1293 | if (compiler->lvaPSPSym != BAD_VAR_NUM) |
| 1294 | { |
| 1295 | assert(genFuncletInfo.fiCallerSP_to_PSP_slot_delta == |
| 1296 | compiler->lvaGetCallerSPRelativeOffset(compiler->lvaPSPSym)); // same offset used in main function and |
| 1297 | // funclet! |
| 1298 | } |
| 1299 | #endif // DEBUG |
| 1300 | } |
| 1301 | |
| 1302 | /* |
| 1303 | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
| 1304 | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
| 1305 | XX XX |
| 1306 | XX End Prolog / Epilog XX |
| 1307 | XX XX |
| 1308 | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
| 1309 | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
| 1310 | */ |
| 1311 | |
| 1312 | BasicBlock* CodeGen::genCallFinally(BasicBlock* block) |
| 1313 | { |
| 1314 | // Generate a call to the finally, like this: |
| 1315 | // mov x0,qword ptr [fp + 10H] / sp // Load x0 with PSPSym, or sp if PSPSym is not used |
| 1316 | // bl finally-funclet |
| 1317 | // b finally-return // Only for non-retless finally calls |
| 1318 | // The 'b' can be a NOP if we're going to the next block. |
| 1319 | |
| 1320 | if (compiler->lvaPSPSym != BAD_VAR_NUM) |
| 1321 | { |
| 1322 | getEmitter()->emitIns_R_S(ins_Load(TYP_I_IMPL), EA_PTRSIZE, REG_R0, compiler->lvaPSPSym, 0); |
| 1323 | } |
| 1324 | else |
| 1325 | { |
| 1326 | getEmitter()->emitIns_R_R(INS_mov, EA_PTRSIZE, REG_R0, REG_SPBASE); |
| 1327 | } |
| 1328 | getEmitter()->emitIns_J(INS_bl_local, block->bbJumpDest); |
| 1329 | |
| 1330 | if (block->bbFlags & BBF_RETLESS_CALL) |
| 1331 | { |
| 1332 | // We have a retless call, and the last instruction generated was a call. |
| 1333 | // If the next block is in a different EH region (or is the end of the code |
| 1334 | // block), then we need to generate a breakpoint here (since it will never |
| 1335 | // get executed) to get proper unwind behavior. |
| 1336 | |
| 1337 | if ((block->bbNext == nullptr) || !BasicBlock::sameEHRegion(block, block->bbNext)) |
| 1338 | { |
| 1339 | instGen(INS_bkpt); // This should never get executed |
| 1340 | } |
| 1341 | } |
| 1342 | else |
| 1343 | { |
| 1344 | // Because of the way the flowgraph is connected, the liveness info for this one instruction |
| 1345 | // after the call is not (can not be) correct in cases where a variable has a last use in the |
| 1346 | // handler. So turn off GC reporting for this single instruction. |
| 1347 | getEmitter()->emitDisableGC(); |
| 1348 | |
| 1349 | // Now go to where the finally funclet needs to return to. |
| 1350 | if (block->bbNext->bbJumpDest == block->bbNext->bbNext) |
| 1351 | { |
| 1352 | // Fall-through. |
| 1353 | // TODO-ARM64-CQ: Can we get rid of this instruction, and just have the call return directly |
| 1354 | // to the next instruction? This would depend on stack walking from within the finally |
| 1355 | // handler working without this instruction being in this special EH region. |
| 1356 | instGen(INS_nop); |
| 1357 | } |
| 1358 | else |
| 1359 | { |
| 1360 | inst_JMP(EJ_jmp, block->bbNext->bbJumpDest); |
| 1361 | } |
| 1362 | |
| 1363 | getEmitter()->emitEnableGC(); |
| 1364 | } |
| 1365 | |
| 1366 | // The BBJ_ALWAYS is used because the BBJ_CALLFINALLY can't point to the |
| 1367 | // jump target using bbJumpDest - that is already used to point |
| 1368 | // to the finally block. So just skip past the BBJ_ALWAYS unless the |
| 1369 | // block is RETLESS. |
| 1370 | if (!(block->bbFlags & BBF_RETLESS_CALL)) |
| 1371 | { |
| 1372 | assert(block->isBBCallAlwaysPair()); |
| 1373 | block = block->bbNext; |
| 1374 | } |
| 1375 | return block; |
| 1376 | } |
| 1377 | |
| 1378 | void CodeGen::genEHCatchRet(BasicBlock* block) |
| 1379 | { |
| 1380 | // For long address (default): `adrp + add` will be emitted. |
| 1381 | // For short address (proven later): `adr` will be emitted. |
| 1382 | getEmitter()->emitIns_R_L(INS_adr, EA_PTRSIZE, block->bbJumpDest, REG_INTRET); |
| 1383 | } |
| 1384 | |
| 1385 | // move an immediate value into an integer register |
| 1386 | |
| 1387 | void CodeGen::instGen_Set_Reg_To_Imm(emitAttr size, regNumber reg, ssize_t imm, insFlags flags) |
| 1388 | { |
| 1389 | // reg cannot be a FP register |
| 1390 | assert(!genIsValidFloatReg(reg)); |
| 1391 | if (!compiler->opts.compReloc) |
| 1392 | { |
| 1393 | size = EA_SIZE(size); // Strip any Reloc flags from size if we aren't doing relocs |
| 1394 | } |
| 1395 | |
| 1396 | if (EA_IS_RELOC(size)) |
| 1397 | { |
| 1398 | // This emits a pair of adrp/add (two instructions) with fix-ups. |
| 1399 | getEmitter()->emitIns_R_AI(INS_adrp, size, reg, imm); |
| 1400 | } |
| 1401 | else if (imm == 0) |
| 1402 | { |
| 1403 | instGen_Set_Reg_To_Zero(size, reg, flags); |
| 1404 | } |
| 1405 | else |
| 1406 | { |
| 1407 | if (emitter::emitIns_valid_imm_for_mov(imm, size)) |
| 1408 | { |
| 1409 | getEmitter()->emitIns_R_I(INS_mov, size, reg, imm); |
| 1410 | } |
| 1411 | else |
| 1412 | { |
| 1413 | // Arm64 allows any arbitrary 16-bit constant to be loaded into a register halfword |
| 1414 | // There are three forms |
| 1415 | // movk which loads into any halfword preserving the remaining halfwords |
| 1416 | // movz which loads into any halfword zeroing the remaining halfwords |
| 1417 | // movn which loads into any halfword zeroing the remaining halfwords then bitwise inverting the register |
| 1418 | // In some cases it is preferable to use movn, because it has the side effect of filling the other halfwords |
| 1419 | // with ones |
| 1420 | |
| 1421 | // Determine whether movn or movz will require the fewest instructions to populate the immediate |
| 1422 | int preferMovn = 0; |
| 1423 | |
| 1424 | for (int i = (size == EA_8BYTE) ? 48 : 16; i >= 0; i -= 16) |
| 1425 | { |
| 1426 | if (uint16_t(imm >> i) == 0xffff) |
| 1427 | ++preferMovn; // a single movk 0xffff could be skipped if movn was used |
| 1428 | else if (uint16_t(imm >> i) == 0x0000) |
| 1429 | --preferMovn; // a single movk 0 could be skipped if movz was used |
| 1430 | } |
| 1431 | |
| 1432 | // Select the first instruction. Any additional instruction will use movk |
| 1433 | instruction ins = (preferMovn > 0) ? INS_movn : INS_movz; |
| 1434 | |
| 1435 | // Initial movz or movn will fill the remaining bytes with the skipVal |
| 1436 | // This can allow skipping filling a halfword |
| 1437 | uint16_t skipVal = (preferMovn > 0) ? 0xffff : 0; |
| 1438 | |
| 1439 | unsigned bits = (size == EA_8BYTE) ? 64 : 32; |
| 1440 | |
| 1441 | // Iterate over imm examining 16 bits at a time |
| 1442 | for (unsigned i = 0; i < bits; i += 16) |
| 1443 | { |
| 1444 | uint16_t imm16 = uint16_t(imm >> i); |
| 1445 | |
| 1446 | if (imm16 != skipVal) |
| 1447 | { |
| 1448 | if (ins == INS_movn) |
| 1449 | { |
| 1450 | // For the movn case, we need to bitwise invert the immediate. This is because |
| 1451 | // (movn x0, ~imm16) === (movz x0, imm16; or x0, x0, #0xffff`ffff`ffff`0000) |
| 1452 | imm16 = ~imm16; |
| 1453 | } |
| 1454 | |
| 1455 | getEmitter()->emitIns_R_I_I(ins, size, reg, imm16, i, INS_OPTS_LSL); |
| 1456 | |
| 1457 | // Once the initial movz/movn is emitted the remaining instructions will all use movk |
| 1458 | ins = INS_movk; |
| 1459 | } |
| 1460 | } |
| 1461 | |
| 1462 | // We must emit a movn or movz or we have not done anything |
| 1463 | // The cases which hit this assert should be (emitIns_valid_imm_for_mov() == true) and |
| 1464 | // should not be in this else condition |
| 1465 | assert(ins == INS_movk); |
| 1466 | } |
| 1467 | // The caller may have requested that the flags be set on this mov (rarely/never) |
| 1468 | if (flags == INS_FLAGS_SET) |
| 1469 | { |
| 1470 | getEmitter()->emitIns_R_I(INS_tst, size, reg, 0); |
| 1471 | } |
| 1472 | } |
| 1473 | |
| 1474 | regSet.verifyRegUsed(reg); |
| 1475 | } |
| 1476 | |
| 1477 | /*********************************************************************************** |
| 1478 | * |
| 1479 | * Generate code to set a register 'targetReg' of type 'targetType' to the constant |
| 1480 | * specified by the constant (GT_CNS_INT or GT_CNS_DBL) in 'tree'. This does not call |
| 1481 | * genProduceReg() on the target register. |
| 1482 | */ |
| 1483 | void CodeGen::genSetRegToConst(regNumber targetReg, var_types targetType, GenTree* tree) |
| 1484 | { |
| 1485 | switch (tree->gtOper) |
| 1486 | { |
| 1487 | case GT_CNS_INT: |
| 1488 | { |
| 1489 | // relocatable values tend to come down as a CNS_INT of native int type |
| 1490 | // so the line between these two opcodes is kind of blurry |
| 1491 | GenTreeIntConCommon* con = tree->AsIntConCommon(); |
| 1492 | ssize_t cnsVal = con->IconValue(); |
| 1493 | |
| 1494 | if (con->ImmedValNeedsReloc(compiler)) |
| 1495 | { |
| 1496 | instGen_Set_Reg_To_Imm(EA_HANDLE_CNS_RELOC, targetReg, cnsVal); |
| 1497 | regSet.verifyRegUsed(targetReg); |
| 1498 | } |
| 1499 | else |
| 1500 | { |
| 1501 | genSetRegToIcon(targetReg, cnsVal, targetType); |
| 1502 | } |
| 1503 | } |
| 1504 | break; |
| 1505 | |
| 1506 | case GT_CNS_DBL: |
| 1507 | { |
| 1508 | emitter* emit = getEmitter(); |
| 1509 | emitAttr size = emitActualTypeSize(tree); |
| 1510 | double constValue = tree->AsDblCon()->gtDconVal; |
| 1511 | |
| 1512 | // Make sure we use "movi reg, 0x00" only for positive zero (0.0) and not for negative zero (-0.0) |
| 1513 | if (*(__int64*)&constValue == 0) |
| 1514 | { |
| 1515 | // A faster/smaller way to generate 0.0 |
| 1516 | // We will just zero out the entire vector register for both float and double |
| 1517 | emit->emitIns_R_I(INS_movi, EA_16BYTE, targetReg, 0x00, INS_OPTS_16B); |
| 1518 | } |
| 1519 | else if (emitter::emitIns_valid_imm_for_fmov(constValue)) |
| 1520 | { |
| 1521 | // We can load the FP constant using the fmov FP-immediate for this constValue |
| 1522 | emit->emitIns_R_F(INS_fmov, size, targetReg, constValue); |
| 1523 | } |
| 1524 | else |
| 1525 | { |
| 1526 | // Get a temp integer register to compute long address. |
| 1527 | regNumber addrReg = tree->GetSingleTempReg(); |
| 1528 | |
| 1529 | // We must load the FP constant from the constant pool |
| 1530 | // Emit a data section constant for the float or double constant. |
| 1531 | CORINFO_FIELD_HANDLE hnd = emit->emitFltOrDblConst(constValue, size); |
| 1532 | // For long address (default): `adrp + ldr + fmov` will be emitted. |
| 1533 | // For short address (proven later), `ldr` will be emitted. |
| 1534 | emit->emitIns_R_C(INS_ldr, size, targetReg, addrReg, hnd, 0); |
| 1535 | } |
| 1536 | } |
| 1537 | break; |
| 1538 | |
| 1539 | default: |
| 1540 | unreached(); |
| 1541 | } |
| 1542 | } |
| 1543 | |
| 1544 | // Generate code to get the high N bits of a N*N=2N bit multiplication result |
| 1545 | void CodeGen::genCodeForMulHi(GenTreeOp* treeNode) |
| 1546 | { |
| 1547 | assert(!treeNode->gtOverflowEx()); |
| 1548 | |
| 1549 | genConsumeOperands(treeNode); |
| 1550 | |
| 1551 | regNumber targetReg = treeNode->gtRegNum; |
| 1552 | var_types targetType = treeNode->TypeGet(); |
| 1553 | emitter* emit = getEmitter(); |
| 1554 | emitAttr attr = emitActualTypeSize(treeNode); |
| 1555 | unsigned isUnsigned = (treeNode->gtFlags & GTF_UNSIGNED); |
| 1556 | |
| 1557 | GenTree* op1 = treeNode->gtGetOp1(); |
| 1558 | GenTree* op2 = treeNode->gtGetOp2(); |
| 1559 | |
| 1560 | assert(!varTypeIsFloating(targetType)); |
| 1561 | |
| 1562 | // The arithmetic node must be sitting in a register (since it's not contained) |
| 1563 | assert(targetReg != REG_NA); |
| 1564 | |
| 1565 | if (EA_SIZE(attr) == EA_8BYTE) |
| 1566 | { |
| 1567 | instruction ins = isUnsigned ? INS_umulh : INS_smulh; |
| 1568 | |
| 1569 | regNumber r = emit->emitInsTernary(ins, attr, treeNode, op1, op2); |
| 1570 | |
| 1571 | assert(r == targetReg); |
| 1572 | } |
| 1573 | else |
| 1574 | { |
| 1575 | assert(EA_SIZE(attr) == EA_4BYTE); |
| 1576 | |
| 1577 | instruction ins = isUnsigned ? INS_umull : INS_smull; |
| 1578 | |
| 1579 | regNumber r = emit->emitInsTernary(ins, EA_4BYTE, treeNode, op1, op2); |
| 1580 | |
| 1581 | emit->emitIns_R_R_I(isUnsigned ? INS_lsr : INS_asr, EA_8BYTE, targetReg, targetReg, 32); |
| 1582 | } |
| 1583 | |
| 1584 | genProduceReg(treeNode); |
| 1585 | } |
| 1586 | |
| 1587 | // Generate code for ADD, SUB, MUL, DIV, UDIV, AND, OR and XOR |
| 1588 | // This method is expected to have called genConsumeOperands() before calling it. |
| 1589 | void CodeGen::genCodeForBinary(GenTreeOp* treeNode) |
| 1590 | { |
| 1591 | const genTreeOps oper = treeNode->OperGet(); |
| 1592 | regNumber targetReg = treeNode->gtRegNum; |
| 1593 | var_types targetType = treeNode->TypeGet(); |
| 1594 | emitter* emit = getEmitter(); |
| 1595 | |
| 1596 | assert(oper == GT_ADD || oper == GT_SUB || oper == GT_MUL || oper == GT_DIV || oper == GT_UDIV || oper == GT_AND || |
| 1597 | oper == GT_OR || oper == GT_XOR); |
| 1598 | |
| 1599 | GenTree* op1 = treeNode->gtGetOp1(); |
| 1600 | GenTree* op2 = treeNode->gtGetOp2(); |
| 1601 | instruction ins = genGetInsForOper(treeNode->OperGet(), targetType); |
| 1602 | |
| 1603 | if ((treeNode->gtFlags & GTF_SET_FLAGS) != 0) |
| 1604 | { |
| 1605 | switch (oper) |
| 1606 | { |
| 1607 | case GT_ADD: |
| 1608 | ins = INS_adds; |
| 1609 | break; |
| 1610 | case GT_SUB: |
| 1611 | ins = INS_subs; |
| 1612 | break; |
| 1613 | case GT_AND: |
| 1614 | ins = INS_ands; |
| 1615 | break; |
| 1616 | default: |
| 1617 | noway_assert(!"Unexpected BinaryOp with GTF_SET_FLAGS set" ); |
| 1618 | } |
| 1619 | } |
| 1620 | |
| 1621 | // The arithmetic node must be sitting in a register (since it's not contained) |
| 1622 | assert(targetReg != REG_NA); |
| 1623 | |
| 1624 | regNumber r = emit->emitInsTernary(ins, emitActualTypeSize(treeNode), treeNode, op1, op2); |
| 1625 | assert(r == targetReg); |
| 1626 | |
| 1627 | genProduceReg(treeNode); |
| 1628 | } |
| 1629 | |
| 1630 | //------------------------------------------------------------------------ |
| 1631 | // genCodeForLclVar: Produce code for a GT_LCL_VAR node. |
| 1632 | // |
| 1633 | // Arguments: |
| 1634 | // tree - the GT_LCL_VAR node |
| 1635 | // |
| 1636 | void CodeGen::genCodeForLclVar(GenTreeLclVar* tree) |
| 1637 | { |
| 1638 | var_types targetType = tree->TypeGet(); |
| 1639 | emitter* emit = getEmitter(); |
| 1640 | |
| 1641 | unsigned varNum = tree->gtLclNum; |
| 1642 | assert(varNum < compiler->lvaCount); |
| 1643 | LclVarDsc* varDsc = &(compiler->lvaTable[varNum]); |
| 1644 | bool isRegCandidate = varDsc->lvIsRegCandidate(); |
| 1645 | |
| 1646 | // lcl_vars are not defs |
| 1647 | assert((tree->gtFlags & GTF_VAR_DEF) == 0); |
| 1648 | |
| 1649 | // If this is a register candidate that has been spilled, genConsumeReg() will |
| 1650 | // reload it at the point of use. Otherwise, if it's not in a register, we load it here. |
| 1651 | |
| 1652 | if (!isRegCandidate && !(tree->gtFlags & GTF_SPILLED)) |
| 1653 | { |
| 1654 | // targetType must be a normal scalar type and not a TYP_STRUCT |
| 1655 | assert(targetType != TYP_STRUCT); |
| 1656 | |
| 1657 | instruction ins = ins_Load(targetType); |
| 1658 | emitAttr attr = emitTypeSize(targetType); |
| 1659 | |
| 1660 | attr = varTypeIsFloating(targetType) ? attr : emit->emitInsAdjustLoadStoreAttr(ins, attr); |
| 1661 | |
| 1662 | emit->emitIns_R_S(ins, attr, tree->gtRegNum, varNum, 0); |
| 1663 | genProduceReg(tree); |
| 1664 | } |
| 1665 | } |
| 1666 | |
| 1667 | //------------------------------------------------------------------------ |
| 1668 | // genCodeForStoreLclFld: Produce code for a GT_STORE_LCL_FLD node. |
| 1669 | // |
| 1670 | // Arguments: |
| 1671 | // tree - the GT_STORE_LCL_FLD node |
| 1672 | // |
| 1673 | void CodeGen::genCodeForStoreLclFld(GenTreeLclFld* tree) |
| 1674 | { |
| 1675 | var_types targetType = tree->TypeGet(); |
| 1676 | regNumber targetReg = tree->gtRegNum; |
| 1677 | emitter* emit = getEmitter(); |
| 1678 | noway_assert(targetType != TYP_STRUCT); |
| 1679 | |
| 1680 | #ifdef FEATURE_SIMD |
| 1681 | // storing of TYP_SIMD12 (i.e. Vector3) field |
| 1682 | if (tree->TypeGet() == TYP_SIMD12) |
| 1683 | { |
| 1684 | genStoreLclTypeSIMD12(tree); |
| 1685 | return; |
| 1686 | } |
| 1687 | #endif // FEATURE_SIMD |
| 1688 | |
| 1689 | // record the offset |
| 1690 | unsigned offset = tree->gtLclOffs; |
| 1691 | |
| 1692 | // We must have a stack store with GT_STORE_LCL_FLD |
| 1693 | noway_assert(targetReg == REG_NA); |
| 1694 | |
| 1695 | unsigned varNum = tree->gtLclNum; |
| 1696 | assert(varNum < compiler->lvaCount); |
| 1697 | LclVarDsc* varDsc = &(compiler->lvaTable[varNum]); |
| 1698 | |
| 1699 | // Ensure that lclVar nodes are typed correctly. |
| 1700 | assert(!varDsc->lvNormalizeOnStore() || targetType == genActualType(varDsc->TypeGet())); |
| 1701 | |
| 1702 | GenTree* data = tree->gtOp1; |
| 1703 | genConsumeRegs(data); |
| 1704 | |
| 1705 | regNumber dataReg = REG_NA; |
| 1706 | if (data->isContainedIntOrIImmed()) |
| 1707 | { |
| 1708 | assert(data->IsIntegralConst(0)); |
| 1709 | dataReg = REG_ZR; |
| 1710 | } |
| 1711 | else |
| 1712 | { |
| 1713 | assert(!data->isContained()); |
| 1714 | dataReg = data->gtRegNum; |
| 1715 | } |
| 1716 | assert(dataReg != REG_NA); |
| 1717 | |
| 1718 | instruction ins = ins_Store(targetType); |
| 1719 | |
| 1720 | emitAttr attr = emitTypeSize(targetType); |
| 1721 | |
| 1722 | attr = varTypeIsFloating(targetType) ? attr : emit->emitInsAdjustLoadStoreAttr(ins, attr); |
| 1723 | |
| 1724 | emit->emitIns_S_R(ins, attr, dataReg, varNum, offset); |
| 1725 | |
| 1726 | genUpdateLife(tree); |
| 1727 | |
| 1728 | varDsc->lvRegNum = REG_STK; |
| 1729 | } |
| 1730 | |
| 1731 | //------------------------------------------------------------------------ |
| 1732 | // genCodeForStoreLclVar: Produce code for a GT_STORE_LCL_VAR node. |
| 1733 | // |
| 1734 | // Arguments: |
| 1735 | // tree - the GT_STORE_LCL_VAR node |
| 1736 | // |
| 1737 | void CodeGen::genCodeForStoreLclVar(GenTreeLclVar* tree) |
| 1738 | { |
| 1739 | var_types targetType = tree->TypeGet(); |
| 1740 | regNumber targetReg = tree->gtRegNum; |
| 1741 | emitter* emit = getEmitter(); |
| 1742 | |
| 1743 | unsigned varNum = tree->gtLclNum; |
| 1744 | assert(varNum < compiler->lvaCount); |
| 1745 | LclVarDsc* varDsc = &(compiler->lvaTable[varNum]); |
| 1746 | |
| 1747 | // Ensure that lclVar nodes are typed correctly. |
| 1748 | assert(!varDsc->lvNormalizeOnStore() || targetType == genActualType(varDsc->TypeGet())); |
| 1749 | |
| 1750 | GenTree* data = tree->gtOp1; |
| 1751 | |
| 1752 | // var = call, where call returns a multi-reg return value |
| 1753 | // case is handled separately. |
| 1754 | if (data->gtSkipReloadOrCopy()->IsMultiRegCall()) |
| 1755 | { |
| 1756 | genMultiRegCallStoreToLocal(tree); |
| 1757 | } |
| 1758 | else |
| 1759 | { |
| 1760 | #ifdef FEATURE_SIMD |
| 1761 | // storing of TYP_SIMD12 (i.e. Vector3) field |
| 1762 | if (tree->TypeGet() == TYP_SIMD12) |
| 1763 | { |
| 1764 | genStoreLclTypeSIMD12(tree); |
| 1765 | return; |
| 1766 | } |
| 1767 | #endif // FEATURE_SIMD |
| 1768 | |
| 1769 | genConsumeRegs(data); |
| 1770 | |
| 1771 | regNumber dataReg = REG_NA; |
| 1772 | if (data->isContainedIntOrIImmed()) |
| 1773 | { |
| 1774 | // This is only possible for a zero-init. |
| 1775 | assert(data->IsIntegralConst(0)); |
| 1776 | |
| 1777 | if (varTypeIsSIMD(targetType)) |
| 1778 | { |
| 1779 | assert(targetReg != REG_NA); |
| 1780 | getEmitter()->emitIns_R_I(INS_movi, EA_16BYTE, targetReg, 0x00, INS_OPTS_16B); |
| 1781 | genProduceReg(tree); |
| 1782 | return; |
| 1783 | } |
| 1784 | |
| 1785 | dataReg = REG_ZR; |
| 1786 | } |
| 1787 | else |
| 1788 | { |
| 1789 | assert(!data->isContained()); |
| 1790 | dataReg = data->gtRegNum; |
| 1791 | } |
| 1792 | assert(dataReg != REG_NA); |
| 1793 | |
| 1794 | if (targetReg == REG_NA) // store into stack based LclVar |
| 1795 | { |
| 1796 | inst_set_SV_var(tree); |
| 1797 | |
| 1798 | instruction ins = ins_Store(targetType); |
| 1799 | emitAttr attr = emitTypeSize(targetType); |
| 1800 | |
| 1801 | attr = varTypeIsFloating(targetType) ? attr : emit->emitInsAdjustLoadStoreAttr(ins, attr); |
| 1802 | |
| 1803 | emit->emitIns_S_R(ins, attr, dataReg, varNum, /* offset */ 0); |
| 1804 | |
| 1805 | genUpdateLife(tree); |
| 1806 | |
| 1807 | varDsc->lvRegNum = REG_STK; |
| 1808 | } |
| 1809 | else // store into register (i.e move into register) |
| 1810 | { |
| 1811 | if (dataReg != targetReg) |
| 1812 | { |
| 1813 | // Assign into targetReg when dataReg (from op1) is not the same register |
| 1814 | inst_RV_RV(ins_Copy(targetType), targetReg, dataReg, targetType); |
| 1815 | } |
| 1816 | genProduceReg(tree); |
| 1817 | } |
| 1818 | } |
| 1819 | } |
| 1820 | |
| 1821 | //------------------------------------------------------------------------ |
| 1822 | // genSimpleReturn: Generates code for simple return statement for arm64. |
| 1823 | // |
| 1824 | // Note: treeNode's and op1's registers are already consumed. |
| 1825 | // |
| 1826 | // Arguments: |
| 1827 | // treeNode - The GT_RETURN or GT_RETFILT tree node with non-struct and non-void type |
| 1828 | // |
| 1829 | // Return Value: |
| 1830 | // None |
| 1831 | // |
| 1832 | void CodeGen::genSimpleReturn(GenTree* treeNode) |
| 1833 | { |
| 1834 | assert(treeNode->OperGet() == GT_RETURN || treeNode->OperGet() == GT_RETFILT); |
| 1835 | GenTree* op1 = treeNode->gtGetOp1(); |
| 1836 | var_types targetType = treeNode->TypeGet(); |
| 1837 | |
| 1838 | assert(!isStructReturn(treeNode)); |
| 1839 | assert(targetType != TYP_VOID); |
| 1840 | |
| 1841 | regNumber retReg = varTypeIsFloating(treeNode) ? REG_FLOATRET : REG_INTRET; |
| 1842 | |
| 1843 | bool movRequired = (op1->gtRegNum != retReg); |
| 1844 | |
| 1845 | if (!movRequired) |
| 1846 | { |
| 1847 | if (op1->OperGet() == GT_LCL_VAR) |
| 1848 | { |
| 1849 | GenTreeLclVarCommon* lcl = op1->AsLclVarCommon(); |
| 1850 | bool isRegCandidate = compiler->lvaTable[lcl->gtLclNum].lvIsRegCandidate(); |
| 1851 | if (isRegCandidate && ((op1->gtFlags & GTF_SPILLED) == 0)) |
| 1852 | { |
| 1853 | // We may need to generate a zero-extending mov instruction to load the value from this GT_LCL_VAR |
| 1854 | |
| 1855 | unsigned lclNum = lcl->gtLclNum; |
| 1856 | LclVarDsc* varDsc = &(compiler->lvaTable[lclNum]); |
| 1857 | var_types op1Type = genActualType(op1->TypeGet()); |
| 1858 | var_types lclType = genActualType(varDsc->TypeGet()); |
| 1859 | |
| 1860 | if (genTypeSize(op1Type) < genTypeSize(lclType)) |
| 1861 | { |
| 1862 | movRequired = true; |
| 1863 | } |
| 1864 | } |
| 1865 | } |
| 1866 | } |
| 1867 | if (movRequired) |
| 1868 | { |
| 1869 | emitAttr attr = emitActualTypeSize(targetType); |
| 1870 | getEmitter()->emitIns_R_R(INS_mov, attr, retReg, op1->gtRegNum); |
| 1871 | } |
| 1872 | } |
| 1873 | |
| 1874 | /*********************************************************************************************** |
| 1875 | * Generate code for localloc |
| 1876 | */ |
| 1877 | void CodeGen::genLclHeap(GenTree* tree) |
| 1878 | { |
| 1879 | assert(tree->OperGet() == GT_LCLHEAP); |
| 1880 | assert(compiler->compLocallocUsed); |
| 1881 | |
| 1882 | GenTree* size = tree->gtOp.gtOp1; |
| 1883 | noway_assert((genActualType(size->gtType) == TYP_INT) || (genActualType(size->gtType) == TYP_I_IMPL)); |
| 1884 | |
| 1885 | regNumber targetReg = tree->gtRegNum; |
| 1886 | regNumber regCnt = REG_NA; |
| 1887 | regNumber pspSymReg = REG_NA; |
| 1888 | var_types type = genActualType(size->gtType); |
| 1889 | emitAttr easz = emitTypeSize(type); |
| 1890 | BasicBlock* endLabel = nullptr; |
| 1891 | BasicBlock* loop = nullptr; |
| 1892 | unsigned stackAdjustment = 0; |
| 1893 | |
| 1894 | noway_assert(isFramePointerUsed()); // localloc requires Frame Pointer to be established since SP changes |
| 1895 | noway_assert(genStackLevel == 0); // Can't have anything on the stack |
| 1896 | |
| 1897 | // compute the amount of memory to allocate to properly STACK_ALIGN. |
| 1898 | size_t amount = 0; |
| 1899 | if (size->IsCnsIntOrI()) |
| 1900 | { |
| 1901 | // If size is a constant, then it must be contained. |
| 1902 | assert(size->isContained()); |
| 1903 | |
| 1904 | // If amount is zero then return null in targetReg |
| 1905 | amount = size->gtIntCon.gtIconVal; |
| 1906 | if (amount == 0) |
| 1907 | { |
| 1908 | instGen_Set_Reg_To_Zero(EA_PTRSIZE, targetReg); |
| 1909 | goto BAILOUT; |
| 1910 | } |
| 1911 | |
| 1912 | // 'amount' is the total number of bytes to localloc to properly STACK_ALIGN |
| 1913 | amount = AlignUp(amount, STACK_ALIGN); |
| 1914 | } |
| 1915 | else |
| 1916 | { |
| 1917 | // If 0 bail out by returning null in targetReg |
| 1918 | genConsumeRegAndCopy(size, targetReg); |
| 1919 | endLabel = genCreateTempLabel(); |
| 1920 | getEmitter()->emitIns_R_R(INS_tst, easz, targetReg, targetReg); |
| 1921 | emitJumpKind jmpEqual = genJumpKindForOper(GT_EQ, CK_SIGNED); |
| 1922 | inst_JMP(jmpEqual, endLabel); |
| 1923 | |
| 1924 | // Compute the size of the block to allocate and perform alignment. |
| 1925 | // If compInitMem=true, we can reuse targetReg as regcnt, |
| 1926 | // since we don't need any internal registers. |
| 1927 | if (compiler->info.compInitMem) |
| 1928 | { |
| 1929 | assert(tree->AvailableTempRegCount() == 0); |
| 1930 | regCnt = targetReg; |
| 1931 | } |
| 1932 | else |
| 1933 | { |
| 1934 | regCnt = tree->ExtractTempReg(); |
| 1935 | if (regCnt != targetReg) |
| 1936 | { |
| 1937 | inst_RV_RV(INS_mov, regCnt, targetReg, size->TypeGet()); |
| 1938 | } |
| 1939 | } |
| 1940 | |
| 1941 | // Align to STACK_ALIGN |
| 1942 | // regCnt will be the total number of bytes to localloc |
| 1943 | inst_RV_IV(INS_add, regCnt, (STACK_ALIGN - 1), emitActualTypeSize(type)); |
| 1944 | inst_RV_IV(INS_and, regCnt, ~(STACK_ALIGN - 1), emitActualTypeSize(type)); |
| 1945 | } |
| 1946 | |
| 1947 | stackAdjustment = 0; |
| 1948 | |
| 1949 | // If we have an outgoing arg area then we must adjust the SP by popping off the |
| 1950 | // outgoing arg area. We will restore it right before we return from this method. |
| 1951 | // |
| 1952 | // Localloc returns stack space that aligned to STACK_ALIGN bytes. The following |
| 1953 | // are the cases that need to be handled: |
| 1954 | // i) Method has out-going arg area. |
| 1955 | // It is guaranteed that size of out-going arg area is STACK_ALIGN'ed (see fgMorphArgs). |
| 1956 | // Therefore, we will pop off the out-going arg area from the stack pointer before allocating the localloc |
| 1957 | // space. |
| 1958 | // ii) Method has no out-going arg area. |
| 1959 | // Nothing to pop off from the stack. |
| 1960 | if (compiler->lvaOutgoingArgSpaceSize > 0) |
| 1961 | { |
| 1962 | assert((compiler->lvaOutgoingArgSpaceSize % STACK_ALIGN) == 0); // This must be true for the stack to remain |
| 1963 | // aligned |
| 1964 | inst_RV_IV(INS_add, REG_SPBASE, compiler->lvaOutgoingArgSpaceSize, EA_PTRSIZE); |
| 1965 | stackAdjustment += compiler->lvaOutgoingArgSpaceSize; |
| 1966 | } |
| 1967 | |
| 1968 | if (size->IsCnsIntOrI()) |
| 1969 | { |
| 1970 | // We should reach here only for non-zero, constant size allocations. |
| 1971 | assert(amount > 0); |
| 1972 | |
| 1973 | // For small allocations we will generate up to four stp instructions, to zero 16 to 64 bytes. |
| 1974 | static_assert_no_msg(STACK_ALIGN == (REGSIZE_BYTES * 2)); |
| 1975 | assert(amount % (REGSIZE_BYTES * 2) == 0); // stp stores two registers at a time |
| 1976 | size_t stpCount = amount / (REGSIZE_BYTES * 2); |
| 1977 | if (stpCount <= 4) |
| 1978 | { |
| 1979 | while (stpCount != 0) |
| 1980 | { |
| 1981 | // We can use pre-indexed addressing. |
| 1982 | // stp ZR, ZR, [SP, #-16]! // STACK_ALIGN is 16 |
| 1983 | getEmitter()->emitIns_R_R_R_I(INS_stp, EA_PTRSIZE, REG_ZR, REG_ZR, REG_SPBASE, -16, INS_OPTS_PRE_INDEX); |
| 1984 | stpCount -= 1; |
| 1985 | } |
| 1986 | |
| 1987 | goto ALLOC_DONE; |
| 1988 | } |
| 1989 | else if (!compiler->info.compInitMem && (amount < compiler->eeGetPageSize())) // must be < not <= |
| 1990 | { |
| 1991 | // Since the size is less than a page, simply adjust the SP value. |
| 1992 | // The SP might already be in the guard page, so we must touch it BEFORE |
| 1993 | // the alloc, not after. |
| 1994 | |
| 1995 | // ldr wz, [SP, #0] |
| 1996 | getEmitter()->emitIns_R_R_I(INS_ldr, EA_4BYTE, REG_ZR, REG_SP, 0); |
| 1997 | |
| 1998 | inst_RV_IV(INS_sub, REG_SP, amount, EA_PTRSIZE); |
| 1999 | |
| 2000 | goto ALLOC_DONE; |
| 2001 | } |
| 2002 | |
| 2003 | // else, "mov regCnt, amount" |
| 2004 | // If compInitMem=true, we can reuse targetReg as regcnt. |
| 2005 | // Since size is a constant, regCnt is not yet initialized. |
| 2006 | assert(regCnt == REG_NA); |
| 2007 | if (compiler->info.compInitMem) |
| 2008 | { |
| 2009 | assert(tree->AvailableTempRegCount() == 0); |
| 2010 | regCnt = targetReg; |
| 2011 | } |
| 2012 | else |
| 2013 | { |
| 2014 | regCnt = tree->ExtractTempReg(); |
| 2015 | } |
| 2016 | genSetRegToIcon(regCnt, amount, ((int)amount == amount) ? TYP_INT : TYP_LONG); |
| 2017 | } |
| 2018 | |
| 2019 | if (compiler->info.compInitMem) |
| 2020 | { |
| 2021 | BasicBlock* loop = genCreateTempLabel(); |
| 2022 | |
| 2023 | // At this point 'regCnt' is set to the total number of bytes to locAlloc. |
| 2024 | // Since we have to zero out the allocated memory AND ensure that the stack pointer is always valid |
| 2025 | // by tickling the pages, we will just push 0's on the stack. |
| 2026 | // |
| 2027 | // Note: regCnt is guaranteed to be even on Amd64 since STACK_ALIGN/TARGET_POINTER_SIZE = 2 |
| 2028 | // and localloc size is a multiple of STACK_ALIGN. |
| 2029 | |
| 2030 | // Loop: |
| 2031 | genDefineTempLabel(loop); |
| 2032 | |
| 2033 | // We can use pre-indexed addressing. |
| 2034 | // stp ZR, ZR, [SP, #-16]! |
| 2035 | getEmitter()->emitIns_R_R_R_I(INS_stp, EA_PTRSIZE, REG_ZR, REG_ZR, REG_SPBASE, -16, INS_OPTS_PRE_INDEX); |
| 2036 | |
| 2037 | // If not done, loop |
| 2038 | // Note that regCnt is the number of bytes to stack allocate. |
| 2039 | // Therefore we need to subtract 16 from regcnt here. |
| 2040 | assert(genIsValidIntReg(regCnt)); |
| 2041 | inst_RV_IV(INS_subs, regCnt, 16, emitActualTypeSize(type)); |
| 2042 | emitJumpKind jmpNotEqual = genJumpKindForOper(GT_NE, CK_SIGNED); |
| 2043 | inst_JMP(jmpNotEqual, loop); |
| 2044 | } |
| 2045 | else |
| 2046 | { |
| 2047 | // At this point 'regCnt' is set to the total number of bytes to localloc. |
| 2048 | // |
| 2049 | // We don't need to zero out the allocated memory. However, we do have |
| 2050 | // to tickle the pages to ensure that SP is always valid and is |
| 2051 | // in sync with the "stack guard page". Note that in the worst |
| 2052 | // case SP is on the last byte of the guard page. Thus you must |
| 2053 | // touch SP-0 first not SP-0x1000. |
| 2054 | // |
| 2055 | // Another subtlety is that you don't want SP to be exactly on the |
| 2056 | // boundary of the guard page because PUSH is predecrement, thus |
| 2057 | // call setup would not touch the guard page but just beyond it |
| 2058 | // |
| 2059 | // Note that we go through a few hoops so that SP never points to |
| 2060 | // illegal pages at any time during the tickling process |
| 2061 | // |
| 2062 | // subs regCnt, SP, regCnt // regCnt now holds ultimate SP |
| 2063 | // bvc Loop // result is smaller than orignial SP (no wrap around) |
| 2064 | // mov regCnt, #0 // Overflow, pick lowest possible value |
| 2065 | // |
| 2066 | // Loop: |
| 2067 | // ldr wzr, [SP + 0] // tickle the page - read from the page |
| 2068 | // sub regTmp, SP, PAGE_SIZE // decrement SP by eeGetPageSize() |
| 2069 | // cmp regTmp, regCnt |
| 2070 | // jb Done |
| 2071 | // mov SP, regTmp |
| 2072 | // j Loop |
| 2073 | // |
| 2074 | // Done: |
| 2075 | // mov SP, regCnt |
| 2076 | // |
| 2077 | |
| 2078 | // Setup the regTmp |
| 2079 | regNumber regTmp = tree->GetSingleTempReg(); |
| 2080 | |
| 2081 | BasicBlock* loop = genCreateTempLabel(); |
| 2082 | BasicBlock* done = genCreateTempLabel(); |
| 2083 | |
| 2084 | // subs regCnt, SP, regCnt // regCnt now holds ultimate SP |
| 2085 | getEmitter()->emitIns_R_R_R(INS_subs, EA_PTRSIZE, regCnt, REG_SPBASE, regCnt); |
| 2086 | |
| 2087 | inst_JMP(EJ_vc, loop); // branch if the V flag is not set |
| 2088 | |
| 2089 | // Overflow, set regCnt to lowest possible value |
| 2090 | instGen_Set_Reg_To_Zero(EA_PTRSIZE, regCnt); |
| 2091 | |
| 2092 | genDefineTempLabel(loop); |
| 2093 | |
| 2094 | // tickle the page - Read from the updated SP - this triggers a page fault when on the guard page |
| 2095 | getEmitter()->emitIns_R_R_I(INS_ldr, EA_4BYTE, REG_ZR, REG_SPBASE, 0); |
| 2096 | |
| 2097 | // decrement SP by eeGetPageSize() |
| 2098 | getEmitter()->emitIns_R_R_I(INS_sub, EA_PTRSIZE, regTmp, REG_SPBASE, compiler->eeGetPageSize()); |
| 2099 | |
| 2100 | getEmitter()->emitIns_R_R(INS_cmp, EA_PTRSIZE, regTmp, regCnt); |
| 2101 | emitJumpKind jmpLTU = genJumpKindForOper(GT_LT, CK_UNSIGNED); |
| 2102 | inst_JMP(jmpLTU, done); |
| 2103 | |
| 2104 | // Update SP to be at the next page of stack that we will tickle |
| 2105 | getEmitter()->emitIns_R_R(INS_mov, EA_PTRSIZE, REG_SPBASE, regTmp); |
| 2106 | |
| 2107 | // Jump to loop and tickle new stack address |
| 2108 | inst_JMP(EJ_jmp, loop); |
| 2109 | |
| 2110 | // Done with stack tickle loop |
| 2111 | genDefineTempLabel(done); |
| 2112 | |
| 2113 | // Now just move the final value to SP |
| 2114 | getEmitter()->emitIns_R_R(INS_mov, EA_PTRSIZE, REG_SPBASE, regCnt); |
| 2115 | } |
| 2116 | |
| 2117 | ALLOC_DONE: |
| 2118 | // Re-adjust SP to allocate out-going arg area |
| 2119 | if (stackAdjustment != 0) |
| 2120 | { |
| 2121 | assert((stackAdjustment % STACK_ALIGN) == 0); // This must be true for the stack to remain aligned |
| 2122 | assert(stackAdjustment > 0); |
| 2123 | getEmitter()->emitIns_R_R_I(INS_sub, EA_PTRSIZE, REG_SPBASE, REG_SPBASE, (int)stackAdjustment); |
| 2124 | |
| 2125 | // Return the stackalloc'ed address in result register. |
| 2126 | // TargetReg = SP + stackAdjustment. |
| 2127 | // |
| 2128 | getEmitter()->emitIns_R_R_I(INS_add, EA_PTRSIZE, targetReg, REG_SPBASE, (int)stackAdjustment); |
| 2129 | } |
| 2130 | else // stackAdjustment == 0 |
| 2131 | { |
| 2132 | // Move the final value of SP to targetReg |
| 2133 | inst_RV_RV(INS_mov, targetReg, REG_SPBASE); |
| 2134 | } |
| 2135 | |
| 2136 | BAILOUT: |
| 2137 | if (endLabel != nullptr) |
| 2138 | genDefineTempLabel(endLabel); |
| 2139 | |
| 2140 | #if STACK_PROBES |
| 2141 | if (compiler->opts.compNeedStackProbes) |
| 2142 | { |
| 2143 | genGenerateStackProbe(); |
| 2144 | } |
| 2145 | #endif |
| 2146 | |
| 2147 | genProduceReg(tree); |
| 2148 | } |
| 2149 | |
| 2150 | //------------------------------------------------------------------------ |
| 2151 | // genCodeForNegNot: Produce code for a GT_NEG/GT_NOT node. |
| 2152 | // |
| 2153 | // Arguments: |
| 2154 | // tree - the node |
| 2155 | // |
| 2156 | void CodeGen::genCodeForNegNot(GenTree* tree) |
| 2157 | { |
| 2158 | assert(tree->OperIs(GT_NEG, GT_NOT)); |
| 2159 | |
| 2160 | var_types targetType = tree->TypeGet(); |
| 2161 | |
| 2162 | assert(!tree->OperIs(GT_NOT) || !varTypeIsFloating(targetType)); |
| 2163 | |
| 2164 | regNumber targetReg = tree->gtRegNum; |
| 2165 | instruction ins = genGetInsForOper(tree->OperGet(), targetType); |
| 2166 | |
| 2167 | // The arithmetic node must be sitting in a register (since it's not contained) |
| 2168 | assert(!tree->isContained()); |
| 2169 | // The dst can only be a register. |
| 2170 | assert(targetReg != REG_NA); |
| 2171 | |
| 2172 | GenTree* operand = tree->gtGetOp1(); |
| 2173 | assert(!operand->isContained()); |
| 2174 | // The src must be a register. |
| 2175 | regNumber operandReg = genConsumeReg(operand); |
| 2176 | |
| 2177 | getEmitter()->emitIns_R_R(ins, emitActualTypeSize(tree), targetReg, operandReg); |
| 2178 | |
| 2179 | genProduceReg(tree); |
| 2180 | } |
| 2181 | |
| 2182 | //------------------------------------------------------------------------ |
| 2183 | // genCodeForDivMod: Produce code for a GT_DIV/GT_UDIV node. We don't see MOD: |
| 2184 | // (1) integer MOD is morphed into a sequence of sub, mul, div in fgMorph; |
| 2185 | // (2) float/double MOD is morphed into a helper call by front-end. |
| 2186 | // |
| 2187 | // Arguments: |
| 2188 | // tree - the node |
| 2189 | // |
| 2190 | void CodeGen::genCodeForDivMod(GenTreeOp* tree) |
| 2191 | { |
| 2192 | assert(tree->OperIs(GT_DIV, GT_UDIV)); |
| 2193 | |
| 2194 | var_types targetType = tree->TypeGet(); |
| 2195 | emitter* emit = getEmitter(); |
| 2196 | |
| 2197 | genConsumeOperands(tree); |
| 2198 | |
| 2199 | if (varTypeIsFloating(targetType)) |
| 2200 | { |
| 2201 | // Floating point divide never raises an exception |
| 2202 | genCodeForBinary(tree); |
| 2203 | } |
| 2204 | else // an integer divide operation |
| 2205 | { |
| 2206 | GenTree* divisorOp = tree->gtGetOp2(); |
| 2207 | emitAttr size = EA_ATTR(genTypeSize(genActualType(tree->TypeGet()))); |
| 2208 | |
| 2209 | if (divisorOp->IsIntegralConst(0)) |
| 2210 | { |
| 2211 | // We unconditionally throw a divide by zero exception |
| 2212 | genJumpToThrowHlpBlk(EJ_jmp, SCK_DIV_BY_ZERO); |
| 2213 | |
| 2214 | // We still need to call genProduceReg |
| 2215 | genProduceReg(tree); |
| 2216 | } |
| 2217 | else // the divisor is not the constant zero |
| 2218 | { |
| 2219 | regNumber divisorReg = divisorOp->gtRegNum; |
| 2220 | |
| 2221 | // Generate the require runtime checks for GT_DIV or GT_UDIV |
| 2222 | if (tree->gtOper == GT_DIV) |
| 2223 | { |
| 2224 | BasicBlock* sdivLabel = genCreateTempLabel(); |
| 2225 | |
| 2226 | // Two possible exceptions: |
| 2227 | // (AnyVal / 0) => DivideByZeroException |
| 2228 | // (MinInt / -1) => ArithmeticException |
| 2229 | // |
| 2230 | bool checkDividend = true; |
| 2231 | |
| 2232 | // Do we have an immediate for the 'divisorOp'? |
| 2233 | // |
| 2234 | if (divisorOp->IsCnsIntOrI()) |
| 2235 | { |
| 2236 | GenTreeIntConCommon* intConstTree = divisorOp->AsIntConCommon(); |
| 2237 | ssize_t intConstValue = intConstTree->IconValue(); |
| 2238 | assert(intConstValue != 0); // already checked above by IsIntegralConst(0) |
| 2239 | if (intConstValue != -1) |
| 2240 | { |
| 2241 | checkDividend = false; // We statically know that the dividend is not -1 |
| 2242 | } |
| 2243 | } |
| 2244 | else // insert check for divison by zero |
| 2245 | { |
| 2246 | // Check if the divisor is zero throw a DivideByZeroException |
| 2247 | emit->emitIns_R_I(INS_cmp, size, divisorReg, 0); |
| 2248 | emitJumpKind jmpEqual = genJumpKindForOper(GT_EQ, CK_SIGNED); |
| 2249 | genJumpToThrowHlpBlk(jmpEqual, SCK_DIV_BY_ZERO); |
| 2250 | } |
| 2251 | |
| 2252 | if (checkDividend) |
| 2253 | { |
| 2254 | // Check if the divisor is not -1 branch to 'sdivLabel' |
| 2255 | emit->emitIns_R_I(INS_cmp, size, divisorReg, -1); |
| 2256 | |
| 2257 | emitJumpKind jmpNotEqual = genJumpKindForOper(GT_NE, CK_SIGNED); |
| 2258 | inst_JMP(jmpNotEqual, sdivLabel); |
| 2259 | // If control flow continues past here the 'divisorReg' is known to be -1 |
| 2260 | |
| 2261 | regNumber dividendReg = tree->gtGetOp1()->gtRegNum; |
| 2262 | // At this point the divisor is known to be -1 |
| 2263 | // |
| 2264 | // Issue the 'adds zr, dividendReg, dividendReg' instruction |
| 2265 | // this will set both the Z and V flags only when dividendReg is MinInt |
| 2266 | // |
| 2267 | emit->emitIns_R_R_R(INS_adds, size, REG_ZR, dividendReg, dividendReg); |
| 2268 | inst_JMP(jmpNotEqual, sdivLabel); // goto sdiv if the Z flag is clear |
| 2269 | genJumpToThrowHlpBlk(EJ_vs, SCK_ARITH_EXCPN); // if the V flags is set throw |
| 2270 | // ArithmeticException |
| 2271 | |
| 2272 | genDefineTempLabel(sdivLabel); |
| 2273 | } |
| 2274 | genCodeForBinary(tree); // Generate the sdiv instruction |
| 2275 | } |
| 2276 | else // (tree->gtOper == GT_UDIV) |
| 2277 | { |
| 2278 | // Only one possible exception |
| 2279 | // (AnyVal / 0) => DivideByZeroException |
| 2280 | // |
| 2281 | // Note that division by the constant 0 was already checked for above by the |
| 2282 | // op2->IsIntegralConst(0) check |
| 2283 | // |
| 2284 | if (!divisorOp->IsCnsIntOrI()) |
| 2285 | { |
| 2286 | // divisorOp is not a constant, so it could be zero |
| 2287 | // |
| 2288 | emit->emitIns_R_I(INS_cmp, size, divisorReg, 0); |
| 2289 | emitJumpKind jmpEqual = genJumpKindForOper(GT_EQ, CK_SIGNED); |
| 2290 | genJumpToThrowHlpBlk(jmpEqual, SCK_DIV_BY_ZERO); |
| 2291 | } |
| 2292 | genCodeForBinary(tree); |
| 2293 | } |
| 2294 | } |
| 2295 | } |
| 2296 | } |
| 2297 | |
| 2298 | // Generate code for InitBlk by performing a loop unroll |
| 2299 | // Preconditions: |
| 2300 | // a) Both the size and fill byte value are integer constants. |
| 2301 | // b) The size of the struct to initialize is smaller than INITBLK_UNROLL_LIMIT bytes. |
| 2302 | void CodeGen::genCodeForInitBlkUnroll(GenTreeBlk* initBlkNode) |
| 2303 | { |
| 2304 | // Make sure we got the arguments of the initblk/initobj operation in the right registers |
| 2305 | unsigned size = initBlkNode->Size(); |
| 2306 | GenTree* dstAddr = initBlkNode->Addr(); |
| 2307 | GenTree* initVal = initBlkNode->Data(); |
| 2308 | if (initVal->OperIsInitVal()) |
| 2309 | { |
| 2310 | initVal = initVal->gtGetOp1(); |
| 2311 | } |
| 2312 | |
| 2313 | assert(dstAddr->isUsedFromReg()); |
| 2314 | assert(initVal->isUsedFromReg() && !initVal->IsIntegralConst(0) || initVal->IsIntegralConst(0)); |
| 2315 | assert(size != 0); |
| 2316 | assert(size <= INITBLK_UNROLL_LIMIT); |
| 2317 | |
| 2318 | emitter* emit = getEmitter(); |
| 2319 | |
| 2320 | genConsumeOperands(initBlkNode); |
| 2321 | |
| 2322 | if (initBlkNode->gtFlags & GTF_BLK_VOLATILE) |
| 2323 | { |
| 2324 | // issue a full memory barrier before a volatile initBlockUnroll operation |
| 2325 | instGen_MemoryBarrier(); |
| 2326 | } |
| 2327 | |
| 2328 | regNumber valReg = initVal->IsIntegralConst(0) ? REG_ZR : initVal->gtRegNum; |
| 2329 | |
| 2330 | assert(!initVal->IsIntegralConst(0) || (valReg == REG_ZR)); |
| 2331 | |
| 2332 | unsigned offset = 0; |
| 2333 | |
| 2334 | // Perform an unroll using stp. |
| 2335 | if (size >= 2 * REGSIZE_BYTES) |
| 2336 | { |
| 2337 | // Determine how many 16 byte slots |
| 2338 | size_t slots = size / (2 * REGSIZE_BYTES); |
| 2339 | |
| 2340 | while (slots-- > 0) |
| 2341 | { |
| 2342 | emit->emitIns_R_R_R_I(INS_stp, EA_8BYTE, valReg, valReg, dstAddr->gtRegNum, offset); |
| 2343 | offset += (2 * REGSIZE_BYTES); |
| 2344 | } |
| 2345 | } |
| 2346 | |
| 2347 | // Fill the remainder (15 bytes or less) if there's any. |
| 2348 | if ((size & 0xf) != 0) |
| 2349 | { |
| 2350 | if ((size & 8) != 0) |
| 2351 | { |
| 2352 | emit->emitIns_R_R_I(INS_str, EA_8BYTE, valReg, dstAddr->gtRegNum, offset); |
| 2353 | offset += 8; |
| 2354 | } |
| 2355 | if ((size & 4) != 0) |
| 2356 | { |
| 2357 | emit->emitIns_R_R_I(INS_str, EA_4BYTE, valReg, dstAddr->gtRegNum, offset); |
| 2358 | offset += 4; |
| 2359 | } |
| 2360 | if ((size & 2) != 0) |
| 2361 | { |
| 2362 | emit->emitIns_R_R_I(INS_strh, EA_2BYTE, valReg, dstAddr->gtRegNum, offset); |
| 2363 | offset += 2; |
| 2364 | } |
| 2365 | if ((size & 1) != 0) |
| 2366 | { |
| 2367 | emit->emitIns_R_R_I(INS_strb, EA_1BYTE, valReg, dstAddr->gtRegNum, offset); |
| 2368 | } |
| 2369 | } |
| 2370 | } |
| 2371 | |
| 2372 | // Generate code for a load pair from some address + offset |
| 2373 | // base: tree node which can be either a local address or arbitrary node |
| 2374 | // offset: distance from the base from which to load |
| 2375 | void CodeGen::genCodeForLoadPairOffset(regNumber dst, regNumber dst2, GenTree* base, unsigned offset) |
| 2376 | { |
| 2377 | emitter* emit = getEmitter(); |
| 2378 | |
| 2379 | if (base->OperIsLocalAddr()) |
| 2380 | { |
| 2381 | if (base->gtOper == GT_LCL_FLD_ADDR) |
| 2382 | offset += base->gtLclFld.gtLclOffs; |
| 2383 | |
| 2384 | emit->emitIns_R_R_S_S(INS_ldp, EA_8BYTE, EA_8BYTE, dst, dst2, base->gtLclVarCommon.gtLclNum, offset); |
| 2385 | } |
| 2386 | else |
| 2387 | { |
| 2388 | emit->emitIns_R_R_R_I(INS_ldp, EA_8BYTE, dst, dst2, base->gtRegNum, offset); |
| 2389 | } |
| 2390 | } |
| 2391 | |
| 2392 | // Generate code for a store pair to some address + offset |
| 2393 | // base: tree node which can be either a local address or arbitrary node |
| 2394 | // offset: distance from the base from which to load |
| 2395 | void CodeGen::genCodeForStorePairOffset(regNumber src, regNumber src2, GenTree* base, unsigned offset) |
| 2396 | { |
| 2397 | emitter* emit = getEmitter(); |
| 2398 | |
| 2399 | if (base->OperIsLocalAddr()) |
| 2400 | { |
| 2401 | if (base->gtOper == GT_LCL_FLD_ADDR) |
| 2402 | offset += base->gtLclFld.gtLclOffs; |
| 2403 | |
