| 1 | // Licensed to the .NET Foundation under one or more agreements. |
| 2 | // The .NET Foundation licenses this file to you under the MIT license. |
| 3 | // See the LICENSE file in the project root for more information. |
| 4 | |
| 5 | /*XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
| 6 | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
| 7 | XX XX |
| 8 | XX Optimizer XX |
| 9 | XX XX |
| 10 | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
| 11 | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
| 12 | */ |
| 13 | |
| 14 | #include "jitpch.h" |
| 15 | #ifdef _MSC_VER |
| 16 | #pragma hdrstop |
| 17 | #pragma warning(disable : 4701) |
| 18 | #endif |
| 19 | |
| 20 | /*****************************************************************************/ |
| 21 | |
| 22 | void Compiler::optInit() |
| 23 | { |
| 24 | optLoopsMarked = false; |
| 25 | fgHasLoops = false; |
| 26 | |
| 27 | /* Initialize the # of tracked loops to 0 */ |
| 28 | optLoopCount = 0; |
| 29 | optLoopTable = nullptr; |
| 30 | |
| 31 | /* Keep track of the number of calls and indirect calls made by this method */ |
| 32 | optCallCount = 0; |
| 33 | optIndirectCallCount = 0; |
| 34 | optNativeCallCount = 0; |
| 35 | optAssertionCount = 0; |
| 36 | optAssertionDep = nullptr; |
| 37 | #if FEATURE_ANYCSE |
| 38 | optCSECandidateTotal = 0; |
| 39 | optCSEstart = UINT_MAX; |
| 40 | optCSEcount = 0; |
| 41 | #endif // FEATURE_ANYCSE |
| 42 | } |
| 43 | |
| 44 | DataFlow::DataFlow(Compiler* pCompiler) : m_pCompiler(pCompiler) |
| 45 | { |
| 46 | } |
| 47 | |
| 48 | /***************************************************************************** |
| 49 | * |
| 50 | */ |
| 51 | |
| 52 | void Compiler::optSetBlockWeights() |
| 53 | { |
| 54 | noway_assert(opts.OptimizationEnabled()); |
| 55 | assert(fgDomsComputed); |
| 56 | |
| 57 | #ifdef DEBUG |
| 58 | bool changed = false; |
| 59 | #endif |
| 60 | |
| 61 | bool firstBBdomsRets = true; |
| 62 | |
| 63 | BasicBlock* block; |
| 64 | |
| 65 | for (block = fgFirstBB; (block != nullptr); block = block->bbNext) |
| 66 | { |
| 67 | /* Blocks that can't be reached via the first block are rarely executed */ |
| 68 | if (!fgReachable(fgFirstBB, block)) |
| 69 | { |
| 70 | block->bbSetRunRarely(); |
| 71 | } |
| 72 | |
| 73 | if (block->bbWeight != BB_ZERO_WEIGHT) |
| 74 | { |
| 75 | // Calculate our bbWeight: |
| 76 | // |
| 77 | // o BB_UNITY_WEIGHT if we dominate all BBJ_RETURN blocks |
| 78 | // o otherwise BB_UNITY_WEIGHT / 2 |
| 79 | // |
| 80 | bool domsRets = true; // Assume that we will dominate |
| 81 | |
| 82 | for (BasicBlockList* retBlocks = fgReturnBlocks; retBlocks != nullptr; retBlocks = retBlocks->next) |
| 83 | { |
| 84 | if (!fgDominate(block, retBlocks->block)) |
| 85 | { |
| 86 | domsRets = false; |
| 87 | break; |
| 88 | } |
| 89 | } |
| 90 | |
| 91 | if (block == fgFirstBB) |
| 92 | { |
| 93 | firstBBdomsRets = domsRets; |
| 94 | } |
| 95 | |
| 96 | // If we are not using profile weight then we lower the weight |
| 97 | // of blocks that do not dominate a return block |
| 98 | // |
| 99 | if (firstBBdomsRets && (fgIsUsingProfileWeights() == false) && (domsRets == false)) |
| 100 | { |
| 101 | #if DEBUG |
| 102 | changed = true; |
| 103 | #endif |
| 104 | block->modifyBBWeight(block->bbWeight / 2); |
| 105 | noway_assert(block->bbWeight); |
| 106 | } |
| 107 | } |
| 108 | } |
| 109 | |
| 110 | #if DEBUG |
| 111 | if (changed && verbose) |
| 112 | { |
| 113 | printf("\nAfter optSetBlockWeights:\n" ); |
| 114 | fgDispBasicBlocks(); |
| 115 | printf("\n" ); |
| 116 | } |
| 117 | |
| 118 | /* Check that the flowgraph data (bbNum, bbRefs, bbPreds) is up-to-date */ |
| 119 | fgDebugCheckBBlist(); |
| 120 | #endif |
| 121 | } |
| 122 | |
| 123 | /***************************************************************************** |
| 124 | * |
| 125 | * Marks the blocks between 'begBlk' and 'endBlk' as part of a loop. |
| 126 | */ |
| 127 | |
| 128 | void Compiler::optMarkLoopBlocks(BasicBlock* begBlk, BasicBlock* endBlk, bool excludeEndBlk) |
| 129 | { |
| 130 | /* Calculate the 'loopWeight', |
| 131 | this is the amount to increase each block in the loop |
| 132 | Our heuristic is that loops are weighted eight times more |
| 133 | than straight line code. |
| 134 | Thus we increase each block by 7 times the weight of |
| 135 | the loop header block, |
| 136 | if the loops are all properly formed gives us: |
| 137 | (assuming that BB_LOOP_WEIGHT is 8) |
| 138 | |
| 139 | 1 -- non loop basic block |
| 140 | 8 -- single loop nesting |
| 141 | 64 -- double loop nesting |
| 142 | 512 -- triple loop nesting |
| 143 | |
| 144 | */ |
| 145 | |
| 146 | noway_assert(begBlk->bbNum <= endBlk->bbNum); |
| 147 | noway_assert(begBlk->isLoopHead()); |
| 148 | noway_assert(fgReachable(begBlk, endBlk)); |
| 149 | |
| 150 | #ifdef DEBUG |
| 151 | if (verbose) |
| 152 | { |
| 153 | printf("\nMarking loop L%02u" , begBlk->bbLoopNum); |
| 154 | } |
| 155 | #endif |
| 156 | |
| 157 | noway_assert(!opts.MinOpts()); |
| 158 | |
| 159 | /* Build list of backedges for block begBlk */ |
| 160 | flowList* backedgeList = nullptr; |
| 161 | |
| 162 | for (flowList* pred = begBlk->bbPreds; pred != nullptr; pred = pred->flNext) |
| 163 | { |
| 164 | /* Is this a backedge? */ |
| 165 | if (pred->flBlock->bbNum >= begBlk->bbNum) |
| 166 | { |
| 167 | flowList* flow = new (this, CMK_FlowList) flowList(); |
| 168 | |
| 169 | #if MEASURE_BLOCK_SIZE |
| 170 | genFlowNodeCnt += 1; |
| 171 | genFlowNodeSize += sizeof(flowList); |
| 172 | #endif // MEASURE_BLOCK_SIZE |
| 173 | |
| 174 | flow->flNext = backedgeList; |
| 175 | flow->flBlock = pred->flBlock; |
| 176 | backedgeList = flow; |
| 177 | } |
| 178 | } |
| 179 | |
| 180 | /* At least one backedge must have been found (the one from endBlk) */ |
| 181 | noway_assert(backedgeList); |
| 182 | |
| 183 | BasicBlock* curBlk = begBlk; |
| 184 | |
| 185 | while (true) |
| 186 | { |
| 187 | noway_assert(curBlk); |
| 188 | |
| 189 | // For curBlk to be part of a loop that starts at begBlk |
| 190 | // curBlk must be reachable from begBlk and (since this is a loop) |
| 191 | // likewise begBlk must be reachable from curBlk. |
| 192 | // |
| 193 | |
| 194 | if (fgReachable(curBlk, begBlk) && fgReachable(begBlk, curBlk)) |
| 195 | { |
| 196 | /* If this block reaches any of the backedge blocks we set reachable */ |
| 197 | /* If this block dominates any of the backedge blocks we set dominates */ |
| 198 | bool reachable = false; |
| 199 | bool dominates = false; |
| 200 | |
| 201 | for (flowList* tmp = backedgeList; tmp != nullptr; tmp = tmp->flNext) |
| 202 | { |
| 203 | BasicBlock* backedge = tmp->flBlock; |
| 204 | |
| 205 | if (!curBlk->isRunRarely()) |
| 206 | { |
| 207 | reachable |= fgReachable(curBlk, backedge); |
| 208 | dominates |= fgDominate(curBlk, backedge); |
| 209 | |
| 210 | if (dominates && reachable) |
| 211 | { |
| 212 | break; |
| 213 | } |
| 214 | } |
| 215 | } |
| 216 | |
| 217 | if (reachable) |
| 218 | { |
| 219 | noway_assert(curBlk->bbWeight > BB_ZERO_WEIGHT); |
| 220 | |
| 221 | unsigned weight; |
| 222 | |
| 223 | if (curBlk->hasProfileWeight()) |
| 224 | { |
| 225 | // We have real profile weights, so we aren't going to change this blocks weight |
| 226 | weight = curBlk->bbWeight; |
| 227 | } |
| 228 | else |
| 229 | { |
| 230 | if (dominates) |
| 231 | { |
| 232 | weight = curBlk->bbWeight * BB_LOOP_WEIGHT; |
| 233 | } |
| 234 | else |
| 235 | { |
| 236 | weight = curBlk->bbWeight * (BB_LOOP_WEIGHT / 2); |
| 237 | } |
| 238 | |
| 239 | // |
| 240 | // The multiplication may have caused us to overflow |
| 241 | // |
| 242 | if (weight < curBlk->bbWeight) |
| 243 | { |
| 244 | // The multiplication caused us to overflow |
| 245 | weight = BB_MAX_WEIGHT; |
| 246 | } |
| 247 | // |
| 248 | // Set the new weight |
| 249 | // |
| 250 | curBlk->modifyBBWeight(weight); |
| 251 | } |
| 252 | #ifdef DEBUG |
| 253 | if (verbose) |
| 254 | { |
| 255 | printf("\n " FMT_BB "(wt=%s)" , curBlk->bbNum, refCntWtd2str(curBlk->getBBWeight(this))); |
| 256 | } |
| 257 | #endif |
| 258 | } |
| 259 | } |
| 260 | |
| 261 | /* Stop if we've reached the last block in the loop */ |
| 262 | |
| 263 | if (curBlk == endBlk) |
| 264 | { |
| 265 | break; |
| 266 | } |
| 267 | |
| 268 | curBlk = curBlk->bbNext; |
| 269 | |
| 270 | /* If we are excluding the endBlk then stop if we've reached endBlk */ |
| 271 | |
| 272 | if (excludeEndBlk && (curBlk == endBlk)) |
| 273 | { |
| 274 | break; |
| 275 | } |
| 276 | } |
| 277 | } |
| 278 | |
| 279 | /***************************************************************************** |
| 280 | * |
| 281 | * Unmark the blocks between 'begBlk' and 'endBlk' as part of a loop. |
| 282 | */ |
| 283 | |
| 284 | void Compiler::optUnmarkLoopBlocks(BasicBlock* begBlk, BasicBlock* endBlk) |
| 285 | { |
| 286 | /* A set of blocks that were previously marked as a loop are now |
| 287 | to be unmarked, since we have decided that for some reason this |
| 288 | loop no longer exists. |
| 289 | Basically we are just reseting the blocks bbWeight to their |
| 290 | previous values. |
| 291 | */ |
| 292 | |
| 293 | noway_assert(begBlk->bbNum <= endBlk->bbNum); |
| 294 | noway_assert(begBlk->isLoopHead()); |
| 295 | |
| 296 | noway_assert(!opts.MinOpts()); |
| 297 | |
| 298 | BasicBlock* curBlk; |
| 299 | unsigned backEdgeCount = 0; |
| 300 | |
| 301 | for (flowList* pred = begBlk->bbPreds; pred != nullptr; pred = pred->flNext) |
| 302 | { |
| 303 | curBlk = pred->flBlock; |
| 304 | |
| 305 | /* is this a backward edge? (from curBlk to begBlk) */ |
| 306 | |
| 307 | if (begBlk->bbNum > curBlk->bbNum) |
| 308 | { |
| 309 | continue; |
| 310 | } |
| 311 | |
| 312 | /* We only consider back-edges that are BBJ_COND or BBJ_ALWAYS for loops */ |
| 313 | |
| 314 | if ((curBlk->bbJumpKind != BBJ_COND) && (curBlk->bbJumpKind != BBJ_ALWAYS)) |
| 315 | { |
| 316 | continue; |
| 317 | } |
| 318 | |
| 319 | backEdgeCount++; |
| 320 | } |
| 321 | |
| 322 | /* Only unmark the loop blocks if we have exactly one loop back edge */ |
| 323 | if (backEdgeCount != 1) |
| 324 | { |
| 325 | #ifdef DEBUG |
| 326 | if (verbose) |
| 327 | { |
| 328 | if (backEdgeCount > 0) |
| 329 | { |
| 330 | printf("\nNot removing loop L%02u, due to an additional back edge" , begBlk->bbLoopNum); |
| 331 | } |
| 332 | else if (backEdgeCount == 0) |
| 333 | { |
| 334 | printf("\nNot removing loop L%02u, due to no back edge" , begBlk->bbLoopNum); |
| 335 | } |
| 336 | } |
| 337 | #endif |
| 338 | return; |
| 339 | } |
| 340 | noway_assert(backEdgeCount == 1); |
| 341 | noway_assert(fgReachable(begBlk, endBlk)); |
| 342 | |
| 343 | #ifdef DEBUG |
| 344 | if (verbose) |
| 345 | { |
| 346 | printf("\nUnmarking loop L%02u" , begBlk->bbLoopNum); |
| 347 | } |
| 348 | #endif |
| 349 | |
| 350 | curBlk = begBlk; |
| 351 | while (true) |
| 352 | { |
| 353 | noway_assert(curBlk); |
| 354 | |
| 355 | // For curBlk to be part of a loop that starts at begBlk |
| 356 | // curBlk must be reachable from begBlk and (since this is a loop) |
| 357 | // likewise begBlk must be reachable from curBlk. |
| 358 | // |
| 359 | if (!curBlk->isRunRarely() && fgReachable(curBlk, begBlk) && fgReachable(begBlk, curBlk)) |
| 360 | { |
| 361 | unsigned weight = curBlk->bbWeight; |
| 362 | |
| 363 | // Don't unmark blocks that are set to BB_MAX_WEIGHT |
| 364 | // Don't unmark blocks when we are using profile weights |
| 365 | // |
| 366 | if (!curBlk->isMaxBBWeight() && !curBlk->hasProfileWeight()) |
| 367 | { |
| 368 | if (!fgDominate(curBlk, endBlk)) |
| 369 | { |
| 370 | weight *= 2; |
| 371 | } |
| 372 | else |
| 373 | { |
| 374 | /* Merging of blocks can disturb the Dominates |
| 375 | information (see RAID #46649) */ |
| 376 | if (weight < BB_LOOP_WEIGHT) |
| 377 | { |
| 378 | weight *= 2; |
| 379 | } |
| 380 | } |
| 381 | |
| 382 | // We can overflow here so check for it |
| 383 | if (weight < curBlk->bbWeight) |
| 384 | { |
| 385 | weight = BB_MAX_WEIGHT; |
| 386 | } |
| 387 | |
| 388 | assert(weight >= BB_LOOP_WEIGHT); |
| 389 | |
| 390 | curBlk->modifyBBWeight(weight / BB_LOOP_WEIGHT); |
| 391 | } |
| 392 | |
| 393 | #ifdef DEBUG |
| 394 | if (verbose) |
| 395 | { |
| 396 | printf("\n " FMT_BB "(wt=%s)" , curBlk->bbNum, refCntWtd2str(curBlk->getBBWeight(this))); |
| 397 | } |
| 398 | #endif |
| 399 | } |
| 400 | /* Stop if we've reached the last block in the loop */ |
| 401 | |
| 402 | if (curBlk == endBlk) |
| 403 | { |
| 404 | break; |
| 405 | } |
| 406 | |
| 407 | curBlk = curBlk->bbNext; |
| 408 | |
| 409 | /* Stop if we go past the last block in the loop, as it may have been deleted */ |
| 410 | if (curBlk->bbNum > endBlk->bbNum) |
| 411 | { |
| 412 | break; |
| 413 | } |
| 414 | } |
| 415 | } |
| 416 | |
| 417 | /***************************************************************************************************** |
| 418 | * |
| 419 | * Function called to update the loop table and bbWeight before removing a block |
| 420 | */ |
| 421 | |
| 422 | void Compiler::optUpdateLoopsBeforeRemoveBlock(BasicBlock* block, bool skipUnmarkLoop) |
| 423 | { |
| 424 | if (!optLoopsMarked) |
| 425 | { |
| 426 | return; |
| 427 | } |
| 428 | |
| 429 | noway_assert(!opts.MinOpts()); |
| 430 | |
| 431 | bool removeLoop = false; |
| 432 | |
| 433 | /* If an unreachable block was part of a loop entry or bottom then the loop is unreachable */ |
| 434 | /* Special case: the block was the head of a loop - or pointing to a loop entry */ |
| 435 | |
| 436 | for (unsigned loopNum = 0; loopNum < optLoopCount; loopNum++) |
| 437 | { |
| 438 | /* Some loops may have been already removed by |
| 439 | * loop unrolling or conditional folding */ |
| 440 | |
| 441 | if (optLoopTable[loopNum].lpFlags & LPFLG_REMOVED) |
| 442 | { |
| 443 | continue; |
| 444 | } |
| 445 | |
| 446 | if (block == optLoopTable[loopNum].lpEntry || block == optLoopTable[loopNum].lpBottom) |
| 447 | { |
| 448 | optLoopTable[loopNum].lpFlags |= LPFLG_REMOVED; |
| 449 | continue; |
| 450 | } |
| 451 | |
| 452 | #ifdef DEBUG |
| 453 | if (verbose) |
| 454 | { |
| 455 | printf("\nUpdateLoopsBeforeRemoveBlock Before: " ); |
| 456 | optPrintLoopInfo(loopNum); |
| 457 | } |
| 458 | #endif |
| 459 | |
| 460 | /* If the loop is still in the table |
| 461 | * any block in the loop must be reachable !!! */ |
| 462 | |
| 463 | noway_assert(optLoopTable[loopNum].lpEntry != block); |
| 464 | noway_assert(optLoopTable[loopNum].lpBottom != block); |
| 465 | |
| 466 | if (optLoopTable[loopNum].lpExit == block) |
| 467 | { |
| 468 | optLoopTable[loopNum].lpExit = nullptr; |
| 469 | optLoopTable[loopNum].lpFlags &= ~LPFLG_ONE_EXIT; |
| 470 | ; |
| 471 | } |
| 472 | |
| 473 | /* If this points to the actual entry in the loop |
| 474 | * then the whole loop may become unreachable */ |
| 475 | |
| 476 | switch (block->bbJumpKind) |
| 477 | { |
| 478 | unsigned jumpCnt; |
| 479 | BasicBlock** jumpTab; |
| 480 | |
| 481 | case BBJ_NONE: |
| 482 | case BBJ_COND: |
| 483 | if (block->bbNext == optLoopTable[loopNum].lpEntry) |
| 484 | { |
| 485 | removeLoop = true; |
| 486 | break; |
| 487 | } |
| 488 | if (block->bbJumpKind == BBJ_NONE) |
| 489 | { |
| 490 | break; |
| 491 | } |
| 492 | |
| 493 | __fallthrough; |
| 494 | |
| 495 | case BBJ_ALWAYS: |
| 496 | noway_assert(block->bbJumpDest); |
| 497 | if (block->bbJumpDest == optLoopTable[loopNum].lpEntry) |
| 498 | { |
| 499 | removeLoop = true; |
| 500 | } |
| 501 | break; |
| 502 | |
| 503 | case BBJ_SWITCH: |
| 504 | jumpCnt = block->bbJumpSwt->bbsCount; |
| 505 | jumpTab = block->bbJumpSwt->bbsDstTab; |
| 506 | |
| 507 | do |
| 508 | { |
| 509 | noway_assert(*jumpTab); |
| 510 | if ((*jumpTab) == optLoopTable[loopNum].lpEntry) |
| 511 | { |
| 512 | removeLoop = true; |
| 513 | } |
| 514 | } while (++jumpTab, --jumpCnt); |
| 515 | break; |
| 516 | |
| 517 | default: |
| 518 | break; |
| 519 | } |
| 520 | |
| 521 | if (removeLoop) |
| 522 | { |
| 523 | /* Check if the entry has other predecessors outside the loop |
| 524 | * TODO: Replace this when predecessors are available */ |
| 525 | |
| 526 | BasicBlock* auxBlock; |
| 527 | for (auxBlock = fgFirstBB; auxBlock; auxBlock = auxBlock->bbNext) |
| 528 | { |
| 529 | /* Ignore blocks in the loop */ |
| 530 | |
| 531 | if (auxBlock->bbNum > optLoopTable[loopNum].lpHead->bbNum && |
| 532 | auxBlock->bbNum <= optLoopTable[loopNum].lpBottom->bbNum) |
| 533 | { |
| 534 | continue; |
| 535 | } |
| 536 | |
| 537 | switch (auxBlock->bbJumpKind) |
| 538 | { |
| 539 | unsigned jumpCnt; |
| 540 | BasicBlock** jumpTab; |
| 541 | |
| 542 | case BBJ_NONE: |
| 543 | case BBJ_COND: |
| 544 | if (auxBlock->bbNext == optLoopTable[loopNum].lpEntry) |
| 545 | { |
| 546 | removeLoop = false; |
| 547 | break; |
| 548 | } |
| 549 | if (auxBlock->bbJumpKind == BBJ_NONE) |
| 550 | { |
| 551 | break; |
| 552 | } |
| 553 | |
| 554 | __fallthrough; |
| 555 | |
| 556 | case BBJ_ALWAYS: |
| 557 | noway_assert(auxBlock->bbJumpDest); |
| 558 | if (auxBlock->bbJumpDest == optLoopTable[loopNum].lpEntry) |
| 559 | { |
| 560 | removeLoop = false; |
| 561 | } |
| 562 | break; |
| 563 | |
| 564 | case BBJ_SWITCH: |
| 565 | jumpCnt = auxBlock->bbJumpSwt->bbsCount; |
| 566 | jumpTab = auxBlock->bbJumpSwt->bbsDstTab; |
| 567 | |
| 568 | do |
| 569 | { |
| 570 | noway_assert(*jumpTab); |
| 571 | if ((*jumpTab) == optLoopTable[loopNum].lpEntry) |
| 572 | { |
| 573 | removeLoop = false; |
| 574 | } |
| 575 | } while (++jumpTab, --jumpCnt); |
| 576 | break; |
| 577 | |
| 578 | default: |
| 579 | break; |
| 580 | } |
| 581 | } |
| 582 | |
| 583 | if (removeLoop) |
| 584 | { |
| 585 | optLoopTable[loopNum].lpFlags |= LPFLG_REMOVED; |
| 586 | } |
| 587 | } |
| 588 | else if (optLoopTable[loopNum].lpHead == block) |
| 589 | { |
| 590 | /* The loop has a new head - Just update the loop table */ |
| 591 | optLoopTable[loopNum].lpHead = block->bbPrev; |
| 592 | } |
| 593 | |
| 594 | #ifdef DEBUG |
| 595 | if (verbose) |
| 596 | { |
| 597 | printf("\nUpdateLoopsBeforeRemoveBlock After: " ); |
| 598 | optPrintLoopInfo(loopNum); |
| 599 | } |
| 600 | #endif |
| 601 | } |
| 602 | |
| 603 | if ((skipUnmarkLoop == false) && ((block->bbJumpKind == BBJ_ALWAYS) || (block->bbJumpKind == BBJ_COND)) && |
| 604 | (block->bbJumpDest->isLoopHead()) && (block->bbJumpDest->bbNum <= block->bbNum) && fgDomsComputed && |
| 605 | (fgCurBBEpochSize == fgDomBBcount + 1) && fgReachable(block->bbJumpDest, block)) |
| 606 | { |
| 607 | optUnmarkLoopBlocks(block->bbJumpDest, block); |
| 608 | } |
| 609 | } |
| 610 | |
| 611 | #ifdef DEBUG |
| 612 | |
| 613 | /***************************************************************************** |
| 614 | * |
| 615 | * Given the beginBlock of the loop, return the index of this loop |
| 616 | * to the loop table. |
| 617 | */ |
| 618 | |
| 619 | unsigned Compiler::optFindLoopNumberFromBeginBlock(BasicBlock* begBlk) |
| 620 | { |
| 621 | unsigned lnum = 0; |
| 622 | |
| 623 | for (lnum = 0; lnum < optLoopCount; lnum++) |
| 624 | { |
| 625 | if (optLoopTable[lnum].lpHead->bbNext == begBlk) |
| 626 | { |
| 627 | // Found the loop. |
| 628 | return lnum; |
| 629 | } |
| 630 | } |
| 631 | |
| 632 | noway_assert(!"Loop number not found." ); |
| 633 | |
| 634 | return optLoopCount; |
| 635 | } |
| 636 | |
| 637 | /***************************************************************************** |
| 638 | * |
| 639 | * Print loop info in an uniform way. |
| 640 | */ |
| 641 | |
| 642 | void Compiler::optPrintLoopInfo(unsigned loopInd, |
| 643 | BasicBlock* lpHead, |
| 644 | BasicBlock* lpFirst, |
| 645 | BasicBlock* lpTop, |
| 646 | BasicBlock* lpEntry, |
| 647 | BasicBlock* lpBottom, |
| 648 | unsigned char lpExitCnt, |
| 649 | BasicBlock* lpExit, |
| 650 | unsigned parentLoop) |
| 651 | { |
| 652 | noway_assert(lpHead); |
| 653 | |
| 654 | // |
| 655 | // NOTE: we take "loopInd" as an argument instead of using the one |
| 656 | // stored in begBlk->bbLoopNum because sometimes begBlk->bbLoopNum |
| 657 | // has not be set correctly. For example, in optRecordLoop(). |
| 658 | // However, in most of the cases, loops should have been recorded. |
| 659 | // Therefore the correct way is to call the Compiler::optPrintLoopInfo(unsigned lnum) |
| 660 | // version of this method. |
| 661 | // |
| 662 | printf("L%02u, from " FMT_BB, loopInd, lpFirst->bbNum); |
| 663 | if (lpTop != lpFirst) |
| 664 | { |
| 665 | printf(" (loop top is " FMT_BB ")" , lpTop->bbNum); |
| 666 | } |
| 667 | |
| 668 | printf(" to " FMT_BB " (Head=" FMT_BB ", Entry=" FMT_BB ", ExitCnt=%d" , lpBottom->bbNum, lpHead->bbNum, |
| 669 | lpEntry->bbNum, lpExitCnt); |
| 670 | |
| 671 | if (lpExitCnt == 1) |
| 672 | { |
| 673 | printf(" at " FMT_BB, lpExit->bbNum); |
| 674 | } |
| 675 | |
| 676 | if (parentLoop != BasicBlock::NOT_IN_LOOP) |
| 677 | { |
| 678 | printf(", parent loop = L%02u" , parentLoop); |
| 679 | } |
| 680 | printf(")" ); |
| 681 | } |
| 682 | |
| 683 | /***************************************************************************** |
| 684 | * |
| 685 | * Print loop information given the index of the loop in the loop table. |
| 686 | */ |
| 687 | |
| 688 | void Compiler::optPrintLoopInfo(unsigned lnum) |
| 689 | { |
| 690 | noway_assert(lnum < optLoopCount); |
| 691 | |
| 692 | LoopDsc* ldsc = &optLoopTable[lnum]; // lnum is the INDEX to the loop table. |
| 693 | |
| 694 | optPrintLoopInfo(lnum, ldsc->lpHead, ldsc->lpFirst, ldsc->lpTop, ldsc->lpEntry, ldsc->lpBottom, ldsc->lpExitCnt, |
| 695 | ldsc->lpExit, ldsc->lpParent); |
| 696 | } |
| 697 | |
| 698 | #endif |
| 699 | |
| 700 | //------------------------------------------------------------------------ |
| 701 | // optPopulateInitInfo: Populate loop init info in the loop table. |
| 702 | // |
| 703 | // Arguments: |
| 704 | // init - the tree that is supposed to initialize the loop iterator. |
| 705 | // iterVar - loop iteration variable. |
| 706 | // |
| 707 | // Return Value: |
| 708 | // "false" if the loop table could not be populated with the loop iterVar init info. |
| 709 | // |
| 710 | // Operation: |
| 711 | // The 'init' tree is checked if its lhs is a local and rhs is either |
| 712 | // a const or a local. |
| 713 | // |
| 714 | bool Compiler::optPopulateInitInfo(unsigned loopInd, GenTree* init, unsigned iterVar) |
| 715 | { |
| 716 | // Operator should be = |
| 717 | if (init->gtOper != GT_ASG) |
| 718 | { |
| 719 | return false; |
| 720 | } |
| 721 | |
| 722 | GenTree* lhs = init->gtOp.gtOp1; |
| 723 | GenTree* rhs = init->gtOp.gtOp2; |
| 724 | // LHS has to be local and should equal iterVar. |
| 725 | if (lhs->gtOper != GT_LCL_VAR || lhs->gtLclVarCommon.gtLclNum != iterVar) |
| 726 | { |
| 727 | return false; |
| 728 | } |
| 729 | |
| 730 | // RHS can be constant or local var. |
| 731 | // TODO-CQ: CLONE: Add arr length for descending loops. |
| 732 | if (rhs->gtOper == GT_CNS_INT && rhs->TypeGet() == TYP_INT) |
| 733 | { |
| 734 | optLoopTable[loopInd].lpFlags |= LPFLG_CONST_INIT; |
| 735 | optLoopTable[loopInd].lpConstInit = (int)rhs->gtIntCon.gtIconVal; |
| 736 | } |
| 737 | else if (rhs->gtOper == GT_LCL_VAR) |
| 738 | { |
| 739 | optLoopTable[loopInd].lpFlags |= LPFLG_VAR_INIT; |
| 740 | optLoopTable[loopInd].lpVarInit = rhs->gtLclVarCommon.gtLclNum; |
| 741 | } |
| 742 | else |
| 743 | { |
| 744 | return false; |
| 745 | } |
| 746 | return true; |
| 747 | } |
| 748 | |
| 749 | //---------------------------------------------------------------------------------- |
| 750 | // optCheckIterInLoopTest: Check if iter var is used in loop test. |
| 751 | // |
| 752 | // Arguments: |
| 753 | // test "jtrue" tree or an asg of the loop iter termination condition |
| 754 | // from/to blocks (beg, end) which are part of the loop. |
| 755 | // iterVar loop iteration variable. |
| 756 | // loopInd loop index. |
| 757 | // |
| 758 | // Operation: |
| 759 | // The test tree is parsed to check if "iterVar" matches the lhs of the condition |
| 760 | // and the rhs limit is extracted from the "test" tree. The limit information is |
| 761 | // added to the loop table. |
| 762 | // |
| 763 | // Return Value: |
| 764 | // "false" if the loop table could not be populated with the loop test info or |
| 765 | // if the test condition doesn't involve iterVar. |
| 766 | // |
| 767 | bool Compiler::optCheckIterInLoopTest( |
| 768 | unsigned loopInd, GenTree* test, BasicBlock* from, BasicBlock* to, unsigned iterVar) |
| 769 | { |
| 770 | // Obtain the relop from the "test" tree. |
| 771 | GenTree* relop; |
| 772 | if (test->gtOper == GT_JTRUE) |
| 773 | { |
| 774 | relop = test->gtGetOp1(); |
| 775 | } |
| 776 | else |
| 777 | { |
| 778 | assert(test->gtOper == GT_ASG); |
| 779 | relop = test->gtGetOp2(); |
| 780 | } |
| 781 | |
| 782 | noway_assert(relop->OperKind() & GTK_RELOP); |
| 783 | |
| 784 | GenTree* opr1 = relop->gtOp.gtOp1; |
| 785 | GenTree* opr2 = relop->gtOp.gtOp2; |
| 786 | |
| 787 | GenTree* iterOp; |
| 788 | GenTree* limitOp; |
| 789 | |
| 790 | // Make sure op1 or op2 is the iterVar. |
| 791 | if (opr1->gtOper == GT_LCL_VAR && opr1->gtLclVarCommon.gtLclNum == iterVar) |
| 792 | { |
| 793 | iterOp = opr1; |
| 794 | limitOp = opr2; |
| 795 | } |
| 796 | else if (opr2->gtOper == GT_LCL_VAR && opr2->gtLclVarCommon.gtLclNum == iterVar) |
| 797 | { |
| 798 | iterOp = opr2; |
| 799 | limitOp = opr1; |
| 800 | } |
| 801 | else |
| 802 | { |
| 803 | return false; |
| 804 | } |
| 805 | |
| 806 | if (iterOp->gtType != TYP_INT) |
| 807 | { |
| 808 | return false; |
| 809 | } |
| 810 | |
| 811 | // Mark the iterator node. |
| 812 | iterOp->gtFlags |= GTF_VAR_ITERATOR; |
| 813 | |
| 814 | // Check what type of limit we have - constant, variable or arr-len. |
| 815 | if (limitOp->gtOper == GT_CNS_INT) |
| 816 | { |
| 817 | optLoopTable[loopInd].lpFlags |= LPFLG_CONST_LIMIT; |
| 818 | if ((limitOp->gtFlags & GTF_ICON_SIMD_COUNT) != 0) |
| 819 | { |
| 820 | optLoopTable[loopInd].lpFlags |= LPFLG_SIMD_LIMIT; |
| 821 | } |
| 822 | } |