| 2404 | emit->emitIns_S_S_R_R(INS_stp, EA_8BYTE, EA_8BYTE, src, src2, base->gtLclVarCommon.gtLclNum, offset); |
| 2405 | } |
| 2406 | else |
| 2407 | { |
| 2408 | emit->emitIns_R_R_R_I(INS_stp, EA_8BYTE, src, src2, base->gtRegNum, offset); |
| 2409 | } |
| 2410 | } |
| 2411 | |
| 2412 | // Generate code for CpObj nodes wich copy structs that have interleaved |
| 2413 | // GC pointers. |
| 2414 | // For this case we'll generate a sequence of loads/stores in the case of struct |
| 2415 | // slots that don't contain GC pointers. The generated code will look like: |
| 2416 | // ldr tempReg, [R13, #8] |
| 2417 | // str tempReg, [R14, #8] |
| 2418 | // |
| 2419 | // In the case of a GC-Pointer we'll call the ByRef write barrier helper |
| 2420 | // who happens to use the same registers as the previous call to maintain |
| 2421 | // the same register requirements and register killsets: |
| 2422 | // bl CORINFO_HELP_ASSIGN_BYREF |
| 2423 | // |
| 2424 | // So finally an example would look like this: |
| 2425 | // ldr tempReg, [R13, #8] |
| 2426 | // str tempReg, [R14, #8] |
| 2427 | // bl CORINFO_HELP_ASSIGN_BYREF |
| 2428 | // ldr tempReg, [R13, #8] |
| 2429 | // str tempReg, [R14, #8] |
| 2430 | // bl CORINFO_HELP_ASSIGN_BYREF |
| 2431 | // ldr tempReg, [R13, #8] |
| 2432 | // str tempReg, [R14, #8] |
| 2433 | void CodeGen::genCodeForCpObj(GenTreeObj* cpObjNode) |
| 2434 | { |
| 2435 | GenTree* dstAddr = cpObjNode->Addr(); |
| 2436 | GenTree* source = cpObjNode->Data(); |
| 2437 | var_types srcAddrType = TYP_BYREF; |
| 2438 | bool sourceIsLocal = false; |
| 2439 | |
| 2440 | assert(source->isContained()); |
| 2441 | if (source->gtOper == GT_IND) |
| 2442 | { |
| 2443 | GenTree* srcAddr = source->gtGetOp1(); |
| 2444 | assert(!srcAddr->isContained()); |
| 2445 | srcAddrType = srcAddr->TypeGet(); |
| 2446 | } |
| 2447 | else |
| 2448 | { |
| 2449 | noway_assert(source->IsLocal()); |
| 2450 | sourceIsLocal = true; |
| 2451 | } |
| 2452 | |
| 2453 | bool dstOnStack = dstAddr->gtSkipReloadOrCopy()->OperIsLocalAddr(); |
| 2454 | |
| 2455 | #ifdef DEBUG |
| 2456 | assert(!dstAddr->isContained()); |
| 2457 | |
| 2458 | // This GenTree node has data about GC pointers, this means we're dealing |
| 2459 | // with CpObj. |
| 2460 | assert(cpObjNode->gtGcPtrCount > 0); |
| 2461 | #endif // DEBUG |
| 2462 | |
| 2463 | // Consume the operands and get them into the right registers. |
| 2464 | // They may now contain gc pointers (depending on their type; gcMarkRegPtrVal will "do the right thing"). |
| 2465 | genConsumeBlockOp(cpObjNode, REG_WRITE_BARRIER_DST_BYREF, REG_WRITE_BARRIER_SRC_BYREF, REG_NA); |
| 2466 | gcInfo.gcMarkRegPtrVal(REG_WRITE_BARRIER_SRC_BYREF, srcAddrType); |
| 2467 | gcInfo.gcMarkRegPtrVal(REG_WRITE_BARRIER_DST_BYREF, dstAddr->TypeGet()); |
| 2468 | |
| 2469 | unsigned slots = cpObjNode->gtSlots; |
| 2470 | |
| 2471 | // Temp register(s) used to perform the sequence of loads and stores. |
| 2472 | regNumber tmpReg = cpObjNode->ExtractTempReg(); |
| 2473 | regNumber tmpReg2 = REG_NA; |
| 2474 | |
| 2475 | assert(genIsValidIntReg(tmpReg)); |
| 2476 | assert(tmpReg != REG_WRITE_BARRIER_SRC_BYREF); |
| 2477 | assert(tmpReg != REG_WRITE_BARRIER_DST_BYREF); |
| 2478 | |
| 2479 | if (slots > 1) |
| 2480 | { |
| 2481 | tmpReg2 = cpObjNode->GetSingleTempReg(); |
| 2482 | assert(tmpReg2 != tmpReg); |
| 2483 | assert(genIsValidIntReg(tmpReg2)); |
| 2484 | assert(tmpReg2 != REG_WRITE_BARRIER_DST_BYREF); |
| 2485 | assert(tmpReg2 != REG_WRITE_BARRIER_SRC_BYREF); |
| 2486 | } |
| 2487 | |
| 2488 | if (cpObjNode->gtFlags & GTF_BLK_VOLATILE) |
| 2489 | { |
| 2490 | // issue a full memory barrier before a volatile CpObj operation |
| 2491 | instGen_MemoryBarrier(); |
| 2492 | } |
| 2493 | |
| 2494 | emitter* emit = getEmitter(); |
| 2495 | |
| 2496 | BYTE* gcPtrs = cpObjNode->gtGcPtrs; |
| 2497 | |
| 2498 | // If we can prove it's on the stack we don't need to use the write barrier. |
| 2499 | if (dstOnStack) |
| 2500 | { |
| 2501 | unsigned i = 0; |
| 2502 | // Check if two or more remaining slots and use a ldp/stp sequence |
| 2503 | while (i < slots - 1) |
| 2504 | { |
| 2505 | emitAttr attr0 = emitTypeSize(compiler->getJitGCType(gcPtrs[i + 0])); |
| 2506 | emitAttr attr1 = emitTypeSize(compiler->getJitGCType(gcPtrs[i + 1])); |
| 2507 | |
| 2508 | emit->emitIns_R_R_R_I(INS_ldp, attr0, tmpReg, tmpReg2, REG_WRITE_BARRIER_SRC_BYREF, 2 * TARGET_POINTER_SIZE, |
| 2509 | INS_OPTS_POST_INDEX, attr1); |
| 2510 | emit->emitIns_R_R_R_I(INS_stp, attr0, tmpReg, tmpReg2, REG_WRITE_BARRIER_DST_BYREF, 2 * TARGET_POINTER_SIZE, |
| 2511 | INS_OPTS_POST_INDEX, attr1); |
| 2512 | i += 2; |
| 2513 | } |
| 2514 | |
| 2515 | // Use a ldr/str sequence for the last remainder |
| 2516 | if (i < slots) |
| 2517 | { |
| 2518 | emitAttr attr0 = emitTypeSize(compiler->getJitGCType(gcPtrs[i + 0])); |
| 2519 | |
| 2520 | emit->emitIns_R_R_I(INS_ldr, attr0, tmpReg, REG_WRITE_BARRIER_SRC_BYREF, TARGET_POINTER_SIZE, |
| 2521 | INS_OPTS_POST_INDEX); |
| 2522 | emit->emitIns_R_R_I(INS_str, attr0, tmpReg, REG_WRITE_BARRIER_DST_BYREF, TARGET_POINTER_SIZE, |
| 2523 | INS_OPTS_POST_INDEX); |
| 2524 | } |
| 2525 | } |
| 2526 | else |
| 2527 | { |
| 2528 | unsigned gcPtrCount = cpObjNode->gtGcPtrCount; |
| 2529 | |
| 2530 | unsigned i = 0; |
| 2531 | while (i < slots) |
| 2532 | { |
| 2533 | switch (gcPtrs[i]) |
| 2534 | { |
| 2535 | case TYPE_GC_NONE: |
| 2536 | // Check if the next slot's type is also TYP_GC_NONE and use ldp/stp |
| 2537 | if ((i + 1 < slots) && (gcPtrs[i + 1] == TYPE_GC_NONE)) |
| 2538 | { |
| 2539 | emit->emitIns_R_R_R_I(INS_ldp, EA_8BYTE, tmpReg, tmpReg2, REG_WRITE_BARRIER_SRC_BYREF, |
| 2540 | 2 * TARGET_POINTER_SIZE, INS_OPTS_POST_INDEX); |
| 2541 | emit->emitIns_R_R_R_I(INS_stp, EA_8BYTE, tmpReg, tmpReg2, REG_WRITE_BARRIER_DST_BYREF, |
| 2542 | 2 * TARGET_POINTER_SIZE, INS_OPTS_POST_INDEX); |
| 2543 | ++i; // extra increment of i, since we are copying two items |
| 2544 | } |
| 2545 | else |
| 2546 | { |
| 2547 | emit->emitIns_R_R_I(INS_ldr, EA_8BYTE, tmpReg, REG_WRITE_BARRIER_SRC_BYREF, TARGET_POINTER_SIZE, |
| 2548 | INS_OPTS_POST_INDEX); |
| 2549 | emit->emitIns_R_R_I(INS_str, EA_8BYTE, tmpReg, REG_WRITE_BARRIER_DST_BYREF, TARGET_POINTER_SIZE, |
| 2550 | INS_OPTS_POST_INDEX); |
| 2551 | } |
| 2552 | break; |
| 2553 | |
| 2554 | default: |
| 2555 | // In the case of a GC-Pointer we'll call the ByRef write barrier helper |
| 2556 | genEmitHelperCall(CORINFO_HELP_ASSIGN_BYREF, 0, EA_PTRSIZE); |
| 2557 | |
| 2558 | gcPtrCount--; |
| 2559 | break; |
| 2560 | } |
| 2561 | ++i; |
| 2562 | } |
| 2563 | assert(gcPtrCount == 0); |
| 2564 | } |
| 2565 | |
| 2566 | if (cpObjNode->gtFlags & GTF_BLK_VOLATILE) |
| 2567 | { |
| 2568 | // issue a INS_BARRIER_ISHLD after a volatile CpObj operation |
| 2569 | instGen_MemoryBarrier(INS_BARRIER_ISHLD); |
| 2570 | } |
| 2571 | |
| 2572 | // Clear the gcInfo for REG_WRITE_BARRIER_SRC_BYREF and REG_WRITE_BARRIER_DST_BYREF. |
| 2573 | // While we normally update GC info prior to the last instruction that uses them, |
| 2574 | // these actually live into the helper call. |
| 2575 | gcInfo.gcMarkRegSetNpt(RBM_WRITE_BARRIER_SRC_BYREF | RBM_WRITE_BARRIER_DST_BYREF); |
| 2576 | } |
| 2577 | |
| 2578 | // generate code do a switch statement based on a table of ip-relative offsets |
| 2579 | void CodeGen::genTableBasedSwitch(GenTree* treeNode) |
| 2580 | { |
| 2581 | genConsumeOperands(treeNode->AsOp()); |
| 2582 | regNumber idxReg = treeNode->gtOp.gtOp1->gtRegNum; |
| 2583 | regNumber baseReg = treeNode->gtOp.gtOp2->gtRegNum; |
| 2584 | |
| 2585 | regNumber tmpReg = treeNode->GetSingleTempReg(); |
| 2586 | |
| 2587 | // load the ip-relative offset (which is relative to start of fgFirstBB) |
| 2588 | getEmitter()->emitIns_R_R_R(INS_ldr, EA_4BYTE, baseReg, baseReg, idxReg, INS_OPTS_LSL); |
| 2589 | |
| 2590 | // add it to the absolute address of fgFirstBB |
| 2591 | compiler->fgFirstBB->bbFlags |= BBF_JMP_TARGET; |
| 2592 | getEmitter()->emitIns_R_L(INS_adr, EA_PTRSIZE, compiler->fgFirstBB, tmpReg); |
| 2593 | getEmitter()->emitIns_R_R_R(INS_add, EA_PTRSIZE, baseReg, baseReg, tmpReg); |
| 2594 | |
| 2595 | // br baseReg |
| 2596 | getEmitter()->emitIns_R(INS_br, emitActualTypeSize(TYP_I_IMPL), baseReg); |
| 2597 | } |
| 2598 | |
| 2599 | // emits the table and an instruction to get the address of the first element |
| 2600 | void CodeGen::genJumpTable(GenTree* treeNode) |
| 2601 | { |
| 2602 | noway_assert(compiler->compCurBB->bbJumpKind == BBJ_SWITCH); |
| 2603 | assert(treeNode->OperGet() == GT_JMPTABLE); |
| 2604 | |
| 2605 | unsigned jumpCount = compiler->compCurBB->bbJumpSwt->bbsCount; |
| 2606 | BasicBlock** jumpTable = compiler->compCurBB->bbJumpSwt->bbsDstTab; |
| 2607 | unsigned jmpTabOffs; |
| 2608 | unsigned jmpTabBase; |
| 2609 | |
| 2610 | jmpTabBase = getEmitter()->emitBBTableDataGenBeg(jumpCount, true); |
| 2611 | |
| 2612 | jmpTabOffs = 0; |
| 2613 | |
| 2614 | JITDUMP("\n J_M%03u_DS%02u LABEL DWORD\n" , Compiler::s_compMethodsCount, jmpTabBase); |
| 2615 | |
| 2616 | for (unsigned i = 0; i < jumpCount; i++) |
| 2617 | { |
| 2618 | BasicBlock* target = *jumpTable++; |
| 2619 | noway_assert(target->bbFlags & BBF_JMP_TARGET); |
| 2620 | |
| 2621 | JITDUMP(" DD L_M%03u_" FMT_BB "\n" , Compiler::s_compMethodsCount, target->bbNum); |
| 2622 | |
| 2623 | getEmitter()->emitDataGenData(i, target); |
| 2624 | }; |
| 2625 | |
| 2626 | getEmitter()->emitDataGenEnd(); |
| 2627 | |
| 2628 | // Access to inline data is 'abstracted' by a special type of static member |
| 2629 | // (produced by eeFindJitDataOffs) which the emitter recognizes as being a reference |
| 2630 | // to constant data, not a real static field. |
| 2631 | getEmitter()->emitIns_R_C(INS_adr, emitActualTypeSize(TYP_I_IMPL), treeNode->gtRegNum, REG_NA, |
| 2632 | compiler->eeFindJitDataOffs(jmpTabBase), 0); |
| 2633 | genProduceReg(treeNode); |
| 2634 | } |
| 2635 | |
| 2636 | //------------------------------------------------------------------------ |
| 2637 | // genLockedInstructions: Generate code for a GT_XADD or GT_XCHG node. |
| 2638 | // |
| 2639 | // Arguments: |
| 2640 | // treeNode - the GT_XADD/XCHG node |
| 2641 | // |
| 2642 | void CodeGen::genLockedInstructions(GenTreeOp* treeNode) |
| 2643 | { |
| 2644 | GenTree* data = treeNode->gtOp.gtOp2; |
| 2645 | GenTree* addr = treeNode->gtOp.gtOp1; |
| 2646 | regNumber targetReg = treeNode->gtRegNum; |
| 2647 | regNumber dataReg = data->gtRegNum; |
| 2648 | regNumber addrReg = addr->gtRegNum; |
| 2649 | |
| 2650 | genConsumeAddress(addr); |
| 2651 | genConsumeRegs(data); |
| 2652 | |
| 2653 | emitAttr dataSize = emitActualTypeSize(data); |
| 2654 | |
| 2655 | if (compiler->compSupports(InstructionSet_Atomics)) |
| 2656 | { |
| 2657 | assert(!data->isContainedIntOrIImmed()); |
| 2658 | |
| 2659 | switch (treeNode->gtOper) |
| 2660 | { |
| 2661 | case GT_XCHG: |
| 2662 | getEmitter()->emitIns_R_R_R(INS_swpal, dataSize, dataReg, targetReg, addrReg); |
| 2663 | break; |
| 2664 | case GT_XADD: |
| 2665 | if ((targetReg == REG_NA) || (targetReg == REG_ZR)) |
| 2666 | { |
| 2667 | getEmitter()->emitIns_R_R(INS_staddl, dataSize, dataReg, addrReg); |
| 2668 | } |
| 2669 | else |
| 2670 | { |
| 2671 | getEmitter()->emitIns_R_R_R(INS_ldaddal, dataSize, dataReg, targetReg, addrReg); |
| 2672 | } |
| 2673 | break; |
| 2674 | default: |
| 2675 | assert(!"Unexpected treeNode->gtOper" ); |
| 2676 | } |
| 2677 | |
| 2678 | instGen_MemoryBarrier(INS_BARRIER_ISH); |
| 2679 | } |
| 2680 | else |
| 2681 | { |
| 2682 | regNumber exResultReg = treeNode->ExtractTempReg(RBM_ALLINT); |
| 2683 | regNumber storeDataReg = (treeNode->OperGet() == GT_XCHG) ? dataReg : treeNode->ExtractTempReg(RBM_ALLINT); |
| 2684 | regNumber loadReg = (targetReg != REG_NA) ? targetReg : storeDataReg; |
| 2685 | |
| 2686 | // Check allocator assumptions |
| 2687 | // |
| 2688 | // The register allocator should have extended the lifetimes of all input and internal registers so that |
| 2689 | // none interfere with the target. |
| 2690 | noway_assert(addrReg != targetReg); |
| 2691 | |
| 2692 | noway_assert(addrReg != loadReg); |
| 2693 | noway_assert(dataReg != loadReg); |
| 2694 | |
| 2695 | noway_assert(addrReg != storeDataReg); |
| 2696 | noway_assert((treeNode->OperGet() == GT_XCHG) || (addrReg != dataReg)); |
| 2697 | |
| 2698 | assert(addr->isUsedFromReg()); |
| 2699 | noway_assert(exResultReg != REG_NA); |
| 2700 | noway_assert(exResultReg != targetReg); |
| 2701 | noway_assert((targetReg != REG_NA) || (treeNode->OperGet() != GT_XCHG)); |
| 2702 | |
| 2703 | // Store exclusive unpredictable cases must be avoided |
| 2704 | noway_assert(exResultReg != storeDataReg); |
| 2705 | noway_assert(exResultReg != addrReg); |
| 2706 | |
| 2707 | // NOTE: `genConsumeAddress` marks the consumed register as not a GC pointer, as it assumes that the input |
| 2708 | // registers |
| 2709 | // die at the first instruction generated by the node. This is not the case for these atomics as the input |
| 2710 | // registers are multiply-used. As such, we need to mark the addr register as containing a GC pointer until |
| 2711 | // we are finished generating the code for this node. |
| 2712 | |
| 2713 | gcInfo.gcMarkRegPtrVal(addrReg, addr->TypeGet()); |
| 2714 | |
| 2715 | // Emit code like this: |
| 2716 | // retry: |
| 2717 | // ldxr loadReg, [addrReg] |
| 2718 | // add storeDataReg, loadReg, dataReg # Only for GT_XADD |
| 2719 | // # GT_XCHG storeDataReg === dataReg |
| 2720 | // stxr exResult, storeDataReg, [addrReg] |
| 2721 | // cbnz exResult, retry |
| 2722 | // dmb ish |
| 2723 | |
| 2724 | BasicBlock* labelRetry = genCreateTempLabel(); |
| 2725 | genDefineTempLabel(labelRetry); |
| 2726 | |
| 2727 | // The following instruction includes a acquire half barrier |
| 2728 | getEmitter()->emitIns_R_R(INS_ldaxr, dataSize, loadReg, addrReg); |
| 2729 | |
| 2730 | switch (treeNode->OperGet()) |
| 2731 | { |
| 2732 | case GT_XADD: |
| 2733 | if (data->isContainedIntOrIImmed()) |
| 2734 | { |
| 2735 | // Even though INS_add is specified here, the encoder will choose either |
| 2736 | // an INS_add or an INS_sub and encode the immediate as a positive value |
| 2737 | genInstrWithConstant(INS_add, dataSize, storeDataReg, loadReg, data->AsIntConCommon()->IconValue(), |
| 2738 | REG_NA); |
| 2739 | } |
| 2740 | else |
| 2741 | { |
| 2742 | getEmitter()->emitIns_R_R_R(INS_add, dataSize, storeDataReg, loadReg, dataReg); |
| 2743 | } |
| 2744 | break; |
| 2745 | case GT_XCHG: |
| 2746 | assert(!data->isContained()); |
| 2747 | storeDataReg = dataReg; |
| 2748 | break; |
| 2749 | default: |
| 2750 | unreached(); |
| 2751 | } |
| 2752 | |
| 2753 | // The following instruction includes a release half barrier |
| 2754 | getEmitter()->emitIns_R_R_R(INS_stlxr, dataSize, exResultReg, storeDataReg, addrReg); |
| 2755 | |
| 2756 | getEmitter()->emitIns_J_R(INS_cbnz, EA_4BYTE, labelRetry, exResultReg); |
| 2757 | |
| 2758 | instGen_MemoryBarrier(INS_BARRIER_ISH); |
| 2759 | |
| 2760 | gcInfo.gcMarkRegSetNpt(addr->gtGetRegMask()); |
| 2761 | } |
| 2762 | |
| 2763 | if (treeNode->gtRegNum != REG_NA) |
| 2764 | { |
| 2765 | genProduceReg(treeNode); |
| 2766 | } |
| 2767 | } |
| 2768 | |
| 2769 | //------------------------------------------------------------------------ |
| 2770 | // genCodeForCmpXchg: Produce code for a GT_CMPXCHG node. |
| 2771 | // |
| 2772 | // Arguments: |
| 2773 | // tree - the GT_CMPXCHG node |
| 2774 | // |
| 2775 | void CodeGen::genCodeForCmpXchg(GenTreeCmpXchg* treeNode) |
| 2776 | { |
| 2777 | assert(treeNode->OperIs(GT_CMPXCHG)); |
| 2778 | |
| 2779 | GenTree* addr = treeNode->gtOpLocation; // arg1 |
| 2780 | GenTree* data = treeNode->gtOpValue; // arg2 |
| 2781 | GenTree* comparand = treeNode->gtOpComparand; // arg3 |
| 2782 | |
| 2783 | regNumber targetReg = treeNode->gtRegNum; |
| 2784 | regNumber dataReg = data->gtRegNum; |
| 2785 | regNumber addrReg = addr->gtRegNum; |
| 2786 | regNumber comparandReg = comparand->gtRegNum; |
| 2787 | |
| 2788 | genConsumeAddress(addr); |
| 2789 | genConsumeRegs(data); |
| 2790 | genConsumeRegs(comparand); |
| 2791 | |
| 2792 | if (compiler->compSupports(InstructionSet_Atomics)) |
| 2793 | { |
| 2794 | emitAttr dataSize = emitActualTypeSize(data); |
| 2795 | |
| 2796 | // casal use the comparand as the target reg |
| 2797 | if (targetReg != comparandReg) |
| 2798 | { |
| 2799 | getEmitter()->emitIns_R_R(INS_mov, dataSize, targetReg, comparandReg); |
| 2800 | |
| 2801 | // Catch case we destroyed data or address before use |
| 2802 | noway_assert(addrReg != targetReg); |
| 2803 | noway_assert(dataReg != targetReg); |
| 2804 | } |
| 2805 | getEmitter()->emitIns_R_R_R(INS_casal, dataSize, targetReg, dataReg, addrReg); |
| 2806 | |
| 2807 | instGen_MemoryBarrier(INS_BARRIER_ISH); |
| 2808 | } |
| 2809 | else |
| 2810 | { |
| 2811 | regNumber exResultReg = treeNode->ExtractTempReg(RBM_ALLINT); |
| 2812 | |
| 2813 | // Check allocator assumptions |
| 2814 | // |
| 2815 | // The register allocator should have extended the lifetimes of all input and internal registers so that |
| 2816 | // none interfere with the target. |
| 2817 | noway_assert(addrReg != targetReg); |
| 2818 | noway_assert(dataReg != targetReg); |
| 2819 | noway_assert(comparandReg != targetReg); |
| 2820 | noway_assert(addrReg != dataReg); |
| 2821 | noway_assert(targetReg != REG_NA); |
| 2822 | noway_assert(exResultReg != REG_NA); |
| 2823 | noway_assert(exResultReg != targetReg); |
| 2824 | |
| 2825 | assert(addr->isUsedFromReg()); |
| 2826 | assert(data->isUsedFromReg()); |
| 2827 | assert(!comparand->isUsedFromMemory()); |
| 2828 | |
| 2829 | // Store exclusive unpredictable cases must be avoided |
| 2830 | noway_assert(exResultReg != dataReg); |
| 2831 | noway_assert(exResultReg != addrReg); |
| 2832 | |
| 2833 | // NOTE: `genConsumeAddress` marks the consumed register as not a GC pointer, as it assumes that the input |
| 2834 | // registers |
| 2835 | // die at the first instruction generated by the node. This is not the case for these atomics as the input |
| 2836 | // registers are multiply-used. As such, we need to mark the addr register as containing a GC pointer until |
| 2837 | // we are finished generating the code for this node. |
| 2838 | |
| 2839 | gcInfo.gcMarkRegPtrVal(addrReg, addr->TypeGet()); |
| 2840 | |
| 2841 | // TODO-ARM64-CQ Use ARMv8.1 atomics if available |
| 2842 | // https://github.com/dotnet/coreclr/issues/11881 |
| 2843 | |
| 2844 | // Emit code like this: |
| 2845 | // retry: |
| 2846 | // ldxr targetReg, [addrReg] |
| 2847 | // cmp targetReg, comparandReg |
| 2848 | // bne compareFail |
| 2849 | // stxr exResult, dataReg, [addrReg] |
| 2850 | // cbnz exResult, retry |
| 2851 | // compareFail: |
| 2852 | // dmb ish |
| 2853 | |
| 2854 | BasicBlock* labelRetry = genCreateTempLabel(); |
| 2855 | BasicBlock* labelCompareFail = genCreateTempLabel(); |
| 2856 | genDefineTempLabel(labelRetry); |
| 2857 | |
| 2858 | // The following instruction includes a acquire half barrier |
| 2859 | getEmitter()->emitIns_R_R(INS_ldaxr, emitTypeSize(treeNode), targetReg, addrReg); |
| 2860 | |
| 2861 | if (comparand->isContainedIntOrIImmed()) |
| 2862 | { |
| 2863 | if (comparand->IsIntegralConst(0)) |
| 2864 | { |
| 2865 | getEmitter()->emitIns_J_R(INS_cbnz, emitActualTypeSize(treeNode), labelCompareFail, targetReg); |
| 2866 | } |
| 2867 | else |
| 2868 | { |
| 2869 | getEmitter()->emitIns_R_I(INS_cmp, emitActualTypeSize(treeNode), targetReg, |
| 2870 | comparand->AsIntConCommon()->IconValue()); |
| 2871 | getEmitter()->emitIns_J(INS_bne, labelCompareFail); |
| 2872 | } |
| 2873 | } |
| 2874 | else |
| 2875 | { |
| 2876 | getEmitter()->emitIns_R_R(INS_cmp, emitActualTypeSize(treeNode), targetReg, comparandReg); |
| 2877 | getEmitter()->emitIns_J(INS_bne, labelCompareFail); |
| 2878 | } |
| 2879 | |
| 2880 | // The following instruction includes a release half barrier |
| 2881 | getEmitter()->emitIns_R_R_R(INS_stlxr, emitTypeSize(treeNode), exResultReg, dataReg, addrReg); |
| 2882 | |
| 2883 | getEmitter()->emitIns_J_R(INS_cbnz, EA_4BYTE, labelRetry, exResultReg); |
| 2884 | |
| 2885 | genDefineTempLabel(labelCompareFail); |
| 2886 | |
| 2887 | instGen_MemoryBarrier(INS_BARRIER_ISH); |
| 2888 | |
| 2889 | gcInfo.gcMarkRegSetNpt(addr->gtGetRegMask()); |
| 2890 | } |
| 2891 | |
| 2892 | genProduceReg(treeNode); |
| 2893 | } |
| 2894 | |
| 2895 | instruction CodeGen::genGetInsForOper(genTreeOps oper, var_types type) |
| 2896 | { |
| 2897 | instruction ins = INS_brk; |
| 2898 | |
| 2899 | if (varTypeIsFloating(type)) |
| 2900 | { |
| 2901 | switch (oper) |
| 2902 | { |
| 2903 | case GT_ADD: |
| 2904 | ins = INS_fadd; |
| 2905 | break; |
| 2906 | case GT_SUB: |
| 2907 | ins = INS_fsub; |
| 2908 | break; |
| 2909 | case GT_MUL: |
| 2910 | ins = INS_fmul; |
| 2911 | break; |
| 2912 | case GT_DIV: |
| 2913 | ins = INS_fdiv; |
| 2914 | break; |
| 2915 | case GT_NEG: |
| 2916 | ins = INS_fneg; |
| 2917 | break; |
| 2918 | |
| 2919 | default: |
| 2920 | NYI("Unhandled oper in genGetInsForOper() - float" ); |
| 2921 | unreached(); |
| 2922 | break; |
| 2923 | } |
| 2924 | } |
| 2925 | else |
| 2926 | { |
| 2927 | switch (oper) |
| 2928 | { |
| 2929 | case GT_ADD: |
| 2930 | ins = INS_add; |
| 2931 | break; |
| 2932 | case GT_AND: |
| 2933 | ins = INS_and; |
| 2934 | break; |
| 2935 | case GT_DIV: |
| 2936 | ins = INS_sdiv; |
| 2937 | break; |
| 2938 | case GT_UDIV: |
| 2939 | ins = INS_udiv; |
| 2940 | break; |
| 2941 | case GT_MUL: |
| 2942 | ins = INS_mul; |
| 2943 | break; |
| 2944 | case GT_LSH: |
| 2945 | ins = INS_lsl; |
| 2946 | break; |
| 2947 | case GT_NEG: |
| 2948 | ins = INS_neg; |
| 2949 | break; |
| 2950 | case GT_NOT: |
| 2951 | ins = INS_mvn; |
| 2952 | break; |
| 2953 | case GT_OR: |
| 2954 | ins = INS_orr; |
| 2955 | break; |
| 2956 | case GT_ROR: |
| 2957 | ins = INS_ror; |
| 2958 | break; |
| 2959 | case GT_RSH: |
| 2960 | ins = INS_asr; |
| 2961 | break; |
| 2962 | case GT_RSZ: |
| 2963 | ins = INS_lsr; |
| 2964 | break; |
| 2965 | case GT_SUB: |
| 2966 | ins = INS_sub; |
| 2967 | break; |
| 2968 | case GT_XOR: |
| 2969 | ins = INS_eor; |
| 2970 | break; |
| 2971 | |
| 2972 | default: |
| 2973 | NYI("Unhandled oper in genGetInsForOper() - integer" ); |
| 2974 | unreached(); |
| 2975 | break; |
| 2976 | } |
| 2977 | } |
| 2978 | return ins; |
| 2979 | } |
| 2980 | |
| 2981 | //------------------------------------------------------------------------ |
| 2982 | // genCodeForReturnTrap: Produce code for a GT_RETURNTRAP node. |
| 2983 | // |
| 2984 | // Arguments: |
| 2985 | // tree - the GT_RETURNTRAP node |
| 2986 | // |
| 2987 | void CodeGen::genCodeForReturnTrap(GenTreeOp* tree) |
| 2988 | { |
| 2989 | assert(tree->OperGet() == GT_RETURNTRAP); |
| 2990 | |
| 2991 | // this is nothing but a conditional call to CORINFO_HELP_STOP_FOR_GC |
| 2992 | // based on the contents of 'data' |
| 2993 | |
| 2994 | GenTree* data = tree->gtOp1; |
| 2995 | genConsumeRegs(data); |
| 2996 | getEmitter()->emitIns_R_I(INS_cmp, EA_4BYTE, data->gtRegNum, 0); |
| 2997 | |
| 2998 | BasicBlock* skipLabel = genCreateTempLabel(); |
| 2999 | |
| 3000 | emitJumpKind jmpEqual = genJumpKindForOper(GT_EQ, CK_SIGNED); |
| 3001 | inst_JMP(jmpEqual, skipLabel); |
| 3002 | // emit the call to the EE-helper that stops for GC (or other reasons) |
| 3003 | |
| 3004 | genEmitHelperCall(CORINFO_HELP_STOP_FOR_GC, 0, EA_UNKNOWN); |
| 3005 | genDefineTempLabel(skipLabel); |
| 3006 | } |
| 3007 | |
| 3008 | //------------------------------------------------------------------------ |
| 3009 | // genCodeForStoreInd: Produce code for a GT_STOREIND node. |
| 3010 | // |
| 3011 | // Arguments: |
| 3012 | // tree - the GT_STOREIND node |
| 3013 | // |
| 3014 | void CodeGen::genCodeForStoreInd(GenTreeStoreInd* tree) |
| 3015 | { |
| 3016 | GenTree* data = tree->Data(); |
| 3017 | GenTree* addr = tree->Addr(); |
| 3018 | var_types targetType = tree->TypeGet(); |
| 3019 | emitter* emit = getEmitter(); |
| 3020 | emitAttr attr = emitTypeSize(tree); |
| 3021 | instruction ins = ins_Store(targetType); |
| 3022 | |
| 3023 | #ifdef FEATURE_SIMD |
| 3024 | // Storing Vector3 of size 12 bytes through indirection |
| 3025 | if (tree->TypeGet() == TYP_SIMD12) |
| 3026 | { |
| 3027 | genStoreIndTypeSIMD12(tree); |
| 3028 | return; |
| 3029 | } |
| 3030 | #endif // FEATURE_SIMD |
| 3031 | |
| 3032 | GCInfo::WriteBarrierForm writeBarrierForm = gcInfo.gcIsWriteBarrierCandidate(tree, data); |
| 3033 | if (writeBarrierForm != GCInfo::WBF_NoBarrier) |
| 3034 | { |
| 3035 | // data and addr must be in registers. |
| 3036 | // Consume both registers so that any copies of interfering |
| 3037 | // registers are taken care of. |
| 3038 | genConsumeOperands(tree); |
| 3039 | |
| 3040 | // At this point, we should not have any interference. |
| 3041 | // That is, 'data' must not be in REG_WRITE_BARRIER_DST_BYREF, |
| 3042 | // as that is where 'addr' must go. |
| 3043 | noway_assert(data->gtRegNum != REG_WRITE_BARRIER_DST_BYREF); |
| 3044 | |
| 3045 | // 'addr' goes into x14 (REG_WRITE_BARRIER_DST) |
| 3046 | genCopyRegIfNeeded(addr, REG_WRITE_BARRIER_DST); |
| 3047 | |
| 3048 | // 'data' goes into x15 (REG_WRITE_BARRIER_SRC) |
| 3049 | genCopyRegIfNeeded(data, REG_WRITE_BARRIER_SRC); |
| 3050 | |
| 3051 | genGCWriteBarrier(tree, writeBarrierForm); |
| 3052 | } |
| 3053 | else // A normal store, not a WriteBarrier store |
| 3054 | { |
| 3055 | bool dataIsUnary = false; |
| 3056 | GenTree* nonRMWsrc = nullptr; |
| 3057 | // We must consume the operands in the proper execution order, |
| 3058 | // so that liveness is updated appropriately. |
| 3059 | genConsumeAddress(addr); |
| 3060 | |
| 3061 | if (!data->isContained()) |
| 3062 | { |
| 3063 | genConsumeRegs(data); |
| 3064 | } |
| 3065 | |
| 3066 | regNumber dataReg = REG_NA; |
| 3067 | if (data->isContainedIntOrIImmed()) |
| 3068 | { |
| 3069 | assert(data->IsIntegralConst(0)); |
| 3070 | dataReg = REG_ZR; |
| 3071 | } |
| 3072 | else // data is not contained, so evaluate it into a register |
| 3073 | { |
| 3074 | assert(!data->isContained()); |
| 3075 | dataReg = data->gtRegNum; |
| 3076 | } |
| 3077 | |
| 3078 | assert((attr != EA_1BYTE) || !(tree->gtFlags & GTF_IND_UNALIGNED)); |
| 3079 | |
| 3080 | if (tree->gtFlags & GTF_IND_VOLATILE) |
| 3081 | { |
| 3082 | bool useStoreRelease = |
| 3083 | genIsValidIntReg(dataReg) && !addr->isContained() && !(tree->gtFlags & GTF_IND_UNALIGNED); |
| 3084 | |
| 3085 | if (useStoreRelease) |
| 3086 | { |
| 3087 | switch (EA_SIZE(attr)) |
| 3088 | { |
| 3089 | case EA_1BYTE: |
| 3090 | assert(ins == INS_strb); |
| 3091 | ins = INS_stlrb; |
| 3092 | break; |
| 3093 | case EA_2BYTE: |
| 3094 | assert(ins == INS_strh); |
| 3095 | ins = INS_stlrh; |
| 3096 | break; |
| 3097 | case EA_4BYTE: |
| 3098 | case EA_8BYTE: |
| 3099 | assert(ins == INS_str); |
| 3100 | ins = INS_stlr; |
| 3101 | break; |
| 3102 | default: |
| 3103 | assert(false); // We should not get here |
| 3104 | } |
| 3105 | } |
| 3106 | else |
| 3107 | { |
| 3108 | // issue a full memory barrier before a volatile StInd |
| 3109 | instGen_MemoryBarrier(); |
| 3110 | } |
| 3111 | } |
| 3112 | |
| 3113 | emit->emitInsLoadStoreOp(ins, attr, dataReg, tree); |
| 3114 | } |
| 3115 | } |
| 3116 | |
| 3117 | //------------------------------------------------------------------------ |
| 3118 | // genCodeForSwap: Produce code for a GT_SWAP node. |
| 3119 | // |
| 3120 | // Arguments: |
| 3121 | // tree - the GT_SWAP node |
| 3122 | // |
| 3123 | void CodeGen::genCodeForSwap(GenTreeOp* tree) |
| 3124 | { |
| 3125 | assert(tree->OperIs(GT_SWAP)); |
| 3126 | |
| 3127 | // Swap is only supported for lclVar operands that are enregistered |
| 3128 | // We do not consume or produce any registers. Both operands remain enregistered. |
| 3129 | // However, the gc-ness may change. |
| 3130 | assert(genIsRegCandidateLocal(tree->gtOp1) && genIsRegCandidateLocal(tree->gtOp2)); |
| 3131 | |
| 3132 | GenTreeLclVarCommon* lcl1 = tree->gtOp1->AsLclVarCommon(); |
| 3133 | LclVarDsc* varDsc1 = &(compiler->lvaTable[lcl1->gtLclNum]); |
| 3134 | var_types type1 = varDsc1->TypeGet(); |
| 3135 | GenTreeLclVarCommon* lcl2 = tree->gtOp2->AsLclVarCommon(); |
| 3136 | LclVarDsc* varDsc2 = &(compiler->lvaTable[lcl2->gtLclNum]); |
| 3137 | var_types type2 = varDsc2->TypeGet(); |
| 3138 | |
| 3139 | // We must have both int or both fp regs |
| 3140 | assert(!varTypeIsFloating(type1) || varTypeIsFloating(type2)); |
| 3141 | |
| 3142 | // FP swap is not yet implemented (and should have NYI'd in LSRA) |
| 3143 | assert(!varTypeIsFloating(type1)); |
| 3144 | |
| 3145 | regNumber oldOp1Reg = lcl1->gtRegNum; |
| 3146 | regMaskTP oldOp1RegMask = genRegMask(oldOp1Reg); |
| 3147 | regNumber oldOp2Reg = lcl2->gtRegNum; |
| 3148 | regMaskTP oldOp2RegMask = genRegMask(oldOp2Reg); |
| 3149 | |
| 3150 | // We don't call genUpdateVarReg because we don't have a tree node with the new register. |
| 3151 | varDsc1->lvRegNum = oldOp2Reg; |
| 3152 | varDsc2->lvRegNum = oldOp1Reg; |
| 3153 | |
| 3154 | // Do the xchg |
| 3155 | emitAttr size = EA_PTRSIZE; |
| 3156 | if (varTypeGCtype(type1) != varTypeGCtype(type2)) |
| 3157 | { |
| 3158 | // If the type specified to the emitter is a GC type, it will swap the GC-ness of the registers. |
| 3159 | // Otherwise it will leave them alone, which is correct if they have the same GC-ness. |
| 3160 | size = EA_GCREF; |
| 3161 | } |
| 3162 | |
| 3163 | NYI("register swap" ); |
| 3164 | // inst_RV_RV(INS_xchg, oldOp1Reg, oldOp2Reg, TYP_I_IMPL, size); |
| 3165 | |
| 3166 | // Update the gcInfo. |
| 3167 | // Manually remove these regs for the gc sets (mostly to avoid confusing duplicative dump output) |
| 3168 | gcInfo.gcRegByrefSetCur &= ~(oldOp1RegMask | oldOp2RegMask); |
| 3169 | gcInfo.gcRegGCrefSetCur &= ~(oldOp1RegMask | oldOp2RegMask); |
| 3170 | |
| 3171 | // gcMarkRegPtrVal will do the appropriate thing for non-gc types. |
| 3172 | // It will also dump the updates. |
| 3173 | gcInfo.gcMarkRegPtrVal(oldOp2Reg, type1); |
| 3174 | gcInfo.gcMarkRegPtrVal(oldOp1Reg, type2); |
| 3175 | } |
| 3176 | |
| 3177 | //------------------------------------------------------------------------------------------- |
| 3178 | // genSetRegToCond: Set a register 'dstReg' to the appropriate one or zero value |
| 3179 | // corresponding to a binary Relational operator result. |
| 3180 | // |
| 3181 | // Arguments: |
| 3182 | // dstReg - The target register to set to 1 or 0 |
| 3183 | // tree - The GenTree Relop node that was used to set the Condition codes |
| 3184 | // |
| 3185 | // Return Value: none |
| 3186 | // |
| 3187 | // Notes: |
| 3188 | // A full 64-bit value of either 1 or 0 is setup in the 'dstReg' |
| 3189 | //------------------------------------------------------------------------------------------- |
| 3190 | |
| 3191 | void CodeGen::genSetRegToCond(regNumber dstReg, GenTree* tree) |
| 3192 | { |
| 3193 | emitJumpKind jumpKind[2]; |
| 3194 | bool branchToTrueLabel[2]; |
| 3195 | genJumpKindsForTree(tree, jumpKind, branchToTrueLabel); |
| 3196 | assert(jumpKind[0] != EJ_NONE); |
| 3197 | |
| 3198 | // Set the reg according to the flags |
| 3199 | inst_SET(jumpKind[0], dstReg); |
| 3200 | |
| 3201 | // Do we need to use two operation to set the flags? |
| 3202 | // |
| 3203 | if (jumpKind[1] != EJ_NONE) |
| 3204 | { |
| 3205 | emitter* emit = getEmitter(); |
| 3206 | bool ordered = ((tree->gtFlags & GTF_RELOP_NAN_UN) == 0); |
| 3207 | insCond secondCond; |
| 3208 | |
| 3209 | // The only ones that require two operations are the |
| 3210 | // floating point compare operations of BEQ or BNE.UN |
| 3211 | // |
| 3212 | if (tree->gtOper == GT_EQ) |
| 3213 | { |
| 3214 | // This must be an ordered comparison. |
| 3215 | assert(ordered); |
| 3216 | assert(jumpKind[1] == EJ_vs); // We complement this value |
| 3217 | secondCond = INS_COND_VC; // for the secondCond |
| 3218 | } |
| 3219 | else // gtOper == GT_NE |
| 3220 | { |
| 3221 | // This must be BNE.UN (unordered comparison) |
| 3222 | assert((tree->gtOper == GT_NE) && !ordered); |
| 3223 | assert(jumpKind[1] == EJ_lo); // We complement this value |
| 3224 | secondCond = INS_COND_HS; // for the secondCond |
| 3225 | } |
| 3226 | |
| 3227 | // The second instruction is a 'csinc' instruction that either selects the previous dstReg |
| 3228 | // or increments the ZR register, which produces a 1 result. |
| 3229 | |
| 3230 | emit->emitIns_R_R_R_COND(INS_csinc, EA_8BYTE, dstReg, dstReg, REG_ZR, secondCond); |
| 3231 | } |
| 3232 | } |
| 3233 | |
| 3234 | //------------------------------------------------------------------------ |
| 3235 | // genIntToFloatCast: Generate code to cast an int/long to float/double |
| 3236 | // |
| 3237 | // Arguments: |
| 3238 | // treeNode - The GT_CAST node |
| 3239 | // |
| 3240 | // Return Value: |
| 3241 | // None. |
| 3242 | // |
| 3243 | // Assumptions: |
| 3244 | // Cast is a non-overflow conversion. |
| 3245 | // The treeNode must have an assigned register. |
| 3246 | // SrcType= int32/uint32/int64/uint64 and DstType=float/double. |
| 3247 | // |
| 3248 | void CodeGen::genIntToFloatCast(GenTree* treeNode) |
| 3249 | { |
| 3250 | // int type --> float/double conversions are always non-overflow ones |
| 3251 | assert(treeNode->OperGet() == GT_CAST); |
| 3252 | assert(!treeNode->gtOverflow()); |
| 3253 | |
| 3254 | regNumber targetReg = treeNode->gtRegNum; |
| 3255 | assert(genIsValidFloatReg(targetReg)); |
| 3256 | |
| 3257 | GenTree* op1 = treeNode->gtOp.gtOp1; |
| 3258 | assert(!op1->isContained()); // Cannot be contained |
| 3259 | assert(genIsValidIntReg(op1->gtRegNum)); // Must be a valid int reg. |
| 3260 | |
| 3261 | var_types dstType = treeNode->CastToType(); |
| 3262 | var_types srcType = genActualType(op1->TypeGet()); |
| 3263 | assert(!varTypeIsFloating(srcType) && varTypeIsFloating(dstType)); |
| 3264 | |
| 3265 | // force the srcType to unsigned if GT_UNSIGNED flag is set |
| 3266 | if (treeNode->gtFlags & GTF_UNSIGNED) |
| 3267 | { |
| 3268 | srcType = genUnsignedType(srcType); |
| 3269 | } |
| 3270 | |
| 3271 | // We should never see a srcType whose size is neither EA_4BYTE or EA_8BYTE |
| 3272 | emitAttr srcSize = EA_ATTR(genTypeSize(srcType)); |
| 3273 | noway_assert((srcSize == EA_4BYTE) || (srcSize == EA_8BYTE)); |
| 3274 | |
| 3275 | instruction ins = varTypeIsUnsigned(srcType) ? INS_ucvtf : INS_scvtf; |
| 3276 | insOpts cvtOption = INS_OPTS_NONE; // invalid value |
| 3277 | |
| 3278 | if (dstType == TYP_DOUBLE) |
| 3279 | { |
| 3280 | if (srcSize == EA_4BYTE) |
| 3281 | { |
| 3282 | cvtOption = INS_OPTS_4BYTE_TO_D; |
| 3283 | } |
| 3284 | else |
| 3285 | { |
| 3286 | assert(srcSize == EA_8BYTE); |
| 3287 | cvtOption = INS_OPTS_8BYTE_TO_D; |
| 3288 | } |
| 3289 | } |
| 3290 | else |
| 3291 | { |
| 3292 | assert(dstType == TYP_FLOAT); |
| 3293 | if (srcSize == EA_4BYTE) |
| 3294 | { |
| 3295 | cvtOption = INS_OPTS_4BYTE_TO_S; |
| 3296 | } |
| 3297 | else |
| 3298 | { |
| 3299 | assert(srcSize == EA_8BYTE); |
| 3300 | cvtOption = INS_OPTS_8BYTE_TO_S; |
| 3301 | } |
| 3302 | } |
| 3303 | |
| 3304 | genConsumeOperands(treeNode->AsOp()); |
| 3305 | |
| 3306 | getEmitter()->emitIns_R_R(ins, emitActualTypeSize(dstType), treeNode->gtRegNum, op1->gtRegNum, cvtOption); |
| 3307 | |
| 3308 | genProduceReg(treeNode); |
| 3309 | } |
| 3310 | |
| 3311 | //------------------------------------------------------------------------ |
| 3312 | // genFloatToIntCast: Generate code to cast float/double to int/long |
| 3313 | // |
| 3314 | // Arguments: |
| 3315 | // treeNode - The GT_CAST node |
| 3316 | // |
| 3317 | // Return Value: |
| 3318 | // None. |
| 3319 | // |
| 3320 | // Assumptions: |
| 3321 | // Cast is a non-overflow conversion. |
| 3322 | // The treeNode must have an assigned register. |
| 3323 | // SrcType=float/double and DstType= int32/uint32/int64/uint64 |
| 3324 | // |
| 3325 | void CodeGen::genFloatToIntCast(GenTree* treeNode) |
| 3326 | { |
| 3327 | // we don't expect to see overflow detecting float/double --> int type conversions here |
| 3328 | // as they should have been converted into helper calls by front-end. |
| 3329 | assert(treeNode->OperGet() == GT_CAST); |
| 3330 | assert(!treeNode->gtOverflow()); |
| 3331 | |
| 3332 | regNumber targetReg = treeNode->gtRegNum; |
| 3333 | assert(genIsValidIntReg(targetReg)); // Must be a valid int reg. |
| 3334 | |
| 3335 | GenTree* op1 = treeNode->gtOp.gtOp1; |
| 3336 | assert(!op1->isContained()); // Cannot be contained |
| 3337 | assert(genIsValidFloatReg(op1->gtRegNum)); // Must be a valid float reg. |
| 3338 | |
| 3339 | var_types dstType = treeNode->CastToType(); |
| 3340 | var_types srcType = op1->TypeGet(); |
| 3341 | assert(varTypeIsFloating(srcType) && !varTypeIsFloating(dstType)); |
| 3342 | |
| 3343 | // We should never see a dstType whose size is neither EA_4BYTE or EA_8BYTE |
| 3344 | // For conversions to small types (byte/sbyte/int16/uint16) from float/double, |
| 3345 | // we expect the front-end or lowering phase to have generated two levels of cast. |
| 3346 | // |
| 3347 | emitAttr dstSize = EA_ATTR(genTypeSize(dstType)); |
| 3348 | noway_assert((dstSize == EA_4BYTE) || (dstSize == EA_8BYTE)); |
| 3349 | |
| 3350 | instruction ins = INS_fcvtzs; // default to sign converts |
| 3351 | insOpts cvtOption = INS_OPTS_NONE; // invalid value |
| 3352 | |
| 3353 | if (varTypeIsUnsigned(dstType)) |
| 3354 | { |
| 3355 | ins = INS_fcvtzu; // use unsigned converts |
| 3356 | } |
| 3357 | |
| 3358 | if (srcType == TYP_DOUBLE) |
| 3359 | { |
| 3360 | if (dstSize == EA_4BYTE) |
| 3361 | { |
| 3362 | cvtOption = INS_OPTS_D_TO_4BYTE; |
| 3363 | } |
| 3364 | else |
| 3365 | { |
| 3366 | assert(dstSize == EA_8BYTE); |
| 3367 | cvtOption = INS_OPTS_D_TO_8BYTE; |
| 3368 | } |
| 3369 | } |
| 3370 | else |
| 3371 | { |
| 3372 | assert(srcType == TYP_FLOAT); |
| 3373 | if (dstSize == EA_4BYTE) |
| 3374 | { |
| 3375 | cvtOption = INS_OPTS_S_TO_4BYTE; |
| 3376 | } |
| 3377 | else |
| 3378 | { |
| 3379 | assert(dstSize == EA_8BYTE); |
| 3380 | cvtOption = INS_OPTS_S_TO_8BYTE; |
| 3381 | } |
| 3382 | } |
| 3383 | |
| 3384 | genConsumeOperands(treeNode->AsOp()); |
| 3385 | |
| 3386 | getEmitter()->emitIns_R_R(ins, dstSize, treeNode->gtRegNum, op1->gtRegNum, cvtOption); |
| 3387 | |
| 3388 | genProduceReg(treeNode); |
| 3389 | } |
| 3390 | |
| 3391 | //------------------------------------------------------------------------ |
| 3392 | // genCkfinite: Generate code for ckfinite opcode. |
| 3393 | // |
| 3394 | // Arguments: |
| 3395 | // treeNode - The GT_CKFINITE node |
| 3396 | // |
| 3397 | // Return Value: |
| 3398 | // None. |
| 3399 | // |
| 3400 | // Assumptions: |
| 3401 | // GT_CKFINITE node has reserved an internal register. |
| 3402 | // |
| 3403 | void CodeGen::genCkfinite(GenTree* treeNode) |
| 3404 | { |
| 3405 | assert(treeNode->OperGet() == GT_CKFINITE); |
| 3406 | |
| 3407 | GenTree* op1 = treeNode->gtOp.gtOp1; |
| 3408 | var_types targetType = treeNode->TypeGet(); |
| 3409 | int expMask = (targetType == TYP_FLOAT) ? 0x7F8 : 0x7FF; // Bit mask to extract exponent. |
| 3410 | int shiftAmount = targetType == TYP_FLOAT ? 20 : 52; |
| 3411 | |
| 3412 | emitter* emit = getEmitter(); |
| 3413 | |
| 3414 | // Extract exponent into a register. |
| 3415 | regNumber intReg = treeNode->GetSingleTempReg(); |
| 3416 | regNumber fpReg = genConsumeReg(op1); |
| 3417 | |
| 3418 | emit->emitIns_R_R(ins_Copy(targetType), emitActualTypeSize(treeNode), intReg, fpReg); |
| 3419 | emit->emitIns_R_R_I(INS_lsr, emitActualTypeSize(targetType), intReg, intReg, shiftAmount); |
| 3420 | |
| 3421 | // Mask of exponent with all 1's and check if the exponent is all 1's |
| 3422 | emit->emitIns_R_R_I(INS_and, EA_4BYTE, intReg, intReg, expMask); |
| 3423 | emit->emitIns_R_I(INS_cmp, EA_4BYTE, intReg, expMask); |
| 3424 | |
| 3425 | // If exponent is all 1's, throw ArithmeticException |
| 3426 | emitJumpKind jmpEqual = genJumpKindForOper(GT_EQ, CK_SIGNED); |
| 3427 | genJumpToThrowHlpBlk(jmpEqual, SCK_ARITH_EXCPN); |
| 3428 | |
| 3429 | // if it is a finite value copy it to targetReg |
| 3430 | if (treeNode->gtRegNum != fpReg) |
| 3431 | { |
| 3432 | emit->emitIns_R_R(ins_Copy(targetType), emitActualTypeSize(treeNode), treeNode->gtRegNum, fpReg); |
| 3433 | } |
| 3434 | genProduceReg(treeNode); |
| 3435 | } |
| 3436 | |
| 3437 | //------------------------------------------------------------------------ |
| 3438 | // genCodeForCompare: Produce code for a GT_EQ/GT_NE/GT_LT/GT_LE/GT_GE/GT_GT/GT_TEST_EQ/GT_TEST_NE node. |
| 3439 | // |
| 3440 | // Arguments: |
| 3441 | // tree - the node |
| 3442 | // |
| 3443 | void CodeGen::genCodeForCompare(GenTreeOp* tree) |
| 3444 | { |
| 3445 | regNumber targetReg = tree->gtRegNum; |
| 3446 | emitter* emit = getEmitter(); |
| 3447 | |
| 3448 | GenTree* op1 = tree->gtOp1; |
| 3449 | GenTree* op2 = tree->gtOp2; |
| 3450 | var_types op1Type = genActualType(op1->TypeGet()); |
| 3451 | var_types op2Type = genActualType(op2->TypeGet()); |
| 3452 | |
| 3453 | assert(!op1->isUsedFromMemory()); |
| 3454 | assert(!op2->isUsedFromMemory()); |
| 3455 | |
| 3456 | genConsumeOperands(tree); |
| 3457 | |
| 3458 | emitAttr cmpSize = EA_ATTR(genTypeSize(op1Type)); |
| 3459 | |
| 3460 | assert(genTypeSize(op1Type) == genTypeSize(op2Type)); |
| 3461 | |
| 3462 | if (varTypeIsFloating(op1Type)) |
| 3463 | { |
| 3464 | assert(varTypeIsFloating(op2Type)); |
| 3465 | assert(!op1->isContained()); |
| 3466 | assert(op1Type == op2Type); |
| 3467 | |
| 3468 | if (op2->IsIntegralConst(0)) |
| 3469 | { |
| 3470 | assert(op2->isContained()); |
| 3471 | emit->emitIns_R_F(INS_fcmp, cmpSize, op1->gtRegNum, 0.0); |
| 3472 | } |
| 3473 | else |
| 3474 | { |
| 3475 | assert(!op2->isContained()); |
| 3476 | emit->emitIns_R_R(INS_fcmp, cmpSize, op1->gtRegNum, op2->gtRegNum); |
| 3477 | } |
| 3478 | } |
| 3479 | else |
| 3480 | { |
| 3481 | assert(!varTypeIsFloating(op2Type)); |
| 3482 | // We don't support swapping op1 and op2 to generate cmp reg, imm |
| 3483 | assert(!op1->isContainedIntOrIImmed()); |
| 3484 | |
| 3485 | instruction ins = tree->OperIs(GT_TEST_EQ, GT_TEST_NE) ? INS_tst : INS_cmp; |
| 3486 | |
| 3487 | if (op2->isContainedIntOrIImmed()) |
| 3488 | { |
| 3489 | GenTreeIntConCommon* intConst = op2->AsIntConCommon(); |
| 3490 | emit->emitIns_R_I(ins, cmpSize, op1->gtRegNum, intConst->IconValue()); |
| 3491 | } |
| 3492 | else |
| 3493 | { |
| 3494 | emit->emitIns_R_R(ins, cmpSize, op1->gtRegNum, op2->gtRegNum); |
| 3495 | } |
| 3496 | } |
| 3497 | |
| 3498 | // Are we evaluating this into a register? |
| 3499 | if (targetReg != REG_NA) |
| 3500 | { |
| 3501 | genSetRegToCond(targetReg, tree); |
| 3502 | genProduceReg(tree); |
| 3503 | } |
| 3504 | } |
| 3505 | |
| 3506 | //------------------------------------------------------------------------ |
| 3507 | // genCodeForJumpCompare: Generates code for jmpCompare statement. |
| 3508 | // |
| 3509 | // A GT_JCMP node is created when a comparison and conditional branch |
| 3510 | // can be executed in a single instruction. |
| 3511 | // |
| 3512 | // Arm64 has a few instructions with this behavior. |
| 3513 | // - cbz/cbnz -- Compare and branch register zero/not zero |
| 3514 | // - tbz/tbnz -- Test and branch register bit zero/not zero |
| 3515 | // |
| 3516 | // The cbz/cbnz supports the normal +/- 1MB branch range for conditional branches |
| 3517 | // The tbz/tbnz supports a smaller +/- 32KB branch range |
| 3518 | // |
| 3519 | // A GT_JCMP cbz/cbnz node is created when there is a GT_EQ or GT_NE |
| 3520 | // integer/unsigned comparison against #0 which is used by a GT_JTRUE |
| 3521 | // condition jump node. |
| 3522 | // |
| 3523 | // A GT_JCMP tbz/tbnz node is created when there is a GT_TEST_EQ or GT_TEST_NE |
| 3524 | // integer/unsigned comparison against against a mask with a single bit set |
| 3525 | // which is used by a GT_JTRUE condition jump node. |
| 3526 | // |
| 3527 | // This node is repsonsible for consuming the register, and emitting the |
| 3528 | // appropriate fused compare/test and branch instruction |
| 3529 | // |
| 3530 | // Two flags guide code generation |
| 3531 | // GTF_JCMP_TST -- Set if this is a tbz/tbnz rather than cbz/cbnz |
| 3532 | // GTF_JCMP_EQ -- Set if this is cbz/tbz rather than cbnz/tbnz |
| 3533 | // |
| 3534 | // Arguments: |
| 3535 | // tree - The GT_JCMP tree node. |
| 3536 | // |
| 3537 | // Return Value: |
| 3538 | // None |
| 3539 | // |
| 3540 | void CodeGen::genCodeForJumpCompare(GenTreeOp* tree) |
| 3541 | { |
| 3542 | assert(compiler->compCurBB->bbJumpKind == BBJ_COND); |
| 3543 | |
| 3544 | GenTree* op1 = tree->gtGetOp1(); |
| 3545 | GenTree* op2 = tree->gtGetOp2(); |
| 3546 | |
| 3547 | assert(tree->OperIs(GT_JCMP)); |
| 3548 | assert(!varTypeIsFloating(tree)); |
| 3549 | assert(!op1->isUsedFromMemory()); |
| 3550 | assert(!op2->isUsedFromMemory()); |
| 3551 | assert(op2->IsCnsIntOrI()); |
| 3552 | assert(op2->isContained()); |
| 3553 | |
| 3554 | genConsumeOperands(tree); |
| 3555 | |
| 3556 | regNumber reg = op1->gtRegNum; |
| 3557 | emitAttr attr = emitActualTypeSize(op1->TypeGet()); |
| 3558 | |
| 3559 | if (tree->gtFlags & GTF_JCMP_TST) |
| 3560 | { |
| 3561 | ssize_t compareImm = op2->gtIntCon.IconValue(); |
| 3562 | |
| 3563 | assert(isPow2(compareImm)); |
| 3564 | |
| 3565 | instruction ins = (tree->gtFlags & GTF_JCMP_EQ) ? INS_tbz : INS_tbnz; |
| 3566 | int imm = genLog2((size_t)compareImm); |
| 3567 | |
| 3568 | getEmitter()->emitIns_J_R_I(ins, attr, compiler->compCurBB->bbJumpDest, reg, imm); |
| 3569 | } |
| 3570 | else |
| 3571 | { |
| 3572 | assert(op2->IsIntegralConst(0)); |
| 3573 | |
| 3574 | instruction ins = (tree->gtFlags & GTF_JCMP_EQ) ? INS_cbz : INS_cbnz; |
| 3575 | |
| 3576 | getEmitter()->emitIns_J_R(ins, attr, compiler->compCurBB->bbJumpDest, reg); |
| 3577 | } |
| 3578 | } |
| 3579 | |
| 3580 | int CodeGenInterface::genSPtoFPdelta() |
| 3581 | { |
| 3582 | int delta; |
| 3583 | |
| 3584 | // We place the saved frame pointer immediately above the outgoing argument space. |
| 3585 | delta = (int)compiler->lvaOutgoingArgSpaceSize; |
| 3586 | |
| 3587 | assert(delta >= 0); |
| 3588 | return delta; |
| 3589 | } |
| 3590 | |
| 3591 | //--------------------------------------------------------------------- |
| 3592 | // genTotalFrameSize - return the total size of the stack frame, including local size, |
| 3593 | // callee-saved register size, etc. |
| 3594 | // |
| 3595 | // Return value: |
| 3596 | // Total frame size |
| 3597 | // |
| 3598 | |
| 3599 | int CodeGenInterface::genTotalFrameSize() |
| 3600 | { |
| 3601 | // For varargs functions, we home all the incoming register arguments. They are not |
| 3602 | // included in the compCalleeRegsPushed count. This is like prespill on ARM32, but |
| 3603 | // since we don't use "push" instructions to save them, we don't have to do the |
| 3604 | // save of these varargs register arguments as the first thing in the prolog. |
| 3605 | |
| 3606 | assert(!IsUninitialized(compiler->compCalleeRegsPushed)); |
| 3607 | |
| 3608 | int totalFrameSize = (compiler->info.compIsVarArgs ? MAX_REG_ARG * REGSIZE_BYTES : 0) + |
| 3609 | compiler->compCalleeRegsPushed * REGSIZE_BYTES + compiler->compLclFrameSize; |
| 3610 | |
| 3611 | assert(totalFrameSize >= 0); |
| 3612 | return totalFrameSize; |
| 3613 | } |
| 3614 | |
| 3615 | //--------------------------------------------------------------------- |
| 3616 | // genCallerSPtoFPdelta - return the offset from Caller-SP to the frame pointer. |
| 3617 | // This number is going to be negative, since the Caller-SP is at a higher |
| 3618 | // address than the frame pointer. |
| 3619 | // |
| 3620 | // There must be a frame pointer to call this function! |
| 3621 | |
| 3622 | int CodeGenInterface::genCallerSPtoFPdelta() |
| 3623 | { |
| 3624 | assert(isFramePointerUsed()); |
| 3625 | int callerSPtoFPdelta; |
| 3626 | |
| 3627 | callerSPtoFPdelta = genCallerSPtoInitialSPdelta() + genSPtoFPdelta(); |
| 3628 | |
| 3629 | assert(callerSPtoFPdelta <= 0); |
| 3630 | return callerSPtoFPdelta; |
| 3631 | } |
| 3632 | |
| 3633 | //--------------------------------------------------------------------- |
| 3634 | // genCallerSPtoInitialSPdelta - return the offset from Caller-SP to Initial SP. |
| 3635 | // |
| 3636 | // This number will be negative. |
| 3637 | |
| 3638 | int CodeGenInterface::genCallerSPtoInitialSPdelta() |
| 3639 | { |
| 3640 | int callerSPtoSPdelta = 0; |
| 3641 | |
| 3642 | callerSPtoSPdelta -= genTotalFrameSize(); |
| 3643 | |
| 3644 | assert(callerSPtoSPdelta <= 0); |
| 3645 | return callerSPtoSPdelta; |
| 3646 | } |
| 3647 | |
| 3648 | /***************************************************************************** |
| 3649 | * Emit a call to a helper function. |
| 3650 | * |
| 3651 | */ |
| 3652 | |
| 3653 | void CodeGen::genEmitHelperCall(unsigned helper, int argSize, emitAttr retSize, regNumber callTargetReg /*= REG_NA */) |
| 3654 | { |
| 3655 | void* addr = nullptr; |
| 3656 | void* pAddr = nullptr; |
| 3657 | |
| 3658 | emitter::EmitCallType callType = emitter::EC_FUNC_TOKEN; |
| 3659 | addr = compiler->compGetHelperFtn((CorInfoHelpFunc)helper, &pAddr); |
| 3660 | regNumber callTarget = REG_NA; |
| 3661 | |
| 3662 | if (addr == nullptr) |
| 3663 | { |
| 3664 | // This is call to a runtime helper. |
| 3665 | // adrp x, [reloc:rel page addr] |
| 3666 | // add x, x, [reloc:page offset] |
| 3667 | // ldr x, [x] |
| 3668 | // br x |
| 3669 | |
| 3670 | if (callTargetReg == REG_NA) |
| 3671 | { |
| 3672 | // If a callTargetReg has not been explicitly provided, we will use REG_DEFAULT_HELPER_CALL_TARGET, but |
| 3673 | // this is only a valid assumption if the helper call is known to kill REG_DEFAULT_HELPER_CALL_TARGET. |
| 3674 | callTargetReg = REG_DEFAULT_HELPER_CALL_TARGET; |
| 3675 | } |
| 3676 | |
| 3677 | regMaskTP callTargetMask = genRegMask(callTargetReg); |
| 3678 | regMaskTP callKillSet = compiler->compHelperCallKillSet((CorInfoHelpFunc)helper); |
| 3679 | |
| 3680 | // assert that all registers in callTargetMask are in the callKillSet |
| 3681 | noway_assert((callTargetMask & callKillSet) == callTargetMask); |
| 3682 | |
| 3683 | callTarget = callTargetReg; |
| 3684 | |
| 3685 | // adrp + add with relocations will be emitted |
| 3686 | getEmitter()->emitIns_R_AI(INS_adrp, EA_PTR_DSP_RELOC, callTarget, (ssize_t)pAddr); |
| 3687 | getEmitter()->emitIns_R_R(INS_ldr, EA_PTRSIZE, callTarget, callTarget); |
| 3688 | callType = emitter::EC_INDIR_R; |
| 3689 | } |
| 3690 | |
| 3691 | getEmitter()->emitIns_Call(callType, compiler->eeFindHelper(helper), INDEBUG_LDISASM_COMMA(nullptr) addr, argSize, |
| 3692 | retSize, EA_UNKNOWN, gcInfo.gcVarPtrSetCur, gcInfo.gcRegGCrefSetCur, |
| 3693 | gcInfo.gcRegByrefSetCur, BAD_IL_OFFSET, /* IL offset */ |
| 3694 | callTarget, /* ireg */ |
| 3695 | REG_NA, 0, 0, /* xreg, xmul, disp */ |
| 3696 | false /* isJump */ |
| 3697 | ); |
| 3698 | |
| 3699 | regMaskTP killMask = compiler->compHelperCallKillSet((CorInfoHelpFunc)helper); |
| 3700 | regSet.verifyRegistersUsed(killMask); |
| 3701 | } |
| 3702 | |
| 3703 | #ifdef FEATURE_SIMD |
| 3704 | |
| 3705 | //------------------------------------------------------------------------ |
| 3706 | // genSIMDIntrinsic: Generate code for a SIMD Intrinsic. This is the main |
| 3707 | // routine which in turn calls appropriate genSIMDIntrinsicXXX() routine. |
| 3708 | // |
| 3709 | // Arguments: |
| 3710 | // simdNode - The GT_SIMD node |
| 3711 | // |
| 3712 | // Return Value: |
| 3713 | // None. |
| 3714 | // |
| 3715 | // Notes: |
| 3716 | // Currently, we only recognize SIMDVector<float> and SIMDVector<int>, and |
| 3717 | // a limited set of methods. |
| 3718 | // |
| 3719 | // TODO-CLEANUP Merge all versions of this function and move to new file simdcodegencommon.cpp. |
| 3720 | void CodeGen::genSIMDIntrinsic(GenTreeSIMD* simdNode) |
| 3721 | { |
| 3722 | // NYI for unsupported base types |
| 3723 | if (simdNode->gtSIMDBaseType != TYP_INT && simdNode->gtSIMDBaseType != TYP_LONG && |
| 3724 | simdNode->gtSIMDBaseType != TYP_FLOAT && simdNode->gtSIMDBaseType != TYP_DOUBLE && |
| 3725 | simdNode->gtSIMDBaseType != TYP_USHORT && simdNode->gtSIMDBaseType != TYP_UBYTE && |
| 3726 | simdNode->gtSIMDBaseType != TYP_SHORT && simdNode->gtSIMDBaseType != TYP_BYTE && |
| 3727 | simdNode->gtSIMDBaseType != TYP_UINT && simdNode->gtSIMDBaseType != TYP_ULONG) |
| 3728 | { |
| 3729 | noway_assert(!"SIMD intrinsic with unsupported base type." ); |
| 3730 | } |
| 3731 | |
| 3732 | switch (simdNode->gtSIMDIntrinsicID) |
| 3733 | { |
| 3734 | case SIMDIntrinsicInit: |
| 3735 | genSIMDIntrinsicInit(simdNode); |
| 3736 | break; |
| 3737 | |
| 3738 | case SIMDIntrinsicInitN: |
| 3739 | genSIMDIntrinsicInitN(simdNode); |
| 3740 | break; |
| 3741 | |
| 3742 | case SIMDIntrinsicSqrt: |
| 3743 | case SIMDIntrinsicAbs: |
| 3744 | case SIMDIntrinsicCast: |
| 3745 | case SIMDIntrinsicConvertToSingle: |
| 3746 | case SIMDIntrinsicConvertToInt32: |
| 3747 | case SIMDIntrinsicConvertToDouble: |
| 3748 | case SIMDIntrinsicConvertToInt64: |
| 3749 | genSIMDIntrinsicUnOp(simdNode); |
| 3750 | break; |
| 3751 | |
| 3752 | case SIMDIntrinsicWidenLo: |
| 3753 | case SIMDIntrinsicWidenHi: |
| 3754 | genSIMDIntrinsicWiden(simdNode); |
| 3755 | break; |
| 3756 | |
| 3757 | case SIMDIntrinsicNarrow: |
| 3758 | genSIMDIntrinsicNarrow(simdNode); |
| 3759 | break; |
| 3760 | |
| 3761 | case SIMDIntrinsicAdd: |
| 3762 | case SIMDIntrinsicSub: |
| 3763 | case SIMDIntrinsicMul: |
| 3764 | case SIMDIntrinsicDiv: |
| 3765 | case SIMDIntrinsicBitwiseAnd: |
| 3766 | case SIMDIntrinsicBitwiseAndNot: |
| 3767 | case SIMDIntrinsicBitwiseOr: |
| 3768 | case SIMDIntrinsicBitwiseXor: |
| 3769 | case SIMDIntrinsicMin: |
| 3770 | case SIMDIntrinsicMax: |
| 3771 | case SIMDIntrinsicEqual: |
| 3772 | case SIMDIntrinsicLessThan: |
| 3773 | case SIMDIntrinsicGreaterThan: |
| 3774 | case SIMDIntrinsicLessThanOrEqual: |
| 3775 | case SIMDIntrinsicGreaterThanOrEqual: |
| 3776 | genSIMDIntrinsicBinOp(simdNode); |
| 3777 | break; |
| 3778 | |
| 3779 | case SIMDIntrinsicOpEquality: |
| 3780 | case SIMDIntrinsicOpInEquality: |
| 3781 | genSIMDIntrinsicRelOp(simdNode); |
| 3782 | break; |
| 3783 | |
| 3784 | case SIMDIntrinsicDotProduct: |
| 3785 | genSIMDIntrinsicDotProduct(simdNode); |
| 3786 | break; |
| 3787 | |
| 3788 | case SIMDIntrinsicGetItem: |
| 3789 | genSIMDIntrinsicGetItem(simdNode); |
| 3790 | break; |
| 3791 | |
| 3792 | case SIMDIntrinsicSetX: |
| 3793 | case SIMDIntrinsicSetY: |
| 3794 | case SIMDIntrinsicSetZ: |
| 3795 | case SIMDIntrinsicSetW: |
| 3796 | genSIMDIntrinsicSetItem(simdNode); |
| 3797 | break; |
| 3798 | |
| 3799 | case SIMDIntrinsicUpperSave: |
| 3800 | genSIMDIntrinsicUpperSave(simdNode); |
| 3801 | break; |
| 3802 | |
| 3803 | case SIMDIntrinsicUpperRestore: |
| 3804 | genSIMDIntrinsicUpperRestore(simdNode); |
| 3805 | break; |
| 3806 | |
| 3807 | case SIMDIntrinsicSelect: |
| 3808 | NYI("SIMDIntrinsicSelect lowered during import to (a & sel) | (b & ~sel)" ); |
| 3809 | break; |
| 3810 | |
| 3811 | default: |
| 3812 | noway_assert(!"Unimplemented SIMD intrinsic." ); |
| 3813 | unreached(); |
| 3814 | } |
| 3815 | } |
| 3816 | |
| 3817 | insOpts CodeGen::genGetSimdInsOpt(emitAttr size, var_types elementType) |
| 3818 | { |
| 3819 | assert((size == EA_16BYTE) || (size == EA_8BYTE)); |
| 3820 | insOpts result = INS_OPTS_NONE; |
| 3821 | |
| 3822 | switch (elementType) |
| 3823 | { |
| 3824 | case TYP_DOUBLE: |
| 3825 | case TYP_ULONG: |
| 3826 | case TYP_LONG: |
| 3827 | result = (size == EA_16BYTE) ? INS_OPTS_2D : INS_OPTS_1D; |
| 3828 | break; |
| 3829 | case TYP_FLOAT: |
| 3830 | case TYP_UINT: |
| 3831 | case TYP_INT: |
| 3832 | result = (size == EA_16BYTE) ? INS_OPTS_4S : INS_OPTS_2S; |
| 3833 | break; |
| 3834 | case TYP_USHORT: |
| 3835 | case TYP_SHORT: |
| 3836 | result = (size == EA_16BYTE) ? INS_OPTS_8H : INS_OPTS_4H; |
| 3837 | break; |
| 3838 | case TYP_UBYTE: |
| 3839 | case TYP_BYTE: |
| 3840 | result = (size == EA_16BYTE) ? INS_OPTS_16B : INS_OPTS_8B; |
| 3841 | break; |
| 3842 | default: |
| 3843 | assert(!"Unsupported element type" ); |
| 3844 | unreached(); |
| 3845 | } |
| 3846 | |
| 3847 | return result; |
| 3848 | } |
| 3849 | |
| 3850 | // getOpForSIMDIntrinsic: return the opcode for the given SIMD Intrinsic |
| 3851 | // |
| 3852 | // Arguments: |
| 3853 | // intrinsicId - SIMD intrinsic Id |
| 3854 | // baseType - Base type of the SIMD vector |
| 3855 | // immed - Out param. Any immediate byte operand that needs to be passed to SSE2 opcode |
| 3856 | // |
| 3857 | // |
| 3858 | // Return Value: |
| 3859 | // Instruction (op) to be used, and immed is set if instruction requires an immediate operand. |
| 3860 | // |
| 3861 | instruction CodeGen::getOpForSIMDIntrinsic(SIMDIntrinsicID intrinsicId, var_types baseType, unsigned* ival /*=nullptr*/) |
| 3862 | { |
| 3863 | instruction result = INS_invalid; |
| 3864 | if (varTypeIsFloating(baseType)) |
| 3865 | { |
| 3866 | switch (intrinsicId) |
| 3867 | { |
| 3868 | case SIMDIntrinsicAbs: |
| 3869 | result = INS_fabs; |
| 3870 | break; |
| 3871 | case SIMDIntrinsicAdd: |
| 3872 | result = INS_fadd; |
| 3873 | break; |
| 3874 | case SIMDIntrinsicBitwiseAnd: |
| 3875 | result = INS_and; |
| 3876 | break; |
| 3877 | case SIMDIntrinsicBitwiseAndNot: |
| 3878 | result = INS_bic; |
| 3879 | break; |
| 3880 | case SIMDIntrinsicBitwiseOr: |
| 3881 | result = INS_orr; |
| 3882 | break; |
| 3883 | case SIMDIntrinsicBitwiseXor: |
| 3884 | result = INS_eor; |
| 3885 | break; |
| 3886 | case SIMDIntrinsicCast: |
| 3887 | result = INS_mov; |
| 3888 | break; |
| 3889 | case SIMDIntrinsicConvertToInt32: |
| 3890 | case SIMDIntrinsicConvertToInt64: |
| 3891 | result = INS_fcvtns; |
| 3892 | break; |
| 3893 | case SIMDIntrinsicDiv: |
| 3894 | result = INS_fdiv; |
| 3895 | break; |
| 3896 | case SIMDIntrinsicEqual: |
| 3897 | result = INS_fcmeq; |
| 3898 | break; |
| 3899 | case SIMDIntrinsicGreaterThan: |
| 3900 | result = INS_fcmgt; |
| 3901 | break; |
| 3902 | case SIMDIntrinsicGreaterThanOrEqual: |
| 3903 | result = INS_fcmge; |
| 3904 | break; |
| 3905 | case SIMDIntrinsicLessThan: |
| 3906 | result = INS_fcmlt; |
| 3907 | break; |
| 3908 | case SIMDIntrinsicLessThanOrEqual: |
| 3909 | result = INS_fcmle; |
| 3910 | break; |
| 3911 | case SIMDIntrinsicMax: |
| 3912 | result = INS_fmax; |
| 3913 | break; |
| 3914 | case SIMDIntrinsicMin: |
| 3915 | result = INS_fmin; |
| 3916 | break; |
| 3917 | case SIMDIntrinsicMul: |
| 3918 | result = INS_fmul; |
| 3919 | break; |
| 3920 | case SIMDIntrinsicNarrow: |
| 3921 | // Use INS_fcvtn lower bytes of result followed by INS_fcvtn2 for upper bytes |
| 3922 | // Return lower bytes instruction here |
| 3923 | result = INS_fcvtn; |
| 3924 | break; |
| 3925 | case SIMDIntrinsicSelect: |
| 3926 | result = INS_bsl; |
| 3927 | break; |
| 3928 | case SIMDIntrinsicSqrt: |
| 3929 | result = INS_fsqrt; |
| 3930 | break; |
| 3931 | case SIMDIntrinsicSub: |
| 3932 | result = INS_fsub; |
| 3933 | break; |
| 3934 | case SIMDIntrinsicWidenLo: |
| 3935 | result = INS_fcvtl; |
| 3936 | break; |
| 3937 | case SIMDIntrinsicWidenHi: |
| 3938 | result = INS_fcvtl2; |
| 3939 | break; |
| 3940 | default: |
| 3941 | assert(!"Unsupported SIMD intrinsic" ); |
| 3942 | unreached(); |
| 3943 | } |
| 3944 | } |
| 3945 | else |
| 3946 | { |
| 3947 | bool isUnsigned = varTypeIsUnsigned(baseType); |
| 3948 | |
| 3949 | switch (intrinsicId) |
| 3950 | { |
| 3951 | case SIMDIntrinsicAbs: |
| 3952 | assert(!isUnsigned); |
| 3953 | result = INS_abs; |
| 3954 | break; |
| 3955 | case SIMDIntrinsicAdd: |
| 3956 | result = INS_add; |
| 3957 | break; |
| 3958 | case SIMDIntrinsicBitwiseAnd: |
| 3959 | result = INS_and; |
| 3960 | break; |
| 3961 | case SIMDIntrinsicBitwiseAndNot: |
| 3962 | result = INS_bic; |
| 3963 | break; |
| 3964 | case SIMDIntrinsicBitwiseOr: |
| 3965 | result = INS_orr; |
| 3966 | break; |
| 3967 | case SIMDIntrinsicBitwiseXor: |
| 3968 | result = INS_eor; |
| 3969 | break; |
| 3970 | case SIMDIntrinsicCast: |
| 3971 | result = INS_mov; |
| 3972 | break; |
| 3973 | case SIMDIntrinsicConvertToDouble: |
| 3974 | case SIMDIntrinsicConvertToSingle: |
| 3975 | result = isUnsigned ? INS_ucvtf : INS_scvtf; |
| 3976 | break; |
| 3977 | case SIMDIntrinsicEqual: |
| 3978 | result = INS_cmeq; |
| 3979 | break; |
| 3980 | case SIMDIntrinsicGreaterThan: |
| 3981 | result = isUnsigned ? INS_cmhi : INS_cmgt; |
| 3982 | break; |
| 3983 | case SIMDIntrinsicGreaterThanOrEqual: |
| 3984 | result = isUnsigned ? INS_cmhs : INS_cmge; |
| 3985 | break; |
| 3986 | case SIMDIntrinsicLessThan: |
| 3987 | assert(!isUnsigned); |
| 3988 | result = INS_cmlt; |
| 3989 | break; |
| 3990 | case SIMDIntrinsicLessThanOrEqual: |
| 3991 | assert(!isUnsigned); |
| 3992 | result = INS_cmle; |
| 3993 | break; |
| 3994 | case SIMDIntrinsicMax: |
| 3995 | result = isUnsigned ? INS_umax : INS_smax; |
| 3996 | break; |
| 3997 | case SIMDIntrinsicMin: |
| 3998 | result = isUnsigned ? INS_umin : INS_smin; |
| 3999 | break; |
| 4000 | case SIMDIntrinsicMul: |
| 4001 | result = INS_mul; |
| 4002 | break; |
| 4003 | case SIMDIntrinsicNarrow: |
| 4004 | // Use INS_xtn lower bytes of result followed by INS_xtn2 for upper bytes |
| 4005 | // Return lower bytes instruction here |
| 4006 | result = INS_xtn; |
| 4007 | break; |
| 4008 | case SIMDIntrinsicSelect: |
| 4009 | result = INS_bsl; |
| 4010 | break; |
| 4011 | case SIMDIntrinsicSub: |
| 4012 | result = INS_sub; |
| 4013 | break; |
| 4014 | case SIMDIntrinsicWidenLo: |
| 4015 | result = isUnsigned ? INS_uxtl : INS_sxtl; |
| 4016 | break; |
| 4017 | case SIMDIntrinsicWidenHi: |
| 4018 | result = isUnsigned ? INS_uxtl2 : INS_sxtl2; |
| 4019 | break; |
| 4020 | default: |
| 4021 | assert(!"Unsupported SIMD intrinsic" ); |
| 4022 | unreached(); |
| 4023 | } |
| 4024 | } |
| 4025 | |
| 4026 | noway_assert(result != INS_invalid); |
| 4027 | return result; |
| 4028 | } |
| 4029 | |
| 4030 | //------------------------------------------------------------------------ |
| 4031 | // genSIMDIntrinsicInit: Generate code for SIMD Intrinsic Initialize. |
| 4032 | // |
| 4033 | // Arguments: |
| 4034 | // simdNode - The GT_SIMD node |
| 4035 | // |
| 4036 | // Return Value: |
| 4037 | // None. |
| 4038 | // |
| 4039 | void CodeGen::genSIMDIntrinsicInit(GenTreeSIMD* simdNode) |
| 4040 | { |
| 4041 | assert(simdNode->gtSIMDIntrinsicID == SIMDIntrinsicInit); |
| 4042 | |
| 4043 | GenTree* op1 = simdNode->gtGetOp1(); |
| 4044 | var_types baseType = simdNode->gtSIMDBaseType; |
| 4045 | regNumber targetReg = simdNode->gtRegNum; |
| 4046 | assert(targetReg != REG_NA); |
| 4047 | var_types targetType = simdNode->TypeGet(); |
| 4048 | |
| 4049 | genConsumeOperands(simdNode); |
| 4050 | regNumber op1Reg = op1->IsIntegralConst(0) ? REG_ZR : op1->gtRegNum; |
| 4051 | |
| 4052 | // TODO-ARM64-CQ Add LD1R to allow SIMDIntrinsicInit from contained memory |
| 4053 | // TODO-ARM64-CQ Add MOVI to allow SIMDIntrinsicInit from contained immediate small constants |
| 4054 | |
| 4055 | assert(op1->isContained() == op1->IsIntegralConst(0)); |
| 4056 | assert(!op1->isUsedFromMemory()); |
| 4057 | |
| 4058 | assert(genIsValidFloatReg(targetReg)); |
| 4059 | assert(genIsValidIntReg(op1Reg) || genIsValidFloatReg(op1Reg)); |
| 4060 | |
| 4061 | emitAttr attr = (simdNode->gtSIMDSize > 8) ? EA_16BYTE : EA_8BYTE; |
| 4062 | insOpts opt = genGetSimdInsOpt(attr, baseType); |
| 4063 | |
| 4064 | if (genIsValidIntReg(op1Reg)) |
| 4065 | { |
| 4066 | getEmitter()->emitIns_R_R(INS_dup, attr, targetReg, op1Reg, opt); |
| 4067 | } |
| 4068 | else |
| 4069 | { |
| 4070 | getEmitter()->emitIns_R_R_I(INS_dup, attr, targetReg, op1Reg, 0, opt); |
| 4071 | } |
| 4072 | |
| 4073 | genProduceReg(simdNode); |
| 4074 | } |
| 4075 | |
| 4076 | //------------------------------------------------------------------------------------------- |
| 4077 | // genSIMDIntrinsicInitN: Generate code for SIMD Intrinsic Initialize for the form that takes |
| 4078 | // a number of arguments equal to the length of the Vector. |
| 4079 | // |
| 4080 | // Arguments: |
| 4081 | // simdNode - The GT_SIMD node |
| 4082 | // |
| 4083 | // Return Value: |
| 4084 | // None. |
| 4085 | // |
| 4086 | void CodeGen::genSIMDIntrinsicInitN(GenTreeSIMD* simdNode) |
| 4087 | { |
| 4088 | assert(simdNode->gtSIMDIntrinsicID == SIMDIntrinsicInitN); |
| 4089 | |
| 4090 | regNumber targetReg = simdNode->gtRegNum; |
| 4091 | assert(targetReg != REG_NA); |
| 4092 | |
| 4093 | var_types targetType = simdNode->TypeGet(); |
| 4094 | |
| 4095 | var_types baseType = simdNode->gtSIMDBaseType; |
| 4096 | |
| 4097 | regNumber vectorReg = targetReg; |
| 4098 | |
| 4099 | if (varTypeIsFloating(baseType)) |
| 4100 | { |
| 4101 | // Note that we cannot use targetReg before consuming all float source operands. |
| 4102 | // Therefore use an internal temp register |
| 4103 | vectorReg = simdNode->GetSingleTempReg(RBM_ALLFLOAT); |
| 4104 | } |
| 4105 | |
| 4106 | emitAttr baseTypeSize = emitTypeSize(baseType); |
| 4107 | |
| 4108 | // We will first consume the list items in execution (left to right) order, |
| 4109 | // and record the registers. |
| 4110 | regNumber operandRegs[FP_REGSIZE_BYTES]; |
| 4111 | unsigned initCount = 0; |
| 4112 | for (GenTree* list = simdNode->gtGetOp1(); list != nullptr; list = list->gtGetOp2()) |
| 4113 | { |
| 4114 | assert(list->OperGet() == GT_LIST); |
| 4115 | GenTree* listItem = list->gtGetOp1(); |
| 4116 | assert(listItem->TypeGet() == baseType); |
| 4117 | assert(!listItem->isContained()); |
| 4118 | regNumber operandReg = genConsumeReg(listItem); |
| 4119 | operandRegs[initCount] = operandReg; |
| 4120 | initCount++; |
| 4121 | } |
| 4122 | |
| 4123 | assert((initCount * baseTypeSize) <= simdNode->gtSIMDSize); |
| 4124 | |
| 4125 | if (initCount * baseTypeSize < EA_16BYTE) |
| 4126 | { |
| 4127 | getEmitter()->emitIns_R_I(INS_movi, EA_16BYTE, vectorReg, 0x00, INS_OPTS_16B); |
| 4128 | } |
| 4129 | |
| 4130 | if (varTypeIsIntegral(baseType)) |
| 4131 | { |
| 4132 | for (unsigned i = 0; i < initCount; i++) |
| 4133 | { |
| 4134 | getEmitter()->emitIns_R_R_I(INS_ins, baseTypeSize, vectorReg, operandRegs[i], i); |
| 4135 | } |
| 4136 | } |
| 4137 | else |
| 4138 | { |
| 4139 | for (unsigned i = 0; i < initCount; i++) |
| 4140 | { |
| 4141 | getEmitter()->emitIns_R_R_I_I(INS_ins, baseTypeSize, vectorReg, operandRegs[i], i, 0); |
| 4142 | } |
| 4143 | } |
| 4144 | |
| 4145 | // Load the initialized value. |
| 4146 | if (targetReg != vectorReg) |
| 4147 | { |
| 4148 | getEmitter()->emitIns_R_R(INS_mov, EA_16BYTE, targetReg, vectorReg); |
| 4149 | } |
| 4150 | |
| 4151 | genProduceReg(simdNode); |
| 4152 | } |
| 4153 | |
| 4154 | //---------------------------------------------------------------------------------- |
| 4155 | // genSIMDIntrinsicUnOp: Generate code for SIMD Intrinsic unary operations like sqrt. |
| 4156 | // |
| 4157 | // Arguments: |
| 4158 | // simdNode - The GT_SIMD node |
| 4159 | // |
| 4160 | // Return Value: |
| 4161 | // None. |
| 4162 | // |
| 4163 | void CodeGen::genSIMDIntrinsicUnOp(GenTreeSIMD* simdNode) |
| 4164 | { |
| 4165 | assert(simdNode->gtSIMDIntrinsicID == SIMDIntrinsicSqrt || simdNode->gtSIMDIntrinsicID == SIMDIntrinsicCast || |
| 4166 | simdNode->gtSIMDIntrinsicID == SIMDIntrinsicAbs || |
| 4167 | simdNode->gtSIMDIntrinsicID == SIMDIntrinsicConvertToSingle || |
| 4168 | simdNode->gtSIMDIntrinsicID == SIMDIntrinsicConvertToInt32 || |
| 4169 | simdNode->gtSIMDIntrinsicID == SIMDIntrinsicConvertToDouble || |
| 4170 | simdNode->gtSIMDIntrinsicID == SIMDIntrinsicConvertToInt64); |
| 4171 | |
| 4172 | GenTree* op1 = simdNode->gtGetOp1(); |
| 4173 | var_types baseType = simdNode->gtSIMDBaseType; |
| 4174 | regNumber targetReg = simdNode->gtRegNum; |
| 4175 | assert(targetReg != REG_NA); |
| 4176 | var_types targetType = simdNode->TypeGet(); |
| 4177 | |
| 4178 | genConsumeOperands(simdNode); |
| 4179 | regNumber op1Reg = op1->gtRegNum; |
| 4180 | |
| 4181 | assert(genIsValidFloatReg(op1Reg)); |
| 4182 | assert(genIsValidFloatReg(targetReg)); |
| 4183 | |
| 4184 | instruction ins = getOpForSIMDIntrinsic(simdNode->gtSIMDIntrinsicID, baseType); |
| 4185 | emitAttr attr = (simdNode->gtSIMDSize > 8) ? EA_16BYTE : EA_8BYTE; |
| 4186 | insOpts opt = (ins == INS_mov) ? INS_OPTS_NONE : genGetSimdInsOpt(attr, baseType); |
| 4187 | |
| 4188 | getEmitter()->emitIns_R_R(ins, attr, targetReg, op1Reg, opt); |
| 4189 | |
| 4190 | genProduceReg(simdNode); |
| 4191 | } |
| 4192 | |
| 4193 | //-------------------------------------------------------------------------------- |
| 4194 | // genSIMDIntrinsicWiden: Generate code for SIMD Intrinsic Widen operations |
| 4195 | // |
| 4196 | // Arguments: |
| 4197 | // simdNode - The GT_SIMD node |
| 4198 | // |
| 4199 | // Notes: |
| 4200 | // The Widen intrinsics are broken into separate intrinsics for the two results. |
| 4201 | // |
| 4202 | void CodeGen::genSIMDIntrinsicWiden(GenTreeSIMD* simdNode) |
| 4203 | { |
| 4204 | assert((simdNode->gtSIMDIntrinsicID == SIMDIntrinsicWidenLo) || |
| 4205 | (simdNode->gtSIMDIntrinsicID == SIMDIntrinsicWidenHi)); |
| 4206 | |
| 4207 | GenTree* op1 = simdNode->gtGetOp1(); |
| 4208 | var_types baseType = simdNode->gtSIMDBaseType; |
| 4209 | regNumber targetReg = simdNode->gtRegNum; |
| 4210 | assert(targetReg != REG_NA); |
| 4211 | var_types simdType = simdNode->TypeGet(); |
| 4212 | |
| 4213 | genConsumeOperands(simdNode); |
| 4214 | regNumber op1Reg = op1->gtRegNum; |
| 4215 | regNumber srcReg = op1Reg; |
| 4216 | emitAttr emitSize = emitActualTypeSize(simdType); |
| 4217 | |
| 4218 | instruction ins = getOpForSIMDIntrinsic(simdNode->gtSIMDIntrinsicID, baseType); |
| 4219 | |
| 4220 | if (varTypeIsFloating(baseType)) |
| 4221 | { |
| 4222 | getEmitter()->emitIns_R_R(ins, EA_8BYTE, targetReg, op1Reg); |
| 4223 | } |
| 4224 | else |
| 4225 | { |
| 4226 | emitAttr attr = (simdNode->gtSIMDIntrinsicID == SIMDIntrinsicWidenHi) ? EA_16BYTE : EA_8BYTE; |
| 4227 | insOpts opt = genGetSimdInsOpt(attr, baseType); |
| 4228 | |
| 4229 | getEmitter()->emitIns_R_R(ins, attr, targetReg, op1Reg, opt); |
| 4230 | } |
| 4231 | |
| 4232 | genProduceReg(simdNode); |
| 4233 | } |
| 4234 | |
| 4235 | //-------------------------------------------------------------------------------- |
| 4236 | // genSIMDIntrinsicNarrow: Generate code for SIMD Intrinsic Narrow operations |
| 4237 | // |
| 4238 | // Arguments: |
| 4239 | // simdNode - The GT_SIMD node |
| 4240 | // |
| 4241 | // Notes: |
| 4242 | // This intrinsic takes two arguments. The first operand is narrowed to produce the |
| 4243 | // lower elements of the results, and the second operand produces the high elements. |
| 4244 | // |
| 4245 | void CodeGen::genSIMDIntrinsicNarrow(GenTreeSIMD* simdNode) |
| 4246 | { |
| 4247 | assert(simdNode->gtSIMDIntrinsicID == SIMDIntrinsicNarrow); |
| 4248 | |
| 4249 | GenTree* op1 = simdNode->gtGetOp1(); |
| 4250 | GenTree* op2 = simdNode->gtGetOp2(); |
| 4251 | var_types baseType = simdNode->gtSIMDBaseType; |
| 4252 | regNumber targetReg = simdNode->gtRegNum; |
| 4253 | assert(targetReg != REG_NA); |
| 4254 | var_types simdType = simdNode->TypeGet(); |
| 4255 | emitAttr emitSize = emitTypeSize(simdType); |
| 4256 | |
| 4257 | genConsumeOperands(simdNode); |
| 4258 | regNumber op1Reg = op1->gtRegNum; |
| 4259 | regNumber op2Reg = op2->gtRegNum; |
| 4260 | |
| 4261 | assert(genIsValidFloatReg(op1Reg)); |
| 4262 | assert(genIsValidFloatReg(op2Reg)); |
| 4263 | assert(genIsValidFloatReg(targetReg)); |
| 4264 | assert(op2Reg != targetReg); |
| 4265 | assert(simdNode->gtSIMDSize == 16); |
| 4266 | |
| 4267 | instruction ins = getOpForSIMDIntrinsic(simdNode->gtSIMDIntrinsicID, baseType); |
| 4268 | assert((ins == INS_fcvtn) || (ins == INS_xtn)); |
| 4269 | |
| 4270 | if (ins == INS_fcvtn) |
| 4271 | { |
| 4272 | getEmitter()->emitIns_R_R(INS_fcvtn, EA_8BYTE, targetReg, op1Reg); |
| 4273 | getEmitter()->emitIns_R_R(INS_fcvtn2, EA_8BYTE, targetReg, op2Reg); |
| 4274 | } |
| 4275 | else |
| 4276 | { |
| 4277 | insOpts opt = INS_OPTS_NONE; |
| 4278 | insOpts opt2 = INS_OPTS_NONE; |
| 4279 | |
| 4280 | // This is not the same as genGetSimdInsOpt() |
| 4281 | // Basetype is the soure operand type |
| 4282 | // However encoding is based on the destination operand type which is 1/2 the basetype. |
| 4283 | switch (baseType) |
| 4284 | { |
| 4285 | case TYP_ULONG: |
| 4286 | case TYP_LONG: |
| 4287 | opt = INS_OPTS_2S; |
| 4288 | opt2 = INS_OPTS_4S; |
| 4289 | break; |
| 4290 | case TYP_UINT: |
| 4291 | case TYP_INT: |
| 4292 | opt = INS_OPTS_4H; |
| 4293 | opt2 = INS_OPTS_8H; |
| 4294 | break; |
| 4295 | case TYP_USHORT: |
| 4296 | case TYP_SHORT: |
| 4297 | opt = INS_OPTS_8B; |
| 4298 | opt2 = INS_OPTS_16B; |
| 4299 | break; |
| 4300 | default: |
| 4301 | assert(!"Unsupported narrowing element type" ); |
| 4302 | unreached(); |
| 4303 | } |
| 4304 | getEmitter()->emitIns_R_R(INS_xtn, EA_8BYTE, targetReg, op1Reg, opt); |
| 4305 | getEmitter()->emitIns_R_R(INS_xtn2, EA_16BYTE, targetReg, op2Reg, opt2); |
| 4306 | } |
| 4307 | |
| 4308 | genProduceReg(simdNode); |
| 4309 | } |
| 4310 | |
| 4311 | //-------------------------------------------------------------------------------- |
| 4312 | // genSIMDIntrinsicBinOp: Generate code for SIMD Intrinsic binary operations |
| 4313 | // add, sub, mul, bit-wise And, AndNot and Or. |
| 4314 | // |
| 4315 | // Arguments: |
| 4316 | // simdNode - The GT_SIMD node |
| 4317 | // |
| 4318 | // Return Value: |
| 4319 | // None. |
| 4320 | // |
| 4321 | void CodeGen::genSIMDIntrinsicBinOp(GenTreeSIMD* simdNode) |
| 4322 | { |
| 4323 | assert(simdNode->gtSIMDIntrinsicID == SIMDIntrinsicAdd || simdNode->gtSIMDIntrinsicID == SIMDIntrinsicSub || |
| 4324 | simdNode->gtSIMDIntrinsicID == SIMDIntrinsicMul || simdNode->gtSIMDIntrinsicID == SIMDIntrinsicDiv || |
| 4325 | simdNode->gtSIMDIntrinsicID == SIMDIntrinsicBitwiseAnd || |
| 4326 | simdNode->gtSIMDIntrinsicID == SIMDIntrinsicBitwiseAndNot || |
| 4327 | simdNode->gtSIMDIntrinsicID == SIMDIntrinsicBitwiseOr || |
| 4328 | simdNode->gtSIMDIntrinsicID == SIMDIntrinsicBitwiseXor || simdNode->gtSIMDIntrinsicID == SIMDIntrinsicMin || |
| 4329 | simdNode->gtSIMDIntrinsicID == SIMDIntrinsicMax || simdNode->gtSIMDIntrinsicID == SIMDIntrinsicEqual || |
| 4330 | simdNode->gtSIMDIntrinsicID == SIMDIntrinsicLessThan || |
| 4331 | simdNode->gtSIMDIntrinsicID == SIMDIntrinsicGreaterThan || |
| 4332 | simdNode->gtSIMDIntrinsicID == SIMDIntrinsicLessThanOrEqual || |
| 4333 | simdNode->gtSIMDIntrinsicID == SIMDIntrinsicGreaterThanOrEqual); |
| 4334 | |
| 4335 | GenTree* op1 = simdNode->gtGetOp1(); |
| 4336 | GenTree* op2 = simdNode->gtGetOp2(); |
| 4337 | var_types baseType = simdNode->gtSIMDBaseType; |
| 4338 | regNumber targetReg = simdNode->gtRegNum; |
| 4339 | assert(targetReg != REG_NA); |
| 4340 | var_types targetType = simdNode->TypeGet(); |
| 4341 | |
| 4342 | genConsumeOperands(simdNode); |
| 4343 | regNumber op1Reg = op1->gtRegNum; |
| 4344 | regNumber op2Reg = op2->gtRegNum; |
| 4345 | |
| 4346 | assert(genIsValidFloatReg(op1Reg)); |
| 4347 | assert(genIsValidFloatReg(op2Reg)); |
| 4348 | assert(genIsValidFloatReg(targetReg)); |
| 4349 | |
| 4350 | // TODO-ARM64-CQ Contain integer constants where posible |
| 4351 | |
| 4352 | instruction ins = getOpForSIMDIntrinsic(simdNode->gtSIMDIntrinsicID, baseType); |
| 4353 | emitAttr attr = (simdNode->gtSIMDSize > 8) ? EA_16BYTE : EA_8BYTE; |
| 4354 | insOpts opt = genGetSimdInsOpt(attr, baseType); |
| 4355 | |
| 4356 | getEmitter()->emitIns_R_R_R(ins, attr, targetReg, op1Reg, op2Reg, opt); |
| 4357 | |
| 4358 | genProduceReg(simdNode); |
| 4359 | } |
| 4360 | |
| 4361 | //-------------------------------------------------------------------------------- |
| 4362 | // genSIMDIntrinsicRelOp: Generate code for a SIMD Intrinsic relational operater |
| 4363 | // == and != |
| 4364 | // |
| 4365 | // Arguments: |
| 4366 | // simdNode - The GT_SIMD node |
| 4367 | // |
| 4368 | // Return Value: |
| 4369 | // None. |
| 4370 | // |
| 4371 | void CodeGen::genSIMDIntrinsicRelOp(GenTreeSIMD* simdNode) |
| 4372 | { |
| 4373 | assert(simdNode->gtSIMDIntrinsicID == SIMDIntrinsicOpEquality || |
| 4374 | simdNode->gtSIMDIntrinsicID == SIMDIntrinsicOpInEquality); |
| 4375 | |
| 4376 | GenTree* op1 = simdNode->gtGetOp1(); |
| 4377 | GenTree* op2 = simdNode->gtGetOp2(); |
| 4378 | var_types baseType = simdNode->gtSIMDBaseType; |
| 4379 | regNumber targetReg = simdNode->gtRegNum; |
| 4380 | var_types targetType = simdNode->TypeGet(); |
| 4381 | |
| 4382 | genConsumeOperands(simdNode); |
| 4383 | regNumber op1Reg = op1->gtRegNum; |
| 4384 | regNumber op2Reg = op2->gtRegNum; |
| 4385 | regNumber otherReg = op2Reg; |
| 4386 | |
| 4387 | instruction ins = getOpForSIMDIntrinsic(SIMDIntrinsicEqual, baseType); |
| 4388 | emitAttr attr = (simdNode->gtSIMDSize > 8) ? EA_16BYTE : EA_8BYTE; |
| 4389 | insOpts opt = genGetSimdInsOpt(attr, baseType); |
| 4390 | |
| 4391 | // TODO-ARM64-CQ Contain integer constants where posible |
| 4392 | |
| 4393 | regNumber tmpFloatReg = simdNode->GetSingleTempReg(RBM_ALLFLOAT); |
| 4394 | |
| 4395 | getEmitter()->emitIns_R_R_R(ins, attr, tmpFloatReg, op1Reg, op2Reg, opt); |
| 4396 | |
| 4397 | if ((simdNode->gtFlags & GTF_SIMD12_OP) != 0) |
| 4398 | { |
| 4399 | // For 12Byte vectors we must set upper bits to get correct comparison |
| 4400 | // We do not assume upper bits are zero. |
| 4401 | instGen_Set_Reg_To_Imm(EA_4BYTE, targetReg, -1); |
| 4402 | getEmitter()->emitIns_R_R_I(INS_ins, EA_4BYTE, tmpFloatReg, targetReg, 3); |
| 4403 | } |
| 4404 | |
| 4405 | getEmitter()->emitIns_R_R(INS_uminv, attr, tmpFloatReg, tmpFloatReg, |
| 4406 | (simdNode->gtSIMDSize > 8) ? INS_OPTS_16B : INS_OPTS_8B); |
| 4407 | |
| 4408 | getEmitter()->emitIns_R_R_I(INS_mov, EA_1BYTE, targetReg, tmpFloatReg, 0); |
| 4409 | |
| 4410 | if (simdNode->gtSIMDIntrinsicID == SIMDIntrinsicOpInEquality) |
| 4411 | { |
| 4412 | getEmitter()->emitIns_R_R_I(INS_eor, EA_4BYTE, targetReg, targetReg, 0x1); |
| 4413 | } |
| 4414 | |
| 4415 | getEmitter()->emitIns_R_R_I(INS_and, EA_4BYTE, targetReg, targetReg, 0x1); |
| 4416 | |
| 4417 | genProduceReg(simdNode); |
| 4418 | } |
| 4419 | |
| 4420 | //-------------------------------------------------------------------------------- |
| 4421 | // genSIMDIntrinsicDotProduct: Generate code for SIMD Intrinsic Dot Product. |
| 4422 | // |
| 4423 | // Arguments: |
| 4424 | // simdNode - The GT_SIMD node |
| 4425 | // |
| 4426 | // Return Value: |
| 4427 | // None. |
| 4428 | // |
| 4429 | void CodeGen::genSIMDIntrinsicDotProduct(GenTreeSIMD* simdNode) |
| 4430 | { |
| 4431 | assert(simdNode->gtSIMDIntrinsicID == SIMDIntrinsicDotProduct); |
| 4432 | |
| 4433 | GenTree* op1 = simdNode->gtGetOp1(); |
| 4434 | GenTree* op2 = simdNode->gtGetOp2(); |
| 4435 | var_types baseType = simdNode->gtSIMDBaseType; |
| 4436 | var_types simdType = op1->TypeGet(); |
| 4437 | |
| 4438 | regNumber targetReg = simdNode->gtRegNum; |
| 4439 | assert(targetReg != REG_NA); |
| 4440 | |
| 4441 | var_types targetType = simdNode->TypeGet(); |
| 4442 | assert(targetType == baseType); |
| 4443 | |
| 4444 | genConsumeOperands(simdNode); |
| 4445 | regNumber op1Reg = op1->gtRegNum; |
| 4446 | regNumber op2Reg = op2->gtRegNum; |
| 4447 | regNumber tmpReg = targetReg; |
| 4448 | |
| 4449 | if (!varTypeIsFloating(baseType)) |
| 4450 | { |
| 4451 | tmpReg = simdNode->GetSingleTempReg(RBM_ALLFLOAT); |
| 4452 | } |
| 4453 | |
| 4454 | instruction ins = getOpForSIMDIntrinsic(SIMDIntrinsicMul, baseType); |
| 4455 | emitAttr attr = (simdNode->gtSIMDSize > 8) ? EA_16BYTE : EA_8BYTE; |
| 4456 | insOpts opt = genGetSimdInsOpt(attr, baseType); |
| 4457 | |
| 4458 | // Vector multiply |
| 4459 | getEmitter()->emitIns_R_R_R(ins, attr, tmpReg, op1Reg, op2Reg, opt); |
| 4460 | |
| 4461 | if ((simdNode->gtFlags & GTF_SIMD12_OP) != 0) |
| 4462 | { |
| 4463 | // For 12Byte vectors we must zero upper bits to get correct dot product |
| 4464 | // We do not assume upper bits are zero. |
| 4465 | getEmitter()->emitIns_R_R_I(INS_ins, EA_4BYTE, tmpReg, REG_ZR, 3); |
| 4466 | } |
| 4467 | |
| 4468 | // Vector add horizontal |
| 4469 | if (varTypeIsFloating(baseType)) |
| 4470 | { |
| 4471 | if (baseType == TYP_FLOAT) |
| 4472 | { |
| 4473 | if (opt == INS_OPTS_4S) |
| 4474 | { |
| 4475 | getEmitter()->emitIns_R_R_R(INS_faddp, attr, tmpReg, tmpReg, tmpReg, INS_OPTS_4S); |
| 4476 | } |
| 4477 | getEmitter()->emitIns_R_R(INS_faddp, EA_4BYTE, targetReg, tmpReg); |
| 4478 | } |
| 4479 | else |
| 4480 | { |
| 4481 | getEmitter()->emitIns_R_R(INS_faddp, EA_8BYTE, targetReg, tmpReg); |
| 4482 | } |
| 4483 | } |
| 4484 | else |
| 4485 | { |
| 4486 | ins = varTypeIsUnsigned(baseType) ? INS_uaddlv : INS_saddlv; |
| 4487 | |
| 4488 | getEmitter()->emitIns_R_R(ins, attr, tmpReg, tmpReg, opt); |
| 4489 | |
| 4490 | // Mov to integer register |
| 4491 | if (varTypeIsUnsigned(baseType) || (genTypeSize(baseType) < 4)) |
| 4492 | { |
| 4493 | getEmitter()->emitIns_R_R_I(INS_mov, emitTypeSize(baseType), targetReg, tmpReg, 0); |
| 4494 | } |
| 4495 | else |
| 4496 | { |
| 4497 | getEmitter()->emitIns_R_R_I(INS_smov, emitActualTypeSize(baseType), targetReg, tmpReg, 0); |
| 4498 | } |
| 4499 | } |
| 4500 | |
| 4501 | genProduceReg(simdNode); |
| 4502 | } |
| 4503 | |
| 4504 | //------------------------------------------------------------------------------------ |
| 4505 | // genSIMDIntrinsicGetItem: Generate code for SIMD Intrinsic get element at index i. |
| 4506 | // |
| 4507 | // Arguments: |
| 4508 | // simdNode - The GT_SIMD node |
| 4509 | // |
| 4510 | // Return Value: |
| 4511 | // None. |
| 4512 | // |
| 4513 | void CodeGen::genSIMDIntrinsicGetItem(GenTreeSIMD* simdNode) |
| 4514 | { |
| 4515 | assert(simdNode->gtSIMDIntrinsicID == SIMDIntrinsicGetItem); |
| 4516 | |
| 4517 | GenTree* op1 = simdNode->gtGetOp1(); |
| 4518 | GenTree* op2 = simdNode->gtGetOp2(); |
| 4519 | var_types simdType = op1->TypeGet(); |
| 4520 | assert(varTypeIsSIMD(simdType)); |
| 4521 | |
| 4522 | // op1 of TYP_SIMD12 should be considered as TYP_SIMD16 |
| 4523 | if (simdType == TYP_SIMD12) |
| 4524 | { |
| 4525 | simdType = TYP_SIMD16; |
| 4526 | } |
| 4527 | |
| 4528 | var_types baseType = simdNode->gtSIMDBaseType; |
| 4529 | regNumber targetReg = simdNode->gtRegNum; |
| 4530 | assert(targetReg != REG_NA); |
| 4531 | var_types targetType = simdNode->TypeGet(); |
| 4532 | assert(targetType == genActualType(baseType)); |
| 4533 | |
| 4534 | // GetItem has 2 operands: |
| 4535 | // - the source of SIMD type (op1) |
| 4536 | // - the index of the value to be returned. |
| 4537 | genConsumeOperands(simdNode); |
| 4538 | |
| 4539 | emitAttr baseTypeSize = emitTypeSize(baseType); |
| 4540 | unsigned baseTypeScale = genLog2(EA_SIZE_IN_BYTES(baseTypeSize)); |
| 4541 | |
| 4542 | if (op2->IsCnsIntOrI()) |
| 4543 | { |
| 4544 | assert(op2->isContained()); |
| 4545 | |
| 4546 | ssize_t index = op2->gtIntCon.gtIconVal; |
| 4547 | |
| 4548 | // We only need to generate code for the get if the index is valid |
| 4549 | // If the index is invalid, previously generated for the range check will throw |
| 4550 | if (getEmitter()->isValidVectorIndex(emitTypeSize(simdType), baseTypeSize, index)) |
| 4551 | { |
| 4552 | if (op1->isContained()) |
| 4553 | { |
| 4554 | int offset = (int)index * genTypeSize(baseType); |
| 4555 | instruction ins = ins_Load(baseType); |
| 4556 | baseTypeSize = varTypeIsFloating(baseType) |
| 4557 | ? baseTypeSize |
| 4558 | : getEmitter()->emitInsAdjustLoadStoreAttr(ins, baseTypeSize); |
| 4559 | |
| 4560 | assert(!op1->isUsedFromReg()); |
| 4561 | |
| 4562 | if (op1->OperIsLocal()) |
| 4563 | { |
| 4564 | unsigned varNum = op1->gtLclVarCommon.gtLclNum; |
| 4565 | |
| 4566 | getEmitter()->emitIns_R_S(ins, baseTypeSize, targetReg, varNum, offset); |
| 4567 | } |
| 4568 | else |
| 4569 | { |
| 4570 | assert(op1->OperGet() == GT_IND); |
| 4571 | |
| 4572 | GenTree* addr = op1->AsIndir()->Addr(); |
| 4573 | assert(!addr->isContained()); |
| 4574 | regNumber baseReg = addr->gtRegNum; |
| 4575 | |
| 4576 | // ldr targetReg, [baseReg, #offset] |
| 4577 | getEmitter()->emitIns_R_R_I(ins, baseTypeSize, targetReg, baseReg, offset); |
| 4578 | } |
| 4579 | } |
| 4580 | else |
| 4581 | { |
| 4582 | assert(op1->isUsedFromReg()); |
| 4583 | regNumber srcReg = op1->gtRegNum; |
| 4584 | |
| 4585 | instruction ins; |
| 4586 | if (varTypeIsFloating(baseType)) |
| 4587 | { |
| 4588 | assert(genIsValidFloatReg(targetReg)); |
| 4589 | // dup targetReg, srcReg[#index] |
| 4590 | ins = INS_dup; |
| 4591 | } |
| 4592 | else |
| 4593 | { |
| 4594 | assert(genIsValidIntReg(targetReg)); |
| 4595 | if (varTypeIsUnsigned(baseType) || (baseTypeSize == EA_8BYTE)) |
| 4596 | { |
| 4597 | // umov targetReg, srcReg[#index] |
| 4598 | ins = INS_umov; |
| 4599 | } |
| 4600 | else |
| 4601 | { |
| 4602 | // smov targetReg, srcReg[#index] |
| 4603 | ins = INS_smov; |
| 4604 | } |
| 4605 | } |
| 4606 | getEmitter()->emitIns_R_R_I(ins, baseTypeSize, targetReg, srcReg, index); |
| 4607 | } |
| 4608 | } |
| 4609 | } |
| 4610 | else |
| 4611 | { |
| 4612 | assert(!op2->isContained()); |
| 4613 | |
| 4614 | regNumber baseReg = REG_NA; |
| 4615 | regNumber indexReg = op2->gtRegNum; |
| 4616 | |
| 4617 | if (op1->isContained()) |
| 4618 | { |
| 4619 | // Optimize the case of op1 is in memory and trying to access ith element. |
| 4620 | assert(!op1->isUsedFromReg()); |
| 4621 | if (op1->OperIsLocal()) |
| 4622 | { |
| 4623 | unsigned varNum = op1->gtLclVarCommon.gtLclNum; |
| 4624 | |
| 4625 | baseReg = simdNode->ExtractTempReg(); |
| 4626 | |
| 4627 | // Load the address of varNum |
| 4628 | getEmitter()->emitIns_R_S(INS_lea, EA_PTRSIZE, baseReg, varNum, 0); |
| 4629 | } |
| 4630 | else |
| 4631 | { |
| 4632 | // Require GT_IND addr to be not contained. |
| 4633 | assert(op1->OperGet() == GT_IND); |
| 4634 | |
| 4635 | GenTree* addr = op1->AsIndir()->Addr(); |
| 4636 | assert(!addr->isContained()); |
| 4637 | |
| 4638 | baseReg = addr->gtRegNum; |
| 4639 | } |
| 4640 | } |
| 4641 | else |
| 4642 | { |
| 4643 | assert(op1->isUsedFromReg()); |
| 4644 | regNumber srcReg = op1->gtRegNum; |
| 4645 | |
| 4646 | unsigned simdInitTempVarNum = compiler->lvaSIMDInitTempVarNum; |
| 4647 | noway_assert(compiler->lvaSIMDInitTempVarNum != BAD_VAR_NUM); |
| 4648 | |
| 4649 | baseReg = simdNode->ExtractTempReg(); |
| 4650 | |
| 4651 | // Load the address of simdInitTempVarNum |
| 4652 | getEmitter()->emitIns_R_S(INS_lea, EA_PTRSIZE, baseReg, simdInitTempVarNum, 0); |
| 4653 | |
| 4654 | // Store the vector to simdInitTempVarNum |
| 4655 | getEmitter()->emitIns_R_R(INS_str, emitTypeSize(simdType), srcReg, baseReg); |
| 4656 | } |
| 4657 | |
| 4658 | assert(genIsValidIntReg(indexReg)); |
| 4659 | assert(genIsValidIntReg(baseReg)); |
| 4660 | assert(baseReg != indexReg); |
| 4661 | |
| 4662 | // Load item at baseReg[index] |
| 4663 | getEmitter()->emitIns_R_R_R_Ext(ins_Load(baseType), baseTypeSize, targetReg, baseReg, indexReg, INS_OPTS_LSL, |
| 4664 | baseTypeScale); |
| 4665 | } |
| 4666 | |
| 4667 | genProduceReg(simdNode); |
| 4668 | } |
| 4669 | |
| 4670 | //------------------------------------------------------------------------------------ |
| 4671 | // genSIMDIntrinsicSetItem: Generate code for SIMD Intrinsic set element at index i. |
| 4672 | // |
| 4673 | // Arguments: |
| 4674 | // simdNode - The GT_SIMD node |
| 4675 | // |
| 4676 | // Return Value: |
| 4677 | // None. |
| 4678 | // |
| 4679 | void CodeGen::genSIMDIntrinsicSetItem(GenTreeSIMD* simdNode) |
| 4680 | { |
| 4681 | // Determine index based on intrinsic ID |
| 4682 | int index = -1; |
| 4683 | switch (simdNode->gtSIMDIntrinsicID) |
| 4684 | { |
| 4685 | case SIMDIntrinsicSetX: |
| 4686 | index = 0; |
| 4687 | break; |
| 4688 | case SIMDIntrinsicSetY: |
| 4689 | index = 1; |
| 4690 | break; |
| 4691 | case SIMDIntrinsicSetZ: |
| 4692 | index = 2; |
| 4693 | break; |
| 4694 | case SIMDIntrinsicSetW: |
| 4695 | index = 3; |
| 4696 | break; |
| 4697 | |
| 4698 | default: |
| 4699 | unreached(); |
| 4700 | } |
| 4701 | assert(index != -1); |
| 4702 | |
| 4703 | // op1 is the SIMD vector |
| 4704 | // op2 is the value to be set |
| 4705 | GenTree* op1 = simdNode->gtGetOp1(); |
| 4706 | GenTree* op2 = simdNode->gtGetOp2(); |
| 4707 | |
| 4708 | var_types baseType = simdNode->gtSIMDBaseType; |
| 4709 | regNumber targetReg = simdNode->gtRegNum; |
| 4710 | assert(targetReg != REG_NA); |
| 4711 | var_types targetType = simdNode->TypeGet(); |
| 4712 | assert(varTypeIsSIMD(targetType)); |
| 4713 | |
| 4714 | assert(op2->TypeGet() == baseType); |
| 4715 | assert(simdNode->gtSIMDSize >= ((index + 1) * genTypeSize(baseType))); |
| 4716 | |
| 4717 | genConsumeOperands(simdNode); |
| 4718 | regNumber op1Reg = op1->gtRegNum; |
| 4719 | regNumber op2Reg = op2->gtRegNum; |
| 4720 | |
| 4721 | assert(genIsValidFloatReg(targetReg)); |
| 4722 | assert(genIsValidFloatReg(op1Reg)); |
| 4723 | assert(genIsValidIntReg(op2Reg) || genIsValidFloatReg(op2Reg)); |
| 4724 | assert(targetReg != op2Reg); |
| 4725 | |