| 823 | else if (limitOp->gtOper == GT_LCL_VAR && !optIsVarAssigned(from, to, nullptr, limitOp->gtLclVarCommon.gtLclNum)) |
| 824 | { |
| 825 | optLoopTable[loopInd].lpFlags |= LPFLG_VAR_LIMIT; |
| 826 | } |
| 827 | else if (limitOp->gtOper == GT_ARR_LENGTH) |
| 828 | { |
| 829 | optLoopTable[loopInd].lpFlags |= LPFLG_ARRLEN_LIMIT; |
| 830 | } |
| 831 | else |
| 832 | { |
| 833 | return false; |
| 834 | } |
| 835 | // Save the type of the comparison between the iterator and the limit. |
| 836 | optLoopTable[loopInd].lpTestTree = relop; |
| 837 | return true; |
| 838 | } |
| 839 | |
| 840 | //---------------------------------------------------------------------------------- |
| 841 | // optIsLoopIncrTree: Check if loop is a tree of form v += 1 or v = v + 1 |
| 842 | // |
| 843 | // Arguments: |
| 844 | // incr The incr tree to be checked. Whether incr tree is |
| 845 | // oper-equal(+=, -=...) type nodes or v=v+1 type ASG nodes. |
| 846 | // |
| 847 | // Operation: |
| 848 | // The test tree is parsed to check if "iterVar" matches the lhs of the condition |
| 849 | // and the rhs limit is extracted from the "test" tree. The limit information is |
| 850 | // added to the loop table. |
| 851 | // |
| 852 | // Return Value: |
| 853 | // iterVar local num if the iterVar is found, otherwise BAD_VAR_NUM. |
| 854 | // |
| 855 | unsigned Compiler::optIsLoopIncrTree(GenTree* incr) |
| 856 | { |
| 857 | GenTree* incrVal; |
| 858 | genTreeOps updateOper; |
| 859 | unsigned iterVar = incr->IsLclVarUpdateTree(&incrVal, &updateOper); |
| 860 | if (iterVar != BAD_VAR_NUM) |
| 861 | { |
| 862 | // We have v = v op y type asg node. |
| 863 | switch (updateOper) |
| 864 | { |
| 865 | case GT_ADD: |
| 866 | case GT_SUB: |
| 867 | case GT_MUL: |
| 868 | case GT_RSH: |
| 869 | case GT_LSH: |
| 870 | break; |
| 871 | default: |
| 872 | return BAD_VAR_NUM; |
| 873 | } |
| 874 | |
| 875 | // Increment should be by a const int. |
| 876 | // TODO-CQ: CLONE: allow variable increments. |
| 877 | if ((incrVal->gtOper != GT_CNS_INT) || (incrVal->TypeGet() != TYP_INT)) |
| 878 | { |
| 879 | return BAD_VAR_NUM; |
| 880 | } |
| 881 | } |
| 882 | |
| 883 | return iterVar; |
| 884 | } |
| 885 | |
| 886 | //---------------------------------------------------------------------------------- |
| 887 | // optComputeIterInfo: Check tree is loop increment of a lcl that is loop-invariant. |
| 888 | // |
| 889 | // Arguments: |
| 890 | // from, to - are blocks (beg, end) which are part of the loop. |
| 891 | // incr - tree that increments the loop iterator. v+=1 or v=v+1. |
| 892 | // pIterVar - see return value. |
| 893 | // |
| 894 | // Return Value: |
| 895 | // Returns true if iterVar "v" can be returned in "pIterVar", otherwise returns |
| 896 | // false. |
| 897 | // |
| 898 | // Operation: |
| 899 | // Check if the "incr" tree is a "v=v+1 or v+=1" type tree and make sure it is not |
| 900 | // assigned in the loop. |
| 901 | // |
| 902 | bool Compiler::optComputeIterInfo(GenTree* incr, BasicBlock* from, BasicBlock* to, unsigned* pIterVar) |
| 903 | { |
| 904 | |
| 905 | unsigned iterVar = optIsLoopIncrTree(incr); |
| 906 | if (iterVar == BAD_VAR_NUM) |
| 907 | { |
| 908 | return false; |
| 909 | } |
| 910 | if (optIsVarAssigned(from, to, incr, iterVar)) |
| 911 | { |
| 912 | JITDUMP("iterVar is assigned in loop\n" ); |
| 913 | return false; |
| 914 | } |
| 915 | |
| 916 | *pIterVar = iterVar; |
| 917 | return true; |
| 918 | } |
| 919 | |
| 920 | //---------------------------------------------------------------------------------- |
| 921 | // optIsLoopTestEvalIntoTemp: |
| 922 | // Pattern match if the test tree is computed into a tmp |
| 923 | // and the "tmp" is used as jump condition for loop termination. |
| 924 | // |
| 925 | // Arguments: |
| 926 | // testStmt - is the JTRUE statement that is of the form: jmpTrue (Vtmp != 0) |
| 927 | // where Vtmp contains the actual loop test result. |
| 928 | // newStmt - contains the statement that is the actual test stmt involving |
| 929 | // the loop iterator. |
| 930 | // |
| 931 | // Return Value: |
| 932 | // Returns true if a new test tree can be obtained. |
| 933 | // |
| 934 | // Operation: |
| 935 | // Scan if the current stmt is a jtrue with (Vtmp != 0) as condition |
| 936 | // Then returns the rhs for def of Vtmp as the "test" node. |
| 937 | // |
| 938 | // Note: |
| 939 | // This method just retrieves what it thinks is the "test" node, |
| 940 | // the callers are expected to verify that "iterVar" is used in the test. |
| 941 | // |
| 942 | bool Compiler::optIsLoopTestEvalIntoTemp(GenTree* testStmt, GenTree** newTest) |
| 943 | { |
| 944 | GenTree* test = testStmt->gtStmt.gtStmtExpr; |
| 945 | |
| 946 | if (test->gtOper != GT_JTRUE) |
| 947 | { |
| 948 | return false; |
| 949 | } |
| 950 | |
| 951 | GenTree* relop = test->gtGetOp1(); |
| 952 | noway_assert(relop->OperIsCompare()); |
| 953 | |
| 954 | GenTree* opr1 = relop->gtOp.gtOp1; |
| 955 | GenTree* opr2 = relop->gtOp.gtOp2; |
| 956 | |
| 957 | // Make sure we have jtrue (vtmp != 0) |
| 958 | if ((relop->OperGet() == GT_NE) && (opr1->OperGet() == GT_LCL_VAR) && (opr2->OperGet() == GT_CNS_INT) && |
| 959 | opr2->IsIntegralConst(0)) |
| 960 | { |
| 961 | // Get the previous statement to get the def (rhs) of Vtmp to see |
| 962 | // if the "test" is evaluated into Vtmp. |
| 963 | GenTree* prevStmt = testStmt->gtPrev; |
| 964 | if (prevStmt == nullptr) |
| 965 | { |
| 966 | return false; |
| 967 | } |
| 968 | |
| 969 | GenTree* tree = prevStmt->gtStmt.gtStmtExpr; |
| 970 | if (tree->OperGet() == GT_ASG) |
| 971 | { |
| 972 | GenTree* lhs = tree->gtOp.gtOp1; |
| 973 | GenTree* rhs = tree->gtOp.gtOp2; |
| 974 | |
| 975 | // Return as the new test node. |
| 976 | if (lhs->gtOper == GT_LCL_VAR && lhs->AsLclVarCommon()->GetLclNum() == opr1->AsLclVarCommon()->GetLclNum()) |
| 977 | { |
| 978 | if (rhs->OperIsCompare()) |
| 979 | { |
| 980 | *newTest = prevStmt; |
| 981 | return true; |
| 982 | } |
| 983 | } |
| 984 | } |
| 985 | } |
| 986 | return false; |
| 987 | } |
| 988 | |
| 989 | //---------------------------------------------------------------------------------- |
| 990 | // optExtractInitTestIncr: |
| 991 | // Extract the "init", "test" and "incr" nodes of the loop. |
| 992 | // |
| 993 | // Arguments: |
| 994 | // head - Loop head block |
| 995 | // bottom - Loop bottom block |
| 996 | // top - Loop top block |
| 997 | // ppInit - The init stmt of the loop if found. |
| 998 | // ppTest - The test stmt of the loop if found. |
| 999 | // ppIncr - The incr stmt of the loop if found. |
| 1000 | // |
| 1001 | // Return Value: |
| 1002 | // The results are put in "ppInit", "ppTest" and "ppIncr" if the method |
| 1003 | // returns true. Returns false if the information can't be extracted. |
| 1004 | // |
| 1005 | // Operation: |
| 1006 | // Check if the "test" stmt is last stmt in the loop "bottom". If found good, |
| 1007 | // "test" stmt is found. Try to find the "incr" stmt. Check previous stmt of |
| 1008 | // "test" to get the "incr" stmt. If it is not found it could be a loop of the |
| 1009 | // below form. |
| 1010 | // |
| 1011 | // +-------<-----------------<-----------+ |
| 1012 | // | | |
| 1013 | // v | |
| 1014 | // BBinit(head) -> BBcond(top) -> BBLoopBody(bottom) ---^ |
| 1015 | // |
| 1016 | // Check if the "incr" tree is present in the loop "top" node as the last stmt. |
| 1017 | // Also check if the "test" tree is assigned to a tmp node and the tmp is used |
| 1018 | // in the jtrue condition. |
| 1019 | // |
| 1020 | // Note: |
| 1021 | // This method just retrieves what it thinks is the "test" node, |
| 1022 | // the callers are expected to verify that "iterVar" is used in the test. |
| 1023 | // |
| 1024 | bool Compiler::( |
| 1025 | BasicBlock* head, BasicBlock* bottom, BasicBlock* top, GenTree** ppInit, GenTree** ppTest, GenTree** ppIncr) |
| 1026 | { |
| 1027 | assert(ppInit != nullptr); |
| 1028 | assert(ppTest != nullptr); |
| 1029 | assert(ppIncr != nullptr); |
| 1030 | |
| 1031 | // Check if last two statements in the loop body are the increment of the iterator |
| 1032 | // and the loop termination test. |
| 1033 | noway_assert(bottom->bbTreeList != nullptr); |
| 1034 | GenTree* test = bottom->bbTreeList->gtPrev; |
| 1035 | noway_assert(test != nullptr && test->gtNext == nullptr); |
| 1036 | |
| 1037 | GenTree* newTest; |
| 1038 | if (optIsLoopTestEvalIntoTemp(test, &newTest)) |
| 1039 | { |
| 1040 | test = newTest; |
| 1041 | } |
| 1042 | |
| 1043 | // Check if we have the incr tree before the test tree, if we don't, |
| 1044 | // check if incr is part of the loop "top". |
| 1045 | GenTree* incr = test->gtPrev; |
| 1046 | if (incr == nullptr || optIsLoopIncrTree(incr->gtStmt.gtStmtExpr) == BAD_VAR_NUM) |
| 1047 | { |
| 1048 | if (top == nullptr || top->bbTreeList == nullptr || top->bbTreeList->gtPrev == nullptr) |
| 1049 | { |
| 1050 | return false; |
| 1051 | } |
| 1052 | |
| 1053 | // If the prev stmt to loop test is not incr, then check if we have loop test evaluated into a tmp. |
| 1054 | GenTree* topLast = top->bbTreeList->gtPrev; |
| 1055 | if (optIsLoopIncrTree(topLast->gtStmt.gtStmtExpr) != BAD_VAR_NUM) |
| 1056 | { |
| 1057 | incr = topLast; |
| 1058 | } |
| 1059 | else |
| 1060 | { |
| 1061 | return false; |
| 1062 | } |
| 1063 | } |
| 1064 | |
| 1065 | assert(test != incr); |
| 1066 | |
| 1067 | // Find the last statement in the loop pre-header which we expect to be the initialization of |
| 1068 | // the loop iterator. |
| 1069 | GenTree* phdr = head->bbTreeList; |
| 1070 | if (phdr == nullptr) |
| 1071 | { |
| 1072 | return false; |
| 1073 | } |
| 1074 | |
| 1075 | GenTree* init = phdr->gtPrev; |
| 1076 | noway_assert(init != nullptr && (init->gtNext == nullptr)); |
| 1077 | |
| 1078 | // If it is a duplicated loop condition, skip it. |
| 1079 | if (init->gtFlags & GTF_STMT_CMPADD) |
| 1080 | { |
| 1081 | bool doGetPrev = true; |
| 1082 | #ifdef DEBUG |
| 1083 | if (opts.optRepeat) |
| 1084 | { |
| 1085 | // Previous optimization passes may have inserted compiler-generated |
| 1086 | // statements other than duplicated loop conditions. |
| 1087 | doGetPrev = (init->gtPrev != nullptr); |
| 1088 | } |
| 1089 | else |
| 1090 | { |
| 1091 | // Must be a duplicated loop condition. |
| 1092 | noway_assert(init->gtStmt.gtStmtExpr->gtOper == GT_JTRUE); |
| 1093 | } |
| 1094 | #endif // DEBUG |
| 1095 | if (doGetPrev) |
| 1096 | { |
| 1097 | init = init->gtPrev; |
| 1098 | } |
| 1099 | noway_assert(init != nullptr); |
| 1100 | } |
| 1101 | |
| 1102 | noway_assert(init->gtOper == GT_STMT); |
| 1103 | noway_assert(test->gtOper == GT_STMT); |
| 1104 | noway_assert(incr->gtOper == GT_STMT); |
| 1105 | |
| 1106 | *ppInit = init->gtStmt.gtStmtExpr; |
| 1107 | *ppTest = test->gtStmt.gtStmtExpr; |
| 1108 | *ppIncr = incr->gtStmt.gtStmtExpr; |
| 1109 | |
| 1110 | return true; |
| 1111 | } |
| 1112 | |
| 1113 | /***************************************************************************** |
| 1114 | * |
| 1115 | * Record the loop in the loop table. Return true if successful, false if |
| 1116 | * out of entries in loop table. |
| 1117 | */ |
| 1118 | |
| 1119 | bool Compiler::optRecordLoop(BasicBlock* head, |
| 1120 | BasicBlock* first, |
| 1121 | BasicBlock* top, |
| 1122 | BasicBlock* entry, |
| 1123 | BasicBlock* bottom, |
| 1124 | BasicBlock* exit, |
| 1125 | unsigned char exitCnt) |
| 1126 | { |
| 1127 | // Record this loop in the table, if there's room. |
| 1128 | |
| 1129 | assert(optLoopCount <= MAX_LOOP_NUM); |
| 1130 | if (optLoopCount == MAX_LOOP_NUM) |
| 1131 | { |
| 1132 | #if COUNT_LOOPS |
| 1133 | loopOverflowThisMethod = true; |
| 1134 | #endif |
| 1135 | return false; |
| 1136 | } |
| 1137 | |
| 1138 | // Assumed preconditions on the loop we're adding. |
| 1139 | assert(first->bbNum <= top->bbNum); |
| 1140 | assert(top->bbNum <= entry->bbNum); |
| 1141 | assert(entry->bbNum <= bottom->bbNum); |
| 1142 | assert(head->bbNum < top->bbNum || head->bbNum > bottom->bbNum); |
| 1143 | |
| 1144 | unsigned char loopInd = optLoopCount; |
| 1145 | |
| 1146 | if (optLoopTable == nullptr) |
| 1147 | { |
| 1148 | assert(loopInd == 0); |
| 1149 | optLoopTable = getAllocator(CMK_LoopOpt).allocate<LoopDsc>(MAX_LOOP_NUM); |
| 1150 | } |
| 1151 | else |
| 1152 | { |
| 1153 | // If the new loop contains any existing ones, add it in the right place. |
| 1154 | for (unsigned char prevPlus1 = optLoopCount; prevPlus1 > 0; prevPlus1--) |
| 1155 | { |
| 1156 | unsigned char prev = prevPlus1 - 1; |
| 1157 | if (optLoopTable[prev].lpContainedBy(first, bottom)) |
| 1158 | { |
| 1159 | loopInd = prev; |
| 1160 | } |
| 1161 | } |
| 1162 | // Move up any loops if necessary. |
| 1163 | for (unsigned j = optLoopCount; j > loopInd; j--) |
| 1164 | { |
| 1165 | optLoopTable[j] = optLoopTable[j - 1]; |
| 1166 | } |
| 1167 | } |
| 1168 | |
| 1169 | #ifdef DEBUG |
| 1170 | for (unsigned i = loopInd + 1; i < optLoopCount; i++) |
| 1171 | { |
| 1172 | // The loop is well-formed. |
| 1173 | assert(optLoopTable[i].lpWellFormed()); |
| 1174 | // Check for disjoint. |
| 1175 | if (optLoopTable[i].lpDisjoint(first, bottom)) |
| 1176 | { |
| 1177 | continue; |
| 1178 | } |
| 1179 | // Otherwise, assert complete containment (of optLoopTable[i] in new loop). |
| 1180 | assert(optLoopTable[i].lpContainedBy(first, bottom)); |
| 1181 | } |
| 1182 | #endif // DEBUG |
| 1183 | |
| 1184 | optLoopTable[loopInd].lpHead = head; |
| 1185 | optLoopTable[loopInd].lpFirst = first; |
| 1186 | optLoopTable[loopInd].lpTop = top; |
| 1187 | optLoopTable[loopInd].lpBottom = bottom; |
| 1188 | optLoopTable[loopInd].lpEntry = entry; |
| 1189 | optLoopTable[loopInd].lpExit = exit; |
| 1190 | optLoopTable[loopInd].lpExitCnt = exitCnt; |
| 1191 | |
| 1192 | optLoopTable[loopInd].lpParent = BasicBlock::NOT_IN_LOOP; |
| 1193 | optLoopTable[loopInd].lpChild = BasicBlock::NOT_IN_LOOP; |
| 1194 | optLoopTable[loopInd].lpSibling = BasicBlock::NOT_IN_LOOP; |
| 1195 | |
| 1196 | optLoopTable[loopInd].lpAsgVars = AllVarSetOps::UninitVal(); |
| 1197 | |
| 1198 | optLoopTable[loopInd].lpFlags = 0; |
| 1199 | |
| 1200 | // We haven't yet recorded any side effects. |
| 1201 | for (MemoryKind memoryKind : allMemoryKinds()) |
| 1202 | { |
| 1203 | optLoopTable[loopInd].lpLoopHasMemoryHavoc[memoryKind] = false; |
| 1204 | } |
| 1205 | optLoopTable[loopInd].lpFieldsModified = nullptr; |
| 1206 | optLoopTable[loopInd].lpArrayElemTypesModified = nullptr; |
| 1207 | |
| 1208 | // If DO-WHILE loop mark it as such. |
| 1209 | if (head->bbNext == entry) |
| 1210 | { |
| 1211 | optLoopTable[loopInd].lpFlags |= LPFLG_DO_WHILE; |
| 1212 | } |
| 1213 | |
| 1214 | // If single exit loop mark it as such. |
| 1215 | if (exitCnt == 1) |
| 1216 | { |
| 1217 | noway_assert(exit); |
| 1218 | optLoopTable[loopInd].lpFlags |= LPFLG_ONE_EXIT; |
| 1219 | } |
| 1220 | |
| 1221 | // |
| 1222 | // Try to find loops that have an iterator (i.e. for-like loops) "for (init; test; incr){ ... }" |
| 1223 | // We have the following restrictions: |
| 1224 | // 1. The loop condition must be a simple one i.e. only one JTRUE node |
| 1225 | // 2. There must be a loop iterator (a local var) that is |
| 1226 | // incremented (decremented or lsh, rsh, mul) with a constant value |
| 1227 | // 3. The iterator is incremented exactly once |
| 1228 | // 4. The loop condition must use the iterator. |
| 1229 | // |
| 1230 | if (bottom->bbJumpKind == BBJ_COND) |
| 1231 | { |
| 1232 | GenTree* init; |
| 1233 | GenTree* test; |
| 1234 | GenTree* incr; |
| 1235 | if (!optExtractInitTestIncr(head, bottom, top, &init, &test, &incr)) |
| 1236 | { |
| 1237 | goto DONE_LOOP; |
| 1238 | } |
| 1239 | |
| 1240 | unsigned iterVar = BAD_VAR_NUM; |
| 1241 | if (!optComputeIterInfo(incr, head->bbNext, bottom, &iterVar)) |
| 1242 | { |
| 1243 | goto DONE_LOOP; |
| 1244 | } |
| 1245 | |
| 1246 | // Make sure the "iterVar" initialization is never skipped, |
| 1247 | // i.e. every pred of ENTRY other than HEAD is in the loop. |
| 1248 | for (flowList* predEdge = entry->bbPreds; predEdge; predEdge = predEdge->flNext) |
| 1249 | { |
| 1250 | BasicBlock* predBlock = predEdge->flBlock; |
| 1251 | if ((predBlock != head) && !optLoopTable[loopInd].lpContains(predBlock)) |
| 1252 | { |
| 1253 | goto DONE_LOOP; |
| 1254 | } |
| 1255 | } |
| 1256 | |
| 1257 | if (!optPopulateInitInfo(loopInd, init, iterVar)) |
| 1258 | { |
| 1259 | goto DONE_LOOP; |
| 1260 | } |
| 1261 | |
| 1262 | // Check that the iterator is used in the loop condition. |
| 1263 | if (!optCheckIterInLoopTest(loopInd, test, head->bbNext, bottom, iterVar)) |
| 1264 | { |
| 1265 | goto DONE_LOOP; |
| 1266 | } |
| 1267 | |
| 1268 | // We know the loop has an iterator at this point ->flag it as LPFLG_ITER |
| 1269 | // Record the iterator, the pointer to the test node |
| 1270 | // and the initial value of the iterator (constant or local var) |
| 1271 | optLoopTable[loopInd].lpFlags |= LPFLG_ITER; |
| 1272 | |
| 1273 | // Record iterator. |
| 1274 | optLoopTable[loopInd].lpIterTree = incr; |
| 1275 | |
| 1276 | #if COUNT_LOOPS |
| 1277 | // Save the initial value of the iterator - can be lclVar or constant |
| 1278 | // Flag the loop accordingly. |
| 1279 | |
| 1280 | iterLoopCount++; |
| 1281 | #endif |
| 1282 | |
| 1283 | #if COUNT_LOOPS |
| 1284 | simpleTestLoopCount++; |
| 1285 | #endif |
| 1286 | |
| 1287 | // Check if a constant iteration loop. |
| 1288 | if ((optLoopTable[loopInd].lpFlags & LPFLG_CONST_INIT) && (optLoopTable[loopInd].lpFlags & LPFLG_CONST_LIMIT)) |
| 1289 | { |
| 1290 | // This is a constant loop. |
| 1291 | optLoopTable[loopInd].lpFlags |= LPFLG_CONST; |
| 1292 | #if COUNT_LOOPS |
| 1293 | constIterLoopCount++; |
| 1294 | #endif |
| 1295 | } |
| 1296 | |
| 1297 | #ifdef DEBUG |
| 1298 | if (verbose && 0) |
| 1299 | { |
| 1300 | printf("\nConstant loop initializer:\n" ); |
| 1301 | gtDispTree(init); |
| 1302 | |
| 1303 | printf("\nConstant loop body:\n" ); |
| 1304 | |
| 1305 | BasicBlock* block = head; |
| 1306 | do |
| 1307 | { |
| 1308 | block = block->bbNext; |
| 1309 | for (GenTreeStmt* stmt = block->firstStmt(); stmt; stmt = stmt->gtNextStmt) |
| 1310 | { |
| 1311 | if (stmt->gtStmt.gtStmtExpr == incr) |
| 1312 | { |
| 1313 | break; |
| 1314 | } |
| 1315 | printf("\n" ); |
| 1316 | gtDispTree(stmt->gtStmt.gtStmtExpr); |
| 1317 | } |
| 1318 | } while (block != bottom); |
| 1319 | } |
| 1320 | #endif // DEBUG |
| 1321 | } |
| 1322 | |
| 1323 | DONE_LOOP: |
| 1324 | DBEXEC(verbose, optPrintLoopRecording(loopInd)); |
| 1325 | optLoopCount++; |
| 1326 | return true; |
| 1327 | } |
| 1328 | |
| 1329 | #ifdef DEBUG |
| 1330 | //------------------------------------------------------------------------ |
| 1331 | // optPrintLoopRecording: Print a recording of the loop. |
| 1332 | // |
| 1333 | // Arguments: |
| 1334 | // loopInd - loop index. |
| 1335 | // |
| 1336 | void Compiler::optPrintLoopRecording(unsigned loopInd) |
| 1337 | { |
| 1338 | printf("Recorded loop %s" , (loopInd != optLoopCount ? "(extended) " : "" )); |
| 1339 | optPrintLoopInfo(optLoopCount, // Not necessarily the loop index, but the number of loops that have been added. |
| 1340 | optLoopTable[loopInd].lpHead, optLoopTable[loopInd].lpFirst, optLoopTable[loopInd].lpTop, |
| 1341 | optLoopTable[loopInd].lpEntry, optLoopTable[loopInd].lpBottom, optLoopTable[loopInd].lpExitCnt, |
| 1342 | optLoopTable[loopInd].lpExit); |
| 1343 | |
| 1344 | // If an iterator loop print the iterator and the initialization. |
| 1345 | if (optLoopTable[loopInd].lpFlags & LPFLG_ITER) |
| 1346 | { |
| 1347 | printf(" [over V%02u" , optLoopTable[loopInd].lpIterVar()); |
| 1348 | printf(" (" ); |
| 1349 | printf(GenTree::OpName(optLoopTable[loopInd].lpIterOper())); |
| 1350 | printf(" " ); |
| 1351 | printf("%d )" , optLoopTable[loopInd].lpIterConst()); |
| 1352 | |
| 1353 | if (optLoopTable[loopInd].lpFlags & LPFLG_CONST_INIT) |
| 1354 | { |
| 1355 | printf(" from %d" , optLoopTable[loopInd].lpConstInit); |
| 1356 | } |
| 1357 | if (optLoopTable[loopInd].lpFlags & LPFLG_VAR_INIT) |
| 1358 | { |
| 1359 | printf(" from V%02u" , optLoopTable[loopInd].lpVarInit); |
| 1360 | } |
| 1361 | |
| 1362 | // If a simple test condition print operator and the limits */ |
| 1363 | printf(GenTree::OpName(optLoopTable[loopInd].lpTestOper())); |
| 1364 | |
| 1365 | if (optLoopTable[loopInd].lpFlags & LPFLG_CONST_LIMIT) |
| 1366 | { |
| 1367 | printf("%d " , optLoopTable[loopInd].lpConstLimit()); |
| 1368 | } |
| 1369 | |
| 1370 | if (optLoopTable[loopInd].lpFlags & LPFLG_VAR_LIMIT) |
| 1371 | { |
| 1372 | printf("V%02u " , optLoopTable[loopInd].lpVarLimit()); |
| 1373 | } |
| 1374 | |
| 1375 | printf("]" ); |
| 1376 | } |
| 1377 | |
| 1378 | printf("\n" ); |
| 1379 | } |
| 1380 | |
| 1381 | void Compiler::optCheckPreds() |
| 1382 | { |
| 1383 | BasicBlock* block; |
| 1384 | BasicBlock* blockPred; |
| 1385 | flowList* pred; |
| 1386 | |
| 1387 | for (block = fgFirstBB; block; block = block->bbNext) |
| 1388 | { |
| 1389 | for (pred = block->bbPreds; pred; pred = pred->flNext) |
| 1390 | { |
| 1391 | // make sure this pred is part of the BB list |
| 1392 | for (blockPred = fgFirstBB; blockPred; blockPred = blockPred->bbNext) |
| 1393 | { |
| 1394 | if (blockPred == pred->flBlock) |
| 1395 | { |
| 1396 | break; |
| 1397 | } |
| 1398 | } |
| 1399 | noway_assert(blockPred); |
| 1400 | switch (blockPred->bbJumpKind) |
| 1401 | { |
| 1402 | case BBJ_COND: |
| 1403 | if (blockPred->bbJumpDest == block) |
| 1404 | { |
| 1405 | break; |
| 1406 | } |
| 1407 | __fallthrough; |
| 1408 | case BBJ_NONE: |
| 1409 | noway_assert(blockPred->bbNext == block); |
| 1410 | break; |
| 1411 | case BBJ_EHFILTERRET: |
| 1412 | case BBJ_ALWAYS: |
| 1413 | case BBJ_EHCATCHRET: |
| 1414 | noway_assert(blockPred->bbJumpDest == block); |
| 1415 | break; |
| 1416 | default: |
| 1417 | break; |
| 1418 | } |
| 1419 | } |
| 1420 | } |
| 1421 | } |
| 1422 | |
| 1423 | #endif // DEBUG |
| 1424 | |
| 1425 | namespace |
| 1426 | { |
| 1427 | //------------------------------------------------------------------------ |
| 1428 | // LoopSearch: Class that handles scanning a range of blocks to detect a loop, |
| 1429 | // moving blocks to make the loop body contiguous, and recording |
| 1430 | // the loop. |
| 1431 | // |
| 1432 | // We will use the following terminology: |
| 1433 | // HEAD - the basic block that flows into the loop ENTRY block (Currently MUST be lexically before entry). |
| 1434 | // Not part of the looping of the loop. |
| 1435 | // FIRST - the lexically first basic block (in bbNext order) within this loop. |
| 1436 | // TOP - the target of the backward edge from BOTTOM. In most cases FIRST and TOP are the same. |
| 1437 | // BOTTOM - the lexically last block in the loop (i.e. the block from which we jump to the top) |
| 1438 | // EXIT - the predecessor of loop's unique exit edge, if it has a unique exit edge; else nullptr |
| 1439 | // ENTRY - the entry in the loop (not necessarly the TOP), but there must be only one entry |
| 1440 | // |
| 1441 | // We (currently) require the body of a loop to be a contiguous (in bbNext order) sequence of basic blocks. |
| 1442 | // When the loop is identified, blocks will be moved out to make it a compact contiguous region if possible, |
| 1443 | // and in cases where compaction is not possible, we'll subsequently treat all blocks in the lexical range |
| 1444 | // between TOP and BOTTOM as part of the loop even if they aren't part of the SCC. |
| 1445 | // Regarding nesting: Since a given block can only have one back-edge (we only detect loops with back-edges |
| 1446 | // from BBJ_COND or BBJ_ALWAYS blocks), no two loops will share the same BOTTOM. Two loops may share the |
| 1447 | // same FIRST/TOP/ENTRY as reported by LoopSearch, and optCanonicalizeLoopNest will subsequently re-write |
| 1448 | // the CFG so that no two loops share the same FIRST/TOP/ENTRY anymore. |
| 1449 | // |
| 1450 | // | |
| 1451 | // v |
| 1452 | // head |
| 1453 | // | |
| 1454 | // | top/first <--+ |
| 1455 | // | | | |
| 1456 | // | ... | |
| 1457 | // | | | |
| 1458 | // | v | |
| 1459 | // +---> entry | |
| 1460 | // | | |
| 1461 | // ... | |
| 1462 | // | | |
| 1463 | // v | |
| 1464 | // +-- exit/tail | |
| 1465 | // | | | |
| 1466 | // | ... | |
| 1467 | // | | | |
| 1468 | // | v | |
| 1469 | // | bottom ---+ |
| 1470 | // | |
| 1471 | // +------+ |
| 1472 | // | |
| 1473 | // v |
| 1474 | // |
| 1475 | class LoopSearch |
| 1476 | { |
| 1477 | |
| 1478 | // Keeping track of which blocks are in the loop requires two block sets since we may add blocks |
| 1479 | // as we go but the BlockSet type's max ID doesn't increase to accommodate them. Define a helper |
| 1480 | // struct to make the ensuing code more readable. |
| 1481 | struct LoopBlockSet |
| 1482 | { |
| 1483 | private: |
| 1484 | // Keep track of blocks with bbNum <= oldBlockMaxNum in a regular BlockSet, since |
| 1485 | // it can hold all of them. |
| 1486 | BlockSet oldBlocksInLoop; // Blocks with bbNum <= oldBlockMaxNum |
| 1487 | |
| 1488 | // Keep track of blocks with bbNum > oldBlockMaxNum in a separate BlockSet, but |
| 1489 | // indexing them by (blockNum - oldBlockMaxNum); since we won't generate more than |
| 1490 | // one new block per old block, this must be sufficient to track any new blocks. |
| 1491 | BlockSet newBlocksInLoop; // Blocks with bbNum > oldBlockMaxNum |
| 1492 | |
| 1493 | Compiler* comp; |
| 1494 | unsigned int oldBlockMaxNum; |
| 1495 | |
| 1496 | public: |
| 1497 | LoopBlockSet(Compiler* comp) |
| 1498 | : oldBlocksInLoop(BlockSetOps::UninitVal()) |
| 1499 | , newBlocksInLoop(BlockSetOps::UninitVal()) |
| 1500 | , comp(comp) |
| 1501 | , oldBlockMaxNum(comp->fgBBNumMax) |
| 1502 | { |
| 1503 | } |
| 1504 | |
| 1505 | void Reset(unsigned int seedBlockNum) |
| 1506 | { |
| 1507 | if (BlockSetOps::MayBeUninit(oldBlocksInLoop)) |
| 1508 | { |
| 1509 | // Either the block sets are uninitialized (and long), so we need to initialize |