| 4726 | emitAttr attr = emitTypeSize(baseType); |
| 4727 | |
| 4728 | // Insert mov if register assignment requires it |
| 4729 | getEmitter()->emitIns_R_R(INS_mov, EA_16BYTE, targetReg, op1Reg); |
| 4730 | |
| 4731 | if (genIsValidIntReg(op2Reg)) |
| 4732 | { |
| 4733 | getEmitter()->emitIns_R_R_I(INS_ins, attr, targetReg, op2Reg, index); |
| 4734 | } |
| 4735 | else |
| 4736 | { |
| 4737 | getEmitter()->emitIns_R_R_I_I(INS_ins, attr, targetReg, op2Reg, index, 0); |
| 4738 | } |
| 4739 | |
| 4740 | genProduceReg(simdNode); |
| 4741 | } |
| 4742 | |
| 4743 | //----------------------------------------------------------------------------- |
| 4744 | // genSIMDIntrinsicUpperSave: save the upper half of a TYP_SIMD16 vector to |
| 4745 | // the given register, if any, or to memory. |
| 4746 | // |
| 4747 | // Arguments: |
| 4748 | // simdNode - The GT_SIMD node |
| 4749 | // |
| 4750 | // Return Value: |
| 4751 | // None. |
| 4752 | // |
| 4753 | // Notes: |
| 4754 | // The upper half of all SIMD registers are volatile, even the callee-save registers. |
| 4755 | // When a 16-byte SIMD value is live across a call, the register allocator will use this intrinsic |
| 4756 | // to cause the upper half to be saved. It will first attempt to find another, unused, callee-save |
| 4757 | // register. If such a register cannot be found, it will save it to an available caller-save register. |
| 4758 | // In that case, this node will be marked GTF_SPILL, which will cause genProduceReg to save the 8 byte |
| 4759 | // value to the stack. (Note that if there are no caller-save registers available, the entire 16 byte |
| 4760 | // value will be spilled to the stack.) |
| 4761 | // |
| 4762 | void CodeGen::genSIMDIntrinsicUpperSave(GenTreeSIMD* simdNode) |
| 4763 | { |
| 4764 | assert(simdNode->gtSIMDIntrinsicID == SIMDIntrinsicUpperSave); |
| 4765 | |
| 4766 | GenTree* op1 = simdNode->gtGetOp1(); |
| 4767 | assert(op1->IsLocal()); |
| 4768 | assert(emitTypeSize(op1->TypeGet()) == 16); |
| 4769 | regNumber targetReg = simdNode->gtRegNum; |
| 4770 | regNumber op1Reg = genConsumeReg(op1); |
| 4771 | assert(op1Reg != REG_NA); |
| 4772 | assert(targetReg != REG_NA); |
| 4773 | getEmitter()->emitIns_R_R_I_I(INS_mov, EA_8BYTE, targetReg, op1Reg, 0, 1); |
| 4774 | |
| 4775 | genProduceReg(simdNode); |
| 4776 | } |
| 4777 | |
| 4778 | //----------------------------------------------------------------------------- |
| 4779 | // genSIMDIntrinsicUpperRestore: Restore the upper half of a TYP_SIMD16 vector to |
| 4780 | // the given register, if any, or to memory. |
| 4781 | // |
| 4782 | // Arguments: |
| 4783 | // simdNode - The GT_SIMD node |
| 4784 | // |
| 4785 | // Return Value: |
| 4786 | // None. |
| 4787 | // |
| 4788 | // Notes: |
| 4789 | // For consistency with genSIMDIntrinsicUpperSave, and to ensure that lclVar nodes always |
| 4790 | // have their home register, this node has its targetReg on the lclVar child, and its source |
| 4791 | // on the simdNode. |
| 4792 | // Regarding spill, please see the note above on genSIMDIntrinsicUpperSave. If we have spilled |
| 4793 | // an upper-half to a caller save register, this node will be marked GTF_SPILLED. However, unlike |
| 4794 | // most spill scenarios, the saved tree will be different from the restored tree, but the spill |
| 4795 | // restore logic, which is triggered by the call to genConsumeReg, requires us to provide the |
| 4796 | // spilled tree (saveNode) in order to perform the reload. We can easily find that tree, |
| 4797 | // as it is in the spill descriptor for the register from which it was saved. |
| 4798 | // |
| 4799 | void CodeGen::genSIMDIntrinsicUpperRestore(GenTreeSIMD* simdNode) |
| 4800 | { |
| 4801 | assert(simdNode->gtSIMDIntrinsicID == SIMDIntrinsicUpperRestore); |
| 4802 | |
| 4803 | GenTree* op1 = simdNode->gtGetOp1(); |
| 4804 | assert(op1->IsLocal()); |
| 4805 | assert(emitTypeSize(op1->TypeGet()) == 16); |
| 4806 | regNumber srcReg = simdNode->gtRegNum; |
| 4807 | regNumber lclVarReg = genConsumeReg(op1); |
| 4808 | unsigned varNum = op1->AsLclVarCommon()->gtLclNum; |
| 4809 | assert(lclVarReg != REG_NA); |
| 4810 | assert(srcReg != REG_NA); |
| 4811 | if (simdNode->gtFlags & GTF_SPILLED) |
| 4812 | { |
| 4813 | GenTree* saveNode = regSet.rsSpillDesc[srcReg]->spillTree; |
| 4814 | noway_assert(saveNode != nullptr && (saveNode->gtRegNum == srcReg)); |
| 4815 | genConsumeReg(saveNode); |
| 4816 | } |
| 4817 | getEmitter()->emitIns_R_R_I_I(INS_mov, EA_8BYTE, lclVarReg, srcReg, 1, 0); |
| 4818 | } |
| 4819 | |
| 4820 | //----------------------------------------------------------------------------- |
| 4821 | // genStoreIndTypeSIMD12: store indirect a TYP_SIMD12 (i.e. Vector3) to memory. |
| 4822 | // Since Vector3 is not a hardware supported write size, it is performed |
| 4823 | // as two writes: 8 byte followed by 4-byte. |
| 4824 | // |
| 4825 | // Arguments: |
| 4826 | // treeNode - tree node that is attempting to store indirect |
| 4827 | // |
| 4828 | // |
| 4829 | // Return Value: |
| 4830 | // None. |
| 4831 | // |
| 4832 | void CodeGen::genStoreIndTypeSIMD12(GenTree* treeNode) |
| 4833 | { |
| 4834 | assert(treeNode->OperGet() == GT_STOREIND); |
| 4835 | |
| 4836 | GenTree* addr = treeNode->gtOp.gtOp1; |
| 4837 | GenTree* data = treeNode->gtOp.gtOp2; |
| 4838 | |
| 4839 | // addr and data should not be contained. |
| 4840 | assert(!data->isContained()); |
| 4841 | assert(!addr->isContained()); |
| 4842 | |
| 4843 | #ifdef DEBUG |
| 4844 | // Should not require a write barrier |
| 4845 | GCInfo::WriteBarrierForm writeBarrierForm = gcInfo.gcIsWriteBarrierCandidate(treeNode, data); |
| 4846 | assert(writeBarrierForm == GCInfo::WBF_NoBarrier); |
| 4847 | #endif |
| 4848 | |
| 4849 | genConsumeOperands(treeNode->AsOp()); |
| 4850 | |
| 4851 | // Need an addtional integer register to extract upper 4 bytes from data. |
| 4852 | regNumber tmpReg = treeNode->GetSingleTempReg(); |
| 4853 | assert(tmpReg != addr->gtRegNum); |
| 4854 | |
| 4855 | // 8-byte write |
| 4856 | getEmitter()->emitIns_R_R(ins_Store(TYP_DOUBLE), EA_8BYTE, data->gtRegNum, addr->gtRegNum); |
| 4857 | |
| 4858 | // Extract upper 4-bytes from data |
| 4859 | getEmitter()->emitIns_R_R_I(INS_mov, EA_4BYTE, tmpReg, data->gtRegNum, 2); |
| 4860 | |
| 4861 | // 4-byte write |
| 4862 | getEmitter()->emitIns_R_R_I(INS_str, EA_4BYTE, tmpReg, addr->gtRegNum, 8); |
| 4863 | } |
| 4864 | |
| 4865 | //----------------------------------------------------------------------------- |
| 4866 | // genLoadIndTypeSIMD12: load indirect a TYP_SIMD12 (i.e. Vector3) value. |
| 4867 | // Since Vector3 is not a hardware supported write size, it is performed |
| 4868 | // as two loads: 8 byte followed by 4-byte. |
| 4869 | // |
| 4870 | // Arguments: |
| 4871 | // treeNode - tree node of GT_IND |
| 4872 | // |
| 4873 | // |
| 4874 | // Return Value: |
| 4875 | // None. |
| 4876 | // |
| 4877 | void CodeGen::genLoadIndTypeSIMD12(GenTree* treeNode) |
| 4878 | { |
| 4879 | assert(treeNode->OperGet() == GT_IND); |
| 4880 | |
| 4881 | GenTree* addr = treeNode->gtOp.gtOp1; |
| 4882 | regNumber targetReg = treeNode->gtRegNum; |
| 4883 | |
| 4884 | assert(!addr->isContained()); |
| 4885 | |
| 4886 | regNumber operandReg = genConsumeReg(addr); |
| 4887 | |
| 4888 | // Need an addtional int register to read upper 4 bytes, which is different from targetReg |
| 4889 | regNumber tmpReg = treeNode->GetSingleTempReg(); |
| 4890 | |
| 4891 | // 8-byte read |
| 4892 | getEmitter()->emitIns_R_R(ins_Load(TYP_DOUBLE), EA_8BYTE, targetReg, addr->gtRegNum); |
| 4893 | |
| 4894 | // 4-byte read |
| 4895 | getEmitter()->emitIns_R_R_I(INS_ldr, EA_4BYTE, tmpReg, addr->gtRegNum, 8); |
| 4896 | |
| 4897 | // Insert upper 4-bytes into data |
| 4898 | getEmitter()->emitIns_R_R_I(INS_mov, EA_4BYTE, targetReg, tmpReg, 2); |
| 4899 | |
| 4900 | genProduceReg(treeNode); |
| 4901 | } |
| 4902 | |
| 4903 | //----------------------------------------------------------------------------- |
| 4904 | // genStoreLclTypeSIMD12: store a TYP_SIMD12 (i.e. Vector3) type field. |
| 4905 | // Since Vector3 is not a hardware supported write size, it is performed |
| 4906 | // as two stores: 8 byte followed by 4-byte. |
| 4907 | // |
| 4908 | // Arguments: |
| 4909 | // treeNode - tree node that is attempting to store TYP_SIMD12 field |
| 4910 | // |
| 4911 | // Return Value: |
| 4912 | // None. |
| 4913 | // |
| 4914 | void CodeGen::genStoreLclTypeSIMD12(GenTree* treeNode) |
| 4915 | { |
| 4916 | assert((treeNode->OperGet() == GT_STORE_LCL_FLD) || (treeNode->OperGet() == GT_STORE_LCL_VAR)); |
| 4917 | |
| 4918 | unsigned offs = 0; |
| 4919 | unsigned varNum = treeNode->gtLclVarCommon.gtLclNum; |
| 4920 | assert(varNum < compiler->lvaCount); |
| 4921 | |
| 4922 | if (treeNode->OperGet() == GT_LCL_FLD) |
| 4923 | { |
| 4924 | offs = treeNode->gtLclFld.gtLclOffs; |
| 4925 | } |
| 4926 | |
| 4927 | GenTree* op1 = treeNode->gtOp.gtOp1; |
| 4928 | assert(!op1->isContained()); |
| 4929 | regNumber operandReg = genConsumeReg(op1); |
| 4930 | |
| 4931 | // Need an addtional integer register to extract upper 4 bytes from data. |
| 4932 | regNumber tmpReg = treeNode->GetSingleTempReg(); |
| 4933 | |
| 4934 | // store lower 8 bytes |
| 4935 | getEmitter()->emitIns_S_R(ins_Store(TYP_DOUBLE), EA_8BYTE, operandReg, varNum, offs); |
| 4936 | |
| 4937 | // Extract upper 4-bytes from data |
| 4938 | getEmitter()->emitIns_R_R_I(INS_mov, EA_4BYTE, tmpReg, operandReg, 2); |
| 4939 | |
| 4940 | // 4-byte write |
| 4941 | getEmitter()->emitIns_S_R(INS_str, EA_4BYTE, tmpReg, varNum, offs + 8); |
| 4942 | } |
| 4943 | |
| 4944 | #endif // FEATURE_SIMD |
| 4945 | |
| 4946 | #ifdef FEATURE_HW_INTRINSICS |
| 4947 | #include "hwintrinsic.h" |
| 4948 | |
| 4949 | instruction CodeGen::getOpForHWIntrinsic(GenTreeHWIntrinsic* node, var_types instrType) |
| 4950 | { |
| 4951 | NamedIntrinsic intrinsicID = node->gtHWIntrinsicId; |
| 4952 | |
| 4953 | unsigned int instrTypeIndex = varTypeIsFloating(instrType) ? 0 : varTypeIsUnsigned(instrType) ? 2 : 1; |
| 4954 | |
| 4955 | instruction ins = HWIntrinsicInfo::lookup(intrinsicID).instrs[instrTypeIndex]; |
| 4956 | assert(ins != INS_invalid); |
| 4957 | |
| 4958 | return ins; |
| 4959 | } |
| 4960 | |
| 4961 | //------------------------------------------------------------------------ |
| 4962 | // genHWIntrinsic: Produce code for a GT_HWIntrinsic node. |
| 4963 | // |
| 4964 | // This is the main routine which in turn calls the genHWIntrinsicXXX() routines. |
| 4965 | // |
| 4966 | // Arguments: |
| 4967 | // node - the GT_HWIntrinsic node |
| 4968 | // |
| 4969 | // Return Value: |
| 4970 | // None. |
| 4971 | // |
| 4972 | void CodeGen::genHWIntrinsic(GenTreeHWIntrinsic* node) |
| 4973 | { |
| 4974 | NamedIntrinsic intrinsicID = node->gtHWIntrinsicId; |
| 4975 | |
| 4976 | switch (HWIntrinsicInfo::lookup(intrinsicID).form) |
| 4977 | { |
| 4978 | case HWIntrinsicInfo::UnaryOp: |
| 4979 | genHWIntrinsicUnaryOp(node); |
| 4980 | break; |
| 4981 | case HWIntrinsicInfo::CrcOp: |
| 4982 | genHWIntrinsicCrcOp(node); |
| 4983 | break; |
| 4984 | case HWIntrinsicInfo::SimdBinaryOp: |
| 4985 | genHWIntrinsicSimdBinaryOp(node); |
| 4986 | break; |
| 4987 | case HWIntrinsicInfo::SimdExtractOp: |
| 4988 | genHWIntrinsicSimdExtractOp(node); |
| 4989 | break; |
| 4990 | case HWIntrinsicInfo::SimdInsertOp: |
| 4991 | genHWIntrinsicSimdInsertOp(node); |
| 4992 | break; |
| 4993 | case HWIntrinsicInfo::SimdSelectOp: |
| 4994 | genHWIntrinsicSimdSelectOp(node); |
| 4995 | break; |
| 4996 | case HWIntrinsicInfo::SimdSetAllOp: |
| 4997 | genHWIntrinsicSimdSetAllOp(node); |
| 4998 | break; |
| 4999 | case HWIntrinsicInfo::SimdUnaryOp: |
| 5000 | genHWIntrinsicSimdUnaryOp(node); |
| 5001 | break; |
| 5002 | case HWIntrinsicInfo::SimdBinaryRMWOp: |
| 5003 | genHWIntrinsicSimdBinaryRMWOp(node); |
| 5004 | break; |
| 5005 | case HWIntrinsicInfo::SimdTernaryRMWOp: |
| 5006 | genHWIntrinsicSimdTernaryRMWOp(node); |
| 5007 | break; |
| 5008 | case HWIntrinsicInfo::Sha1HashOp: |
| 5009 | genHWIntrinsicShaHashOp(node); |
| 5010 | break; |
| 5011 | case HWIntrinsicInfo::Sha1RotateOp: |
| 5012 | genHWIntrinsicShaRotateOp(node); |
| 5013 | break; |
| 5014 | |
| 5015 | default: |
| 5016 | NYI("HWIntrinsic form not implemented" ); |
| 5017 | } |
| 5018 | } |
| 5019 | |
| 5020 | //------------------------------------------------------------------------ |
| 5021 | // genHWIntrinsicUnaryOp: |
| 5022 | // |
| 5023 | // Produce code for a GT_HWIntrinsic node with form UnaryOp. |
| 5024 | // |
| 5025 | // Consumes one scalar operand produces a scalar |
| 5026 | // |
| 5027 | // Arguments: |
| 5028 | // node - the GT_HWIntrinsic node |
| 5029 | // |
| 5030 | // Return Value: |
| 5031 | // None. |
| 5032 | // |
| 5033 | void CodeGen::genHWIntrinsicUnaryOp(GenTreeHWIntrinsic* node) |
| 5034 | { |
| 5035 | GenTree* op1 = node->gtGetOp1(); |
| 5036 | regNumber targetReg = node->gtRegNum; |
| 5037 | emitAttr attr = emitActualTypeSize(op1->TypeGet()); |
| 5038 | |
| 5039 | assert(targetReg != REG_NA); |
| 5040 | var_types targetType = node->TypeGet(); |
| 5041 | |
| 5042 | genConsumeOperands(node); |
| 5043 | |
| 5044 | regNumber op1Reg = op1->gtRegNum; |
| 5045 | |
| 5046 | instruction ins = getOpForHWIntrinsic(node, node->TypeGet()); |
| 5047 | |
| 5048 | getEmitter()->emitIns_R_R(ins, attr, targetReg, op1Reg); |
| 5049 | |
| 5050 | genProduceReg(node); |
| 5051 | } |
| 5052 | |
| 5053 | //------------------------------------------------------------------------ |
| 5054 | // genHWIntrinsicCrcOp: |
| 5055 | // |
| 5056 | // Produce code for a GT_HWIntrinsic node with form CrcOp. |
| 5057 | // |
| 5058 | // Consumes two scalar operands and produces a scalar result |
| 5059 | // |
| 5060 | // This form differs from BinaryOp because the attr depends on the size of op2 |
| 5061 | // |
| 5062 | // Arguments: |
| 5063 | // node - the GT_HWIntrinsic node |
| 5064 | // |
| 5065 | // Return Value: |
| 5066 | // None. |
| 5067 | // |
| 5068 | void CodeGen::genHWIntrinsicCrcOp(GenTreeHWIntrinsic* node) |
| 5069 | { |
| 5070 | NYI("genHWIntrinsicCrcOp not implemented" ); |
| 5071 | } |
| 5072 | |
| 5073 | //------------------------------------------------------------------------ |
| 5074 | // genHWIntrinsicSimdBinaryOp: |
| 5075 | // |
| 5076 | // Produce code for a GT_HWIntrinsic node with form SimdBinaryOp. |
| 5077 | // |
| 5078 | // Consumes two SIMD operands and produces a SIMD result |
| 5079 | // |
| 5080 | // Arguments: |
| 5081 | // node - the GT_HWIntrinsic node |
| 5082 | // |
| 5083 | // Return Value: |
| 5084 | // None. |
| 5085 | // |
| 5086 | void CodeGen::genHWIntrinsicSimdBinaryOp(GenTreeHWIntrinsic* node) |
| 5087 | { |
| 5088 | GenTree* op1 = node->gtGetOp1(); |
| 5089 | GenTree* op2 = node->gtGetOp2(); |
| 5090 | var_types baseType = node->gtSIMDBaseType; |
| 5091 | regNumber targetReg = node->gtRegNum; |
| 5092 | |
| 5093 | assert(targetReg != REG_NA); |
| 5094 | var_types targetType = node->TypeGet(); |
| 5095 | |
| 5096 | genConsumeOperands(node); |
| 5097 | |
| 5098 | regNumber op1Reg = op1->gtRegNum; |
| 5099 | regNumber op2Reg = op2->gtRegNum; |
| 5100 | |
| 5101 | assert(genIsValidFloatReg(op1Reg)); |
| 5102 | assert(genIsValidFloatReg(op2Reg)); |
| 5103 | assert(genIsValidFloatReg(targetReg)); |
| 5104 | |
| 5105 | instruction ins = getOpForHWIntrinsic(node, baseType); |
| 5106 | emitAttr attr = (node->gtSIMDSize > 8) ? EA_16BYTE : EA_8BYTE; |
| 5107 | insOpts opt = genGetSimdInsOpt(attr, baseType); |
| 5108 | |
| 5109 | getEmitter()->emitIns_R_R_R(ins, attr, targetReg, op1Reg, op2Reg, opt); |
| 5110 | |
| 5111 | genProduceReg(node); |
| 5112 | } |
| 5113 | |
| 5114 | //------------------------------------------------------------------------ |
| 5115 | // genHWIntrinsicSwitchTable: |
| 5116 | // |
| 5117 | // Generate code for an immediate switch table |
| 5118 | // |
| 5119 | // In cases where an instruction only supports const immediate operands, we |
| 5120 | // need to generate functionally correct code when the operand is not constant |
| 5121 | // |
| 5122 | // This is required by the HW Intrinsic design to handle indirect calls, such as: |
| 5123 | // debugger calls |
| 5124 | // reflection |
| 5125 | // call backs |
| 5126 | // |
| 5127 | // Generated code implements a switch of this form |
| 5128 | // |
| 5129 | // switch (swReg) |
| 5130 | // { |
| 5131 | // case 0: |
| 5132 | // ins0; // emitSwCase(0) |
| 5133 | // break; |
| 5134 | // case 1: |
| 5135 | // ins1; // emitSwCase(1) |
| 5136 | // break; |
| 5137 | // ... |
| 5138 | // ... |
| 5139 | // ... |
| 5140 | // case swMax - 1: |
| 5141 | // insLast; // emitSwCase(swMax - 1) |
| 5142 | // break; |
| 5143 | // default: |
| 5144 | // throw ArgumentOutOfRangeException |
| 5145 | // } |
| 5146 | // |
| 5147 | // Generated code looks like: |
| 5148 | // |
| 5149 | // cmp swReg, #swMax |
| 5150 | // b.hs ThrowArgumentOutOfRangeExceptionHelper |
| 5151 | // adr tmpReg, labelFirst |
| 5152 | // add tmpReg, tmpReg, swReg, LSL #3 |
| 5153 | // b [tmpReg] |
| 5154 | // labelFirst: |
| 5155 | // ins0 |
| 5156 | // b labelBreakTarget |
| 5157 | // ins1 |
| 5158 | // b labelBreakTarget |
| 5159 | // ... |
| 5160 | // ... |
| 5161 | // ... |
| 5162 | // insLast |
| 5163 | // b labelBreakTarget |
| 5164 | // labelBreakTarget: |
| 5165 | // |
| 5166 | // |
| 5167 | // Arguments: |
| 5168 | // swReg - register containing the switch case to execute |
| 5169 | // tmpReg - temporary integer register for calculating the switch indirect branch target |
| 5170 | // swMax - the number of switch cases. If swReg >= swMax throw SCK_ARG_RNG_EXCPN |
| 5171 | // emitSwCase - function like argument taking an immediate value and emitting one instruction |
| 5172 | // |
| 5173 | // Return Value: |
| 5174 | // None. |
| 5175 | // |
| 5176 | template <typename HWIntrinsicSwitchCaseBody> |
| 5177 | void CodeGen::genHWIntrinsicSwitchTable(regNumber swReg, |
| 5178 | regNumber tmpReg, |
| 5179 | int swMax, |
| 5180 | HWIntrinsicSwitchCaseBody emitSwCase) |
| 5181 | { |
| 5182 | assert(swMax > 0); |
| 5183 | assert(swMax <= 256); |
| 5184 | |
| 5185 | assert(genIsValidIntReg(tmpReg)); |
| 5186 | assert(genIsValidIntReg(swReg)); |
| 5187 | |
| 5188 | BasicBlock* labelFirst = genCreateTempLabel(); |
| 5189 | BasicBlock* labelBreakTarget = genCreateTempLabel(); |
| 5190 | |
| 5191 | // Detect and throw out of range exception |
| 5192 | getEmitter()->emitIns_R_I(INS_cmp, EA_4BYTE, swReg, swMax); |
| 5193 | |
| 5194 | emitJumpKind jmpGEU = genJumpKindForOper(GT_GE, CK_UNSIGNED); |
| 5195 | genJumpToThrowHlpBlk(jmpGEU, SCK_ARG_RNG_EXCPN); |
| 5196 | |
| 5197 | // Calculate switch target |
| 5198 | labelFirst->bbFlags |= BBF_JMP_TARGET; |
| 5199 | |
| 5200 | // tmpReg = labelFirst |
| 5201 | getEmitter()->emitIns_R_L(INS_adr, EA_PTRSIZE, labelFirst, tmpReg); |
| 5202 | |
| 5203 | // tmpReg = labelFirst + swReg * 8 |
| 5204 | getEmitter()->emitIns_R_R_R_I(INS_add, EA_PTRSIZE, tmpReg, tmpReg, swReg, 3, INS_OPTS_LSL); |
| 5205 | |
| 5206 | // br tmpReg |
| 5207 | getEmitter()->emitIns_R(INS_br, EA_PTRSIZE, tmpReg); |
| 5208 | |
| 5209 | genDefineTempLabel(labelFirst); |
| 5210 | for (int i = 0; i < swMax; ++i) |
| 5211 | { |
| 5212 | unsigned prevInsCount = getEmitter()->emitInsCount; |
| 5213 | |
| 5214 | emitSwCase(i); |
| 5215 | |
| 5216 | assert(getEmitter()->emitInsCount == prevInsCount + 1); |
| 5217 | |
| 5218 | inst_JMP(EJ_jmp, labelBreakTarget); |
| 5219 | |
| 5220 | assert(getEmitter()->emitInsCount == prevInsCount + 2); |
| 5221 | } |
| 5222 | genDefineTempLabel(labelBreakTarget); |
| 5223 | } |
| 5224 | |
| 5225 | //------------------------------------------------------------------------ |
| 5226 | // genHWIntrinsicSimdExtractOp: |
| 5227 | // |
| 5228 | // Produce code for a GT_HWIntrinsic node with form SimdExtractOp. |
| 5229 | // |
| 5230 | // Consumes one SIMD operand and one scalar |
| 5231 | // |
| 5232 | // The element index operand is typically a const immediate |
| 5233 | // When it is not, a switch table is generated |
| 5234 | // |
| 5235 | // See genHWIntrinsicSwitchTable comments |
| 5236 | // |
| 5237 | // Arguments: |
| 5238 | // node - the GT_HWIntrinsic node |
| 5239 | // |
| 5240 | // Return Value: |
| 5241 | // None. |
| 5242 | // |
| 5243 | void CodeGen::(GenTreeHWIntrinsic* node) |
| 5244 | { |
| 5245 | GenTree* op1 = node->gtGetOp1(); |
| 5246 | GenTree* op2 = node->gtGetOp2(); |
| 5247 | var_types simdType = op1->TypeGet(); |
| 5248 | var_types targetType = node->TypeGet(); |
| 5249 | regNumber targetReg = node->gtRegNum; |
| 5250 | |
| 5251 | assert(targetReg != REG_NA); |
| 5252 | |
| 5253 | genConsumeOperands(node); |
| 5254 | |
| 5255 | regNumber op1Reg = op1->gtRegNum; |
| 5256 | |
| 5257 | assert(genIsValidFloatReg(op1Reg)); |
| 5258 | |
| 5259 | emitAttr baseTypeSize = emitTypeSize(targetType); |
| 5260 | |
| 5261 | int elements = emitTypeSize(simdType) / baseTypeSize; |
| 5262 | |
| 5263 | auto emitSwCase = [&](int element) { |
| 5264 | assert(element >= 0); |
| 5265 | assert(element < elements); |
| 5266 | |
| 5267 | if (varTypeIsFloating(targetType)) |
| 5268 | { |
| 5269 | assert(genIsValidFloatReg(targetReg)); |
| 5270 | getEmitter()->emitIns_R_R_I_I(INS_mov, baseTypeSize, targetReg, op1Reg, 0, element); |
| 5271 | } |
| 5272 | else if (varTypeIsUnsigned(targetType) || (baseTypeSize == EA_8BYTE)) |
| 5273 | { |
| 5274 | assert(genIsValidIntReg(targetReg)); |
| 5275 | getEmitter()->emitIns_R_R_I(INS_umov, baseTypeSize, targetReg, op1Reg, element); |
| 5276 | } |
| 5277 | else |
| 5278 | { |
| 5279 | assert(genIsValidIntReg(targetReg)); |
| 5280 | getEmitter()->emitIns_R_R_I(INS_smov, baseTypeSize, targetReg, op1Reg, element); |
| 5281 | } |
| 5282 | }; |
| 5283 | |
| 5284 | if (op2->isContainedIntOrIImmed()) |
| 5285 | { |
| 5286 | int element = (int)op2->AsIntConCommon()->IconValue(); |
| 5287 | |
| 5288 | emitSwCase(element); |
| 5289 | } |
| 5290 | else |
| 5291 | { |
| 5292 | regNumber elementReg = op2->gtRegNum; |
| 5293 | regNumber tmpReg = node->GetSingleTempReg(); |
| 5294 | |
| 5295 | genHWIntrinsicSwitchTable(elementReg, tmpReg, elements, emitSwCase); |
| 5296 | } |
| 5297 | |
| 5298 | genProduceReg(node); |
| 5299 | } |
| 5300 | |
| 5301 | //------------------------------------------------------------------------ |
| 5302 | // genHWIntrinsicSimdInsertOp: |
| 5303 | // |
| 5304 | // Produce code for a GT_HWIntrinsic node with form SimdInsertOp. |
| 5305 | // |
| 5306 | // Consumes one SIMD operand and two scalars |
| 5307 | // |
| 5308 | // The element index operand is typically a const immediate |
| 5309 | // When it is not, a switch table is generated |
| 5310 | // |
| 5311 | // See genHWIntrinsicSwitchTable comments |
| 5312 | // |
| 5313 | // Arguments: |
| 5314 | // node - the GT_HWIntrinsic node |
| 5315 | // |
| 5316 | // Return Value: |
| 5317 | // None. |
| 5318 | // |
| 5319 | void CodeGen::genHWIntrinsicSimdInsertOp(GenTreeHWIntrinsic* node) |
| 5320 | { |
| 5321 | GenTreeArgList* argList = node->gtGetOp1()->AsArgList(); |
| 5322 | GenTree* op1 = argList->Current(); |
| 5323 | GenTree* op2 = argList->Rest()->Current(); |
| 5324 | GenTree* op3 = argList->Rest()->Rest()->Current(); |
| 5325 | var_types simdType = op1->TypeGet(); |
| 5326 | var_types baseType = node->gtSIMDBaseType; |
| 5327 | regNumber targetReg = node->gtRegNum; |
| 5328 | |
| 5329 | assert(targetReg != REG_NA); |
| 5330 | |
| 5331 | genConsumeRegs(op1); |
| 5332 | genConsumeRegs(op2); |
| 5333 | genConsumeRegs(op3); |
| 5334 | |
| 5335 | regNumber op1Reg = op1->gtRegNum; |
| 5336 | |
| 5337 | assert(genIsValidFloatReg(targetReg)); |
| 5338 | assert(genIsValidFloatReg(op1Reg)); |
| 5339 | |
| 5340 | emitAttr baseTypeSize = emitTypeSize(baseType); |
| 5341 | |
| 5342 | int elements = emitTypeSize(simdType) / baseTypeSize; |
| 5343 | |
| 5344 | if (targetReg != op1Reg) |
| 5345 | { |
| 5346 | getEmitter()->emitIns_R_R(INS_mov, baseTypeSize, targetReg, op1Reg); |
| 5347 | } |
| 5348 | |
| 5349 | if (op3->isContained()) |
| 5350 | { |
| 5351 | // Handle vector element to vector element case |
| 5352 | // |
| 5353 | // If op3 is contained this is because lowering found an opportunity to contain a Simd.Extract in a Simd.Insert |
| 5354 | // |
| 5355 | regNumber op3Reg = op3->gtGetOp1()->gtRegNum; |
| 5356 | |
| 5357 | assert(genIsValidFloatReg(op3Reg)); |
| 5358 | |
| 5359 | // op3 containment currently only occurs when |
| 5360 | // + op3 is a Simd.Extract() (gtHWIntrinsicId == NI_ARM64_SIMD_GetItem) |
| 5361 | // + element & srcLane are immediate constants |
| 5362 | assert(op2->isContainedIntOrIImmed()); |
| 5363 | assert(op3->OperIs(GT_HWIntrinsic)); |
| 5364 | assert(op3->AsHWIntrinsic()->gtHWIntrinsicId == NI_ARM64_SIMD_GetItem); |
| 5365 | assert(op3->gtGetOp2()->isContainedIntOrIImmed()); |
| 5366 | |
| 5367 | int element = (int)op2->AsIntConCommon()->IconValue(); |
| 5368 | int srcLane = (int)op3->gtGetOp2()->AsIntConCommon()->IconValue(); |
| 5369 | |
| 5370 | // Emit mov targetReg[element], op3Reg[srcLane] |
| 5371 | getEmitter()->emitIns_R_R_I_I(INS_mov, baseTypeSize, targetReg, op3Reg, element, srcLane); |
| 5372 | } |
| 5373 | else |
| 5374 | { |
| 5375 | // Handle scalar to vector element case |
| 5376 | // TODO-ARM64-CQ handle containing op3 scalar const where possible |
| 5377 | regNumber op3Reg = op3->gtRegNum; |
| 5378 | |
| 5379 | auto emitSwCase = [&](int element) { |
| 5380 | assert(element >= 0); |
| 5381 | assert(element < elements); |
| 5382 | |
| 5383 | if (varTypeIsFloating(baseType)) |
| 5384 | { |
| 5385 | assert(genIsValidFloatReg(op3Reg)); |
| 5386 | getEmitter()->emitIns_R_R_I_I(INS_mov, baseTypeSize, targetReg, op3Reg, element, 0); |
| 5387 | } |
| 5388 | else |
| 5389 | { |
| 5390 | assert(genIsValidIntReg(op3Reg)); |
| 5391 | getEmitter()->emitIns_R_R_I(INS_mov, baseTypeSize, targetReg, op3Reg, element); |
| 5392 | } |
| 5393 | }; |
| 5394 | |
| 5395 | if (op2->isContainedIntOrIImmed()) |
| 5396 | { |
| 5397 | int element = (int)op2->AsIntConCommon()->IconValue(); |
| 5398 | |
| 5399 | emitSwCase(element); |
| 5400 | } |
| 5401 | else |
| 5402 | { |
| 5403 | regNumber elementReg = op2->gtRegNum; |
| 5404 | regNumber tmpReg = node->GetSingleTempReg(); |
| 5405 | |
| 5406 | genHWIntrinsicSwitchTable(elementReg, tmpReg, elements, emitSwCase); |
| 5407 | } |
| 5408 | } |
| 5409 | |
| 5410 | genProduceReg(node); |
| 5411 | } |
| 5412 | |
| 5413 | //------------------------------------------------------------------------ |
| 5414 | // genHWIntrinsicSimdSelectOp: |
| 5415 | // |
| 5416 | // Produce code for a GT_HWIntrinsic node with form SimdSelectOp. |
| 5417 | // |
| 5418 | // Consumes three SIMD operands and produces a SIMD result |
| 5419 | // |
| 5420 | // This intrinsic form requires one of the source registers to be the |
| 5421 | // destination register. Inserts a INS_mov if this requirement is not met. |
| 5422 | // |
| 5423 | // Arguments: |
| 5424 | // node - the GT_HWIntrinsic node |
| 5425 | // |
| 5426 | // Return Value: |
| 5427 | // None. |
| 5428 | // |
| 5429 | void CodeGen::genHWIntrinsicSimdSelectOp(GenTreeHWIntrinsic* node) |
| 5430 | { |
| 5431 | GenTreeArgList* argList = node->gtGetOp1()->AsArgList(); |
| 5432 | GenTree* op1 = argList->Current(); |
| 5433 | GenTree* op2 = argList->Rest()->Current(); |
| 5434 | GenTree* op3 = argList->Rest()->Rest()->Current(); |
| 5435 | var_types baseType = node->gtSIMDBaseType; |
| 5436 | regNumber targetReg = node->gtRegNum; |
| 5437 | |
| 5438 | assert(targetReg != REG_NA); |
| 5439 | var_types targetType = node->TypeGet(); |
| 5440 | |
| 5441 | genConsumeRegs(op1); |
| 5442 | genConsumeRegs(op2); |
| 5443 | genConsumeRegs(op3); |
| 5444 | |
| 5445 | regNumber op1Reg = op1->gtRegNum; |
| 5446 | regNumber op2Reg = op2->gtRegNum; |
| 5447 | regNumber op3Reg = op3->gtRegNum; |
| 5448 | |
| 5449 | assert(genIsValidFloatReg(op1Reg)); |
| 5450 | assert(genIsValidFloatReg(op2Reg)); |
| 5451 | assert(genIsValidFloatReg(op3Reg)); |
| 5452 | assert(genIsValidFloatReg(targetReg)); |
| 5453 | |
| 5454 | emitAttr attr = (node->gtSIMDSize > 8) ? EA_16BYTE : EA_8BYTE; |
| 5455 | |
| 5456 | // Arm64 has three bit select forms; each uses three source registers |
| 5457 | // One of the sources is also the destination |
| 5458 | if (targetReg == op3Reg) |
| 5459 | { |
| 5460 | // op3 is target use bit insert if true |
| 5461 | // op3 = op3 ^ (op1 & (op2 ^ op3)) |
| 5462 | getEmitter()->emitIns_R_R_R(INS_bit, attr, op3Reg, op2Reg, op1Reg); |
| 5463 | } |
| 5464 | else if (targetReg == op2Reg) |
| 5465 | { |
| 5466 | // op2 is target use bit insert if false |
| 5467 | // op2 = op2 ^ (~op1 & (op2 ^ op3)) |
| 5468 | getEmitter()->emitIns_R_R_R(INS_bif, attr, op2Reg, op3Reg, op1Reg); |
| 5469 | } |
| 5470 | else |
| 5471 | { |
| 5472 | if (targetReg != op1Reg) |
| 5473 | { |
| 5474 | // target is not one of the sources, copy op1 to use bit select form |
| 5475 | getEmitter()->emitIns_R_R(INS_mov, attr, targetReg, op1Reg); |
| 5476 | } |
| 5477 | // use bit select |
| 5478 | // targetReg = op3 ^ (targetReg & (op2 ^ op3)) |
| 5479 | getEmitter()->emitIns_R_R_R(INS_bsl, attr, targetReg, op2Reg, op3Reg); |
| 5480 | } |
| 5481 | |
| 5482 | genProduceReg(node); |
| 5483 | } |
| 5484 | |
| 5485 | //------------------------------------------------------------------------ |
| 5486 | // genHWIntrinsicSimdSetAllOp: |
| 5487 | // |
| 5488 | // Produce code for a GT_HWIntrinsic node with form SimdSetAllOp. |
| 5489 | // |
| 5490 | // Consumes single scalar operand and produces a SIMD result |
| 5491 | // |
| 5492 | // Arguments: |
| 5493 | // node - the GT_HWIntrinsic node |
| 5494 | // |
| 5495 | // Return Value: |
| 5496 | // None. |
| 5497 | // |
| 5498 | void CodeGen::genHWIntrinsicSimdSetAllOp(GenTreeHWIntrinsic* node) |
| 5499 | { |
| 5500 | GenTree* op1 = node->gtGetOp1(); |
| 5501 | var_types baseType = node->gtSIMDBaseType; |
| 5502 | regNumber targetReg = node->gtRegNum; |
| 5503 | |
| 5504 | assert(targetReg != REG_NA); |
| 5505 | var_types targetType = node->TypeGet(); |
| 5506 | |
| 5507 | genConsumeOperands(node); |
| 5508 | |
| 5509 | regNumber op1Reg = op1->gtRegNum; |
| 5510 | |
| 5511 | assert(genIsValidFloatReg(targetReg)); |
| 5512 | assert(genIsValidIntReg(op1Reg) || genIsValidFloatReg(op1Reg)); |
| 5513 | |
| 5514 | instruction ins = getOpForHWIntrinsic(node, baseType); |
| 5515 | emitAttr attr = (node->gtSIMDSize > 8) ? EA_16BYTE : EA_8BYTE; |
| 5516 | insOpts opt = genGetSimdInsOpt(attr, baseType); |
| 5517 | |
| 5518 | // TODO-ARM64-CQ Support contained immediate cases |
| 5519 | |
| 5520 | if (genIsValidIntReg(op1Reg)) |
| 5521 | { |
| 5522 | getEmitter()->emitIns_R_R(ins, attr, targetReg, op1Reg, opt); |
| 5523 | } |
| 5524 | else |
| 5525 | { |
| 5526 | getEmitter()->emitIns_R_R_I(ins, attr, targetReg, op1Reg, 0, opt); |
| 5527 | } |
| 5528 | |
| 5529 | genProduceReg(node); |
| 5530 | } |
| 5531 | |
| 5532 | //------------------------------------------------------------------------ |
| 5533 | // genHWIntrinsicSimdUnaryOp: |
| 5534 | // |
| 5535 | // Produce code for a GT_HWIntrinsic node with form SimdUnaryOp. |
| 5536 | // |
| 5537 | // Consumes single SIMD operand and produces a SIMD result |
| 5538 | // |
| 5539 | // Arguments: |
| 5540 | // node - the GT_HWIntrinsic node |
| 5541 | // |
| 5542 | // Return Value: |
| 5543 | // None. |
| 5544 | // |
| 5545 | void CodeGen::genHWIntrinsicSimdUnaryOp(GenTreeHWIntrinsic* node) |
| 5546 | { |
| 5547 | GenTree* op1 = node->gtGetOp1(); |
| 5548 | var_types baseType = node->gtSIMDBaseType; |
| 5549 | regNumber targetReg = node->gtRegNum; |
| 5550 | |
| 5551 | assert(targetReg != REG_NA); |
| 5552 | var_types targetType = node->TypeGet(); |
| 5553 | |
| 5554 | genConsumeOperands(node); |
| 5555 | |
| 5556 | regNumber op1Reg = op1->gtRegNum; |
| 5557 | |
| 5558 | assert(genIsValidFloatReg(op1Reg)); |
| 5559 | assert(genIsValidFloatReg(targetReg)); |
| 5560 | |
| 5561 | instruction ins = getOpForHWIntrinsic(node, baseType); |
| 5562 | emitAttr attr = (node->gtSIMDSize > 8) ? EA_16BYTE : EA_8BYTE; |
| 5563 | insOpts opt = genGetSimdInsOpt(attr, baseType); |
| 5564 | |
| 5565 | getEmitter()->emitIns_R_R(ins, attr, targetReg, op1Reg, opt); |
| 5566 | |
| 5567 | genProduceReg(node); |
| 5568 | } |
| 5569 | |
| 5570 | //------------------------------------------------------------------------ |
| 5571 | // genHWIntrinsicSimdBinaryRMWOp: |
| 5572 | // |
| 5573 | // Produce code for a GT_HWIntrinsic node with form SimdBinaryRMWOp. |
| 5574 | // |
| 5575 | // Consumes two SIMD operands and produces a SIMD result. |
| 5576 | // First operand is both source and destination. |
| 5577 | // |
| 5578 | // Arguments: |
| 5579 | // node - the GT_HWIntrinsic node |
| 5580 | // |
| 5581 | // Return Value: |
| 5582 | // None. |
| 5583 | // |
| 5584 | void CodeGen::genHWIntrinsicSimdBinaryRMWOp(GenTreeHWIntrinsic* node) |
| 5585 | { |
| 5586 | GenTree* op1 = node->gtGetOp1(); |
| 5587 | GenTree* op2 = node->gtGetOp2(); |
| 5588 | var_types baseType = node->gtSIMDBaseType; |
| 5589 | regNumber targetReg = node->gtRegNum; |
| 5590 | |
| 5591 | assert(targetReg != REG_NA); |
| 5592 | |
| 5593 | genConsumeOperands(node); |
| 5594 | |
| 5595 | regNumber op1Reg = op1->gtRegNum; |
| 5596 | regNumber op2Reg = op2->gtRegNum; |
| 5597 | |
| 5598 | assert(genIsValidFloatReg(op1Reg)); |
| 5599 | assert(genIsValidFloatReg(op2Reg)); |
| 5600 | assert(genIsValidFloatReg(targetReg)); |
| 5601 | |
| 5602 | instruction ins = getOpForHWIntrinsic(node, baseType); |
| 5603 | emitAttr attr = (node->gtSIMDSize > 8) ? EA_16BYTE : EA_8BYTE; |
| 5604 | insOpts opt = genGetSimdInsOpt(attr, baseType); |
| 5605 | |
| 5606 | if (targetReg != op1Reg) |
| 5607 | { |
| 5608 | getEmitter()->emitIns_R_R(INS_mov, attr, targetReg, op1Reg); |
| 5609 | } |
| 5610 | getEmitter()->emitIns_R_R(ins, attr, targetReg, op2Reg, opt); |
| 5611 | |
| 5612 | genProduceReg(node); |
| 5613 | } |
| 5614 | |
| 5615 | //------------------------------------------------------------------------ |
| 5616 | // genHWIntrinsicSimdTernaryRMWOp: |
| 5617 | // |
| 5618 | // Produce code for a GT_HWIntrinsic node with form SimdTernaryRMWOp |
| 5619 | // |
| 5620 | // Consumes three SIMD operands and produces a SIMD result. |
| 5621 | // First operand is both source and destination. |
| 5622 | // |
| 5623 | // Arguments: |
| 5624 | // node - the GT_HWIntrinsic node |
| 5625 | // |
| 5626 | // Return Value: |
| 5627 | // None. |
| 5628 | // |
| 5629 | void CodeGen::genHWIntrinsicSimdTernaryRMWOp(GenTreeHWIntrinsic* node) |
| 5630 | { |
| 5631 | GenTreeArgList* argList = node->gtGetOp1()->AsArgList(); |
| 5632 | GenTree* op1 = argList->Current(); |
| 5633 | GenTree* op2 = argList->Rest()->Current(); |
| 5634 | GenTree* op3 = argList->Rest()->Rest()->Current(); |
| 5635 | var_types baseType = node->gtSIMDBaseType; |
| 5636 | regNumber targetReg = node->gtRegNum; |
| 5637 | |
| 5638 | assert(targetReg != REG_NA); |
| 5639 | var_types targetType = node->TypeGet(); |
| 5640 | |
| 5641 | genConsumeRegs(op1); |
| 5642 | genConsumeRegs(op2); |
| 5643 | genConsumeRegs(op3); |
| 5644 | |
| 5645 | regNumber op1Reg = op1->gtRegNum; |
| 5646 | regNumber op2Reg = op2->gtRegNum; |
| 5647 | regNumber op3Reg = op3->gtRegNum; |
| 5648 | |
| 5649 | assert(genIsValidFloatReg(op1Reg)); |
| 5650 | assert(genIsValidFloatReg(op2Reg)); |
| 5651 | assert(genIsValidFloatReg(op3Reg)); |
| 5652 | assert(genIsValidFloatReg(targetReg)); |
| 5653 | assert(targetReg != op2Reg); |
| 5654 | assert(targetReg != op3Reg); |
| 5655 | |
| 5656 | instruction ins = getOpForHWIntrinsic(node, baseType); |
| 5657 | emitAttr attr = (node->gtSIMDSize > 8) ? EA_16BYTE : EA_8BYTE; |
| 5658 | |
| 5659 | if (targetReg != op1Reg) |
| 5660 | { |
| 5661 | getEmitter()->emitIns_R_R(INS_mov, attr, targetReg, op1Reg); |
| 5662 | } |
| 5663 | |
| 5664 | getEmitter()->emitIns_R_R_R(ins, attr, targetReg, op2Reg, op3Reg); |
| 5665 | |
| 5666 | genProduceReg(node); |
| 5667 | } |
| 5668 | |
| 5669 | //------------------------------------------------------------------------ |
| 5670 | // genHWIntrinsicShaHashOp: |
| 5671 | // |
| 5672 | // Produce code for a GT_HWIntrinsic node with form Sha1HashOp. |
| 5673 | // Used in Arm64 SHA1 Hash operations. |
| 5674 | // |
| 5675 | // Consumes three operands and returns a Simd result. |
| 5676 | // First Simd operand is both source and destination. |
| 5677 | // Second Operand is an unsigned int. |
| 5678 | // Third operand is a simd operand. |
| 5679 | |
| 5680 | // Arguments: |
| 5681 | // node - the GT_HWIntrinsic node |
| 5682 | // |
| 5683 | // Return Value: |
| 5684 | // None. |
| 5685 | // |
| 5686 | void CodeGen::genHWIntrinsicShaHashOp(GenTreeHWIntrinsic* node) |
| 5687 | { |
| 5688 | GenTreeArgList* argList = node->gtGetOp1()->AsArgList(); |
| 5689 | GenTree* op1 = argList->Current(); |
| 5690 | GenTree* op2 = argList->Rest()->Current(); |
| 5691 | GenTree* op3 = argList->Rest()->Rest()->Current(); |
| 5692 | var_types baseType = node->gtSIMDBaseType; |
| 5693 | regNumber targetReg = node->gtRegNum; |
| 5694 | |
| 5695 | assert(targetReg != REG_NA); |
| 5696 | var_types targetType = node->TypeGet(); |
| 5697 | |
| 5698 | genConsumeRegs(op1); |
| 5699 | genConsumeRegs(op2); |
| 5700 | genConsumeRegs(op3); |
| 5701 | |
| 5702 | regNumber op1Reg = op1->gtRegNum; |
| 5703 | regNumber op2Reg = op2->gtRegNum; |
| 5704 | regNumber op3Reg = op3->gtRegNum; |
| 5705 | |
| 5706 | assert(genIsValidFloatReg(op1Reg)); |
| 5707 | assert(genIsValidFloatReg(op3Reg)); |
| 5708 | assert(targetReg != op2Reg); |
| 5709 | assert(targetReg != op3Reg); |
| 5710 | |
| 5711 | instruction ins = getOpForHWIntrinsic(node, baseType); |
| 5712 | emitAttr attr = (node->gtSIMDSize > 8) ? EA_16BYTE : EA_8BYTE; |
| 5713 | |
| 5714 | assert(genIsValidIntReg(op2Reg)); |
| 5715 | regNumber elementReg = op2->gtRegNum; |
| 5716 | regNumber tmpReg = node->GetSingleTempReg(RBM_ALLFLOAT); |
| 5717 | |
| 5718 | getEmitter()->emitIns_R_R(INS_fmov, EA_4BYTE, tmpReg, elementReg); |
| 5719 | |
| 5720 | if (targetReg != op1Reg) |
| 5721 | { |
| 5722 | getEmitter()->emitIns_R_R(INS_mov, attr, targetReg, op1Reg); |
| 5723 | } |
| 5724 | |
| 5725 | getEmitter()->emitIns_R_R_R(ins, attr, targetReg, tmpReg, op3Reg); |
| 5726 | |
| 5727 | genProduceReg(node); |
| 5728 | } |
| 5729 | |
| 5730 | //------------------------------------------------------------------------ |
| 5731 | // genHWIntrinsicShaRotateOp: |
| 5732 | // |
| 5733 | // Produce code for a GT_HWIntrinsic node with form Sha1RotateOp. |
| 5734 | // Used in Arm64 SHA1 Rotate operations. |
| 5735 | // |
| 5736 | // Consumes one integer operand and returns unsigned int result. |
| 5737 | // |
| 5738 | // Arguments: |
| 5739 | // node - the GT_HWIntrinsic node |
| 5740 | // |
| 5741 | // Return Value: |
| 5742 | // None. |
| 5743 | // |
| 5744 | void CodeGen::genHWIntrinsicShaRotateOp(GenTreeHWIntrinsic* node) |
| 5745 | { |
| 5746 | GenTree* op1 = node->gtGetOp1(); |
| 5747 | regNumber targetReg = node->gtRegNum; |
| 5748 | emitAttr attr = emitActualTypeSize(node); |
| 5749 | |
| 5750 | assert(targetReg != REG_NA); |
| 5751 | var_types targetType = node->TypeGet(); |
| 5752 | |
| 5753 | genConsumeOperands(node); |
| 5754 | |
| 5755 | instruction ins = getOpForHWIntrinsic(node, node->TypeGet()); |
| 5756 | regNumber elementReg = op1->gtRegNum; |
| 5757 | regNumber tmpReg = node->GetSingleTempReg(RBM_ALLFLOAT); |
| 5758 | |
| 5759 | getEmitter()->emitIns_R_R(INS_fmov, EA_4BYTE, tmpReg, elementReg); |
| 5760 | getEmitter()->emitIns_R_R(ins, EA_4BYTE, tmpReg, tmpReg); |
| 5761 | getEmitter()->emitIns_R_R(INS_fmov, attr, targetReg, tmpReg); |
| 5762 | |
| 5763 | genProduceReg(node); |
| 5764 | } |
| 5765 | |
| 5766 | #endif // FEATURE_HW_INTRINSICS |
| 5767 | |
| 5768 | /***************************************************************************** |
| 5769 | * Unit testing of the ARM64 emitter: generate a bunch of instructions into the prolog |
| 5770 | * (it's as good a place as any), then use COMPlus_JitLateDisasm=* to see if the late |
| 5771 | * disassembler thinks the instructions as the same as we do. |
| 5772 | */ |
| 5773 | |
| 5774 | // Uncomment "#define ALL_ARM64_EMITTER_UNIT_TESTS" to run all the unit tests here. |
| 5775 | // After adding a unit test, and verifying it works, put it under this #ifdef, so we don't see it run every time. |
| 5776 | //#define ALL_ARM64_EMITTER_UNIT_TESTS |
| 5777 | |
| 5778 | #if defined(DEBUG) |
| 5779 | void CodeGen::genArm64EmitterUnitTests() |
| 5780 | { |
| 5781 | if (!verbose) |
| 5782 | { |
| 5783 | return; |
| 5784 | } |
| 5785 | |
| 5786 | if (!compiler->opts.altJit) |
| 5787 | { |
| 5788 | // No point doing this in a "real" JIT. |
| 5789 | return; |
| 5790 | } |
| 5791 | |
| 5792 | // Mark the "fake" instructions in the output. |
| 5793 | printf("*************** In genArm64EmitterUnitTests()\n" ); |
| 5794 | |
| 5795 | emitter* theEmitter = getEmitter(); |
| 5796 | |
| 5797 | #ifdef ALL_ARM64_EMITTER_UNIT_TESTS |
| 5798 | // We use this: |
| 5799 | // genDefineTempLabel(genCreateTempLabel()); |
| 5800 | // to create artificial labels to help separate groups of tests. |
| 5801 | |
| 5802 | // |
| 5803 | // Loads/Stores basic general register |
| 5804 | // |
| 5805 | |
| 5806 | genDefineTempLabel(genCreateTempLabel()); |
| 5807 | |
| 5808 | // ldr/str Xt, [reg] |
| 5809 | theEmitter->emitIns_R_R(INS_ldr, EA_8BYTE, REG_R8, REG_R9); |
| 5810 | theEmitter->emitIns_R_R(INS_ldrb, EA_1BYTE, REG_R8, REG_R9); |
| 5811 | theEmitter->emitIns_R_R(INS_ldrh, EA_2BYTE, REG_R8, REG_R9); |
| 5812 | theEmitter->emitIns_R_R(INS_str, EA_8BYTE, REG_R8, REG_R9); |
| 5813 | theEmitter->emitIns_R_R(INS_strb, EA_1BYTE, REG_R8, REG_R9); |
| 5814 | theEmitter->emitIns_R_R(INS_strh, EA_2BYTE, REG_R8, REG_R9); |
| 5815 | |
| 5816 | // ldr/str Wt, [reg] |
| 5817 | theEmitter->emitIns_R_R(INS_ldr, EA_4BYTE, REG_R8, REG_R9); |
| 5818 | theEmitter->emitIns_R_R(INS_ldrb, EA_1BYTE, REG_R8, REG_R9); |
| 5819 | theEmitter->emitIns_R_R(INS_ldrh, EA_2BYTE, REG_R8, REG_R9); |
| 5820 | theEmitter->emitIns_R_R(INS_str, EA_4BYTE, REG_R8, REG_R9); |
| 5821 | theEmitter->emitIns_R_R(INS_strb, EA_1BYTE, REG_R8, REG_R9); |
| 5822 | theEmitter->emitIns_R_R(INS_strh, EA_2BYTE, REG_R8, REG_R9); |
| 5823 | |
| 5824 | theEmitter->emitIns_R_R(INS_ldrsb, EA_4BYTE, REG_R8, REG_R9); // target Wt |
| 5825 | theEmitter->emitIns_R_R(INS_ldrsh, EA_4BYTE, REG_R8, REG_R9); // target Wt |
| 5826 | theEmitter->emitIns_R_R(INS_ldrsb, EA_8BYTE, REG_R8, REG_R9); // target Xt |
| 5827 | theEmitter->emitIns_R_R(INS_ldrsh, EA_8BYTE, REG_R8, REG_R9); // target Xt |
| 5828 | theEmitter->emitIns_R_R(INS_ldrsw, EA_8BYTE, REG_R8, REG_R9); // target Xt |
| 5829 | |
| 5830 | theEmitter->emitIns_R_R_I(INS_ldurb, EA_4BYTE, REG_R8, REG_R9, 1); |
| 5831 | theEmitter->emitIns_R_R_I(INS_ldurh, EA_4BYTE, REG_R8, REG_R9, 1); |
| 5832 | theEmitter->emitIns_R_R_I(INS_sturb, EA_4BYTE, REG_R8, REG_R9, 1); |
| 5833 | theEmitter->emitIns_R_R_I(INS_sturh, EA_4BYTE, REG_R8, REG_R9, 1); |
| 5834 | theEmitter->emitIns_R_R_I(INS_ldursb, EA_4BYTE, REG_R8, REG_R9, 1); |
| 5835 | theEmitter->emitIns_R_R_I(INS_ldursb, EA_8BYTE, REG_R8, REG_R9, 1); |
| 5836 | theEmitter->emitIns_R_R_I(INS_ldursh, EA_4BYTE, REG_R8, REG_R9, 1); |
| 5837 | theEmitter->emitIns_R_R_I(INS_ldursh, EA_8BYTE, REG_R8, REG_R9, 1); |
| 5838 | theEmitter->emitIns_R_R_I(INS_ldur, EA_8BYTE, REG_R8, REG_R9, 1); |
| 5839 | theEmitter->emitIns_R_R_I(INS_ldur, EA_4BYTE, REG_R8, REG_R9, 1); |
| 5840 | theEmitter->emitIns_R_R_I(INS_stur, EA_4BYTE, REG_R8, REG_R9, 1); |
| 5841 | theEmitter->emitIns_R_R_I(INS_stur, EA_8BYTE, REG_R8, REG_R9, 1); |
| 5842 | theEmitter->emitIns_R_R_I(INS_ldursw, EA_8BYTE, REG_R8, REG_R9, 1); |
| 5843 | |
| 5844 | // SP and ZR tests |
| 5845 | theEmitter->emitIns_R_R_I(INS_ldur, EA_8BYTE, REG_R8, REG_SP, 1); |
| 5846 | theEmitter->emitIns_R_R_I(INS_ldurb, EA_8BYTE, REG_ZR, REG_R9, 1); |
| 5847 | theEmitter->emitIns_R_R_I(INS_ldurh, EA_8BYTE, REG_ZR, REG_SP, 1); |
| 5848 | |
| 5849 | // scaled |
| 5850 | theEmitter->emitIns_R_R_I(INS_ldrb, EA_1BYTE, REG_R8, REG_R9, 1); |
| 5851 | theEmitter->emitIns_R_R_I(INS_ldrh, EA_2BYTE, REG_R8, REG_R9, 2); |
| 5852 | theEmitter->emitIns_R_R_I(INS_ldr, EA_4BYTE, REG_R8, REG_R9, 4); |
| 5853 | theEmitter->emitIns_R_R_I(INS_ldr, EA_8BYTE, REG_R8, REG_R9, 8); |
| 5854 | |
| 5855 | // pre-/post-indexed (unscaled) |
| 5856 | theEmitter->emitIns_R_R_I(INS_ldr, EA_4BYTE, REG_R8, REG_R9, 1, INS_OPTS_POST_INDEX); |