| 1510 | // them (and allocate their backing storage), or they are short and empty, so |
| 1511 | // assigning MakeEmpty to them is as cheap as ClearD. |
| 1512 | oldBlocksInLoop = BlockSetOps::MakeEmpty(comp); |
| 1513 | newBlocksInLoop = BlockSetOps::MakeEmpty(comp); |
| 1514 | } |
| 1515 | else |
| 1516 | { |
| 1517 | // We know the backing storage is already allocated, so just clear it. |
| 1518 | BlockSetOps::ClearD(comp, oldBlocksInLoop); |
| 1519 | BlockSetOps::ClearD(comp, newBlocksInLoop); |
| 1520 | } |
| 1521 | assert(seedBlockNum <= oldBlockMaxNum); |
| 1522 | BlockSetOps::AddElemD(comp, oldBlocksInLoop, seedBlockNum); |
| 1523 | } |
| 1524 | |
| 1525 | bool CanRepresent(unsigned int blockNum) |
| 1526 | { |
| 1527 | // We can represent old blocks up to oldBlockMaxNum, and |
| 1528 | // new blocks up to 2 * oldBlockMaxNum. |
| 1529 | return (blockNum <= 2 * oldBlockMaxNum); |
| 1530 | } |
| 1531 | |
| 1532 | bool IsMember(unsigned int blockNum) |
| 1533 | { |
| 1534 | if (blockNum > oldBlockMaxNum) |
| 1535 | { |
| 1536 | return BlockSetOps::IsMember(comp, newBlocksInLoop, blockNum - oldBlockMaxNum); |
| 1537 | } |
| 1538 | return BlockSetOps::IsMember(comp, oldBlocksInLoop, blockNum); |
| 1539 | } |
| 1540 | |
| 1541 | void Insert(unsigned int blockNum) |
| 1542 | { |
| 1543 | if (blockNum > oldBlockMaxNum) |
| 1544 | { |
| 1545 | BlockSetOps::AddElemD(comp, newBlocksInLoop, blockNum - oldBlockMaxNum); |
| 1546 | } |
| 1547 | else |
| 1548 | { |
| 1549 | BlockSetOps::AddElemD(comp, oldBlocksInLoop, blockNum); |
| 1550 | } |
| 1551 | } |
| 1552 | |
| 1553 | bool TestAndInsert(unsigned int blockNum) |
| 1554 | { |
| 1555 | if (blockNum > oldBlockMaxNum) |
| 1556 | { |
| 1557 | unsigned int shiftedNum = blockNum - oldBlockMaxNum; |
| 1558 | if (!BlockSetOps::IsMember(comp, newBlocksInLoop, shiftedNum)) |
| 1559 | { |
| 1560 | BlockSetOps::AddElemD(comp, newBlocksInLoop, shiftedNum); |
| 1561 | return false; |
| 1562 | } |
| 1563 | } |
| 1564 | else |
| 1565 | { |
| 1566 | if (!BlockSetOps::IsMember(comp, oldBlocksInLoop, blockNum)) |
| 1567 | { |
| 1568 | BlockSetOps::AddElemD(comp, oldBlocksInLoop, blockNum); |
| 1569 | return false; |
| 1570 | } |
| 1571 | } |
| 1572 | return true; |
| 1573 | } |
| 1574 | }; |
| 1575 | |
| 1576 | LoopBlockSet loopBlocks; // Set of blocks identified as part of the loop |
| 1577 | Compiler* comp; |
| 1578 | |
| 1579 | // See LoopSearch class comment header for a diagram relating these fields: |
| 1580 | BasicBlock* head; // Predecessor of unique entry edge |
| 1581 | BasicBlock* first; // Lexically first in-loop block |
| 1582 | BasicBlock* top; // Successor of back-edge from BOTTOM |
| 1583 | BasicBlock* bottom; // Predecessor of back-edge to TOP, also lexically last in-loop block |
| 1584 | BasicBlock* entry; // Successor of unique entry edge |
| 1585 | |
| 1586 | BasicBlock* lastExit; // Most recently discovered exit block |
| 1587 | unsigned char exitCount; // Number of discovered exit edges |
| 1588 | unsigned int oldBlockMaxNum; // Used to identify new blocks created during compaction |
| 1589 | BlockSet bottomBlocks; // BOTTOM blocks of already-recorded loops |
| 1590 | #ifdef DEBUG |
| 1591 | bool forgotExit = false; // Flags a rare case where lastExit gets nulled out, for assertions |
| 1592 | #endif |
| 1593 | bool changedFlowGraph = false; // Signals that loop compaction has modified the flow graph |
| 1594 | |
| 1595 | public: |
| 1596 | LoopSearch(Compiler* comp) |
| 1597 | : loopBlocks(comp), comp(comp), oldBlockMaxNum(comp->fgBBNumMax), bottomBlocks(BlockSetOps::MakeEmpty(comp)) |
| 1598 | { |
| 1599 | // Make sure we've renumbered such that the bitsets can hold all the bits |
| 1600 | assert(comp->fgBBNumMax <= comp->fgCurBBEpochSize); |
| 1601 | } |
| 1602 | |
| 1603 | //------------------------------------------------------------------------ |
| 1604 | // RecordLoop: Notify the Compiler that a loop has been found. |
| 1605 | // |
| 1606 | // Return Value: |
| 1607 | // true - Loop successfully recorded. |
| 1608 | // false - Compiler has run out of loop descriptors; loop not recorded. |
| 1609 | // |
| 1610 | bool RecordLoop() |
| 1611 | { |
| 1612 | /* At this point we have a compact loop - record it in the loop table |
| 1613 | * If we found only one exit, record it in the table too |
| 1614 | * (otherwise an exit = nullptr in the loop table means multiple exits) */ |
| 1615 | |
| 1616 | BasicBlock* onlyExit = (exitCount == 1 ? lastExit : nullptr); |
| 1617 | if (comp->optRecordLoop(head, first, top, entry, bottom, onlyExit, exitCount)) |
| 1618 | { |
| 1619 | // Record the BOTTOM block for future reference before returning. |
| 1620 | assert(bottom->bbNum <= oldBlockMaxNum); |
| 1621 | BlockSetOps::AddElemD(comp, bottomBlocks, bottom->bbNum); |
| 1622 | return true; |
| 1623 | } |
| 1624 | |
| 1625 | // Unable to record this loop because the loop descriptor table overflowed. |
| 1626 | return false; |
| 1627 | } |
| 1628 | |
| 1629 | //------------------------------------------------------------------------ |
| 1630 | // ChangedFlowGraph: Determine whether loop compaction has modified the flow graph. |
| 1631 | // |
| 1632 | // Return Value: |
| 1633 | // true - The flow graph has been modified; fgUpdateChangedFlowGraph should |
| 1634 | // be called (which is the caller's responsibility). |
| 1635 | // false - The flow graph has not been modified by this LoopSearch. |
| 1636 | // |
| 1637 | bool ChangedFlowGraph() |
| 1638 | { |
| 1639 | return changedFlowGraph; |
| 1640 | } |
| 1641 | |
| 1642 | //------------------------------------------------------------------------ |
| 1643 | // FindLoop: Search for a loop with the given HEAD block and back-edge. |
| 1644 | // |
| 1645 | // Arguments: |
| 1646 | // head - Block to be the HEAD of any loop identified |
| 1647 | // top - Block to be the TOP of any loop identified |
| 1648 | // bottom - Block to be the BOTTOM of any loop identified |
| 1649 | // |
| 1650 | // Return Value: |
| 1651 | // true - Found a valid loop. |
| 1652 | // false - Did not find a valid loop. |
| 1653 | // |
| 1654 | // Notes: |
| 1655 | // May modify flow graph to make loop compact before returning. |
| 1656 | // Will set instance fields to track loop's extent and exits if a valid |
| 1657 | // loop is found, and potentially trash them otherwise. |
| 1658 | // |
| 1659 | bool FindLoop(BasicBlock* head, BasicBlock* top, BasicBlock* bottom) |
| 1660 | { |
| 1661 | /* Is this a loop candidate? - We look for "back edges", i.e. an edge from BOTTOM |
| 1662 | * to TOP (note that this is an abuse of notation since this is not necessarily a back edge |
| 1663 | * as the definition says, but merely an indication that we have a loop there). |
| 1664 | * Thus, we have to be very careful and after entry discovery check that it is indeed |
| 1665 | * the only place we enter the loop (especially for non-reducible flow graphs). |
| 1666 | */ |
| 1667 | |
| 1668 | if (top->bbNum > bottom->bbNum) // is this a backward edge? (from BOTTOM to TOP) |
| 1669 | { |
| 1670 | // Edge from BOTTOM to TOP is not a backward edge |
| 1671 | return false; |
| 1672 | } |
| 1673 | |
| 1674 | if (bottom->bbNum > oldBlockMaxNum) |
| 1675 | { |
| 1676 | // Not a true back-edge; bottom is a block added to reconnect fall-through during |
| 1677 | // loop processing, so its block number does not reflect its position. |
| 1678 | return false; |
| 1679 | } |
| 1680 | |
| 1681 | if ((bottom->bbJumpKind == BBJ_EHFINALLYRET) || (bottom->bbJumpKind == BBJ_EHFILTERRET) || |
| 1682 | (bottom->bbJumpKind == BBJ_EHCATCHRET) || (bottom->bbJumpKind == BBJ_CALLFINALLY) || |
| 1683 | (bottom->bbJumpKind == BBJ_SWITCH)) |
| 1684 | { |
| 1685 | /* BBJ_EHFINALLYRET, BBJ_EHFILTERRET, BBJ_EHCATCHRET, and BBJ_CALLFINALLY can never form a loop. |
| 1686 | * BBJ_SWITCH that has a backward jump appears only for labeled break. */ |
| 1687 | return false; |
| 1688 | } |
| 1689 | |
| 1690 | /* The presence of a "back edge" is an indication that a loop might be present here |
| 1691 | * |
| 1692 | * LOOP: |
| 1693 | * 1. A collection of STRONGLY CONNECTED nodes i.e. there is a path from any |
| 1694 | * node in the loop to any other node in the loop (wholly within the loop) |
| 1695 | * 2. The loop has a unique ENTRY, i.e. there is only one way to reach a node |
| 1696 | * in the loop from outside the loop, and that is through the ENTRY |
| 1697 | */ |
| 1698 | |
| 1699 | /* Let's find the loop ENTRY */ |
| 1700 | BasicBlock* entry = FindEntry(head, top, bottom); |
| 1701 | |
| 1702 | if (entry == nullptr) |
| 1703 | { |
| 1704 | // For now, we only recognize loops where HEAD has some successor ENTRY in the loop. |
| 1705 | return false; |
| 1706 | } |
| 1707 | |
| 1708 | // Passed the basic checks; initialize instance state for this back-edge. |
| 1709 | this->head = head; |
| 1710 | this->top = top; |
| 1711 | this->entry = entry; |
| 1712 | this->bottom = bottom; |
| 1713 | this->lastExit = nullptr; |
| 1714 | this->exitCount = 0; |
| 1715 | |
| 1716 | // Now we find the "first" block -- the earliest block reachable within the loop. |
| 1717 | // With our current algorithm, this is always the same as "top". |
| 1718 | this->first = top; |
| 1719 | |
| 1720 | if (!HasSingleEntryCycle()) |
| 1721 | { |
| 1722 | // There isn't actually a loop between TOP and BOTTOM |
| 1723 | return false; |
| 1724 | } |
| 1725 | |
| 1726 | if (!loopBlocks.IsMember(top->bbNum)) |
| 1727 | { |
| 1728 | // The "back-edge" we identified isn't actually part of the flow cycle containing ENTRY |
| 1729 | return false; |
| 1730 | } |
| 1731 | |
| 1732 | // Disqualify loops where the first block of the loop is less nested in EH than |
| 1733 | // the bottom block. That is, we don't want to handle loops where the back edge |
| 1734 | // goes from within an EH region to a first block that is outside that same EH |
| 1735 | // region. Note that we *do* handle loops where the first block is the *first* |
| 1736 | // block of a more nested EH region (since it is legal to branch to the first |
| 1737 | // block of an immediately more nested EH region). So, for example, disqualify |
| 1738 | // this: |
| 1739 | // |
| 1740 | // BB02 |
| 1741 | // ... |
| 1742 | // try { |
| 1743 | // ... |
| 1744 | // BB10 BBJ_COND => BB02 |
| 1745 | // ... |
| 1746 | // } |
| 1747 | // |
| 1748 | // Here, BB10 is more nested than BB02. |
| 1749 | |
| 1750 | if (bottom->hasTryIndex() && !comp->bbInTryRegions(bottom->getTryIndex(), first)) |
| 1751 | { |
| 1752 | JITDUMP("Loop 'first' " FMT_BB " is in an outer EH region compared to loop 'bottom' " FMT_BB ". Rejecting " |
| 1753 | "loop.\n" , |
| 1754 | first->bbNum, bottom->bbNum); |
| 1755 | return false; |
| 1756 | } |
| 1757 | |
| 1758 | #if FEATURE_EH_FUNCLETS && defined(_TARGET_ARM_) |
| 1759 | // Disqualify loops where the first block of the loop is a finally target. |
| 1760 | // The main problem is when multiple loops share a 'first' block that is a finally |
| 1761 | // target and we canonicalize the loops by adding a new loop head. In that case, we |
| 1762 | // need to update the blocks so the finally target bit is moved to the newly created |
| 1763 | // block, and removed from the old 'first' block. This is 'hard', so at this point |
| 1764 | // in the RyuJIT codebase (when we don't expect to keep the "old" ARM32 code generator |
| 1765 | // long-term), it's easier to disallow the loop than to update the flow graph to |
| 1766 | // support this case. |
| 1767 | |
| 1768 | if ((first->bbFlags & BBF_FINALLY_TARGET) != 0) |
| 1769 | { |
| 1770 | JITDUMP("Loop 'first' " FMT_BB " is a finally target. Rejecting loop.\n" , first->bbNum); |
| 1771 | return false; |
| 1772 | } |
| 1773 | #endif // FEATURE_EH_FUNCLETS && defined(_TARGET_ARM_) |
| 1774 | |
| 1775 | // Compact the loop (sweep through it and move out any blocks that aren't part of the |
| 1776 | // flow cycle), and find the exits. |
| 1777 | if (!MakeCompactAndFindExits()) |
| 1778 | { |
| 1779 | // Unable to preserve well-formed loop during compaction. |
| 1780 | return false; |
| 1781 | } |
| 1782 | |
| 1783 | // We have a valid loop. |
| 1784 | return true; |
| 1785 | } |
| 1786 | |
| 1787 | private: |
| 1788 | //------------------------------------------------------------------------ |
| 1789 | // FindEntry: See if given HEAD flows to valid ENTRY between given TOP and BOTTOM |
| 1790 | // |
| 1791 | // Arguments: |
| 1792 | // head - Block to be the HEAD of any loop identified |
| 1793 | // top - Block to be the TOP of any loop identified |
| 1794 | // bottom - Block to be the BOTTOM of any loop identified |
| 1795 | // |
| 1796 | // Return Value: |
| 1797 | // Block to be the ENTRY of any loop identified, or nullptr if no |
| 1798 | // such entry meeting our criteria can be found. |
| 1799 | // |
| 1800 | // Notes: |
| 1801 | // Returns main entry if one is found, does not check for side-entries. |
| 1802 | // |
| 1803 | BasicBlock* FindEntry(BasicBlock* head, BasicBlock* top, BasicBlock* bottom) |
| 1804 | { |
| 1805 | if (head->bbJumpKind == BBJ_ALWAYS) |
| 1806 | { |
| 1807 | if (head->bbJumpDest->bbNum <= bottom->bbNum && head->bbJumpDest->bbNum >= top->bbNum) |
| 1808 | { |
| 1809 | /* OK - we enter somewhere within the loop */ |
| 1810 | |
| 1811 | /* some useful asserts |
| 1812 | * Cannot enter at the top - should have being caught by redundant jumps */ |
| 1813 | |
| 1814 | assert((head->bbJumpDest != top) || (head->bbFlags & BBF_KEEP_BBJ_ALWAYS)); |
| 1815 | |
| 1816 | return head->bbJumpDest; |
| 1817 | } |
| 1818 | else |
| 1819 | { |
| 1820 | /* special case - don't consider now */ |
| 1821 | // assert (!"Loop entered in weird way!"); |
| 1822 | return nullptr; |
| 1823 | } |
| 1824 | } |
| 1825 | // Can we fall through into the loop? |
| 1826 | else if (head->bbJumpKind == BBJ_NONE || head->bbJumpKind == BBJ_COND) |
| 1827 | { |
| 1828 | /* The ENTRY is at the TOP (a do-while loop) */ |
| 1829 | return top; |
| 1830 | } |
| 1831 | else |
| 1832 | { |
| 1833 | return nullptr; // head does not flow into the loop bail for now |
| 1834 | } |
| 1835 | } |
| 1836 | |
| 1837 | //------------------------------------------------------------------------ |
| 1838 | // HasSingleEntryCycle: Perform a reverse flow walk from ENTRY, visiting |
| 1839 | // only blocks between TOP and BOTTOM, to determine if such a cycle |
| 1840 | // exists and if it has a single entry. |
| 1841 | // |
| 1842 | // Return Value: |
| 1843 | // true - Found a single-entry cycle. |
| 1844 | // false - Did not find a single-entry cycle. |
| 1845 | // |
| 1846 | // Notes: |
| 1847 | // Will mark (in `loopBlocks`) all blocks found to participate in the |
| 1848 | // cycle. |
| 1849 | // |
| 1850 | bool HasSingleEntryCycle() |
| 1851 | { |
| 1852 | // Now do a backwards flow walk from entry to see if we have a single-entry loop |
| 1853 | bool foundCycle = false; |
| 1854 | |
| 1855 | // Seed the loop block set and worklist with the entry block. |
| 1856 | loopBlocks.Reset(entry->bbNum); |
| 1857 | jitstd::list<BasicBlock*> worklist(comp->getAllocator()); |
| 1858 | worklist.push_back(entry); |
| 1859 | |
| 1860 | while (!worklist.empty()) |
| 1861 | { |
| 1862 | BasicBlock* block = worklist.back(); |
| 1863 | worklist.pop_back(); |
| 1864 | |
| 1865 | /* Make sure ENTRY dominates all blocks in the loop |
| 1866 | * This is necessary to ensure condition 2. above |
| 1867 | */ |
| 1868 | if (block->bbNum > oldBlockMaxNum) |
| 1869 | { |
| 1870 | // This is a new block we added to connect fall-through, so the |
| 1871 | // recorded dominator information doesn't cover it. Just continue, |
| 1872 | // and when we process its unique predecessor we'll abort if ENTRY |
| 1873 | // doesn't dominate that. |
| 1874 | } |
| 1875 | else if (!comp->fgDominate(entry, block)) |
| 1876 | { |
| 1877 | return false; |
| 1878 | } |
| 1879 | |
| 1880 | // Add preds to the worklist, checking for side-entries. |
| 1881 | for (flowList* predIter = block->bbPreds; predIter != nullptr; predIter = predIter->flNext) |
| 1882 | { |
| 1883 | BasicBlock* pred = predIter->flBlock; |
| 1884 | |
| 1885 | unsigned int testNum = PositionNum(pred); |
| 1886 | |
| 1887 | if ((testNum < top->bbNum) || (testNum > bottom->bbNum)) |
| 1888 | { |
| 1889 | // Pred is out of loop range |
| 1890 | if (block == entry) |
| 1891 | { |
| 1892 | if (pred == head) |
| 1893 | { |
| 1894 | // This is the single entry we expect. |
| 1895 | continue; |
| 1896 | } |
| 1897 | // ENTRY has some pred other than head outside the loop. If ENTRY does not |
| 1898 | // dominate this pred, we'll consider this a side-entry and skip this loop; |
| 1899 | // otherwise the loop is still valid and this may be a (flow-wise) back-edge |
| 1900 | // of an outer loop. For the dominance test, if `pred` is a new block, use |
| 1901 | // its unique predecessor since the dominator tree has info for that. |
| 1902 | BasicBlock* effectivePred = (pred->bbNum > oldBlockMaxNum ? pred->bbPrev : pred); |
| 1903 | if (comp->fgDominate(entry, effectivePred)) |
| 1904 | { |
| 1905 | // Outer loop back-edge |
| 1906 | continue; |
| 1907 | } |
| 1908 | } |
| 1909 | |
| 1910 | // There are multiple entries to this loop, don't consider it. |
| 1911 | return false; |
| 1912 | } |
| 1913 | |
| 1914 | bool isFirstVisit; |
| 1915 | if (pred == entry) |
| 1916 | { |
| 1917 | // We have indeed found a cycle in the flow graph. |
| 1918 | isFirstVisit = !foundCycle; |
| 1919 | foundCycle = true; |
| 1920 | assert(loopBlocks.IsMember(pred->bbNum)); |
| 1921 | } |
| 1922 | else if (loopBlocks.TestAndInsert(pred->bbNum)) |
| 1923 | { |
| 1924 | // Already visited this pred |
| 1925 | isFirstVisit = false; |
| 1926 | } |
| 1927 | else |
| 1928 | { |
| 1929 | // Add this pred to the worklist |
| 1930 | worklist.push_back(pred); |
| 1931 | isFirstVisit = true; |
| 1932 | } |
| 1933 | |
| 1934 | if (isFirstVisit && (pred->bbNext != nullptr) && (PositionNum(pred->bbNext) == pred->bbNum)) |
| 1935 | { |
| 1936 | // We've created a new block immediately after `pred` to |
| 1937 | // reconnect what was fall-through. Mark it as in-loop also; |
| 1938 | // it needs to stay with `prev` and if it exits the loop we'd |
| 1939 | // just need to re-create it if we tried to move it out. |
| 1940 | loopBlocks.Insert(pred->bbNext->bbNum); |
| 1941 | } |
| 1942 | } |
| 1943 | } |
| 1944 | |
| 1945 | return foundCycle; |
| 1946 | } |
| 1947 | |
| 1948 | //------------------------------------------------------------------------ |
| 1949 | // PositionNum: Get the number identifying a block's position per the |
| 1950 | // lexical ordering that existed before searching for (and compacting) |
| 1951 | // loops. |
| 1952 | // |
| 1953 | // Arguments: |
| 1954 | // block - Block whose position is desired. |
| 1955 | // |
| 1956 | // Return Value: |
| 1957 | // A number indicating that block's position relative to others. |
| 1958 | // |
| 1959 | // Notes: |
| 1960 | // When the given block is a new one created during loop compaction, |
| 1961 | // the number of its unique predecessor is returned. |
| 1962 | // |
| 1963 | unsigned int PositionNum(BasicBlock* block) |
| 1964 | { |
| 1965 | if (block->bbNum > oldBlockMaxNum) |
| 1966 | { |
| 1967 | // This must be a block we inserted to connect fall-through after moving blocks. |
| 1968 | // To determine if it's in the loop or not, use the number of its unique predecessor |
| 1969 | // block. |
| 1970 | assert(block->bbPreds->flBlock == block->bbPrev); |
| 1971 | assert(block->bbPreds->flNext == nullptr); |
| 1972 | return block->bbPrev->bbNum; |
| 1973 | } |
| 1974 | return block->bbNum; |
| 1975 | } |
| 1976 | |
| 1977 | //------------------------------------------------------------------------ |
| 1978 | // MakeCompactAndFindExits: Compact the loop (sweep through it and move out |
| 1979 | // any blocks that aren't part of the flow cycle), and find the exits (set |
| 1980 | // lastExit and exitCount). |
| 1981 | // |
| 1982 | // Return Value: |
| 1983 | // true - Loop successfully compacted (or `loopBlocks` expanded to |
| 1984 | // include all blocks in the lexical range), exits enumerated. |
| 1985 | // false - Loop cannot be made compact and remain well-formed. |
| 1986 | // |
| 1987 | bool MakeCompactAndFindExits() |
| 1988 | { |
| 1989 | // Compaction (if it needs to happen) will require an insertion point. |
| 1990 | BasicBlock* moveAfter = nullptr; |
| 1991 | |
| 1992 | for (BasicBlock* previous = top->bbPrev; previous != bottom;) |
| 1993 | { |
| 1994 | BasicBlock* block = previous->bbNext; |
| 1995 | |
| 1996 | if (loopBlocks.IsMember(block->bbNum)) |
| 1997 | { |
| 1998 | // This block is a member of the loop. Check to see if it may exit the loop. |
| 1999 | CheckForExit(block); |
| 2000 | |
| 2001 | // Done processing this block; move on to the next. |
| 2002 | previous = block; |
| 2003 | continue; |
| 2004 | } |
| 2005 | |
| 2006 | // This blocks is lexically between TOP and BOTTOM, but it does not |
| 2007 | // participate in the flow cycle. Check for a run of consecutive |
| 2008 | // such blocks. |
| 2009 | BasicBlock* lastNonLoopBlock = block; |
| 2010 | BasicBlock* nextLoopBlock = block->bbNext; |
| 2011 | while (!loopBlocks.IsMember(nextLoopBlock->bbNum)) |
| 2012 | { |
| 2013 | lastNonLoopBlock = nextLoopBlock; |
| 2014 | nextLoopBlock = nextLoopBlock->bbNext; |
| 2015 | // This loop must terminate because we know BOTTOM is in loopBlocks. |
| 2016 | } |
| 2017 | |
| 2018 | // Choose an insertion point for non-loop blocks if we haven't yet done so. |
| 2019 | if (moveAfter == nullptr) |
| 2020 | { |
| 2021 | moveAfter = FindInsertionPoint(); |
| 2022 | } |
| 2023 | |
| 2024 | if (!BasicBlock::sameEHRegion(previous, nextLoopBlock) || !BasicBlock::sameEHRegion(previous, moveAfter)) |
| 2025 | { |
| 2026 | // EH regions would be ill-formed if we moved these blocks out. |
| 2027 | // See if we can consider them loop blocks without introducing |
| 2028 | // a side-entry. |
| 2029 | if (CanTreatAsLoopBlocks(block, lastNonLoopBlock)) |
| 2030 | { |
| 2031 | // The call to `canTreatAsLoop` marked these blocks as part of the loop; |
| 2032 | // iterate without updating `previous` so that we'll analyze them as part |
| 2033 | // of the loop. |
| 2034 | continue; |
| 2035 | } |
| 2036 | else |
| 2037 | { |
| 2038 | // We can't move these out of the loop or leave them in, so just give |
| 2039 | // up on this loop. |
| 2040 | return false; |
| 2041 | } |
| 2042 | } |
| 2043 | |
| 2044 | // Now physically move the blocks. |
| 2045 | BasicBlock* moveBefore = moveAfter->bbNext; |
| 2046 | |
| 2047 | comp->fgUnlinkRange(block, lastNonLoopBlock); |
| 2048 | comp->fgMoveBlocksAfter(block, lastNonLoopBlock, moveAfter); |
| 2049 | comp->ehUpdateLastBlocks(moveAfter, lastNonLoopBlock); |
| 2050 | |
| 2051 | // Apply any adjustments needed for fallthrough at the boundaries of the moved region. |
| 2052 | FixupFallThrough(moveAfter, moveBefore, block); |
| 2053 | FixupFallThrough(lastNonLoopBlock, nextLoopBlock, moveBefore); |
| 2054 | // Also apply any adjustments needed where the blocks were snipped out of the loop. |
| 2055 | BasicBlock* newBlock = FixupFallThrough(previous, block, nextLoopBlock); |
| 2056 | if (newBlock != nullptr) |
| 2057 | { |
| 2058 | // This new block is in the loop and is a loop exit. |
| 2059 | loopBlocks.Insert(newBlock->bbNum); |
| 2060 | lastExit = newBlock; |
| 2061 | ++exitCount; |
| 2062 | } |
| 2063 | |
| 2064 | // Update moveAfter for the next insertion. |
| 2065 | moveAfter = lastNonLoopBlock; |
| 2066 | |
| 2067 | // Note that we've changed the flow graph, and continue without updating |
| 2068 | // `previous` so that we'll process nextLoopBlock. |
| 2069 | changedFlowGraph = true; |
| 2070 | } |
| 2071 | |
| 2072 | if ((exitCount == 1) && (lastExit == nullptr)) |
| 2073 | { |
| 2074 | // If we happen to have a loop with two exits, one of which goes to an |
| 2075 | // infinite loop that's lexically nested inside it, where the inner loop |
| 2076 | // can't be moved out, we can end up in this situation (because |
| 2077 | // CanTreatAsLoopBlocks will have decremented the count expecting to find |
| 2078 | // another exit later). Bump the exit count to 2, since downstream code |
| 2079 | // will not be prepared for null lastExit with exitCount of 1. |
| 2080 | assert(forgotExit); |
| 2081 | exitCount = 2; |
| 2082 | } |
| 2083 | |
| 2084 | // Loop compaction was successful |
| 2085 | return true; |
| 2086 | } |
| 2087 | |
| 2088 | //------------------------------------------------------------------------ |
| 2089 | // FindInsertionPoint: Find an appropriate spot to which blocks that are |
| 2090 | // lexically between TOP and BOTTOM but not part of the flow cycle |
| 2091 | // can be moved. |
| 2092 | // |
| 2093 | // Return Value: |
| 2094 | // Block after which to insert moved blocks. |
| 2095 | // |
| 2096 | BasicBlock* FindInsertionPoint() |
| 2097 | { |
| 2098 | // Find an insertion point for blocks we're going to move. Move them down |
| 2099 | // out of the loop, and if possible find a spot that won't break up fall-through. |
| 2100 | BasicBlock* moveAfter = bottom; |
| 2101 | while (moveAfter->bbFallsThrough()) |
| 2102 | { |
| 2103 | // Keep looking for a better insertion point if we can. |
| 2104 | BasicBlock* newMoveAfter = TryAdvanceInsertionPoint(moveAfter); |
| 2105 | |
| 2106 | if (newMoveAfter == nullptr) |
| 2107 | { |
| 2108 | // Ran out of candidate insertion points, so just split up the fall-through. |
| 2109 | return moveAfter; |
| 2110 | } |
| 2111 | |
| 2112 | moveAfter = newMoveAfter; |
| 2113 | } |
| 2114 | |
| 2115 | return moveAfter; |
| 2116 | } |
| 2117 | |
| 2118 | //------------------------------------------------------------------------ |
| 2119 | // TryAdvanceInsertionPoint: Find the next legal insertion point after |
| 2120 | // the given one, if one exists. |
| 2121 | // |
| 2122 | // Arguments: |