| 5857 | theEmitter->emitIns_R_R_I(INS_ldr, EA_4BYTE, REG_R8, REG_R9, 1, INS_OPTS_PRE_INDEX); |
| 5858 | theEmitter->emitIns_R_R_I(INS_ldr, EA_8BYTE, REG_R8, REG_R9, 1, INS_OPTS_POST_INDEX); |
| 5859 | theEmitter->emitIns_R_R_I(INS_ldr, EA_8BYTE, REG_R8, REG_R9, 1, INS_OPTS_PRE_INDEX); |
| 5860 | |
| 5861 | // ldar/stlr Rt, [reg] |
| 5862 | theEmitter->emitIns_R_R(INS_ldar, EA_8BYTE, REG_R9, REG_R8); |
| 5863 | theEmitter->emitIns_R_R(INS_ldar, EA_4BYTE, REG_R7, REG_R10); |
| 5864 | theEmitter->emitIns_R_R(INS_ldarb, EA_4BYTE, REG_R5, REG_R11); |
| 5865 | theEmitter->emitIns_R_R(INS_ldarh, EA_4BYTE, REG_R5, REG_R12); |
| 5866 | |
| 5867 | theEmitter->emitIns_R_R(INS_stlr, EA_8BYTE, REG_R9, REG_R8); |
| 5868 | theEmitter->emitIns_R_R(INS_stlr, EA_4BYTE, REG_R7, REG_R13); |
| 5869 | theEmitter->emitIns_R_R(INS_stlrb, EA_4BYTE, REG_R5, REG_R14); |
| 5870 | theEmitter->emitIns_R_R(INS_stlrh, EA_4BYTE, REG_R3, REG_R15); |
| 5871 | |
| 5872 | // ldaxr Rt, [reg] |
| 5873 | theEmitter->emitIns_R_R(INS_ldaxr, EA_8BYTE, REG_R9, REG_R8); |
| 5874 | theEmitter->emitIns_R_R(INS_ldaxr, EA_4BYTE, REG_R7, REG_R10); |
| 5875 | theEmitter->emitIns_R_R(INS_ldaxrb, EA_4BYTE, REG_R5, REG_R11); |
| 5876 | theEmitter->emitIns_R_R(INS_ldaxrh, EA_4BYTE, REG_R5, REG_R12); |
| 5877 | |
| 5878 | // ldxr Rt, [reg] |
| 5879 | theEmitter->emitIns_R_R(INS_ldxr, EA_8BYTE, REG_R9, REG_R8); |
| 5880 | theEmitter->emitIns_R_R(INS_ldxr, EA_4BYTE, REG_R7, REG_R10); |
| 5881 | theEmitter->emitIns_R_R(INS_ldxrb, EA_4BYTE, REG_R5, REG_R11); |
| 5882 | theEmitter->emitIns_R_R(INS_ldxrh, EA_4BYTE, REG_R5, REG_R12); |
| 5883 | |
| 5884 | // stxr Ws, Rt, [reg] |
| 5885 | theEmitter->emitIns_R_R_R(INS_stxr, EA_8BYTE, REG_R1, REG_R9, REG_R8); |
| 5886 | theEmitter->emitIns_R_R_R(INS_stxr, EA_4BYTE, REG_R3, REG_R7, REG_R13); |
| 5887 | theEmitter->emitIns_R_R_R(INS_stxrb, EA_4BYTE, REG_R8, REG_R5, REG_R14); |
| 5888 | theEmitter->emitIns_R_R_R(INS_stxrh, EA_4BYTE, REG_R12, REG_R3, REG_R15); |
| 5889 | |
| 5890 | // stlxr Ws, Rt, [reg] |
| 5891 | theEmitter->emitIns_R_R_R(INS_stlxr, EA_8BYTE, REG_R1, REG_R9, REG_R8); |
| 5892 | theEmitter->emitIns_R_R_R(INS_stlxr, EA_4BYTE, REG_R3, REG_R7, REG_R13); |
| 5893 | theEmitter->emitIns_R_R_R(INS_stlxrb, EA_4BYTE, REG_R8, REG_R5, REG_R14); |
| 5894 | theEmitter->emitIns_R_R_R(INS_stlxrh, EA_4BYTE, REG_R12, REG_R3, REG_R15); |
| 5895 | |
| 5896 | #endif // ALL_ARM64_EMITTER_UNIT_TESTS |
| 5897 | |
| 5898 | #ifdef ALL_ARM64_EMITTER_UNIT_TESTS |
| 5899 | // |
| 5900 | // Compares |
| 5901 | // |
| 5902 | |
| 5903 | genDefineTempLabel(genCreateTempLabel()); |
| 5904 | |
| 5905 | // cmp reg, reg |
| 5906 | theEmitter->emitIns_R_R(INS_cmp, EA_8BYTE, REG_R8, REG_R9); |
| 5907 | theEmitter->emitIns_R_R(INS_cmn, EA_8BYTE, REG_R8, REG_R9); |
| 5908 | |
| 5909 | // cmp reg, imm |
| 5910 | theEmitter->emitIns_R_I(INS_cmp, EA_8BYTE, REG_R8, 0); |
| 5911 | theEmitter->emitIns_R_I(INS_cmp, EA_8BYTE, REG_R8, 4095); |
| 5912 | theEmitter->emitIns_R_I(INS_cmp, EA_8BYTE, REG_R8, 1 << 12); |
| 5913 | theEmitter->emitIns_R_I(INS_cmp, EA_8BYTE, REG_R8, 4095 << 12); |
| 5914 | |
| 5915 | theEmitter->emitIns_R_I(INS_cmn, EA_8BYTE, REG_R8, 0); |
| 5916 | theEmitter->emitIns_R_I(INS_cmn, EA_8BYTE, REG_R8, 4095); |
| 5917 | theEmitter->emitIns_R_I(INS_cmn, EA_8BYTE, REG_R8, 1 << 12); |
| 5918 | theEmitter->emitIns_R_I(INS_cmn, EA_8BYTE, REG_R8, 4095 << 12); |
| 5919 | |
| 5920 | theEmitter->emitIns_R_I(INS_cmp, EA_8BYTE, REG_R8, -1); |
| 5921 | theEmitter->emitIns_R_I(INS_cmp, EA_8BYTE, REG_R8, -0xfff); |
| 5922 | theEmitter->emitIns_R_I(INS_cmp, EA_8BYTE, REG_R8, 0xfffffffffffff000LL); |
| 5923 | theEmitter->emitIns_R_I(INS_cmp, EA_8BYTE, REG_R8, 0xffffffffff800000LL); |
| 5924 | |
| 5925 | theEmitter->emitIns_R_I(INS_cmn, EA_8BYTE, REG_R8, -1); |
| 5926 | theEmitter->emitIns_R_I(INS_cmn, EA_8BYTE, REG_R8, -0xfff); |
| 5927 | theEmitter->emitIns_R_I(INS_cmn, EA_8BYTE, REG_R8, 0xfffffffffffff000LL); |
| 5928 | theEmitter->emitIns_R_I(INS_cmn, EA_8BYTE, REG_R8, 0xffffffffff800000LL); |
| 5929 | |
| 5930 | #endif // ALL_ARM64_EMITTER_UNIT_TESTS |
| 5931 | |
| 5932 | #ifdef ALL_ARM64_EMITTER_UNIT_TESTS |
| 5933 | // R_R |
| 5934 | // |
| 5935 | |
| 5936 | genDefineTempLabel(genCreateTempLabel()); |
| 5937 | |
| 5938 | theEmitter->emitIns_R_R(INS_cls, EA_8BYTE, REG_R1, REG_R12); |
| 5939 | theEmitter->emitIns_R_R(INS_clz, EA_8BYTE, REG_R2, REG_R13); |
| 5940 | theEmitter->emitIns_R_R(INS_rbit, EA_8BYTE, REG_R3, REG_R14); |
| 5941 | theEmitter->emitIns_R_R(INS_rev, EA_8BYTE, REG_R4, REG_R15); |
| 5942 | theEmitter->emitIns_R_R(INS_rev16, EA_8BYTE, REG_R5, REG_R0); |
| 5943 | theEmitter->emitIns_R_R(INS_rev32, EA_8BYTE, REG_R6, REG_R1); |
| 5944 | |
| 5945 | theEmitter->emitIns_R_R(INS_cls, EA_4BYTE, REG_R7, REG_R2); |
| 5946 | theEmitter->emitIns_R_R(INS_clz, EA_4BYTE, REG_R8, REG_R3); |
| 5947 | theEmitter->emitIns_R_R(INS_rbit, EA_4BYTE, REG_R9, REG_R4); |
| 5948 | theEmitter->emitIns_R_R(INS_rev, EA_4BYTE, REG_R10, REG_R5); |
| 5949 | theEmitter->emitIns_R_R(INS_rev16, EA_4BYTE, REG_R11, REG_R6); |
| 5950 | |
| 5951 | #endif // ALL_ARM64_EMITTER_UNIT_TESTS |
| 5952 | |
| 5953 | #ifdef ALL_ARM64_EMITTER_UNIT_TESTS |
| 5954 | // |
| 5955 | // R_I |
| 5956 | // |
| 5957 | |
| 5958 | genDefineTempLabel(genCreateTempLabel()); |
| 5959 | |
| 5960 | // mov reg, imm(i16,hw) |
| 5961 | theEmitter->emitIns_R_I(INS_mov, EA_8BYTE, REG_R8, 0x0000000000001234); |
| 5962 | theEmitter->emitIns_R_I(INS_mov, EA_8BYTE, REG_R8, 0x0000000043210000); |
| 5963 | theEmitter->emitIns_R_I(INS_mov, EA_8BYTE, REG_R8, 0x0000567800000000); |
| 5964 | theEmitter->emitIns_R_I(INS_mov, EA_8BYTE, REG_R8, 0x8765000000000000); |
| 5965 | theEmitter->emitIns_R_I(INS_mov, EA_8BYTE, REG_R8, 0xFFFFFFFFFFFF1234); |
| 5966 | theEmitter->emitIns_R_I(INS_mov, EA_8BYTE, REG_R8, 0xFFFFFFFF4321FFFF); |
| 5967 | theEmitter->emitIns_R_I(INS_mov, EA_8BYTE, REG_R8, 0xFFFF5678FFFFFFFF); |
| 5968 | theEmitter->emitIns_R_I(INS_mov, EA_8BYTE, REG_R8, 0x8765FFFFFFFFFFFF); |
| 5969 | |
| 5970 | theEmitter->emitIns_R_I(INS_mov, EA_4BYTE, REG_R8, 0x00001234); |
| 5971 | theEmitter->emitIns_R_I(INS_mov, EA_4BYTE, REG_R8, 0x87650000); |
| 5972 | theEmitter->emitIns_R_I(INS_mov, EA_4BYTE, REG_R8, 0xFFFF1234); |
| 5973 | theEmitter->emitIns_R_I(INS_mov, EA_4BYTE, REG_R8, 0x4567FFFF); |
| 5974 | |
| 5975 | // mov reg, imm(N,r,s) |
| 5976 | theEmitter->emitIns_R_I(INS_mov, EA_8BYTE, REG_R8, 0x00FFFFF000000000); |
| 5977 | theEmitter->emitIns_R_I(INS_mov, EA_8BYTE, REG_R8, 0x6666666666666666); |
| 5978 | theEmitter->emitIns_R_I(INS_mov, EA_8BYTE, REG_SP, 0x7FFF00007FFF0000); |
| 5979 | theEmitter->emitIns_R_I(INS_mov, EA_8BYTE, REG_R8, 0x5555555555555555); |
| 5980 | theEmitter->emitIns_R_I(INS_mov, EA_8BYTE, REG_R8, 0xE003E003E003E003); |
| 5981 | theEmitter->emitIns_R_I(INS_mov, EA_8BYTE, REG_R8, 0x0707070707070707); |
| 5982 | |
| 5983 | theEmitter->emitIns_R_I(INS_mov, EA_4BYTE, REG_R8, 0x00FFFFF0); |
| 5984 | theEmitter->emitIns_R_I(INS_mov, EA_4BYTE, REG_R8, 0x66666666); |
| 5985 | theEmitter->emitIns_R_I(INS_mov, EA_4BYTE, REG_R8, 0x03FFC000); |
| 5986 | theEmitter->emitIns_R_I(INS_mov, EA_4BYTE, REG_R8, 0x55555555); |
| 5987 | theEmitter->emitIns_R_I(INS_mov, EA_4BYTE, REG_R8, 0xE003E003); |
| 5988 | theEmitter->emitIns_R_I(INS_mov, EA_4BYTE, REG_R8, 0x07070707); |
| 5989 | |
| 5990 | theEmitter->emitIns_R_I(INS_tst, EA_8BYTE, REG_R8, 0xE003E003E003E003); |
| 5991 | theEmitter->emitIns_R_I(INS_tst, EA_8BYTE, REG_R8, 0x00FFFFF000000000); |
| 5992 | theEmitter->emitIns_R_I(INS_tst, EA_8BYTE, REG_R8, 0x6666666666666666); |
| 5993 | theEmitter->emitIns_R_I(INS_tst, EA_8BYTE, REG_R8, 0x0707070707070707); |
| 5994 | theEmitter->emitIns_R_I(INS_tst, EA_8BYTE, REG_R8, 0x7FFF00007FFF0000); |
| 5995 | theEmitter->emitIns_R_I(INS_tst, EA_8BYTE, REG_R8, 0x5555555555555555); |
| 5996 | |
| 5997 | theEmitter->emitIns_R_I(INS_tst, EA_4BYTE, REG_R8, 0xE003E003); |
| 5998 | theEmitter->emitIns_R_I(INS_tst, EA_4BYTE, REG_R8, 0x00FFFFF0); |
| 5999 | theEmitter->emitIns_R_I(INS_tst, EA_4BYTE, REG_R8, 0x66666666); |
| 6000 | theEmitter->emitIns_R_I(INS_tst, EA_4BYTE, REG_R8, 0x07070707); |
| 6001 | theEmitter->emitIns_R_I(INS_tst, EA_4BYTE, REG_R8, 0xFFF00000); |
| 6002 | theEmitter->emitIns_R_I(INS_tst, EA_4BYTE, REG_R8, 0x55555555); |
| 6003 | |
| 6004 | #endif // ALL_ARM64_EMITTER_UNIT_TESTS |
| 6005 | |
| 6006 | #ifdef ALL_ARM64_EMITTER_UNIT_TESTS |
| 6007 | // |
| 6008 | // R_R |
| 6009 | // |
| 6010 | |
| 6011 | genDefineTempLabel(genCreateTempLabel()); |
| 6012 | |
| 6013 | // tst reg, reg |
| 6014 | theEmitter->emitIns_R_R(INS_tst, EA_8BYTE, REG_R7, REG_R10); |
| 6015 | |
| 6016 | // mov reg, reg |
| 6017 | theEmitter->emitIns_R_R(INS_mov, EA_8BYTE, REG_R7, REG_R10); |
| 6018 | theEmitter->emitIns_R_R(INS_mov, EA_8BYTE, REG_R8, REG_SP); |
| 6019 | theEmitter->emitIns_R_R(INS_mov, EA_8BYTE, REG_SP, REG_R9); |
| 6020 | |
| 6021 | theEmitter->emitIns_R_R(INS_mvn, EA_8BYTE, REG_R5, REG_R11); |
| 6022 | theEmitter->emitIns_R_R(INS_neg, EA_8BYTE, REG_R4, REG_R12); |
| 6023 | theEmitter->emitIns_R_R(INS_negs, EA_8BYTE, REG_R3, REG_R13); |
| 6024 | |
| 6025 | theEmitter->emitIns_R_R(INS_mov, EA_4BYTE, REG_R7, REG_R10); |
| 6026 | theEmitter->emitIns_R_R(INS_mvn, EA_4BYTE, REG_R5, REG_R11); |
| 6027 | theEmitter->emitIns_R_R(INS_neg, EA_4BYTE, REG_R4, REG_R12); |
| 6028 | theEmitter->emitIns_R_R(INS_negs, EA_4BYTE, REG_R3, REG_R13); |
| 6029 | |
| 6030 | theEmitter->emitIns_R_R(INS_sxtb, EA_8BYTE, REG_R7, REG_R10); |
| 6031 | theEmitter->emitIns_R_R(INS_sxth, EA_8BYTE, REG_R5, REG_R11); |
| 6032 | theEmitter->emitIns_R_R(INS_sxtw, EA_8BYTE, REG_R4, REG_R12); |
| 6033 | theEmitter->emitIns_R_R(INS_uxtb, EA_8BYTE, REG_R3, REG_R13); // map to Wt |
| 6034 | theEmitter->emitIns_R_R(INS_uxth, EA_8BYTE, REG_R2, REG_R14); // map to Wt |
| 6035 | |
| 6036 | theEmitter->emitIns_R_R(INS_sxtb, EA_4BYTE, REG_R7, REG_R10); |
| 6037 | theEmitter->emitIns_R_R(INS_sxth, EA_4BYTE, REG_R5, REG_R11); |
| 6038 | theEmitter->emitIns_R_R(INS_uxtb, EA_4BYTE, REG_R3, REG_R13); |
| 6039 | theEmitter->emitIns_R_R(INS_uxth, EA_4BYTE, REG_R2, REG_R14); |
| 6040 | |
| 6041 | #endif // ALL_ARM64_EMITTER_UNIT_TESTS |
| 6042 | |
| 6043 | #ifdef ALL_ARM64_EMITTER_UNIT_TESTS |
| 6044 | // |
| 6045 | // R_I_I |
| 6046 | // |
| 6047 | |
| 6048 | genDefineTempLabel(genCreateTempLabel()); |
| 6049 | |
| 6050 | // mov reg, imm(i16,hw) |
| 6051 | theEmitter->emitIns_R_I_I(INS_mov, EA_8BYTE, REG_R8, 0x1234, 0, INS_OPTS_LSL); |
| 6052 | theEmitter->emitIns_R_I_I(INS_mov, EA_8BYTE, REG_R8, 0x4321, 16, INS_OPTS_LSL); |
| 6053 | |
| 6054 | theEmitter->emitIns_R_I_I(INS_movk, EA_8BYTE, REG_R8, 0x4321, 16, INS_OPTS_LSL); |
| 6055 | theEmitter->emitIns_R_I_I(INS_movn, EA_8BYTE, REG_R8, 0x5678, 32, INS_OPTS_LSL); |
| 6056 | theEmitter->emitIns_R_I_I(INS_movz, EA_8BYTE, REG_R8, 0x8765, 48, INS_OPTS_LSL); |
| 6057 | |
| 6058 | theEmitter->emitIns_R_I_I(INS_movk, EA_4BYTE, REG_R8, 0x4321, 16, INS_OPTS_LSL); |
| 6059 | theEmitter->emitIns_R_I_I(INS_movn, EA_4BYTE, REG_R8, 0x5678, 16, INS_OPTS_LSL); |
| 6060 | theEmitter->emitIns_R_I_I(INS_movz, EA_4BYTE, REG_R8, 0x8765, 16, INS_OPTS_LSL); |
| 6061 | |
| 6062 | #endif // ALL_ARM64_EMITTER_UNIT_TESTS |
| 6063 | |
| 6064 | #ifdef ALL_ARM64_EMITTER_UNIT_TESTS |
| 6065 | // |
| 6066 | // R_R_I |
| 6067 | // |
| 6068 | |
| 6069 | genDefineTempLabel(genCreateTempLabel()); |
| 6070 | |
| 6071 | theEmitter->emitIns_R_R_I(INS_lsl, EA_8BYTE, REG_R0, REG_R0, 1); |
| 6072 | theEmitter->emitIns_R_R_I(INS_lsl, EA_4BYTE, REG_R9, REG_R3, 18); |
| 6073 | theEmitter->emitIns_R_R_I(INS_lsr, EA_8BYTE, REG_R7, REG_R0, 37); |
| 6074 | theEmitter->emitIns_R_R_I(INS_lsr, EA_4BYTE, REG_R0, REG_R1, 2); |
| 6075 | theEmitter->emitIns_R_R_I(INS_asr, EA_8BYTE, REG_R2, REG_R3, 53); |
| 6076 | theEmitter->emitIns_R_R_I(INS_asr, EA_4BYTE, REG_R9, REG_R3, 18); |
| 6077 | |
| 6078 | theEmitter->emitIns_R_R_I(INS_and, EA_8BYTE, REG_R2, REG_R3, 0x5555555555555555); |
| 6079 | theEmitter->emitIns_R_R_I(INS_ands, EA_8BYTE, REG_R1, REG_R5, 0x6666666666666666); |
| 6080 | theEmitter->emitIns_R_R_I(INS_eor, EA_8BYTE, REG_R8, REG_R9, 0x0707070707070707); |
| 6081 | theEmitter->emitIns_R_R_I(INS_orr, EA_8BYTE, REG_SP, REG_R3, 0xFFFC000000000000); |
| 6082 | theEmitter->emitIns_R_R_I(INS_ands, EA_4BYTE, REG_R8, REG_R9, 0xE003E003); |
| 6083 | |
| 6084 | theEmitter->emitIns_R_R_I(INS_ror, EA_8BYTE, REG_R8, REG_R9, 1); |
| 6085 | theEmitter->emitIns_R_R_I(INS_ror, EA_8BYTE, REG_R8, REG_R9, 31); |
| 6086 | theEmitter->emitIns_R_R_I(INS_ror, EA_8BYTE, REG_R8, REG_R9, 32); |
| 6087 | theEmitter->emitIns_R_R_I(INS_ror, EA_8BYTE, REG_R8, REG_R9, 63); |
| 6088 | |
| 6089 | theEmitter->emitIns_R_R_I(INS_ror, EA_4BYTE, REG_R8, REG_R9, 1); |
| 6090 | theEmitter->emitIns_R_R_I(INS_ror, EA_4BYTE, REG_R8, REG_R9, 31); |
| 6091 | |
| 6092 | theEmitter->emitIns_R_R_I(INS_add, EA_8BYTE, REG_R8, REG_R9, 0); // == mov |
| 6093 | theEmitter->emitIns_R_R_I(INS_add, EA_8BYTE, REG_R8, REG_R9, 1); |
| 6094 | theEmitter->emitIns_R_R_I(INS_add, EA_8BYTE, REG_R8, REG_R9, -1); |
| 6095 | theEmitter->emitIns_R_R_I(INS_add, EA_8BYTE, REG_R8, REG_R9, 0xfff); |
| 6096 | theEmitter->emitIns_R_R_I(INS_add, EA_8BYTE, REG_R8, REG_R9, -0xfff); |
| 6097 | theEmitter->emitIns_R_R_I(INS_add, EA_8BYTE, REG_R8, REG_R9, 0x1000); |
| 6098 | theEmitter->emitIns_R_R_I(INS_add, EA_8BYTE, REG_R8, REG_R9, 0xfff000); |
| 6099 | theEmitter->emitIns_R_R_I(INS_add, EA_8BYTE, REG_R8, REG_R9, 0xfffffffffffff000LL); |
| 6100 | theEmitter->emitIns_R_R_I(INS_add, EA_8BYTE, REG_R8, REG_R9, 0xffffffffff800000LL); |
| 6101 | |
| 6102 | theEmitter->emitIns_R_R_I(INS_add, EA_4BYTE, REG_R8, REG_R9, 0); // == mov |
| 6103 | theEmitter->emitIns_R_R_I(INS_add, EA_4BYTE, REG_R8, REG_R9, 1); |
| 6104 | theEmitter->emitIns_R_R_I(INS_add, EA_4BYTE, REG_R8, REG_R9, -1); |
| 6105 | theEmitter->emitIns_R_R_I(INS_add, EA_4BYTE, REG_R8, REG_R9, 0xfff); |
| 6106 | theEmitter->emitIns_R_R_I(INS_add, EA_4BYTE, REG_R8, REG_R9, -0xfff); |
| 6107 | theEmitter->emitIns_R_R_I(INS_add, EA_4BYTE, REG_R8, REG_R9, 0x1000); |
| 6108 | theEmitter->emitIns_R_R_I(INS_add, EA_4BYTE, REG_R8, REG_R9, 0xfff000); |
| 6109 | theEmitter->emitIns_R_R_I(INS_add, EA_4BYTE, REG_R8, REG_R9, 0xfffffffffffff000LL); |
| 6110 | theEmitter->emitIns_R_R_I(INS_add, EA_4BYTE, REG_R8, REG_R9, 0xffffffffff800000LL); |
| 6111 | |
| 6112 | theEmitter->emitIns_R_R_I(INS_sub, EA_8BYTE, REG_R8, REG_R9, 0); // == mov |
| 6113 | theEmitter->emitIns_R_R_I(INS_sub, EA_8BYTE, REG_R8, REG_R9, 1); |
| 6114 | theEmitter->emitIns_R_R_I(INS_sub, EA_8BYTE, REG_R8, REG_R9, -1); |
| 6115 | theEmitter->emitIns_R_R_I(INS_sub, EA_8BYTE, REG_R8, REG_R9, 0xfff); |
| 6116 | theEmitter->emitIns_R_R_I(INS_sub, EA_8BYTE, REG_R8, REG_R9, -0xfff); |
| 6117 | theEmitter->emitIns_R_R_I(INS_sub, EA_8BYTE, REG_R8, REG_R9, 0x1000); |
| 6118 | theEmitter->emitIns_R_R_I(INS_sub, EA_8BYTE, REG_R8, REG_R9, 0xfff000); |
| 6119 | theEmitter->emitIns_R_R_I(INS_sub, EA_8BYTE, REG_R8, REG_R9, 0xfffffffffffff000LL); |
| 6120 | theEmitter->emitIns_R_R_I(INS_sub, EA_8BYTE, REG_R8, REG_R9, 0xffffffffff800000LL); |
| 6121 | |
| 6122 | theEmitter->emitIns_R_R_I(INS_sub, EA_4BYTE, REG_R8, REG_R9, 0); // == mov |
| 6123 | theEmitter->emitIns_R_R_I(INS_sub, EA_4BYTE, REG_R8, REG_R9, 1); |
| 6124 | theEmitter->emitIns_R_R_I(INS_sub, EA_4BYTE, REG_R8, REG_R9, -1); |
| 6125 | theEmitter->emitIns_R_R_I(INS_sub, EA_4BYTE, REG_R8, REG_R9, 0xfff); |
| 6126 | theEmitter->emitIns_R_R_I(INS_sub, EA_4BYTE, REG_R8, REG_R9, -0xfff); |
| 6127 | theEmitter->emitIns_R_R_I(INS_sub, EA_4BYTE, REG_R8, REG_R9, 0x1000); |
| 6128 | theEmitter->emitIns_R_R_I(INS_sub, EA_4BYTE, REG_R8, REG_R9, 0xfff000); |
| 6129 | theEmitter->emitIns_R_R_I(INS_sub, EA_4BYTE, REG_R8, REG_R9, 0xfffffffffffff000LL); |
| 6130 | theEmitter->emitIns_R_R_I(INS_sub, EA_4BYTE, REG_R8, REG_R9, 0xffffffffff800000LL); |
| 6131 | |
| 6132 | theEmitter->emitIns_R_R_I(INS_adds, EA_8BYTE, REG_R8, REG_R9, 0); // == mov |
| 6133 | theEmitter->emitIns_R_R_I(INS_adds, EA_8BYTE, REG_R8, REG_R9, 1); |
| 6134 | theEmitter->emitIns_R_R_I(INS_adds, EA_8BYTE, REG_R8, REG_R9, -1); |
| 6135 | theEmitter->emitIns_R_R_I(INS_adds, EA_8BYTE, REG_R8, REG_R9, 0xfff); |
| 6136 | theEmitter->emitIns_R_R_I(INS_adds, EA_8BYTE, REG_R8, REG_R9, -0xfff); |
| 6137 | theEmitter->emitIns_R_R_I(INS_adds, EA_8BYTE, REG_R8, REG_R9, 0x1000); |
| 6138 | theEmitter->emitIns_R_R_I(INS_adds, EA_8BYTE, REG_R8, REG_R9, 0xfff000); |
| 6139 | theEmitter->emitIns_R_R_I(INS_adds, EA_8BYTE, REG_R8, REG_R9, 0xfffffffffffff000LL); |
| 6140 | theEmitter->emitIns_R_R_I(INS_adds, EA_8BYTE, REG_R8, REG_R9, 0xffffffffff800000LL); |
| 6141 | |
| 6142 | theEmitter->emitIns_R_R_I(INS_adds, EA_4BYTE, REG_R8, REG_R9, 0); // == mov |
| 6143 | theEmitter->emitIns_R_R_I(INS_adds, EA_4BYTE, REG_R8, REG_R9, 1); |
| 6144 | theEmitter->emitIns_R_R_I(INS_adds, EA_4BYTE, REG_R8, REG_R9, -1); |
| 6145 | theEmitter->emitIns_R_R_I(INS_adds, EA_4BYTE, REG_R8, REG_R9, 0xfff); |
| 6146 | theEmitter->emitIns_R_R_I(INS_adds, EA_4BYTE, REG_R8, REG_R9, -0xfff); |
| 6147 | theEmitter->emitIns_R_R_I(INS_adds, EA_4BYTE, REG_R8, REG_R9, 0x1000); |
| 6148 | theEmitter->emitIns_R_R_I(INS_adds, EA_4BYTE, REG_R8, REG_R9, 0xfff000); |
| 6149 | theEmitter->emitIns_R_R_I(INS_adds, EA_4BYTE, REG_R8, REG_R9, 0xfffffffffffff000LL); |
| 6150 | theEmitter->emitIns_R_R_I(INS_adds, EA_4BYTE, REG_R8, REG_R9, 0xffffffffff800000LL); |
| 6151 | |
| 6152 | theEmitter->emitIns_R_R_I(INS_subs, EA_8BYTE, REG_R8, REG_R9, 0); // == mov |
| 6153 | theEmitter->emitIns_R_R_I(INS_subs, EA_8BYTE, REG_R8, REG_R9, 1); |
| 6154 | theEmitter->emitIns_R_R_I(INS_subs, EA_8BYTE, REG_R8, REG_R9, -1); |
| 6155 | theEmitter->emitIns_R_R_I(INS_subs, EA_8BYTE, REG_R8, REG_R9, 0xfff); |
| 6156 | theEmitter->emitIns_R_R_I(INS_subs, EA_8BYTE, REG_R8, REG_R9, -0xfff); |
| 6157 | theEmitter->emitIns_R_R_I(INS_subs, EA_8BYTE, REG_R8, REG_R9, 0x1000); |
| 6158 | theEmitter->emitIns_R_R_I(INS_subs, EA_8BYTE, REG_R8, REG_R9, 0xfff000); |
| 6159 | theEmitter->emitIns_R_R_I(INS_subs, EA_8BYTE, REG_R8, REG_R9, 0xfffffffffffff000LL); |
| 6160 | theEmitter->emitIns_R_R_I(INS_subs, EA_8BYTE, REG_R8, REG_R9, 0xffffffffff800000LL); |
| 6161 | |
| 6162 | theEmitter->emitIns_R_R_I(INS_subs, EA_4BYTE, REG_R8, REG_R9, 0); // == mov |
| 6163 | theEmitter->emitIns_R_R_I(INS_subs, EA_4BYTE, REG_R8, REG_R9, 1); |
| 6164 | theEmitter->emitIns_R_R_I(INS_subs, EA_4BYTE, REG_R8, REG_R9, -1); |
| 6165 | theEmitter->emitIns_R_R_I(INS_subs, EA_4BYTE, REG_R8, REG_R9, 0xfff); |
| 6166 | theEmitter->emitIns_R_R_I(INS_subs, EA_4BYTE, REG_R8, REG_R9, -0xfff); |
| 6167 | theEmitter->emitIns_R_R_I(INS_subs, EA_4BYTE, REG_R8, REG_R9, 0x1000); |
| 6168 | theEmitter->emitIns_R_R_I(INS_subs, EA_4BYTE, REG_R8, REG_R9, 0xfff000); |
| 6169 | theEmitter->emitIns_R_R_I(INS_subs, EA_4BYTE, REG_R8, REG_R9, 0xfffffffffffff000LL); |
| 6170 | theEmitter->emitIns_R_R_I(INS_subs, EA_4BYTE, REG_R8, REG_R9, 0xffffffffff800000LL); |
| 6171 | |
| 6172 | #endif // ALL_ARM64_EMITTER_UNIT_TESTS |
| 6173 | |
| 6174 | #ifdef ALL_ARM64_EMITTER_UNIT_TESTS |
| 6175 | // |
| 6176 | // R_R_I cmp/txt |
| 6177 | // |
| 6178 | |
| 6179 | // cmp |
| 6180 | theEmitter->emitIns_R_R_I(INS_cmp, EA_8BYTE, REG_R8, REG_R9, 0); |
| 6181 | theEmitter->emitIns_R_R_I(INS_cmp, EA_4BYTE, REG_R8, REG_R9, 0); |
| 6182 | |
| 6183 | // CMP (shifted register) |
| 6184 | theEmitter->emitIns_R_R_I(INS_cmp, EA_8BYTE, REG_R8, REG_R9, 31, INS_OPTS_LSL); |
| 6185 | theEmitter->emitIns_R_R_I(INS_cmp, EA_8BYTE, REG_R8, REG_R9, 32, INS_OPTS_LSR); |
| 6186 | theEmitter->emitIns_R_R_I(INS_cmp, EA_8BYTE, REG_R8, REG_R9, 33, INS_OPTS_ASR); |
| 6187 | |
| 6188 | theEmitter->emitIns_R_R_I(INS_cmp, EA_4BYTE, REG_R8, REG_R9, 21, INS_OPTS_LSL); |
| 6189 | theEmitter->emitIns_R_R_I(INS_cmp, EA_4BYTE, REG_R8, REG_R9, 22, INS_OPTS_LSR); |
| 6190 | theEmitter->emitIns_R_R_I(INS_cmp, EA_4BYTE, REG_R8, REG_R9, 23, INS_OPTS_ASR); |
| 6191 | |
| 6192 | // TST (shifted register) |
| 6193 | theEmitter->emitIns_R_R_I(INS_tst, EA_8BYTE, REG_R8, REG_R9, 31, INS_OPTS_LSL); |
| 6194 | theEmitter->emitIns_R_R_I(INS_tst, EA_8BYTE, REG_R8, REG_R9, 32, INS_OPTS_LSR); |
| 6195 | theEmitter->emitIns_R_R_I(INS_tst, EA_8BYTE, REG_R8, REG_R9, 33, INS_OPTS_ASR); |
| 6196 | theEmitter->emitIns_R_R_I(INS_tst, EA_8BYTE, REG_R8, REG_R9, 34, INS_OPTS_ROR); |
| 6197 | |
| 6198 | theEmitter->emitIns_R_R_I(INS_tst, EA_4BYTE, REG_R8, REG_R9, 21, INS_OPTS_LSL); |
| 6199 | theEmitter->emitIns_R_R_I(INS_tst, EA_4BYTE, REG_R8, REG_R9, 22, INS_OPTS_LSR); |
| 6200 | theEmitter->emitIns_R_R_I(INS_tst, EA_4BYTE, REG_R8, REG_R9, 23, INS_OPTS_ASR); |
| 6201 | theEmitter->emitIns_R_R_I(INS_tst, EA_4BYTE, REG_R8, REG_R9, 24, INS_OPTS_ROR); |
| 6202 | |
| 6203 | // CMP (extended register) |
| 6204 | theEmitter->emitIns_R_R_I(INS_cmp, EA_8BYTE, REG_R8, REG_R9, 0, INS_OPTS_UXTB); |
| 6205 | theEmitter->emitIns_R_R_I(INS_cmp, EA_8BYTE, REG_R8, REG_R9, 0, INS_OPTS_UXTH); |
| 6206 | theEmitter->emitIns_R_R_I(INS_cmp, EA_8BYTE, REG_R8, REG_R9, 0, INS_OPTS_UXTW); // "cmp x8, x9, UXTW"; msdis |
| 6207 | // disassembles this "cmp x8,x9", |
| 6208 | // which looks like an msdis issue. |
| 6209 | theEmitter->emitIns_R_R_I(INS_cmp, EA_8BYTE, REG_R8, REG_R9, 0, INS_OPTS_UXTX); |
| 6210 | |
| 6211 | theEmitter->emitIns_R_R_I(INS_cmp, EA_8BYTE, REG_R8, REG_R9, 0, INS_OPTS_SXTB); |
| 6212 | theEmitter->emitIns_R_R_I(INS_cmp, EA_8BYTE, REG_R8, REG_R9, 0, INS_OPTS_SXTH); |
| 6213 | theEmitter->emitIns_R_R_I(INS_cmp, EA_8BYTE, REG_R8, REG_R9, 0, INS_OPTS_SXTW); |
| 6214 | theEmitter->emitIns_R_R_I(INS_cmp, EA_8BYTE, REG_R8, REG_R9, 0, INS_OPTS_SXTX); |
| 6215 | |
| 6216 | // CMP 64-bit (extended register) and left shift |
| 6217 | theEmitter->emitIns_R_R_I(INS_cmp, EA_8BYTE, REG_R8, REG_R9, 1, INS_OPTS_UXTB); |
| 6218 | theEmitter->emitIns_R_R_I(INS_cmp, EA_8BYTE, REG_R8, REG_R9, 2, INS_OPTS_UXTH); |
| 6219 | theEmitter->emitIns_R_R_I(INS_cmp, EA_8BYTE, REG_R8, REG_R9, 3, INS_OPTS_UXTW); |
| 6220 | theEmitter->emitIns_R_R_I(INS_cmp, EA_8BYTE, REG_R8, REG_R9, 4, INS_OPTS_UXTX); |
| 6221 | |
| 6222 | theEmitter->emitIns_R_R_I(INS_cmp, EA_8BYTE, REG_R8, REG_R9, 1, INS_OPTS_SXTB); |
| 6223 | theEmitter->emitIns_R_R_I(INS_cmp, EA_8BYTE, REG_R8, REG_R9, 2, INS_OPTS_SXTH); |
| 6224 | theEmitter->emitIns_R_R_I(INS_cmp, EA_8BYTE, REG_R8, REG_R9, 3, INS_OPTS_SXTW); |
| 6225 | theEmitter->emitIns_R_R_I(INS_cmp, EA_8BYTE, REG_R8, REG_R9, 4, INS_OPTS_SXTX); |
| 6226 | |
| 6227 | // CMP 32-bit (extended register) and left shift |
| 6228 | theEmitter->emitIns_R_R_I(INS_cmp, EA_4BYTE, REG_R8, REG_R9, 0, INS_OPTS_UXTB); |
| 6229 | theEmitter->emitIns_R_R_I(INS_cmp, EA_4BYTE, REG_R8, REG_R9, 2, INS_OPTS_UXTH); |
| 6230 | theEmitter->emitIns_R_R_I(INS_cmp, EA_4BYTE, REG_R8, REG_R9, 4, INS_OPTS_UXTW); |
| 6231 | |
| 6232 | theEmitter->emitIns_R_R_I(INS_cmp, EA_4BYTE, REG_R8, REG_R9, 0, INS_OPTS_SXTB); |
| 6233 | theEmitter->emitIns_R_R_I(INS_cmp, EA_4BYTE, REG_R8, REG_R9, 2, INS_OPTS_SXTH); |
| 6234 | theEmitter->emitIns_R_R_I(INS_cmp, EA_4BYTE, REG_R8, REG_R9, 4, INS_OPTS_SXTW); |
| 6235 | |
| 6236 | #endif // ALL_ARM64_EMITTER_UNIT_TESTS |
| 6237 | |
| 6238 | #ifdef ALL_ARM64_EMITTER_UNIT_TESTS |
| 6239 | // |
| 6240 | // R_R_R |
| 6241 | // |
| 6242 | |
| 6243 | genDefineTempLabel(genCreateTempLabel()); |
| 6244 | |
| 6245 | theEmitter->emitIns_R_R_R(INS_lsl, EA_8BYTE, REG_R8, REG_R9, REG_R10); |
| 6246 | theEmitter->emitIns_R_R_R(INS_lsr, EA_8BYTE, REG_R8, REG_R9, REG_R10); |
| 6247 | theEmitter->emitIns_R_R_R(INS_asr, EA_8BYTE, REG_R8, REG_R9, REG_R10); |
| 6248 | theEmitter->emitIns_R_R_R(INS_ror, EA_8BYTE, REG_R8, REG_R9, REG_R10); |
| 6249 | theEmitter->emitIns_R_R_R(INS_adc, EA_8BYTE, REG_R8, REG_R9, REG_R10); |
| 6250 | theEmitter->emitIns_R_R_R(INS_adcs, EA_8BYTE, REG_R8, REG_R9, REG_R10); |
| 6251 | theEmitter->emitIns_R_R_R(INS_sbc, EA_8BYTE, REG_R8, REG_R9, REG_R10); |
| 6252 | theEmitter->emitIns_R_R_R(INS_sbcs, EA_8BYTE, REG_R8, REG_R9, REG_R10); |
| 6253 | theEmitter->emitIns_R_R_R(INS_udiv, EA_8BYTE, REG_R8, REG_R9, REG_R10); |
| 6254 | theEmitter->emitIns_R_R_R(INS_sdiv, EA_8BYTE, REG_R8, REG_R9, REG_R10); |
| 6255 | theEmitter->emitIns_R_R_R(INS_mul, EA_8BYTE, REG_R8, REG_R9, REG_R10); |
| 6256 | theEmitter->emitIns_R_R_R(INS_mneg, EA_8BYTE, REG_R8, REG_R9, REG_R10); |
| 6257 | theEmitter->emitIns_R_R_R(INS_smull, EA_8BYTE, REG_R8, REG_R9, REG_R10); |
| 6258 | theEmitter->emitIns_R_R_R(INS_smnegl, EA_8BYTE, REG_R8, REG_R9, REG_R10); |
| 6259 | theEmitter->emitIns_R_R_R(INS_smulh, EA_8BYTE, REG_R8, REG_R9, REG_R10); |
| 6260 | theEmitter->emitIns_R_R_R(INS_umull, EA_8BYTE, REG_R8, REG_R9, REG_R10); |
| 6261 | theEmitter->emitIns_R_R_R(INS_umnegl, EA_8BYTE, REG_R8, REG_R9, REG_R10); |
| 6262 | theEmitter->emitIns_R_R_R(INS_umulh, EA_8BYTE, REG_R8, REG_R9, REG_R10); |
| 6263 | theEmitter->emitIns_R_R_R(INS_lslv, EA_8BYTE, REG_R8, REG_R9, REG_R10); |
| 6264 | theEmitter->emitIns_R_R_R(INS_lsrv, EA_8BYTE, REG_R8, REG_R9, REG_R10); |
| 6265 | theEmitter->emitIns_R_R_R(INS_asrv, EA_8BYTE, REG_R8, REG_R9, REG_R10); |
| 6266 | theEmitter->emitIns_R_R_R(INS_rorv, EA_8BYTE, REG_R8, REG_R9, REG_R10); |
| 6267 | |
| 6268 | theEmitter->emitIns_R_R_R(INS_lsl, EA_4BYTE, REG_R8, REG_R9, REG_R10); |
| 6269 | theEmitter->emitIns_R_R_R(INS_lsr, EA_4BYTE, REG_R8, REG_R9, REG_R10); |
| 6270 | theEmitter->emitIns_R_R_R(INS_asr, EA_4BYTE, REG_R8, REG_R9, REG_R10); |
| 6271 | theEmitter->emitIns_R_R_R(INS_ror, EA_4BYTE, REG_R8, REG_R9, REG_R10); |
| 6272 | theEmitter->emitIns_R_R_R(INS_adc, EA_4BYTE, REG_R8, REG_R9, REG_R10); |
| 6273 | theEmitter->emitIns_R_R_R(INS_adcs, EA_4BYTE, REG_R8, REG_R9, REG_R10); |
| 6274 | theEmitter->emitIns_R_R_R(INS_sbc, EA_4BYTE, REG_R8, REG_R9, REG_R10); |
| 6275 | theEmitter->emitIns_R_R_R(INS_sbcs, EA_4BYTE, REG_R8, REG_R9, REG_R10); |
| 6276 | theEmitter->emitIns_R_R_R(INS_udiv, EA_4BYTE, REG_R8, REG_R9, REG_R10); |
| 6277 | theEmitter->emitIns_R_R_R(INS_sdiv, EA_4BYTE, REG_R8, REG_R9, REG_R10); |
| 6278 | theEmitter->emitIns_R_R_R(INS_mul, EA_4BYTE, REG_R8, REG_R9, REG_R10); |
| 6279 | theEmitter->emitIns_R_R_R(INS_mneg, EA_4BYTE, REG_R8, REG_R9, REG_R10); |
| 6280 | theEmitter->emitIns_R_R_R(INS_smull, EA_4BYTE, REG_R8, REG_R9, REG_R10); |
| 6281 | theEmitter->emitIns_R_R_R(INS_smnegl, EA_4BYTE, REG_R8, REG_R9, REG_R10); |
| 6282 | theEmitter->emitIns_R_R_R(INS_smulh, EA_4BYTE, REG_R8, REG_R9, REG_R10); |
| 6283 | theEmitter->emitIns_R_R_R(INS_umull, EA_4BYTE, REG_R8, REG_R9, REG_R10); |
| 6284 | theEmitter->emitIns_R_R_R(INS_umnegl, EA_4BYTE, REG_R8, REG_R9, REG_R10); |
| 6285 | theEmitter->emitIns_R_R_R(INS_umulh, EA_4BYTE, REG_R8, REG_R9, REG_R10); |
| 6286 | theEmitter->emitIns_R_R_R(INS_lslv, EA_4BYTE, REG_R8, REG_R9, REG_R10); |
| 6287 | theEmitter->emitIns_R_R_R(INS_lsrv, EA_4BYTE, REG_R8, REG_R9, REG_R10); |
| 6288 | theEmitter->emitIns_R_R_R(INS_asrv, EA_4BYTE, REG_R8, REG_R9, REG_R10); |
| 6289 | theEmitter->emitIns_R_R_R(INS_rorv, EA_4BYTE, REG_R8, REG_R9, REG_R10); |
| 6290 | |
| 6291 | #endif // ALL_ARM64_EMITTER_UNIT_TESTS |
| 6292 | |
| 6293 | #ifdef ALL_ARM64_EMITTER_UNIT_TESTS |
| 6294 | // |
| 6295 | // ARMv8.1 LSE Atomics |
| 6296 | // |
| 6297 | genDefineTempLabel(genCreateTempLabel()); |
| 6298 | |
| 6299 | theEmitter->emitIns_R_R_R(INS_casb, EA_1BYTE, REG_R8, REG_R9, REG_R10); |
| 6300 | theEmitter->emitIns_R_R_R(INS_casab, EA_1BYTE, REG_R8, REG_R9, REG_R10); |
| 6301 | theEmitter->emitIns_R_R_R(INS_casalb, EA_1BYTE, REG_R8, REG_R9, REG_R10); |
| 6302 | theEmitter->emitIns_R_R_R(INS_caslb, EA_1BYTE, REG_R8, REG_R9, REG_R10); |
| 6303 | theEmitter->emitIns_R_R_R(INS_cash, EA_2BYTE, REG_R8, REG_R9, REG_R10); |
| 6304 | theEmitter->emitIns_R_R_R(INS_casah, EA_2BYTE, REG_R8, REG_R9, REG_R10); |
| 6305 | theEmitter->emitIns_R_R_R(INS_casalh, EA_2BYTE, REG_R8, REG_R9, REG_R10); |
| 6306 | theEmitter->emitIns_R_R_R(INS_caslh, EA_2BYTE, REG_R8, REG_R9, REG_R10); |
| 6307 | theEmitter->emitIns_R_R_R(INS_cas, EA_4BYTE, REG_R8, REG_R9, REG_R10); |
| 6308 | theEmitter->emitIns_R_R_R(INS_casa, EA_4BYTE, REG_R8, REG_R9, REG_R10); |
| 6309 | theEmitter->emitIns_R_R_R(INS_casal, EA_4BYTE, REG_R8, REG_R9, REG_R10); |
| 6310 | theEmitter->emitIns_R_R_R(INS_casl, EA_4BYTE, REG_R8, REG_R9, REG_R10); |
| 6311 | theEmitter->emitIns_R_R_R(INS_cas, EA_8BYTE, REG_R8, REG_R9, REG_R10); |
| 6312 | theEmitter->emitIns_R_R_R(INS_casa, EA_8BYTE, REG_R8, REG_R9, REG_R10); |
| 6313 | theEmitter->emitIns_R_R_R(INS_casal, EA_8BYTE, REG_R8, REG_R9, REG_R10); |
| 6314 | theEmitter->emitIns_R_R_R(INS_casl, EA_8BYTE, REG_R8, REG_R9, REG_R10); |
| 6315 | theEmitter->emitIns_R_R_R(INS_ldaddb, EA_1BYTE, REG_R8, REG_R9, REG_R10); |
| 6316 | theEmitter->emitIns_R_R_R(INS_ldaddab, EA_1BYTE, REG_R8, REG_R9, REG_R10); |
| 6317 | theEmitter->emitIns_R_R_R(INS_ldaddalb, EA_1BYTE, REG_R8, REG_R9, REG_R10); |
| 6318 | theEmitter->emitIns_R_R_R(INS_ldaddlb, EA_1BYTE, REG_R8, REG_R9, REG_R10); |
| 6319 | theEmitter->emitIns_R_R_R(INS_ldaddh, EA_2BYTE, REG_R8, REG_R9, REG_R10); |
| 6320 | theEmitter->emitIns_R_R_R(INS_ldaddah, EA_2BYTE, REG_R8, REG_R9, REG_R10); |
| 6321 | theEmitter->emitIns_R_R_R(INS_ldaddalh, EA_2BYTE, REG_R8, REG_R9, REG_R10); |
| 6322 | theEmitter->emitIns_R_R_R(INS_ldaddlh, EA_2BYTE, REG_R8, REG_R9, REG_R10); |
| 6323 | theEmitter->emitIns_R_R_R(INS_ldadd, EA_4BYTE, REG_R8, REG_R9, REG_R10); |
| 6324 | theEmitter->emitIns_R_R_R(INS_ldadda, EA_4BYTE, REG_R8, REG_R9, REG_R10); |
| 6325 | theEmitter->emitIns_R_R_R(INS_ldaddal, EA_4BYTE, REG_R8, REG_R9, REG_R10); |
| 6326 | theEmitter->emitIns_R_R_R(INS_ldaddl, EA_4BYTE, REG_R8, REG_R9, REG_R10); |
| 6327 | theEmitter->emitIns_R_R_R(INS_ldadd, EA_8BYTE, REG_R8, REG_R9, REG_R10); |
| 6328 | theEmitter->emitIns_R_R_R(INS_ldadda, EA_8BYTE, REG_R8, REG_R9, REG_R10); |
| 6329 | theEmitter->emitIns_R_R_R(INS_ldaddal, EA_8BYTE, REG_R8, REG_R9, REG_R10); |
| 6330 | theEmitter->emitIns_R_R_R(INS_ldaddl, EA_8BYTE, REG_R8, REG_R9, REG_R10); |
| 6331 | theEmitter->emitIns_R_R_R(INS_swpb, EA_1BYTE, REG_R8, REG_R9, REG_R10); |
| 6332 | theEmitter->emitIns_R_R_R(INS_swpab, EA_1BYTE, REG_R8, REG_R9, REG_R10); |
| 6333 | theEmitter->emitIns_R_R_R(INS_swpalb, EA_1BYTE, REG_R8, REG_R9, REG_R10); |
| 6334 | theEmitter->emitIns_R_R_R(INS_swplb, EA_1BYTE, REG_R8, REG_R9, REG_R10); |
| 6335 | theEmitter->emitIns_R_R_R(INS_swph, EA_2BYTE, REG_R8, REG_R9, REG_R10); |
| 6336 | theEmitter->emitIns_R_R_R(INS_swpah, EA_2BYTE, REG_R8, REG_R9, REG_R10); |
| 6337 | theEmitter->emitIns_R_R_R(INS_swpalh, EA_2BYTE, REG_R8, REG_R9, REG_R10); |
| 6338 | theEmitter->emitIns_R_R_R(INS_swplh, EA_2BYTE, REG_R8, REG_R9, REG_R10); |
| 6339 | theEmitter->emitIns_R_R_R(INS_swp, EA_4BYTE, REG_R8, REG_R9, REG_R10); |
| 6340 | theEmitter->emitIns_R_R_R(INS_swpa, EA_4BYTE, REG_R8, REG_R9, REG_R10); |
| 6341 | theEmitter->emitIns_R_R_R(INS_swpal, EA_4BYTE, REG_R8, REG_R9, REG_R10); |
| 6342 | theEmitter->emitIns_R_R_R(INS_swpl, EA_4BYTE, REG_R8, REG_R9, REG_R10); |
| 6343 | theEmitter->emitIns_R_R_R(INS_swp, EA_8BYTE, REG_R8, REG_R9, REG_R10); |
| 6344 | theEmitter->emitIns_R_R_R(INS_swpa, EA_8BYTE, REG_R8, REG_R9, REG_R10); |
| 6345 | theEmitter->emitIns_R_R_R(INS_swpal, EA_8BYTE, REG_R8, REG_R9, REG_R10); |
| 6346 | theEmitter->emitIns_R_R_R(INS_swpl, EA_8BYTE, REG_R8, REG_R9, REG_R10); |
| 6347 | |
| 6348 | theEmitter->emitIns_R_R(INS_staddb, EA_1BYTE, REG_R8, REG_R10); |
| 6349 | theEmitter->emitIns_R_R(INS_staddlb, EA_1BYTE, REG_R8, REG_R10); |
| 6350 | theEmitter->emitIns_R_R(INS_staddh, EA_2BYTE, REG_R8, REG_R10); |
| 6351 | theEmitter->emitIns_R_R(INS_staddlh, EA_2BYTE, REG_R8, REG_R10); |
| 6352 | theEmitter->emitIns_R_R(INS_stadd, EA_4BYTE, REG_R8, REG_R10); |
| 6353 | theEmitter->emitIns_R_R(INS_staddl, EA_4BYTE, REG_R8, REG_R10); |
| 6354 | theEmitter->emitIns_R_R(INS_stadd, EA_8BYTE, REG_R8, REG_R10); |
| 6355 | theEmitter->emitIns_R_R(INS_staddl, EA_8BYTE, REG_R8, REG_R10); |
| 6356 | #endif // ALL_ARM64_EMITTER_UNIT_TESTS |
| 6357 | |
| 6358 | #ifdef ALL_ARM64_EMITTER_UNIT_TESTS |
| 6359 | // |
| 6360 | // R_R_I_I |
| 6361 | // |
| 6362 | |
| 6363 | genDefineTempLabel(genCreateTempLabel()); |
| 6364 | |
| 6365 | theEmitter->emitIns_R_R_I_I(INS_sbfm, EA_8BYTE, REG_R2, REG_R3, 4, 39); |
| 6366 | theEmitter->emitIns_R_R_I_I(INS_bfm, EA_8BYTE, REG_R1, REG_R5, 20, 23); |
| 6367 | theEmitter->emitIns_R_R_I_I(INS_ubfm, EA_8BYTE, REG_R8, REG_R9, 36, 7); |
| 6368 | |
| 6369 | theEmitter->emitIns_R_R_I_I(INS_sbfiz, EA_8BYTE, REG_R2, REG_R3, 7, 37); |
| 6370 | theEmitter->emitIns_R_R_I_I(INS_bfi, EA_8BYTE, REG_R1, REG_R5, 23, 21); |
| 6371 | theEmitter->emitIns_R_R_I_I(INS_ubfiz, EA_8BYTE, REG_R8, REG_R9, 39, 5); |
| 6372 | |
| 6373 | theEmitter->emitIns_R_R_I_I(INS_sbfx, EA_8BYTE, REG_R2, REG_R3, 10, 24); |
| 6374 | theEmitter->emitIns_R_R_I_I(INS_bfxil, EA_8BYTE, REG_R1, REG_R5, 26, 16); |
| 6375 | theEmitter->emitIns_R_R_I_I(INS_ubfx, EA_8BYTE, REG_R8, REG_R9, 42, 8); |
| 6376 | |
| 6377 | theEmitter->emitIns_R_R_I_I(INS_sbfm, EA_4BYTE, REG_R2, REG_R3, 4, 19); |
| 6378 | theEmitter->emitIns_R_R_I_I(INS_bfm, EA_4BYTE, REG_R1, REG_R5, 10, 13); |
| 6379 | theEmitter->emitIns_R_R_I_I(INS_ubfm, EA_4BYTE, REG_R8, REG_R9, 16, 7); |
| 6380 | |
| 6381 | theEmitter->emitIns_R_R_I_I(INS_sbfiz, EA_4BYTE, REG_R2, REG_R3, 5, 17); |
| 6382 | theEmitter->emitIns_R_R_I_I(INS_bfi, EA_4BYTE, REG_R1, REG_R5, 13, 11); |
| 6383 | theEmitter->emitIns_R_R_I_I(INS_ubfiz, EA_4BYTE, REG_R8, REG_R9, 19, 5); |
| 6384 | |
| 6385 | theEmitter->emitIns_R_R_I_I(INS_sbfx, EA_4BYTE, REG_R2, REG_R3, 3, 14); |
| 6386 | theEmitter->emitIns_R_R_I_I(INS_bfxil, EA_4BYTE, REG_R1, REG_R5, 11, 9); |
| 6387 | theEmitter->emitIns_R_R_I_I(INS_ubfx, EA_4BYTE, REG_R8, REG_R9, 22, 8); |
| 6388 | |
| 6389 | #endif // ALL_ARM64_EMITTER_UNIT_TESTS |
| 6390 | |
| 6391 | #ifdef ALL_ARM64_EMITTER_UNIT_TESTS |
| 6392 | // |
| 6393 | // R_R_R_I |
| 6394 | // |
| 6395 | |
| 6396 | genDefineTempLabel(genCreateTempLabel()); |
| 6397 | |
| 6398 | // ADD (extended register) |
| 6399 | theEmitter->emitIns_R_R_R_I(INS_add, EA_8BYTE, REG_R8, REG_R9, REG_R10, 0, INS_OPTS_UXTB); |
| 6400 | theEmitter->emitIns_R_R_R_I(INS_add, EA_8BYTE, REG_R8, REG_R9, REG_R10, 0, INS_OPTS_UXTH); |
| 6401 | theEmitter->emitIns_R_R_R_I(INS_add, EA_8BYTE, REG_R8, REG_R9, REG_R10, 0, INS_OPTS_UXTW); |
| 6402 | theEmitter->emitIns_R_R_R_I(INS_add, EA_8BYTE, REG_R8, REG_R9, REG_R10, 0, INS_OPTS_UXTX); |
| 6403 | theEmitter->emitIns_R_R_R_I(INS_add, EA_8BYTE, REG_R8, REG_R9, REG_R10, 0, INS_OPTS_SXTB); |
| 6404 | theEmitter->emitIns_R_R_R_I(INS_add, EA_8BYTE, REG_R8, REG_R9, REG_R10, 0, INS_OPTS_SXTH); |
| 6405 | theEmitter->emitIns_R_R_R_I(INS_add, EA_8BYTE, REG_R8, REG_R9, REG_R10, 0, INS_OPTS_SXTW); |
| 6406 | theEmitter->emitIns_R_R_R_I(INS_add, EA_8BYTE, REG_R8, REG_R9, REG_R10, 0, INS_OPTS_SXTX); |
| 6407 | |
| 6408 | // ADD (extended register) and left shift |
| 6409 | theEmitter->emitIns_R_R_R_I(INS_add, EA_8BYTE, REG_R8, REG_R9, REG_R10, 4, INS_OPTS_UXTB); |
| 6410 | theEmitter->emitIns_R_R_R_I(INS_add, EA_8BYTE, REG_R8, REG_R9, REG_R10, 4, INS_OPTS_UXTH); |
| 6411 | theEmitter->emitIns_R_R_R_I(INS_add, EA_8BYTE, REG_R8, REG_R9, REG_R10, 4, INS_OPTS_UXTW); |
| 6412 | theEmitter->emitIns_R_R_R_I(INS_add, EA_8BYTE, REG_R8, REG_R9, REG_R10, 4, INS_OPTS_UXTX); |
| 6413 | theEmitter->emitIns_R_R_R_I(INS_add, EA_8BYTE, REG_R8, REG_R9, REG_R10, 4, INS_OPTS_SXTB); |
| 6414 | theEmitter->emitIns_R_R_R_I(INS_add, EA_8BYTE, REG_R8, REG_R9, REG_R10, 4, INS_OPTS_SXTH); |
| 6415 | theEmitter->emitIns_R_R_R_I(INS_add, EA_8BYTE, REG_R8, REG_R9, REG_R10, 4, INS_OPTS_SXTW); |
| 6416 | theEmitter->emitIns_R_R_R_I(INS_add, EA_8BYTE, REG_R8, REG_R9, REG_R10, 4, INS_OPTS_SXTX); |
| 6417 | |
| 6418 | // ADD (shifted register) |
| 6419 | theEmitter->emitIns_R_R_R_I(INS_add, EA_8BYTE, REG_R8, REG_R9, REG_R10, 0); |
| 6420 | theEmitter->emitIns_R_R_R_I(INS_add, EA_8BYTE, REG_R8, REG_R9, REG_R10, 31, INS_OPTS_LSL); |
| 6421 | theEmitter->emitIns_R_R_R_I(INS_add, EA_8BYTE, REG_R8, REG_R9, REG_R10, 32, INS_OPTS_LSR); |
| 6422 | theEmitter->emitIns_R_R_R_I(INS_add, EA_8BYTE, REG_R8, REG_R9, REG_R10, 33, INS_OPTS_ASR); |
| 6423 | |
| 6424 | // EXTR (extract field from register pair) |
| 6425 | theEmitter->emitIns_R_R_R_I(INS_extr, EA_8BYTE, REG_R8, REG_R9, REG_R10, 1); |
| 6426 | theEmitter->emitIns_R_R_R_I(INS_extr, EA_8BYTE, REG_R8, REG_R9, REG_R10, 31); |
| 6427 | theEmitter->emitIns_R_R_R_I(INS_extr, EA_8BYTE, REG_R8, REG_R9, REG_R10, 32); |
| 6428 | theEmitter->emitIns_R_R_R_I(INS_extr, EA_8BYTE, REG_R8, REG_R9, REG_R10, 63); |
| 6429 | |
| 6430 | theEmitter->emitIns_R_R_R_I(INS_extr, EA_4BYTE, REG_R8, REG_R9, REG_R10, 1); |
| 6431 | theEmitter->emitIns_R_R_R_I(INS_extr, EA_4BYTE, REG_R8, REG_R9, REG_R10, 31); |
| 6432 | |
| 6433 | // SUB (extended register) |
| 6434 | theEmitter->emitIns_R_R_R_I(INS_sub, EA_4BYTE, REG_R8, REG_R9, REG_R10, 0, INS_OPTS_UXTB); |
| 6435 | theEmitter->emitIns_R_R_R_I(INS_sub, EA_4BYTE, REG_R8, REG_R9, REG_R10, 0, INS_OPTS_UXTH); |
| 6436 | theEmitter->emitIns_R_R_R_I(INS_sub, EA_4BYTE, REG_R8, REG_R9, REG_R10, 0, INS_OPTS_UXTW); |
| 6437 | theEmitter->emitIns_R_R_R_I(INS_sub, EA_4BYTE, REG_R8, REG_R9, REG_R10, 0, INS_OPTS_UXTX); |
| 6438 | theEmitter->emitIns_R_R_R_I(INS_sub, EA_4BYTE, REG_R8, REG_R9, REG_R10, 0, INS_OPTS_SXTB); |
| 6439 | theEmitter->emitIns_R_R_R_I(INS_sub, EA_4BYTE, REG_R8, REG_R9, REG_R10, 0, INS_OPTS_SXTH); |
| 6440 | theEmitter->emitIns_R_R_R_I(INS_sub, EA_4BYTE, REG_R8, REG_R9, REG_R10, 0, INS_OPTS_SXTW); |
| 6441 | theEmitter->emitIns_R_R_R_I(INS_sub, EA_4BYTE, REG_R8, REG_R9, REG_R10, 0, INS_OPTS_SXTX); |
| 6442 | |
| 6443 | // SUB (extended register) and left shift |
| 6444 | theEmitter->emitIns_R_R_R_I(INS_sub, EA_4BYTE, REG_R8, REG_R9, REG_R10, 4, INS_OPTS_UXTB); |
| 6445 | theEmitter->emitIns_R_R_R_I(INS_sub, EA_4BYTE, REG_R8, REG_R9, REG_R10, 4, INS_OPTS_UXTH); |
| 6446 | theEmitter->emitIns_R_R_R_I(INS_sub, EA_4BYTE, REG_R8, REG_R9, REG_R10, 4, INS_OPTS_UXTW); |
| 6447 | theEmitter->emitIns_R_R_R_I(INS_sub, EA_4BYTE, REG_R8, REG_R9, REG_R10, 4, INS_OPTS_UXTX); |
| 6448 | theEmitter->emitIns_R_R_R_I(INS_sub, EA_4BYTE, REG_R8, REG_R9, REG_R10, 4, INS_OPTS_SXTB); |
| 6449 | theEmitter->emitIns_R_R_R_I(INS_sub, EA_4BYTE, REG_R8, REG_R9, REG_R10, 4, INS_OPTS_SXTH); |
| 6450 | theEmitter->emitIns_R_R_R_I(INS_sub, EA_4BYTE, REG_R8, REG_R9, REG_R10, 4, INS_OPTS_SXTW); |
| 6451 | theEmitter->emitIns_R_R_R_I(INS_sub, EA_4BYTE, REG_R8, REG_R9, REG_R10, 4, INS_OPTS_SXTX); |
| 6452 | |
| 6453 | // SUB (shifted register) |
| 6454 | theEmitter->emitIns_R_R_R_I(INS_sub, EA_4BYTE, REG_R8, REG_R9, REG_R10, 0); |
| 6455 | theEmitter->emitIns_R_R_R_I(INS_sub, EA_4BYTE, REG_R8, REG_R9, REG_R10, 27, INS_OPTS_LSL); |
| 6456 | theEmitter->emitIns_R_R_R_I(INS_sub, EA_4BYTE, REG_R8, REG_R9, REG_R10, 28, INS_OPTS_LSR); |
| 6457 | theEmitter->emitIns_R_R_R_I(INS_sub, EA_4BYTE, REG_R8, REG_R9, REG_R10, 29, INS_OPTS_ASR); |
| 6458 | |
| 6459 | // bit operations |
| 6460 | theEmitter->emitIns_R_R_R_I(INS_and, EA_8BYTE, REG_R8, REG_R9, REG_R10, 0); |
| 6461 | theEmitter->emitIns_R_R_R_I(INS_ands, EA_8BYTE, REG_R8, REG_R9, REG_R10, 0); |
| 6462 | theEmitter->emitIns_R_R_R_I(INS_eor, EA_8BYTE, REG_R8, REG_R9, REG_R10, 0); |
| 6463 | theEmitter->emitIns_R_R_R_I(INS_orr, EA_8BYTE, REG_R8, REG_R9, REG_R10, 0); |
| 6464 | theEmitter->emitIns_R_R_R_I(INS_bic, EA_8BYTE, REG_R8, REG_R9, REG_R10, 0); |
| 6465 | theEmitter->emitIns_R_R_R_I(INS_bics, EA_8BYTE, REG_R8, REG_R9, REG_R10, 0); |
| 6466 | theEmitter->emitIns_R_R_R_I(INS_eon, EA_8BYTE, REG_R8, REG_R9, REG_R10, 0); |
| 6467 | theEmitter->emitIns_R_R_R_I(INS_orn, EA_8BYTE, REG_R8, REG_R9, REG_R10, 0); |
| 6468 | |
| 6469 | theEmitter->emitIns_R_R_R_I(INS_and, EA_8BYTE, REG_R8, REG_R9, REG_R10, 1, INS_OPTS_LSL); |
| 6470 | theEmitter->emitIns_R_R_R_I(INS_ands, EA_8BYTE, REG_R8, REG_R9, REG_R10, 2, INS_OPTS_LSR); |
| 6471 | theEmitter->emitIns_R_R_R_I(INS_eor, EA_8BYTE, REG_R8, REG_R9, REG_R10, 3, INS_OPTS_ASR); |
| 6472 | theEmitter->emitIns_R_R_R_I(INS_orr, EA_8BYTE, REG_R8, REG_R9, REG_R10, 4, INS_OPTS_ROR); |
| 6473 | theEmitter->emitIns_R_R_R_I(INS_bic, EA_8BYTE, REG_R8, REG_R9, REG_R10, 5, INS_OPTS_LSL); |
| 6474 | theEmitter->emitIns_R_R_R_I(INS_bics, EA_8BYTE, REG_R8, REG_R9, REG_R10, 6, INS_OPTS_LSR); |
| 6475 | theEmitter->emitIns_R_R_R_I(INS_eon, EA_8BYTE, REG_R8, REG_R9, REG_R10, 7, INS_OPTS_ASR); |
| 6476 | theEmitter->emitIns_R_R_R_I(INS_orn, EA_8BYTE, REG_R8, REG_R9, REG_R10, 8, INS_OPTS_ROR); |
| 6477 | |
| 6478 | theEmitter->emitIns_R_R_R_I(INS_and, EA_4BYTE, REG_R8, REG_R9, REG_R10, 0); |
| 6479 | theEmitter->emitIns_R_R_R_I(INS_ands, EA_4BYTE, REG_R8, REG_R9, REG_R10, 0); |
| 6480 | theEmitter->emitIns_R_R_R_I(INS_eor, EA_4BYTE, REG_R8, REG_R9, REG_R10, 0); |
| 6481 | theEmitter->emitIns_R_R_R_I(INS_orr, EA_4BYTE, REG_R8, REG_R9, REG_R10, 0); |
| 6482 | theEmitter->emitIns_R_R_R_I(INS_bic, EA_4BYTE, REG_R8, REG_R9, REG_R10, 0); |
| 6483 | theEmitter->emitIns_R_R_R_I(INS_bics, EA_4BYTE, REG_R8, REG_R9, REG_R10, 0); |
| 6484 | theEmitter->emitIns_R_R_R_I(INS_eon, EA_4BYTE, REG_R8, REG_R9, REG_R10, 0); |
| 6485 | theEmitter->emitIns_R_R_R_I(INS_orn, EA_4BYTE, REG_R8, REG_R9, REG_R10, 0); |
| 6486 | |
| 6487 | theEmitter->emitIns_R_R_R_I(INS_and, EA_4BYTE, REG_R8, REG_R9, REG_R10, 1, INS_OPTS_LSL); |
| 6488 | theEmitter->emitIns_R_R_R_I(INS_ands, EA_4BYTE, REG_R8, REG_R9, REG_R10, 2, INS_OPTS_LSR); |
| 6489 | theEmitter->emitIns_R_R_R_I(INS_eor, EA_4BYTE, REG_R8, REG_R9, REG_R10, 3, INS_OPTS_ASR); |
| 6490 | theEmitter->emitIns_R_R_R_I(INS_orr, EA_4BYTE, REG_R8, REG_R9, REG_R10, 4, INS_OPTS_ROR); |
| 6491 | theEmitter->emitIns_R_R_R_I(INS_bic, EA_4BYTE, REG_R8, REG_R9, REG_R10, 5, INS_OPTS_LSL); |
| 6492 | theEmitter->emitIns_R_R_R_I(INS_bics, EA_4BYTE, REG_R8, REG_R9, REG_R10, 6, INS_OPTS_LSR); |
| 6493 | theEmitter->emitIns_R_R_R_I(INS_eon, EA_4BYTE, REG_R8, REG_R9, REG_R10, 7, INS_OPTS_ASR); |
| 6494 | theEmitter->emitIns_R_R_R_I(INS_orn, EA_4BYTE, REG_R8, REG_R9, REG_R10, 8, INS_OPTS_ROR); |
| 6495 | |
| 6496 | #endif // ALL_ARM64_EMITTER_UNIT_TESTS |
| 6497 | |
| 6498 | #ifdef ALL_ARM64_EMITTER_UNIT_TESTS |
| 6499 | // |
| 6500 | // R_R_R_I -- load/store pair |
| 6501 | // |
| 6502 | |
| 6503 | theEmitter->emitIns_R_R_R_I(INS_ldnp, EA_8BYTE, REG_R8, REG_R9, REG_R10, 0); |
| 6504 | theEmitter->emitIns_R_R_R_I(INS_stnp, EA_8BYTE, REG_R8, REG_R9, REG_R10, 0); |
| 6505 | theEmitter->emitIns_R_R_R_I(INS_ldnp, EA_8BYTE, REG_R8, REG_R9, REG_R10, 8); |
| 6506 | theEmitter->emitIns_R_R_R_I(INS_stnp, EA_8BYTE, REG_R8, REG_R9, REG_R10, 8); |
| 6507 | |
| 6508 | theEmitter->emitIns_R_R_R_I(INS_ldnp, EA_4BYTE, REG_R8, REG_R9, REG_SP, 0); |
| 6509 | theEmitter->emitIns_R_R_R_I(INS_stnp, EA_4BYTE, REG_R8, REG_R9, REG_SP, 0); |
| 6510 | theEmitter->emitIns_R_R_R_I(INS_ldnp, EA_4BYTE, REG_R8, REG_R9, REG_SP, 8); |
| 6511 | theEmitter->emitIns_R_R_R_I(INS_stnp, EA_4BYTE, REG_R8, REG_R9, REG_SP, 8); |
| 6512 | |
| 6513 | theEmitter->emitIns_R_R_R_I(INS_ldp, EA_8BYTE, REG_R8, REG_R9, REG_R10, 0); |
| 6514 | theEmitter->emitIns_R_R_R_I(INS_stp, EA_8BYTE, REG_R8, REG_R9, REG_R10, 0); |
| 6515 | theEmitter->emitIns_R_R_R_I(INS_ldp, EA_8BYTE, REG_R8, REG_R9, REG_R10, 16); |
| 6516 | theEmitter->emitIns_R_R_R_I(INS_stp, EA_8BYTE, REG_R8, REG_R9, REG_R10, 16); |
| 6517 | theEmitter->emitIns_R_R_R_I(INS_ldp, EA_8BYTE, REG_R8, REG_R9, REG_R10, 16, INS_OPTS_POST_INDEX); |
| 6518 | theEmitter->emitIns_R_R_R_I(INS_stp, EA_8BYTE, REG_R8, REG_R9, REG_R10, 16, INS_OPTS_POST_INDEX); |
| 6519 | theEmitter->emitIns_R_R_R_I(INS_ldp, EA_8BYTE, REG_R8, REG_R9, REG_R10, 16, INS_OPTS_PRE_INDEX); |
| 6520 | theEmitter->emitIns_R_R_R_I(INS_stp, EA_8BYTE, REG_R8, REG_R9, REG_R10, 16, INS_OPTS_PRE_INDEX); |
| 6521 | |
| 6522 | theEmitter->emitIns_R_R_R_I(INS_ldp, EA_4BYTE, REG_R8, REG_R9, REG_SP, 0); |
| 6523 | theEmitter->emitIns_R_R_R_I(INS_stp, EA_4BYTE, REG_R8, REG_R9, REG_SP, 0); |
| 6524 | theEmitter->emitIns_R_R_R_I(INS_ldp, EA_4BYTE, REG_R8, REG_R9, REG_SP, 16); |
| 6525 | theEmitter->emitIns_R_R_R_I(INS_stp, EA_4BYTE, REG_R8, REG_R9, REG_SP, 16); |
| 6526 | theEmitter->emitIns_R_R_R_I(INS_ldp, EA_4BYTE, REG_R8, REG_R9, REG_R10, 16, INS_OPTS_POST_INDEX); |
| 6527 | theEmitter->emitIns_R_R_R_I(INS_stp, EA_4BYTE, REG_R8, REG_R9, REG_R10, 16, INS_OPTS_POST_INDEX); |
| 6528 | theEmitter->emitIns_R_R_R_I(INS_ldp, EA_4BYTE, REG_R8, REG_R9, REG_R10, 16, INS_OPTS_PRE_INDEX); |
| 6529 | theEmitter->emitIns_R_R_R_I(INS_stp, EA_4BYTE, REG_R8, REG_R9, REG_R10, 16, INS_OPTS_PRE_INDEX); |
| 6530 | |
| 6531 | theEmitter->emitIns_R_R_R_I(INS_ldpsw, EA_4BYTE, REG_R8, REG_R9, REG_R10, 0); |
| 6532 | theEmitter->emitIns_R_R_R_I(INS_ldpsw, EA_4BYTE, REG_R8, REG_R9, REG_R10, 16); |