| 2123 | // oldMoveAfter - Prior insertion point; find the next after this. |
| 2124 | // |
| 2125 | // Return Value: |
| 2126 | // The next block after `oldMoveAfter` that is a legal insertion point |
| 2127 | // (i.e. blocks being swept out of the loop can be moved immediately |
| 2128 | // after it), if one exists, else nullptr. |
| 2129 | // |
| 2130 | BasicBlock* TryAdvanceInsertionPoint(BasicBlock* oldMoveAfter) |
| 2131 | { |
| 2132 | BasicBlock* newMoveAfter = oldMoveAfter->bbNext; |
| 2133 | |
| 2134 | if (!BasicBlock::sameEHRegion(oldMoveAfter, newMoveAfter)) |
| 2135 | { |
| 2136 | // Don't cross an EH region boundary. |
| 2137 | return nullptr; |
| 2138 | } |
| 2139 | |
| 2140 | if ((newMoveAfter->bbJumpKind == BBJ_ALWAYS) || (newMoveAfter->bbJumpKind == BBJ_COND)) |
| 2141 | { |
| 2142 | unsigned int destNum = newMoveAfter->bbJumpDest->bbNum; |
| 2143 | if ((destNum >= top->bbNum) && (destNum <= bottom->bbNum) && !loopBlocks.IsMember(destNum)) |
| 2144 | { |
| 2145 | // Reversing this branch out of block `newMoveAfter` could confuse this algorithm |
| 2146 | // (in particular, the edge would still be numerically backwards but no longer be |
| 2147 | // lexically backwards, so a lexical forward walk from TOP would not find BOTTOM), |
| 2148 | // so don't do that. |
| 2149 | // We're checking for BBJ_ALWAYS and BBJ_COND only here -- we don't need to |
| 2150 | // check for BBJ_SWITCH because we'd never consider it a loop back-edge. |
| 2151 | return nullptr; |
| 2152 | } |
| 2153 | } |
| 2154 | |
| 2155 | // Similarly check to see if advancing to `newMoveAfter` would reverse the lexical order |
| 2156 | // of an edge from the run of blocks being moved to `newMoveAfter` -- doing so would |
| 2157 | // introduce a new lexical back-edge, which could (maybe?) confuse the loop search |
| 2158 | // algorithm, and isn't desirable layout anyway. |
| 2159 | for (flowList* predIter = newMoveAfter->bbPreds; predIter != nullptr; predIter = predIter->flNext) |
| 2160 | { |
| 2161 | unsigned int predNum = predIter->flBlock->bbNum; |
| 2162 | |
| 2163 | if ((predNum >= top->bbNum) && (predNum <= bottom->bbNum) && !loopBlocks.IsMember(predNum)) |
| 2164 | { |
| 2165 | // Don't make this forward edge a backwards edge. |
| 2166 | return nullptr; |
| 2167 | } |
| 2168 | } |
| 2169 | |
| 2170 | if (IsRecordedBottom(newMoveAfter)) |
| 2171 | { |
| 2172 | // This is the BOTTOM of another loop; don't move any blocks past it, to avoid moving them |
| 2173 | // out of that loop (we should have already done so when processing that loop if it were legal). |
| 2174 | return nullptr; |
| 2175 | } |
| 2176 | |
| 2177 | // Advancing the insertion point is ok, except that we can't split up any CallFinally/BBJ_ALWAYS |
| 2178 | // pair, so if we've got such a pair recurse to see if we can move past the whole thing. |
| 2179 | return (newMoveAfter->isBBCallAlwaysPair() ? TryAdvanceInsertionPoint(newMoveAfter) : newMoveAfter); |
| 2180 | } |
| 2181 | |
| 2182 | //------------------------------------------------------------------------ |
| 2183 | // isOuterBottom: Determine if the given block is the BOTTOM of a previously |
| 2184 | // recorded loop. |
| 2185 | // |
| 2186 | // Arguments: |
| 2187 | // block - Block to check for BOTTOM-ness. |
| 2188 | // |
| 2189 | // Return Value: |
| 2190 | // true - The blocks was recorded as `bottom` of some earlier-processed loop. |
| 2191 | // false - No loops yet recorded have this block as their `bottom`. |
| 2192 | // |
| 2193 | bool IsRecordedBottom(BasicBlock* block) |
| 2194 | { |
| 2195 | if (block->bbNum > oldBlockMaxNum) |
| 2196 | { |
| 2197 | // This is a new block, which can't be an outer bottom block because we only allow old blocks |
| 2198 | // as BOTTOM. |
| 2199 | return false; |
| 2200 | } |
| 2201 | return BlockSetOps::IsMember(comp, bottomBlocks, block->bbNum); |
| 2202 | } |
| 2203 | |
| 2204 | //------------------------------------------------------------------------ |
| 2205 | // CanTreatAsLoopBlocks: If the given range of blocks can be treated as |
| 2206 | // loop blocks, add them to loopBlockSet and return true. Otherwise, |
| 2207 | // return false. |
| 2208 | // |
| 2209 | // Arguments: |
| 2210 | // firstNonLoopBlock - First block in the run to be subsumed. |
| 2211 | // lastNonLoopBlock - Last block in the run to be subsumed. |
| 2212 | // |
| 2213 | // Return Value: |
| 2214 | // true - The blocks from `fistNonLoopBlock` to `lastNonLoopBlock` were |
| 2215 | // successfully added to `loopBlocks`. |
| 2216 | // false - Treating the blocks from `fistNonLoopBlock` to `lastNonLoopBlock` |
| 2217 | // would not be legal (it would induce a side-entry). |
| 2218 | // |
| 2219 | // Notes: |
| 2220 | // `loopBlocks` may be modified even if `false` is returned. |
| 2221 | // `exitCount` and `lastExit` may be modified if this process identifies |
| 2222 | // in-loop edges that were previously counted as exits. |
| 2223 | // |
| 2224 | bool CanTreatAsLoopBlocks(BasicBlock* firstNonLoopBlock, BasicBlock* lastNonLoopBlock) |
| 2225 | { |
| 2226 | BasicBlock* nextLoopBlock = lastNonLoopBlock->bbNext; |
| 2227 | for (BasicBlock* testBlock = firstNonLoopBlock; testBlock != nextLoopBlock; testBlock = testBlock->bbNext) |
| 2228 | { |
| 2229 | for (flowList* predIter = testBlock->bbPreds; predIter != nullptr; predIter = predIter->flNext) |
| 2230 | { |
| 2231 | BasicBlock* testPred = predIter->flBlock; |
| 2232 | unsigned int predPosNum = PositionNum(testPred); |
| 2233 | unsigned int firstNonLoopPosNum = PositionNum(firstNonLoopBlock); |
| 2234 | unsigned int lastNonLoopPosNum = PositionNum(lastNonLoopBlock); |
| 2235 | |
| 2236 | if (loopBlocks.IsMember(predPosNum) || |
| 2237 | ((predPosNum >= firstNonLoopPosNum) && (predPosNum <= lastNonLoopPosNum))) |
| 2238 | { |
| 2239 | // This pred is in the loop (or what will be the loop if we determine this |
| 2240 | // run of exit blocks doesn't include a side-entry). |
| 2241 | |
| 2242 | if (predPosNum < firstNonLoopPosNum) |
| 2243 | { |
| 2244 | // We've already counted this block as an exit, so decrement the count. |
| 2245 | --exitCount; |
| 2246 | if (lastExit == testPred) |
| 2247 | { |
| 2248 | // Erase this now-bogus `lastExit` entry. |
| 2249 | lastExit = nullptr; |
| 2250 | INDEBUG(forgotExit = true); |
| 2251 | } |
| 2252 | } |
| 2253 | } |
| 2254 | else |
| 2255 | { |
| 2256 | // This pred is not in the loop, so this constitutes a side-entry. |
| 2257 | return false; |
| 2258 | } |
| 2259 | } |
| 2260 | |
| 2261 | // Either we're going to abort the loop on a subsequent testBlock, or this |
| 2262 | // testBlock is part of the loop. |
| 2263 | loopBlocks.Insert(testBlock->bbNum); |
| 2264 | } |
| 2265 | |
| 2266 | // All blocks were ok to leave in the loop. |
| 2267 | return true; |
| 2268 | } |
| 2269 | |
| 2270 | //------------------------------------------------------------------------ |
| 2271 | // FixupFallThrough: Re-establish any broken control flow connectivity |
| 2272 | // and eliminate any "goto-next"s that were created by changing the |
| 2273 | // given block's lexical follower. |
| 2274 | // |
| 2275 | // Arguments: |
| 2276 | // block - Block whose `bbNext` has changed. |
| 2277 | // oldNext - Previous value of `block->bbNext`. |
| 2278 | // newNext - New value of `block->bbNext`. |
| 2279 | // |
| 2280 | // Return Value: |
| 2281 | // If a new block is created to reconnect flow, the new block is |
| 2282 | // returned; otherwise, nullptr. |
| 2283 | // |
| 2284 | BasicBlock* FixupFallThrough(BasicBlock* block, BasicBlock* oldNext, BasicBlock* newNext) |
| 2285 | { |
| 2286 | // If we create a new block, that will be our return value. |
| 2287 | BasicBlock* newBlock = nullptr; |
| 2288 | |
| 2289 | if (block->bbFallsThrough()) |
| 2290 | { |
| 2291 | // Need to reconnect the flow from `block` to `oldNext`. |
| 2292 | |
| 2293 | if ((block->bbJumpKind == BBJ_COND) && (block->bbJumpDest == newNext)) |
| 2294 | { |
| 2295 | /* Reverse the jump condition */ |
| 2296 | GenTree* test = block->lastNode(); |
| 2297 | noway_assert(test->OperIsConditionalJump()); |
| 2298 | |
| 2299 | if (test->OperGet() == GT_JTRUE) |
| 2300 | { |
| 2301 | GenTree* cond = comp->gtReverseCond(test->gtOp.gtOp1); |
| 2302 | assert(cond == test->gtOp.gtOp1); // Ensure `gtReverseCond` did not create a new node. |
| 2303 | test->gtOp.gtOp1 = cond; |
| 2304 | } |
| 2305 | else |
| 2306 | { |
| 2307 | comp->gtReverseCond(test); |
| 2308 | } |
| 2309 | |
| 2310 | // Redirect the Conditional JUMP to go to `oldNext` |
| 2311 | block->bbJumpDest = oldNext; |
| 2312 | } |
| 2313 | else |
| 2314 | { |
| 2315 | // Insert an unconditional jump to `oldNext` just after `block`. |
| 2316 | newBlock = comp->fgConnectFallThrough(block, oldNext); |
| 2317 | noway_assert((newBlock == nullptr) || loopBlocks.CanRepresent(newBlock->bbNum)); |
| 2318 | } |
| 2319 | } |
| 2320 | else if ((block->bbJumpKind == BBJ_ALWAYS) && (block->bbJumpDest == newNext)) |
| 2321 | { |
| 2322 | // We've made `block`'s jump target its bbNext, so remove the jump. |
| 2323 | if (!comp->fgOptimizeBranchToNext(block, newNext, block->bbPrev)) |
| 2324 | { |
| 2325 | // If optimizing away the goto-next failed for some reason, mark it KEEP_BBJ_ALWAYS to |
| 2326 | // prevent assertions from complaining about it. |
| 2327 | block->bbFlags |= BBF_KEEP_BBJ_ALWAYS; |
| 2328 | } |
| 2329 | } |
| 2330 | |
| 2331 | // Make sure we don't leave around a goto-next unless it's marked KEEP_BBJ_ALWAYS. |
| 2332 | assert((block->bbJumpKind != BBJ_COND) || (block->bbJumpKind != BBJ_ALWAYS) || (block->bbJumpDest != newNext) || |
| 2333 | ((block->bbFlags & BBF_KEEP_BBJ_ALWAYS) != 0)); |
| 2334 | return newBlock; |
| 2335 | } |
| 2336 | |
| 2337 | //------------------------------------------------------------------------ |
| 2338 | // CheckForExit: Check if the given block has any successor edges that are |
| 2339 | // loop exits, and update `lastExit` and `exitCount` if so. |
| 2340 | // |
| 2341 | // Arguments: |
| 2342 | // block - Block whose successor edges are to be checked. |
| 2343 | // |
| 2344 | // Notes: |
| 2345 | // If one block has multiple exiting successor edges, those are counted |
| 2346 | // as multiple exits in `exitCount`. |
| 2347 | // |
| 2348 | void CheckForExit(BasicBlock* block) |
| 2349 | { |
| 2350 | BasicBlock* exitPoint; |
| 2351 | |
| 2352 | switch (block->bbJumpKind) |
| 2353 | { |
| 2354 | case BBJ_COND: |
| 2355 | case BBJ_CALLFINALLY: |
| 2356 | case BBJ_ALWAYS: |
| 2357 | case BBJ_EHCATCHRET: |
| 2358 | assert(block->bbJumpDest); |
| 2359 | exitPoint = block->bbJumpDest; |
| 2360 | |
| 2361 | if (!loopBlocks.IsMember(exitPoint->bbNum)) |
| 2362 | { |
| 2363 | /* exit from a block other than BOTTOM */ |
| 2364 | lastExit = block; |
| 2365 | exitCount++; |
| 2366 | } |
| 2367 | break; |
| 2368 | |
| 2369 | case BBJ_NONE: |
| 2370 | break; |
| 2371 | |
| 2372 | case BBJ_EHFINALLYRET: |
| 2373 | case BBJ_EHFILTERRET: |
| 2374 | /* The "try" associated with this "finally" must be in the |
| 2375 | * same loop, so the finally block will return control inside the loop */ |
| 2376 | break; |
| 2377 | |
| 2378 | case BBJ_THROW: |
| 2379 | case BBJ_RETURN: |
| 2380 | /* those are exits from the loop */ |
| 2381 | lastExit = block; |
| 2382 | exitCount++; |
| 2383 | break; |
| 2384 | |
| 2385 | case BBJ_SWITCH: |
| 2386 | |
| 2387 | unsigned jumpCnt; |
| 2388 | jumpCnt = block->bbJumpSwt->bbsCount; |
| 2389 | BasicBlock** jumpTab; |
| 2390 | jumpTab = block->bbJumpSwt->bbsDstTab; |
| 2391 | |
| 2392 | do |
| 2393 | { |
| 2394 | noway_assert(*jumpTab); |
| 2395 | exitPoint = *jumpTab; |
| 2396 | |
| 2397 | if (!loopBlocks.IsMember(exitPoint->bbNum)) |
| 2398 | { |
| 2399 | lastExit = block; |
| 2400 | exitCount++; |
| 2401 | } |
| 2402 | } while (++jumpTab, --jumpCnt); |
| 2403 | break; |
| 2404 | |
| 2405 | default: |
| 2406 | noway_assert(!"Unexpected bbJumpKind" ); |
| 2407 | break; |
| 2408 | } |
| 2409 | |
| 2410 | if (block->bbFallsThrough() && !loopBlocks.IsMember(block->bbNext->bbNum)) |
| 2411 | { |
| 2412 | // Found a fall-through exit. |
| 2413 | lastExit = block; |
| 2414 | exitCount++; |
| 2415 | } |
| 2416 | } |
| 2417 | }; |
| 2418 | } |
| 2419 | |
| 2420 | /***************************************************************************** |
| 2421 | * Find the natural loops, using dominators. Note that the test for |
| 2422 | * a loop is slightly different from the standard one, because we have |
| 2423 | * not done a depth first reordering of the basic blocks. |
| 2424 | */ |
| 2425 | |
| 2426 | void Compiler::optFindNaturalLoops() |
| 2427 | { |
| 2428 | #ifdef DEBUG |
| 2429 | if (verbose) |
| 2430 | { |
| 2431 | printf("*************** In optFindNaturalLoops()\n" ); |
| 2432 | } |
| 2433 | #endif // DEBUG |
| 2434 | |
| 2435 | noway_assert(fgDomsComputed); |
| 2436 | assert(fgHasLoops); |
| 2437 | |
| 2438 | #if COUNT_LOOPS |
| 2439 | hasMethodLoops = false; |
| 2440 | loopsThisMethod = 0; |
| 2441 | loopOverflowThisMethod = false; |
| 2442 | #endif |
| 2443 | |
| 2444 | LoopSearch search(this); |
| 2445 | |
| 2446 | for (BasicBlock* head = fgFirstBB; head->bbNext; head = head->bbNext) |
| 2447 | { |
| 2448 | BasicBlock* top = head->bbNext; |
| 2449 | |
| 2450 | // Blocks that are rarely run have a zero bbWeight and should |
| 2451 | // never be optimized here |
| 2452 | |
| 2453 | if (top->bbWeight == BB_ZERO_WEIGHT) |
| 2454 | { |
| 2455 | continue; |
| 2456 | } |
| 2457 | |
| 2458 | for (flowList* pred = top->bbPreds; pred; pred = pred->flNext) |
| 2459 | { |
| 2460 | if (search.FindLoop(head, top, pred->flBlock)) |
| 2461 | { |
| 2462 | // Found a loop; record it and see if we've hit the limit. |
| 2463 | bool recordedLoop = search.RecordLoop(); |
| 2464 | |
| 2465 | (void)recordedLoop; // avoid unusued variable warnings in COUNT_LOOPS and !DEBUG |
| 2466 | |
| 2467 | #if COUNT_LOOPS |
| 2468 | if (!hasMethodLoops) |
| 2469 | { |
| 2470 | /* mark the method as containing natural loops */ |
| 2471 | totalLoopMethods++; |
| 2472 | hasMethodLoops = true; |
| 2473 | } |
| 2474 | |
| 2475 | /* increment total number of loops found */ |
| 2476 | totalLoopCount++; |
| 2477 | loopsThisMethod++; |
| 2478 | |
| 2479 | /* keep track of the number of exits */ |
| 2480 | loopExitCountTable.record(static_cast<unsigned>(exitCount)); |
| 2481 | #else // COUNT_LOOPS |
| 2482 | assert(recordedLoop); |
| 2483 | if (optLoopCount == MAX_LOOP_NUM) |
| 2484 | { |
| 2485 | // We won't be able to record any more loops, so stop looking. |
| 2486 | goto NO_MORE_LOOPS; |
| 2487 | } |
| 2488 | #endif // COUNT_LOOPS |
| 2489 | |
| 2490 | // Continue searching preds of `top` to see if any other are |
| 2491 | // back-edges (this can happen for nested loops). The iteration |
| 2492 | // is safe because the compaction we do only modifies predecessor |
| 2493 | // lists of blocks that gain or lose fall-through from their |
| 2494 | // `bbPrev`, but since the motion is from within the loop to below |
| 2495 | // it, we know we're not altering the relationship between `top` |
| 2496 | // and its `bbPrev`. |
| 2497 | } |
| 2498 | } |
| 2499 | } |
| 2500 | NO_MORE_LOOPS: |
| 2501 | |
| 2502 | #if COUNT_LOOPS |
| 2503 | loopCountTable.record(loopsThisMethod); |
| 2504 | if (maxLoopsPerMethod < loopsThisMethod) |
| 2505 | { |
| 2506 | maxLoopsPerMethod = loopsThisMethod; |
| 2507 | } |
| 2508 | if (loopOverflowThisMethod) |
| 2509 | { |
| 2510 | totalLoopOverflows++; |
| 2511 | } |
| 2512 | #endif // COUNT_LOOPS |
| 2513 | |
| 2514 | bool mod = search.ChangedFlowGraph(); |
| 2515 | |
| 2516 | if (mod) |
| 2517 | { |
| 2518 | // Need to renumber blocks now since loop canonicalization |
| 2519 | // depends on it; can defer the rest of fgUpdateChangedFlowGraph() |
| 2520 | // until after canonicalizing loops. Dominator information is |
| 2521 | // recorded in terms of block numbers, so flag it invalid. |
| 2522 | fgDomsComputed = false; |
| 2523 | fgRenumberBlocks(); |
| 2524 | } |
| 2525 | |
| 2526 | // Now the loop indices are stable. We can figure out parent/child relationships |
| 2527 | // (using table indices to name loops), and label blocks. |
| 2528 | for (unsigned char loopInd = 1; loopInd < optLoopCount; loopInd++) |
| 2529 | { |
| 2530 | for (unsigned char possibleParent = loopInd; possibleParent > 0;) |
| 2531 | { |
| 2532 | possibleParent--; |
| 2533 | if (optLoopTable[possibleParent].lpContains(optLoopTable[loopInd])) |
| 2534 | { |
| 2535 | optLoopTable[loopInd].lpParent = possibleParent; |
| 2536 | optLoopTable[loopInd].lpSibling = optLoopTable[possibleParent].lpChild; |
| 2537 | optLoopTable[possibleParent].lpChild = loopInd; |
| 2538 | break; |
| 2539 | } |
| 2540 | } |
| 2541 | } |
| 2542 | |
| 2543 | // Now label the blocks with the innermost loop to which they belong. Since parents |
| 2544 | // precede children in the table, doing the labeling for each loop in order will achieve |
| 2545 | // this -- the innermost loop labeling will be done last. |
| 2546 | for (unsigned char loopInd = 0; loopInd < optLoopCount; loopInd++) |
| 2547 | { |
| 2548 | BasicBlock* first = optLoopTable[loopInd].lpFirst; |
| 2549 | BasicBlock* bottom = optLoopTable[loopInd].lpBottom; |
| 2550 | for (BasicBlock* blk = first; blk != nullptr; blk = blk->bbNext) |
| 2551 | { |
| 2552 | blk->bbNatLoopNum = loopInd; |
| 2553 | if (blk == bottom) |
| 2554 | { |
| 2555 | break; |
| 2556 | } |
| 2557 | assert(blk->bbNext != nullptr); // We should never reach nullptr. |
| 2558 | } |
| 2559 | } |
| 2560 | |
| 2561 | // Make sure that loops are canonical: that every loop has a unique "top", by creating an empty "nop" |
| 2562 | // one, if necessary, for loops containing others that share a "top." |
| 2563 | for (unsigned char loopInd = 0; loopInd < optLoopCount; loopInd++) |
| 2564 | { |
| 2565 | // Traverse the outermost loops as entries into the loop nest; so skip non-outermost. |
| 2566 | if (optLoopTable[loopInd].lpParent != BasicBlock::NOT_IN_LOOP) |
| 2567 | { |
| 2568 | continue; |
| 2569 | } |
| 2570 | |
| 2571 | // Otherwise... |
| 2572 | if (optCanonicalizeLoopNest(loopInd)) |
| 2573 | { |
| 2574 | mod = true; |
| 2575 | } |
| 2576 | } |
| 2577 | if (mod) |
| 2578 | { |
| 2579 | fgUpdateChangedFlowGraph(); |
| 2580 | } |
| 2581 | |
| 2582 | #ifdef DEBUG |
| 2583 | if (verbose && optLoopCount > 0) |
| 2584 | { |
| 2585 | printf("\nFinal natural loop table:\n" ); |
| 2586 | for (unsigned loopInd = 0; loopInd < optLoopCount; loopInd++) |
| 2587 | { |
| 2588 | optPrintLoopInfo(loopInd); |
| 2589 | printf("\n" ); |
| 2590 | } |
| 2591 | } |
| 2592 | #endif // DEBUG |
| 2593 | } |
| 2594 | |
| 2595 | void Compiler::optRedirectBlock(BasicBlock* blk, BlockToBlockMap* redirectMap) |
| 2596 | { |
| 2597 | BasicBlock* newJumpDest = nullptr; |
| 2598 | switch (blk->bbJumpKind) |
| 2599 | { |
| 2600 | case BBJ_THROW: |
| 2601 | case BBJ_RETURN: |
| 2602 | case BBJ_NONE: |
| 2603 | case BBJ_EHFILTERRET: |
| 2604 | case BBJ_EHFINALLYRET: |
| 2605 | case BBJ_EHCATCHRET: |
| 2606 | // These have no jump destination to update. |
| 2607 | break; |
| 2608 | |
| 2609 | case BBJ_ALWAYS: |
| 2610 | case BBJ_LEAVE: |
| 2611 | case BBJ_CALLFINALLY: |
| 2612 | case BBJ_COND: |
| 2613 | // All of these have a single jump destination to update. |
| 2614 | if (redirectMap->Lookup(blk->bbJumpDest, &newJumpDest)) |
| 2615 | { |
| 2616 | blk->bbJumpDest = newJumpDest; |
| 2617 | } |
| 2618 | break; |
| 2619 | |
| 2620 | case BBJ_SWITCH: |
| 2621 | { |
| 2622 | bool redirected = false; |
| 2623 | for (unsigned i = 0; i < blk->bbJumpSwt->bbsCount; i++) |
| 2624 | { |
| 2625 | if (redirectMap->Lookup(blk->bbJumpSwt->bbsDstTab[i], &newJumpDest)) |
| 2626 | { |
| 2627 | blk->bbJumpSwt->bbsDstTab[i] = newJumpDest; |
| 2628 | redirected = true; |
| 2629 | } |
| 2630 | } |
| 2631 | // If any redirections happend, invalidate the switch table map for the switch. |
| 2632 | if (redirected) |
| 2633 | { |
| 2634 | // Don't create a new map just to try to remove an entry. |
| 2635 | BlockToSwitchDescMap* switchMap = GetSwitchDescMap(/* createIfNull */ false); |
| 2636 | if (switchMap != nullptr) |
| 2637 | { |
| 2638 | switchMap->Remove(blk); |
| 2639 | } |
| 2640 | } |
| 2641 | } |
| 2642 | break; |
| 2643 | |
| 2644 | default: |
| 2645 | unreached(); |
| 2646 | } |
| 2647 | } |
| 2648 | |
| 2649 | // TODO-Cleanup: This should be a static member of the BasicBlock class. |
| 2650 | void Compiler::optCopyBlkDest(BasicBlock* from, BasicBlock* to) |
| 2651 | { |
| 2652 | assert(from->bbJumpKind == to->bbJumpKind); // Precondition. |
| 2653 | |
| 2654 | // copy the jump destination(s) from "from" to "to". |
| 2655 | switch (to->bbJumpKind) |
| 2656 | { |
| 2657 | case BBJ_ALWAYS: |
| 2658 | case BBJ_LEAVE: |
| 2659 | case BBJ_CALLFINALLY: |
| 2660 | case BBJ_COND: |
| 2661 | // All of these have a single jump destination to update. |
| 2662 | to->bbJumpDest = from->bbJumpDest; |
| 2663 | break; |
| 2664 | |
| 2665 | case BBJ_SWITCH: |
| 2666 | { |
| 2667 | to->bbJumpSwt = new (this, CMK_BasicBlock) BBswtDesc(); |
| 2668 | to->bbJumpSwt->bbsCount = from->bbJumpSwt->bbsCount; |
| 2669 | to->bbJumpSwt->bbsDstTab = new (this, CMK_BasicBlock) BasicBlock*[from->bbJumpSwt->bbsCount]; |
| 2670 | |
| 2671 | for (unsigned i = 0; i < from->bbJumpSwt->bbsCount; i++) |
| 2672 | { |
| 2673 | to->bbJumpSwt->bbsDstTab[i] = from->bbJumpSwt->bbsDstTab[i]; |
| 2674 | } |
| 2675 | } |
| 2676 | break; |
| 2677 | |
| 2678 | default: |
| 2679 | break; |
| 2680 | } |
| 2681 | } |
| 2682 | |
| 2683 | // Canonicalize the loop nest rooted at parent loop 'loopInd'. |
| 2684 | // Returns 'true' if the flow graph is modified. |
| 2685 | bool Compiler::optCanonicalizeLoopNest(unsigned char loopInd) |
| 2686 | { |
| 2687 | bool modified = false; |
| 2688 | |
| 2689 | // Is the top of the current loop not in any nested loop? |
| 2690 | if (optLoopTable[loopInd].lpTop->bbNatLoopNum != loopInd) |
| 2691 | { |
| 2692 | if (optCanonicalizeLoop(loopInd)) |
| 2693 | { |
| 2694 | modified = true; |
| 2695 | } |
| 2696 | } |
| 2697 | |
| 2698 | for (unsigned char child = optLoopTable[loopInd].lpChild; child != BasicBlock::NOT_IN_LOOP; |
| 2699 | child = optLoopTable[child].lpSibling) |
| 2700 | { |
| 2701 | if (optCanonicalizeLoopNest(child)) |
| 2702 | { |
| 2703 | modified = true; |
| 2704 | } |
| 2705 | } |
| 2706 | |
| 2707 | return modified; |
| 2708 | } |
| 2709 | |
| 2710 | bool Compiler::optCanonicalizeLoop(unsigned char loopInd) |
| 2711 | { |
| 2712 | // Is the top uniquely part of the current loop? |
| 2713 | BasicBlock* t = optLoopTable[loopInd].lpTop; |
| 2714 | |
| 2715 | if (t->bbNatLoopNum == loopInd) |
| 2716 | { |
| 2717 | return false; |
| 2718 | } |
| 2719 | |
| 2720 | JITDUMP("in optCanonicalizeLoop: L%02u has top " FMT_BB " (bottom " FMT_BB |
| 2721 | ") with natural loop number L%02u: need to " |
| 2722 | "canonicalize\n" , |
| 2723 | loopInd, t->bbNum, optLoopTable[loopInd].lpBottom->bbNum, t->bbNatLoopNum); |
| 2724 | |
| 2725 | // Otherwise, the top of this loop is also part of a nested loop. |
| 2726 | // |
| 2727 | // Insert a new unique top for this loop. We must be careful to put this new |
| 2728 | // block in the correct EH region. Note that f->bbPrev might be in a different |
| 2729 | // EH region. For example: |
| 2730 | // |
| 2731 | // try { |
| 2732 | // ... |
| 2733 | // BB07 |
| 2734 | // } |
| 2735 | // BB08 // "first" |
| 2736 | // |
| 2737 | // In this case, first->bbPrev is BB07, which is in a different 'try' region. |
| 2738 | // On the other hand, the first block of multiple loops might be the first |
| 2739 | // block of a 'try' region that is completely contained in the multiple loops. |
| 2740 | // for example: |
| 2741 | // |
| 2742 | // BB08 try { } |
| 2743 | // ... |
| 2744 | // BB10 BBJ_ALWAYS => BB08 |
| 2745 | // ... |
| 2746 | // BB12 BBJ_ALWAYS => BB08 |
| 2747 | // |
| 2748 | // Here, we have two loops, both with BB08 as the "first" block. Block BB08 |
| 2749 | // is a single-block "try" region. Neither loop "bottom" block is in the same |
| 2750 | // "try" region as BB08. This is legal because you can jump to the first block |
| 2751 | // of a try region. With EH normalization, no two "try" regions will share |
| 2752 | // this block. In this case, we need to insert a new block for the outer loop |
| 2753 | // in the same EH region as the branch from the "bottom": |
| 2754 | // |
| 2755 | // BB30 BBJ_NONE |
| 2756 | // BB08 try { } |
| 2757 | // ... |
| 2758 | // BB10 BBJ_ALWAYS => BB08 |
| 2759 | // ... |
| 2760 | // BB12 BBJ_ALWAYS => BB30 |
| 2761 | // |
| 2762 | // Another possibility is that the "first" block of the loop nest can be the first block |
| 2763 | // of a "try" region that also has other predecessors than those in the loop, or even in |
| 2764 | // the "try" region (since blocks can target the first block of a "try" region). For example: |
| 2765 | // |
| 2766 | // BB08 try { |
| 2767 | // ... |
| 2768 | // BB10 BBJ_ALWAYS => BB08 |
| 2769 | // ... |
| 2770 | // BB12 BBJ_ALWAYS => BB08 |
| 2771 | // BB13 } |
| 2772 | // ... |
| 2773 | // BB20 BBJ_ALWAYS => BB08 |
| 2774 | // ... |
| 2775 | // BB25 BBJ_ALWAYS => BB08 |
| 2776 | // |
| 2777 | // Here, BB08 has 4 flow graph predecessors: BB10, BB12, BB20, BB25. These are all potential loop |
| 2778 | // bottoms, for four possible nested loops. However, we require all the loop bottoms to be in the |
| 2779 | // same EH region. For loops BB08..BB10 and BB08..BB12, we need to add a new "top" block within |
| 2780 | // the try region, immediately before BB08. The bottom of the loop BB08..BB10 loop will target the |
| 2781 | // old BB08, and the bottom of the BB08..BB12 loop will target the new loop header. The other branches |
| 2782 | // (BB20, BB25) must target the new loop header, both for correctness, and to avoid the illegal |
| 2783 | // situation of branching to a non-first block of a 'try' region. |
| 2784 | // |
| 2785 | // We can also have a loop nest where the "first" block is outside of a "try" region |
| 2786 | // and the back edges are inside a "try" region, for example: |
| 2787 | // |
| 2788 | // BB02 // "first" |
| 2789 | // ... |
| 2790 | // BB09 try { BBJ_COND => BB02 |
| 2791 | // ... |
| 2792 | // BB15 BBJ_COND => BB02 |
| 2793 | // ... |
| 2794 | // BB21 } // end of "try" |
| 2795 | // |
| 2796 | // In this case, both loop back edges were formed by "leave" instructions that were |
| 2797 | // imported into branches that were later made conditional. In this case, we don't |
| 2798 | // want to copy the EH region of the back edge, since that would create a block |
| 2799 | // outside of and disjoint with the "try" region of the back edge. However, to |
| 2800 | // simplify things, we disqualify this type of loop, so we should never see this here. |
| 2801 | |
| 2802 | BasicBlock* h = optLoopTable[loopInd].lpHead; |
| 2803 | BasicBlock* f = optLoopTable[loopInd].lpFirst; |
| 2804 | BasicBlock* b = optLoopTable[loopInd].lpBottom; |
| 2805 | |
| 2806 | // The loop must be entirely contained within a single handler region. |
| 2807 | assert(BasicBlock::sameHndRegion(f, b)); |
| 2808 | |
| 2809 | // If the bottom block is in the same "try" region, then we extend the EH |
| 2810 | // region. Otherwise, we add the new block outside the "try" region. |
| 2811 | bool extendRegion = BasicBlock::sameTryRegion(f, b); |
| 2812 | BasicBlock* newT = fgNewBBbefore(BBJ_NONE, f, extendRegion); |
| 2813 | if (!extendRegion) |
| 2814 | { |
| 2815 | // We need to set the EH region manually. Set it to be the same |
| 2816 | // as the bottom block. |
| 2817 | newT->copyEHRegion(b); |
| 2818 | } |
| 2819 | |
| 2820 | // The new block can reach the same set of blocks as the old one, but don't try to reflect |
| 2821 | // that in its reachability set here -- creating the new block may have changed the BlockSet |
| 2822 | // representation from short to long, and canonicalizing loops is immediately followed by |
| 2823 | // a call to fgUpdateChangedFlowGraph which will recompute the reachability sets anyway. |
| 2824 | |
| 2825 | // Redirect the "bottom" of the current loop to "newT". |
| 2826 | BlockToBlockMap* blockMap = new (getAllocatorLoopHoist()) BlockToBlockMap(getAllocatorLoopHoist()); |
| 2827 | blockMap->Set(t, newT); |
| 2828 | optRedirectBlock(b, blockMap); |
| 2829 | |
| 2830 | // Redirect non-loop preds of "t" to also go to "newT". Inner loops that also branch to "t" should continue |
| 2831 | // to do so. However, there maybe be other predecessors from outside the loop nest that need to be updated |
| 2832 | // to point to "newT". This normally wouldn't happen, since they too would be part of the loop nest. However, |
| 2833 | // they might have been prevented from participating in the loop nest due to different EH nesting, or some |
| 2834 | // other reason. |
| 2835 | // |
| 2836 | // Note that optRedirectBlock doesn't update the predecessors list. So, if the same 't' block is processed |
| 2837 | // multiple times while canonicalizing multiple loop nests, we'll attempt to redirect a predecessor multiple times. |
| 2838 | // This is ok, because after the first redirection, the topPredBlock branch target will no longer match the source |
| 2839 | // edge of the blockMap, so nothing will happen. |
| 2840 | bool firstPred = true; |
| 2841 | for (flowList* topPred = t->bbPreds; topPred != nullptr; topPred = topPred->flNext) |
| 2842 | { |
| 2843 | BasicBlock* topPredBlock = topPred->flBlock; |
| 2844 | |
| 2845 | // Skip if topPredBlock is in the loop. |
| 2846 | // Note that this uses block number to detect membership in the loop. We are adding blocks during |
| 2847 | // canonicalization, and those block numbers will be new, and larger than previous blocks. However, we work |
| 2848 | // outside-in, so we shouldn't encounter the new blocks at the loop boundaries, or in the predecessor lists. |
| 2849 | if (t->bbNum <= topPredBlock->bbNum && topPredBlock->bbNum <= b->bbNum) |
| 2850 | { |
| 2851 | JITDUMP("in optCanonicalizeLoop: 'top' predecessor " FMT_BB " is in the range of L%02u (" FMT_BB ".." FMT_BB |
| 2852 | "); not " |
| 2853 | "redirecting its bottom edge\n" , |
| 2854 | topPredBlock->bbNum, loopInd, t->bbNum, b->bbNum); |
| 2855 | continue; |
| 2856 | } |
| 2857 | |
| 2858 | JITDUMP("in optCanonicalizeLoop: redirect top predecessor " FMT_BB " to " FMT_BB "\n" , topPredBlock->bbNum, |
| 2859 | newT->bbNum); |
| 2860 | optRedirectBlock(topPredBlock, blockMap); |
| 2861 | |
| 2862 | // When we have profile data then the 'newT' block will inherit topPredBlock profile weight |
| 2863 | if (topPredBlock->hasProfileWeight()) |
| 2864 | { |
| 2865 | // This corrects an issue when the topPredBlock has a profile based weight |
| 2866 | // |
| 2867 | if (firstPred) |
| 2868 | { |
| 2869 | JITDUMP("in optCanonicalizeLoop: block " FMT_BB " will inheritWeight from " FMT_BB "\n" , newT->bbNum, |
| 2870 | topPredBlock->bbNum); |
| 2871 | |
| 2872 | newT->inheritWeight(topPredBlock); |
| 2873 | firstPred = false; |
| 2874 | } |
| 2875 | else |
| 2876 | { |
| 2877 | JITDUMP("in optCanonicalizeLoop: block " FMT_BB " will also contribute to the weight of " FMT_BB "\n" , |
| 2878 | newT->bbNum, topPredBlock->bbNum); |
| 2879 | |
| 2880 | BasicBlock::weight_t newWeight = newT->getBBWeight(this) + topPredBlock->getBBWeight(this); |
| 2881 | newT->setBBWeight(newWeight); |
| 2882 | } |
| 2883 | } |
| 2884 | } |
| 2885 | |
| 2886 | assert(newT->bbNext == f); |
| 2887 | if (f != t) |
| 2888 | { |
| 2889 | newT->bbJumpKind = BBJ_ALWAYS; |
| 2890 | newT->bbJumpDest = t; |
| 2891 | newT->bbTreeList = nullptr; |
| 2892 | fgInsertStmtAtEnd(newT, fgNewStmtFromTree(gtNewOperNode(GT_NOP, TYP_VOID, nullptr))); |
| 2893 | } |
| 2894 | |
| 2895 | // If it had been a do-while loop (top == entry), update entry, as well. |
| 2896 | BasicBlock* origE = optLoopTable[loopInd].lpEntry; |
| 2897 | if (optLoopTable[loopInd].lpTop == origE) |
| 2898 | { |
| 2899 | optLoopTable[loopInd].lpEntry = newT; |
| 2900 | } |
| 2901 | optLoopTable[loopInd].lpTop = newT; |
| 2902 | optLoopTable[loopInd].lpFirst = newT; |
| 2903 | |
| 2904 | newT->bbNatLoopNum = loopInd; |
| 2905 | |
| 2906 | JITDUMP("in optCanonicalizeLoop: made new block " FMT_BB " [%p] the new unique top of loop %d.\n" , newT->bbNum, |
| 2907 | dspPtr(newT), loopInd); |
| 2908 | |
| 2909 | // Make sure the head block still goes to the entry... |
| 2910 | if (h->bbJumpKind == BBJ_NONE && h->bbNext != optLoopTable[loopInd].lpEntry) |
| 2911 | { |
| 2912 | h->bbJumpKind = BBJ_ALWAYS; |
| 2913 | h->bbJumpDest = optLoopTable[loopInd].lpEntry; |
| 2914 | } |
| 2915 | else if (h->bbJumpKind == BBJ_COND && h->bbNext == newT && newT != optLoopTable[loopInd].lpEntry) |
| 2916 | { |
| 2917 | BasicBlock* h2 = fgNewBBafter(BBJ_ALWAYS, h, /*extendRegion*/ true); |
| 2918 | optLoopTable[loopInd].lpHead = h2; |
| 2919 | h2->bbJumpDest = optLoopTable[loopInd].lpEntry; |
| 2920 | h2->bbTreeList = nullptr; |
| 2921 | fgInsertStmtAtEnd(h2, fgNewStmtFromTree(gtNewOperNode(GT_NOP, TYP_VOID, nullptr))); |
| 2922 | } |
| 2923 | |
| 2924 | // If any loops nested in "loopInd" have the same head and entry as "loopInd", |
| 2925 | // it must be the case that they were do-while's (since "h" fell through to the entry). |
| 2926 | // The new node "newT" becomes the head of such loops. |
| 2927 | for (unsigned char childLoop = optLoopTable[loopInd].lpChild; childLoop != BasicBlock::NOT_IN_LOOP; |
| 2928 | childLoop = optLoopTable[childLoop].lpSibling) |
| 2929 | { |
| 2930 | if (optLoopTable[childLoop].lpEntry == origE && optLoopTable[childLoop].lpHead == h && |
| 2931 | newT->bbJumpKind == BBJ_NONE && newT->bbNext == origE) |
| 2932 | { |
| 2933 | optUpdateLoopHead(childLoop, h, newT); |
| 2934 | } |
| 2935 | } |
| 2936 | return true; |
| 2937 | } |
| 2938 | |
| 2939 | bool Compiler::optLoopContains(unsigned l1, unsigned l2) |
| 2940 | { |
| 2941 | assert(l1 != BasicBlock::NOT_IN_LOOP); |
| 2942 | if (l1 == l2) |
| 2943 | { |
| 2944 | return true; |
| 2945 | } |
| 2946 | else if (l2 == BasicBlock::NOT_IN_LOOP) |
| 2947 | { |
| 2948 | return false; |
| 2949 | } |
| 2950 | else |
| 2951 | { |
| 2952 | return optLoopContains(l1, optLoopTable[l2].lpParent); |
| 2953 | } |
| 2954 | } |
| 2955 | |
| 2956 | void Compiler::optUpdateLoopHead(unsigned loopInd, BasicBlock* from, BasicBlock* to) |
| 2957 | { |
| 2958 | assert(optLoopTable[loopInd].lpHead == from); |
| 2959 | optLoopTable[loopInd].lpHead = to; |
| 2960 | for (unsigned char childLoop = optLoopTable[loopInd].lpChild; childLoop != BasicBlock::NOT_IN_LOOP; |
| 2961 | childLoop = optLoopTable[childLoop].lpSibling) |
| 2962 | { |
| 2963 | if (optLoopTable[childLoop].lpHead == from) |
| 2964 | { |
| 2965 | optUpdateLoopHead(childLoop, from, to); |
| 2966 | } |
| 2967 | } |
| 2968 | } |
| 2969 | |
| 2970 | /***************************************************************************** |
| 2971 | * If the : i += const" will cause an overflow exception for the small types. |
| 2972 | */ |
| 2973 | |
| 2974 | bool jitIterSmallOverflow(int iterAtExit, var_types incrType) |
| 2975 | { |
| 2976 | int type_MAX; |
| 2977 | |
| 2978 | switch (incrType) |
| 2979 | { |
| 2980 | case TYP_BYTE: |
| 2981 | type_MAX = SCHAR_MAX; |
| 2982 | break; |
| 2983 | case TYP_UBYTE: |
| 2984 | type_MAX = UCHAR_MAX; |
| 2985 | break; |
| 2986 | case TYP_SHORT: |
| 2987 | type_MAX = SHRT_MAX; |
| 2988 | break; |
| 2989 | case TYP_USHORT: |
| 2990 | type_MAX = USHRT_MAX; |
| 2991 | break; |
| 2992 | |
| 2993 | case TYP_UINT: // Detected by checking for 32bit .... |
| 2994 | case TYP_INT: |
| 2995 | return false; // ... overflow same as done for TYP_INT |
| 2996 | |
| 2997 | default: |
| 2998 | NO_WAY("Bad type" ); |
| 2999 | } |
| 3000 | |
| 3001 | if (iterAtExit > type_MAX) |
| 3002 | { |
| 3003 | return true; |
| 3004 | } |
| 3005 | else |
| 3006 | { |
| 3007 | return false; |
| 3008 | } |
| 3009 | } |
| 3010 | |
| 3011 | /***************************************************************************** |
| 3012 | * If the "i -= const" will cause an underflow exception for the small types |
| 3013 | */ |
| 3014 | |
| 3015 | bool jitIterSmallUnderflow(int iterAtExit, var_types decrType) |
| 3016 | { |
| 3017 | int type_MIN; |
| 3018 | |
| 3019 | switch (decrType) |
| 3020 | { |
| 3021 | case TYP_BYTE: |
| 3022 | type_MIN = SCHAR_MIN; |
| 3023 | break; |
| 3024 | case TYP_SHORT: |
| 3025 | type_MIN = SHRT_MIN; |
| 3026 | break; |
| 3027 | case TYP_UBYTE: |
| 3028 | type_MIN = 0; |
| 3029 | break; |
| 3030 | case TYP_USHORT: |
| 3031 | type_MIN = 0; |
| 3032 | break; |
| 3033 | |
| 3034 | case TYP_UINT: // Detected by checking for 32bit .... |
| 3035 | case TYP_INT: |
| 3036 | return false; // ... underflow same as done for TYP_INT |
| 3037 | |
| 3038 | default: |
| 3039 | NO_WAY("Bad type" ); |
| 3040 | } |
| 3041 | |
| 3042 | if (iterAtExit < type_MIN) |
| 3043 | { |
| 3044 | return true; |
| 3045 | } |
| 3046 | else |
| 3047 | { |
| 3048 | return false; |
| 3049 | } |
| 3050 | } |
| 3051 | |
| 3052 | /***************************************************************************** |
| 3053 | * |
| 3054 | * Helper for unroll loops - Computes the number of repetitions |
| 3055 | * in a constant loop. If it cannot prove the number is constant returns false |
| 3056 | */ |
| 3057 | |
| 3058 | bool Compiler::optComputeLoopRep(int constInit, |
| 3059 | int constLimit, |
| 3060 | int iterInc, |
| 3061 | genTreeOps iterOper, |
| 3062 | var_types iterOperType, |
| 3063 | genTreeOps testOper, |
| 3064 | bool unsTest, |
| 3065 | bool dupCond, |
| 3066 | unsigned* iterCount) |
| 3067 | { |
| 3068 | noway_assert(genActualType(iterOperType) == TYP_INT); |
| 3069 | |
| 3070 | __int64 constInitX; |
| 3071 | __int64 constLimitX; |
| 3072 | |
| 3073 | unsigned loopCount; |
| 3074 | int iterSign; |
| 3075 | |
| 3076 | // Using this, we can just do a signed comparison with other 32 bit values. |
| 3077 | if (unsTest) |
| 3078 | { |
| 3079 | constLimitX = (unsigned int)constLimit; |
| 3080 | } |
| 3081 | else |
| 3082 | { |
| 3083 | constLimitX = (signed int)constLimit; |
| 3084 | } |
| 3085 | |
| 3086 | switch (iterOperType) |
| 3087 | { |
| 3088 | // For small types, the iteration operator will narrow these values if big |
| 3089 | |
| 3090 | #define INIT_ITER_BY_TYPE(type) \ |
| 3091 | constInitX = (type)constInit; \ |
| 3092 | iterInc = (type)iterInc; |
| 3093 | |
| 3094 | case TYP_BYTE: |
| 3095 | INIT_ITER_BY_TYPE(signed char); |
| 3096 | break; |
| 3097 | case TYP_UBYTE: |
| 3098 | INIT_ITER_BY_TYPE(unsigned char); |
| 3099 | break; |
| 3100 | case TYP_SHORT: |
| 3101 | INIT_ITER_BY_TYPE(signed short); |
| 3102 | break; |
| 3103 | case TYP_USHORT: |
| 3104 | INIT_ITER_BY_TYPE(unsigned short); |
| 3105 | break; |
| 3106 | |
| 3107 | // For the big types, 32 bit arithmetic is performed |
| 3108 | |
| 3109 | case TYP_INT: |
| 3110 | case TYP_UINT: |
| 3111 | if (unsTest) |
| 3112 | { |
| 3113 | constInitX = (unsigned int)constInit; |
| 3114 | } |
| 3115 | else |
| 3116 | { |
| 3117 | constInitX = (signed int)constInit; |
| 3118 | } |
| 3119 | break; |
| 3120 | |
| 3121 | default: |
| 3122 | noway_assert(!"Bad type" ); |
| 3123 | NO_WAY("Bad type" ); |
| 3124 | } |
| 3125 | |
| 3126 | /* If iterInc is zero we have an infinite loop */ |
| 3127 | if (iterInc == 0) |
| 3128 | { |
| 3129 | return false; |
| 3130 | } |
| 3131 | |
| 3132 | /* Set iterSign to +1 for positive iterInc and -1 for negative iterInc */ |
| 3133 | iterSign = (iterInc > 0) ? +1 : -1; |
| 3134 | |
| 3135 | /* Initialize loopCount to zero */ |
| 3136 | loopCount = 0; |
| 3137 | |
| 3138 | // If dupCond is true then the loop head contains a test which skips |
| 3139 | // this loop, if the constInit does not pass the loop test |
| 3140 | // Such a loop can execute zero times. |
| 3141 | // If dupCond is false then we have a true do-while loop which we |
| 3142 | // always execute the loop once before performing the loop test |
| 3143 | if (!dupCond) |
| 3144 | { |
| 3145 | loopCount += 1; |
| 3146 | constInitX += iterInc; |
| 3147 | } |
| 3148 | |
| 3149 | // bail if count is based on wrap-around math |
| 3150 | if (iterInc > 0) |
| 3151 | { |
| 3152 | if (constLimitX < constInitX) |
| 3153 | { |
| 3154 | return false; |
| 3155 | } |
| 3156 | } |
| 3157 | else if (constLimitX > constInitX) |
| 3158 | { |
| 3159 | return false; |
| 3160 | } |
| 3161 | |
| 3162 | /* Compute the number of repetitions */ |
| 3163 | |
| 3164 | switch (testOper) |
| 3165 | { |
| 3166 | __int64 iterAtExitX; |
| 3167 | |
| 3168 | case GT_EQ: |
| 3169 | /* something like "for (i=init; i == lim; i++)" doesn't make any sense */ |
| 3170 | return false; |
| 3171 | |
| 3172 | case GT_NE: |
| 3173 | /* "for (i=init; i != lim; i+=const)" - this is tricky since it may |
| 3174 | * have a constant number of iterations or loop forever - |
| 3175 | * we have to compute (lim-init) mod iterInc to see if it is zero. |
| 3176 | * If mod iterInc is not zero then the limit test will miss an a wrap will occur |
| 3177 | * which is probably not what the end user wanted, but it is legal. |
| 3178 | */ |
| 3179 | |
| 3180 | if (iterInc > 0) |
| 3181 | { |
| 3182 | /* Stepping by one, i.e. Mod with 1 is always zero */ |
| 3183 | if (iterInc != 1) |
| 3184 | { |
| 3185 | if (((constLimitX - constInitX) % iterInc) != 0) |
| 3186 | { |
| 3187 | return false; |
| 3188 | } |
| 3189 | } |
| 3190 | } |
| 3191 | else |
| 3192 | { |
| 3193 | noway_assert(iterInc < 0); |
| 3194 | /* Stepping by -1, i.e. Mod with 1 is always zero */ |
| 3195 | if (iterInc != -1) |
| 3196 | { |
| 3197 | if (((constInitX - constLimitX) % (-iterInc)) != 0) |
| 3198 | { |
| 3199 | return false; |
| 3200 | } |
| 3201 | } |
| 3202 | } |
| 3203 | |
| 3204 | switch (iterOper) |
| 3205 | { |
| 3206 | case GT_SUB: |
| 3207 | iterInc = -iterInc; |
| 3208 | __fallthrough; |
| 3209 | |
| 3210 | case GT_ADD: |
| 3211 | if (constInitX != constLimitX) |
| 3212 | { |
| 3213 | loopCount += (unsigned)((constLimitX - constInitX - iterSign) / iterInc) + 1; |
| 3214 | } |
| 3215 | |
| 3216 | iterAtExitX = (int)(constInitX + iterInc * (int)loopCount); |
| 3217 | |
| 3218 | if (unsTest) |
| 3219 | { |
| 3220 | iterAtExitX = (unsigned)iterAtExitX; |
| 3221 | } |
| 3222 | |
| 3223 | // Check if iteration incr will cause overflow for small types |
| 3224 | if (jitIterSmallOverflow((int)iterAtExitX, iterOperType)) |
| 3225 | { |
| 3226 | return false; |
| 3227 | } |
| 3228 | |
| 3229 | // iterator with 32bit overflow. Bad for TYP_(U)INT |
| 3230 | if (iterAtExitX < constLimitX) |
| 3231 | { |
| 3232 | return false; |
| 3233 | } |
| 3234 | |
| 3235 | *iterCount = loopCount; |
| 3236 | return true; |
| 3237 | |
| 3238 | case GT_MUL: |
| 3239 | case GT_DIV: |
| 3240 | case GT_RSH: |
| 3241 | case GT_LSH: |
| 3242 | case GT_UDIV: |
| 3243 | return false; |
| 3244 | |
| 3245 | default: |
| 3246 | noway_assert(!"Unknown operator for loop iterator" ); |
| 3247 | return false; |
| 3248 | } |
| 3249 | |
| 3250 | case GT_LT: |
| 3251 | switch (iterOper) |
| 3252 | { |
| 3253 | case GT_SUB: |
| 3254 | iterInc = -iterInc; |
| 3255 | __fallthrough; |
| 3256 | |
| 3257 | case GT_ADD: |
| 3258 | if (constInitX < constLimitX) |
| 3259 | { |
| 3260 | loopCount += (unsigned)((constLimitX - constInitX - iterSign) / iterInc) + 1; |
| 3261 | } |
| 3262 | |
| 3263 | iterAtExitX = (int)(constInitX + iterInc * (int)loopCount); |
| 3264 | |
| 3265 | if (unsTest) |
| 3266 | { |
| 3267 | iterAtExitX = (unsigned)iterAtExitX; |
| 3268 | } |
| 3269 | |
| 3270 | // Check if iteration incr will cause overflow for small types |
| 3271 | if (jitIterSmallOverflow((int)iterAtExitX, iterOperType)) |
| 3272 | { |
| 3273 | return false; |
| 3274 | } |
| 3275 | |
| 3276 | // iterator with 32bit overflow. Bad for TYP_(U)INT |
| 3277 | if (iterAtExitX < constLimitX) |
| 3278 | { |
| 3279 | return false; |
| 3280 | } |
| 3281 | |
| 3282 | *iterCount = loopCount; |
| 3283 | return true; |
| 3284 | |
| 3285 | case GT_MUL: |
| 3286 | case GT_DIV: |
| 3287 | case GT_RSH: |
| 3288 | case GT_LSH: |
| 3289 | case GT_UDIV: |
| 3290 | return false; |
| 3291 | |
| 3292 | default: |
| 3293 | noway_assert(!"Unknown operator for loop iterator" ); |
| 3294 | return false; |
| 3295 | } |
| 3296 | |
| 3297 | case GT_LE: |
| 3298 | switch (iterOper) |
| 3299 | { |
| 3300 | case GT_SUB: |
| 3301 | iterInc = -iterInc; |
| 3302 | __fallthrough; |
| 3303 | |
| 3304 | case GT_ADD: |
| 3305 | if (constInitX <= constLimitX) |
| 3306 | { |
| 3307 | loopCount += (unsigned)((constLimitX - constInitX) / iterInc) + 1; |
| 3308 | } |
| 3309 | |
| 3310 | iterAtExitX = (int)(constInitX + iterInc * (int)loopCount); |
| 3311 | |
| 3312 | if (unsTest) |
| 3313 | { |
| 3314 | iterAtExitX = (unsigned)iterAtExitX; |
| 3315 | } |
| 3316 | |
| 3317 | // Check if iteration incr will cause overflow for small types |
| 3318 | if (jitIterSmallOverflow((int)iterAtExitX, iterOperType)) |
| 3319 | { |
| 3320 | return false; |
| 3321 | } |
| 3322 | |
| 3323 | // iterator with 32bit overflow. Bad for TYP_(U)INT |
| 3324 | if (iterAtExitX <= constLimitX) |
| 3325 | { |
| 3326 | return false; |
| 3327 | } |
| 3328 | |
| 3329 | *iterCount = loopCount; |
| 3330 | return true; |
| 3331 | |
| 3332 | case GT_MUL: |
| 3333 | case GT_DIV: |
| 3334 | case GT_RSH: |
| 3335 | case GT_LSH: |
| 3336 | case GT_UDIV: |
| 3337 | return false; |
| 3338 | |
| 3339 | default: |
| 3340 | noway_assert(!"Unknown operator for loop iterator" ); |
| 3341 | return false; |
| 3342 | } |
| 3343 | |
| 3344 | case GT_GT: |
| 3345 | switch (iterOper) |
| 3346 | { |
| 3347 | case GT_SUB: |
| 3348 | iterInc = -iterInc; |
| 3349 | __fallthrough; |
| 3350 | |
| 3351 | case GT_ADD: |
| 3352 | if (constInitX > constLimitX) |
| 3353 | { |
| 3354 | loopCount += (unsigned)((constLimitX - constInitX - iterSign) / iterInc) + 1; |
| 3355 | } |
| 3356 | |
| 3357 | iterAtExitX = (int)(constInitX + iterInc * (int)loopCount); |
| 3358 | |
| 3359 | if (unsTest) |
| 3360 | { |
| 3361 | iterAtExitX = (unsigned)iterAtExitX; |
| 3362 | } |
| 3363 | |
| 3364 | // Check if small types will underflow |
| 3365 | if (jitIterSmallUnderflow((int)iterAtExitX, iterOperType)) |
| 3366 | { |
| 3367 | return false; |
| 3368 | } |
| 3369 | |
| 3370 | // iterator with 32bit underflow. Bad for TYP_INT and unsigneds |
| 3371 | if (iterAtExitX > constLimitX) |
| 3372 | { |
| 3373 | return false; |
| 3374 | } |
| 3375 | |
| 3376 | *iterCount = loopCount; |
| 3377 | return true; |
| 3378 | |
| 3379 | case GT_MUL: |
| 3380 | case GT_DIV: |
| 3381 | case GT_RSH: |
| 3382 | case GT_LSH: |
| 3383 | case GT_UDIV: |
| 3384 | return false; |
| 3385 | |
| 3386 | default: |
| 3387 | noway_assert(!"Unknown operator for loop iterator" ); |
| 3388 | return false; |
| 3389 | } |
| 3390 | |
| 3391 | case GT_GE: |
| 3392 | switch (iterOper) |
| 3393 | { |
| 3394 | case GT_SUB: |
| 3395 | iterInc = -iterInc; |
| 3396 | __fallthrough; |
| 3397 | |
| 3398 | case GT_ADD: |
| 3399 | if (constInitX >= constLimitX) |
| 3400 | { |
| 3401 | loopCount += (unsigned)((constLimitX - constInitX) / iterInc) + 1; |
| 3402 | } |
| 3403 | |
| 3404 | iterAtExitX = (int)(constInitX + iterInc * (int)loopCount); |
| 3405 | |
| 3406 | if (unsTest) |
| 3407 | { |
| 3408 | iterAtExitX = (unsigned)iterAtExitX; |
| 3409 | } |
| 3410 | |
| 3411 | // Check if small types will underflow |
| 3412 | if (jitIterSmallUnderflow((int)iterAtExitX, iterOperType)) |
| 3413 | { |
| 3414 | return false; |
| 3415 | } |
| 3416 | |
| 3417 | // iterator with 32bit underflow. Bad for TYP_INT and unsigneds |
| 3418 | if (iterAtExitX >= constLimitX) |
| 3419 | { |
| 3420 | return false; |
| 3421 | } |
| 3422 | |
| 3423 | *iterCount = loopCount; |
| 3424 | return true; |
| 3425 | |
| 3426 | case GT_MUL: |
| 3427 | case GT_DIV: |
| 3428 | case GT_RSH: |
| 3429 | case GT_LSH: |
| 3430 | case GT_UDIV: |
| 3431 | return false; |
| 3432 | |
| 3433 | default: |
| 3434 | noway_assert(!"Unknown operator for loop iterator" ); |
| 3435 | return false; |
| 3436 | } |
| 3437 | |
| 3438 | default: |
| 3439 | noway_assert(!"Unknown operator for loop condition" ); |
| 3440 | } |
| 3441 | |
| 3442 | return false; |
| 3443 | } |
| 3444 | |
| 3445 | /***************************************************************************** |
| 3446 | * |
| 3447 | * Look for loop unrolling candidates and unroll them |
| 3448 | */ |
| 3449 | |
| 3450 | #ifdef _PREFAST_ |
| 3451 | #pragma warning(push) |
| 3452 | #pragma warning(disable : 21000) // Suppress PREFast warning about overly large function |
| 3453 | #endif |
| 3454 | void Compiler::optUnrollLoops() |
| 3455 | { |
| 3456 | if (compCodeOpt() == SMALL_CODE) |
| 3457 | { |
| 3458 | return; |
| 3459 | } |
| 3460 | |
| 3461 | if (optLoopCount == 0) |
| 3462 | { |
| 3463 | return; |
| 3464 | } |
| 3465 | |
| 3466 | #ifdef DEBUG |
| 3467 | if (JitConfig.JitNoUnroll()) |
| 3468 | { |
| 3469 | return; |
| 3470 | } |
| 3471 | #endif |
| 3472 | |
| 3473 | #ifdef DEBUG |
| 3474 | if (verbose) |
| 3475 | { |
| 3476 | printf("*************** In optUnrollLoops()\n" ); |
| 3477 | } |
| 3478 | #endif |
| 3479 | /* Look for loop unrolling candidates */ |
| 3480 | |
| 3481 | bool change = false; |
| 3482 | |
| 3483 | // Visit loops from highest to lowest number to vist them in innermost |
| 3484 | // to outermost order |
| 3485 | for (unsigned lnum = optLoopCount - 1; lnum != ~0U; --lnum) |
| 3486 | { |
| 3487 | // This is necessary due to an apparent analysis limitation since |
| 3488 | // optLoopCount must be strictly greater than 0 upon entry and lnum |
| 3489 | // cannot wrap due to the loop termination condition. |
| 3490 | PREFAST_ASSUME(lnum != 0U - 1); |
| 3491 | |
| 3492 | BasicBlock* block; |
| 3493 | BasicBlock* head; |
| 3494 | BasicBlock* bottom; |
| 3495 | |
| 3496 | GenTree* loop; |
| 3497 | GenTree* test; |
| 3498 | GenTree* incr; |
| 3499 | GenTree* phdr; |
| 3500 | GenTree* init; |
| 3501 | |
| 3502 | bool dupCond; |
| 3503 | int lval; |
| 3504 | int lbeg; // initial value for iterator |
| 3505 | int llim; // limit value for iterator |
| 3506 | unsigned lvar; // iterator lclVar # |
| 3507 | int iterInc; // value to increment the iterator |
| 3508 | genTreeOps iterOper; // type of iterator increment (i.e. ADD, SUB, etc.) |
| 3509 | var_types iterOperType; // type result of the oper (for overflow instrs) |
| 3510 | genTreeOps testOper; // type of loop test (i.e. GT_LE, GT_GE, etc.) |
| 3511 | bool unsTest; // Is the comparison u/int |
| 3512 | |
| 3513 | unsigned loopRetCount; // number of BBJ_RETURN blocks in loop |
| 3514 | unsigned totalIter; // total number of iterations in the constant loop |
| 3515 | unsigned loopFlags; // actual lpFlags |
| 3516 | unsigned requiredFlags; // required lpFlags |
| 3517 | |
| 3518 | static const int ITER_LIMIT[COUNT_OPT_CODE + 1] = { |
| 3519 | 10, // BLENDED_CODE |
| 3520 | 0, // SMALL_CODE |
| 3521 | 20, // FAST_CODE |
| 3522 | 0 // COUNT_OPT_CODE |
| 3523 | }; |
| 3524 | |
| 3525 | noway_assert(ITER_LIMIT[SMALL_CODE] == 0); |
| 3526 | noway_assert(ITER_LIMIT[COUNT_OPT_CODE] == 0); |
| 3527 | |
| 3528 | unsigned iterLimit = (unsigned)ITER_LIMIT[compCodeOpt()]; |
| 3529 | |
| 3530 | #ifdef DEBUG |
| 3531 | if (compStressCompile(STRESS_UNROLL_LOOPS, 50)) |
| 3532 | { |
| 3533 | iterLimit *= 10; |
| 3534 | } |
| 3535 | #endif |
| 3536 | |
| 3537 | static const int UNROLL_LIMIT_SZ[COUNT_OPT_CODE + 1] = { |
| 3538 | 300, // BLENDED_CODE |
| 3539 | 0, // SMALL_CODE |
| 3540 | 600, // FAST_CODE |
| 3541 | 0 // COUNT_OPT_CODE |
| 3542 | }; |
| 3543 | |
| 3544 | noway_assert(UNROLL_LIMIT_SZ[SMALL_CODE] == 0); |
| 3545 | noway_assert(UNROLL_LIMIT_SZ[COUNT_OPT_CODE] == 0); |
| 3546 | |
| 3547 | int unrollLimitSz = (unsigned)UNROLL_LIMIT_SZ[compCodeOpt()]; |
| 3548 | |
| 3549 | loopFlags = optLoopTable[lnum].lpFlags; |
| 3550 | // Check for required flags: |
| 3551 | // LPFLG_DO_WHILE - required because this transform only handles loops of this form |