| 6533 | theEmitter->emitIns_R_R_R_I(INS_ldpsw, EA_4BYTE, REG_R8, REG_R9, REG_R10, 16, INS_OPTS_POST_INDEX); |
| 6534 | theEmitter->emitIns_R_R_R_I(INS_ldpsw, EA_4BYTE, REG_R8, REG_R9, REG_R10, 16, INS_OPTS_PRE_INDEX); |
| 6535 | |
| 6536 | // SP and ZR tests |
| 6537 | theEmitter->emitIns_R_R_R_I(INS_ldp, EA_8BYTE, REG_ZR, REG_R1, REG_SP, 0); |
| 6538 | theEmitter->emitIns_R_R_R_I(INS_ldp, EA_8BYTE, REG_R0, REG_ZR, REG_SP, 16); |
| 6539 | theEmitter->emitIns_R_R_R_I(INS_stp, EA_8BYTE, REG_ZR, REG_R1, REG_SP, 0); |
| 6540 | theEmitter->emitIns_R_R_R_I(INS_stp, EA_8BYTE, REG_R0, REG_ZR, REG_SP, 16); |
| 6541 | theEmitter->emitIns_R_R_R_I(INS_stp, EA_8BYTE, REG_ZR, REG_ZR, REG_SP, 16, INS_OPTS_POST_INDEX); |
| 6542 | theEmitter->emitIns_R_R_R_I(INS_stp, EA_8BYTE, REG_ZR, REG_ZR, REG_R8, 16, INS_OPTS_PRE_INDEX); |
| 6543 | |
| 6544 | #endif // ALL_ARM64_EMITTER_UNIT_TESTS |
| 6545 | |
| 6546 | #ifdef ALL_ARM64_EMITTER_UNIT_TESTS |
| 6547 | // |
| 6548 | // R_R_R_Ext -- load/store shifted/extend |
| 6549 | // |
| 6550 | |
| 6551 | genDefineTempLabel(genCreateTempLabel()); |
| 6552 | |
| 6553 | // LDR (register) |
| 6554 | theEmitter->emitIns_R_R_R_Ext(INS_ldr, EA_8BYTE, REG_R8, REG_SP, REG_R9); |
| 6555 | theEmitter->emitIns_R_R_R_Ext(INS_ldr, EA_8BYTE, REG_R8, REG_SP, REG_R9, INS_OPTS_LSL); |
| 6556 | theEmitter->emitIns_R_R_R_Ext(INS_ldr, EA_8BYTE, REG_R8, REG_SP, REG_R9, INS_OPTS_LSL, 3); |
| 6557 | theEmitter->emitIns_R_R_R_Ext(INS_ldr, EA_8BYTE, REG_R8, REG_SP, REG_R9, INS_OPTS_SXTW); |
| 6558 | theEmitter->emitIns_R_R_R_Ext(INS_ldr, EA_8BYTE, REG_R8, REG_SP, REG_R9, INS_OPTS_SXTW, 3); |
| 6559 | theEmitter->emitIns_R_R_R_Ext(INS_ldr, EA_8BYTE, REG_R8, REG_SP, REG_R9, INS_OPTS_UXTW); |
| 6560 | theEmitter->emitIns_R_R_R_Ext(INS_ldr, EA_8BYTE, REG_R8, REG_SP, REG_R9, INS_OPTS_UXTW, 3); |
| 6561 | theEmitter->emitIns_R_R_R_Ext(INS_ldr, EA_8BYTE, REG_R8, REG_SP, REG_R9, INS_OPTS_SXTX); |
| 6562 | theEmitter->emitIns_R_R_R_Ext(INS_ldr, EA_8BYTE, REG_R8, REG_SP, REG_R9, INS_OPTS_SXTX, 3); |
| 6563 | theEmitter->emitIns_R_R_R_Ext(INS_ldr, EA_8BYTE, REG_R8, REG_SP, REG_R9, INS_OPTS_UXTX); |
| 6564 | theEmitter->emitIns_R_R_R_Ext(INS_ldr, EA_8BYTE, REG_R8, REG_SP, REG_R9, INS_OPTS_UXTX, 3); |
| 6565 | |
| 6566 | theEmitter->emitIns_R_R_R_Ext(INS_ldr, EA_4BYTE, REG_R8, REG_SP, REG_R9); |
| 6567 | theEmitter->emitIns_R_R_R_Ext(INS_ldr, EA_4BYTE, REG_R8, REG_SP, REG_R9, INS_OPTS_LSL); |
| 6568 | theEmitter->emitIns_R_R_R_Ext(INS_ldr, EA_4BYTE, REG_R8, REG_SP, REG_R9, INS_OPTS_LSL, 2); |
| 6569 | theEmitter->emitIns_R_R_R_Ext(INS_ldr, EA_4BYTE, REG_R8, REG_SP, REG_R9, INS_OPTS_SXTW); |
| 6570 | theEmitter->emitIns_R_R_R_Ext(INS_ldr, EA_4BYTE, REG_R8, REG_SP, REG_R9, INS_OPTS_SXTW, 2); |
| 6571 | theEmitter->emitIns_R_R_R_Ext(INS_ldr, EA_4BYTE, REG_R8, REG_SP, REG_R9, INS_OPTS_UXTW); |
| 6572 | theEmitter->emitIns_R_R_R_Ext(INS_ldr, EA_4BYTE, REG_R8, REG_SP, REG_R9, INS_OPTS_UXTW, 2); |
| 6573 | theEmitter->emitIns_R_R_R_Ext(INS_ldr, EA_4BYTE, REG_R8, REG_SP, REG_R9, INS_OPTS_SXTX); |
| 6574 | theEmitter->emitIns_R_R_R_Ext(INS_ldr, EA_4BYTE, REG_R8, REG_SP, REG_R9, INS_OPTS_SXTX, 2); |
| 6575 | theEmitter->emitIns_R_R_R_Ext(INS_ldr, EA_4BYTE, REG_R8, REG_SP, REG_R9, INS_OPTS_UXTX); |
| 6576 | theEmitter->emitIns_R_R_R_Ext(INS_ldr, EA_4BYTE, REG_R8, REG_SP, REG_R9, INS_OPTS_UXTX, 2); |
| 6577 | |
| 6578 | theEmitter->emitIns_R_R_R_Ext(INS_ldrh, EA_2BYTE, REG_R8, REG_SP, REG_R9); |
| 6579 | theEmitter->emitIns_R_R_R_Ext(INS_ldrh, EA_2BYTE, REG_R8, REG_SP, REG_R9, INS_OPTS_LSL); |
| 6580 | theEmitter->emitIns_R_R_R_Ext(INS_ldrh, EA_2BYTE, REG_R8, REG_SP, REG_R9, INS_OPTS_LSL, 1); |
| 6581 | theEmitter->emitIns_R_R_R_Ext(INS_ldrh, EA_2BYTE, REG_R8, REG_SP, REG_R9, INS_OPTS_SXTW); |
| 6582 | theEmitter->emitIns_R_R_R_Ext(INS_ldrh, EA_2BYTE, REG_R8, REG_SP, REG_R9, INS_OPTS_SXTW, 1); |
| 6583 | theEmitter->emitIns_R_R_R_Ext(INS_ldrh, EA_2BYTE, REG_R8, REG_SP, REG_R9, INS_OPTS_UXTW); |
| 6584 | theEmitter->emitIns_R_R_R_Ext(INS_ldrh, EA_2BYTE, REG_R8, REG_SP, REG_R9, INS_OPTS_UXTW, 1); |
| 6585 | theEmitter->emitIns_R_R_R_Ext(INS_ldrh, EA_2BYTE, REG_R8, REG_SP, REG_R9, INS_OPTS_SXTX); |
| 6586 | theEmitter->emitIns_R_R_R_Ext(INS_ldrh, EA_2BYTE, REG_R8, REG_SP, REG_R9, INS_OPTS_SXTX, 1); |
| 6587 | theEmitter->emitIns_R_R_R_Ext(INS_ldrh, EA_2BYTE, REG_R8, REG_SP, REG_R9, INS_OPTS_UXTX); |
| 6588 | theEmitter->emitIns_R_R_R_Ext(INS_ldrh, EA_2BYTE, REG_R8, REG_SP, REG_R9, INS_OPTS_UXTX, 1); |
| 6589 | |
| 6590 | theEmitter->emitIns_R_R_R_Ext(INS_ldrb, EA_1BYTE, REG_R8, REG_SP, REG_R9); |
| 6591 | theEmitter->emitIns_R_R_R_Ext(INS_ldrb, EA_1BYTE, REG_R8, REG_SP, REG_R9, INS_OPTS_SXTW); |
| 6592 | theEmitter->emitIns_R_R_R_Ext(INS_ldrb, EA_1BYTE, REG_R8, REG_SP, REG_R9, INS_OPTS_UXTW); |
| 6593 | theEmitter->emitIns_R_R_R_Ext(INS_ldrb, EA_1BYTE, REG_R8, REG_SP, REG_R9, INS_OPTS_SXTX); |
| 6594 | theEmitter->emitIns_R_R_R_Ext(INS_ldrb, EA_1BYTE, REG_R8, REG_SP, REG_R9, INS_OPTS_UXTX); |
| 6595 | |
| 6596 | theEmitter->emitIns_R_R_R_Ext(INS_ldrsw, EA_4BYTE, REG_R8, REG_SP, REG_R9); |
| 6597 | theEmitter->emitIns_R_R_R_Ext(INS_ldrsw, EA_4BYTE, REG_R8, REG_SP, REG_R9, INS_OPTS_LSL); |
| 6598 | theEmitter->emitIns_R_R_R_Ext(INS_ldrsw, EA_4BYTE, REG_R8, REG_SP, REG_R9, INS_OPTS_LSL, 2); |
| 6599 | theEmitter->emitIns_R_R_R_Ext(INS_ldrsw, EA_4BYTE, REG_R8, REG_SP, REG_R9, INS_OPTS_SXTW); |
| 6600 | theEmitter->emitIns_R_R_R_Ext(INS_ldrsw, EA_4BYTE, REG_R8, REG_SP, REG_R9, INS_OPTS_SXTW, 2); |
| 6601 | theEmitter->emitIns_R_R_R_Ext(INS_ldrsw, EA_4BYTE, REG_R8, REG_SP, REG_R9, INS_OPTS_UXTW); |
| 6602 | theEmitter->emitIns_R_R_R_Ext(INS_ldrsw, EA_4BYTE, REG_R8, REG_SP, REG_R9, INS_OPTS_UXTW, 2); |
| 6603 | theEmitter->emitIns_R_R_R_Ext(INS_ldrsw, EA_4BYTE, REG_R8, REG_SP, REG_R9, INS_OPTS_SXTX); |
| 6604 | theEmitter->emitIns_R_R_R_Ext(INS_ldrsw, EA_4BYTE, REG_R8, REG_SP, REG_R9, INS_OPTS_SXTX, 2); |
| 6605 | theEmitter->emitIns_R_R_R_Ext(INS_ldrsw, EA_4BYTE, REG_R8, REG_SP, REG_R9, INS_OPTS_UXTX); |
| 6606 | theEmitter->emitIns_R_R_R_Ext(INS_ldrsw, EA_4BYTE, REG_R8, REG_SP, REG_R9, INS_OPTS_UXTX, 2); |
| 6607 | |
| 6608 | theEmitter->emitIns_R_R_R_Ext(INS_ldrsh, EA_4BYTE, REG_R8, REG_SP, REG_R9); |
| 6609 | theEmitter->emitIns_R_R_R_Ext(INS_ldrsh, EA_8BYTE, REG_R8, REG_SP, REG_R9); |
| 6610 | theEmitter->emitIns_R_R_R_Ext(INS_ldrsh, EA_8BYTE, REG_R8, REG_SP, REG_R9, INS_OPTS_LSL); |
| 6611 | theEmitter->emitIns_R_R_R_Ext(INS_ldrsh, EA_4BYTE, REG_R8, REG_SP, REG_R9, INS_OPTS_LSL, 1); |
| 6612 | theEmitter->emitIns_R_R_R_Ext(INS_ldrsh, EA_4BYTE, REG_R8, REG_SP, REG_R9, INS_OPTS_SXTW); |
| 6613 | theEmitter->emitIns_R_R_R_Ext(INS_ldrsh, EA_8BYTE, REG_R8, REG_SP, REG_R9, INS_OPTS_SXTW, 1); |
| 6614 | theEmitter->emitIns_R_R_R_Ext(INS_ldrsh, EA_8BYTE, REG_R8, REG_SP, REG_R9, INS_OPTS_UXTW); |
| 6615 | theEmitter->emitIns_R_R_R_Ext(INS_ldrsh, EA_4BYTE, REG_R8, REG_SP, REG_R9, INS_OPTS_UXTW, 1); |
| 6616 | theEmitter->emitIns_R_R_R_Ext(INS_ldrsh, EA_4BYTE, REG_R8, REG_SP, REG_R9, INS_OPTS_SXTX); |
| 6617 | theEmitter->emitIns_R_R_R_Ext(INS_ldrsh, EA_8BYTE, REG_R8, REG_SP, REG_R9, INS_OPTS_SXTX, 1); |
| 6618 | theEmitter->emitIns_R_R_R_Ext(INS_ldrsh, EA_8BYTE, REG_R8, REG_SP, REG_R9, INS_OPTS_UXTX); |
| 6619 | theEmitter->emitIns_R_R_R_Ext(INS_ldrsh, EA_4BYTE, REG_R8, REG_SP, REG_R9, INS_OPTS_UXTX, 1); |
| 6620 | |
| 6621 | theEmitter->emitIns_R_R_R_Ext(INS_ldrsb, EA_4BYTE, REG_R8, REG_SP, REG_R9); |
| 6622 | theEmitter->emitIns_R_R_R_Ext(INS_ldrsb, EA_8BYTE, REG_R8, REG_SP, REG_R9); |
| 6623 | theEmitter->emitIns_R_R_R_Ext(INS_ldrsb, EA_8BYTE, REG_R8, REG_SP, REG_R9, INS_OPTS_SXTW); |
| 6624 | theEmitter->emitIns_R_R_R_Ext(INS_ldrsb, EA_4BYTE, REG_R8, REG_SP, REG_R9, INS_OPTS_UXTW); |
| 6625 | theEmitter->emitIns_R_R_R_Ext(INS_ldrsb, EA_4BYTE, REG_R8, REG_SP, REG_R9, INS_OPTS_SXTX); |
| 6626 | theEmitter->emitIns_R_R_R_Ext(INS_ldrsb, EA_8BYTE, REG_R8, REG_SP, REG_R9, INS_OPTS_UXTX); |
| 6627 | |
| 6628 | // STR (register) |
| 6629 | theEmitter->emitIns_R_R_R_Ext(INS_str, EA_8BYTE, REG_R8, REG_SP, REG_R9); |
| 6630 | theEmitter->emitIns_R_R_R_Ext(INS_str, EA_8BYTE, REG_R8, REG_SP, REG_R9, INS_OPTS_LSL); |
| 6631 | theEmitter->emitIns_R_R_R_Ext(INS_str, EA_8BYTE, REG_R8, REG_SP, REG_R9, INS_OPTS_LSL, 3); |
| 6632 | theEmitter->emitIns_R_R_R_Ext(INS_str, EA_8BYTE, REG_R8, REG_SP, REG_R9, INS_OPTS_SXTW); |
| 6633 | theEmitter->emitIns_R_R_R_Ext(INS_str, EA_8BYTE, REG_R8, REG_SP, REG_R9, INS_OPTS_SXTW, 3); |
| 6634 | theEmitter->emitIns_R_R_R_Ext(INS_str, EA_8BYTE, REG_R8, REG_SP, REG_R9, INS_OPTS_UXTW); |
| 6635 | theEmitter->emitIns_R_R_R_Ext(INS_str, EA_8BYTE, REG_R8, REG_SP, REG_R9, INS_OPTS_UXTW, 3); |
| 6636 | theEmitter->emitIns_R_R_R_Ext(INS_str, EA_8BYTE, REG_R8, REG_SP, REG_R9, INS_OPTS_SXTX); |
| 6637 | theEmitter->emitIns_R_R_R_Ext(INS_str, EA_8BYTE, REG_R8, REG_SP, REG_R9, INS_OPTS_SXTX, 3); |
| 6638 | theEmitter->emitIns_R_R_R_Ext(INS_str, EA_8BYTE, REG_R8, REG_SP, REG_R9, INS_OPTS_UXTX); |
| 6639 | theEmitter->emitIns_R_R_R_Ext(INS_str, EA_8BYTE, REG_R8, REG_SP, REG_R9, INS_OPTS_UXTX, 3); |
| 6640 | |
| 6641 | theEmitter->emitIns_R_R_R_Ext(INS_str, EA_4BYTE, REG_R8, REG_SP, REG_R9); |
| 6642 | theEmitter->emitIns_R_R_R_Ext(INS_str, EA_4BYTE, REG_R8, REG_SP, REG_R9, INS_OPTS_LSL); |
| 6643 | theEmitter->emitIns_R_R_R_Ext(INS_str, EA_4BYTE, REG_R8, REG_SP, REG_R9, INS_OPTS_LSL, 2); |
| 6644 | theEmitter->emitIns_R_R_R_Ext(INS_str, EA_4BYTE, REG_R8, REG_SP, REG_R9, INS_OPTS_SXTW); |
| 6645 | theEmitter->emitIns_R_R_R_Ext(INS_str, EA_4BYTE, REG_R8, REG_SP, REG_R9, INS_OPTS_SXTW, 2); |
| 6646 | theEmitter->emitIns_R_R_R_Ext(INS_str, EA_4BYTE, REG_R8, REG_SP, REG_R9, INS_OPTS_UXTW); |
| 6647 | theEmitter->emitIns_R_R_R_Ext(INS_str, EA_4BYTE, REG_R8, REG_SP, REG_R9, INS_OPTS_UXTW, 2); |
| 6648 | theEmitter->emitIns_R_R_R_Ext(INS_str, EA_4BYTE, REG_R8, REG_SP, REG_R9, INS_OPTS_SXTX); |
| 6649 | theEmitter->emitIns_R_R_R_Ext(INS_str, EA_4BYTE, REG_R8, REG_SP, REG_R9, INS_OPTS_SXTX, 2); |
| 6650 | theEmitter->emitIns_R_R_R_Ext(INS_str, EA_4BYTE, REG_R8, REG_SP, REG_R9, INS_OPTS_UXTX); |
| 6651 | theEmitter->emitIns_R_R_R_Ext(INS_str, EA_4BYTE, REG_R8, REG_SP, REG_R9, INS_OPTS_UXTX, 2); |
| 6652 | |
| 6653 | theEmitter->emitIns_R_R_R_Ext(INS_strh, EA_2BYTE, REG_R8, REG_SP, REG_R9); |
| 6654 | theEmitter->emitIns_R_R_R_Ext(INS_strh, EA_2BYTE, REG_R8, REG_SP, REG_R9, INS_OPTS_LSL); |
| 6655 | theEmitter->emitIns_R_R_R_Ext(INS_strh, EA_2BYTE, REG_R8, REG_SP, REG_R9, INS_OPTS_LSL, 1); |
| 6656 | theEmitter->emitIns_R_R_R_Ext(INS_strh, EA_2BYTE, REG_R8, REG_SP, REG_R9, INS_OPTS_SXTW); |
| 6657 | theEmitter->emitIns_R_R_R_Ext(INS_strh, EA_2BYTE, REG_R8, REG_SP, REG_R9, INS_OPTS_SXTW, 1); |
| 6658 | theEmitter->emitIns_R_R_R_Ext(INS_strh, EA_2BYTE, REG_R8, REG_SP, REG_R9, INS_OPTS_UXTW); |
| 6659 | theEmitter->emitIns_R_R_R_Ext(INS_strh, EA_2BYTE, REG_R8, REG_SP, REG_R9, INS_OPTS_UXTW, 1); |
| 6660 | theEmitter->emitIns_R_R_R_Ext(INS_strh, EA_2BYTE, REG_R8, REG_SP, REG_R9, INS_OPTS_SXTX); |
| 6661 | theEmitter->emitIns_R_R_R_Ext(INS_strh, EA_2BYTE, REG_R8, REG_SP, REG_R9, INS_OPTS_SXTX, 1); |
| 6662 | theEmitter->emitIns_R_R_R_Ext(INS_strh, EA_2BYTE, REG_R8, REG_SP, REG_R9, INS_OPTS_UXTX); |
| 6663 | theEmitter->emitIns_R_R_R_Ext(INS_strh, EA_2BYTE, REG_R8, REG_SP, REG_R9, INS_OPTS_UXTX, 1); |
| 6664 | |
| 6665 | theEmitter->emitIns_R_R_R_Ext(INS_strb, EA_1BYTE, REG_R8, REG_SP, REG_R9); |
| 6666 | theEmitter->emitIns_R_R_R_Ext(INS_strb, EA_1BYTE, REG_R8, REG_SP, REG_R9, INS_OPTS_SXTW); |
| 6667 | theEmitter->emitIns_R_R_R_Ext(INS_strb, EA_1BYTE, REG_R8, REG_SP, REG_R9, INS_OPTS_UXTW); |
| 6668 | theEmitter->emitIns_R_R_R_Ext(INS_strb, EA_1BYTE, REG_R8, REG_SP, REG_R9, INS_OPTS_SXTX); |
| 6669 | theEmitter->emitIns_R_R_R_Ext(INS_strb, EA_1BYTE, REG_R8, REG_SP, REG_R9, INS_OPTS_UXTX); |
| 6670 | |
| 6671 | #endif // ALL_ARM64_EMITTER_UNIT_TESTS |
| 6672 | |
| 6673 | #ifdef ALL_ARM64_EMITTER_UNIT_TESTS |
| 6674 | // |
| 6675 | // R_R_R_R |
| 6676 | // |
| 6677 | |
| 6678 | genDefineTempLabel(genCreateTempLabel()); |
| 6679 | |
| 6680 | theEmitter->emitIns_R_R_R_R(INS_madd, EA_4BYTE, REG_R0, REG_R12, REG_R27, REG_R10); |
| 6681 | theEmitter->emitIns_R_R_R_R(INS_msub, EA_4BYTE, REG_R1, REG_R13, REG_R28, REG_R11); |
| 6682 | theEmitter->emitIns_R_R_R_R(INS_smaddl, EA_4BYTE, REG_R2, REG_R14, REG_R0, REG_R12); |
| 6683 | theEmitter->emitIns_R_R_R_R(INS_smsubl, EA_4BYTE, REG_R3, REG_R15, REG_R1, REG_R13); |
| 6684 | theEmitter->emitIns_R_R_R_R(INS_umaddl, EA_4BYTE, REG_R4, REG_R19, REG_R2, REG_R14); |
| 6685 | theEmitter->emitIns_R_R_R_R(INS_umsubl, EA_4BYTE, REG_R5, REG_R20, REG_R3, REG_R15); |
| 6686 | |
| 6687 | theEmitter->emitIns_R_R_R_R(INS_madd, EA_8BYTE, REG_R6, REG_R21, REG_R4, REG_R19); |
| 6688 | theEmitter->emitIns_R_R_R_R(INS_msub, EA_8BYTE, REG_R7, REG_R22, REG_R5, REG_R20); |
| 6689 | theEmitter->emitIns_R_R_R_R(INS_smaddl, EA_8BYTE, REG_R8, REG_R23, REG_R6, REG_R21); |
| 6690 | theEmitter->emitIns_R_R_R_R(INS_smsubl, EA_8BYTE, REG_R9, REG_R24, REG_R7, REG_R22); |
| 6691 | theEmitter->emitIns_R_R_R_R(INS_umaddl, EA_8BYTE, REG_R10, REG_R25, REG_R8, REG_R23); |
| 6692 | theEmitter->emitIns_R_R_R_R(INS_umsubl, EA_8BYTE, REG_R11, REG_R26, REG_R9, REG_R24); |
| 6693 | |
| 6694 | #endif // ALL_ARM64_EMITTER_UNIT_TESTS |
| 6695 | |
| 6696 | #ifdef ALL_ARM64_EMITTER_UNIT_TESTS |
| 6697 | // R_COND |
| 6698 | // |
| 6699 | |
| 6700 | // cset reg, cond |
| 6701 | theEmitter->emitIns_R_COND(INS_cset, EA_8BYTE, REG_R9, INS_COND_EQ); // eq |
| 6702 | theEmitter->emitIns_R_COND(INS_cset, EA_4BYTE, REG_R8, INS_COND_NE); // ne |
| 6703 | theEmitter->emitIns_R_COND(INS_cset, EA_4BYTE, REG_R7, INS_COND_HS); // hs |
| 6704 | theEmitter->emitIns_R_COND(INS_cset, EA_8BYTE, REG_R6, INS_COND_LO); // lo |
| 6705 | theEmitter->emitIns_R_COND(INS_cset, EA_8BYTE, REG_R5, INS_COND_MI); // mi |
| 6706 | theEmitter->emitIns_R_COND(INS_cset, EA_4BYTE, REG_R4, INS_COND_PL); // pl |
| 6707 | theEmitter->emitIns_R_COND(INS_cset, EA_4BYTE, REG_R3, INS_COND_VS); // vs |
| 6708 | theEmitter->emitIns_R_COND(INS_cset, EA_8BYTE, REG_R2, INS_COND_VC); // vc |
| 6709 | theEmitter->emitIns_R_COND(INS_cset, EA_8BYTE, REG_R1, INS_COND_HI); // hi |
| 6710 | theEmitter->emitIns_R_COND(INS_cset, EA_4BYTE, REG_R0, INS_COND_LS); // ls |
| 6711 | theEmitter->emitIns_R_COND(INS_cset, EA_4BYTE, REG_R9, INS_COND_GE); // ge |
| 6712 | theEmitter->emitIns_R_COND(INS_cset, EA_8BYTE, REG_R8, INS_COND_LT); // lt |
| 6713 | theEmitter->emitIns_R_COND(INS_cset, EA_8BYTE, REG_R7, INS_COND_GT); // gt |
| 6714 | theEmitter->emitIns_R_COND(INS_cset, EA_4BYTE, REG_R6, INS_COND_LE); // le |
| 6715 | |
| 6716 | // csetm reg, cond |
| 6717 | theEmitter->emitIns_R_COND(INS_csetm, EA_4BYTE, REG_R9, INS_COND_EQ); // eq |
| 6718 | theEmitter->emitIns_R_COND(INS_csetm, EA_8BYTE, REG_R8, INS_COND_NE); // ne |
| 6719 | theEmitter->emitIns_R_COND(INS_csetm, EA_8BYTE, REG_R7, INS_COND_HS); // hs |
| 6720 | theEmitter->emitIns_R_COND(INS_csetm, EA_4BYTE, REG_R6, INS_COND_LO); // lo |
| 6721 | theEmitter->emitIns_R_COND(INS_csetm, EA_4BYTE, REG_R5, INS_COND_MI); // mi |
| 6722 | theEmitter->emitIns_R_COND(INS_csetm, EA_8BYTE, REG_R4, INS_COND_PL); // pl |
| 6723 | theEmitter->emitIns_R_COND(INS_csetm, EA_8BYTE, REG_R3, INS_COND_VS); // vs |
| 6724 | theEmitter->emitIns_R_COND(INS_csetm, EA_4BYTE, REG_R2, INS_COND_VC); // vc |
| 6725 | theEmitter->emitIns_R_COND(INS_csetm, EA_4BYTE, REG_R1, INS_COND_HI); // hi |
| 6726 | theEmitter->emitIns_R_COND(INS_csetm, EA_8BYTE, REG_R0, INS_COND_LS); // ls |
| 6727 | theEmitter->emitIns_R_COND(INS_csetm, EA_8BYTE, REG_R9, INS_COND_GE); // ge |
| 6728 | theEmitter->emitIns_R_COND(INS_csetm, EA_4BYTE, REG_R8, INS_COND_LT); // lt |
| 6729 | theEmitter->emitIns_R_COND(INS_csetm, EA_4BYTE, REG_R7, INS_COND_GT); // gt |
| 6730 | theEmitter->emitIns_R_COND(INS_csetm, EA_8BYTE, REG_R6, INS_COND_LE); // le |
| 6731 | |
| 6732 | #endif // ALL_ARM64_EMITTER_UNIT_TESTS |
| 6733 | |
| 6734 | #ifdef ALL_ARM64_EMITTER_UNIT_TESTS |
| 6735 | // R_R_COND |
| 6736 | // |
| 6737 | |
| 6738 | // cinc reg, reg, cond |
| 6739 | // cinv reg, reg, cond |
| 6740 | // cneg reg, reg, cond |
| 6741 | theEmitter->emitIns_R_R_COND(INS_cinc, EA_8BYTE, REG_R0, REG_R4, INS_COND_EQ); // eq |
| 6742 | theEmitter->emitIns_R_R_COND(INS_cinv, EA_4BYTE, REG_R1, REG_R5, INS_COND_NE); // ne |
| 6743 | theEmitter->emitIns_R_R_COND(INS_cneg, EA_4BYTE, REG_R2, REG_R6, INS_COND_HS); // hs |
| 6744 | theEmitter->emitIns_R_R_COND(INS_cinc, EA_8BYTE, REG_R3, REG_R7, INS_COND_LO); // lo |
| 6745 | theEmitter->emitIns_R_R_COND(INS_cinv, EA_4BYTE, REG_R4, REG_R8, INS_COND_MI); // mi |
| 6746 | theEmitter->emitIns_R_R_COND(INS_cneg, EA_8BYTE, REG_R5, REG_R9, INS_COND_PL); // pl |
| 6747 | theEmitter->emitIns_R_R_COND(INS_cinc, EA_8BYTE, REG_R6, REG_R0, INS_COND_VS); // vs |
| 6748 | theEmitter->emitIns_R_R_COND(INS_cinv, EA_4BYTE, REG_R7, REG_R1, INS_COND_VC); // vc |
| 6749 | theEmitter->emitIns_R_R_COND(INS_cneg, EA_8BYTE, REG_R8, REG_R2, INS_COND_HI); // hi |
| 6750 | theEmitter->emitIns_R_R_COND(INS_cinc, EA_4BYTE, REG_R9, REG_R3, INS_COND_LS); // ls |
| 6751 | theEmitter->emitIns_R_R_COND(INS_cinv, EA_4BYTE, REG_R0, REG_R4, INS_COND_GE); // ge |
| 6752 | theEmitter->emitIns_R_R_COND(INS_cneg, EA_8BYTE, REG_R2, REG_R5, INS_COND_LT); // lt |
| 6753 | theEmitter->emitIns_R_R_COND(INS_cinc, EA_4BYTE, REG_R2, REG_R6, INS_COND_GT); // gt |
| 6754 | theEmitter->emitIns_R_R_COND(INS_cinv, EA_8BYTE, REG_R3, REG_R7, INS_COND_LE); // le |
| 6755 | |
| 6756 | #endif // ALL_ARM64_EMITTER_UNIT_TESTS |
| 6757 | |
| 6758 | #ifdef ALL_ARM64_EMITTER_UNIT_TESTS |
| 6759 | // R_R_R_COND |
| 6760 | // |
| 6761 | |
| 6762 | // csel reg, reg, reg, cond |
| 6763 | // csinc reg, reg, reg, cond |
| 6764 | // csinv reg, reg, reg, cond |
| 6765 | // csneg reg, reg, reg, cond |
| 6766 | theEmitter->emitIns_R_R_R_COND(INS_csel, EA_8BYTE, REG_R0, REG_R4, REG_R8, INS_COND_EQ); // eq |
| 6767 | theEmitter->emitIns_R_R_R_COND(INS_csinc, EA_4BYTE, REG_R1, REG_R5, REG_R9, INS_COND_NE); // ne |
| 6768 | theEmitter->emitIns_R_R_R_COND(INS_csinv, EA_4BYTE, REG_R2, REG_R6, REG_R0, INS_COND_HS); // hs |
| 6769 | theEmitter->emitIns_R_R_R_COND(INS_csneg, EA_8BYTE, REG_R3, REG_R7, REG_R1, INS_COND_LO); // lo |
| 6770 | theEmitter->emitIns_R_R_R_COND(INS_csel, EA_4BYTE, REG_R4, REG_R8, REG_R2, INS_COND_MI); // mi |
| 6771 | theEmitter->emitIns_R_R_R_COND(INS_csinc, EA_8BYTE, REG_R5, REG_R9, REG_R3, INS_COND_PL); // pl |
| 6772 | theEmitter->emitIns_R_R_R_COND(INS_csinv, EA_8BYTE, REG_R6, REG_R0, REG_R4, INS_COND_VS); // vs |
| 6773 | theEmitter->emitIns_R_R_R_COND(INS_csneg, EA_4BYTE, REG_R7, REG_R1, REG_R5, INS_COND_VC); // vc |
| 6774 | theEmitter->emitIns_R_R_R_COND(INS_csel, EA_8BYTE, REG_R8, REG_R2, REG_R6, INS_COND_HI); // hi |
| 6775 | theEmitter->emitIns_R_R_R_COND(INS_csinc, EA_4BYTE, REG_R9, REG_R3, REG_R7, INS_COND_LS); // ls |
| 6776 | theEmitter->emitIns_R_R_R_COND(INS_csinv, EA_4BYTE, REG_R0, REG_R4, REG_R8, INS_COND_GE); // ge |
| 6777 | theEmitter->emitIns_R_R_R_COND(INS_csneg, EA_8BYTE, REG_R2, REG_R5, REG_R9, INS_COND_LT); // lt |
| 6778 | theEmitter->emitIns_R_R_R_COND(INS_csel, EA_4BYTE, REG_R2, REG_R6, REG_R0, INS_COND_GT); // gt |
| 6779 | theEmitter->emitIns_R_R_R_COND(INS_csinc, EA_8BYTE, REG_R3, REG_R7, REG_R1, INS_COND_LE); // le |
| 6780 | |
| 6781 | #endif // ALL_ARM64_EMITTER_UNIT_TESTS |
| 6782 | |
| 6783 | #ifdef ALL_ARM64_EMITTER_UNIT_TESTS |
| 6784 | // R_R_FLAGS_COND |
| 6785 | // |
| 6786 | |
| 6787 | // ccmp reg1, reg2, nzcv, cond |
| 6788 | theEmitter->emitIns_R_R_FLAGS_COND(INS_ccmp, EA_8BYTE, REG_R9, REG_R3, INS_FLAGS_V, INS_COND_EQ); // eq |
| 6789 | theEmitter->emitIns_R_R_FLAGS_COND(INS_ccmp, EA_4BYTE, REG_R8, REG_R2, INS_FLAGS_C, INS_COND_NE); // ne |
| 6790 | theEmitter->emitIns_R_R_FLAGS_COND(INS_ccmp, EA_4BYTE, REG_R7, REG_R1, INS_FLAGS_Z, INS_COND_HS); // hs |
| 6791 | theEmitter->emitIns_R_R_FLAGS_COND(INS_ccmp, EA_8BYTE, REG_R6, REG_R0, INS_FLAGS_N, INS_COND_LO); // lo |
| 6792 | theEmitter->emitIns_R_R_FLAGS_COND(INS_ccmp, EA_8BYTE, REG_R5, REG_R3, INS_FLAGS_CV, INS_COND_MI); // mi |
| 6793 | theEmitter->emitIns_R_R_FLAGS_COND(INS_ccmp, EA_4BYTE, REG_R4, REG_R2, INS_FLAGS_ZV, INS_COND_PL); // pl |
| 6794 | theEmitter->emitIns_R_R_FLAGS_COND(INS_ccmp, EA_4BYTE, REG_R3, REG_R1, INS_FLAGS_ZC, INS_COND_VS); // vs |
| 6795 | theEmitter->emitIns_R_R_FLAGS_COND(INS_ccmp, EA_8BYTE, REG_R2, REG_R0, INS_FLAGS_NV, INS_COND_VC); // vc |
| 6796 | theEmitter->emitIns_R_R_FLAGS_COND(INS_ccmp, EA_8BYTE, REG_R1, REG_R3, INS_FLAGS_NC, INS_COND_HI); // hi |
| 6797 | theEmitter->emitIns_R_R_FLAGS_COND(INS_ccmp, EA_4BYTE, REG_R0, REG_R2, INS_FLAGS_NZ, INS_COND_LS); // ls |
| 6798 | theEmitter->emitIns_R_R_FLAGS_COND(INS_ccmp, EA_4BYTE, REG_R9, REG_R1, INS_FLAGS_NONE, INS_COND_GE); // ge |
| 6799 | theEmitter->emitIns_R_R_FLAGS_COND(INS_ccmp, EA_8BYTE, REG_R8, REG_R0, INS_FLAGS_NZV, INS_COND_LT); // lt |
| 6800 | theEmitter->emitIns_R_R_FLAGS_COND(INS_ccmp, EA_8BYTE, REG_R7, REG_R3, INS_FLAGS_NZC, INS_COND_GT); // gt |
| 6801 | theEmitter->emitIns_R_R_FLAGS_COND(INS_ccmp, EA_4BYTE, REG_R6, REG_R2, INS_FLAGS_NZCV, INS_COND_LE); // le |
| 6802 | |
| 6803 | // ccmp reg1, imm, nzcv, cond |
| 6804 | theEmitter->emitIns_R_I_FLAGS_COND(INS_ccmp, EA_8BYTE, REG_R9, 3, INS_FLAGS_V, INS_COND_EQ); // eq |
| 6805 | theEmitter->emitIns_R_I_FLAGS_COND(INS_ccmp, EA_4BYTE, REG_R8, 2, INS_FLAGS_C, INS_COND_NE); // ne |
| 6806 | theEmitter->emitIns_R_I_FLAGS_COND(INS_ccmp, EA_4BYTE, REG_R7, 1, INS_FLAGS_Z, INS_COND_HS); // hs |
| 6807 | theEmitter->emitIns_R_I_FLAGS_COND(INS_ccmp, EA_8BYTE, REG_R6, 0, INS_FLAGS_N, INS_COND_LO); // lo |
| 6808 | theEmitter->emitIns_R_I_FLAGS_COND(INS_ccmp, EA_8BYTE, REG_R5, 31, INS_FLAGS_CV, INS_COND_MI); // mi |
| 6809 | theEmitter->emitIns_R_I_FLAGS_COND(INS_ccmp, EA_4BYTE, REG_R4, 28, INS_FLAGS_ZV, INS_COND_PL); // pl |
| 6810 | theEmitter->emitIns_R_I_FLAGS_COND(INS_ccmp, EA_4BYTE, REG_R3, 25, INS_FLAGS_ZC, INS_COND_VS); // vs |
| 6811 | theEmitter->emitIns_R_I_FLAGS_COND(INS_ccmp, EA_8BYTE, REG_R2, 22, INS_FLAGS_NV, INS_COND_VC); // vc |
| 6812 | theEmitter->emitIns_R_I_FLAGS_COND(INS_ccmp, EA_8BYTE, REG_R1, 19, INS_FLAGS_NC, INS_COND_HI); // hi |
| 6813 | theEmitter->emitIns_R_I_FLAGS_COND(INS_ccmp, EA_4BYTE, REG_R0, 16, INS_FLAGS_NZ, INS_COND_LS); // ls |
| 6814 | theEmitter->emitIns_R_I_FLAGS_COND(INS_ccmp, EA_4BYTE, REG_R9, 13, INS_FLAGS_NONE, INS_COND_GE); // ge |
| 6815 | theEmitter->emitIns_R_I_FLAGS_COND(INS_ccmp, EA_8BYTE, REG_R8, 10, INS_FLAGS_NZV, INS_COND_LT); // lt |
| 6816 | theEmitter->emitIns_R_I_FLAGS_COND(INS_ccmp, EA_8BYTE, REG_R7, 7, INS_FLAGS_NZC, INS_COND_GT); // gt |
| 6817 | theEmitter->emitIns_R_I_FLAGS_COND(INS_ccmp, EA_4BYTE, REG_R6, 4, INS_FLAGS_NZCV, INS_COND_LE); // le |
| 6818 | |
| 6819 | // ccmp reg1, imm, nzcv, cond -- encoded as ccmn |
| 6820 | theEmitter->emitIns_R_I_FLAGS_COND(INS_ccmp, EA_8BYTE, REG_R9, -3, INS_FLAGS_V, INS_COND_EQ); // eq |
| 6821 | theEmitter->emitIns_R_I_FLAGS_COND(INS_ccmp, EA_4BYTE, REG_R8, -2, INS_FLAGS_C, INS_COND_NE); // ne |
| 6822 | theEmitter->emitIns_R_I_FLAGS_COND(INS_ccmp, EA_4BYTE, REG_R7, -1, INS_FLAGS_Z, INS_COND_HS); // hs |
| 6823 | theEmitter->emitIns_R_I_FLAGS_COND(INS_ccmp, EA_8BYTE, REG_R6, -5, INS_FLAGS_N, INS_COND_LO); // lo |
| 6824 | theEmitter->emitIns_R_I_FLAGS_COND(INS_ccmp, EA_8BYTE, REG_R5, -31, INS_FLAGS_CV, INS_COND_MI); // mi |
| 6825 | theEmitter->emitIns_R_I_FLAGS_COND(INS_ccmp, EA_4BYTE, REG_R4, -28, INS_FLAGS_ZV, INS_COND_PL); // pl |
| 6826 | theEmitter->emitIns_R_I_FLAGS_COND(INS_ccmp, EA_4BYTE, REG_R3, -25, INS_FLAGS_ZC, INS_COND_VS); // vs |
| 6827 | theEmitter->emitIns_R_I_FLAGS_COND(INS_ccmp, EA_8BYTE, REG_R2, -22, INS_FLAGS_NV, INS_COND_VC); // vc |
| 6828 | theEmitter->emitIns_R_I_FLAGS_COND(INS_ccmp, EA_8BYTE, REG_R1, -19, INS_FLAGS_NC, INS_COND_HI); // hi |
| 6829 | theEmitter->emitIns_R_I_FLAGS_COND(INS_ccmp, EA_4BYTE, REG_R0, -16, INS_FLAGS_NZ, INS_COND_LS); // ls |
| 6830 | theEmitter->emitIns_R_I_FLAGS_COND(INS_ccmp, EA_4BYTE, REG_R9, -13, INS_FLAGS_NONE, INS_COND_GE); // ge |
| 6831 | theEmitter->emitIns_R_I_FLAGS_COND(INS_ccmp, EA_8BYTE, REG_R8, -10, INS_FLAGS_NZV, INS_COND_LT); // lt |
| 6832 | theEmitter->emitIns_R_I_FLAGS_COND(INS_ccmp, EA_8BYTE, REG_R7, -7, INS_FLAGS_NZC, INS_COND_GT); // gt |
| 6833 | theEmitter->emitIns_R_I_FLAGS_COND(INS_ccmp, EA_4BYTE, REG_R6, -4, INS_FLAGS_NZCV, INS_COND_LE); // le |
| 6834 | |
| 6835 | // ccmn reg1, reg2, nzcv, cond |
| 6836 | theEmitter->emitIns_R_R_FLAGS_COND(INS_ccmn, EA_8BYTE, REG_R9, REG_R3, INS_FLAGS_V, INS_COND_EQ); // eq |
| 6837 | theEmitter->emitIns_R_R_FLAGS_COND(INS_ccmn, EA_4BYTE, REG_R8, REG_R2, INS_FLAGS_C, INS_COND_NE); // ne |
| 6838 | theEmitter->emitIns_R_R_FLAGS_COND(INS_ccmn, EA_4BYTE, REG_R7, REG_R1, INS_FLAGS_Z, INS_COND_HS); // hs |
| 6839 | theEmitter->emitIns_R_R_FLAGS_COND(INS_ccmn, EA_8BYTE, REG_R6, REG_R0, INS_FLAGS_N, INS_COND_LO); // lo |
| 6840 | theEmitter->emitIns_R_R_FLAGS_COND(INS_ccmn, EA_8BYTE, REG_R5, REG_R3, INS_FLAGS_CV, INS_COND_MI); // mi |
| 6841 | theEmitter->emitIns_R_R_FLAGS_COND(INS_ccmn, EA_4BYTE, REG_R4, REG_R2, INS_FLAGS_ZV, INS_COND_PL); // pl |
| 6842 | theEmitter->emitIns_R_R_FLAGS_COND(INS_ccmn, EA_4BYTE, REG_R3, REG_R1, INS_FLAGS_ZC, INS_COND_VS); // vs |
| 6843 | theEmitter->emitIns_R_R_FLAGS_COND(INS_ccmn, EA_8BYTE, REG_R2, REG_R0, INS_FLAGS_NV, INS_COND_VC); // vc |
| 6844 | theEmitter->emitIns_R_R_FLAGS_COND(INS_ccmn, EA_8BYTE, REG_R1, REG_R3, INS_FLAGS_NC, INS_COND_HI); // hi |
| 6845 | theEmitter->emitIns_R_R_FLAGS_COND(INS_ccmn, EA_4BYTE, REG_R0, REG_R2, INS_FLAGS_NZ, INS_COND_LS); // ls |
| 6846 | theEmitter->emitIns_R_R_FLAGS_COND(INS_ccmn, EA_4BYTE, REG_R9, REG_R1, INS_FLAGS_NONE, INS_COND_GE); // ge |
| 6847 | theEmitter->emitIns_R_R_FLAGS_COND(INS_ccmn, EA_8BYTE, REG_R8, REG_R0, INS_FLAGS_NZV, INS_COND_LT); // lt |
| 6848 | theEmitter->emitIns_R_R_FLAGS_COND(INS_ccmn, EA_8BYTE, REG_R7, REG_R3, INS_FLAGS_NZC, INS_COND_GT); // gt |
| 6849 | theEmitter->emitIns_R_R_FLAGS_COND(INS_ccmn, EA_4BYTE, REG_R6, REG_R2, INS_FLAGS_NZCV, INS_COND_LE); // le |
| 6850 | |
| 6851 | // ccmn reg1, imm, nzcv, cond |
| 6852 | theEmitter->emitIns_R_I_FLAGS_COND(INS_ccmn, EA_8BYTE, REG_R9, 3, INS_FLAGS_V, INS_COND_EQ); // eq |
| 6853 | theEmitter->emitIns_R_I_FLAGS_COND(INS_ccmn, EA_4BYTE, REG_R8, 2, INS_FLAGS_C, INS_COND_NE); // ne |
| 6854 | theEmitter->emitIns_R_I_FLAGS_COND(INS_ccmn, EA_4BYTE, REG_R7, 1, INS_FLAGS_Z, INS_COND_HS); // hs |
| 6855 | theEmitter->emitIns_R_I_FLAGS_COND(INS_ccmn, EA_8BYTE, REG_R6, 0, INS_FLAGS_N, INS_COND_LO); // lo |
| 6856 | theEmitter->emitIns_R_I_FLAGS_COND(INS_ccmn, EA_8BYTE, REG_R5, 31, INS_FLAGS_CV, INS_COND_MI); // mi |
| 6857 | theEmitter->emitIns_R_I_FLAGS_COND(INS_ccmn, EA_4BYTE, REG_R4, 28, INS_FLAGS_ZV, INS_COND_PL); // pl |
| 6858 | theEmitter->emitIns_R_I_FLAGS_COND(INS_ccmn, EA_4BYTE, REG_R3, 25, INS_FLAGS_ZC, INS_COND_VS); // vs |
| 6859 | theEmitter->emitIns_R_I_FLAGS_COND(INS_ccmn, EA_8BYTE, REG_R2, 22, INS_FLAGS_NV, INS_COND_VC); // vc |
| 6860 | theEmitter->emitIns_R_I_FLAGS_COND(INS_ccmn, EA_8BYTE, REG_R1, 19, INS_FLAGS_NC, INS_COND_HI); // hi |
| 6861 | theEmitter->emitIns_R_I_FLAGS_COND(INS_ccmn, EA_4BYTE, REG_R0, 16, INS_FLAGS_NZ, INS_COND_LS); // ls |
| 6862 | theEmitter->emitIns_R_I_FLAGS_COND(INS_ccmn, EA_4BYTE, REG_R9, 13, INS_FLAGS_NONE, INS_COND_GE); // ge |
| 6863 | theEmitter->emitIns_R_I_FLAGS_COND(INS_ccmn, EA_8BYTE, REG_R8, 10, INS_FLAGS_NZV, INS_COND_LT); // lt |
| 6864 | theEmitter->emitIns_R_I_FLAGS_COND(INS_ccmn, EA_8BYTE, REG_R7, 7, INS_FLAGS_NZC, INS_COND_GT); // gt |
| 6865 | theEmitter->emitIns_R_I_FLAGS_COND(INS_ccmn, EA_4BYTE, REG_R6, 4, INS_FLAGS_NZCV, INS_COND_LE); // le |
| 6866 | |
| 6867 | #endif // ALL_ARM64_EMITTER_UNIT_TESTS |
| 6868 | |
| 6869 | #ifdef ALL_ARM64_EMITTER_UNIT_TESTS |
| 6870 | // |
| 6871 | // Branch to register |
| 6872 | // |
| 6873 | |
| 6874 | genDefineTempLabel(genCreateTempLabel()); |
| 6875 | |
| 6876 | theEmitter->emitIns_R(INS_br, EA_PTRSIZE, REG_R8); |
| 6877 | theEmitter->emitIns_R(INS_blr, EA_PTRSIZE, REG_R9); |
| 6878 | theEmitter->emitIns_R(INS_ret, EA_PTRSIZE, REG_R8); |
| 6879 | theEmitter->emitIns_R(INS_ret, EA_PTRSIZE, REG_LR); |
| 6880 | |
| 6881 | #endif // ALL_ARM64_EMITTER_UNIT_TESTS |
| 6882 | |
| 6883 | #ifdef ALL_ARM64_EMITTER_UNIT_TESTS |
| 6884 | // |
| 6885 | // Misc |
| 6886 | // |
| 6887 | |
| 6888 | genDefineTempLabel(genCreateTempLabel()); |
| 6889 | |
| 6890 | theEmitter->emitIns_I(INS_brk, EA_PTRSIZE, 0); |
| 6891 | theEmitter->emitIns_I(INS_brk, EA_PTRSIZE, 65535); |
| 6892 | |
| 6893 | theEmitter->emitIns_BARR(INS_dsb, INS_BARRIER_OSHLD); |
| 6894 | theEmitter->emitIns_BARR(INS_dmb, INS_BARRIER_OSHST); |
| 6895 | theEmitter->emitIns_BARR(INS_isb, INS_BARRIER_OSH); |
| 6896 | |
| 6897 | theEmitter->emitIns_BARR(INS_dmb, INS_BARRIER_NSHLD); |
| 6898 | theEmitter->emitIns_BARR(INS_isb, INS_BARRIER_NSHST); |
| 6899 | theEmitter->emitIns_BARR(INS_dsb, INS_BARRIER_NSH); |
| 6900 | |
| 6901 | theEmitter->emitIns_BARR(INS_isb, INS_BARRIER_ISHLD); |
| 6902 | theEmitter->emitIns_BARR(INS_dsb, INS_BARRIER_ISHST); |
| 6903 | theEmitter->emitIns_BARR(INS_dmb, INS_BARRIER_ISH); |
| 6904 | |
| 6905 | theEmitter->emitIns_BARR(INS_dsb, INS_BARRIER_LD); |
| 6906 | theEmitter->emitIns_BARR(INS_dmb, INS_BARRIER_ST); |
| 6907 | theEmitter->emitIns_BARR(INS_isb, INS_BARRIER_SY); |
| 6908 | |
| 6909 | #endif // ALL_ARM64_EMITTER_UNIT_TESTS |
| 6910 | |
| 6911 | #ifdef ALL_ARM64_EMITTER_UNIT_TESTS |
| 6912 | //////////////////////////////////////////////////////////////////////////////// |
| 6913 | // |
| 6914 | // SIMD and Floating point |
| 6915 | // |
| 6916 | //////////////////////////////////////////////////////////////////////////////// |
| 6917 | |
| 6918 | // |
| 6919 | // Load/Stores vector register |
| 6920 | // |
| 6921 | |
| 6922 | genDefineTempLabel(genCreateTempLabel()); |
| 6923 | |
| 6924 | // ldr/str Vt, [reg] |
| 6925 | theEmitter->emitIns_R_R(INS_ldr, EA_8BYTE, REG_V1, REG_R9); |
| 6926 | theEmitter->emitIns_R_R(INS_str, EA_8BYTE, REG_V2, REG_R8); |
| 6927 | theEmitter->emitIns_R_R(INS_ldr, EA_4BYTE, REG_V3, REG_R7); |
| 6928 | theEmitter->emitIns_R_R(INS_str, EA_4BYTE, REG_V4, REG_R6); |
| 6929 | theEmitter->emitIns_R_R(INS_ldr, EA_2BYTE, REG_V5, REG_R5); |
| 6930 | theEmitter->emitIns_R_R(INS_str, EA_2BYTE, REG_V6, REG_R4); |
| 6931 | theEmitter->emitIns_R_R(INS_ldr, EA_1BYTE, REG_V7, REG_R3); |
| 6932 | theEmitter->emitIns_R_R(INS_str, EA_1BYTE, REG_V8, REG_R2); |
| 6933 | theEmitter->emitIns_R_R(INS_ldr, EA_16BYTE, REG_V9, REG_R1); |
| 6934 | theEmitter->emitIns_R_R(INS_str, EA_16BYTE, REG_V10, REG_R0); |
| 6935 | |
| 6936 | // ldr/str Vt, [reg+cns] -- scaled |
| 6937 | theEmitter->emitIns_R_R_I(INS_ldr, EA_1BYTE, REG_V8, REG_R9, 1); |
| 6938 | theEmitter->emitIns_R_R_I(INS_ldr, EA_2BYTE, REG_V8, REG_R9, 2); |
| 6939 | theEmitter->emitIns_R_R_I(INS_ldr, EA_4BYTE, REG_V8, REG_R9, 4); |
| 6940 | theEmitter->emitIns_R_R_I(INS_ldr, EA_8BYTE, REG_V8, REG_R9, 8); |
| 6941 | theEmitter->emitIns_R_R_I(INS_ldr, EA_16BYTE, REG_V8, REG_R9, 16); |
| 6942 | |
| 6943 | theEmitter->emitIns_R_R_I(INS_ldr, EA_1BYTE, REG_V7, REG_R10, 1); |
| 6944 | theEmitter->emitIns_R_R_I(INS_ldr, EA_2BYTE, REG_V7, REG_R10, 2); |
| 6945 | theEmitter->emitIns_R_R_I(INS_ldr, EA_4BYTE, REG_V7, REG_R10, 4); |
| 6946 | theEmitter->emitIns_R_R_I(INS_ldr, EA_8BYTE, REG_V7, REG_R10, 8); |
| 6947 | theEmitter->emitIns_R_R_I(INS_ldr, EA_16BYTE, REG_V7, REG_R10, 16); |
| 6948 | |
| 6949 | // ldr/str Vt, [reg],cns -- post-indexed (unscaled) |
| 6950 | // ldr/str Vt, [reg+cns]! -- post-indexed (unscaled) |
| 6951 | theEmitter->emitIns_R_R_I(INS_ldr, EA_1BYTE, REG_V8, REG_R9, 1, INS_OPTS_POST_INDEX); |
| 6952 | theEmitter->emitIns_R_R_I(INS_ldr, EA_2BYTE, REG_V8, REG_R9, 1, INS_OPTS_POST_INDEX); |
| 6953 | theEmitter->emitIns_R_R_I(INS_ldr, EA_4BYTE, REG_V8, REG_R9, 1, INS_OPTS_POST_INDEX); |
| 6954 | theEmitter->emitIns_R_R_I(INS_ldr, EA_8BYTE, REG_V8, REG_R9, 1, INS_OPTS_POST_INDEX); |
| 6955 | theEmitter->emitIns_R_R_I(INS_ldr, EA_16BYTE, REG_V8, REG_R9, 1, INS_OPTS_POST_INDEX); |
| 6956 | |
| 6957 | theEmitter->emitIns_R_R_I(INS_ldr, EA_1BYTE, REG_V8, REG_R9, 1, INS_OPTS_PRE_INDEX); |
| 6958 | theEmitter->emitIns_R_R_I(INS_ldr, EA_2BYTE, REG_V8, REG_R9, 1, INS_OPTS_PRE_INDEX); |
| 6959 | theEmitter->emitIns_R_R_I(INS_ldr, EA_4BYTE, REG_V8, REG_R9, 1, INS_OPTS_PRE_INDEX); |
| 6960 | theEmitter->emitIns_R_R_I(INS_ldr, EA_8BYTE, REG_V8, REG_R9, 1, INS_OPTS_PRE_INDEX); |
| 6961 | theEmitter->emitIns_R_R_I(INS_ldr, EA_16BYTE, REG_V8, REG_R9, 1, INS_OPTS_PRE_INDEX); |
| 6962 | |
| 6963 | theEmitter->emitIns_R_R_I(INS_str, EA_1BYTE, REG_V8, REG_R9, 1, INS_OPTS_POST_INDEX); |
| 6964 | theEmitter->emitIns_R_R_I(INS_str, EA_2BYTE, REG_V8, REG_R9, 1, INS_OPTS_POST_INDEX); |
| 6965 | theEmitter->emitIns_R_R_I(INS_str, EA_4BYTE, REG_V8, REG_R9, 1, INS_OPTS_POST_INDEX); |
| 6966 | theEmitter->emitIns_R_R_I(INS_str, EA_8BYTE, REG_V8, REG_R9, 1, INS_OPTS_POST_INDEX); |
| 6967 | theEmitter->emitIns_R_R_I(INS_str, EA_16BYTE, REG_V8, REG_R9, 1, INS_OPTS_POST_INDEX); |
| 6968 | |
| 6969 | theEmitter->emitIns_R_R_I(INS_str, EA_1BYTE, REG_V8, REG_R9, 1, INS_OPTS_PRE_INDEX); |
| 6970 | theEmitter->emitIns_R_R_I(INS_str, EA_2BYTE, REG_V8, REG_R9, 1, INS_OPTS_PRE_INDEX); |
| 6971 | theEmitter->emitIns_R_R_I(INS_str, EA_4BYTE, REG_V8, REG_R9, 1, INS_OPTS_PRE_INDEX); |
| 6972 | theEmitter->emitIns_R_R_I(INS_str, EA_8BYTE, REG_V8, REG_R9, 1, INS_OPTS_PRE_INDEX); |
| 6973 | theEmitter->emitIns_R_R_I(INS_str, EA_16BYTE, REG_V8, REG_R9, 1, INS_OPTS_PRE_INDEX); |
| 6974 | |
| 6975 | theEmitter->emitIns_R_R_I(INS_ldur, EA_1BYTE, REG_V8, REG_R9, 2); |
| 6976 | theEmitter->emitIns_R_R_I(INS_ldur, EA_2BYTE, REG_V8, REG_R9, 3); |
| 6977 | theEmitter->emitIns_R_R_I(INS_ldur, EA_4BYTE, REG_V8, REG_R9, 5); |
| 6978 | theEmitter->emitIns_R_R_I(INS_ldur, EA_8BYTE, REG_V8, REG_R9, 9); |
| 6979 | theEmitter->emitIns_R_R_I(INS_ldur, EA_16BYTE, REG_V8, REG_R9, 17); |
| 6980 | |
| 6981 | theEmitter->emitIns_R_R_I(INS_stur, EA_1BYTE, REG_V7, REG_R10, 2); |
| 6982 | theEmitter->emitIns_R_R_I(INS_stur, EA_2BYTE, REG_V7, REG_R10, 3); |
| 6983 | theEmitter->emitIns_R_R_I(INS_stur, EA_4BYTE, REG_V7, REG_R10, 5); |
| 6984 | theEmitter->emitIns_R_R_I(INS_stur, EA_8BYTE, REG_V7, REG_R10, 9); |
| 6985 | theEmitter->emitIns_R_R_I(INS_stur, EA_16BYTE, REG_V7, REG_R10, 17); |
| 6986 | |
| 6987 | // load/store pair |
| 6988 | theEmitter->emitIns_R_R_R(INS_ldnp, EA_8BYTE, REG_V0, REG_V1, REG_R10); |
| 6989 | theEmitter->emitIns_R_R_R_I(INS_stnp, EA_8BYTE, REG_V1, REG_V2, REG_R10, 0); |
| 6990 | theEmitter->emitIns_R_R_R_I(INS_ldnp, EA_8BYTE, REG_V2, REG_V3, REG_R10, 8); |
| 6991 | theEmitter->emitIns_R_R_R_I(INS_stnp, EA_8BYTE, REG_V3, REG_V4, REG_R10, 24); |
| 6992 | |
| 6993 | theEmitter->emitIns_R_R_R(INS_ldnp, EA_4BYTE, REG_V4, REG_V5, REG_SP); |
| 6994 | theEmitter->emitIns_R_R_R_I(INS_stnp, EA_4BYTE, REG_V5, REG_V6, REG_SP, 0); |
| 6995 | theEmitter->emitIns_R_R_R_I(INS_ldnp, EA_4BYTE, REG_V6, REG_V7, REG_SP, 4); |
| 6996 | theEmitter->emitIns_R_R_R_I(INS_stnp, EA_4BYTE, REG_V7, REG_V8, REG_SP, 12); |
| 6997 | |
| 6998 | theEmitter->emitIns_R_R_R(INS_ldnp, EA_16BYTE, REG_V8, REG_V9, REG_R10); |
| 6999 | theEmitter->emitIns_R_R_R_I(INS_stnp, EA_16BYTE, REG_V9, REG_V10, REG_R10, 0); |
| 7000 | theEmitter->emitIns_R_R_R_I(INS_ldnp, EA_16BYTE, REG_V10, REG_V11, REG_R10, 16); |
| 7001 | theEmitter->emitIns_R_R_R_I(INS_stnp, EA_16BYTE, REG_V11, REG_V12, REG_R10, 48); |
| 7002 | |
| 7003 | theEmitter->emitIns_R_R_R(INS_ldp, EA_8BYTE, REG_V0, REG_V1, REG_R10); |
| 7004 | theEmitter->emitIns_R_R_R_I(INS_stp, EA_8BYTE, REG_V1, REG_V2, REG_SP, 0); |
| 7005 | theEmitter->emitIns_R_R_R_I(INS_ldp, EA_8BYTE, REG_V2, REG_V3, REG_SP, 8); |
| 7006 | theEmitter->emitIns_R_R_R_I(INS_stp, EA_8BYTE, REG_V3, REG_V4, REG_R10, 16); |
| 7007 | theEmitter->emitIns_R_R_R_I(INS_ldp, EA_8BYTE, REG_V4, REG_V5, REG_R10, 24, INS_OPTS_POST_INDEX); |
| 7008 | theEmitter->emitIns_R_R_R_I(INS_stp, EA_8BYTE, REG_V5, REG_V6, REG_SP, 32, INS_OPTS_POST_INDEX); |
| 7009 | theEmitter->emitIns_R_R_R_I(INS_ldp, EA_8BYTE, REG_V6, REG_V7, REG_SP, 40, INS_OPTS_PRE_INDEX); |
| 7010 | theEmitter->emitIns_R_R_R_I(INS_stp, EA_8BYTE, REG_V7, REG_V8, REG_R10, 48, INS_OPTS_PRE_INDEX); |
| 7011 | |
| 7012 | theEmitter->emitIns_R_R_R(INS_ldp, EA_4BYTE, REG_V0, REG_V1, REG_R10); |
| 7013 | theEmitter->emitIns_R_R_R_I(INS_stp, EA_4BYTE, REG_V1, REG_V2, REG_SP, 0); |
| 7014 | theEmitter->emitIns_R_R_R_I(INS_ldp, EA_4BYTE, REG_V2, REG_V3, REG_SP, 4); |
| 7015 | theEmitter->emitIns_R_R_R_I(INS_stp, EA_4BYTE, REG_V3, REG_V4, REG_R10, 8); |
| 7016 | theEmitter->emitIns_R_R_R_I(INS_ldp, EA_4BYTE, REG_V4, REG_V5, REG_R10, 12, INS_OPTS_POST_INDEX); |
| 7017 | theEmitter->emitIns_R_R_R_I(INS_stp, EA_4BYTE, REG_V5, REG_V6, REG_SP, 16, INS_OPTS_POST_INDEX); |
| 7018 | theEmitter->emitIns_R_R_R_I(INS_ldp, EA_4BYTE, REG_V6, REG_V7, REG_SP, 20, INS_OPTS_PRE_INDEX); |
| 7019 | theEmitter->emitIns_R_R_R_I(INS_stp, EA_4BYTE, REG_V7, REG_V8, REG_R10, 24, INS_OPTS_PRE_INDEX); |
| 7020 | |
| 7021 | theEmitter->emitIns_R_R_R(INS_ldp, EA_16BYTE, REG_V0, REG_V1, REG_R10); |
| 7022 | theEmitter->emitIns_R_R_R_I(INS_stp, EA_16BYTE, REG_V1, REG_V2, REG_SP, 0); |
| 7023 | theEmitter->emitIns_R_R_R_I(INS_ldp, EA_16BYTE, REG_V2, REG_V3, REG_SP, 16); |
| 7024 | theEmitter->emitIns_R_R_R_I(INS_stp, EA_16BYTE, REG_V3, REG_V4, REG_R10, 32); |
| 7025 | theEmitter->emitIns_R_R_R_I(INS_ldp, EA_16BYTE, REG_V4, REG_V5, REG_R10, 48, INS_OPTS_POST_INDEX); |
| 7026 | theEmitter->emitIns_R_R_R_I(INS_stp, EA_16BYTE, REG_V5, REG_V6, REG_SP, 64, INS_OPTS_POST_INDEX); |
| 7027 | theEmitter->emitIns_R_R_R_I(INS_ldp, EA_16BYTE, REG_V6, REG_V7, REG_SP, 80, INS_OPTS_PRE_INDEX); |
| 7028 | theEmitter->emitIns_R_R_R_I(INS_stp, EA_16BYTE, REG_V7, REG_V8, REG_R10, 96, INS_OPTS_PRE_INDEX); |
| 7029 | |
| 7030 | // LDR (register) |
| 7031 | theEmitter->emitIns_R_R_R_Ext(INS_ldr, EA_8BYTE, REG_V1, REG_SP, REG_R9); |
| 7032 | theEmitter->emitIns_R_R_R_Ext(INS_ldr, EA_8BYTE, REG_V2, REG_R7, REG_R9, INS_OPTS_LSL); |
| 7033 | theEmitter->emitIns_R_R_R_Ext(INS_ldr, EA_8BYTE, REG_V3, REG_R7, REG_R9, INS_OPTS_LSL, 3); |
| 7034 | theEmitter->emitIns_R_R_R_Ext(INS_ldr, EA_8BYTE, REG_V4, REG_R7, REG_R9, INS_OPTS_SXTW); |
| 7035 | theEmitter->emitIns_R_R_R_Ext(INS_ldr, EA_8BYTE, REG_V5, REG_R7, REG_R9, INS_OPTS_SXTW, 3); |
| 7036 | theEmitter->emitIns_R_R_R_Ext(INS_ldr, EA_8BYTE, REG_V6, REG_SP, REG_R9, INS_OPTS_UXTW); |
| 7037 | theEmitter->emitIns_R_R_R_Ext(INS_ldr, EA_8BYTE, REG_V7, REG_R7, REG_R9, INS_OPTS_UXTW, 3); |
| 7038 | theEmitter->emitIns_R_R_R_Ext(INS_ldr, EA_8BYTE, REG_V8, REG_R7, REG_R9, INS_OPTS_SXTX); |
| 7039 | theEmitter->emitIns_R_R_R_Ext(INS_ldr, EA_8BYTE, REG_V9, REG_R7, REG_R9, INS_OPTS_SXTX, 3); |
| 7040 | theEmitter->emitIns_R_R_R_Ext(INS_ldr, EA_8BYTE, REG_V10, REG_R7, REG_R9, INS_OPTS_UXTX); |
| 7041 | theEmitter->emitIns_R_R_R_Ext(INS_ldr, EA_8BYTE, REG_V11, REG_SP, REG_R9, INS_OPTS_UXTX, 3); |
| 7042 | |
| 7043 | theEmitter->emitIns_R_R_R_Ext(INS_ldr, EA_4BYTE, REG_V1, REG_SP, REG_R9); |
| 7044 | theEmitter->emitIns_R_R_R_Ext(INS_ldr, EA_4BYTE, REG_V2, REG_R7, REG_R9, INS_OPTS_LSL); |
| 7045 | theEmitter->emitIns_R_R_R_Ext(INS_ldr, EA_4BYTE, REG_V3, REG_R7, REG_R9, INS_OPTS_LSL, 2); |
| 7046 | theEmitter->emitIns_R_R_R_Ext(INS_ldr, EA_4BYTE, REG_V4, REG_R7, REG_R9, INS_OPTS_SXTW); |
| 7047 | theEmitter->emitIns_R_R_R_Ext(INS_ldr, EA_4BYTE, REG_V5, REG_R7, REG_R9, INS_OPTS_SXTW, 2); |
| 7048 | theEmitter->emitIns_R_R_R_Ext(INS_ldr, EA_4BYTE, REG_V6, REG_SP, REG_R9, INS_OPTS_UXTW); |
| 7049 | theEmitter->emitIns_R_R_R_Ext(INS_ldr, EA_4BYTE, REG_V7, REG_R7, REG_R9, INS_OPTS_UXTW, 2); |
| 7050 | theEmitter->emitIns_R_R_R_Ext(INS_ldr, EA_4BYTE, REG_V8, REG_R7, REG_R9, INS_OPTS_SXTX); |
| 7051 | theEmitter->emitIns_R_R_R_Ext(INS_ldr, EA_4BYTE, REG_V9, REG_R7, REG_R9, INS_OPTS_SXTX, 2); |
| 7052 | theEmitter->emitIns_R_R_R_Ext(INS_ldr, EA_4BYTE, REG_V10, REG_R7, REG_R9, INS_OPTS_UXTX); |
| 7053 | theEmitter->emitIns_R_R_R_Ext(INS_ldr, EA_4BYTE, REG_V11, REG_SP, REG_R9, INS_OPTS_UXTX, 2); |
| 7054 | |
| 7055 | theEmitter->emitIns_R_R_R_Ext(INS_ldr, EA_16BYTE, REG_V1, REG_SP, REG_R9); |
| 7056 | theEmitter->emitIns_R_R_R_Ext(INS_ldr, EA_16BYTE, REG_V2, REG_R7, REG_R9, INS_OPTS_LSL); |
| 7057 | theEmitter->emitIns_R_R_R_Ext(INS_ldr, EA_16BYTE, REG_V3, REG_R7, REG_R9, INS_OPTS_LSL, 4); |
| 7058 | theEmitter->emitIns_R_R_R_Ext(INS_ldr, EA_16BYTE, REG_V4, REG_R7, REG_R9, INS_OPTS_SXTW); |
| 7059 | theEmitter->emitIns_R_R_R_Ext(INS_ldr, EA_16BYTE, REG_V5, REG_R7, REG_R9, INS_OPTS_SXTW, 4); |
| 7060 | theEmitter->emitIns_R_R_R_Ext(INS_ldr, EA_16BYTE, REG_V6, REG_SP, REG_R9, INS_OPTS_UXTW); |
| 7061 | theEmitter->emitIns_R_R_R_Ext(INS_ldr, EA_16BYTE, REG_V7, REG_R7, REG_R9, INS_OPTS_UXTW, 4); |
| 7062 | theEmitter->emitIns_R_R_R_Ext(INS_ldr, EA_16BYTE, REG_V8, REG_R7, REG_R9, INS_OPTS_SXTX); |
| 7063 | theEmitter->emitIns_R_R_R_Ext(INS_ldr, EA_16BYTE, REG_V9, REG_R7, REG_R9, INS_OPTS_SXTX, 4); |
| 7064 | theEmitter->emitIns_R_R_R_Ext(INS_ldr, EA_16BYTE, REG_V10, REG_R7, REG_R9, INS_OPTS_UXTX); |
| 7065 | theEmitter->emitIns_R_R_R_Ext(INS_ldr, EA_16BYTE, REG_V11, REG_SP, REG_R9, INS_OPTS_UXTX, 4); |
| 7066 | |
| 7067 | theEmitter->emitIns_R_R_R_Ext(INS_ldr, EA_2BYTE, REG_V1, REG_SP, REG_R9); |
| 7068 | theEmitter->emitIns_R_R_R_Ext(INS_ldr, EA_2BYTE, REG_V2, REG_R7, REG_R9, INS_OPTS_LSL); |
| 7069 | theEmitter->emitIns_R_R_R_Ext(INS_ldr, EA_2BYTE, REG_V3, REG_R7, REG_R9, INS_OPTS_LSL, 1); |
| 7070 | theEmitter->emitIns_R_R_R_Ext(INS_ldr, EA_2BYTE, REG_V4, REG_R7, REG_R9, INS_OPTS_SXTW); |
| 7071 | theEmitter->emitIns_R_R_R_Ext(INS_ldr, EA_2BYTE, REG_V5, REG_R7, REG_R9, INS_OPTS_SXTW, 1); |
| 7072 | theEmitter->emitIns_R_R_R_Ext(INS_ldr, EA_2BYTE, REG_V6, REG_SP, REG_R9, INS_OPTS_UXTW); |
| 7073 | theEmitter->emitIns_R_R_R_Ext(INS_ldr, EA_2BYTE, REG_V7, REG_R7, REG_R9, INS_OPTS_UXTW, 1); |
| 7074 | theEmitter->emitIns_R_R_R_Ext(INS_ldr, EA_2BYTE, REG_V8, REG_R7, REG_R9, INS_OPTS_SXTX); |
| 7075 | theEmitter->emitIns_R_R_R_Ext(INS_ldr, EA_2BYTE, REG_V9, REG_R7, REG_R9, INS_OPTS_SXTX, 1); |
| 7076 | theEmitter->emitIns_R_R_R_Ext(INS_ldr, EA_2BYTE, REG_V10, REG_R7, REG_R9, INS_OPTS_UXTX); |
| 7077 | theEmitter->emitIns_R_R_R_Ext(INS_ldr, EA_2BYTE, REG_V11, REG_SP, REG_R9, INS_OPTS_UXTX, 1); |
| 7078 | |
| 7079 | theEmitter->emitIns_R_R_R_Ext(INS_ldr, EA_1BYTE, REG_V1, REG_R7, REG_R9); |
| 7080 | theEmitter->emitIns_R_R_R_Ext(INS_ldr, EA_1BYTE, REG_V2, REG_SP, REG_R9, INS_OPTS_SXTW); |
| 7081 | theEmitter->emitIns_R_R_R_Ext(INS_ldr, EA_1BYTE, REG_V3, REG_R7, REG_R9, INS_OPTS_UXTW); |
| 7082 | theEmitter->emitIns_R_R_R_Ext(INS_ldr, EA_1BYTE, REG_V4, REG_SP, REG_R9, INS_OPTS_SXTX); |
| 7083 | theEmitter->emitIns_R_R_R_Ext(INS_ldr, EA_1BYTE, REG_V5, REG_R7, REG_R9, INS_OPTS_UXTX); |
| 7084 | |
| 7085 | #endif // ALL_ARM64_EMITTER_UNIT_TESTS |
| 7086 | |
| 7087 | #ifdef ALL_ARM64_EMITTER_UNIT_TESTS |
| 7088 | // |
| 7089 | // R_R mov and aliases for mov |
| 7090 | // |
| 7091 | |
| 7092 | // mov vector to vector |
| 7093 | theEmitter->emitIns_R_R(INS_mov, EA_8BYTE, REG_V0, REG_V1); |
| 7094 | theEmitter->emitIns_R_R(INS_mov, EA_16BYTE, REG_V2, REG_V3); |
| 7095 | |
| 7096 | theEmitter->emitIns_R_R(INS_mov, EA_4BYTE, REG_V12, REG_V13); |
| 7097 | theEmitter->emitIns_R_R(INS_mov, EA_2BYTE, REG_V14, REG_V15); |
| 7098 | theEmitter->emitIns_R_R(INS_mov, EA_1BYTE, REG_V16, REG_V17); |
| 7099 | |
| 7100 | // mov vector to general |
| 7101 | theEmitter->emitIns_R_R(INS_mov, EA_8BYTE, REG_R0, REG_V4); |
| 7102 | theEmitter->emitIns_R_R(INS_mov, EA_4BYTE, REG_R1, REG_V5); |
| 7103 | theEmitter->emitIns_R_R(INS_mov, EA_2BYTE, REG_R2, REG_V6); |
| 7104 | theEmitter->emitIns_R_R(INS_mov, EA_1BYTE, REG_R3, REG_V7); |
| 7105 | |
| 7106 | // mov general to vector |
| 7107 | theEmitter->emitIns_R_R(INS_mov, EA_8BYTE, REG_V8, REG_R4); |
| 7108 | theEmitter->emitIns_R_R(INS_mov, EA_4BYTE, REG_V9, REG_R5); |
| 7109 | theEmitter->emitIns_R_R(INS_mov, EA_2BYTE, REG_V10, REG_R6); |
| 7110 | theEmitter->emitIns_R_R(INS_mov, EA_1BYTE, REG_V11, REG_R7); |
| 7111 | |
| 7112 | // mov vector[index] to vector |
| 7113 | theEmitter->emitIns_R_R_I(INS_mov, EA_8BYTE, REG_V0, REG_V1, 1); |
| 7114 | theEmitter->emitIns_R_R_I(INS_mov, EA_4BYTE, REG_V2, REG_V3, 3); |
| 7115 | theEmitter->emitIns_R_R_I(INS_mov, EA_2BYTE, REG_V4, REG_V5, 7); |
| 7116 | theEmitter->emitIns_R_R_I(INS_mov, EA_1BYTE, REG_V6, REG_V7, 15); |
| 7117 | |
| 7118 | // mov to general from vector[index] |