| 3552 | // LPFLG_CONST - required because this transform only handles full unrolls |
| 3553 | // LPFLG_SIMD_LIMIT - included here as a heuristic, not for correctness/structural reasons |
| 3554 | requiredFlags = LPFLG_DO_WHILE | LPFLG_CONST | LPFLG_SIMD_LIMIT; |
| 3555 | |
| 3556 | #ifdef DEBUG |
| 3557 | if (compStressCompile(STRESS_UNROLL_LOOPS, 50)) |
| 3558 | { |
| 3559 | // In stress mode, quadruple the size limit, and drop |
| 3560 | // the restriction that loop limit must be Vector<T>.Count. |
| 3561 | |
| 3562 | unrollLimitSz *= 4; |
| 3563 | requiredFlags &= ~LPFLG_SIMD_LIMIT; |
| 3564 | } |
| 3565 | #endif |
| 3566 | |
| 3567 | /* Ignore the loop if we don't have a do-while |
| 3568 | that has a constant number of iterations */ |
| 3569 | |
| 3570 | if ((loopFlags & requiredFlags) != requiredFlags) |
| 3571 | { |
| 3572 | continue; |
| 3573 | } |
| 3574 | |
| 3575 | /* ignore if removed or marked as not unrollable */ |
| 3576 | |
| 3577 | if (loopFlags & (LPFLG_DONT_UNROLL | LPFLG_REMOVED)) |
| 3578 | { |
| 3579 | continue; |
| 3580 | } |
| 3581 | |
| 3582 | head = optLoopTable[lnum].lpHead; |
| 3583 | noway_assert(head); |
| 3584 | bottom = optLoopTable[lnum].lpBottom; |
| 3585 | noway_assert(bottom); |
| 3586 | |
| 3587 | /* Get the loop data: |
| 3588 | - initial constant |
| 3589 | - limit constant |
| 3590 | - iterator |
| 3591 | - iterator increment |
| 3592 | - increment operation type (i.e. ADD, SUB, etc...) |
| 3593 | - loop test type (i.e. GT_GE, GT_LT, etc...) |
| 3594 | */ |
| 3595 | |
| 3596 | lbeg = optLoopTable[lnum].lpConstInit; |
| 3597 | llim = optLoopTable[lnum].lpConstLimit(); |
| 3598 | testOper = optLoopTable[lnum].lpTestOper(); |
| 3599 | |
| 3600 | lvar = optLoopTable[lnum].lpIterVar(); |
| 3601 | iterInc = optLoopTable[lnum].lpIterConst(); |
| 3602 | iterOper = optLoopTable[lnum].lpIterOper(); |
| 3603 | |
| 3604 | iterOperType = optLoopTable[lnum].lpIterOperType(); |
| 3605 | unsTest = (optLoopTable[lnum].lpTestTree->gtFlags & GTF_UNSIGNED) != 0; |
| 3606 | |
| 3607 | if (lvaTable[lvar].lvAddrExposed) |
| 3608 | { // If the loop iteration variable is address-exposed then bail |
| 3609 | continue; |
| 3610 | } |
| 3611 | if (lvaTable[lvar].lvIsStructField) |
| 3612 | { // If the loop iteration variable is a promoted field from a struct then |
| 3613 | // bail |
| 3614 | continue; |
| 3615 | } |
| 3616 | |
| 3617 | /* Locate the pre-header and initialization and increment/test statements */ |
| 3618 | |
| 3619 | phdr = head->bbTreeList; |
| 3620 | noway_assert(phdr); |
| 3621 | loop = bottom->bbTreeList; |
| 3622 | noway_assert(loop); |
| 3623 | |
| 3624 | init = head->lastStmt(); |
| 3625 | noway_assert(init && (init->gtNext == nullptr)); |
| 3626 | test = bottom->lastStmt(); |
| 3627 | noway_assert(test && (test->gtNext == nullptr)); |
| 3628 | incr = test->gtPrev; |
| 3629 | noway_assert(incr); |
| 3630 | |
| 3631 | if (init->gtFlags & GTF_STMT_CMPADD) |
| 3632 | { |
| 3633 | /* Must be a duplicated loop condition */ |
| 3634 | noway_assert(init->gtStmt.gtStmtExpr->gtOper == GT_JTRUE); |
| 3635 | |
| 3636 | dupCond = true; |
| 3637 | init = init->gtPrev; |
| 3638 | noway_assert(init); |
| 3639 | } |
| 3640 | else |
| 3641 | { |
| 3642 | dupCond = false; |
| 3643 | } |
| 3644 | |
| 3645 | /* Find the number of iterations - the function returns false if not a constant number */ |
| 3646 | |
| 3647 | if (!optComputeLoopRep(lbeg, llim, iterInc, iterOper, iterOperType, testOper, unsTest, dupCond, &totalIter)) |
| 3648 | { |
| 3649 | continue; |
| 3650 | } |
| 3651 | |
| 3652 | /* Forget it if there are too many repetitions or not a constant loop */ |
| 3653 | |
| 3654 | if (totalIter > iterLimit) |
| 3655 | { |
| 3656 | continue; |
| 3657 | } |
| 3658 | |
| 3659 | noway_assert(init->gtOper == GT_STMT); |
| 3660 | init = init->gtStmt.gtStmtExpr; |
| 3661 | noway_assert(test->gtOper == GT_STMT); |
| 3662 | test = test->gtStmt.gtStmtExpr; |
| 3663 | noway_assert(incr->gtOper == GT_STMT); |
| 3664 | incr = incr->gtStmt.gtStmtExpr; |
| 3665 | |
| 3666 | // Don't unroll loops we don't understand. |
| 3667 | if (incr->gtOper != GT_ASG) |
| 3668 | { |
| 3669 | continue; |
| 3670 | } |
| 3671 | incr = incr->gtOp.gtOp2; |
| 3672 | |
| 3673 | /* Make sure everything looks ok */ |
| 3674 | if ((init->gtOper != GT_ASG) || (init->gtOp.gtOp1->gtOper != GT_LCL_VAR) || |
| 3675 | (init->gtOp.gtOp1->gtLclVarCommon.gtLclNum != lvar) || (init->gtOp.gtOp2->gtOper != GT_CNS_INT) || |
| 3676 | (init->gtOp.gtOp2->gtIntCon.gtIconVal != lbeg) || |
| 3677 | |
| 3678 | !((incr->gtOper == GT_ADD) || (incr->gtOper == GT_SUB)) || (incr->gtOp.gtOp1->gtOper != GT_LCL_VAR) || |
| 3679 | (incr->gtOp.gtOp1->gtLclVarCommon.gtLclNum != lvar) || (incr->gtOp.gtOp2->gtOper != GT_CNS_INT) || |
| 3680 | (incr->gtOp.gtOp2->gtIntCon.gtIconVal != iterInc) || |
| 3681 | |
| 3682 | (test->gtOper != GT_JTRUE)) |
| 3683 | { |
| 3684 | noway_assert(!"Bad precondition in Compiler::optUnrollLoops()" ); |
| 3685 | continue; |
| 3686 | } |
| 3687 | |
| 3688 | /* heuristic - Estimated cost in code size of the unrolled loop */ |
| 3689 | |
| 3690 | { |
| 3691 | ClrSafeInt<unsigned> loopCostSz; // Cost is size of one iteration |
| 3692 | |
| 3693 | block = head->bbNext; |
| 3694 | auto tryIndex = block->bbTryIndex; |
| 3695 | |
| 3696 | loopRetCount = 0; |
| 3697 | for (;; block = block->bbNext) |
| 3698 | { |
| 3699 | if (block->bbTryIndex != tryIndex) |
| 3700 | { |
| 3701 | // Unrolling would require cloning EH regions |
| 3702 | goto DONE_LOOP; |
| 3703 | } |
| 3704 | |
| 3705 | if (block->bbJumpKind == BBJ_RETURN) |
| 3706 | { |
| 3707 | ++loopRetCount; |
| 3708 | } |
| 3709 | |
| 3710 | /* Visit all the statements in the block */ |
| 3711 | |
| 3712 | for (GenTreeStmt* stmt = block->firstStmt(); stmt; stmt = stmt->gtNextStmt) |
| 3713 | { |
| 3714 | /* Calculate gtCostSz */ |
| 3715 | gtSetStmtInfo(stmt); |
| 3716 | |
| 3717 | /* Update loopCostSz */ |
| 3718 | loopCostSz += stmt->gtCostSz; |
| 3719 | } |
| 3720 | |
| 3721 | if (block == bottom) |
| 3722 | { |
| 3723 | break; |
| 3724 | } |
| 3725 | } |
| 3726 | |
| 3727 | #ifdef JIT32_GCENCODER |
| 3728 | if (fgReturnCount + loopRetCount * (totalIter - 1) > SET_EPILOGCNT_MAX) |
| 3729 | { |
| 3730 | // Jit32 GC encoder can't report more than SET_EPILOGCNT_MAX epilogs. |
| 3731 | goto DONE_LOOP; |
| 3732 | } |
| 3733 | #endif // !JIT32_GCENCODER |
| 3734 | |
| 3735 | /* Compute the estimated increase in code size for the unrolled loop */ |
| 3736 | |
| 3737 | ClrSafeInt<unsigned> fixedLoopCostSz(8); |
| 3738 | |
| 3739 | ClrSafeInt<int> unrollCostSz = ClrSafeInt<int>(loopCostSz * ClrSafeInt<unsigned>(totalIter)) - |
| 3740 | ClrSafeInt<int>(loopCostSz + fixedLoopCostSz); |
| 3741 | |
| 3742 | /* Don't unroll if too much code duplication would result. */ |
| 3743 | |
| 3744 | if (unrollCostSz.IsOverflow() || (unrollCostSz.Value() > unrollLimitSz)) |
| 3745 | { |
| 3746 | goto DONE_LOOP; |
| 3747 | } |
| 3748 | |
| 3749 | /* Looks like a good idea to unroll this loop, let's do it! */ |
| 3750 | CLANG_FORMAT_COMMENT_ANCHOR; |
| 3751 | |
| 3752 | #ifdef DEBUG |
| 3753 | if (verbose) |
| 3754 | { |
| 3755 | printf("\nUnrolling loop " FMT_BB, head->bbNext->bbNum); |
| 3756 | if (head->bbNext->bbNum != bottom->bbNum) |
| 3757 | { |
| 3758 | printf(".." FMT_BB, bottom->bbNum); |
| 3759 | } |
| 3760 | printf(" over V%02u from %u to %u" , lvar, lbeg, llim); |
| 3761 | printf(" unrollCostSz = %d\n" , unrollCostSz); |
| 3762 | printf("\n" ); |
| 3763 | } |
| 3764 | #endif |
| 3765 | } |
| 3766 | |
| 3767 | /* Create the unrolled loop statement list */ |
| 3768 | { |
| 3769 | BlockToBlockMap blockMap(getAllocator()); |
| 3770 | BasicBlock* insertAfter = bottom; |
| 3771 | |
| 3772 | for (lval = lbeg; totalIter; totalIter--) |
| 3773 | { |
| 3774 | for (block = head->bbNext;; block = block->bbNext) |
| 3775 | { |
| 3776 | BasicBlock* newBlock = insertAfter = |
| 3777 | fgNewBBafter(block->bbJumpKind, insertAfter, /*extendRegion*/ true); |
| 3778 | blockMap.Set(block, newBlock); |
| 3779 | |
| 3780 | if (!BasicBlock::CloneBlockState(this, newBlock, block, lvar, lval)) |
| 3781 | { |
| 3782 | // cloneExpr doesn't handle everything |
| 3783 | BasicBlock* oldBottomNext = insertAfter->bbNext; |
| 3784 | bottom->bbNext = oldBottomNext; |
| 3785 | oldBottomNext->bbPrev = bottom; |
| 3786 | optLoopTable[lnum].lpFlags |= LPFLG_DONT_UNROLL; |
| 3787 | goto DONE_LOOP; |
| 3788 | } |
| 3789 | // Block weight should no longer have the loop multiplier |
| 3790 | newBlock->modifyBBWeight(newBlock->bbWeight / BB_LOOP_WEIGHT); |
| 3791 | // Jump dests are set in a post-pass; make sure CloneBlockState hasn't tried to set them. |
| 3792 | assert(newBlock->bbJumpDest == nullptr); |
| 3793 | |
| 3794 | if (block == bottom) |
| 3795 | { |
| 3796 | // Remove the test; we're doing a full unroll. |
| 3797 | |
| 3798 | GenTreeStmt* testCopyStmt = newBlock->lastStmt(); |
| 3799 | GenTree* testCopyExpr = testCopyStmt->gtStmt.gtStmtExpr; |
| 3800 | assert(testCopyExpr->gtOper == GT_JTRUE); |
| 3801 | GenTree* sideEffList = nullptr; |
| 3802 | gtExtractSideEffList(testCopyExpr, &sideEffList, GTF_SIDE_EFFECT | GTF_ORDER_SIDEEFF); |
| 3803 | if (sideEffList == nullptr) |
| 3804 | { |
| 3805 | fgRemoveStmt(newBlock, testCopyStmt); |
| 3806 | } |
| 3807 | else |
| 3808 | { |
| 3809 | testCopyStmt->gtStmt.gtStmtExpr = sideEffList; |
| 3810 | } |
| 3811 | newBlock->bbJumpKind = BBJ_NONE; |
| 3812 | |
| 3813 | // Exit this loop; we've walked all the blocks. |
| 3814 | break; |
| 3815 | } |
| 3816 | } |
| 3817 | |
| 3818 | // Now redirect any branches within the newly-cloned iteration |
| 3819 | for (block = head->bbNext; block != bottom; block = block->bbNext) |
| 3820 | { |
| 3821 | BasicBlock* newBlock = blockMap[block]; |
| 3822 | optCopyBlkDest(block, newBlock); |
| 3823 | optRedirectBlock(newBlock, &blockMap); |
| 3824 | } |
| 3825 | |
| 3826 | /* update the new value for the unrolled iterator */ |
| 3827 | |
| 3828 | switch (iterOper) |
| 3829 | { |
| 3830 | case GT_ADD: |
| 3831 | lval += iterInc; |
| 3832 | break; |
| 3833 | |
| 3834 | case GT_SUB: |
| 3835 | lval -= iterInc; |
| 3836 | break; |
| 3837 | |
| 3838 | case GT_RSH: |
| 3839 | case GT_LSH: |
| 3840 | noway_assert(!"Unrolling not implemented for this loop iterator" ); |
| 3841 | goto DONE_LOOP; |
| 3842 | |
| 3843 | default: |
| 3844 | noway_assert(!"Unknown operator for constant loop iterator" ); |
| 3845 | goto DONE_LOOP; |
| 3846 | } |
| 3847 | } |
| 3848 | |
| 3849 | // Gut the old loop body |
| 3850 | for (block = head->bbNext;; block = block->bbNext) |
| 3851 | { |
| 3852 | block->bbTreeList = nullptr; |
| 3853 | block->bbJumpKind = BBJ_NONE; |
| 3854 | block->bbFlags &= ~(BBF_NEEDS_GCPOLL | BBF_LOOP_HEAD); |
| 3855 | if (block->bbJumpDest != nullptr) |
| 3856 | { |
| 3857 | block->bbJumpDest = nullptr; |
| 3858 | } |
| 3859 | |
| 3860 | if (block == bottom) |
| 3861 | { |
| 3862 | break; |
| 3863 | } |
| 3864 | } |
| 3865 | |
| 3866 | /* if the HEAD is a BBJ_COND drop the condition (and make HEAD a BBJ_NONE block) */ |
| 3867 | |
| 3868 | if (head->bbJumpKind == BBJ_COND) |
| 3869 | { |
| 3870 | phdr = head->bbTreeList; |
| 3871 | noway_assert(phdr); |
| 3872 | test = phdr->gtPrev; |
| 3873 | |
| 3874 | noway_assert(test && (test->gtNext == nullptr)); |
| 3875 | noway_assert(test->gtOper == GT_STMT); |
| 3876 | noway_assert(test->gtStmt.gtStmtExpr->gtOper == GT_JTRUE); |
| 3877 | |
| 3878 | init = test->gtPrev; |
| 3879 | noway_assert(init && (init->gtNext == test)); |
| 3880 | noway_assert(init->gtOper == GT_STMT); |
| 3881 | |
| 3882 | init->gtNext = nullptr; |
| 3883 | phdr->gtPrev = init; |
| 3884 | head->bbJumpKind = BBJ_NONE; |
| 3885 | head->bbFlags &= ~BBF_NEEDS_GCPOLL; |
| 3886 | } |
| 3887 | else |
| 3888 | { |
| 3889 | /* the loop must execute */ |
| 3890 | noway_assert(head->bbJumpKind == BBJ_NONE); |
| 3891 | } |
| 3892 | |
| 3893 | #ifdef DEBUG |
| 3894 | if (verbose) |
| 3895 | { |
| 3896 | printf("Whole unrolled loop:\n" ); |
| 3897 | |
| 3898 | gtDispTree(init); |
| 3899 | printf("\n" ); |
| 3900 | fgDumpTrees(head->bbNext, insertAfter); |
| 3901 | } |
| 3902 | #endif |
| 3903 | |
| 3904 | /* Remember that something has changed */ |
| 3905 | |
| 3906 | change = true; |
| 3907 | |
| 3908 | /* Make sure to update loop table */ |
| 3909 | |
| 3910 | /* Use the LPFLG_REMOVED flag and update the bbLoopMask accordingly |
| 3911 | * (also make head and bottom NULL - to hit an assert or GPF) */ |
| 3912 | |
| 3913 | optLoopTable[lnum].lpFlags |= LPFLG_REMOVED; |
| 3914 | optLoopTable[lnum].lpHead = optLoopTable[lnum].lpBottom = nullptr; |
| 3915 | |
| 3916 | // Note if we created new BBJ_RETURNs |
| 3917 | fgReturnCount += loopRetCount * (totalIter - 1); |
| 3918 | } |
| 3919 | |
| 3920 | DONE_LOOP:; |
| 3921 | } |
| 3922 | |
| 3923 | if (change) |
| 3924 | { |
| 3925 | fgUpdateChangedFlowGraph(); |
| 3926 | } |
| 3927 | |
| 3928 | #ifdef DEBUG |
| 3929 | fgDebugCheckBBlist(true); |
| 3930 | #endif |
| 3931 | } |
| 3932 | #ifdef _PREFAST_ |
| 3933 | #pragma warning(pop) |
| 3934 | #endif |
| 3935 | |
| 3936 | /***************************************************************************** |
| 3937 | * |
| 3938 | * Return false if there is a code path from 'topBB' to 'botBB' that might |
| 3939 | * not execute a method call. |
| 3940 | */ |
| 3941 | |
| 3942 | bool Compiler::optReachWithoutCall(BasicBlock* topBB, BasicBlock* botBB) |
| 3943 | { |
| 3944 | // TODO-Cleanup: Currently BBF_GC_SAFE_POINT is not set for helper calls, |
| 3945 | // as some helper calls are neither interruptible nor hijackable. |
| 3946 | // When we can determine this, then we can set BBF_GC_SAFE_POINT for |
| 3947 | // those helpers too. |
| 3948 | |
| 3949 | noway_assert(topBB->bbNum <= botBB->bbNum); |
| 3950 | |
| 3951 | // We can always check topBB and botBB for any gc safe points and early out |
| 3952 | |
| 3953 | if ((topBB->bbFlags | botBB->bbFlags) & BBF_GC_SAFE_POINT) |
| 3954 | { |
| 3955 | return false; |
| 3956 | } |
| 3957 | |
| 3958 | // Otherwise we will need to rely upon the dominator sets |
| 3959 | |
| 3960 | if (!fgDomsComputed) |
| 3961 | { |
| 3962 | // return a conservative answer of true when we don't have the dominator sets |
| 3963 | return true; |
| 3964 | } |
| 3965 | |
| 3966 | BasicBlock* curBB = topBB; |
| 3967 | for (;;) |
| 3968 | { |
| 3969 | noway_assert(curBB); |
| 3970 | |
| 3971 | // If we added a loop pre-header block then we will |
| 3972 | // have a bbNum greater than fgLastBB, and we won't have |
| 3973 | // any dominator information about this block, so skip it. |
| 3974 | // |
| 3975 | if (curBB->bbNum <= fgLastBB->bbNum) |
| 3976 | { |
| 3977 | noway_assert(curBB->bbNum <= botBB->bbNum); |
| 3978 | |
| 3979 | // Does this block contain a gc safe point? |
| 3980 | |
| 3981 | if (curBB->bbFlags & BBF_GC_SAFE_POINT) |
| 3982 | { |
| 3983 | // Will this block always execute on the way to botBB ? |
| 3984 | // |
| 3985 | // Since we are checking every block in [topBB .. botBB] and we are using |
| 3986 | // a lexical definition of a loop. |
| 3987 | // (all that we know is that is that botBB is a back-edge to topBB) |
| 3988 | // Thus while walking blocks in this range we may encounter some blocks |
| 3989 | // that are not really part of the loop, and so we need to perform |
| 3990 | // some additional checks: |
| 3991 | // |
| 3992 | // We will check that the current 'curBB' is reachable from 'topBB' |
| 3993 | // and that it dominates the block containing the back-edge 'botBB' |
| 3994 | // When both of these are true then we know that the gcsafe point in 'curBB' |
| 3995 | // will be encountered in the loop and we can return false |
| 3996 | // |
| 3997 | if (fgDominate(curBB, botBB) && fgReachable(topBB, curBB)) |
| 3998 | { |
| 3999 | return false; |
| 4000 | } |
| 4001 | } |
| 4002 | else |
| 4003 | { |
| 4004 | // If we've reached the destination block, then we're done |
| 4005 | |
| 4006 | if (curBB == botBB) |
| 4007 | { |
| 4008 | break; |
| 4009 | } |
| 4010 | } |
| 4011 | } |
| 4012 | |
| 4013 | curBB = curBB->bbNext; |
| 4014 | } |
| 4015 | |
| 4016 | // If we didn't find any blocks that contained a gc safe point and |
| 4017 | // also met the fgDominate and fgReachable criteria then we must return true |
| 4018 | // |
| 4019 | return true; |
| 4020 | } |
| 4021 | |
| 4022 | /***************************************************************************** |
| 4023 | * |
| 4024 | * Find the loop termination test at the bottom of the loop |
| 4025 | */ |
| 4026 | |
| 4027 | static GenTree* optFindLoopTermTest(BasicBlock* bottom) |
| 4028 | { |
| 4029 | GenTree* testt = bottom->bbTreeList; |
| 4030 | |
| 4031 | assert(testt && testt->gtOper == GT_STMT); |
| 4032 | |
| 4033 | GenTree* result = testt->gtPrev; |
| 4034 | |
| 4035 | #ifdef DEBUG |
| 4036 | while (testt->gtNext) |
| 4037 | { |
| 4038 | testt = testt->gtNext; |
| 4039 | } |
| 4040 | |
| 4041 | assert(testt == result); |
| 4042 | #endif |
| 4043 | |
| 4044 | return result; |
| 4045 | } |
| 4046 | |
| 4047 | /***************************************************************************** |
| 4048 | * Optimize "jmp C; do{} C:while(cond);" loops to "if (cond){ do{}while(cond}; }" |
| 4049 | */ |
| 4050 | |
| 4051 | void Compiler::fgOptWhileLoop(BasicBlock* block) |
| 4052 | { |
| 4053 | noway_assert(opts.OptimizationEnabled()); |
| 4054 | noway_assert(compCodeOpt() != SMALL_CODE); |
| 4055 | |
| 4056 | /* |
| 4057 | Optimize while loops into do { } while loop |
| 4058 | Our loop hoisting logic requires do { } while loops. |
| 4059 | Specifically, we're looking for the following case: |
| 4060 | |
| 4061 | ... |
| 4062 | jmp test |
| 4063 | loop: |
| 4064 | ... |
| 4065 | ... |
| 4066 | test: |
| 4067 | cond |
| 4068 | jtrue loop |
| 4069 | |
| 4070 | If we find this, and the condition is simple enough, we change |
| 4071 | the loop to the following: |
| 4072 | |
| 4073 | ... |
| 4074 | cond |
| 4075 | jfalse done |
| 4076 | // else fall-through |
| 4077 | loop: |
| 4078 | ... |
| 4079 | ... |
| 4080 | test: |
| 4081 | cond |
| 4082 | jtrue loop |
| 4083 | done: |
| 4084 | |
| 4085 | */ |
| 4086 | |
| 4087 | /* Does the BB end with an unconditional jump? */ |
| 4088 | |
| 4089 | if (block->bbJumpKind != BBJ_ALWAYS || (block->bbFlags & BBF_KEEP_BBJ_ALWAYS)) |
| 4090 | { // It can't be one of the ones we use for our exception magic |
| 4091 | return; |
| 4092 | } |
| 4093 | |
| 4094 | // It has to be a forward jump |
| 4095 | // TODO-CQ: Check if we can also optimize the backwards jump as well. |
| 4096 | // |
| 4097 | if (fgIsForwardBranch(block) == false) |
| 4098 | { |
| 4099 | return; |
| 4100 | } |
| 4101 | |
| 4102 | // Get hold of the jump target |
| 4103 | BasicBlock* bTest = block->bbJumpDest; |
| 4104 | |
| 4105 | // Does the block consist of 'jtrue(cond) block' ? |
| 4106 | if (bTest->bbJumpKind != BBJ_COND) |
| 4107 | { |
| 4108 | return; |
| 4109 | } |
| 4110 | |
| 4111 | // bTest must be a backwards jump to block->bbNext |
| 4112 | if (bTest->bbJumpDest != block->bbNext) |
| 4113 | { |
| 4114 | return; |
| 4115 | } |
| 4116 | |
| 4117 | // Since test is a BBJ_COND it will have a bbNext |
| 4118 | noway_assert(bTest->bbNext); |
| 4119 | |
| 4120 | // 'block' must be in the same try region as the condition, since we're going to insert |
| 4121 | // a duplicated condition in 'block', and the condition might include exception throwing code. |
| 4122 | if (!BasicBlock::sameTryRegion(block, bTest)) |
| 4123 | { |
| 4124 | return; |
| 4125 | } |
| 4126 | |
| 4127 | // We're going to change 'block' to branch to bTest->bbNext, so that also better be in the |
| 4128 | // same try region (or no try region) to avoid generating illegal flow. |
| 4129 | BasicBlock* bTestNext = bTest->bbNext; |
| 4130 | if (bTestNext->hasTryIndex() && !BasicBlock::sameTryRegion(block, bTestNext)) |
| 4131 | { |
| 4132 | return; |
| 4133 | } |
| 4134 | |
| 4135 | GenTree* condStmt = optFindLoopTermTest(bTest); |
| 4136 | |
| 4137 | // bTest must only contain only a jtrue with no other stmts, we will only clone |
| 4138 | // the conditional, so any other statements will not get cloned |
| 4139 | // TODO-CQ: consider cloning the whole bTest block as inserting it after block. |
| 4140 | // |
| 4141 | if (bTest->bbTreeList != condStmt) |
| 4142 | { |
| 4143 | return; |
| 4144 | } |
| 4145 | |
| 4146 | /* Get to the condition node from the statement tree */ |
| 4147 | |
| 4148 | noway_assert(condStmt->gtOper == GT_STMT); |
| 4149 | |
| 4150 | GenTree* condTree = condStmt->gtStmt.gtStmtExpr; |
| 4151 | noway_assert(condTree->gtOper == GT_JTRUE); |
| 4152 | |
| 4153 | condTree = condTree->gtOp.gtOp1; |
| 4154 | |
| 4155 | // The condTree has to be a RelOp comparison |
| 4156 | // TODO-CQ: Check if we can also optimize the backwards jump as well. |
| 4157 | // |
| 4158 | if (condTree->OperIsCompare() == false) |
| 4159 | { |
| 4160 | return; |
| 4161 | } |
| 4162 | |
| 4163 | /* We call gtPrepareCost to measure the cost of duplicating this tree */ |
| 4164 | |
| 4165 | gtPrepareCost(condTree); |
| 4166 | unsigned estDupCostSz = condTree->gtCostSz; |
| 4167 | |
| 4168 | double loopIterations = (double)BB_LOOP_WEIGHT; |
| 4169 | |
| 4170 | bool allProfileWeightsAreValid = false; |
| 4171 | BasicBlock::weight_t weightBlock = block->bbWeight; |
| 4172 | BasicBlock::weight_t weightTest = bTest->bbWeight; |
| 4173 | BasicBlock::weight_t weightNext = block->bbNext->bbWeight; |
| 4174 | |
| 4175 | // If we have profile data then we calculate the number of time |
| 4176 | // the loop will iterate into loopIterations |
| 4177 | if (fgIsUsingProfileWeights()) |
| 4178 | { |
| 4179 | // Only rely upon the profile weight when all three of these blocks |
| 4180 | // have good profile weights |
| 4181 | if (block->hasProfileWeight() && bTest->hasProfileWeight() && block->bbNext->hasProfileWeight()) |
| 4182 | { |
| 4183 | allProfileWeightsAreValid = true; |
| 4184 | |
| 4185 | // If this while loop never iterates then don't bother transforming |
| 4186 | if (weightNext == 0) |
| 4187 | { |
| 4188 | return; |
| 4189 | } |
| 4190 | |
| 4191 | // with (weighNext > 0) we should also have (weightTest >= weightBlock) |
| 4192 | // if the profile weights are all valid. |
| 4193 | // |
| 4194 | // weightNext is the number of time this loop iterates |
| 4195 | // weightBlock is the number of times that we enter the while loop |
| 4196 | // loopIterations is the average number of times that this loop iterates |
| 4197 | // |
| 4198 | if (weightTest >= weightBlock) |
| 4199 | { |
| 4200 | loopIterations = (double)block->bbNext->bbWeight / (double)block->bbWeight; |
| 4201 | } |
| 4202 | } |
| 4203 | } |
| 4204 | |
| 4205 | unsigned maxDupCostSz = 32; |
| 4206 | |
| 4207 | // optFastCodeOrBlendedLoop(bTest->bbWeight) does not work here as we have not |
| 4208 | // set loop weights yet |
| 4209 | if ((compCodeOpt() == FAST_CODE) || compStressCompile(STRESS_DO_WHILE_LOOPS, 30)) |
| 4210 | { |
| 4211 | maxDupCostSz *= 4; |
| 4212 | } |
| 4213 | |
| 4214 | // If this loop iterates a lot then raise the maxDupCost |
| 4215 | if (loopIterations >= 12.0) |
| 4216 | { |
| 4217 | maxDupCostSz *= 2; |
| 4218 | } |
| 4219 | if (loopIterations >= 96.0) |
| 4220 | { |
| 4221 | maxDupCostSz *= 2; |
| 4222 | } |
| 4223 | |
| 4224 | // If the loop condition has a shared static helper, we really want this loop converted |
| 4225 | // as not converting the loop will disable loop hoisting, meaning the shared helper will |
| 4226 | // be executed on every loop iteration. |
| 4227 | int countOfHelpers = 0; |
| 4228 | fgWalkTreePre(&condTree, CountSharedStaticHelper, &countOfHelpers); |
| 4229 | |
| 4230 | if (countOfHelpers > 0 && compCodeOpt() != SMALL_CODE) |
| 4231 | { |
| 4232 | maxDupCostSz += 24 * min(countOfHelpers, (int)(loopIterations + 1.5)); |
| 4233 | } |
| 4234 | |
| 4235 | // If the compare has too high cost then we don't want to dup |
| 4236 | |
| 4237 | bool costIsTooHigh = (estDupCostSz > maxDupCostSz); |
| 4238 | |
| 4239 | #ifdef DEBUG |
| 4240 | if (verbose) |
| 4241 | { |
| 4242 | printf("\nDuplication of loop condition [%06u] is %s, because the cost of duplication (%i) is %s than %i," |
| 4243 | "\n loopIterations = %7.3f, countOfHelpers = %d, validProfileWeights = %s\n" , |
| 4244 | condTree->gtTreeID, costIsTooHigh ? "not done" : "performed" , estDupCostSz, |
| 4245 | costIsTooHigh ? "greater" : "less or equal" , maxDupCostSz, loopIterations, countOfHelpers, |
| 4246 | allProfileWeightsAreValid ? "true" : "false" ); |
| 4247 | } |
| 4248 | #endif |
| 4249 | |
| 4250 | if (costIsTooHigh) |
| 4251 | { |
| 4252 | return; |
| 4253 | } |
| 4254 | |
| 4255 | /* Looks good - duplicate the condition test */ |
| 4256 | |
| 4257 | condTree->gtFlags |= GTF_RELOP_ZTT; |
| 4258 | |
| 4259 | condTree = gtCloneExpr(condTree); |
| 4260 | gtReverseCond(condTree); |
| 4261 | |
| 4262 | // Make sure clone expr copied the flag |
| 4263 | assert(condTree->gtFlags & GTF_RELOP_ZTT); |
| 4264 | |
| 4265 | condTree = gtNewOperNode(GT_JTRUE, TYP_VOID, condTree); |
| 4266 | |
| 4267 | /* Create a statement entry out of the condition and |
| 4268 | append the condition test at the end of 'block' */ |
| 4269 | |
| 4270 | GenTree* copyOfCondStmt = fgInsertStmtAtEnd(block, condTree); |
| 4271 | |
| 4272 | copyOfCondStmt->gtFlags |= GTF_STMT_CMPADD; |
| 4273 | |
| 4274 | if (opts.compDbgInfo) |
| 4275 | { |
| 4276 | copyOfCondStmt->gtStmt.gtStmtILoffsx = condStmt->gtStmt.gtStmtILoffsx; |
| 4277 | } |
| 4278 | |
| 4279 | // Flag the block that received the copy as potentially having an array/vtable |
| 4280 | // reference if the block copied from did; this is a conservative guess. |
| 4281 | if (auto copyFlags = bTest->bbFlags & (BBF_HAS_VTABREF | BBF_HAS_IDX_LEN)) |
| 4282 | { |
| 4283 | block->bbFlags |= copyFlags; |
| 4284 | } |
| 4285 | |
| 4286 | // If we have profile data for all blocks and we know that we are cloning the |
| 4287 | // bTest block into block and thus changing the control flow from block so |
| 4288 | // that it no longer goes directly to bTest anymore, we have to adjust the |
| 4289 | // weight of bTest by subtracting out the weight of block. |
| 4290 | // |
| 4291 | if (allProfileWeightsAreValid) |
| 4292 | { |
| 4293 | // |
| 4294 | // Some additional sanity checks before adjusting the weight of bTest |
| 4295 | // |
| 4296 | if ((weightNext > 0) && (weightTest >= weightBlock) && (weightTest != BB_MAX_WEIGHT)) |
| 4297 | { |
| 4298 | // Get the two edge that flow out of bTest |
| 4299 | flowList* edgeToNext = fgGetPredForBlock(bTest->bbNext, bTest); |
| 4300 | flowList* edgeToJump = fgGetPredForBlock(bTest->bbJumpDest, bTest); |
| 4301 | |
| 4302 | // Calculate the new weight for block bTest |
| 4303 | |
| 4304 | BasicBlock::weight_t newWeightTest = |
| 4305 | (weightTest > weightBlock) ? (weightTest - weightBlock) : BB_ZERO_WEIGHT; |
| 4306 | bTest->bbWeight = newWeightTest; |
| 4307 | |
| 4308 | if (newWeightTest == BB_ZERO_WEIGHT) |
| 4309 | { |
| 4310 | bTest->bbFlags |= BBF_RUN_RARELY; |
| 4311 | // All out edge weights are set to zero |
| 4312 | edgeToNext->flEdgeWeightMin = BB_ZERO_WEIGHT; |
| 4313 | edgeToNext->flEdgeWeightMax = BB_ZERO_WEIGHT; |
| 4314 | edgeToJump->flEdgeWeightMin = BB_ZERO_WEIGHT; |
| 4315 | edgeToJump->flEdgeWeightMax = BB_ZERO_WEIGHT; |
| 4316 | } |
| 4317 | else |
| 4318 | { |
| 4319 | // Update the our edge weights |
| 4320 | edgeToNext->flEdgeWeightMin = BB_ZERO_WEIGHT; |
| 4321 | edgeToNext->flEdgeWeightMax = min(edgeToNext->flEdgeWeightMax, newWeightTest); |
| 4322 | edgeToJump->flEdgeWeightMin = BB_ZERO_WEIGHT; |
| 4323 | edgeToJump->flEdgeWeightMax = min(edgeToJump->flEdgeWeightMax, newWeightTest); |
| 4324 | } |
| 4325 | } |
| 4326 | } |
| 4327 | |
| 4328 | /* Change the block to end with a conditional jump */ |
| 4329 | |
| 4330 | block->bbJumpKind = BBJ_COND; |
| 4331 | block->bbJumpDest = bTest->bbNext; |
| 4332 | |
| 4333 | /* Mark the jump dest block as being a jump target */ |
| 4334 | block->bbJumpDest->bbFlags |= BBF_JMP_TARGET | BBF_HAS_LABEL; |
| 4335 | |
| 4336 | /* Update bbRefs and bbPreds for 'block->bbNext' 'bTest' and 'bTest->bbNext' */ |
| 4337 | |
| 4338 | fgAddRefPred(block->bbNext, block); |
| 4339 | |
| 4340 | fgRemoveRefPred(bTest, block); |
| 4341 | fgAddRefPred(bTest->bbNext, block); |
| 4342 | |
| 4343 | #ifdef DEBUG |
| 4344 | if (verbose) |
| 4345 | { |
| 4346 | printf("\nDuplicating loop condition in " FMT_BB " for loop (" FMT_BB " - " FMT_BB ")" , block->bbNum, |
| 4347 | block->bbNext->bbNum, bTest->bbNum); |
| 4348 | printf("\nEstimated code size expansion is %d\n " , estDupCostSz); |
| 4349 | |
| 4350 | gtDispTree(copyOfCondStmt); |
| 4351 | } |
| 4352 | |
| 4353 | #endif |
| 4354 | } |
| 4355 | |
| 4356 | /***************************************************************************** |
| 4357 | * |
| 4358 | * Optimize the BasicBlock layout of the method |
| 4359 | */ |
| 4360 | |
| 4361 | void Compiler::optOptimizeLayout() |
| 4362 | { |
| 4363 | noway_assert(opts.OptimizationEnabled()); |
| 4364 | |
| 4365 | #ifdef DEBUG |
| 4366 | if (verbose) |
| 4367 | { |
| 4368 | printf("*************** In optOptimizeLayout()\n" ); |
| 4369 | fgDispHandlerTab(); |
| 4370 | } |
| 4371 | |
| 4372 | /* Check that the flowgraph data (bbNum, bbRefs, bbPreds) is up-to-date */ |
| 4373 | fgDebugCheckBBlist(); |
| 4374 | #endif |
| 4375 | |
| 4376 | noway_assert(fgModified == false); |
| 4377 | |
| 4378 | for (BasicBlock* block = fgFirstBB; block; block = block->bbNext) |
| 4379 | { |
| 4380 | /* Make sure the appropriate fields are initialized */ |
| 4381 | |
| 4382 | if (block->bbWeight == BB_ZERO_WEIGHT) |
| 4383 | { |
| 4384 | /* Zero weighted block can't have a LOOP_HEAD flag */ |
| 4385 | noway_assert(block->isLoopHead() == false); |
| 4386 | continue; |
| 4387 | } |
| 4388 | |
| 4389 | assert(block->bbLoopNum == 0); |
| 4390 | |
| 4391 | if (compCodeOpt() != SMALL_CODE) |
| 4392 | { |
| 4393 | /* Optimize "while(cond){}" loops to "cond; do{}while(cond);" */ |
| 4394 | |
| 4395 | fgOptWhileLoop(block); |
| 4396 | } |
| 4397 | } |
| 4398 | |
| 4399 | if (fgModified) |
| 4400 | { |
| 4401 | // Recompute the edge weight if we have modified the flow graph in fgOptWhileLoop |
| 4402 | fgComputeEdgeWeights(); |
| 4403 | } |
| 4404 | |
| 4405 | fgUpdateFlowGraph(true); |
| 4406 | fgReorderBlocks(); |
| 4407 | fgUpdateFlowGraph(); |
| 4408 | } |
| 4409 | |
| 4410 | /***************************************************************************** |
| 4411 | * |
| 4412 | * Perform loop inversion, find and classify natural loops |
| 4413 | */ |
| 4414 | |
| 4415 | void Compiler::optOptimizeLoops() |
| 4416 | { |
| 4417 | noway_assert(opts.OptimizationEnabled()); |
| 4418 | |
| 4419 | #ifdef DEBUG |
| 4420 | if (verbose) |
| 4421 | { |
| 4422 | printf("*************** In optOptimizeLoops()\n" ); |
| 4423 | } |
| 4424 | #endif |
| 4425 | |
| 4426 | optSetBlockWeights(); |
| 4427 | |
| 4428 | /* Were there any loops in the flow graph? */ |
| 4429 | |
| 4430 | if (fgHasLoops) |
| 4431 | { |
| 4432 | /* now that we have dominator information we can find loops */ |
| 4433 | |
| 4434 | optFindNaturalLoops(); |
| 4435 | |
| 4436 | unsigned loopNum = 0; |
| 4437 | |
| 4438 | /* Iterate over the flow graph, marking all loops */ |
| 4439 | |
| 4440 | /* We will use the following terminology: |
| 4441 | * top - the first basic block in the loop (i.e. the head of the backward edge) |
| 4442 | * bottom - the last block in the loop (i.e. the block from which we jump to the top) |
| 4443 | * lastBottom - used when we have multiple back-edges to the same top |
| 4444 | */ |
| 4445 | |
| 4446 | flowList* pred; |
| 4447 | |
| 4448 | BasicBlock* top; |
| 4449 | |
| 4450 | for (top = fgFirstBB; top; top = top->bbNext) |
| 4451 | { |
| 4452 | BasicBlock* foundBottom = nullptr; |
| 4453 | |
| 4454 | for (pred = top->bbPreds; pred; pred = pred->flNext) |
| 4455 | { |
| 4456 | /* Is this a loop candidate? - We look for "back edges" */ |
| 4457 | |
| 4458 | BasicBlock* bottom = pred->flBlock; |
| 4459 | |
| 4460 | /* is this a backward edge? (from BOTTOM to TOP) */ |
| 4461 | |
| 4462 | if (top->bbNum > bottom->bbNum) |
| 4463 | { |
| 4464 | continue; |
| 4465 | } |
| 4466 | |
| 4467 | /* 'top' also must have the BBF_LOOP_HEAD flag set */ |
| 4468 | |
| 4469 | if (top->isLoopHead() == false) |
| 4470 | { |
| 4471 | continue; |
| 4472 | } |
| 4473 | |
| 4474 | /* We only consider back-edges that are BBJ_COND or BBJ_ALWAYS for loops */ |
| 4475 | |
| 4476 | if ((bottom->bbJumpKind != BBJ_COND) && (bottom->bbJumpKind != BBJ_ALWAYS)) |
| 4477 | { |
| 4478 | continue; |
| 4479 | } |
| 4480 | |
| 4481 | /* the top block must be able to reach the bottom block */ |
| 4482 | if (!fgReachable(top, bottom)) |
| 4483 | { |
| 4484 | continue; |
| 4485 | } |
| 4486 | |
| 4487 | /* Found a new loop, record the longest backedge in foundBottom */ |
| 4488 | |
| 4489 | if ((foundBottom == nullptr) || (bottom->bbNum > foundBottom->bbNum)) |
| 4490 | { |
| 4491 | foundBottom = bottom; |
| 4492 | } |
| 4493 | } |
| 4494 | |
| 4495 | if (foundBottom) |
| 4496 | { |
| 4497 | loopNum++; |
| 4498 | #ifdef DEBUG |
| 4499 | /* Mark the loop header as such */ |
| 4500 | assert(FitsIn<unsigned char>(loopNum)); |
| 4501 | top->bbLoopNum = (unsigned char)loopNum; |
| 4502 | #endif |
| 4503 | |
| 4504 | /* Mark all blocks between 'top' and 'bottom' */ |
| 4505 | |
| 4506 | optMarkLoopBlocks(top, foundBottom, false); |
| 4507 | } |
| 4508 | |
| 4509 | // We track at most 255 loops |
| 4510 | if (loopNum == 255) |
| 4511 | { |
| 4512 | #if COUNT_LOOPS |
| 4513 | totalUnnatLoopOverflows++; |
| 4514 | #endif |
| 4515 | break; |
| 4516 | } |
| 4517 | } |
| 4518 | |
| 4519 | #if COUNT_LOOPS |
| 4520 | totalUnnatLoopCount += loopNum; |
| 4521 | #endif |
| 4522 | |
| 4523 | #ifdef DEBUG |
| 4524 | if (verbose) |
| 4525 | { |
| 4526 | if (loopNum > 0) |
| 4527 | { |
| 4528 | printf("\nFound a total of %d loops." , loopNum); |
| 4529 | printf("\nAfter loop weight marking:\n" ); |
| 4530 | fgDispBasicBlocks(); |
| 4531 | printf("\n" ); |
| 4532 | } |
| 4533 | } |
| 4534 | #endif |
| 4535 | optLoopsMarked = true; |
| 4536 | } |
| 4537 | } |
| 4538 | |
| 4539 | //------------------------------------------------------------------------ |
| 4540 | // optDeriveLoopCloningConditions: Derive loop cloning conditions. |
| 4541 | // |
| 4542 | // Arguments: |
| 4543 | // loopNum - the current loop index for which conditions are derived. |
| 4544 | // context - data structure where all loop cloning info is kept. |
| 4545 | // |
| 4546 | // Return Value: |
| 4547 | // "false" if conditions cannot be obtained. "true" otherwise. |
| 4548 | // The cloning conditions are updated in the "conditions"[loopNum] field |
| 4549 | // of the "context" parameter. |
| 4550 | // |
| 4551 | // Operation: |
| 4552 | // Inspect the loop cloning optimization candidates and populate the conditions necessary |
| 4553 | // for each optimization candidate. Checks if the loop stride is "> 0" if the loop |
| 4554 | // condition is "less than". If the initializer is "var" init then adds condition |
| 4555 | // "var >= 0", and if the loop is var limit then, "var >= 0" and "var <= a.len" |
| 4556 | // are added to "context". These conditions are checked in the pre-header block |
| 4557 | // and the cloning choice is made. |
| 4558 | // |
| 4559 | // Assumption: |
| 4560 | // Callers should assume AND operation is used i.e., if all conditions are |
| 4561 | // true, then take the fast path. |
| 4562 | // |
| 4563 | bool Compiler::optDeriveLoopCloningConditions(unsigned loopNum, LoopCloneContext* context) |
| 4564 | { |
| 4565 | JITDUMP("------------------------------------------------------------\n" ); |
| 4566 | JITDUMP("Deriving cloning conditions for L%02u\n" , loopNum); |
| 4567 | |
| 4568 | LoopDsc* loop = &optLoopTable[loopNum]; |
| 4569 | JitExpandArrayStack<LcOptInfo*>* optInfos = context->GetLoopOptInfo(loopNum); |
| 4570 | |
| 4571 | if (loop->lpTestOper() == GT_LT) |
| 4572 | { |
| 4573 | // Stride conditions |
| 4574 | if (loop->lpIterConst() <= 0) |
| 4575 | { |
| 4576 | JITDUMP("> Stride %d is invalid\n" , loop->lpIterConst()); |
| 4577 | return false; |
| 4578 | } |
| 4579 | |
| 4580 | // Init conditions |
| 4581 | if (loop->lpFlags & LPFLG_CONST_INIT) |
| 4582 | { |
| 4583 | // Only allowing const init at this time. |
| 4584 | if (loop->lpConstInit < 0) |
| 4585 | { |
| 4586 | JITDUMP("> Init %d is invalid\n" , loop->lpConstInit); |
| 4587 | return false; |
| 4588 | } |
| 4589 | } |
| 4590 | else if (loop->lpFlags & LPFLG_VAR_INIT) |
| 4591 | { |
| 4592 | // limitVar >= 0 |
| 4593 | LC_Condition geZero(GT_GE, LC_Expr(LC_Ident(loop->lpVarInit, LC_Ident::Var)), |
| 4594 | LC_Expr(LC_Ident(0, LC_Ident::Const))); |
| 4595 | context->EnsureConditions(loopNum)->Push(geZero); |
| 4596 | } |
| 4597 | else |
| 4598 | { |
| 4599 | JITDUMP("> Not variable init\n" ); |
| 4600 | return false; |
| 4601 | } |
| 4602 | |
| 4603 | // Limit Conditions |
| 4604 | LC_Ident ident; |
| 4605 | if (loop->lpFlags & LPFLG_CONST_LIMIT) |
| 4606 | { |
| 4607 | int limit = loop->lpConstLimit(); |
| 4608 | if (limit < 0) |
| 4609 | { |
| 4610 | JITDUMP("> limit %d is invalid\n" , limit); |
| 4611 | return false; |
| 4612 | } |
| 4613 | ident = LC_Ident(static_cast<unsigned>(limit), LC_Ident::Const); |
| 4614 | } |
| 4615 | else if (loop->lpFlags & LPFLG_VAR_LIMIT) |
| 4616 | { |
| 4617 | unsigned limitLcl = loop->lpVarLimit(); |
| 4618 | ident = LC_Ident(limitLcl, LC_Ident::Var); |
| 4619 | |
| 4620 | LC_Condition geZero(GT_GE, LC_Expr(ident), LC_Expr(LC_Ident(0, LC_Ident::Const))); |
| 4621 | |
| 4622 | context->EnsureConditions(loopNum)->Push(geZero); |
| 4623 | } |
| 4624 | else if (loop->lpFlags & LPFLG_ARRLEN_LIMIT) |
| 4625 | { |
| 4626 | ArrIndex* index = new (getAllocator()) ArrIndex(getAllocator()); |
| 4627 | if (!loop->lpArrLenLimit(this, index)) |
| 4628 | { |
| 4629 | JITDUMP("> ArrLen not matching" ); |
| 4630 | return false; |
| 4631 | } |
| 4632 | ident = LC_Ident(LC_Array(LC_Array::Jagged, index, LC_Array::ArrLen)); |
| 4633 | |
| 4634 | // Ensure that this array must be dereference-able, before executing the actual condition. |
| 4635 | LC_Array array(LC_Array::Jagged, index, LC_Array::None); |
| 4636 | context->EnsureDerefs(loopNum)->Push(array); |
| 4637 | } |
| 4638 | else |
| 4639 | { |
| 4640 | JITDUMP("> Undetected limit\n" ); |
| 4641 | return false; |
| 4642 | } |
| 4643 | |
| 4644 | for (unsigned i = 0; i < optInfos->Size(); ++i) |
| 4645 | { |
| 4646 | LcOptInfo* optInfo = optInfos->GetRef(i); |
| 4647 | switch (optInfo->GetOptType()) |
| 4648 | { |
| 4649 | case LcOptInfo::LcJaggedArray: |
| 4650 | { |
| 4651 | // limit <= arrLen |
| 4652 | LcJaggedArrayOptInfo* arrIndexInfo = optInfo->AsLcJaggedArrayOptInfo(); |
| 4653 | LC_Array arrLen(LC_Array::Jagged, &arrIndexInfo->arrIndex, arrIndexInfo->dim, LC_Array::ArrLen); |
| 4654 | LC_Ident arrLenIdent = LC_Ident(arrLen); |
| 4655 | |
| 4656 | LC_Condition cond(GT_LE, LC_Expr(ident), LC_Expr(arrLenIdent)); |
| 4657 | context->EnsureConditions(loopNum)->Push(cond); |
| 4658 | |
| 4659 | // Ensure that this array must be dereference-able, before executing the actual condition. |
| 4660 | LC_Array array(LC_Array::Jagged, &arrIndexInfo->arrIndex, arrIndexInfo->dim, LC_Array::None); |
| 4661 | context->EnsureDerefs(loopNum)->Push(array); |
| 4662 | } |
| 4663 | break; |
| 4664 | case LcOptInfo::LcMdArray: |
| 4665 | { |
| 4666 | // limit <= mdArrLen |
| 4667 | LcMdArrayOptInfo* mdArrInfo = optInfo->AsLcMdArrayOptInfo(); |
| 4668 | LC_Condition cond(GT_LE, LC_Expr(ident), |
| 4669 | LC_Expr(LC_Ident(LC_Array(LC_Array::MdArray, |
| 4670 | mdArrInfo->GetArrIndexForDim(getAllocator()), |
| 4671 | mdArrInfo->dim, LC_Array::None)))); |
| 4672 | context->EnsureConditions(loopNum)->Push(cond); |
| 4673 | } |
| 4674 | break; |
| 4675 | |
| 4676 | default: |
| 4677 | JITDUMP("Unknown opt\n" ); |
| 4678 | return false; |
| 4679 | } |
| 4680 | } |
| 4681 | JITDUMP("Conditions: (" ); |
| 4682 | DBEXEC(verbose, context->PrintConditions(loopNum)); |
| 4683 | JITDUMP(")\n" ); |
| 4684 | return true; |
| 4685 | } |
| 4686 | return false; |
| 4687 | } |
| 4688 | |
| 4689 | //------------------------------------------------------------------------------------ |
| 4690 | // optComputeDerefConditions: Derive loop cloning conditions for dereferencing arrays. |
| 4691 | // |
| 4692 | // Arguments: |
| 4693 | // loopNum - the current loop index for which conditions are derived. |
| 4694 | // context - data structure where all loop cloning info is kept. |
| 4695 | // |
| 4696 | // Return Value: |
| 4697 | // "false" if conditions cannot be obtained. "true" otherwise. |
| 4698 | // The deref conditions are updated in the "derefConditions"[loopNum] field |
| 4699 | // of the "context" parameter. |
| 4700 | // |
| 4701 | // Definition of Deref Conditions: |
| 4702 | // To be able to check for the loop cloning condition that (limitVar <= a.len) |
| 4703 | // we should first be able to dereference "a". i.e., "a" is non-null. |
| 4704 | // |
| 4705 | // Example: |
| 4706 | // |
| 4707 | // for (i in 0..n) |
| 4708 | // for (j in 0..n) |
| 4709 | // for (k in 0..n) // Inner most loop is being cloned. Cloning needs to check if |
| 4710 | // // (n <= a[i][j].len) and other safer conditions to take the fast path |
| 4711 | // a[i][j][k] = 0; |
| 4712 | // |
| 4713 | // Now, we want to deref a[i][j] to invoke length operator on it to perform the cloning fast path check. |
| 4714 | // This involves deref of (a), (a[i]), (a[i][j]), therefore, the following should first |
| 4715 | // be true to do the deref. |
| 4716 | // |
| 4717 | // (a != null) && (i < a.len) && (a[i] != null) && (j < a[i].len) && (a[i][j] != null) --> (1) |
| 4718 | // |
| 4719 | // Note the short circuiting AND. Implication: these conditions should be performed in separate |
| 4720 | // blocks each of which will branch to slow path if the condition evaluates to false. |
| 4721 | // |
| 4722 | // Now, imagine a situation where we have |
| 4723 | // a[x][y][k] = 20 and a[i][j][k] = 0 |
| 4724 | // also in the inner most loop where x, y are parameters, then our conditions will have |
| 4725 | // to include |
| 4726 | // (x < a.len) && |
| 4727 | // (y < a[x].len) |
| 4728 | // in addition to the above conditions (1) to get rid of bounds check on index 'k' |
| 4729 | // |
| 4730 | // But these conditions can be checked together with conditions |
| 4731 | // (i < a.len) without a need for a separate block. In summary, the conditions will be: |
| 4732 | // |
| 4733 | // (a != null) && |
| 4734 | // ((i < a.len) & (x < a.len)) && <-- Note the bitwise AND here. |
| 4735 | // (a[i] != null & a[x] != null) && <-- Note the bitwise AND here. |
| 4736 | // (j < a[i].len & y < a[x].len) && <-- Note the bitwise AND here. |
| 4737 | // (a[i][j] != null & a[x][y] != null) <-- Note the bitwise AND here. |
| 4738 | // |
| 4739 | // This naturally yields a tree style pattern, where the nodes of the tree are |
| 4740 | // the array and indices respectively. |
| 4741 | // |
| 4742 | // Example: |
| 4743 | // a => { |
| 4744 | // i => { |
| 4745 | // j => { |
| 4746 | // k => {} |
| 4747 | // } |
| 4748 | // }, |
| 4749 | // x => { |
| 4750 | // y => { |
| 4751 | // k => {} |
| 4752 | // } |
| 4753 | // } |
| 4754 | // } |
| 4755 | // |
| 4756 | // Notice that the variables in the same levels can have their conditions combined in the |
| 4757 | // same block with a bitwise AND. Whereas, the conditions in consecutive levels will be |
| 4758 | // combined with a short-circuiting AND (i.e., different basic blocks). |
| 4759 | // |
| 4760 | // Operation: |
| 4761 | // Construct a tree of array indices and the array which will generate the optimal |
| 4762 | // conditions for loop cloning. |
| 4763 | // |
| 4764 | // a[i][j][k], b[i] and a[i][y][k] are the occurrences in the loop. Then, the tree should be: |
| 4765 | // |
| 4766 | // a => { |
| 4767 | // i => { |
| 4768 | // j => { |
| 4769 | // k => {} |
| 4770 | // }, |
| 4771 | // y => { |
| 4772 | // k => {} |
| 4773 | // }, |
| 4774 | // } |
| 4775 | // }, |
| 4776 | // b => { |
| 4777 | // i => {} |
| 4778 | // } |
| 4779 | // In this method, we will construct such a tree by descending depth first into the array |
| 4780 | // index operation and forming a tree structure as we encounter the array or the index variables. |
| 4781 | // |
| 4782 | // This tree structure will then be used to generate conditions like below: |
| 4783 | // (a != null) & (b != null) && // from the first level of the tree. |
| 4784 | // |
| 4785 | // (i < a.len) & (i < b.len) && // from the second level of the tree. Levels can be combined. |
| 4786 | // (a[i] != null) & (b[i] != null) && // from the second level of the tree. |
| 4787 | // |
| 4788 | // (j < a[i].len) & (y < a[i].len) && // from the third level. |
| 4789 | // (a[i][j] != null) & (a[i][y] != null) && // from the third level. |
| 4790 | // |
| 4791 | // and so on. |
| 4792 | // |
| 4793 | // |
| 4794 | bool Compiler::optComputeDerefConditions(unsigned loopNum, LoopCloneContext* context) |
| 4795 | { |
| 4796 | JitExpandArrayStack<LC_Deref*> nodes(getAllocator()); |
| 4797 | int maxRank = -1; |
| 4798 | |
| 4799 | // Get the dereference-able arrays. |
| 4800 | JitExpandArrayStack<LC_Array>* deref = context->EnsureDerefs(loopNum); |
| 4801 | |
| 4802 | // For each array in the dereference list, construct a tree, |
| 4803 | // where the nodes are array and index variables and an edge 'u-v' |
| 4804 | // exists if a node 'v' indexes node 'u' directly as in u[v] or an edge |
| 4805 | // 'u-v-w' transitively if u[v][w] occurs. |
| 4806 | for (unsigned i = 0; i < deref->Size(); ++i) |
| 4807 | { |
| 4808 | LC_Array& array = (*deref)[i]; |
| 4809 | |
| 4810 | // First populate the array base variable. |
| 4811 | LC_Deref* node = LC_Deref::Find(&nodes, array.arrIndex->arrLcl); |
| 4812 | if (node == nullptr) |
| 4813 | { |
| 4814 | node = new (getAllocator()) LC_Deref(array, 0 /*level*/); |
| 4815 | nodes.Push(node); |
| 4816 | } |
| 4817 | |
| 4818 | // For each dimension (level) for the array, populate the tree with the variable |
| 4819 | // from that dimension. |
| 4820 | unsigned rank = (unsigned)array.GetDimRank(); |
| 4821 | for (unsigned i = 0; i < rank; ++i) |
| 4822 | { |
| 4823 | node->EnsureChildren(getAllocator()); |
| 4824 | LC_Deref* tmp = node->Find(array.arrIndex->indLcls[i]); |
| 4825 | if (tmp == nullptr) |
| 4826 | { |
| 4827 | tmp = new (getAllocator()) LC_Deref(array, node->level + 1); |
| 4828 | node->children->Push(tmp); |
| 4829 | } |
| 4830 | |
| 4831 | // Descend one level down. |
| 4832 | node = tmp; |
| 4833 | } |
| 4834 | |
| 4835 | // Keep the maxRank of all array dereferences. |
| 4836 | maxRank = max((int)rank, maxRank); |
| 4837 | } |
| 4838 | |
| 4839 | #ifdef DEBUG |
| 4840 | if (verbose) |
| 4841 | { |
| 4842 | for (unsigned i = 0; i < nodes.Size(); ++i) |
| 4843 | { |
| 4844 | if (i != 0) |
| 4845 | { |
| 4846 | printf("," ); |
| 4847 | } |
| 4848 | nodes[i]->Print(); |
| 4849 | printf("\n" ); |
| 4850 | } |
| 4851 | } |
| 4852 | #endif |
| 4853 | |
| 4854 | if (maxRank == -1) |
| 4855 | { |
| 4856 | return false; |
| 4857 | } |
| 4858 | |
| 4859 | // First level will always yield the null-check, since it is made of the array base variables. |
| 4860 | // All other levels (dimensions) will yield two conditions ex: (i < a.length && a[i] != null) |
| 4861 | // So add 1 after rank * 2. |
| 4862 | unsigned condBlocks = (unsigned)maxRank * 2 + 1; |
| 4863 | |
| 4864 | // Heuristic to not create too many blocks; |
| 4865 | if (condBlocks > 4) |
| 4866 | { |
| 4867 | return false; |
| 4868 | } |
| 4869 | |
| 4870 | // Derive conditions into an 'array of level x array of conditions' i.e., levelCond[levels][conds] |
| 4871 | JitExpandArrayStack<JitExpandArrayStack<LC_Condition>*>* levelCond = |
| 4872 | context->EnsureBlockConditions(loopNum, condBlocks); |
| 4873 | for (unsigned i = 0; i < nodes.Size(); ++i) |
| 4874 | { |
| 4875 | nodes[i]->DeriveLevelConditions(levelCond); |
| 4876 | } |
| 4877 | |
| 4878 | DBEXEC(verbose, context->PrintBlockConditions(loopNum)); |
| 4879 | return true; |
| 4880 | } |
| 4881 | |
| 4882 | #ifdef DEBUG |
| 4883 | //---------------------------------------------------------------------------- |
| 4884 | // optDebugLogLoopCloning: Insert a call to jithelper that prints a message. |
| 4885 | // |
| 4886 | // Arguments: |
| 4887 | // block - the block in which the helper call needs to be inserted. |
| 4888 | // insertBefore - the tree before which the helper call will be inserted. |
| 4889 | // |
| 4890 | void Compiler::optDebugLogLoopCloning(BasicBlock* block, GenTree* insertBefore) |
| 4891 | { |
| 4892 | if (JitConfig.JitDebugLogLoopCloning() == 0) |
| 4893 | { |
| 4894 | return; |
| 4895 | } |
| 4896 | GenTree* logCall = gtNewHelperCallNode(CORINFO_HELP_DEBUG_LOG_LOOP_CLONING, TYP_VOID); |
| 4897 | GenTree* stmt = fgNewStmtFromTree(logCall); |
| 4898 | fgInsertStmtBefore(block, insertBefore, stmt); |
| 4899 | fgMorphBlockStmt(block, stmt->AsStmt() DEBUGARG("Debug log loop cloning" )); |
| 4900 | } |
| 4901 | #endif |
| 4902 | |
| 4903 | //------------------------------------------------------------------------ |
| 4904 | // optPerformStaticOptimizations: Perform the optimizations for the optimization |
| 4905 | // candidates gathered during the cloning phase. |
| 4906 | // |
| 4907 | // Arguments: |
| 4908 | // loopNum - the current loop index for which the optimizations are performed. |
| 4909 | // context - data structure where all loop cloning info is kept. |
| 4910 | // dynamicPath - If true, the optimization is performed in the fast path among the |
| 4911 | // cloned loops. If false, it means this is the only path (i.e., |
| 4912 | // there is no slow path.) |
| 4913 | // |
| 4914 | // Operation: |
| 4915 | // Perform the optimizations on the fast path i.e., the path in which the |
| 4916 | // optimization candidates were collected at the time of identifying them. |
| 4917 | // The candidates store all the information necessary (the tree/stmt/block |
| 4918 | // they are from) to perform the optimization. |
| 4919 | // |
| 4920 | // Assumption: |
| 4921 | // The unoptimized path is either already cloned when this method is called or |
| 4922 | // there is no unoptimized path (got eliminated statically.) So this method |
| 4923 | // performs the optimizations assuming that the path in which the candidates |
| 4924 | // were collected is the fast path in which the optimizations will be performed. |
| 4925 | // |
| 4926 | void Compiler::optPerformStaticOptimizations(unsigned loopNum, LoopCloneContext* context DEBUGARG(bool dynamicPath)) |
| 4927 | { |
| 4928 | JitExpandArrayStack<LcOptInfo*>* optInfos = context->GetLoopOptInfo(loopNum); |
| 4929 | for (unsigned i = 0; i < optInfos->Size(); ++i) |
| 4930 | { |
| 4931 | LcOptInfo* optInfo = optInfos->GetRef(i); |
| 4932 | switch (optInfo->GetOptType()) |
| 4933 | { |
| 4934 | case LcOptInfo::LcJaggedArray: |
| 4935 | { |
| 4936 | LcJaggedArrayOptInfo* arrIndexInfo = optInfo->AsLcJaggedArrayOptInfo(); |
| 4937 | compCurBB = arrIndexInfo->arrIndex.useBlock; |
| 4938 | optRemoveRangeCheck(arrIndexInfo->arrIndex.bndsChks[arrIndexInfo->dim], arrIndexInfo->stmt); |
| 4939 | DBEXEC(dynamicPath, optDebugLogLoopCloning(arrIndexInfo->arrIndex.useBlock, arrIndexInfo->stmt)); |
| 4940 | } |
| 4941 | break; |
| 4942 | case LcOptInfo::LcMdArray: |
| 4943 | // TODO-CQ: CLONE: Implement. |
| 4944 | break; |
| 4945 | default: |
| 4946 | break; |
| 4947 | } |
| 4948 | } |
| 4949 | } |
| 4950 | |
| 4951 | //---------------------------------------------------------------------------- |