| 7119 | theEmitter->emitIns_R_R_I(INS_mov, EA_8BYTE, REG_R8, REG_V16, 1); |
| 7120 | theEmitter->emitIns_R_R_I(INS_mov, EA_4BYTE, REG_R9, REG_V17, 2); |
| 7121 | theEmitter->emitIns_R_R_I(INS_mov, EA_2BYTE, REG_R10, REG_V18, 3); |
| 7122 | theEmitter->emitIns_R_R_I(INS_mov, EA_1BYTE, REG_R11, REG_V19, 4); |
| 7123 | |
| 7124 | // mov to vector[index] from general |
| 7125 | theEmitter->emitIns_R_R_I(INS_mov, EA_8BYTE, REG_V20, REG_R12, 1); |
| 7126 | theEmitter->emitIns_R_R_I(INS_mov, EA_4BYTE, REG_V21, REG_R13, 2); |
| 7127 | theEmitter->emitIns_R_R_I(INS_mov, EA_2BYTE, REG_V22, REG_R14, 6); |
| 7128 | theEmitter->emitIns_R_R_I(INS_mov, EA_1BYTE, REG_V23, REG_R15, 8); |
| 7129 | |
| 7130 | // mov vector[index] to vector[index2] |
| 7131 | theEmitter->emitIns_R_R_I_I(INS_mov, EA_8BYTE, REG_V8, REG_V9, 1, 0); |
| 7132 | theEmitter->emitIns_R_R_I_I(INS_mov, EA_4BYTE, REG_V10, REG_V11, 2, 1); |
| 7133 | theEmitter->emitIns_R_R_I_I(INS_mov, EA_2BYTE, REG_V12, REG_V13, 5, 2); |
| 7134 | theEmitter->emitIns_R_R_I_I(INS_mov, EA_1BYTE, REG_V14, REG_V15, 12, 3); |
| 7135 | |
| 7136 | ////////////////////////////////////////////////////////////////////////////////// |
| 7137 | |
| 7138 | // mov/dup scalar |
| 7139 | theEmitter->emitIns_R_R_I(INS_dup, EA_8BYTE, REG_V24, REG_V25, 1); |
| 7140 | theEmitter->emitIns_R_R_I(INS_dup, EA_4BYTE, REG_V26, REG_V27, 3); |
| 7141 | theEmitter->emitIns_R_R_I(INS_dup, EA_2BYTE, REG_V28, REG_V29, 7); |
| 7142 | theEmitter->emitIns_R_R_I(INS_dup, EA_1BYTE, REG_V30, REG_V31, 15); |
| 7143 | |
| 7144 | // mov/ins vector element |
| 7145 | theEmitter->emitIns_R_R_I_I(INS_ins, EA_8BYTE, REG_V0, REG_V1, 0, 1); |
| 7146 | theEmitter->emitIns_R_R_I_I(INS_ins, EA_4BYTE, REG_V2, REG_V3, 2, 2); |
| 7147 | theEmitter->emitIns_R_R_I_I(INS_ins, EA_2BYTE, REG_V4, REG_V5, 4, 3); |
| 7148 | theEmitter->emitIns_R_R_I_I(INS_ins, EA_1BYTE, REG_V6, REG_V7, 8, 4); |
| 7149 | |
| 7150 | // umov to general from vector element |
| 7151 | theEmitter->emitIns_R_R_I(INS_umov, EA_8BYTE, REG_R0, REG_V8, 1); |
| 7152 | theEmitter->emitIns_R_R_I(INS_umov, EA_4BYTE, REG_R1, REG_V9, 2); |
| 7153 | theEmitter->emitIns_R_R_I(INS_umov, EA_2BYTE, REG_R2, REG_V10, 4); |
| 7154 | theEmitter->emitIns_R_R_I(INS_umov, EA_1BYTE, REG_R3, REG_V11, 8); |
| 7155 | |
| 7156 | // ins to vector element from general |
| 7157 | theEmitter->emitIns_R_R_I(INS_ins, EA_8BYTE, REG_V12, REG_R4, 1); |
| 7158 | theEmitter->emitIns_R_R_I(INS_ins, EA_4BYTE, REG_V13, REG_R5, 3); |
| 7159 | theEmitter->emitIns_R_R_I(INS_ins, EA_2BYTE, REG_V14, REG_R6, 7); |
| 7160 | theEmitter->emitIns_R_R_I(INS_ins, EA_1BYTE, REG_V15, REG_R7, 15); |
| 7161 | |
| 7162 | // smov to general from vector element |
| 7163 | theEmitter->emitIns_R_R_I(INS_smov, EA_4BYTE, REG_R5, REG_V17, 2); |
| 7164 | theEmitter->emitIns_R_R_I(INS_smov, EA_2BYTE, REG_R6, REG_V18, 4); |
| 7165 | theEmitter->emitIns_R_R_I(INS_smov, EA_1BYTE, REG_R7, REG_V19, 8); |
| 7166 | |
| 7167 | #endif // ALL_ARM64_EMITTER_UNIT_TESTS |
| 7168 | |
| 7169 | #ifdef ALL_ARM64_EMITTER_UNIT_TESTS |
| 7170 | // |
| 7171 | // R_I movi and mvni |
| 7172 | // |
| 7173 | |
| 7174 | // movi imm8 (vector) |
| 7175 | theEmitter->emitIns_R_I(INS_movi, EA_8BYTE, REG_V0, 0x00, INS_OPTS_8B); |
| 7176 | theEmitter->emitIns_R_I(INS_movi, EA_8BYTE, REG_V1, 0xFF, INS_OPTS_8B); |
| 7177 | theEmitter->emitIns_R_I(INS_movi, EA_16BYTE, REG_V2, 0x00, INS_OPTS_16B); |
| 7178 | theEmitter->emitIns_R_I(INS_movi, EA_16BYTE, REG_V3, 0xFF, INS_OPTS_16B); |
| 7179 | |
| 7180 | theEmitter->emitIns_R_I(INS_movi, EA_8BYTE, REG_V4, 0x007F, INS_OPTS_4H); |
| 7181 | theEmitter->emitIns_R_I(INS_movi, EA_8BYTE, REG_V5, 0x7F00, INS_OPTS_4H); // LSL 8 |
| 7182 | theEmitter->emitIns_R_I(INS_movi, EA_16BYTE, REG_V6, 0x003F, INS_OPTS_8H); |
| 7183 | theEmitter->emitIns_R_I(INS_movi, EA_16BYTE, REG_V7, 0x3F00, INS_OPTS_8H); // LSL 8 |
| 7184 | |
| 7185 | theEmitter->emitIns_R_I(INS_movi, EA_8BYTE, REG_V8, 0x1F, INS_OPTS_2S); |
| 7186 | theEmitter->emitIns_R_I(INS_movi, EA_8BYTE, REG_V9, 0x1F00, INS_OPTS_2S); // LSL 8 |
| 7187 | theEmitter->emitIns_R_I(INS_movi, EA_8BYTE, REG_V10, 0x1F0000, INS_OPTS_2S); // LSL 16 |
| 7188 | theEmitter->emitIns_R_I(INS_movi, EA_8BYTE, REG_V11, 0x1F000000, INS_OPTS_2S); // LSL 24 |
| 7189 | |
| 7190 | theEmitter->emitIns_R_I(INS_movi, EA_8BYTE, REG_V12, 0x1FFF, INS_OPTS_2S); // MSL 8 |
| 7191 | theEmitter->emitIns_R_I(INS_movi, EA_8BYTE, REG_V13, 0x1FFFFF, INS_OPTS_2S); // MSL 16 |
| 7192 | |
| 7193 | theEmitter->emitIns_R_I(INS_movi, EA_16BYTE, REG_V14, 0x37, INS_OPTS_4S); |
| 7194 | theEmitter->emitIns_R_I(INS_movi, EA_16BYTE, REG_V15, 0x3700, INS_OPTS_4S); // LSL 8 |
| 7195 | theEmitter->emitIns_R_I(INS_movi, EA_16BYTE, REG_V16, 0x370000, INS_OPTS_4S); // LSL 16 |
| 7196 | theEmitter->emitIns_R_I(INS_movi, EA_16BYTE, REG_V17, 0x37000000, INS_OPTS_4S); // LSL 24 |
| 7197 | |
| 7198 | theEmitter->emitIns_R_I(INS_movi, EA_16BYTE, REG_V18, 0x37FF, INS_OPTS_4S); // MSL 8 |
| 7199 | theEmitter->emitIns_R_I(INS_movi, EA_16BYTE, REG_V19, 0x37FFFF, INS_OPTS_4S); // MSL 16 |
| 7200 | |
| 7201 | theEmitter->emitIns_R_I(INS_movi, EA_8BYTE, REG_V20, 0xFF80, INS_OPTS_4H); // mvni |
| 7202 | theEmitter->emitIns_R_I(INS_movi, EA_16BYTE, REG_V21, 0xFFC0, INS_OPTS_8H); // mvni |
| 7203 | |
| 7204 | theEmitter->emitIns_R_I(INS_movi, EA_8BYTE, REG_V22, 0xFFFFFFE0, INS_OPTS_2S); // mvni |
| 7205 | theEmitter->emitIns_R_I(INS_movi, EA_16BYTE, REG_V23, 0xFFFFF0FF, INS_OPTS_4S); // mvni LSL 8 |
| 7206 | theEmitter->emitIns_R_I(INS_movi, EA_8BYTE, REG_V24, 0xFFF8FFFF, INS_OPTS_2S); // mvni LSL 16 |
| 7207 | theEmitter->emitIns_R_I(INS_movi, EA_16BYTE, REG_V25, 0xFCFFFFFF, INS_OPTS_4S); // mvni LSL 24 |
| 7208 | |
| 7209 | theEmitter->emitIns_R_I(INS_movi, EA_8BYTE, REG_V26, 0xFFFFFE00, INS_OPTS_2S); // mvni MSL 8 |
| 7210 | theEmitter->emitIns_R_I(INS_movi, EA_16BYTE, REG_V27, 0xFFFC0000, INS_OPTS_4S); // mvni MSL 16 |
| 7211 | |
| 7212 | theEmitter->emitIns_R_I(INS_movi, EA_8BYTE, REG_V28, 0x00FF00FF00FF00FF, INS_OPTS_1D); |
| 7213 | theEmitter->emitIns_R_I(INS_movi, EA_16BYTE, REG_V29, 0x00FFFF0000FFFF00, INS_OPTS_2D); |
| 7214 | theEmitter->emitIns_R_I(INS_movi, EA_8BYTE, REG_V30, 0xFF000000FF000000); |
| 7215 | theEmitter->emitIns_R_I(INS_movi, EA_16BYTE, REG_V31, 0x0, INS_OPTS_2D); |
| 7216 | |
| 7217 | theEmitter->emitIns_R_I(INS_mvni, EA_8BYTE, REG_V0, 0x0022, INS_OPTS_4H); |
| 7218 | theEmitter->emitIns_R_I(INS_mvni, EA_8BYTE, REG_V1, 0x2200, INS_OPTS_4H); // LSL 8 |
| 7219 | theEmitter->emitIns_R_I(INS_mvni, EA_16BYTE, REG_V2, 0x0033, INS_OPTS_8H); |
| 7220 | theEmitter->emitIns_R_I(INS_mvni, EA_16BYTE, REG_V3, 0x3300, INS_OPTS_8H); // LSL 8 |
| 7221 | |
| 7222 | theEmitter->emitIns_R_I(INS_mvni, EA_8BYTE, REG_V4, 0x42, INS_OPTS_2S); |
| 7223 | theEmitter->emitIns_R_I(INS_mvni, EA_8BYTE, REG_V5, 0x4200, INS_OPTS_2S); // LSL 8 |
| 7224 | theEmitter->emitIns_R_I(INS_mvni, EA_8BYTE, REG_V6, 0x420000, INS_OPTS_2S); // LSL 16 |
| 7225 | theEmitter->emitIns_R_I(INS_mvni, EA_8BYTE, REG_V7, 0x42000000, INS_OPTS_2S); // LSL 24 |
| 7226 | |
| 7227 | theEmitter->emitIns_R_I(INS_mvni, EA_8BYTE, REG_V8, 0x42FF, INS_OPTS_2S); // MSL 8 |
| 7228 | theEmitter->emitIns_R_I(INS_mvni, EA_8BYTE, REG_V9, 0x42FFFF, INS_OPTS_2S); // MSL 16 |
| 7229 | |
| 7230 | theEmitter->emitIns_R_I(INS_mvni, EA_16BYTE, REG_V10, 0x5D, INS_OPTS_4S); |
| 7231 | theEmitter->emitIns_R_I(INS_mvni, EA_16BYTE, REG_V11, 0x5D00, INS_OPTS_4S); // LSL 8 |
| 7232 | theEmitter->emitIns_R_I(INS_mvni, EA_16BYTE, REG_V12, 0x5D0000, INS_OPTS_4S); // LSL 16 |
| 7233 | theEmitter->emitIns_R_I(INS_mvni, EA_16BYTE, REG_V13, 0x5D000000, INS_OPTS_4S); // LSL 24 |
| 7234 | |
| 7235 | theEmitter->emitIns_R_I(INS_mvni, EA_16BYTE, REG_V14, 0x5DFF, INS_OPTS_4S); // MSL 8 |
| 7236 | theEmitter->emitIns_R_I(INS_mvni, EA_16BYTE, REG_V15, 0x5DFFFF, INS_OPTS_4S); // MSL 16 |
| 7237 | |
| 7238 | #endif // ALL_ARM64_EMITTER_UNIT_TESTS |
| 7239 | |
| 7240 | #ifdef ALL_ARM64_EMITTER_UNIT_TESTS |
| 7241 | // |
| 7242 | // R_I orr/bic vector immediate |
| 7243 | // |
| 7244 | |
| 7245 | theEmitter->emitIns_R_I(INS_orr, EA_8BYTE, REG_V0, 0x0022, INS_OPTS_4H); |
| 7246 | theEmitter->emitIns_R_I(INS_orr, EA_8BYTE, REG_V1, 0x2200, INS_OPTS_4H); // LSL 8 |
| 7247 | theEmitter->emitIns_R_I(INS_orr, EA_16BYTE, REG_V2, 0x0033, INS_OPTS_8H); |
| 7248 | theEmitter->emitIns_R_I(INS_orr, EA_16BYTE, REG_V3, 0x3300, INS_OPTS_8H); // LSL 8 |
| 7249 | |
| 7250 | theEmitter->emitIns_R_I(INS_orr, EA_8BYTE, REG_V4, 0x42, INS_OPTS_2S); |
| 7251 | theEmitter->emitIns_R_I(INS_orr, EA_8BYTE, REG_V5, 0x4200, INS_OPTS_2S); // LSL 8 |
| 7252 | theEmitter->emitIns_R_I(INS_orr, EA_8BYTE, REG_V6, 0x420000, INS_OPTS_2S); // LSL 16 |
| 7253 | theEmitter->emitIns_R_I(INS_orr, EA_8BYTE, REG_V7, 0x42000000, INS_OPTS_2S); // LSL 24 |
| 7254 | |
| 7255 | theEmitter->emitIns_R_I(INS_orr, EA_16BYTE, REG_V10, 0x5D, INS_OPTS_4S); |
| 7256 | theEmitter->emitIns_R_I(INS_orr, EA_16BYTE, REG_V11, 0x5D00, INS_OPTS_4S); // LSL 8 |
| 7257 | theEmitter->emitIns_R_I(INS_orr, EA_16BYTE, REG_V12, 0x5D0000, INS_OPTS_4S); // LSL 16 |
| 7258 | theEmitter->emitIns_R_I(INS_orr, EA_16BYTE, REG_V13, 0x5D000000, INS_OPTS_4S); // LSL 24 |
| 7259 | |
| 7260 | theEmitter->emitIns_R_I(INS_bic, EA_8BYTE, REG_V0, 0x0022, INS_OPTS_4H); |
| 7261 | theEmitter->emitIns_R_I(INS_bic, EA_8BYTE, REG_V1, 0x2200, INS_OPTS_4H); // LSL 8 |
| 7262 | theEmitter->emitIns_R_I(INS_bic, EA_16BYTE, REG_V2, 0x0033, INS_OPTS_8H); |
| 7263 | theEmitter->emitIns_R_I(INS_bic, EA_16BYTE, REG_V3, 0x3300, INS_OPTS_8H); // LSL 8 |
| 7264 | |
| 7265 | theEmitter->emitIns_R_I(INS_bic, EA_8BYTE, REG_V4, 0x42, INS_OPTS_2S); |
| 7266 | theEmitter->emitIns_R_I(INS_bic, EA_8BYTE, REG_V5, 0x4200, INS_OPTS_2S); // LSL 8 |
| 7267 | theEmitter->emitIns_R_I(INS_bic, EA_8BYTE, REG_V6, 0x420000, INS_OPTS_2S); // LSL 16 |
| 7268 | theEmitter->emitIns_R_I(INS_bic, EA_8BYTE, REG_V7, 0x42000000, INS_OPTS_2S); // LSL 24 |
| 7269 | |
| 7270 | theEmitter->emitIns_R_I(INS_bic, EA_16BYTE, REG_V10, 0x5D, INS_OPTS_4S); |
| 7271 | theEmitter->emitIns_R_I(INS_bic, EA_16BYTE, REG_V11, 0x5D00, INS_OPTS_4S); // LSL 8 |
| 7272 | theEmitter->emitIns_R_I(INS_bic, EA_16BYTE, REG_V12, 0x5D0000, INS_OPTS_4S); // LSL 16 |
| 7273 | theEmitter->emitIns_R_I(INS_bic, EA_16BYTE, REG_V13, 0x5D000000, INS_OPTS_4S); // LSL 24 |
| 7274 | |
| 7275 | #endif // ALL_ARM64_EMITTER_UNIT_TESTS |
| 7276 | |
| 7277 | #ifdef ALL_ARM64_EMITTER_UNIT_TESTS |
| 7278 | // |
| 7279 | // R_F cmp/fmov immediate |
| 7280 | // |
| 7281 | |
| 7282 | // fmov imm8 (scalar) |
| 7283 | theEmitter->emitIns_R_F(INS_fmov, EA_8BYTE, REG_V14, 1.0); |
| 7284 | theEmitter->emitIns_R_F(INS_fmov, EA_4BYTE, REG_V15, -1.0); |
| 7285 | theEmitter->emitIns_R_F(INS_fmov, EA_4BYTE, REG_V0, 2.0); // encodes imm8 == 0 |
| 7286 | theEmitter->emitIns_R_F(INS_fmov, EA_4BYTE, REG_V16, 10.0); |
| 7287 | theEmitter->emitIns_R_F(INS_fmov, EA_8BYTE, REG_V17, -10.0); |
| 7288 | theEmitter->emitIns_R_F(INS_fmov, EA_8BYTE, REG_V18, 31); // Largest encodable value |
| 7289 | theEmitter->emitIns_R_F(INS_fmov, EA_4BYTE, REG_V19, -31); |
| 7290 | theEmitter->emitIns_R_F(INS_fmov, EA_4BYTE, REG_V20, 1.25); |
| 7291 | theEmitter->emitIns_R_F(INS_fmov, EA_8BYTE, REG_V21, -1.25); |
| 7292 | theEmitter->emitIns_R_F(INS_fmov, EA_8BYTE, REG_V22, 0.125); // Smallest encodable value |
| 7293 | theEmitter->emitIns_R_F(INS_fmov, EA_4BYTE, REG_V23, -0.125); |
| 7294 | |
| 7295 | // fmov imm8 (vector) |
| 7296 | theEmitter->emitIns_R_F(INS_fmov, EA_8BYTE, REG_V0, 2.0, INS_OPTS_2S); |
| 7297 | theEmitter->emitIns_R_F(INS_fmov, EA_8BYTE, REG_V24, 1.0, INS_OPTS_2S); |
| 7298 | theEmitter->emitIns_R_F(INS_fmov, EA_16BYTE, REG_V25, 1.0, INS_OPTS_4S); |
| 7299 | theEmitter->emitIns_R_F(INS_fmov, EA_16BYTE, REG_V26, 1.0, INS_OPTS_2D); |
| 7300 | theEmitter->emitIns_R_F(INS_fmov, EA_8BYTE, REG_V27, -10.0, INS_OPTS_2S); |
| 7301 | theEmitter->emitIns_R_F(INS_fmov, EA_16BYTE, REG_V28, -10.0, INS_OPTS_4S); |
| 7302 | theEmitter->emitIns_R_F(INS_fmov, EA_16BYTE, REG_V29, -10.0, INS_OPTS_2D); |
| 7303 | theEmitter->emitIns_R_F(INS_fmov, EA_8BYTE, REG_V30, 31.0, INS_OPTS_2S); |
| 7304 | theEmitter->emitIns_R_F(INS_fmov, EA_16BYTE, REG_V31, 31.0, INS_OPTS_4S); |
| 7305 | theEmitter->emitIns_R_F(INS_fmov, EA_16BYTE, REG_V0, 31.0, INS_OPTS_2D); |
| 7306 | theEmitter->emitIns_R_F(INS_fmov, EA_8BYTE, REG_V1, -0.125, INS_OPTS_2S); |
| 7307 | theEmitter->emitIns_R_F(INS_fmov, EA_16BYTE, REG_V2, -0.125, INS_OPTS_4S); |
| 7308 | theEmitter->emitIns_R_F(INS_fmov, EA_16BYTE, REG_V3, -0.125, INS_OPTS_2D); |
| 7309 | |
| 7310 | // fcmp with 0.0 |
| 7311 | theEmitter->emitIns_R_F(INS_fcmp, EA_8BYTE, REG_V12, 0.0); |
| 7312 | theEmitter->emitIns_R_F(INS_fcmp, EA_4BYTE, REG_V13, 0.0); |
| 7313 | theEmitter->emitIns_R_F(INS_fcmpe, EA_8BYTE, REG_V14, 0.0); |
| 7314 | theEmitter->emitIns_R_F(INS_fcmpe, EA_4BYTE, REG_V15, 0.0); |
| 7315 | |
| 7316 | #endif // ALL_ARM64_EMITTER_UNIT_TESTS |
| 7317 | |
| 7318 | #ifdef ALL_ARM64_EMITTER_UNIT_TESTS |
| 7319 | // |
| 7320 | // R_R fmov/fcmp/fcvt |
| 7321 | // |
| 7322 | |
| 7323 | // fmov to vector to vector |
| 7324 | theEmitter->emitIns_R_R(INS_fmov, EA_8BYTE, REG_V0, REG_V2); |
| 7325 | theEmitter->emitIns_R_R(INS_fmov, EA_4BYTE, REG_V1, REG_V3); |
| 7326 | |
| 7327 | // fmov to vector to general |
| 7328 | theEmitter->emitIns_R_R(INS_fmov, EA_8BYTE, REG_R0, REG_V4); |
| 7329 | theEmitter->emitIns_R_R(INS_fmov, EA_4BYTE, REG_R1, REG_V5); |
| 7330 | // using the optional conversion specifier |
| 7331 | theEmitter->emitIns_R_R(INS_fmov, EA_8BYTE, REG_R2, REG_V6, INS_OPTS_D_TO_8BYTE); |
| 7332 | theEmitter->emitIns_R_R(INS_fmov, EA_4BYTE, REG_R3, REG_V7, INS_OPTS_S_TO_4BYTE); |
| 7333 | |
| 7334 | // fmov to general to vector |
| 7335 | theEmitter->emitIns_R_R(INS_fmov, EA_8BYTE, REG_V8, REG_R4); |
| 7336 | theEmitter->emitIns_R_R(INS_fmov, EA_4BYTE, REG_V9, REG_R5); |
| 7337 | // using the optional conversion specifier |
| 7338 | theEmitter->emitIns_R_R(INS_fmov, EA_8BYTE, REG_V10, REG_R6, INS_OPTS_8BYTE_TO_D); |
| 7339 | theEmitter->emitIns_R_R(INS_fmov, EA_4BYTE, REG_V11, REG_R7, INS_OPTS_4BYTE_TO_S); |
| 7340 | |
| 7341 | // fcmp/fcmpe |
| 7342 | theEmitter->emitIns_R_R(INS_fcmp, EA_8BYTE, REG_V8, REG_V16); |
| 7343 | theEmitter->emitIns_R_R(INS_fcmp, EA_4BYTE, REG_V9, REG_V17); |
| 7344 | theEmitter->emitIns_R_R(INS_fcmpe, EA_8BYTE, REG_V10, REG_V18); |
| 7345 | theEmitter->emitIns_R_R(INS_fcmpe, EA_4BYTE, REG_V11, REG_V19); |
| 7346 | |
| 7347 | // fcvt |
| 7348 | theEmitter->emitIns_R_R(INS_fcvt, EA_8BYTE, REG_V24, REG_V25, INS_OPTS_S_TO_D); // Single to Double |
| 7349 | theEmitter->emitIns_R_R(INS_fcvt, EA_4BYTE, REG_V26, REG_V27, INS_OPTS_D_TO_S); // Double to Single |
| 7350 | |
| 7351 | theEmitter->emitIns_R_R(INS_fcvt, EA_4BYTE, REG_V1, REG_V2, INS_OPTS_H_TO_S); |
| 7352 | theEmitter->emitIns_R_R(INS_fcvt, EA_8BYTE, REG_V3, REG_V4, INS_OPTS_H_TO_D); |
| 7353 | |
| 7354 | theEmitter->emitIns_R_R(INS_fcvt, EA_2BYTE, REG_V5, REG_V6, INS_OPTS_S_TO_H); |
| 7355 | theEmitter->emitIns_R_R(INS_fcvt, EA_2BYTE, REG_V7, REG_V8, INS_OPTS_D_TO_H); |
| 7356 | |
| 7357 | #endif // ALL_ARM64_EMITTER_UNIT_TESTS |
| 7358 | |
| 7359 | #ifdef ALL_ARM64_EMITTER_UNIT_TESTS |
| 7360 | // |
| 7361 | // R_R floating point conversions |
| 7362 | // |
| 7363 | |
| 7364 | // fcvtas scalar |
| 7365 | theEmitter->emitIns_R_R(INS_fcvtas, EA_4BYTE, REG_V0, REG_V1); |
| 7366 | theEmitter->emitIns_R_R(INS_fcvtas, EA_8BYTE, REG_V2, REG_V3); |
| 7367 | |
| 7368 | // fcvtas scalar to general |
| 7369 | theEmitter->emitIns_R_R(INS_fcvtas, EA_4BYTE, REG_R0, REG_V4, INS_OPTS_S_TO_4BYTE); |
| 7370 | theEmitter->emitIns_R_R(INS_fcvtas, EA_4BYTE, REG_R1, REG_V5, INS_OPTS_D_TO_4BYTE); |
| 7371 | theEmitter->emitIns_R_R(INS_fcvtas, EA_8BYTE, REG_R2, REG_V6, INS_OPTS_S_TO_8BYTE); |
| 7372 | theEmitter->emitIns_R_R(INS_fcvtas, EA_8BYTE, REG_R3, REG_V7, INS_OPTS_D_TO_8BYTE); |
| 7373 | |
| 7374 | // fcvtas vector |
| 7375 | theEmitter->emitIns_R_R(INS_fcvtas, EA_8BYTE, REG_V8, REG_V9, INS_OPTS_2S); |
| 7376 | theEmitter->emitIns_R_R(INS_fcvtas, EA_16BYTE, REG_V10, REG_V11, INS_OPTS_4S); |
| 7377 | theEmitter->emitIns_R_R(INS_fcvtas, EA_16BYTE, REG_V12, REG_V13, INS_OPTS_2D); |
| 7378 | |
| 7379 | // fcvtau scalar |
| 7380 | theEmitter->emitIns_R_R(INS_fcvtau, EA_4BYTE, REG_V0, REG_V1); |
| 7381 | theEmitter->emitIns_R_R(INS_fcvtau, EA_8BYTE, REG_V2, REG_V3); |
| 7382 | |
| 7383 | // fcvtau scalar to general |
| 7384 | theEmitter->emitIns_R_R(INS_fcvtau, EA_4BYTE, REG_R0, REG_V4, INS_OPTS_S_TO_4BYTE); |
| 7385 | theEmitter->emitIns_R_R(INS_fcvtau, EA_4BYTE, REG_R1, REG_V5, INS_OPTS_D_TO_4BYTE); |
| 7386 | theEmitter->emitIns_R_R(INS_fcvtau, EA_8BYTE, REG_R2, REG_V6, INS_OPTS_S_TO_8BYTE); |
| 7387 | theEmitter->emitIns_R_R(INS_fcvtau, EA_8BYTE, REG_R3, REG_V7, INS_OPTS_D_TO_8BYTE); |
| 7388 | |
| 7389 | // fcvtau vector |
| 7390 | theEmitter->emitIns_R_R(INS_fcvtau, EA_8BYTE, REG_V8, REG_V9, INS_OPTS_2S); |
| 7391 | theEmitter->emitIns_R_R(INS_fcvtau, EA_16BYTE, REG_V10, REG_V11, INS_OPTS_4S); |
| 7392 | theEmitter->emitIns_R_R(INS_fcvtau, EA_16BYTE, REG_V12, REG_V13, INS_OPTS_2D); |
| 7393 | |
| 7394 | //////////////////////////////////////////////////////////////////////////////// |
| 7395 | |
| 7396 | // fcvtms scalar |
| 7397 | theEmitter->emitIns_R_R(INS_fcvtms, EA_4BYTE, REG_V0, REG_V1); |
| 7398 | theEmitter->emitIns_R_R(INS_fcvtms, EA_8BYTE, REG_V2, REG_V3); |
| 7399 | |
| 7400 | // fcvtms scalar to general |
| 7401 | theEmitter->emitIns_R_R(INS_fcvtms, EA_4BYTE, REG_R0, REG_V4, INS_OPTS_S_TO_4BYTE); |
| 7402 | theEmitter->emitIns_R_R(INS_fcvtms, EA_4BYTE, REG_R1, REG_V5, INS_OPTS_D_TO_4BYTE); |
| 7403 | theEmitter->emitIns_R_R(INS_fcvtms, EA_8BYTE, REG_R2, REG_V6, INS_OPTS_S_TO_8BYTE); |
| 7404 | theEmitter->emitIns_R_R(INS_fcvtms, EA_8BYTE, REG_R3, REG_V7, INS_OPTS_D_TO_8BYTE); |
| 7405 | |
| 7406 | // fcvtms vector |
| 7407 | theEmitter->emitIns_R_R(INS_fcvtms, EA_8BYTE, REG_V8, REG_V9, INS_OPTS_2S); |
| 7408 | theEmitter->emitIns_R_R(INS_fcvtms, EA_16BYTE, REG_V10, REG_V11, INS_OPTS_4S); |
| 7409 | theEmitter->emitIns_R_R(INS_fcvtms, EA_16BYTE, REG_V12, REG_V13, INS_OPTS_2D); |
| 7410 | |
| 7411 | // fcvtmu scalar |
| 7412 | theEmitter->emitIns_R_R(INS_fcvtmu, EA_4BYTE, REG_V0, REG_V1); |
| 7413 | theEmitter->emitIns_R_R(INS_fcvtmu, EA_8BYTE, REG_V2, REG_V3); |
| 7414 | |
| 7415 | // fcvtmu scalar to general |
| 7416 | theEmitter->emitIns_R_R(INS_fcvtmu, EA_4BYTE, REG_R0, REG_V4, INS_OPTS_S_TO_4BYTE); |
| 7417 | theEmitter->emitIns_R_R(INS_fcvtmu, EA_4BYTE, REG_R1, REG_V5, INS_OPTS_D_TO_4BYTE); |
| 7418 | theEmitter->emitIns_R_R(INS_fcvtmu, EA_8BYTE, REG_R2, REG_V6, INS_OPTS_S_TO_8BYTE); |
| 7419 | theEmitter->emitIns_R_R(INS_fcvtmu, EA_8BYTE, REG_R3, REG_V7, INS_OPTS_D_TO_8BYTE); |
| 7420 | |
| 7421 | // fcvtmu vector |
| 7422 | theEmitter->emitIns_R_R(INS_fcvtmu, EA_8BYTE, REG_V8, REG_V9, INS_OPTS_2S); |
| 7423 | theEmitter->emitIns_R_R(INS_fcvtmu, EA_16BYTE, REG_V10, REG_V11, INS_OPTS_4S); |
| 7424 | theEmitter->emitIns_R_R(INS_fcvtmu, EA_16BYTE, REG_V12, REG_V13, INS_OPTS_2D); |
| 7425 | |
| 7426 | //////////////////////////////////////////////////////////////////////////////// |
| 7427 | |
| 7428 | // fcvtns scalar |
| 7429 | theEmitter->emitIns_R_R(INS_fcvtns, EA_4BYTE, REG_V0, REG_V1); |
| 7430 | theEmitter->emitIns_R_R(INS_fcvtns, EA_8BYTE, REG_V2, REG_V3); |
| 7431 | |
| 7432 | // fcvtns scalar to general |
| 7433 | theEmitter->emitIns_R_R(INS_fcvtns, EA_4BYTE, REG_R0, REG_V4, INS_OPTS_S_TO_4BYTE); |
| 7434 | theEmitter->emitIns_R_R(INS_fcvtns, EA_4BYTE, REG_R1, REG_V5, INS_OPTS_D_TO_4BYTE); |
| 7435 | theEmitter->emitIns_R_R(INS_fcvtns, EA_8BYTE, REG_R2, REG_V6, INS_OPTS_S_TO_8BYTE); |
| 7436 | theEmitter->emitIns_R_R(INS_fcvtns, EA_8BYTE, REG_R3, REG_V7, INS_OPTS_D_TO_8BYTE); |
| 7437 | |
| 7438 | // fcvtns vector |
| 7439 | theEmitter->emitIns_R_R(INS_fcvtns, EA_8BYTE, REG_V8, REG_V9, INS_OPTS_2S); |
| 7440 | theEmitter->emitIns_R_R(INS_fcvtns, EA_16BYTE, REG_V10, REG_V11, INS_OPTS_4S); |
| 7441 | theEmitter->emitIns_R_R(INS_fcvtns, EA_16BYTE, REG_V12, REG_V13, INS_OPTS_2D); |
| 7442 | |
| 7443 | // fcvtnu scalar |
| 7444 | theEmitter->emitIns_R_R(INS_fcvtnu, EA_4BYTE, REG_V0, REG_V1); |
| 7445 | theEmitter->emitIns_R_R(INS_fcvtnu, EA_8BYTE, REG_V2, REG_V3); |
| 7446 | |
| 7447 | // fcvtnu scalar to general |
| 7448 | theEmitter->emitIns_R_R(INS_fcvtnu, EA_4BYTE, REG_R0, REG_V4, INS_OPTS_S_TO_4BYTE); |
| 7449 | theEmitter->emitIns_R_R(INS_fcvtnu, EA_4BYTE, REG_R1, REG_V5, INS_OPTS_D_TO_4BYTE); |
| 7450 | theEmitter->emitIns_R_R(INS_fcvtnu, EA_8BYTE, REG_R2, REG_V6, INS_OPTS_S_TO_8BYTE); |
| 7451 | theEmitter->emitIns_R_R(INS_fcvtnu, EA_8BYTE, REG_R3, REG_V7, INS_OPTS_D_TO_8BYTE); |
| 7452 | |
| 7453 | // fcvtnu vector |
| 7454 | theEmitter->emitIns_R_R(INS_fcvtnu, EA_8BYTE, REG_V8, REG_V9, INS_OPTS_2S); |
| 7455 | theEmitter->emitIns_R_R(INS_fcvtnu, EA_16BYTE, REG_V10, REG_V11, INS_OPTS_4S); |
| 7456 | theEmitter->emitIns_R_R(INS_fcvtnu, EA_16BYTE, REG_V12, REG_V13, INS_OPTS_2D); |
| 7457 | |
| 7458 | //////////////////////////////////////////////////////////////////////////////// |
| 7459 | |
| 7460 | // fcvtps scalar |
| 7461 | theEmitter->emitIns_R_R(INS_fcvtps, EA_4BYTE, REG_V0, REG_V1); |
| 7462 | theEmitter->emitIns_R_R(INS_fcvtps, EA_8BYTE, REG_V2, REG_V3); |
| 7463 | |
| 7464 | // fcvtps scalar to general |
| 7465 | theEmitter->emitIns_R_R(INS_fcvtps, EA_4BYTE, REG_R0, REG_V4, INS_OPTS_S_TO_4BYTE); |
| 7466 | theEmitter->emitIns_R_R(INS_fcvtps, EA_4BYTE, REG_R1, REG_V5, INS_OPTS_D_TO_4BYTE); |
| 7467 | theEmitter->emitIns_R_R(INS_fcvtps, EA_8BYTE, REG_R2, REG_V6, INS_OPTS_S_TO_8BYTE); |
| 7468 | theEmitter->emitIns_R_R(INS_fcvtps, EA_8BYTE, REG_R3, REG_V7, INS_OPTS_D_TO_8BYTE); |
| 7469 | |
| 7470 | // fcvtps vector |
| 7471 | theEmitter->emitIns_R_R(INS_fcvtps, EA_8BYTE, REG_V8, REG_V9, INS_OPTS_2S); |
| 7472 | theEmitter->emitIns_R_R(INS_fcvtps, EA_16BYTE, REG_V10, REG_V11, INS_OPTS_4S); |
| 7473 | theEmitter->emitIns_R_R(INS_fcvtps, EA_16BYTE, REG_V12, REG_V13, INS_OPTS_2D); |
| 7474 | |
| 7475 | // fcvtpu scalar |
| 7476 | theEmitter->emitIns_R_R(INS_fcvtpu, EA_4BYTE, REG_V0, REG_V1); |
| 7477 | theEmitter->emitIns_R_R(INS_fcvtpu, EA_8BYTE, REG_V2, REG_V3); |
| 7478 | |
| 7479 | // fcvtpu scalar to general |
| 7480 | theEmitter->emitIns_R_R(INS_fcvtpu, EA_4BYTE, REG_R0, REG_V4, INS_OPTS_S_TO_4BYTE); |
| 7481 | theEmitter->emitIns_R_R(INS_fcvtpu, EA_4BYTE, REG_R1, REG_V5, INS_OPTS_D_TO_4BYTE); |
| 7482 | theEmitter->emitIns_R_R(INS_fcvtpu, EA_8BYTE, REG_R2, REG_V6, INS_OPTS_S_TO_8BYTE); |
| 7483 | theEmitter->emitIns_R_R(INS_fcvtpu, EA_8BYTE, REG_R3, REG_V7, INS_OPTS_D_TO_8BYTE); |
| 7484 | |
| 7485 | // fcvtpu vector |
| 7486 | theEmitter->emitIns_R_R(INS_fcvtpu, EA_8BYTE, REG_V8, REG_V9, INS_OPTS_2S); |
| 7487 | theEmitter->emitIns_R_R(INS_fcvtpu, EA_16BYTE, REG_V10, REG_V11, INS_OPTS_4S); |
| 7488 | theEmitter->emitIns_R_R(INS_fcvtpu, EA_16BYTE, REG_V12, REG_V13, INS_OPTS_2D); |
| 7489 | |
| 7490 | //////////////////////////////////////////////////////////////////////////////// |
| 7491 | |
| 7492 | // fcvtzs scalar |
| 7493 | theEmitter->emitIns_R_R(INS_fcvtzs, EA_4BYTE, REG_V0, REG_V1); |
| 7494 | theEmitter->emitIns_R_R(INS_fcvtzs, EA_8BYTE, REG_V2, REG_V3); |
| 7495 | |
| 7496 | // fcvtzs scalar to general |
| 7497 | theEmitter->emitIns_R_R(INS_fcvtzs, EA_4BYTE, REG_R0, REG_V4, INS_OPTS_S_TO_4BYTE); |
| 7498 | theEmitter->emitIns_R_R(INS_fcvtzs, EA_4BYTE, REG_R1, REG_V5, INS_OPTS_D_TO_4BYTE); |
| 7499 | theEmitter->emitIns_R_R(INS_fcvtzs, EA_8BYTE, REG_R2, REG_V6, INS_OPTS_S_TO_8BYTE); |
| 7500 | theEmitter->emitIns_R_R(INS_fcvtzs, EA_8BYTE, REG_R3, REG_V7, INS_OPTS_D_TO_8BYTE); |
| 7501 | |
| 7502 | // fcvtzs vector |
| 7503 | theEmitter->emitIns_R_R(INS_fcvtzs, EA_8BYTE, REG_V8, REG_V9, INS_OPTS_2S); |
| 7504 | theEmitter->emitIns_R_R(INS_fcvtzs, EA_16BYTE, REG_V10, REG_V11, INS_OPTS_4S); |
| 7505 | theEmitter->emitIns_R_R(INS_fcvtzs, EA_16BYTE, REG_V12, REG_V13, INS_OPTS_2D); |
| 7506 | |
| 7507 | // fcvtzu scalar |
| 7508 | theEmitter->emitIns_R_R(INS_fcvtzu, EA_4BYTE, REG_V0, REG_V1); |
| 7509 | theEmitter->emitIns_R_R(INS_fcvtzu, EA_8BYTE, REG_V2, REG_V3); |
| 7510 | |
| 7511 | // fcvtzu scalar to general |
| 7512 | theEmitter->emitIns_R_R(INS_fcvtzu, EA_4BYTE, REG_R0, REG_V4, INS_OPTS_S_TO_4BYTE); |
| 7513 | theEmitter->emitIns_R_R(INS_fcvtzu, EA_4BYTE, REG_R1, REG_V5, INS_OPTS_D_TO_4BYTE); |
| 7514 | theEmitter->emitIns_R_R(INS_fcvtzu, EA_8BYTE, REG_R2, REG_V6, INS_OPTS_S_TO_8BYTE); |
| 7515 | theEmitter->emitIns_R_R(INS_fcvtzu, EA_8BYTE, REG_R3, REG_V7, INS_OPTS_D_TO_8BYTE); |
| 7516 | |
| 7517 | // fcvtzu vector |
| 7518 | theEmitter->emitIns_R_R(INS_fcvtzu, EA_8BYTE, REG_V8, REG_V9, INS_OPTS_2S); |
| 7519 | theEmitter->emitIns_R_R(INS_fcvtzu, EA_16BYTE, REG_V10, REG_V11, INS_OPTS_4S); |
| 7520 | theEmitter->emitIns_R_R(INS_fcvtzu, EA_16BYTE, REG_V12, REG_V13, INS_OPTS_2D); |
| 7521 | |
| 7522 | //////////////////////////////////////////////////////////////////////////////// |
| 7523 | |
| 7524 | // scvtf scalar |
| 7525 | theEmitter->emitIns_R_R(INS_scvtf, EA_4BYTE, REG_V0, REG_V1); |
| 7526 | theEmitter->emitIns_R_R(INS_scvtf, EA_8BYTE, REG_V2, REG_V3); |
| 7527 | |
| 7528 | // scvtf scalar from general |
| 7529 | theEmitter->emitIns_R_R(INS_scvtf, EA_4BYTE, REG_V4, REG_R0, INS_OPTS_4BYTE_TO_S); |
| 7530 | theEmitter->emitIns_R_R(INS_scvtf, EA_4BYTE, REG_V5, REG_R1, INS_OPTS_8BYTE_TO_S); |
| 7531 | theEmitter->emitIns_R_R(INS_scvtf, EA_8BYTE, REG_V6, REG_R2, INS_OPTS_4BYTE_TO_D); |
| 7532 | theEmitter->emitIns_R_R(INS_scvtf, EA_8BYTE, REG_V7, REG_R3, INS_OPTS_8BYTE_TO_D); |
| 7533 | |
| 7534 | // scvtf vector |
| 7535 | theEmitter->emitIns_R_R(INS_scvtf, EA_8BYTE, REG_V8, REG_V9, INS_OPTS_2S); |
| 7536 | theEmitter->emitIns_R_R(INS_scvtf, EA_16BYTE, REG_V10, REG_V11, INS_OPTS_4S); |
| 7537 | theEmitter->emitIns_R_R(INS_scvtf, EA_16BYTE, REG_V12, REG_V13, INS_OPTS_2D); |
| 7538 | |
| 7539 | // ucvtf scalar |
| 7540 | theEmitter->emitIns_R_R(INS_ucvtf, EA_4BYTE, REG_V0, REG_V1); |
| 7541 | theEmitter->emitIns_R_R(INS_ucvtf, EA_8BYTE, REG_V2, REG_V3); |
| 7542 | |
| 7543 | // ucvtf scalar from general |
| 7544 | theEmitter->emitIns_R_R(INS_ucvtf, EA_4BYTE, REG_V4, REG_R0, INS_OPTS_4BYTE_TO_S); |
| 7545 | theEmitter->emitIns_R_R(INS_ucvtf, EA_4BYTE, REG_V5, REG_R1, INS_OPTS_8BYTE_TO_S); |
| 7546 | theEmitter->emitIns_R_R(INS_ucvtf, EA_8BYTE, REG_V6, REG_R2, INS_OPTS_4BYTE_TO_D); |
| 7547 | theEmitter->emitIns_R_R(INS_ucvtf, EA_8BYTE, REG_V7, REG_R3, INS_OPTS_8BYTE_TO_D); |
| 7548 | |
| 7549 | // ucvtf vector |
| 7550 | theEmitter->emitIns_R_R(INS_ucvtf, EA_8BYTE, REG_V8, REG_V9, INS_OPTS_2S); |
| 7551 | theEmitter->emitIns_R_R(INS_ucvtf, EA_16BYTE, REG_V10, REG_V11, INS_OPTS_4S); |
| 7552 | theEmitter->emitIns_R_R(INS_ucvtf, EA_16BYTE, REG_V12, REG_V13, INS_OPTS_2D); |
| 7553 | |
| 7554 | #endif // ALL_ARM64_EMITTER_UNIT_TESTS |
| 7555 | |
| 7556 | #ifdef ALL_ARM64_EMITTER_UNIT_TESTS |
| 7557 | // |
| 7558 | // R_R floating point operations, one dest, one source |
| 7559 | // |
| 7560 | |
| 7561 | // fabs scalar |
| 7562 | theEmitter->emitIns_R_R(INS_fabs, EA_4BYTE, REG_V0, REG_V1); |
| 7563 | theEmitter->emitIns_R_R(INS_fabs, EA_8BYTE, REG_V2, REG_V3); |
| 7564 | |
| 7565 | // fabs vector |
| 7566 | theEmitter->emitIns_R_R(INS_fabs, EA_8BYTE, REG_V4, REG_V5, INS_OPTS_2S); |
| 7567 | theEmitter->emitIns_R_R(INS_fabs, EA_16BYTE, REG_V6, REG_V7, INS_OPTS_4S); |
| 7568 | theEmitter->emitIns_R_R(INS_fabs, EA_16BYTE, REG_V8, REG_V9, INS_OPTS_2D); |
| 7569 | |
| 7570 | // fneg scalar |
| 7571 | theEmitter->emitIns_R_R(INS_fneg, EA_4BYTE, REG_V0, REG_V1); |
| 7572 | theEmitter->emitIns_R_R(INS_fneg, EA_8BYTE, REG_V2, REG_V3); |
| 7573 | |
| 7574 | // fneg vector |
| 7575 | theEmitter->emitIns_R_R(INS_fneg, EA_8BYTE, REG_V4, REG_V5, INS_OPTS_2S); |
| 7576 | theEmitter->emitIns_R_R(INS_fneg, EA_16BYTE, REG_V6, REG_V7, INS_OPTS_4S); |
| 7577 | theEmitter->emitIns_R_R(INS_fneg, EA_16BYTE, REG_V8, REG_V9, INS_OPTS_2D); |
| 7578 | |
| 7579 | // fsqrt scalar |
| 7580 | theEmitter->emitIns_R_R(INS_fsqrt, EA_4BYTE, REG_V0, REG_V1); |
| 7581 | theEmitter->emitIns_R_R(INS_fsqrt, EA_8BYTE, REG_V2, REG_V3); |
| 7582 | |
| 7583 | // fsqrt vector |
| 7584 | theEmitter->emitIns_R_R(INS_fsqrt, EA_8BYTE, REG_V4, REG_V5, INS_OPTS_2S); |
| 7585 | theEmitter->emitIns_R_R(INS_fsqrt, EA_16BYTE, REG_V6, REG_V7, INS_OPTS_4S); |
| 7586 | theEmitter->emitIns_R_R(INS_fsqrt, EA_16BYTE, REG_V8, REG_V9, INS_OPTS_2D); |
| 7587 | |
| 7588 | genDefineTempLabel(genCreateTempLabel()); |
| 7589 | |
| 7590 | // abs scalar |
| 7591 | theEmitter->emitIns_R_R(INS_abs, EA_8BYTE, REG_V2, REG_V3); |
| 7592 | |
| 7593 | // abs vector |
| 7594 | theEmitter->emitIns_R_R(INS_abs, EA_8BYTE, REG_V4, REG_V5, INS_OPTS_8B); |
| 7595 | theEmitter->emitIns_R_R(INS_abs, EA_16BYTE, REG_V6, REG_V7, INS_OPTS_16B); |
| 7596 | theEmitter->emitIns_R_R(INS_abs, EA_8BYTE, REG_V8, REG_V9, INS_OPTS_4H); |
| 7597 | theEmitter->emitIns_R_R(INS_abs, EA_16BYTE, REG_V10, REG_V11, INS_OPTS_8H); |
| 7598 | theEmitter->emitIns_R_R(INS_abs, EA_8BYTE, REG_V12, REG_V13, INS_OPTS_2S); |
| 7599 | theEmitter->emitIns_R_R(INS_abs, EA_16BYTE, REG_V14, REG_V15, INS_OPTS_4S); |
| 7600 | theEmitter->emitIns_R_R(INS_abs, EA_16BYTE, REG_V16, REG_V17, INS_OPTS_2D); |
| 7601 | |
| 7602 | // neg scalar |
| 7603 | theEmitter->emitIns_R_R(INS_neg, EA_8BYTE, REG_V2, REG_V3); |
| 7604 | |
| 7605 | // neg vector |
| 7606 | theEmitter->emitIns_R_R(INS_neg, EA_8BYTE, REG_V4, REG_V5, INS_OPTS_8B); |
| 7607 | theEmitter->emitIns_R_R(INS_neg, EA_16BYTE, REG_V6, REG_V7, INS_OPTS_16B); |
| 7608 | theEmitter->emitIns_R_R(INS_neg, EA_8BYTE, REG_V8, REG_V9, INS_OPTS_4H); |
| 7609 | theEmitter->emitIns_R_R(INS_neg, EA_16BYTE, REG_V10, REG_V11, INS_OPTS_8H); |
| 7610 | theEmitter->emitIns_R_R(INS_neg, EA_8BYTE, REG_V12, REG_V13, INS_OPTS_2S); |
| 7611 | theEmitter->emitIns_R_R(INS_neg, EA_16BYTE, REG_V14, REG_V15, INS_OPTS_4S); |
| 7612 | theEmitter->emitIns_R_R(INS_neg, EA_16BYTE, REG_V16, REG_V17, INS_OPTS_2D); |
| 7613 | |
| 7614 | // mvn vector |
| 7615 | theEmitter->emitIns_R_R(INS_mvn, EA_8BYTE, REG_V4, REG_V5); |
| 7616 | theEmitter->emitIns_R_R(INS_mvn, EA_8BYTE, REG_V6, REG_V7, INS_OPTS_8B); |
| 7617 | theEmitter->emitIns_R_R(INS_mvn, EA_16BYTE, REG_V8, REG_V9); |
| 7618 | theEmitter->emitIns_R_R(INS_mvn, EA_16BYTE, REG_V10, REG_V11, INS_OPTS_16B); |
| 7619 | |
| 7620 | // cnt vector |
| 7621 | theEmitter->emitIns_R_R(INS_cnt, EA_8BYTE, REG_V22, REG_V23, INS_OPTS_8B); |
| 7622 | theEmitter->emitIns_R_R(INS_cnt, EA_16BYTE, REG_V24, REG_V25, INS_OPTS_16B); |
| 7623 | |
| 7624 | // not vector (the same encoding as mvn) |
| 7625 | theEmitter->emitIns_R_R(INS_not, EA_8BYTE, REG_V12, REG_V13); |
| 7626 | theEmitter->emitIns_R_R(INS_not, EA_8BYTE, REG_V14, REG_V15, INS_OPTS_8B); |
| 7627 | theEmitter->emitIns_R_R(INS_not, EA_16BYTE, REG_V16, REG_V17); |
| 7628 | theEmitter->emitIns_R_R(INS_not, EA_16BYTE, REG_V18, REG_V19, INS_OPTS_16B); |
| 7629 | |
| 7630 | // cls vector |
| 7631 | theEmitter->emitIns_R_R(INS_cls, EA_8BYTE, REG_V4, REG_V5, INS_OPTS_8B); |
| 7632 | theEmitter->emitIns_R_R(INS_cls, EA_16BYTE, REG_V6, REG_V7, INS_OPTS_16B); |
| 7633 | theEmitter->emitIns_R_R(INS_cls, EA_8BYTE, REG_V8, REG_V9, INS_OPTS_4H); |
| 7634 | theEmitter->emitIns_R_R(INS_cls, EA_16BYTE, REG_V10, REG_V11, INS_OPTS_8H); |
| 7635 | theEmitter->emitIns_R_R(INS_cls, EA_8BYTE, REG_V12, REG_V13, INS_OPTS_2S); |
| 7636 | theEmitter->emitIns_R_R(INS_cls, EA_16BYTE, REG_V14, REG_V15, INS_OPTS_4S); |
| 7637 | |
| 7638 | // clz vector |
| 7639 | theEmitter->emitIns_R_R(INS_clz, EA_8BYTE, REG_V4, REG_V5, INS_OPTS_8B); |
| 7640 | theEmitter->emitIns_R_R(INS_clz, EA_16BYTE, REG_V6, REG_V7, INS_OPTS_16B); |
| 7641 | theEmitter->emitIns_R_R(INS_clz, EA_8BYTE, REG_V8, REG_V9, INS_OPTS_4H); |
| 7642 | theEmitter->emitIns_R_R(INS_clz, EA_16BYTE, REG_V10, REG_V11, INS_OPTS_8H); |
| 7643 | theEmitter->emitIns_R_R(INS_clz, EA_8BYTE, REG_V12, REG_V13, INS_OPTS_2S); |
| 7644 | theEmitter->emitIns_R_R(INS_clz, EA_16BYTE, REG_V14, REG_V15, INS_OPTS_4S); |
| 7645 | |
| 7646 | // rbit vector |
| 7647 | theEmitter->emitIns_R_R(INS_rbit, EA_8BYTE, REG_V0, REG_V1, INS_OPTS_8B); |
| 7648 | theEmitter->emitIns_R_R(INS_rbit, EA_16BYTE, REG_V2, REG_V3, INS_OPTS_16B); |
| 7649 | |
| 7650 | // rev16 vector |
| 7651 | theEmitter->emitIns_R_R(INS_rev16, EA_8BYTE, REG_V0, REG_V1, INS_OPTS_8B); |
| 7652 | theEmitter->emitIns_R_R(INS_rev16, EA_16BYTE, REG_V2, REG_V3, INS_OPTS_16B); |
| 7653 | |
| 7654 | // rev32 vector |
| 7655 | theEmitter->emitIns_R_R(INS_rev32, EA_8BYTE, REG_V4, REG_V5, INS_OPTS_8B); |
| 7656 | theEmitter->emitIns_R_R(INS_rev32, EA_16BYTE, REG_V6, REG_V7, INS_OPTS_16B); |
| 7657 | theEmitter->emitIns_R_R(INS_rev32, EA_8BYTE, REG_V8, REG_V9, INS_OPTS_4H); |
| 7658 | theEmitter->emitIns_R_R(INS_rev32, EA_16BYTE, REG_V10, REG_V11, INS_OPTS_8H); |
| 7659 | |
| 7660 | // rev64 vector |
| 7661 | theEmitter->emitIns_R_R(INS_rev64, EA_8BYTE, REG_V4, REG_V5, INS_OPTS_8B); |
| 7662 | theEmitter->emitIns_R_R(INS_rev64, EA_16BYTE, REG_V6, REG_V7, INS_OPTS_16B); |
| 7663 | theEmitter->emitIns_R_R(INS_rev64, EA_8BYTE, REG_V8, REG_V9, INS_OPTS_4H); |
| 7664 | theEmitter->emitIns_R_R(INS_rev64, EA_16BYTE, REG_V10, REG_V11, INS_OPTS_8H); |
| 7665 | theEmitter->emitIns_R_R(INS_rev64, EA_8BYTE, REG_V12, REG_V13, INS_OPTS_2S); |
| 7666 | theEmitter->emitIns_R_R(INS_rev64, EA_16BYTE, REG_V14, REG_V15, INS_OPTS_4S); |
| 7667 | |
| 7668 | // addv vector |
| 7669 | theEmitter->emitIns_R_R(INS_addv, EA_8BYTE, REG_V4, REG_V5, INS_OPTS_8B); |
| 7670 | theEmitter->emitIns_R_R(INS_addv, EA_16BYTE, REG_V6, REG_V7, INS_OPTS_16B); |
| 7671 | theEmitter->emitIns_R_R(INS_addv, EA_8BYTE, REG_V8, REG_V9, INS_OPTS_4H); |
| 7672 | theEmitter->emitIns_R_R(INS_addv, EA_16BYTE, REG_V10, REG_V11, INS_OPTS_8H); |
| 7673 | theEmitter->emitIns_R_R(INS_addv, EA_8BYTE, REG_V12, REG_V13, INS_OPTS_2S); |
| 7674 | theEmitter->emitIns_R_R(INS_addv, EA_16BYTE, REG_V14, REG_V15, INS_OPTS_4S); |
| 7675 | |
| 7676 | // saddlv vector |
| 7677 | theEmitter->emitIns_R_R(INS_saddlv, EA_8BYTE, REG_V4, REG_V5, INS_OPTS_8B); |
| 7678 | theEmitter->emitIns_R_R(INS_saddlv, EA_16BYTE, REG_V6, REG_V7, INS_OPTS_16B); |
| 7679 | theEmitter->emitIns_R_R(INS_saddlv, EA_8BYTE, REG_V8, REG_V9, INS_OPTS_4H); |
| 7680 | theEmitter->emitIns_R_R(INS_saddlv, EA_16BYTE, REG_V10, REG_V11, INS_OPTS_8H); |
| 7681 | theEmitter->emitIns_R_R(INS_saddlv, EA_8BYTE, REG_V12, REG_V13, INS_OPTS_2S); |
| 7682 | theEmitter->emitIns_R_R(INS_saddlv, EA_16BYTE, REG_V14, REG_V15, INS_OPTS_4S); |
| 7683 | |
| 7684 | // smaxlv vector |
| 7685 | theEmitter->emitIns_R_R(INS_smaxlv, EA_8BYTE, REG_V4, REG_V5, INS_OPTS_8B); |
| 7686 | theEmitter->emitIns_R_R(INS_smaxlv, EA_16BYTE, REG_V6, REG_V7, INS_OPTS_16B); |
| 7687 | theEmitter->emitIns_R_R(INS_smaxlv, EA_8BYTE, REG_V8, REG_V9, INS_OPTS_4H); |
| 7688 | theEmitter->emitIns_R_R(INS_smaxlv, EA_16BYTE, REG_V10, REG_V11, INS_OPTS_8H); |
| 7689 | theEmitter->emitIns_R_R(INS_smaxlv, EA_8BYTE, REG_V12, REG_V13, INS_OPTS_2S); |
| 7690 | theEmitter->emitIns_R_R(INS_smaxlv, EA_16BYTE, REG_V14, REG_V15, INS_OPTS_4S); |
| 7691 | |
| 7692 | // sminlv vector |
| 7693 | theEmitter->emitIns_R_R(INS_sminlv, EA_8BYTE, REG_V4, REG_V5, INS_OPTS_8B); |
| 7694 | theEmitter->emitIns_R_R(INS_sminlv, EA_16BYTE, REG_V6, REG_V7, INS_OPTS_16B); |
| 7695 | theEmitter->emitIns_R_R(INS_sminlv, EA_8BYTE, REG_V8, REG_V9, INS_OPTS_4H); |
| 7696 | theEmitter->emitIns_R_R(INS_sminlv, EA_16BYTE, REG_V10, REG_V11, INS_OPTS_8H); |
| 7697 | theEmitter->emitIns_R_R(INS_sminlv, EA_8BYTE, REG_V12, REG_V13, INS_OPTS_2S); |
| 7698 | theEmitter->emitIns_R_R(INS_sminlv, EA_16BYTE, REG_V14, REG_V15, INS_OPTS_4S); |
| 7699 | |
| 7700 | // uaddlv vector |
| 7701 | theEmitter->emitIns_R_R(INS_uaddlv, EA_8BYTE, REG_V4, REG_V5, INS_OPTS_8B); |
| 7702 | theEmitter->emitIns_R_R(INS_uaddlv, EA_16BYTE, REG_V6, REG_V7, INS_OPTS_16B); |
| 7703 | theEmitter->emitIns_R_R(INS_uaddlv, EA_8BYTE, REG_V8, REG_V9, INS_OPTS_4H); |
| 7704 | theEmitter->emitIns_R_R(INS_uaddlv, EA_16BYTE, REG_V10, REG_V11, INS_OPTS_8H); |
| 7705 | theEmitter->emitIns_R_R(INS_uaddlv, EA_8BYTE, REG_V12, REG_V13, INS_OPTS_2S); |
| 7706 | theEmitter->emitIns_R_R(INS_uaddlv, EA_16BYTE, REG_V14, REG_V15, INS_OPTS_4S); |
| 7707 | |
| 7708 | // umaxlv vector |
| 7709 | theEmitter->emitIns_R_R(INS_umaxlv, EA_8BYTE, REG_V4, REG_V5, INS_OPTS_8B); |
| 7710 | theEmitter->emitIns_R_R(INS_umaxlv, EA_16BYTE, REG_V6, REG_V7, INS_OPTS_16B); |
| 7711 | theEmitter->emitIns_R_R(INS_umaxlv, EA_8BYTE, REG_V8, REG_V9, INS_OPTS_4H); |
| 7712 | theEmitter->emitIns_R_R(INS_umaxlv, EA_16BYTE, REG_V10, REG_V11, INS_OPTS_8H); |
| 7713 | theEmitter->emitIns_R_R(INS_umaxlv, EA_8BYTE, REG_V12, REG_V13, INS_OPTS_2S); |
| 7714 | theEmitter->emitIns_R_R(INS_umaxlv, EA_16BYTE, REG_V14, REG_V15, INS_OPTS_4S); |
| 7715 | |
| 7716 | // uminlv vector |
| 7717 | theEmitter->emitIns_R_R(INS_uminlv, EA_8BYTE, REG_V4, REG_V5, INS_OPTS_8B); |
| 7718 | theEmitter->emitIns_R_R(INS_uminlv, EA_16BYTE, REG_V6, REG_V7, INS_OPTS_16B); |
| 7719 | theEmitter->emitIns_R_R(INS_uminlv, EA_8BYTE, REG_V8, REG_V9, INS_OPTS_4H); |
| 7720 | theEmitter->emitIns_R_R(INS_uminlv, EA_16BYTE, REG_V10, REG_V11, INS_OPTS_8H); |
| 7721 | theEmitter->emitIns_R_R(INS_uminlv, EA_8BYTE, REG_V12, REG_V13, INS_OPTS_2S); |
| 7722 | theEmitter->emitIns_R_R(INS_uminlv, EA_16BYTE, REG_V14, REG_V15, INS_OPTS_4S); |
| 7723 | |
| 7724 | // faddp scalar |
| 7725 | theEmitter->emitIns_R_R(INS_faddp, EA_4BYTE, REG_V0, REG_V1); |
| 7726 | theEmitter->emitIns_R_R(INS_faddp, EA_8BYTE, REG_V2, REG_V3); |
| 7727 | |
| 7728 | // INS_fcvtl |
| 7729 | theEmitter->emitIns_R_R(INS_fcvtl, EA_4BYTE, REG_V0, REG_V1); |
| 7730 | |
| 7731 | // INS_fcvtl2 |
| 7732 | theEmitter->emitIns_R_R(INS_fcvtl2, EA_4BYTE, REG_V0, REG_V1); |
| 7733 | |
| 7734 | // INS_fcvtn |
| 7735 | theEmitter->emitIns_R_R(INS_fcvtn, EA_8BYTE, REG_V0, REG_V1); |
| 7736 | |
| 7737 | // INS_fcvtn2 |
| 7738 | theEmitter->emitIns_R_R(INS_fcvtn2, EA_8BYTE, REG_V0, REG_V1); |
| 7739 | #endif |
| 7740 | |
| 7741 | #ifdef ALL_ARM64_EMITTER_UNIT_TESTS |
| 7742 | // |
| 7743 | // R_R floating point round to int, one dest, one source |
| 7744 | // |
| 7745 | |
| 7746 | // frinta scalar |
| 7747 | theEmitter->emitIns_R_R(INS_frinta, EA_4BYTE, REG_V0, REG_V1); |
| 7748 | theEmitter->emitIns_R_R(INS_frinta, EA_8BYTE, REG_V2, REG_V3); |
| 7749 | |
| 7750 | // frinta vector |
| 7751 | theEmitter->emitIns_R_R(INS_frinta, EA_8BYTE, REG_V4, REG_V5, INS_OPTS_2S); |
| 7752 | theEmitter->emitIns_R_R(INS_frinta, EA_16BYTE, REG_V6, REG_V7, INS_OPTS_4S); |
| 7753 | theEmitter->emitIns_R_R(INS_frinta, EA_16BYTE, REG_V8, REG_V9, INS_OPTS_2D); |
| 7754 | |
| 7755 | // frinti scalar |
| 7756 | theEmitter->emitIns_R_R(INS_frinti, EA_4BYTE, REG_V0, REG_V1); |
| 7757 | theEmitter->emitIns_R_R(INS_frinti, EA_8BYTE, REG_V2, REG_V3); |
| 7758 | |
| 7759 | // frinti vector |
| 7760 | theEmitter->emitIns_R_R(INS_frinti, EA_8BYTE, REG_V4, REG_V5, INS_OPTS_2S); |
| 7761 | theEmitter->emitIns_R_R(INS_frinti, EA_16BYTE, REG_V6, REG_V7, INS_OPTS_4S); |
| 7762 | theEmitter->emitIns_R_R(INS_frinti, EA_16BYTE, REG_V8, REG_V9, INS_OPTS_2D); |
| 7763 | |
| 7764 | // frintm scalar |
| 7765 | theEmitter->emitIns_R_R(INS_frintm, EA_4BYTE, REG_V0, REG_V1); |
| 7766 | theEmitter->emitIns_R_R(INS_frintm, EA_8BYTE, REG_V2, REG_V3); |
| 7767 | |
| 7768 | // frintm vector |
| 7769 | theEmitter->emitIns_R_R(INS_frintm, EA_8BYTE, REG_V4, REG_V5, INS_OPTS_2S); |
| 7770 | theEmitter->emitIns_R_R(INS_frintm, EA_16BYTE, REG_V6, REG_V7, INS_OPTS_4S); |
| 7771 | theEmitter->emitIns_R_R(INS_frintm, EA_16BYTE, REG_V8, REG_V9, INS_OPTS_2D); |
| 7772 | |
| 7773 | // frintn scalar |
| 7774 | theEmitter->emitIns_R_R(INS_frintn, EA_4BYTE, REG_V0, REG_V1); |
| 7775 | theEmitter->emitIns_R_R(INS_frintn, EA_8BYTE, REG_V2, REG_V3); |
| 7776 | |
| 7777 | // frintn vector |
| 7778 | theEmitter->emitIns_R_R(INS_frintn, EA_8BYTE, REG_V4, REG_V5, INS_OPTS_2S); |
| 7779 | theEmitter->emitIns_R_R(INS_frintn, EA_16BYTE, REG_V6, REG_V7, INS_OPTS_4S); |
| 7780 | theEmitter->emitIns_R_R(INS_frintn, EA_16BYTE, REG_V8, REG_V9, INS_OPTS_2D); |
| 7781 | |
| 7782 | // frintp scalar |
| 7783 | theEmitter->emitIns_R_R(INS_frintp, EA_4BYTE, REG_V0, REG_V1); |
| 7784 | theEmitter->emitIns_R_R(INS_frintp, EA_8BYTE, REG_V2, REG_V3); |
| 7785 | |
| 7786 | // frintp vector |
| 7787 | theEmitter->emitIns_R_R(INS_frintp, EA_8BYTE, REG_V4, REG_V5, INS_OPTS_2S); |
| 7788 | theEmitter->emitIns_R_R(INS_frintp, EA_16BYTE, REG_V6, REG_V7, INS_OPTS_4S); |
| 7789 | theEmitter->emitIns_R_R(INS_frintp, EA_16BYTE, REG_V8, REG_V9, INS_OPTS_2D); |
| 7790 | |
| 7791 | // frintx scalar |
| 7792 | theEmitter->emitIns_R_R(INS_frintx, EA_4BYTE, REG_V0, REG_V1); |
| 7793 | theEmitter->emitIns_R_R(INS_frintx, EA_8BYTE, REG_V2, REG_V3); |
| 7794 | |
| 7795 | // frintx vector |
| 7796 | theEmitter->emitIns_R_R(INS_frintx, EA_8BYTE, REG_V4, REG_V5, INS_OPTS_2S); |
| 7797 | theEmitter->emitIns_R_R(INS_frintx, EA_16BYTE, REG_V6, REG_V7, INS_OPTS_4S); |
| 7798 | theEmitter->emitIns_R_R(INS_frintx, EA_16BYTE, REG_V8, REG_V9, INS_OPTS_2D); |
| 7799 | |
| 7800 | // frintz scalar |
| 7801 | theEmitter->emitIns_R_R(INS_frintz, EA_4BYTE, REG_V0, REG_V1); |
| 7802 | theEmitter->emitIns_R_R(INS_frintz, EA_8BYTE, REG_V2, REG_V3); |
| 7803 | |
| 7804 | // frintz vector |
| 7805 | theEmitter->emitIns_R_R(INS_frintz, EA_8BYTE, REG_V4, REG_V5, INS_OPTS_2S); |
| 7806 | theEmitter->emitIns_R_R(INS_frintz, EA_16BYTE, REG_V6, REG_V7, INS_OPTS_4S); |
| 7807 | theEmitter->emitIns_R_R(INS_frintz, EA_16BYTE, REG_V8, REG_V9, INS_OPTS_2D); |
| 7808 | |
| 7809 | #endif // ALL_ARM64_EMITTER_UNIT_TESTS |
| 7810 | |
| 7811 | #ifdef ALL_ARM64_EMITTER_UNIT_TESTS |
| 7812 | // |
| 7813 | // R_R_R floating point operations, one dest, two source |
| 7814 | // |
| 7815 | |
| 7816 | genDefineTempLabel(genCreateTempLabel()); |
| 7817 | |
| 7818 | theEmitter->emitIns_R_R_R(INS_fadd, EA_4BYTE, REG_V0, REG_V1, REG_V2); // scalar 4BYTE |
| 7819 | theEmitter->emitIns_R_R_R(INS_fadd, EA_8BYTE, REG_V3, REG_V4, REG_V5); // scalar 8BYTE |
| 7820 | theEmitter->emitIns_R_R_R(INS_fadd, EA_8BYTE, REG_V6, REG_V7, REG_V8, INS_OPTS_2S); |
| 7821 | theEmitter->emitIns_R_R_R(INS_fadd, EA_16BYTE, REG_V9, REG_V10, REG_V11, INS_OPTS_4S); |
| 7822 | theEmitter->emitIns_R_R_R(INS_fadd, EA_16BYTE, REG_V12, REG_V13, REG_V14, INS_OPTS_2D); |
| 7823 | |
| 7824 | theEmitter->emitIns_R_R_R(INS_fsub, EA_4BYTE, REG_V0, REG_V1, REG_V2); // scalar 4BYTE |
| 7825 | theEmitter->emitIns_R_R_R(INS_fsub, EA_8BYTE, REG_V3, REG_V4, REG_V5); // scalar 8BYTE |
| 7826 | theEmitter->emitIns_R_R_R(INS_fsub, EA_8BYTE, REG_V6, REG_V7, REG_V8, INS_OPTS_2S); |
| 7827 | theEmitter->emitIns_R_R_R(INS_fsub, EA_16BYTE, REG_V9, REG_V10, REG_V11, INS_OPTS_4S); |
| 7828 | theEmitter->emitIns_R_R_R(INS_fsub, EA_16BYTE, REG_V12, REG_V13, REG_V14, INS_OPTS_2D); |
| 7829 | |
| 7830 | theEmitter->emitIns_R_R_R(INS_fdiv, EA_4BYTE, REG_V0, REG_V1, REG_V2); // scalar 4BYTE |
| 7831 | theEmitter->emitIns_R_R_R(INS_fdiv, EA_8BYTE, REG_V3, REG_V4, REG_V5); // scalar 8BYTE |
| 7832 | theEmitter->emitIns_R_R_R(INS_fdiv, EA_8BYTE, REG_V6, REG_V7, REG_V8, INS_OPTS_2S); |
| 7833 | theEmitter->emitIns_R_R_R(INS_fdiv, EA_16BYTE, REG_V9, REG_V10, REG_V11, INS_OPTS_4S); |
| 7834 | theEmitter->emitIns_R_R_R(INS_fdiv, EA_16BYTE, REG_V12, REG_V13, REG_V14, INS_OPTS_2D); |
| 7835 | |
| 7836 | theEmitter->emitIns_R_R_R(INS_fmax, EA_4BYTE, REG_V0, REG_V1, REG_V2); // scalar 4BYTE |
| 7837 | theEmitter->emitIns_R_R_R(INS_fmax, EA_8BYTE, REG_V3, REG_V4, REG_V5); // scalar 8BYTE |
| 7838 | theEmitter->emitIns_R_R_R(INS_fmax, EA_8BYTE, REG_V6, REG_V7, REG_V8, INS_OPTS_2S); |
| 7839 | theEmitter->emitIns_R_R_R(INS_fmax, EA_16BYTE, REG_V9, REG_V10, REG_V11, INS_OPTS_4S); |
| 7840 | theEmitter->emitIns_R_R_R(INS_fmax, EA_16BYTE, REG_V12, REG_V13, REG_V14, INS_OPTS_2D); |
| 7841 | |
| 7842 | theEmitter->emitIns_R_R_R(INS_fmin, EA_4BYTE, REG_V0, REG_V1, REG_V2); // scalar 4BYTE |
| 7843 | theEmitter->emitIns_R_R_R(INS_fmin, EA_8BYTE, REG_V3, REG_V4, REG_V5); // scalar 8BYTE |
| 7844 | theEmitter->emitIns_R_R_R(INS_fmin, EA_8BYTE, REG_V6, REG_V7, REG_V8, INS_OPTS_2S); |
| 7845 | theEmitter->emitIns_R_R_R(INS_fmin, EA_16BYTE, REG_V9, REG_V10, REG_V11, INS_OPTS_4S); |
| 7846 | theEmitter->emitIns_R_R_R(INS_fmin, EA_16BYTE, REG_V12, REG_V13, REG_V14, INS_OPTS_2D); |
| 7847 | |
| 7848 | // fabd |
| 7849 | theEmitter->emitIns_R_R_R(INS_fabd, EA_4BYTE, REG_V0, REG_V1, REG_V2); // scalar 4BYTE |
| 7850 | theEmitter->emitIns_R_R_R(INS_fabd, EA_8BYTE, REG_V3, REG_V4, REG_V5); // scalar 8BYTE |
| 7851 | theEmitter->emitIns_R_R_R(INS_fabd, EA_8BYTE, REG_V6, REG_V7, REG_V8, INS_OPTS_2S); |
| 7852 | theEmitter->emitIns_R_R_R(INS_fabd, EA_16BYTE, REG_V9, REG_V10, REG_V11, INS_OPTS_4S); |
| 7853 | theEmitter->emitIns_R_R_R(INS_fabd, EA_16BYTE, REG_V12, REG_V13, REG_V14, INS_OPTS_2D); |
| 7854 | |
| 7855 | genDefineTempLabel(genCreateTempLabel()); |
| 7856 | |
| 7857 | theEmitter->emitIns_R_R_R(INS_fmul, EA_4BYTE, REG_V0, REG_V1, REG_V2); // scalar 4BYTE |
| 7858 | theEmitter->emitIns_R_R_R(INS_fmul, EA_8BYTE, REG_V3, REG_V4, REG_V5); // scalar 8BYTE |
| 7859 | theEmitter->emitIns_R_R_R(INS_fmul, EA_8BYTE, REG_V6, REG_V7, REG_V8, INS_OPTS_2S); |
| 7860 | theEmitter->emitIns_R_R_R(INS_fmul, EA_16BYTE, REG_V9, REG_V10, REG_V11, INS_OPTS_4S); |
| 7861 | theEmitter->emitIns_R_R_R(INS_fmul, EA_16BYTE, REG_V12, REG_V13, REG_V14, INS_OPTS_2D); |
| 7862 | |
| 7863 | theEmitter->emitIns_R_R_R_I(INS_fmul, EA_4BYTE, REG_V15, REG_V16, REG_V17, 3); // scalar by elem 4BYTE |
| 7864 | theEmitter->emitIns_R_R_R_I(INS_fmul, EA_8BYTE, REG_V18, REG_V19, REG_V20, 1); // scalar by elem 8BYTE |
| 7865 | theEmitter->emitIns_R_R_R_I(INS_fmul, EA_8BYTE, REG_V21, REG_V22, REG_V23, 0, INS_OPTS_2S); |
| 7866 | theEmitter->emitIns_R_R_R_I(INS_fmul, EA_16BYTE, REG_V24, REG_V25, REG_V26, 2, INS_OPTS_4S); |
| 7867 | theEmitter->emitIns_R_R_R_I(INS_fmul, EA_16BYTE, REG_V27, REG_V28, REG_V29, 0, INS_OPTS_2D); |
| 7868 | |
| 7869 | theEmitter->emitIns_R_R_R(INS_fmulx, EA_4BYTE, REG_V0, REG_V1, REG_V2); // scalar 4BYTE |
| 7870 | theEmitter->emitIns_R_R_R(INS_fmulx, EA_8BYTE, REG_V3, REG_V4, REG_V5); // scalar 8BYTE |
| 7871 | theEmitter->emitIns_R_R_R(INS_fmulx, EA_8BYTE, REG_V6, REG_V7, REG_V8, INS_OPTS_2S); |
| 7872 | theEmitter->emitIns_R_R_R(INS_fmulx, EA_16BYTE, REG_V9, REG_V10, REG_V11, INS_OPTS_4S); |
| 7873 | theEmitter->emitIns_R_R_R(INS_fmulx, EA_16BYTE, REG_V12, REG_V13, REG_V14, INS_OPTS_2D); |
| 7874 | |
| 7875 | theEmitter->emitIns_R_R_R_I(INS_fmulx, EA_4BYTE, REG_V15, REG_V16, REG_V17, 3); // scalar by elem 4BYTE |
| 7876 | theEmitter->emitIns_R_R_R_I(INS_fmulx, EA_8BYTE, REG_V18, REG_V19, REG_V20, 1); // scalar by elem 8BYTE |
| 7877 | theEmitter->emitIns_R_R_R_I(INS_fmulx, EA_8BYTE, REG_V21, REG_V22, REG_V23, 0, INS_OPTS_2S); |
| 7878 | theEmitter->emitIns_R_R_R_I(INS_fmulx, EA_16BYTE, REG_V24, REG_V25, REG_V26, 2, INS_OPTS_4S); |
| 7879 | theEmitter->emitIns_R_R_R_I(INS_fmulx, EA_16BYTE, REG_V27, REG_V28, REG_V29, 0, INS_OPTS_2D); |
| 7880 | |
| 7881 | theEmitter->emitIns_R_R_R(INS_fnmul, EA_4BYTE, REG_V0, REG_V1, REG_V2); // scalar 4BYTE |
| 7882 | theEmitter->emitIns_R_R_R(INS_fnmul, EA_8BYTE, REG_V3, REG_V4, REG_V5); // scalar 8BYTE |
| 7883 | |
| 7884 | #endif // ALL_ARM64_EMITTER_UNIT_TESTS |
| 7885 | |
| 7886 | #ifdef ALL_ARM64_EMITTER_UNIT_TESTS |
| 7887 | // |
| 7888 | // R_R_I vector operations, one dest, one source reg, one immed |
| 7889 | // |
| 7890 | |
| 7891 | genDefineTempLabel(genCreateTempLabel()); |
| 7892 | |
| 7893 | // 'sshr' scalar |
| 7894 | theEmitter->emitIns_R_R_I(INS_sshr, EA_8BYTE, REG_V0, REG_V1, 1); |
| 7895 | theEmitter->emitIns_R_R_I(INS_sshr, EA_8BYTE, REG_V2, REG_V3, 14); |
| 7896 | theEmitter->emitIns_R_R_I(INS_sshr, EA_8BYTE, REG_V4, REG_V5, 27); |
| 7897 | theEmitter->emitIns_R_R_I(INS_sshr, EA_8BYTE, REG_V6, REG_V7, 40); |
| 7898 | theEmitter->emitIns_R_R_I(INS_sshr, EA_8BYTE, REG_V8, REG_V9, 63); |
| 7899 | |
| 7900 | // 'sshr' vector |
| 7901 | theEmitter->emitIns_R_R_I(INS_sshr, EA_8BYTE, REG_V0, REG_V1, 1, INS_OPTS_8B); |
| 7902 | theEmitter->emitIns_R_R_I(INS_sshr, EA_16BYTE, REG_V2, REG_V3, 7, INS_OPTS_16B); |
| 7903 | theEmitter->emitIns_R_R_I(INS_sshr, EA_8BYTE, REG_V4, REG_V5, 9, INS_OPTS_4H); |
| 7904 | theEmitter->emitIns_R_R_I(INS_sshr, EA_16BYTE, REG_V6, REG_V7, 15, INS_OPTS_8H); |
| 7905 | theEmitter->emitIns_R_R_I(INS_sshr, EA_8BYTE, REG_V8, REG_V9, 17, INS_OPTS_2S); |
| 7906 | theEmitter->emitIns_R_R_I(INS_sshr, EA_16BYTE, REG_V10, REG_V11, 31, INS_OPTS_4S); |
| 7907 | theEmitter->emitIns_R_R_I(INS_sshr, EA_16BYTE, REG_V12, REG_V13, 33, INS_OPTS_2D); |
| 7908 | theEmitter->emitIns_R_R_I(INS_sshr, EA_16BYTE, REG_V14, REG_V15, 63, INS_OPTS_2D); |
| 7909 | |
| 7910 | // 'ssra' scalar |
| 7911 | theEmitter->emitIns_R_R_I(INS_ssra, EA_8BYTE, REG_V0, REG_V1, 1); |
| 7912 | theEmitter->emitIns_R_R_I(INS_ssra, EA_8BYTE, REG_V2, REG_V3, 14); |
| 7913 | theEmitter->emitIns_R_R_I(INS_ssra, EA_8BYTE, REG_V4, REG_V5, 27); |
| 7914 | theEmitter->emitIns_R_R_I(INS_ssra, EA_8BYTE, REG_V6, REG_V7, 40); |
| 7915 | theEmitter->emitIns_R_R_I(INS_ssra, EA_8BYTE, REG_V8, REG_V9, 63); |
| 7916 | |
| 7917 | // 'ssra' vector |
| 7918 | theEmitter->emitIns_R_R_I(INS_ssra, EA_8BYTE, REG_V0, REG_V1, 1, INS_OPTS_8B); |
| 7919 | theEmitter->emitIns_R_R_I(INS_ssra, EA_16BYTE, REG_V2, REG_V3, 7, INS_OPTS_16B); |
| 7920 | theEmitter->emitIns_R_R_I(INS_ssra, EA_8BYTE, REG_V4, REG_V5, 9, INS_OPTS_4H); |
| 7921 | theEmitter->emitIns_R_R_I(INS_ssra, EA_16BYTE, REG_V6, REG_V7, 15, INS_OPTS_8H); |
| 7922 | theEmitter->emitIns_R_R_I(INS_ssra, EA_8BYTE, REG_V8, REG_V9, 17, INS_OPTS_2S); |
| 7923 | theEmitter->emitIns_R_R_I(INS_ssra, EA_16BYTE, REG_V10, REG_V11, 31, INS_OPTS_4S); |
| 7924 | theEmitter->emitIns_R_R_I(INS_ssra, EA_16BYTE, REG_V12, REG_V13, 33, INS_OPTS_2D); |
| 7925 | theEmitter->emitIns_R_R_I(INS_ssra, EA_16BYTE, REG_V14, REG_V15, 63, INS_OPTS_2D); |
| 7926 | |
| 7927 | // 'srshr' scalar |
| 7928 | theEmitter->emitIns_R_R_I(INS_srshr, EA_8BYTE, REG_V0, REG_V1, 1); |
| 7929 | theEmitter->emitIns_R_R_I(INS_srshr, EA_8BYTE, REG_V2, REG_V3, 14); |
| 7930 | theEmitter->emitIns_R_R_I(INS_srshr, EA_8BYTE, REG_V4, REG_V5, 27); |
| 7931 | theEmitter->emitIns_R_R_I(INS_srshr, EA_8BYTE, REG_V6, REG_V7, 40); |
| 7932 | theEmitter->emitIns_R_R_I(INS_srshr, EA_8BYTE, REG_V8, REG_V9, 63); |
| 7933 | |
| 7934 | // 'srshr' vector |
| 7935 | theEmitter->emitIns_R_R_I(INS_srshr, EA_8BYTE, REG_V0, REG_V1, 1, INS_OPTS_8B); |
| 7936 | theEmitter->emitIns_R_R_I(INS_srshr, EA_16BYTE, REG_V2, REG_V3, 7, INS_OPTS_16B); |
| 7937 | theEmitter->emitIns_R_R_I(INS_srshr, EA_8BYTE, REG_V4, REG_V5, 9, INS_OPTS_4H); |
| 7938 | theEmitter->emitIns_R_R_I(INS_srshr, EA_16BYTE, REG_V6, REG_V7, 15, INS_OPTS_8H); |
| 7939 | theEmitter->emitIns_R_R_I(INS_srshr, EA_8BYTE, REG_V8, REG_V9, 17, INS_OPTS_2S); |
| 7940 | theEmitter->emitIns_R_R_I(INS_srshr, EA_16BYTE, REG_V10, REG_V11, 31, INS_OPTS_4S); |
| 7941 | theEmitter->emitIns_R_R_I(INS_srshr, EA_16BYTE, REG_V12, REG_V13, 33, INS_OPTS_2D); |
| 7942 | theEmitter->emitIns_R_R_I(INS_srshr, EA_16BYTE, REG_V14, REG_V15, 63, INS_OPTS_2D); |
| 7943 | |
| 7944 | // 'srsra' scalar |
| 7945 | theEmitter->emitIns_R_R_I(INS_srsra, EA_8BYTE, REG_V0, REG_V1, 1); |
| 7946 | theEmitter->emitIns_R_R_I(INS_srsra, EA_8BYTE, REG_V2, REG_V3, 14); |
| 7947 | theEmitter->emitIns_R_R_I(INS_srsra, EA_8BYTE, REG_V4, REG_V5, 27); |
| 7948 | theEmitter->emitIns_R_R_I(INS_srsra, EA_8BYTE, REG_V6, REG_V7, 40); |
| 7949 | theEmitter->emitIns_R_R_I(INS_srsra, EA_8BYTE, REG_V8, REG_V9, 63); |
| 7950 | |
| 7951 | // 'srsra' vector |
| 7952 | theEmitter->emitIns_R_R_I(INS_srsra, EA_8BYTE, REG_V0, REG_V1, 1, INS_OPTS_8B); |
| 7953 | theEmitter->emitIns_R_R_I(INS_srsra, EA_16BYTE, REG_V2, REG_V3, 7, INS_OPTS_16B); |
| 7954 | theEmitter->emitIns_R_R_I(INS_srsra, EA_8BYTE, REG_V4, REG_V5, 9, INS_OPTS_4H); |
| 7955 | theEmitter->emitIns_R_R_I(INS_srsra, EA_16BYTE, REG_V6, REG_V7, 15, INS_OPTS_8H); |
| 7956 | theEmitter->emitIns_R_R_I(INS_srsra, EA_8BYTE, REG_V8, REG_V9, 17, INS_OPTS_2S); |
| 7957 | theEmitter->emitIns_R_R_I(INS_srsra, EA_16BYTE, REG_V10, REG_V11, 31, INS_OPTS_4S); |
| 7958 | theEmitter->emitIns_R_R_I(INS_srsra, EA_16BYTE, REG_V12, REG_V13, 33, INS_OPTS_2D); |
| 7959 | theEmitter->emitIns_R_R_I(INS_srsra, EA_16BYTE, REG_V14, REG_V15, 63, INS_OPTS_2D); |
| 7960 | |
| 7961 | // 'shl' scalar |
| 7962 | theEmitter->emitIns_R_R_I(INS_shl, EA_8BYTE, REG_V0, REG_V1, 1); |
| 7963 | theEmitter->emitIns_R_R_I(INS_shl, EA_8BYTE, REG_V2, REG_V3, 14); |
| 7964 | theEmitter->emitIns_R_R_I(INS_shl, EA_8BYTE, REG_V4, REG_V5, 27); |
| 7965 | theEmitter->emitIns_R_R_I(INS_shl, EA_8BYTE, REG_V6, REG_V7, 40); |
| 7966 | theEmitter->emitIns_R_R_I(INS_shl, EA_8BYTE, REG_V8, REG_V9, 63); |
| 7967 | |
| 7968 | // 'shl' vector |
| 7969 | theEmitter->emitIns_R_R_I(INS_shl, EA_8BYTE, REG_V0, REG_V1, 1, INS_OPTS_8B); |
| 7970 | theEmitter->emitIns_R_R_I(INS_shl, EA_16BYTE, REG_V2, REG_V3, 7, INS_OPTS_16B); |
| 7971 | theEmitter->emitIns_R_R_I(INS_shl, EA_8BYTE, REG_V4, REG_V5, 9, INS_OPTS_4H); |
| 7972 | theEmitter->emitIns_R_R_I(INS_shl, EA_16BYTE, REG_V6, REG_V7, 15, INS_OPTS_8H); |
| 7973 | theEmitter->emitIns_R_R_I(INS_shl, EA_8BYTE, REG_V8, REG_V9, 17, INS_OPTS_2S); |
| 7974 | theEmitter->emitIns_R_R_I(INS_shl, EA_16BYTE, REG_V10, REG_V11, 31, INS_OPTS_4S); |
| 7975 | theEmitter->emitIns_R_R_I(INS_shl, EA_16BYTE, REG_V12, REG_V13, 33, INS_OPTS_2D); |
| 7976 | theEmitter->emitIns_R_R_I(INS_shl, EA_16BYTE, REG_V14, REG_V15, 63, INS_OPTS_2D); |
| 7977 | |
| 7978 | // 'ushr' scalar |
| 7979 | theEmitter->emitIns_R_R_I(INS_ushr, EA_8BYTE, REG_V0, REG_V1, 1); |
| 7980 | theEmitter->emitIns_R_R_I(INS_ushr, EA_8BYTE, REG_V2, REG_V3, 14); |
| 7981 | theEmitter->emitIns_R_R_I(INS_ushr, EA_8BYTE, REG_V4, REG_V5, 27); |
| 7982 | theEmitter->emitIns_R_R_I(INS_ushr, EA_8BYTE, REG_V6, REG_V7, 40); |
| 7983 | theEmitter->emitIns_R_R_I(INS_ushr, EA_8BYTE, REG_V8, REG_V9, 63); |
| 7984 | |
| 7985 | // 'ushr' vector |
| 7986 | theEmitter->emitIns_R_R_I(INS_ushr, EA_8BYTE, REG_V0, REG_V1, 1, INS_OPTS_8B); |
| 7987 | theEmitter->emitIns_R_R_I(INS_ushr, EA_16BYTE, REG_V2, REG_V3, 7, INS_OPTS_16B); |
| 7988 | theEmitter->emitIns_R_R_I(INS_ushr, EA_8BYTE, REG_V4, REG_V5, 9, INS_OPTS_4H); |
| 7989 | theEmitter->emitIns_R_R_I(INS_ushr, EA_16BYTE, REG_V6, REG_V7, 15, INS_OPTS_8H); |
| 7990 | theEmitter->emitIns_R_R_I(INS_ushr, EA_8BYTE, REG_V8, REG_V9, 17, INS_OPTS_2S); |
| 7991 | theEmitter->emitIns_R_R_I(INS_ushr, EA_16BYTE, REG_V10, REG_V11, 31, INS_OPTS_4S); |
| 7992 | theEmitter->emitIns_R_R_I(INS_ushr, EA_16BYTE, REG_V12, REG_V13, 33, INS_OPTS_2D); |
| 7993 | theEmitter->emitIns_R_R_I(INS_ushr, EA_16BYTE, REG_V14, REG_V15, 63, INS_OPTS_2D); |
| 7994 | |
| 7995 | // 'usra' scalar |
| 7996 | theEmitter->emitIns_R_R_I(INS_usra, EA_8BYTE, REG_V0, REG_V1, 1); |
| 7997 | theEmitter->emitIns_R_R_I(INS_usra, EA_8BYTE, REG_V2, REG_V3, 14); |
| 7998 | theEmitter->emitIns_R_R_I(INS_usra, EA_8BYTE, REG_V4, REG_V5, 27); |
| 7999 | theEmitter->emitIns_R_R_I(INS_usra, EA_8BYTE, REG_V6, REG_V7, 40); |
| 8000 | theEmitter->emitIns_R_R_I(INS_usra, EA_8BYTE, REG_V8, REG_V9, 63); |
| 8001 | |
| 8002 | // 'usra' vector |
| 8003 | theEmitter->emitIns_R_R_I(INS_usra, EA_8BYTE, REG_V0, REG_V1, 1, INS_OPTS_8B); |
| 8004 | theEmitter->emitIns_R_R_I(INS_usra, EA_16BYTE, REG_V2, REG_V3, 7, INS_OPTS_16B); |
| 8005 | theEmitter->emitIns_R_R_I(INS_usra, EA_8BYTE, REG_V4, REG_V5, 9, INS_OPTS_4H); |
| 8006 | theEmitter->emitIns_R_R_I(INS_usra, EA_16BYTE, REG_V6, REG_V7, 15, INS_OPTS_8H); |
| 8007 | theEmitter->emitIns_R_R_I(INS_usra, EA_8BYTE, REG_V8, REG_V9, 17, INS_OPTS_2S); |
| 8008 | theEmitter->emitIns_R_R_I(INS_usra, EA_16BYTE, REG_V10, REG_V11, 31, INS_OPTS_4S); |
| 8009 | theEmitter->emitIns_R_R_I(INS_usra, EA_16BYTE, REG_V12, REG_V13, 33, INS_OPTS_2D); |
| 8010 | theEmitter->emitIns_R_R_I(INS_usra, EA_16BYTE, REG_V14, REG_V15, 63, INS_OPTS_2D); |
| 8011 | |
| 8012 | // 'urshr' scalar |
| 8013 | theEmitter->emitIns_R_R_I(INS_urshr, EA_8BYTE, REG_V0, REG_V1, 1); |
| 8014 | theEmitter->emitIns_R_R_I(INS_urshr, EA_8BYTE, REG_V2, REG_V3, 14); |
| 8015 | theEmitter->emitIns_R_R_I(INS_urshr, EA_8BYTE, REG_V4, REG_V5, 27); |
| 8016 | theEmitter->emitIns_R_R_I(INS_urshr, EA_8BYTE, REG_V6, REG_V7, 40); |
| 8017 | theEmitter->emitIns_R_R_I(INS_urshr, EA_8BYTE, REG_V8, REG_V9, 63); |
| 8018 | |
| 8019 | // 'urshr' vector |
| 8020 | theEmitter->emitIns_R_R_I(INS_urshr, EA_8BYTE, REG_V0, REG_V1, 1, INS_OPTS_8B); |
| 8021 | theEmitter->emitIns_R_R_I(INS_urshr, EA_16BYTE, REG_V2, REG_V3, 7, INS_OPTS_16B); |
| 8022 | theEmitter->emitIns_R_R_I(INS_urshr, EA_8BYTE, REG_V4, REG_V5, 9, INS_OPTS_4H); |
| 8023 | theEmitter->emitIns_R_R_I(INS_urshr, EA_16BYTE, REG_V6, REG_V7, 15, INS_OPTS_8H); |
| 8024 | theEmitter->emitIns_R_R_I(INS_urshr, EA_8BYTE, REG_V8, REG_V9, 17, INS_OPTS_2S); |
| 8025 | theEmitter->emitIns_R_R_I(INS_urshr, EA_16BYTE, REG_V10, REG_V11, 31, INS_OPTS_4S); |
| 8026 | theEmitter->emitIns_R_R_I(INS_urshr, EA_16BYTE, REG_V12, REG_V13, 33, INS_OPTS_2D); |
| 8027 | theEmitter->emitIns_R_R_I(INS_urshr, EA_16BYTE, REG_V14, REG_V15, 63, INS_OPTS_2D); |
| 8028 | |
| 8029 | // 'ursra' scalar |
| 8030 | theEmitter->emitIns_R_R_I(INS_ursra, EA_8BYTE, REG_V0, REG_V1, 1); |
| 8031 | theEmitter->emitIns_R_R_I(INS_ursra, EA_8BYTE, REG_V2, REG_V3, 14); |
| 8032 | theEmitter->emitIns_R_R_I(INS_ursra, EA_8BYTE, REG_V4, REG_V5, 27); |
| 8033 | theEmitter->emitIns_R_R_I(INS_ursra, EA_8BYTE, REG_V6, REG_V7, 40); |
| 8034 | theEmitter->emitIns_R_R_I(INS_ursra, EA_8BYTE, REG_V8, REG_V9, 63); |
| 8035 | |
| 8036 | // 'srsra' vector |
| 8037 | theEmitter->emitIns_R_R_I(INS_ursra, EA_8BYTE, REG_V0, REG_V1, 1, INS_OPTS_8B); |
| 8038 | theEmitter->emitIns_R_R_I(INS_ursra, EA_16BYTE, REG_V2, REG_V3, 7, INS_OPTS_16B); |
| 8039 | theEmitter->emitIns_R_R_I(INS_ursra, EA_8BYTE, REG_V4, REG_V5, 9, INS_OPTS_4H); |
| 8040 | theEmitter->emitIns_R_R_I(INS_ursra, EA_16BYTE, REG_V6, REG_V7, 15, INS_OPTS_8H); |
| 8041 | theEmitter->emitIns_R_R_I(INS_ursra, EA_8BYTE, REG_V8, REG_V9, 17, INS_OPTS_2S); |
| 8042 | theEmitter->emitIns_R_R_I(INS_ursra, EA_16BYTE, REG_V10, REG_V11, 31, INS_OPTS_4S); |
| 8043 | theEmitter->emitIns_R_R_I(INS_ursra, EA_16BYTE, REG_V12, REG_V13, 33, INS_OPTS_2D); |
| 8044 | theEmitter->emitIns_R_R_I(INS_ursra, EA_16BYTE, REG_V14, REG_V15, 63, INS_OPTS_2D); |
| 8045 | |
| 8046 | // 'sri' scalar |
| 8047 | theEmitter->emitIns_R_R_I(INS_sri, EA_8BYTE, REG_V0, REG_V1, 1); |
| 8048 | theEmitter->emitIns_R_R_I(INS_sri, EA_8BYTE, REG_V2, REG_V3, 14); |
| 8049 | theEmitter->emitIns_R_R_I(INS_sri, EA_8BYTE, REG_V4, REG_V5, 27); |
| 8050 | theEmitter->emitIns_R_R_I(INS_sri, EA_8BYTE, REG_V6, REG_V7, 40); |
| 8051 | theEmitter->emitIns_R_R_I(INS_sri, EA_8BYTE, REG_V8, REG_V9, 63); |
| 8052 | |
| 8053 | // 'sri' vector |
| 8054 | theEmitter->emitIns_R_R_I(INS_sri, EA_8BYTE, REG_V0, REG_V1, 1, INS_OPTS_8B); |
| 8055 | theEmitter->emitIns_R_R_I(INS_sri, EA_16BYTE, REG_V2, REG_V3, 7, INS_OPTS_16B); |
| 8056 | theEmitter->emitIns_R_R_I(INS_sri, EA_8BYTE, REG_V4, REG_V5, 9, INS_OPTS_4H); |
| 8057 | theEmitter->emitIns_R_R_I(INS_sri, EA_16BYTE, REG_V6, REG_V7, 15, INS_OPTS_8H); |
| 8058 | theEmitter->emitIns_R_R_I(INS_sri, EA_8BYTE, REG_V8, REG_V9, 17, INS_OPTS_2S); |
| 8059 | theEmitter->emitIns_R_R_I(INS_sri, EA_16BYTE, REG_V10, REG_V11, 31, INS_OPTS_4S); |
| 8060 | theEmitter->emitIns_R_R_I(INS_sri, EA_16BYTE, REG_V12, REG_V13, 33, INS_OPTS_2D); |
| 8061 | theEmitter->emitIns_R_R_I(INS_sri, EA_16BYTE, REG_V14, REG_V15, 63, INS_OPTS_2D); |
| 8062 | |
| 8063 | // 'sli' scalar |
| 8064 | theEmitter->emitIns_R_R_I(INS_sli, EA_8BYTE, REG_V0, REG_V1, 1); |
| 8065 | theEmitter->emitIns_R_R_I(INS_sli, EA_8BYTE, REG_V2, REG_V3, 14); |
| 8066 | theEmitter->emitIns_R_R_I(INS_sli, EA_8BYTE, REG_V4, REG_V5, 27); |
| 8067 | theEmitter->emitIns_R_R_I(INS_sli, EA_8BYTE, REG_V6, REG_V7, 40); |
| 8068 | theEmitter->emitIns_R_R_I(INS_sli, EA_8BYTE, REG_V8, REG_V9, 63); |
| 8069 | |
| 8070 | // 'sli' vector |
| 8071 | theEmitter->emitIns_R_R_I(INS_sli, EA_8BYTE, REG_V0, REG_V1, 1, INS_OPTS_8B); |
| 8072 | theEmitter->emitIns_R_R_I(INS_sli, EA_16BYTE, REG_V2, REG_V3, 7, INS_OPTS_16B); |
| 8073 | theEmitter->emitIns_R_R_I(INS_sli, EA_8BYTE, REG_V4, REG_V5, 9, INS_OPTS_4H); |
| 8074 | theEmitter->emitIns_R_R_I(INS_sli, EA_16BYTE, REG_V6, REG_V7, 15, INS_OPTS_8H); |
| 8075 | theEmitter->emitIns_R_R_I(INS_sli, EA_8BYTE, REG_V8, REG_V9, 17, INS_OPTS_2S); |
| 8076 | theEmitter->emitIns_R_R_I(INS_sli, EA_16BYTE, REG_V10, REG_V11, 31, INS_OPTS_4S); |
| 8077 | theEmitter->emitIns_R_R_I(INS_sli, EA_16BYTE, REG_V12, REG_V13, 33, INS_OPTS_2D); |
| 8078 | theEmitter->emitIns_R_R_I(INS_sli, EA_16BYTE, REG_V14, REG_V15, 63, INS_OPTS_2D); |
| 8079 | |
| 8080 | // 'sshll' vector |
| 8081 | theEmitter->emitIns_R_R_I(INS_sshll, EA_8BYTE, REG_V0, REG_V1, 1, INS_OPTS_8B); |
| 8082 | theEmitter->emitIns_R_R_I(INS_sshll2, EA_16BYTE, REG_V2, REG_V3, 7, INS_OPTS_16B); |
| 8083 | theEmitter->emitIns_R_R_I(INS_sshll, EA_8BYTE, REG_V4, REG_V5, 9, INS_OPTS_4H); |
| 8084 | theEmitter->emitIns_R_R_I(INS_sshll2, EA_16BYTE, REG_V6, REG_V7, 15, INS_OPTS_8H); |
| 8085 | theEmitter->emitIns_R_R_I(INS_sshll, EA_8BYTE, REG_V8, REG_V9, 17, INS_OPTS_2S); |
| 8086 | theEmitter->emitIns_R_R_I(INS_sshll2, EA_16BYTE, REG_V10, REG_V11, 31, INS_OPTS_4S); |
| 8087 | |
| 8088 | // 'ushll' vector |
| 8089 | theEmitter->emitIns_R_R_I(INS_ushll, EA_8BYTE, REG_V0, REG_V1, 1, INS_OPTS_8B); |
| 8090 | theEmitter->emitIns_R_R_I(INS_ushll2, EA_16BYTE, REG_V2, REG_V3, 7, INS_OPTS_16B); |
| 8091 | theEmitter->emitIns_R_R_I(INS_ushll, EA_8BYTE, REG_V4, REG_V5, 9, INS_OPTS_4H); |
| 8092 | theEmitter->emitIns_R_R_I(INS_ushll2, EA_16BYTE, REG_V6, REG_V7, 15, INS_OPTS_8H); |
| 8093 | theEmitter->emitIns_R_R_I(INS_ushll, EA_8BYTE, REG_V8, REG_V9, 17, INS_OPTS_2S); |
| 8094 | theEmitter->emitIns_R_R_I(INS_ushll2, EA_16BYTE, REG_V10, REG_V11, 31, INS_OPTS_4S); |
| 8095 | |
| 8096 | // 'shrn' vector |
| 8097 | theEmitter->emitIns_R_R_I(INS_shrn, EA_8BYTE, REG_V0, REG_V1, 1, INS_OPTS_8B); |
| 8098 | theEmitter->emitIns_R_R_I(INS_shrn2, EA_16BYTE, REG_V2, REG_V3, 7, INS_OPTS_16B); |
| 8099 | theEmitter->emitIns_R_R_I(INS_shrn, EA_8BYTE, REG_V4, REG_V5, 9, INS_OPTS_4H); |
| 8100 | theEmitter->emitIns_R_R_I(INS_shrn2, EA_16BYTE, REG_V6, REG_V7, 15, INS_OPTS_8H); |
| 8101 | theEmitter->emitIns_R_R_I(INS_shrn, EA_8BYTE, REG_V8, REG_V9, 17, INS_OPTS_2S); |
| 8102 | theEmitter->emitIns_R_R_I(INS_shrn2, EA_16BYTE, REG_V10, REG_V11, 31, INS_OPTS_4S); |
| 8103 | |
| 8104 | // 'rshrn' vector |
| 8105 | theEmitter->emitIns_R_R_I(INS_rshrn, EA_8BYTE, REG_V0, REG_V1, 1, INS_OPTS_8B); |
| 8106 | theEmitter->emitIns_R_R_I(INS_rshrn2, EA_16BYTE, REG_V2, REG_V3, 7, INS_OPTS_16B); |
| 8107 | theEmitter->emitIns_R_R_I(INS_rshrn, EA_8BYTE, REG_V4, REG_V5, 9, INS_OPTS_4H); |
| 8108 | theEmitter->emitIns_R_R_I(INS_rshrn2, EA_16BYTE, REG_V6, REG_V7, 15, INS_OPTS_8H); |
| 8109 | theEmitter->emitIns_R_R_I(INS_rshrn, EA_8BYTE, REG_V8, REG_V9, 17, INS_OPTS_2S); |
| 8110 | theEmitter->emitIns_R_R_I(INS_rshrn2, EA_16BYTE, REG_V10, REG_V11, 31, INS_OPTS_4S); |
| 8111 | |
| 8112 | // 'sxtl' vector |
| 8113 | theEmitter->emitIns_R_R(INS_sxtl, EA_8BYTE, REG_V0, REG_V1, INS_OPTS_8B); |
| 8114 | theEmitter->emitIns_R_R(INS_sxtl2, EA_16BYTE, REG_V2, REG_V3, INS_OPTS_16B); |
| 8115 | theEmitter->emitIns_R_R(INS_sxtl, EA_8BYTE, REG_V4, REG_V5, INS_OPTS_4H); |
| 8116 | theEmitter->emitIns_R_R(INS_sxtl2, EA_16BYTE, REG_V6, REG_V7, INS_OPTS_8H); |
| 8117 | theEmitter->emitIns_R_R(INS_sxtl, EA_8BYTE, REG_V8, REG_V9, INS_OPTS_2S); |
| 8118 | theEmitter->emitIns_R_R(INS_sxtl2, EA_16BYTE, REG_V10, REG_V11, INS_OPTS_4S); |
| 8119 | |
| 8120 | // 'uxtl' vector |
| 8121 | theEmitter->emitIns_R_R(INS_uxtl, EA_8BYTE, REG_V0, REG_V1, INS_OPTS_8B); |
| 8122 | theEmitter->emitIns_R_R(INS_uxtl2, EA_16BYTE, REG_V2, REG_V3, INS_OPTS_16B); |
| 8123 | theEmitter->emitIns_R_R(INS_uxtl, EA_8BYTE, REG_V4, REG_V5, INS_OPTS_4H); |
| 8124 | theEmitter->emitIns_R_R(INS_uxtl2, EA_16BYTE, REG_V6, REG_V7, INS_OPTS_8H); |
| 8125 | theEmitter->emitIns_R_R(INS_uxtl, EA_8BYTE, REG_V8, REG_V9, INS_OPTS_2S); |
| 8126 | theEmitter->emitIns_R_R(INS_uxtl2, EA_16BYTE, REG_V10, REG_V11, INS_OPTS_4S); |
| 8127 | |
| 8128 | #endif // ALL_ARM64_EMITTER_UNIT_TESTS |
| 8129 | |
| 8130 | #ifdef ALL_ARM64_EMITTER_UNIT_TESTS |
| 8131 | // |
| 8132 | // R_R_R vector operations, one dest, two source |
| 8133 | // |
| 8134 | |
| 8135 | genDefineTempLabel(genCreateTempLabel()); |
| 8136 | |
| 8137 | // Specifying an Arrangement is optional |
| 8138 | // |
| 8139 | theEmitter->emitIns_R_R_R(INS_and, EA_8BYTE, REG_V6, REG_V7, REG_V8); |
| 8140 | theEmitter->emitIns_R_R_R(INS_bic, EA_8BYTE, REG_V9, REG_V10, REG_V11); |
| 8141 | theEmitter->emitIns_R_R_R(INS_eor, EA_8BYTE, REG_V12, REG_V13, REG_V14); |
| 8142 | theEmitter->emitIns_R_R_R(INS_orr, EA_8BYTE, REG_V15, REG_V16, REG_V17); |
| 8143 | theEmitter->emitIns_R_R_R(INS_orn, EA_8BYTE, REG_V18, REG_V19, REG_V20); |
| 8144 | theEmitter->emitIns_R_R_R(INS_and, EA_16BYTE, REG_V21, REG_V22, REG_V23); |
| 8145 | theEmitter->emitIns_R_R_R(INS_bic, EA_16BYTE, REG_V24, REG_V25, REG_V26); |
| 8146 | theEmitter->emitIns_R_R_R(INS_eor, EA_16BYTE, REG_V27, REG_V28, REG_V29); |
| 8147 | theEmitter->emitIns_R_R_R(INS_orr, EA_16BYTE, REG_V30, REG_V31, REG_V0); |
| 8148 | theEmitter->emitIns_R_R_R(INS_orn, EA_16BYTE, REG_V1, REG_V2, REG_V3); |
| 8149 | |
| 8150 | theEmitter->emitIns_R_R_R(INS_bsl, EA_8BYTE, REG_V4, REG_V5, REG_V6); |
| 8151 | theEmitter->emitIns_R_R_R(INS_bit, EA_8BYTE, REG_V7, REG_V8, REG_V9); |
| 8152 | theEmitter->emitIns_R_R_R(INS_bif, EA_8BYTE, REG_V10, REG_V11, REG_V12); |
| 8153 | theEmitter->emitIns_R_R_R(INS_bsl, EA_16BYTE, REG_V13, REG_V14, REG_V15); |
| 8154 | theEmitter->emitIns_R_R_R(INS_bit, EA_16BYTE, REG_V16, REG_V17, REG_V18); |
| 8155 | theEmitter->emitIns_R_R_R(INS_bif, EA_16BYTE, REG_V19, REG_V20, REG_V21); |
| 8156 | |
| 8157 | // Default Arrangement as per the ARM64 manual |
| 8158 | // |
| 8159 | theEmitter->emitIns_R_R_R(INS_and, EA_8BYTE, REG_V6, REG_V7, REG_V8, INS_OPTS_8B); |
| 8160 | theEmitter->emitIns_R_R_R(INS_bic, EA_8BYTE, REG_V9, REG_V10, REG_V11, INS_OPTS_8B); |
| 8161 | theEmitter->emitIns_R_R_R(INS_eor, EA_8BYTE, REG_V12, REG_V13, REG_V14, INS_OPTS_8B); |
| 8162 | theEmitter->emitIns_R_R_R(INS_orr, EA_8BYTE, REG_V15, REG_V16, REG_V17, INS_OPTS_8B); |
| 8163 | theEmitter->emitIns_R_R_R(INS_orn, EA_8BYTE, REG_V18, REG_V19, REG_V20, INS_OPTS_8B); |
| 8164 | theEmitter->emitIns_R_R_R(INS_and, EA_16BYTE, REG_V21, REG_V22, REG_V23, INS_OPTS_16B); |
| 8165 | theEmitter->emitIns_R_R_R(INS_bic, EA_16BYTE, REG_V24, REG_V25, REG_V26, INS_OPTS_16B); |
| 8166 | theEmitter->emitIns_R_R_R(INS_eor, EA_16BYTE, REG_V27, REG_V28, REG_V29, INS_OPTS_16B); |
| 8167 | theEmitter->emitIns_R_R_R(INS_orr, EA_16BYTE, REG_V30, REG_V31, REG_V0, INS_OPTS_16B); |
| 8168 | theEmitter->emitIns_R_R_R(INS_orn, EA_16BYTE, REG_V1, REG_V2, REG_V3, INS_OPTS_16B); |
| 8169 | |
| 8170 | theEmitter->emitIns_R_R_R(INS_bsl, EA_8BYTE, REG_V4, REG_V5, REG_V6, INS_OPTS_8B); |
| 8171 | theEmitter->emitIns_R_R_R(INS_bit, EA_8BYTE, REG_V7, REG_V8, REG_V9, INS_OPTS_8B); |
| 8172 | theEmitter->emitIns_R_R_R(INS_bif, EA_8BYTE, REG_V10, REG_V11, REG_V12, INS_OPTS_8B); |
| 8173 | theEmitter->emitIns_R_R_R(INS_bsl, EA_16BYTE, REG_V13, REG_V14, REG_V15, INS_OPTS_16B); |
| 8174 | theEmitter->emitIns_R_R_R(INS_bit, EA_16BYTE, REG_V16, REG_V17, REG_V18, INS_OPTS_16B); |
| 8175 | theEmitter->emitIns_R_R_R(INS_bif, EA_16BYTE, REG_V19, REG_V20, REG_V21, INS_OPTS_16B); |
| 8176 | |
| 8177 | genDefineTempLabel(genCreateTempLabel()); |
| 8178 | |
| 8179 | theEmitter->emitIns_R_R_R(INS_add, EA_8BYTE, REG_V0, REG_V1, REG_V2); // scalar 8BYTE |
| 8180 | theEmitter->emitIns_R_R_R(INS_add, EA_8BYTE, REG_V3, REG_V4, REG_V5, INS_OPTS_8B); |
| 8181 | theEmitter->emitIns_R_R_R(INS_add, EA_8BYTE, REG_V6, REG_V7, REG_V8, INS_OPTS_4H); |
| 8182 | theEmitter->emitIns_R_R_R(INS_add, EA_8BYTE, REG_V9, REG_V10, REG_V11, INS_OPTS_2S); |
| 8183 | theEmitter->emitIns_R_R_R(INS_add, EA_16BYTE, REG_V12, REG_V13, REG_V14, INS_OPTS_16B); |
| 8184 | theEmitter->emitIns_R_R_R(INS_add, EA_16BYTE, REG_V15, REG_V16, REG_V17, INS_OPTS_8H); |
| 8185 | theEmitter->emitIns_R_R_R(INS_add, EA_16BYTE, REG_V18, REG_V19, REG_V20, INS_OPTS_4S); |
| 8186 | theEmitter->emitIns_R_R_R(INS_add, EA_16BYTE, REG_V21, REG_V22, REG_V23, INS_OPTS_2D); |
| 8187 | |
| 8188 | theEmitter->emitIns_R_R_R(INS_sub, EA_8BYTE, REG_V1, REG_V2, REG_V3); // scalar 8BYTE |
| 8189 | theEmitter->emitIns_R_R_R(INS_sub, EA_8BYTE, REG_V4, REG_V5, REG_V6, INS_OPTS_8B); |
| 8190 | theEmitter->emitIns_R_R_R(INS_sub, EA_8BYTE, REG_V7, REG_V8, REG_V9, INS_OPTS_4H); |
| 8191 | theEmitter->emitIns_R_R_R(INS_sub, EA_8BYTE, REG_V10, REG_V11, REG_V12, INS_OPTS_2S); |
| 8192 | theEmitter->emitIns_R_R_R(INS_sub, EA_16BYTE, REG_V13, REG_V14, REG_V15, INS_OPTS_16B); |
| 8193 | theEmitter->emitIns_R_R_R(INS_sub, EA_16BYTE, REG_V16, REG_V17, REG_V18, INS_OPTS_8H); |
| 8194 | theEmitter->emitIns_R_R_R(INS_sub, EA_16BYTE, REG_V19, REG_V20, REG_V21, INS_OPTS_4S); |
| 8195 | theEmitter->emitIns_R_R_R(INS_sub, EA_16BYTE, REG_V22, REG_V23, REG_V24, INS_OPTS_2D); |
| 8196 | |
| 8197 | genDefineTempLabel(genCreateTempLabel()); |
| 8198 | |
| 8199 | // saba vector |
| 8200 | theEmitter->emitIns_R_R_R(INS_saba, EA_8BYTE, REG_V0, REG_V1, REG_V2, INS_OPTS_8B); |
| 8201 | theEmitter->emitIns_R_R_R(INS_saba, EA_16BYTE, REG_V3, REG_V4, REG_V5, INS_OPTS_16B); |
| 8202 | theEmitter->emitIns_R_R_R(INS_saba, EA_8BYTE, REG_V6, REG_V7, REG_V8, INS_OPTS_4H); |
| 8203 | theEmitter->emitIns_R_R_R(INS_saba, EA_16BYTE, REG_V9, REG_V10, REG_V11, INS_OPTS_8H); |
| 8204 | theEmitter->emitIns_R_R_R(INS_saba, EA_8BYTE, REG_V12, REG_V13, REG_V14, INS_OPTS_2S); |
| 8205 | theEmitter->emitIns_R_R_R(INS_saba, EA_16BYTE, REG_V15, REG_V16, REG_V17, INS_OPTS_4S); |
| 8206 | |
| 8207 | // sabd vector |
| 8208 | theEmitter->emitIns_R_R_R(INS_sabd, EA_8BYTE, REG_V0, REG_V1, REG_V2, INS_OPTS_8B); |
| 8209 | theEmitter->emitIns_R_R_R(INS_sabd, EA_16BYTE, REG_V3, REG_V4, REG_V5, INS_OPTS_16B); |
| 8210 | theEmitter->emitIns_R_R_R(INS_sabd, EA_8BYTE, REG_V6, REG_V7, REG_V8, INS_OPTS_4H); |
| 8211 | theEmitter->emitIns_R_R_R(INS_sabd, EA_16BYTE, REG_V9, REG_V10, REG_V11, INS_OPTS_8H); |
| 8212 | theEmitter->emitIns_R_R_R(INS_sabd, EA_8BYTE, REG_V12, REG_V13, REG_V14, INS_OPTS_2S); |
| 8213 | theEmitter->emitIns_R_R_R(INS_sabd, EA_16BYTE, REG_V15, REG_V16, REG_V17, INS_OPTS_4S); |
| 8214 | |
| 8215 | // uaba vector |
| 8216 | theEmitter->emitIns_R_R_R(INS_uaba, EA_8BYTE, REG_V0, REG_V1, REG_V2, INS_OPTS_8B); |
| 8217 | theEmitter->emitIns_R_R_R(INS_uaba, EA_16BYTE, REG_V3, REG_V4, REG_V5, INS_OPTS_16B); |
| 8218 | theEmitter->emitIns_R_R_R(INS_uaba, EA_8BYTE, REG_V6, REG_V7, REG_V8, INS_OPTS_4H); |
| 8219 | theEmitter->emitIns_R_R_R(INS_uaba, EA_16BYTE, REG_V9, REG_V10, REG_V11, INS_OPTS_8H); |
| 8220 | theEmitter->emitIns_R_R_R(INS_uaba, EA_8BYTE, REG_V12, REG_V13, REG_V14, INS_OPTS_2S); |
| 8221 | theEmitter->emitIns_R_R_R(INS_uaba, EA_16BYTE, REG_V15, REG_V16, REG_V17, INS_OPTS_4S); |
| 8222 | |
| 8223 | // uabd vector |
| 8224 | theEmitter->emitIns_R_R_R(INS_uabd, EA_8BYTE, REG_V0, REG_V1, REG_V2, INS_OPTS_8B); |
| 8225 | theEmitter->emitIns_R_R_R(INS_uabd, EA_16BYTE, REG_V3, REG_V4, REG_V5, INS_OPTS_16B); |
| 8226 | theEmitter->emitIns_R_R_R(INS_uabd, EA_8BYTE, REG_V6, REG_V7, REG_V8, INS_OPTS_4H); |
| 8227 | theEmitter->emitIns_R_R_R(INS_uabd, EA_16BYTE, REG_V9, REG_V10, REG_V11, INS_OPTS_8H); |
| 8228 | theEmitter->emitIns_R_R_R(INS_uabd, EA_8BYTE, REG_V12, REG_V13, REG_V14, INS_OPTS_2S); |
| 8229 | theEmitter->emitIns_R_R_R(INS_uabd, EA_16BYTE, REG_V15, REG_V16, REG_V17, INS_OPTS_4S); |
| 8230 | #endif // ALL_ARM64_EMITTER_UNIT_TESTS |
| 8231 | |
| 8232 | #ifdef ALL_ARM64_EMITTER_UNIT_TESTS |
| 8233 | // smax vector |
| 8234 | theEmitter->emitIns_R_R_R(INS_smax, EA_8BYTE, REG_V0, REG_V1, REG_V2, INS_OPTS_8B); |
| 8235 | theEmitter->emitIns_R_R_R(INS_smax, EA_16BYTE, REG_V3, REG_V4, REG_V5, INS_OPTS_16B); |
| 8236 | theEmitter->emitIns_R_R_R(INS_smax, EA_8BYTE, REG_V6, REG_V7, REG_V8, INS_OPTS_4H); |
| 8237 | theEmitter->emitIns_R_R_R(INS_smax, EA_16BYTE, REG_V9, REG_V10, REG_V11, INS_OPTS_8H); |
| 8238 | theEmitter->emitIns_R_R_R(INS_smax, EA_8BYTE, REG_V12, REG_V13, REG_V14, INS_OPTS_2S); |
| 8239 | theEmitter->emitIns_R_R_R(INS_smax, EA_16BYTE, REG_V15, REG_V16, REG_V17, INS_OPTS_4S); |
| 8240 | |
| 8241 | // smin vector |
| 8242 | theEmitter->emitIns_R_R_R(INS_smin, EA_8BYTE, REG_V0, REG_V1, REG_V2, INS_OPTS_8B); |
| 8243 | theEmitter->emitIns_R_R_R(INS_smin, EA_16BYTE, REG_V3, REG_V4, REG_V5, INS_OPTS_16B); |
| 8244 | theEmitter->emitIns_R_R_R(INS_smin, EA_8BYTE, REG_V6, REG_V7, REG_V8, INS_OPTS_4H); |
| 8245 | theEmitter->emitIns_R_R_R(INS_smin, EA_16BYTE, REG_V9, REG_V10, REG_V11, INS_OPTS_8H); |
| 8246 | theEmitter->emitIns_R_R_R(INS_smin, EA_8BYTE, REG_V12, REG_V13, REG_V14, INS_OPTS_2S); |
| 8247 | theEmitter->emitIns_R_R_R(INS_smin, EA_16BYTE, REG_V15, REG_V16, REG_V17, INS_OPTS_4S); |
| 8248 | |
| 8249 | // umax vector |
| 8250 | theEmitter->emitIns_R_R_R(INS_umax, EA_8BYTE, REG_V0, REG_V1, REG_V2, INS_OPTS_8B); |
| 8251 | theEmitter->emitIns_R_R_R(INS_umax, EA_16BYTE, REG_V3, REG_V4, REG_V5, INS_OPTS_16B); |
| 8252 | theEmitter->emitIns_R_R_R(INS_umax, EA_8BYTE, REG_V6, REG_V7, REG_V8, INS_OPTS_4H); |
| 8253 | theEmitter->emitIns_R_R_R(INS_umax, EA_16BYTE, REG_V9, REG_V10, REG_V11, INS_OPTS_8H); |
| 8254 | theEmitter->emitIns_R_R_R(INS_umax, EA_8BYTE, REG_V12, REG_V13, REG_V14, INS_OPTS_2S); |
| 8255 | theEmitter->emitIns_R_R_R(INS_umax, EA_16BYTE, REG_V15, REG_V16, REG_V17, INS_OPTS_4S); |
| 8256 | |
| 8257 | // umin vector |
| 8258 | theEmitter->emitIns_R_R_R(INS_umin, EA_8BYTE, REG_V0, REG_V1, REG_V2, INS_OPTS_8B); |
| 8259 | theEmitter->emitIns_R_R_R(INS_umin, EA_16BYTE, REG_V3, REG_V4, REG_V5, INS_OPTS_16B); |
| 8260 | theEmitter->emitIns_R_R_R(INS_umin, EA_8BYTE, REG_V6, REG_V7, REG_V8, INS_OPTS_4H); |
| 8261 | theEmitter->emitIns_R_R_R(INS_umin, EA_16BYTE, REG_V9, REG_V10, REG_V11, INS_OPTS_8H); |
| 8262 | theEmitter->emitIns_R_R_R(INS_umin, EA_8BYTE, REG_V12, REG_V13, REG_V14, INS_OPTS_2S); |
| 8263 | theEmitter->emitIns_R_R_R(INS_umin, EA_16BYTE, REG_V15, REG_V16, REG_V17, INS_OPTS_4S); |
| 8264 | |
| 8265 | // cmeq vector |
| 8266 | theEmitter->emitIns_R_R_R(INS_cmeq, EA_8BYTE, REG_V0, REG_V1, REG_V2, INS_OPTS_8B); |
| 8267 | theEmitter->emitIns_R_R_R(INS_cmeq, EA_16BYTE, REG_V3, REG_V4, REG_V5, INS_OPTS_16B); |
| 8268 | theEmitter->emitIns_R_R_R(INS_cmeq, EA_8BYTE, REG_V6, REG_V7, REG_V8, INS_OPTS_4H); |
| 8269 | theEmitter->emitIns_R_R_R(INS_cmeq, EA_16BYTE, REG_V9, REG_V10, REG_V11, INS_OPTS_8H); |
| 8270 | theEmitter->emitIns_R_R_R(INS_cmeq, EA_8BYTE, REG_V12, REG_V13, REG_V14, INS_OPTS_2S); |
| 8271 | theEmitter->emitIns_R_R_R(INS_cmeq, EA_16BYTE, REG_V15, REG_V16, REG_V17, INS_OPTS_4S); |
| 8272 | theEmitter->emitIns_R_R_R(INS_cmeq, EA_8BYTE, REG_V12, REG_V13, REG_V14, INS_OPTS_1D); |
| 8273 | theEmitter->emitIns_R_R_R(INS_cmeq, EA_16BYTE, REG_V15, REG_V16, REG_V17, INS_OPTS_2D); |
| 8274 | |
| 8275 | // cmge vector |
| 8276 | theEmitter->emitIns_R_R_R(INS_cmge, EA_8BYTE, REG_V0, REG_V1, REG_V2, INS_OPTS_8B); |
| 8277 | theEmitter->emitIns_R_R_R(INS_cmge, EA_16BYTE, REG_V3, REG_V4, REG_V5, INS_OPTS_16B); |
| 8278 | theEmitter->emitIns_R_R_R(INS_cmge, EA_8BYTE, REG_V6, REG_V7, REG_V8, INS_OPTS_4H); |
| 8279 | theEmitter->emitIns_R_R_R(INS_cmge, EA_16BYTE, REG_V9, REG_V10, REG_V11, INS_OPTS_8H); |
| 8280 | theEmitter->emitIns_R_R_R(INS_cmge, EA_8BYTE, REG_V12, REG_V13, REG_V14, INS_OPTS_2S); |
| 8281 | theEmitter->emitIns_R_R_R(INS_cmge, EA_16BYTE, REG_V15, REG_V16, REG_V17, INS_OPTS_4S); |
| 8282 | theEmitter->emitIns_R_R_R(INS_cmge, EA_8BYTE, REG_V12, REG_V13, REG_V14, INS_OPTS_1D); |
| 8283 | theEmitter->emitIns_R_R_R(INS_cmge, EA_16BYTE, REG_V15, REG_V16, REG_V17, INS_OPTS_2D); |
| 8284 | |
| 8285 | // cmgt vector |
| 8286 | theEmitter->emitIns_R_R_R(INS_cmgt, EA_8BYTE, REG_V0, REG_V1, REG_V2, INS_OPTS_8B); |
| 8287 | theEmitter->emitIns_R_R_R(INS_cmgt, EA_16BYTE, REG_V3, REG_V4, REG_V5, INS_OPTS_16B); |
| 8288 | theEmitter->emitIns_R_R_R(INS_cmgt, EA_8BYTE, REG_V6, REG_V7, REG_V8, INS_OPTS_4H); |
| 8289 | theEmitter->emitIns_R_R_R(INS_cmgt, EA_16BYTE, REG_V9, REG_V10, REG_V11, INS_OPTS_8H); |
| 8290 | theEmitter->emitIns_R_R_R(INS_cmgt, EA_8BYTE, REG_V12, REG_V13, REG_V14, INS_OPTS_2S); |
| 8291 | theEmitter->emitIns_R_R_R(INS_cmgt, EA_16BYTE, REG_V15, REG_V16, REG_V17, INS_OPTS_4S); |
| 8292 | theEmitter->emitIns_R_R_R(INS_cmgt, EA_8BYTE, REG_V12, REG_V13, REG_V14, INS_OPTS_1D); |
| 8293 | theEmitter->emitIns_R_R_R(INS_cmgt, EA_16BYTE, REG_V15, REG_V16, REG_V17, INS_OPTS_2D); |
| 8294 | |
| 8295 | // cmhi vector |
| 8296 | theEmitter->emitIns_R_R_R(INS_cmhi, EA_8BYTE, REG_V0, REG_V1, REG_V2, INS_OPTS_8B); |
| 8297 | theEmitter->emitIns_R_R_R(INS_cmhi, EA_16BYTE, REG_V3, REG_V4, REG_V5, INS_OPTS_16B); |
| 8298 | theEmitter->emitIns_R_R_R(INS_cmhi, EA_8BYTE, REG_V6, REG_V7, REG_V8, INS_OPTS_4H); |
| 8299 | theEmitter->emitIns_R_R_R(INS_cmhi, EA_16BYTE, REG_V9, REG_V10, REG_V11, INS_OPTS_8H); |
| 8300 | theEmitter->emitIns_R_R_R(INS_cmhi, EA_8BYTE, REG_V12, REG_V13, REG_V14, INS_OPTS_2S); |
| 8301 | theEmitter->emitIns_R_R_R(INS_cmhi, EA_16BYTE, REG_V15, REG_V16, REG_V17, INS_OPTS_4S); |
| 8302 | theEmitter->emitIns_R_R_R(INS_cmhi, EA_8BYTE, REG_V12, REG_V13, REG_V14, INS_OPTS_1D); |
| 8303 | theEmitter->emitIns_R_R_R(INS_cmhi, EA_16BYTE, REG_V15, REG_V16, REG_V17, INS_OPTS_2D); |
| 8304 | |
| 8305 | // cmhs vector |
| 8306 | theEmitter->emitIns_R_R_R(INS_cmhs, EA_8BYTE, REG_V0, REG_V1, REG_V2, INS_OPTS_8B); |
| 8307 | theEmitter->emitIns_R_R_R(INS_cmhs, EA_16BYTE, REG_V3, REG_V4, REG_V5, INS_OPTS_16B); |
| 8308 | theEmitter->emitIns_R_R_R(INS_cmhs, EA_8BYTE, REG_V6, REG_V7, REG_V8, INS_OPTS_4H); |
| 8309 | theEmitter->emitIns_R_R_R(INS_cmhs, EA_16BYTE, REG_V9, REG_V10, REG_V11, INS_OPTS_8H); |
| 8310 | theEmitter->emitIns_R_R_R(INS_cmhs, EA_8BYTE, REG_V12, REG_V13, REG_V14, INS_OPTS_2S); |
| 8311 | theEmitter->emitIns_R_R_R(INS_cmhs, EA_16BYTE, REG_V15, REG_V16, REG_V17, INS_OPTS_4S); |
| 8312 | theEmitter->emitIns_R_R_R(INS_cmhs, EA_8BYTE, REG_V12, REG_V13, REG_V14, INS_OPTS_1D); |
| 8313 | theEmitter->emitIns_R_R_R(INS_cmhs, EA_16BYTE, REG_V15, REG_V16, REG_V17, INS_OPTS_2D); |
| 8314 | |
| 8315 | // ctst vector |
| 8316 | theEmitter->emitIns_R_R_R(INS_ctst, EA_8BYTE, REG_V0, REG_V1, REG_V2, INS_OPTS_8B); |
| 8317 | theEmitter->emitIns_R_R_R(INS_ctst, EA_16BYTE, REG_V3, REG_V4, REG_V5, INS_OPTS_16B); |
| 8318 | theEmitter->emitIns_R_R_R(INS_ctst, EA_8BYTE, REG_V6, REG_V7, REG_V8, INS_OPTS_4H); |
| 8319 | theEmitter->emitIns_R_R_R(INS_ctst, EA_16BYTE, REG_V9, REG_V10, REG_V11, INS_OPTS_8H); |
| 8320 | theEmitter->emitIns_R_R_R(INS_ctst, EA_8BYTE, REG_V12, REG_V13, REG_V14, INS_OPTS_2S); |
| 8321 | theEmitter->emitIns_R_R_R(INS_ctst, EA_16BYTE, REG_V15, REG_V16, REG_V17, INS_OPTS_4S); |
| 8322 | theEmitter->emitIns_R_R_R(INS_ctst, EA_8BYTE, REG_V12, REG_V13, REG_V14, INS_OPTS_1D); |
| 8323 | theEmitter->emitIns_R_R_R(INS_ctst, EA_16BYTE, REG_V15, REG_V16, REG_V17, INS_OPTS_2D); |
| 8324 | |
| 8325 | // faddp vector |
| 8326 | theEmitter->emitIns_R_R_R(INS_faddp, EA_8BYTE, REG_V12, REG_V13, REG_V14, INS_OPTS_2S); |
| 8327 | theEmitter->emitIns_R_R_R(INS_faddp, EA_16BYTE, REG_V15, REG_V16, REG_V17, INS_OPTS_4S); |
| 8328 | theEmitter->emitIns_R_R_R(INS_faddp, EA_16BYTE, REG_V15, REG_V16, REG_V17, INS_OPTS_2D); |
| 8329 | |
| 8330 | // fcmeq vector |
| 8331 | theEmitter->emitIns_R_R_R(INS_fcmeq, EA_8BYTE, REG_V12, REG_V13, REG_V14, INS_OPTS_2S); |
| 8332 | theEmitter->emitIns_R_R_R(INS_fcmeq, EA_16BYTE, REG_V15, REG_V16, REG_V17, INS_OPTS_4S); |
| 8333 | theEmitter->emitIns_R_R_R(INS_fcmeq, EA_16BYTE, REG_V15, REG_V16, REG_V17, INS_OPTS_2D); |
| 8334 | |
| 8335 | // fcmge vector |
| 8336 | theEmitter->emitIns_R_R_R(INS_fcmge, EA_8BYTE, REG_V12, REG_V13, REG_V14, INS_OPTS_2S); |
| 8337 | theEmitter->emitIns_R_R_R(INS_fcmge, EA_16BYTE, REG_V15, REG_V16, REG_V17, INS_OPTS_4S); |
| 8338 | theEmitter->emitIns_R_R_R(INS_fcmge, EA_16BYTE, REG_V15, REG_V16, REG_V17, INS_OPTS_2D); |
| 8339 | |
| 8340 | // fcmgt vector |
| 8341 | theEmitter->emitIns_R_R_R(INS_fcmgt, EA_8BYTE, REG_V12, REG_V13, REG_V14, INS_OPTS_2S); |
| 8342 | theEmitter->emitIns_R_R_R(INS_fcmgt, EA_16BYTE, REG_V15, REG_V16, REG_V17, INS_OPTS_4S); |
| 8343 | theEmitter->emitIns_R_R_R(INS_fcmgt, EA_16BYTE, REG_V15, REG_V16, REG_V17, INS_OPTS_2D); |
| 8344 | #endif // ALL_ARM64_EMITTER_UNIT_TESTS |
| 8345 | |
| 8346 | #ifdef ALL_ARM64_EMITTER_UNIT_TESTS |
| 8347 | // |
| 8348 | // R_R_R vector multiply |
| 8349 | // |
| 8350 | |
| 8351 | genDefineTempLabel(genCreateTempLabel()); |
| 8352 | |
| 8353 | theEmitter->emitIns_R_R_R(INS_mul, EA_8BYTE, REG_V0, REG_V1, REG_V2, INS_OPTS_8B); |
| 8354 | theEmitter->emitIns_R_R_R(INS_mul, EA_8BYTE, REG_V3, REG_V4, REG_V5, INS_OPTS_4H); |
| 8355 | theEmitter->emitIns_R_R_R(INS_mul, EA_8BYTE, REG_V6, REG_V7, REG_V8, INS_OPTS_2S); |
| 8356 | theEmitter->emitIns_R_R_R(INS_mul, EA_16BYTE, REG_V9, REG_V10, REG_V11, INS_OPTS_16B); |
| 8357 | theEmitter->emitIns_R_R_R(INS_mul, EA_16BYTE, REG_V12, REG_V13, REG_V14, INS_OPTS_8H); |
| 8358 | theEmitter->emitIns_R_R_R(INS_mul, EA_16BYTE, REG_V15, REG_V16, REG_V17, INS_OPTS_4S); |
| 8359 | |
| 8360 | theEmitter->emitIns_R_R_R(INS_pmul, EA_8BYTE, REG_V18, REG_V19, REG_V20, INS_OPTS_8B); |
| 8361 | theEmitter->emitIns_R_R_R(INS_pmul, EA_16BYTE, REG_V21, REG_V22, REG_V23, INS_OPTS_16B); |
| 8362 | |
| 8363 | // 'mul' vector by elem |
| 8364 | theEmitter->emitIns_R_R_R_I(INS_mul, EA_8BYTE, REG_V0, REG_V1, REG_V16, 0, INS_OPTS_2S); |
| 8365 | theEmitter->emitIns_R_R_R_I(INS_mul, EA_8BYTE, REG_V2, REG_V3, REG_V15, 1, INS_OPTS_2S); |
| 8366 | theEmitter->emitIns_R_R_R_I(INS_mul, EA_8BYTE, REG_V4, REG_V5, REG_V17, 3, INS_OPTS_2S); |
| 8367 | theEmitter->emitIns_R_R_R_I(INS_mul, EA_8BYTE, REG_V6, REG_V7, REG_V0, 0, INS_OPTS_4H); |
| 8368 | theEmitter->emitIns_R_R_R_I(INS_mul, EA_8BYTE, REG_V8, REG_V9, REG_V1, 3, INS_OPTS_4H); |
| 8369 | theEmitter->emitIns_R_R_R_I(INS_mul, EA_8BYTE, REG_V10, REG_V11, REG_V2, 7, INS_OPTS_4H); |
| 8370 | theEmitter->emitIns_R_R_R_I(INS_mul, EA_16BYTE, REG_V12, REG_V13, REG_V14, 0, INS_OPTS_4S); |
| 8371 | theEmitter->emitIns_R_R_R_I(INS_mul, EA_16BYTE, REG_V14, REG_V15, REG_V18, 1, INS_OPTS_4S); |
| 8372 | theEmitter->emitIns_R_R_R_I(INS_mul, EA_16BYTE, REG_V16, REG_V17, REG_V13, 3, INS_OPTS_4S); |
| 8373 | theEmitter->emitIns_R_R_R_I(INS_mul, EA_16BYTE, REG_V18, REG_V19, REG_V3, 0, INS_OPTS_8H); |
| 8374 | theEmitter->emitIns_R_R_R_I(INS_mul, EA_16BYTE, REG_V20, REG_V21, REG_V4, 3, INS_OPTS_8H); |
| 8375 | theEmitter->emitIns_R_R_R_I(INS_mul, EA_16BYTE, REG_V22, REG_V23, REG_V5, 7, INS_OPTS_8H); |
| 8376 | |
| 8377 | // 'mla' vector by elem |
| 8378 | theEmitter->emitIns_R_R_R_I(INS_mla, EA_8BYTE, REG_V0, REG_V1, REG_V16, 0, INS_OPTS_2S); |
| 8379 | theEmitter->emitIns_R_R_R_I(INS_mla, EA_8BYTE, REG_V2, REG_V3, REG_V15, 1, INS_OPTS_2S); |
| 8380 | theEmitter->emitIns_R_R_R_I(INS_mla, EA_8BYTE, REG_V4, REG_V5, REG_V17, 3, INS_OPTS_2S); |
| 8381 | theEmitter->emitIns_R_R_R_I(INS_mla, EA_8BYTE, REG_V6, REG_V7, REG_V0, 0, INS_OPTS_4H); |
| 8382 | theEmitter->emitIns_R_R_R_I(INS_mla, EA_8BYTE, REG_V8, REG_V9, REG_V1, 3, INS_OPTS_4H); |
| 8383 | theEmitter->emitIns_R_R_R_I(INS_mla, EA_8BYTE, REG_V10, REG_V11, REG_V2, 7, INS_OPTS_4H); |
| 8384 | theEmitter->emitIns_R_R_R_I(INS_mla, EA_16BYTE, REG_V12, REG_V13, REG_V14, 0, INS_OPTS_4S); |
| 8385 | theEmitter->emitIns_R_R_R_I(INS_mla, EA_16BYTE, REG_V14, REG_V15, REG_V18, 1, INS_OPTS_4S); |
| 8386 | theEmitter->emitIns_R_R_R_I(INS_mla, EA_16BYTE, REG_V16, REG_V17, REG_V13, 3, INS_OPTS_4S); |
| 8387 | theEmitter->emitIns_R_R_R_I(INS_mla, EA_16BYTE, REG_V18, REG_V19, REG_V3, 0, INS_OPTS_8H); |
| 8388 | theEmitter->emitIns_R_R_R_I(INS_mla, EA_16BYTE, REG_V20, REG_V21, REG_V4, 3, INS_OPTS_8H); |
| 8389 | theEmitter->emitIns_R_R_R_I(INS_mla, EA_16BYTE, REG_V22, REG_V23, REG_V5, 7, INS_OPTS_8H); |
| 8390 | |
| 8391 | // 'mls' vector by elem |
| 8392 | theEmitter->emitIns_R_R_R_I(INS_mls, EA_8BYTE, REG_V0, REG_V1, REG_V16, 0, INS_OPTS_2S); |
| 8393 | theEmitter->emitIns_R_R_R_I(INS_mls, EA_8BYTE, REG_V2, REG_V3, REG_V15, 1, INS_OPTS_2S); |
| 8394 | theEmitter->emitIns_R_R_R_I(INS_mls, EA_8BYTE, REG_V4, REG_V5, REG_V17, 3, INS_OPTS_2S); |
| 8395 | theEmitter->emitIns_R_R_R_I(INS_mls, EA_8BYTE, REG_V6, REG_V7, REG_V0, 0, INS_OPTS_4H); |
| 8396 | theEmitter->emitIns_R_R_R_I(INS_mls, EA_8BYTE, REG_V8, REG_V9, REG_V1, 3, INS_OPTS_4H); |
| 8397 | theEmitter->emitIns_R_R_R_I(INS_mls, EA_8BYTE, REG_V10, REG_V11, REG_V2, 7, INS_OPTS_4H); |
| 8398 | theEmitter->emitIns_R_R_R_I(INS_mls, EA_16BYTE, REG_V12, REG_V13, REG_V14, 0, INS_OPTS_4S); |
| 8399 | theEmitter->emitIns_R_R_R_I(INS_mls, EA_16BYTE, REG_V14, REG_V15, REG_V18, 1, INS_OPTS_4S); |
| 8400 | theEmitter->emitIns_R_R_R_I(INS_mls, EA_16BYTE, REG_V16, REG_V17, REG_V13, 3, INS_OPTS_4S); |
| 8401 | theEmitter->emitIns_R_R_R_I(INS_mls, EA_16BYTE, REG_V18, REG_V19, REG_V3, 0, INS_OPTS_8H); |
| 8402 | theEmitter->emitIns_R_R_R_I(INS_mls, EA_16BYTE, REG_V20, REG_V21, REG_V4, 3, INS_OPTS_8H); |
| 8403 | theEmitter->emitIns_R_R_R_I(INS_mls, EA_16BYTE, REG_V22, REG_V23, REG_V5, 7, INS_OPTS_8H); |
| 8404 | |
| 8405 | #endif // ALL_ARM64_EMITTER_UNIT_TESTS |
| 8406 | |
| 8407 | #ifdef ALL_ARM64_EMITTER_UNIT_TESTS |
| 8408 | // |
| 8409 | // R_R_R floating point operations, one source/dest, and two source |
| 8410 | // |
| 8411 | |
| 8412 | genDefineTempLabel(genCreateTempLabel()); |
| 8413 | |
| 8414 | theEmitter->emitIns_R_R_R(INS_fmla, EA_8BYTE, REG_V6, REG_V7, REG_V8, INS_OPTS_2S); |
| 8415 | theEmitter->emitIns_R_R_R(INS_fmla, EA_16BYTE, REG_V9, REG_V10, REG_V11, INS_OPTS_4S); |
| 8416 | theEmitter->emitIns_R_R_R(INS_fmla, EA_16BYTE, REG_V12, REG_V13, REG_V14, INS_OPTS_2D); |
| 8417 | |
| 8418 | theEmitter->emitIns_R_R_R_I(INS_fmla, EA_4BYTE, REG_V15, REG_V16, REG_V17, 3); // scalar by elem 4BYTE |
| 8419 | theEmitter->emitIns_R_R_R_I(INS_fmla, EA_8BYTE, REG_V18, REG_V19, REG_V20, 1); // scalar by elem 8BYTE |
| 8420 | theEmitter->emitIns_R_R_R_I(INS_fmla, EA_8BYTE, REG_V21, REG_V22, REG_V23, 0, INS_OPTS_2S); |
| 8421 | theEmitter->emitIns_R_R_R_I(INS_fmla, EA_16BYTE, REG_V24, REG_V25, REG_V26, 2, INS_OPTS_4S); |
| 8422 | theEmitter->emitIns_R_R_R_I(INS_fmla, EA_16BYTE, REG_V27, REG_V28, REG_V29, 0, INS_OPTS_2D); |
| 8423 | |
| 8424 | theEmitter->emitIns_R_R_R(INS_fmls, EA_8BYTE, REG_V6, REG_V7, REG_V8, INS_OPTS_2S); |
| 8425 | theEmitter->emitIns_R_R_R(INS_fmls, EA_16BYTE, REG_V9, REG_V10, REG_V11, INS_OPTS_4S); |
| 8426 | theEmitter->emitIns_R_R_R(INS_fmls, EA_16BYTE, REG_V12, REG_V13, REG_V14, INS_OPTS_2D); |
| 8427 | |
| 8428 | theEmitter->emitIns_R_R_R_I(INS_fmls, EA_4BYTE, REG_V15, REG_V16, REG_V17, 3); // scalar by elem 4BYTE |
| 8429 | theEmitter->emitIns_R_R_R_I(INS_fmls, EA_8BYTE, REG_V18, REG_V19, REG_V20, 1); // scalar by elem 8BYTE |
| 8430 | theEmitter->emitIns_R_R_R_I(INS_fmls, EA_8BYTE, REG_V21, REG_V22, REG_V23, 0, INS_OPTS_2S); |
| 8431 | theEmitter->emitIns_R_R_R_I(INS_fmls, EA_16BYTE, REG_V24, REG_V25, REG_V26, 2, INS_OPTS_4S); |
| 8432 | theEmitter->emitIns_R_R_R_I(INS_fmls, EA_16BYTE, REG_V27, REG_V28, REG_V29, 0, INS_OPTS_2D); |
| 8433 | |
| 8434 | #endif // ALL_ARM64_EMITTER_UNIT_TESTS |
| 8435 | |
| 8436 | #ifdef ALL_ARM64_EMITTER_UNIT_TESTS |
| 8437 | // |
| 8438 | // R_R_R_R floating point operations, one dest, and three source |
| 8439 | // |
| 8440 | |
| 8441 | theEmitter->emitIns_R_R_R_R(INS_fmadd, EA_4BYTE, REG_V0, REG_V8, REG_V16, REG_V24); |
| 8442 | theEmitter->emitIns_R_R_R_R(INS_fmsub, EA_4BYTE, REG_V1, REG_V9, REG_V17, REG_V25); |
| 8443 | theEmitter->emitIns_R_R_R_R(INS_fnmadd, EA_4BYTE, REG_V2, REG_V10, REG_V18, REG_V26); |
| 8444 | theEmitter->emitIns_R_R_R_R(INS_fnmsub, EA_4BYTE, REG_V3, REG_V11, REG_V19, REG_V27); |
| 8445 | |
| 8446 | theEmitter->emitIns_R_R_R_R(INS_fmadd, EA_8BYTE, REG_V4, REG_V12, REG_V20, REG_V28); |
| 8447 | theEmitter->emitIns_R_R_R_R(INS_fmsub, EA_8BYTE, REG_V5, REG_V13, REG_V21, REG_V29); |
| 8448 | theEmitter->emitIns_R_R_R_R(INS_fnmadd, EA_8BYTE, REG_V6, REG_V14, REG_V22, REG_V30); |
| 8449 | theEmitter->emitIns_R_R_R_R(INS_fnmsub, EA_8BYTE, REG_V7, REG_V15, REG_V23, REG_V31); |
| 8450 | |
| 8451 | #endif |
| 8452 | |
| 8453 | #ifdef ALL_ARM64_EMITTER_UNIT_TESTS |
| 8454 | |
| 8455 | BasicBlock* label = genCreateTempLabel(); |
| 8456 | genDefineTempLabel(label); |
| 8457 | instGen(INS_nop); |
| 8458 | instGen(INS_nop); |
| 8459 | instGen(INS_nop); |
| 8460 | instGen(INS_nop); |
| 8461 | theEmitter->emitIns_R_L(INS_adr, EA_4BYTE_DSP_RELOC, label, REG_R0); |
| 8462 | |
| 8463 | #endif // ALL_ARM64_EMITTER_UNIT_TESTS |
| 8464 | |
| 8465 | printf("*************** End of genArm64EmitterUnitTests()\n" ); |
| 8466 | } |
| 8467 | #endif // defined(DEBUG) |
| 8468 | |
| 8469 | #endif // _TARGET_ARM64_ |
| 8470 | |