| 4952 | // optCanCloneLoops: Use the environment flag to determine whether loop |
| 4953 | // cloning is allowed to be performed. |
| 4954 | // |
| 4955 | // Return Value: |
| 4956 | // Returns true in debug builds if COMPlus_JitCloneLoops flag is set. |
| 4957 | // Disabled for retail for now. |
| 4958 | // |
| 4959 | bool Compiler::optCanCloneLoops() |
| 4960 | { |
| 4961 | // Enabled for retail builds now. |
| 4962 | unsigned cloneLoopsFlag = 1; |
| 4963 | #ifdef DEBUG |
| 4964 | cloneLoopsFlag = JitConfig.JitCloneLoops(); |
| 4965 | #endif |
| 4966 | return (cloneLoopsFlag != 0); |
| 4967 | } |
| 4968 | |
| 4969 | //---------------------------------------------------------------------------- |
| 4970 | // optIsLoopClonable: Determine whether this loop can be cloned. |
| 4971 | // |
| 4972 | // Arguments: |
| 4973 | // loopInd loop index which needs to be checked if it can be cloned. |
| 4974 | // |
| 4975 | // Return Value: |
| 4976 | // Returns true if the loop can be cloned. If it returns false |
| 4977 | // prints a message in debug as why the loop can't be cloned. |
| 4978 | // |
| 4979 | bool Compiler::optIsLoopClonable(unsigned loopInd) |
| 4980 | { |
| 4981 | // First, for now, make sure the loop doesn't have any embedded exception handling -- I don't want to tackle |
| 4982 | // inserting new EH regions in the exception table yet. |
| 4983 | BasicBlock* stopAt = optLoopTable[loopInd].lpBottom->bbNext; |
| 4984 | unsigned loopRetCount = 0; |
| 4985 | for (BasicBlock* blk = optLoopTable[loopInd].lpFirst; blk != stopAt; blk = blk->bbNext) |
| 4986 | { |
| 4987 | if (blk->bbJumpKind == BBJ_RETURN) |
| 4988 | { |
| 4989 | loopRetCount++; |
| 4990 | } |
| 4991 | if (bbIsTryBeg(blk)) |
| 4992 | { |
| 4993 | JITDUMP("Loop cloning: rejecting loop %d in %s, because it has a try begin.\n" , loopInd, info.compFullName); |
| 4994 | return false; |
| 4995 | } |
| 4996 | } |
| 4997 | |
| 4998 | // Is the entry block a handler or filter start? If so, then if we cloned, we could create a jump |
| 4999 | // into the middle of a handler (to go to the cloned copy.) Reject. |
| 5000 | if (bbIsHandlerBeg(optLoopTable[loopInd].lpEntry)) |
| 5001 | { |
| 5002 | JITDUMP("Loop cloning: rejecting loop because entry block is a handler start.\n" ); |
| 5003 | return false; |
| 5004 | } |
| 5005 | |
| 5006 | // If the head and entry are in different EH regions, reject. |
| 5007 | if (!BasicBlock::sameEHRegion(optLoopTable[loopInd].lpHead, optLoopTable[loopInd].lpEntry)) |
| 5008 | { |
| 5009 | JITDUMP("Loop cloning: rejecting loop because head and entry blocks are in different EH regions.\n" ); |
| 5010 | return false; |
| 5011 | } |
| 5012 | |
| 5013 | // Is the first block after the last block of the loop a handler or filter start? |
| 5014 | // Usually, we create a dummy block after the orginal loop, to skip over the loop clone |
| 5015 | // and go to where the original loop did. That raises problems when we don't actually go to |
| 5016 | // that block; this is one of those cases. This could be fixed fairly easily; for example, |
| 5017 | // we could add a dummy nop block after the (cloned) loop bottom, in the same handler scope as the |
| 5018 | // loop. This is just a corner to cut to get this working faster. |
| 5019 | BasicBlock* bbAfterLoop = optLoopTable[loopInd].lpBottom->bbNext; |
| 5020 | if (bbAfterLoop != nullptr && bbIsHandlerBeg(bbAfterLoop)) |
| 5021 | { |
| 5022 | JITDUMP("Loop cloning: rejecting loop because next block after bottom is a handler start.\n" ); |
| 5023 | return false; |
| 5024 | } |
| 5025 | |
| 5026 | // We've previously made a decision whether to have separate return epilogs, or branch to one. |
| 5027 | // There's a GCInfo limitation in the x86 case, so that there can be no more than SET_EPILOGCNT_MAX separate |
| 5028 | // epilogs. Other architectures have a limit of 4 here for "historical reasons", but this should be revisited |
| 5029 | // (or return blocks should not be considered part of the loop, rendering this issue moot). |
| 5030 | unsigned epilogLimit = 4; |
| 5031 | #ifdef JIT32_GCENCODER |
| 5032 | epilogLimit = SET_EPILOGCNT_MAX; |
| 5033 | #endif // JIT32_GCENCODER |
| 5034 | if (fgReturnCount + loopRetCount > epilogLimit) |
| 5035 | { |
| 5036 | JITDUMP("Loop cloning: rejecting loop because it has %d returns; if added to previously-existing %d returns, " |
| 5037 | "would exceed the limit of %d.\n" , |
| 5038 | loopRetCount, fgReturnCount, epilogLimit); |
| 5039 | return false; |
| 5040 | } |
| 5041 | |
| 5042 | // Otherwise, we're going to add those return blocks. |
| 5043 | fgReturnCount += loopRetCount; |
| 5044 | |
| 5045 | return true; |
| 5046 | } |
| 5047 | |
| 5048 | /***************************************************************************** |
| 5049 | * |
| 5050 | * Identify loop cloning opportunities, derive loop cloning conditions, |
| 5051 | * perform loop cloning, use the derived conditions to choose which |
| 5052 | * path to take. |
| 5053 | */ |
| 5054 | void Compiler::optCloneLoops() |
| 5055 | { |
| 5056 | JITDUMP("\n*************** In optCloneLoops()\n" ); |
| 5057 | if (optLoopCount == 0 || !optCanCloneLoops()) |
| 5058 | { |
| 5059 | return; |
| 5060 | } |
| 5061 | |
| 5062 | #ifdef DEBUG |
| 5063 | if (verbose) |
| 5064 | { |
| 5065 | printf("Blocks/Trees at start of phase\n" ); |
| 5066 | fgDispBasicBlocks(true); |
| 5067 | } |
| 5068 | #endif |
| 5069 | |
| 5070 | LoopCloneContext context(optLoopCount, getAllocator()); |
| 5071 | |
| 5072 | // Obtain array optimization candidates in the context. |
| 5073 | optObtainLoopCloningOpts(&context); |
| 5074 | |
| 5075 | // For each loop, derive cloning conditions for the optimization candidates. |
| 5076 | for (unsigned i = 0; i < optLoopCount; ++i) |
| 5077 | { |
| 5078 | JitExpandArrayStack<LcOptInfo*>* optInfos = context.GetLoopOptInfo(i); |
| 5079 | if (optInfos == nullptr) |
| 5080 | { |
| 5081 | continue; |
| 5082 | } |
| 5083 | |
| 5084 | if (!optDeriveLoopCloningConditions(i, &context) || !optComputeDerefConditions(i, &context)) |
| 5085 | { |
| 5086 | JITDUMP("> Conditions could not be obtained\n" ); |
| 5087 | context.CancelLoopOptInfo(i); |
| 5088 | } |
| 5089 | else |
| 5090 | { |
| 5091 | bool allTrue = false; |
| 5092 | bool anyFalse = false; |
| 5093 | context.EvaluateConditions(i, &allTrue, &anyFalse DEBUGARG(verbose)); |
| 5094 | if (anyFalse) |
| 5095 | { |
| 5096 | context.CancelLoopOptInfo(i); |
| 5097 | } |
| 5098 | if (allTrue) |
| 5099 | { |
| 5100 | // Perform static optimizations on the fast path since we always |
| 5101 | // have to take the cloned path. |
| 5102 | optPerformStaticOptimizations(i, &context DEBUGARG(false)); |
| 5103 | |
| 5104 | // No need to clone. |
| 5105 | context.CancelLoopOptInfo(i); |
| 5106 | } |
| 5107 | } |
| 5108 | } |
| 5109 | |
| 5110 | #if 0 |
| 5111 | // The code in this #if has been useful in debugging loop cloning issues, by |
| 5112 | // enabling selective enablement of the loop cloning optimization according to |
| 5113 | // method hash. |
| 5114 | #ifdef DEBUG |
| 5115 | unsigned methHash = info.compMethodHash(); |
| 5116 | char* lostr = getenv("loopclonehashlo" ); |
| 5117 | unsigned methHashLo = 0; |
| 5118 | if (lostr != NULL) |
| 5119 | { |
| 5120 | sscanf_s(lostr, "%x" , &methHashLo); |
| 5121 | // methHashLo = (unsigned(atoi(lostr)) << 2); // So we don't have to use negative numbers. |
| 5122 | } |
| 5123 | char* histr = getenv("loopclonehashhi" ); |
| 5124 | unsigned methHashHi = UINT32_MAX; |
| 5125 | if (histr != NULL) |
| 5126 | { |
| 5127 | sscanf_s(histr, "%x" , &methHashHi); |
| 5128 | // methHashHi = (unsigned(atoi(histr)) << 2); // So we don't have to use negative numbers. |
| 5129 | } |
| 5130 | if (methHash < methHashLo || methHash > methHashHi) |
| 5131 | return; |
| 5132 | #endif |
| 5133 | #endif |
| 5134 | |
| 5135 | for (unsigned i = 0; i < optLoopCount; ++i) |
| 5136 | { |
| 5137 | if (context.GetLoopOptInfo(i) != nullptr) |
| 5138 | { |
| 5139 | optLoopsCloned++; |
| 5140 | context.OptimizeConditions(i DEBUGARG(verbose)); |
| 5141 | context.OptimizeBlockConditions(i DEBUGARG(verbose)); |
| 5142 | optCloneLoop(i, &context); |
| 5143 | } |
| 5144 | } |
| 5145 | |
| 5146 | #ifdef DEBUG |
| 5147 | if (verbose) |
| 5148 | { |
| 5149 | printf("\nAfter loop cloning:\n" ); |
| 5150 | fgDispBasicBlocks(/*dumpTrees*/ true); |
| 5151 | } |
| 5152 | #endif |
| 5153 | } |
| 5154 | |
| 5155 | void Compiler::optCloneLoop(unsigned loopInd, LoopCloneContext* context) |
| 5156 | { |
| 5157 | assert(loopInd < optLoopCount); |
| 5158 | |
| 5159 | JITDUMP("\nCloning loop %d: [h: %d, f: %d, t: %d, e: %d, b: %d].\n" , loopInd, optLoopTable[loopInd].lpHead->bbNum, |
| 5160 | optLoopTable[loopInd].lpFirst->bbNum, optLoopTable[loopInd].lpTop->bbNum, |
| 5161 | optLoopTable[loopInd].lpEntry->bbNum, optLoopTable[loopInd].lpBottom->bbNum); |
| 5162 | |
| 5163 | // Determine the depth of the loop, so we can properly weight blocks added (outside the cloned loop blocks). |
| 5164 | unsigned depth = optLoopDepth(loopInd); |
| 5165 | unsigned ambientWeight = 1; |
| 5166 | for (unsigned j = 0; j < depth; j++) |
| 5167 | { |
| 5168 | unsigned lastWeight = ambientWeight; |
| 5169 | ambientWeight *= BB_LOOP_WEIGHT; |
| 5170 | // If the multiplication overflowed, stick at max. |
| 5171 | // (Strictly speaking, a multiplication could overflow and still have a result |
| 5172 | // that is >= lastWeight...but if so, the original weight must be pretty large, |
| 5173 | // and it got bigger, so that's OK.) |
| 5174 | if (ambientWeight < lastWeight) |
| 5175 | { |
| 5176 | ambientWeight = BB_MAX_WEIGHT; |
| 5177 | break; |
| 5178 | } |
| 5179 | } |
| 5180 | |
| 5181 | // If we're in a non-natural loop, the ambient weight might be higher than we computed above. |
| 5182 | // Be safe by taking the max with the head block's weight. |
| 5183 | ambientWeight = max(ambientWeight, optLoopTable[loopInd].lpHead->bbWeight); |
| 5184 | |
| 5185 | // This is the containing loop, if any -- to label any blocks we create that are outside |
| 5186 | // the loop being cloned. |
| 5187 | unsigned char ambientLoop = optLoopTable[loopInd].lpParent; |
| 5188 | |
| 5189 | // First, make sure that the loop has a unique header block, creating an empty one if necessary. |
| 5190 | optEnsureUniqueHead(loopInd, ambientWeight); |
| 5191 | |
| 5192 | // We're going to make |
| 5193 | |
| 5194 | // H --> E |
| 5195 | // F |
| 5196 | // T |
| 5197 | // E |
| 5198 | // B ?-> T |
| 5199 | // X |
| 5200 | // |
| 5201 | // become |
| 5202 | // |
| 5203 | // H ?-> E2 |
| 5204 | // H2--> E (Optional; if E == T == F, let H fall through to F/T/E) |
| 5205 | // F |
| 5206 | // T |
| 5207 | // E |
| 5208 | // B ?-> T |
| 5209 | // X2--> X |
| 5210 | // F2 |
| 5211 | // T2 |
| 5212 | // E2 |
| 5213 | // B2 ?-> T2 |
| 5214 | // X |
| 5215 | |
| 5216 | BasicBlock* h = optLoopTable[loopInd].lpHead; |
| 5217 | if (h->bbJumpKind != BBJ_NONE && h->bbJumpKind != BBJ_ALWAYS) |
| 5218 | { |
| 5219 | // Make a new block to be the unique entry to the loop. |
| 5220 | assert(h->bbJumpKind == BBJ_COND && h->bbNext == optLoopTable[loopInd].lpEntry); |
| 5221 | BasicBlock* newH = fgNewBBafter(BBJ_NONE, h, |
| 5222 | /*extendRegion*/ true); |
| 5223 | newH->bbWeight = (newH->isRunRarely() ? 0 : ambientWeight); |
| 5224 | BlockSetOps::Assign(this, newH->bbReach, h->bbReach); |
| 5225 | // This is in the scope of a surrounding loop, if one exists -- the parent of the loop we're cloning. |
| 5226 | newH->bbNatLoopNum = ambientLoop; |
| 5227 | h = newH; |
| 5228 | optUpdateLoopHead(loopInd, optLoopTable[loopInd].lpHead, h); |
| 5229 | } |
| 5230 | |
| 5231 | // First, make X2 after B, if necessary. (Not necessary if b is a BBJ_ALWAYS.) |
| 5232 | // "newPred" will be the predecessor of the blocks of the cloned loop. |
| 5233 | BasicBlock* b = optLoopTable[loopInd].lpBottom; |
| 5234 | BasicBlock* newPred = b; |
| 5235 | if (b->bbJumpKind != BBJ_ALWAYS) |
| 5236 | { |
| 5237 | BasicBlock* x = b->bbNext; |
| 5238 | if (x != nullptr) |
| 5239 | { |
| 5240 | BasicBlock* x2 = fgNewBBafter(BBJ_ALWAYS, b, /*extendRegion*/ true); |
| 5241 | x2->bbWeight = (x2->isRunRarely() ? 0 : ambientWeight); |
| 5242 | |
| 5243 | // This is in the scope of a surrounding loop, if one exists -- the parent of the loop we're cloning. |
| 5244 | x2->bbNatLoopNum = ambientLoop; |
| 5245 | |
| 5246 | x2->bbJumpDest = x; |
| 5247 | BlockSetOps::Assign(this, x2->bbReach, h->bbReach); |
| 5248 | newPred = x2; |
| 5249 | } |
| 5250 | } |
| 5251 | |
| 5252 | // Now we'll make "h2", after "h" to go to "e" -- unless the loop is a do-while, |
| 5253 | // so that "h" already falls through to "e" (e == t == f). |
| 5254 | BasicBlock* h2 = nullptr; |
| 5255 | if (optLoopTable[loopInd].lpHead->bbNext != optLoopTable[loopInd].lpEntry) |
| 5256 | { |
| 5257 | BasicBlock* h2 = fgNewBBafter(BBJ_ALWAYS, optLoopTable[loopInd].lpHead, |
| 5258 | /*extendRegion*/ true); |
| 5259 | h2->bbWeight = (h2->isRunRarely() ? 0 : ambientWeight); |
| 5260 | |
| 5261 | // This is in the scope of a surrounding loop, if one exists -- the parent of the loop we're cloning. |
| 5262 | h2->bbNatLoopNum = ambientLoop; |
| 5263 | |
| 5264 | h2->bbJumpDest = optLoopTable[loopInd].lpEntry; |
| 5265 | optUpdateLoopHead(loopInd, optLoopTable[loopInd].lpHead, h2); |
| 5266 | } |
| 5267 | |
| 5268 | // Now we'll clone the blocks of the loop body. |
| 5269 | BasicBlock* newFirst = nullptr; |
| 5270 | BasicBlock* newBot = nullptr; |
| 5271 | |
| 5272 | BlockToBlockMap* blockMap = new (getAllocator()) BlockToBlockMap(getAllocator()); |
| 5273 | for (BasicBlock* blk = optLoopTable[loopInd].lpFirst; blk != optLoopTable[loopInd].lpBottom->bbNext; |
| 5274 | blk = blk->bbNext) |
| 5275 | { |
| 5276 | BasicBlock* newBlk = fgNewBBafter(blk->bbJumpKind, newPred, |
| 5277 | /*extendRegion*/ true); |
| 5278 | |
| 5279 | // Call CloneBlockState to make a copy of the block's statements (and attributes), and assert that it |
| 5280 | // has a return value indicating success, because optCanOptimizeByLoopCloningVisitor has already |
| 5281 | // checked them to guarantee they are clonable. |
| 5282 | bool cloneOk = BasicBlock::CloneBlockState(this, newBlk, blk); |
| 5283 | noway_assert(cloneOk); |
| 5284 | // TODO-Cleanup: The above clones the bbNatLoopNum, which is incorrect. Eventually, we should probably insert |
| 5285 | // the cloned loop in the loop table. For now, however, we'll just make these blocks be part of the surrounding |
| 5286 | // loop, if one exists -- the parent of the loop we're cloning. |
| 5287 | newBlk->bbNatLoopNum = optLoopTable[loopInd].lpParent; |
| 5288 | |
| 5289 | if (newFirst == nullptr) |
| 5290 | { |
| 5291 | newFirst = newBlk; |
| 5292 | } |
| 5293 | newBot = newBlk; // Continually overwrite to make sure we get the last one. |
| 5294 | newPred = newBlk; |
| 5295 | blockMap->Set(blk, newBlk); |
| 5296 | } |
| 5297 | |
| 5298 | // Perform the static optimizations on the fast path. |
| 5299 | optPerformStaticOptimizations(loopInd, context DEBUGARG(true)); |
| 5300 | |
| 5301 | // Now go through the new blocks, remapping their jump targets within the loop. |
| 5302 | for (BasicBlock* blk = optLoopTable[loopInd].lpFirst; blk != optLoopTable[loopInd].lpBottom->bbNext; |
| 5303 | blk = blk->bbNext) |
| 5304 | { |
| 5305 | |
| 5306 | BasicBlock* newblk = nullptr; |
| 5307 | bool b = blockMap->Lookup(blk, &newblk); |
| 5308 | assert(b && newblk != nullptr); |
| 5309 | |
| 5310 | assert(blk->bbJumpKind == newblk->bbJumpKind); |
| 5311 | |
| 5312 | // First copy the jump destination(s) from "blk". |
| 5313 | optCopyBlkDest(blk, newblk); |
| 5314 | |
| 5315 | // Now redirect the new block according to "blockMap". |
| 5316 | optRedirectBlock(newblk, blockMap); |
| 5317 | } |
| 5318 | |
| 5319 | assert((h->bbJumpKind == BBJ_NONE && (h->bbNext == h2 || h->bbNext == optLoopTable[loopInd].lpEntry)) || |
| 5320 | (h->bbJumpKind == BBJ_ALWAYS)); |
| 5321 | |
| 5322 | // If all the conditions are true, go to E2. |
| 5323 | BasicBlock* e2 = nullptr; |
| 5324 | bool foundIt = blockMap->Lookup(optLoopTable[loopInd].lpEntry, &e2); |
| 5325 | |
| 5326 | h->bbJumpKind = BBJ_COND; |
| 5327 | |
| 5328 | // We will create the following structure |
| 5329 | // |
| 5330 | // cond0 (in h) -?> cond1 |
| 5331 | // slow --> e2 (slow) always |
| 5332 | // !cond1 -?> slow |
| 5333 | // !cond2 -?> slow |
| 5334 | // ... |
| 5335 | // !condn -?> slow |
| 5336 | // h2/entry (fast) |
| 5337 | // |
| 5338 | // We should always have block conditions, at the minimum, the array should be deref-able |
| 5339 | assert(context->HasBlockConditions(loopInd)); |
| 5340 | |
| 5341 | // Create a unique header for the slow path. |
| 5342 | BasicBlock* slowHead = fgNewBBafter(BBJ_ALWAYS, h, true); |
| 5343 | slowHead->bbWeight = (h->isRunRarely() ? 0 : ambientWeight); |
| 5344 | slowHead->bbNatLoopNum = ambientLoop; |
| 5345 | slowHead->bbJumpDest = e2; |
| 5346 | |
| 5347 | BasicBlock* condLast = optInsertLoopChoiceConditions(context, loopInd, h, slowHead); |
| 5348 | condLast->bbJumpDest = slowHead; |
| 5349 | |
| 5350 | // If h2 is present it is already the head or replace 'h' by 'condLast'. |
| 5351 | if (h2 == nullptr) |
| 5352 | { |
| 5353 | optUpdateLoopHead(loopInd, optLoopTable[loopInd].lpHead, condLast); |
| 5354 | } |
| 5355 | assert(foundIt && e2 != nullptr); |
| 5356 | |
| 5357 | // Don't unroll loops that we've cloned -- the unroller expects any loop it should unroll to |
| 5358 | // initialize the loop counter immediately before entering the loop, but we've left a shared |
| 5359 | // initialization of the loop counter up above the test that determines which version of the |
| 5360 | // loop to take. |
| 5361 | optLoopTable[loopInd].lpFlags |= LPFLG_DONT_UNROLL; |
| 5362 | |
| 5363 | fgUpdateChangedFlowGraph(); |
| 5364 | } |
| 5365 | |
| 5366 | //-------------------------------------------------------------------------------------------------- |
| 5367 | // optInsertLoopChoiceConditions - Insert the loop conditions for a loop between loop head and entry |
| 5368 | // |
| 5369 | // Arguments: |
| 5370 | // context loop cloning context variable |
| 5371 | // loopNum the loop index |
| 5372 | // head loop head for "loopNum" |
| 5373 | // slowHead the slow path loop head |
| 5374 | // |
| 5375 | // Return Values: |
| 5376 | // None. |
| 5377 | // |
| 5378 | // Operation: |
| 5379 | // Create the following structure. |
| 5380 | // |
| 5381 | // Note below that the cond0 is inverted in head i.e., if true jump to cond1. This is because |
| 5382 | // condn cannot jtrue to loop head h2. It has to be from a direct pred block. |
| 5383 | // |
| 5384 | // cond0 (in h) -?> cond1 |
| 5385 | // slowHead --> e2 (slowHead) always |
| 5386 | // !cond1 -?> slowHead |
| 5387 | // !cond2 -?> slowHead |
| 5388 | // ... |
| 5389 | // !condn -?> slowHead |
| 5390 | // h2/entry (fast) |
| 5391 | // |
| 5392 | // Insert condition 0 in 'h' and create other condition blocks and insert conditions in them. |
| 5393 | // |
| 5394 | BasicBlock* Compiler::optInsertLoopChoiceConditions(LoopCloneContext* context, |
| 5395 | unsigned loopNum, |
| 5396 | BasicBlock* head, |
| 5397 | BasicBlock* slowHead) |
| 5398 | { |
| 5399 | JITDUMP("Inserting loop cloning conditions\n" ); |
| 5400 | assert(context->HasBlockConditions(loopNum)); |
| 5401 | |
| 5402 | BasicBlock* curCond = head; |
| 5403 | JitExpandArrayStack<JitExpandArrayStack<LC_Condition>*>* levelCond = context->GetBlockConditions(loopNum); |
| 5404 | for (unsigned i = 0; i < levelCond->Size(); ++i) |
| 5405 | { |
| 5406 | bool = (curCond == head); |
| 5407 | |
| 5408 | // Flip the condition if header block. |
| 5409 | context->CondToStmtInBlock(this, *((*levelCond)[i]), curCond, isHeaderBlock); |
| 5410 | |
| 5411 | // Create each condition block ensuring wiring between them. |
| 5412 | BasicBlock* tmp = fgNewBBafter(BBJ_COND, isHeaderBlock ? slowHead : curCond, true); |
| 5413 | curCond->bbJumpDest = isHeaderBlock ? tmp : slowHead; |
| 5414 | curCond = tmp; |
| 5415 | |
| 5416 | curCond->inheritWeight(head); |
| 5417 | curCond->bbNatLoopNum = head->bbNatLoopNum; |
| 5418 | JITDUMP("Created new " FMT_BB " for new level\n" , curCond->bbNum); |
| 5419 | } |
| 5420 | |
| 5421 | // Finally insert cloning conditions after all deref conditions have been inserted. |
| 5422 | context->CondToStmtInBlock(this, *(context->GetConditions(loopNum)), curCond, false); |
| 5423 | return curCond; |
| 5424 | } |
| 5425 | |
| 5426 | void Compiler::optEnsureUniqueHead(unsigned loopInd, unsigned ambientWeight) |
| 5427 | { |
| 5428 | BasicBlock* h = optLoopTable[loopInd].lpHead; |
| 5429 | BasicBlock* t = optLoopTable[loopInd].lpTop; |
| 5430 | BasicBlock* e = optLoopTable[loopInd].lpEntry; |
| 5431 | BasicBlock* b = optLoopTable[loopInd].lpBottom; |
| 5432 | |
| 5433 | // If "h" dominates the entry block, then it is the unique header. |
| 5434 | if (fgDominate(h, e)) |
| 5435 | { |
| 5436 | return; |
| 5437 | } |
| 5438 | |
| 5439 | // Otherwise, create a new empty header block, make it the pred of the entry block, |
| 5440 | // and redirect the preds of the entry block to go to this. |
| 5441 | |
| 5442 | BasicBlock* beforeTop = t->bbPrev; |
| 5443 | // Make sure that the new block is in the same region as the loop. |
| 5444 | // (We will only create loops that are entirely within a region.) |
| 5445 | BasicBlock* h2 = fgNewBBafter(BBJ_ALWAYS, beforeTop, true); |
| 5446 | // This is in the containing loop. |
| 5447 | h2->bbNatLoopNum = optLoopTable[loopInd].lpParent; |
| 5448 | h2->bbWeight = (h2->isRunRarely() ? 0 : ambientWeight); |
| 5449 | |
| 5450 | // We don't care where it was put; splice it between beforeTop and top. |
| 5451 | if (beforeTop->bbNext != h2) |
| 5452 | { |
| 5453 | h2->bbPrev->setNext(h2->bbNext); // Splice h2 out. |
| 5454 | beforeTop->setNext(h2); // Splice h2 in, between beforeTop and t. |
| 5455 | h2->setNext(t); |
| 5456 | } |
| 5457 | |
| 5458 | if (h2->bbNext != e) |
| 5459 | { |
| 5460 | h2->bbJumpKind = BBJ_ALWAYS; |
| 5461 | h2->bbJumpDest = e; |
| 5462 | } |
| 5463 | BlockSetOps::Assign(this, h2->bbReach, e->bbReach); |
| 5464 | |
| 5465 | // Redirect paths from preds of "e" to go to "h2" instead of "e". |
| 5466 | BlockToBlockMap* blockMap = new (getAllocator()) BlockToBlockMap(getAllocator()); |
| 5467 | blockMap->Set(e, h2); |
| 5468 | |
| 5469 | for (flowList* predEntry = e->bbPreds; predEntry; predEntry = predEntry->flNext) |
| 5470 | { |
| 5471 | BasicBlock* predBlock = predEntry->flBlock; |
| 5472 | |
| 5473 | // Skip if predBlock is in the loop. |
| 5474 | if (t->bbNum <= predBlock->bbNum && predBlock->bbNum <= b->bbNum) |
| 5475 | { |
| 5476 | continue; |
| 5477 | } |
| 5478 | optRedirectBlock(predBlock, blockMap); |
| 5479 | } |
| 5480 | |
| 5481 | optUpdateLoopHead(loopInd, optLoopTable[loopInd].lpHead, h2); |
| 5482 | } |
| 5483 | |
| 5484 | /***************************************************************************** |
| 5485 | * |
| 5486 | * Determine the kind of interference for the call. |
| 5487 | */ |
| 5488 | |
| 5489 | /* static */ inline Compiler::callInterf Compiler::optCallInterf(GenTreeCall* call) |
| 5490 | { |
| 5491 | // if not a helper, kills everything |
| 5492 | if (call->gtCallType != CT_HELPER) |
| 5493 | { |
| 5494 | return CALLINT_ALL; |
| 5495 | } |
| 5496 | |
| 5497 | // setfield and array address store kill all indirections |
| 5498 | switch (eeGetHelperNum(call->gtCallMethHnd)) |
| 5499 | { |
| 5500 | case CORINFO_HELP_ASSIGN_REF: // Not strictly needed as we don't make a GT_CALL with this |
| 5501 | case CORINFO_HELP_CHECKED_ASSIGN_REF: // Not strictly needed as we don't make a GT_CALL with this |
| 5502 | case CORINFO_HELP_ASSIGN_BYREF: // Not strictly needed as we don't make a GT_CALL with this |
| 5503 | case CORINFO_HELP_SETFIELDOBJ: |
| 5504 | case CORINFO_HELP_ARRADDR_ST: |
| 5505 | |
| 5506 | return CALLINT_REF_INDIRS; |
| 5507 | |
| 5508 | case CORINFO_HELP_SETFIELDFLOAT: |
| 5509 | case CORINFO_HELP_SETFIELDDOUBLE: |
| 5510 | case CORINFO_HELP_SETFIELD8: |
| 5511 | case CORINFO_HELP_SETFIELD16: |
| 5512 | case CORINFO_HELP_SETFIELD32: |
| 5513 | case CORINFO_HELP_SETFIELD64: |
| 5514 | |
| 5515 | return CALLINT_SCL_INDIRS; |
| 5516 | |
| 5517 | case CORINFO_HELP_ASSIGN_STRUCT: // Not strictly needed as we don't use this |
| 5518 | case CORINFO_HELP_MEMSET: // Not strictly needed as we don't make a GT_CALL with this |
| 5519 | case CORINFO_HELP_MEMCPY: // Not strictly needed as we don't make a GT_CALL with this |
| 5520 | case CORINFO_HELP_SETFIELDSTRUCT: |
| 5521 | |
| 5522 | return CALLINT_ALL_INDIRS; |
| 5523 | |
| 5524 | default: |
| 5525 | break; |
| 5526 | } |
| 5527 | |
| 5528 | // other helpers kill nothing |
| 5529 | return CALLINT_NONE; |
| 5530 | } |
| 5531 | |
| 5532 | /***************************************************************************** |
| 5533 | * |
| 5534 | * See if the given tree can be computed in the given precision (which must |
| 5535 | * be smaller than the type of the tree for this to make sense). If 'doit' |
| 5536 | * is false, we merely check to see whether narrowing is possible; if we |
| 5537 | * get called with 'doit' being true, we actually perform the narrowing. |
| 5538 | */ |
| 5539 | |
| 5540 | bool Compiler::optNarrowTree(GenTree* tree, var_types srct, var_types dstt, ValueNumPair vnpNarrow, bool doit) |
| 5541 | { |
| 5542 | genTreeOps oper; |
| 5543 | unsigned kind; |
| 5544 | |
| 5545 | noway_assert(tree); |
| 5546 | noway_assert(genActualType(tree->gtType) == genActualType(srct)); |
| 5547 | |
| 5548 | /* Assume we're only handling integer types */ |
| 5549 | noway_assert(varTypeIsIntegral(srct)); |
| 5550 | noway_assert(varTypeIsIntegral(dstt)); |
| 5551 | |
| 5552 | unsigned srcSize = genTypeSize(srct); |
| 5553 | unsigned dstSize = genTypeSize(dstt); |
| 5554 | |
| 5555 | /* dstt must be smaller than srct to narrow */ |
| 5556 | if (dstSize >= srcSize) |
| 5557 | { |
| 5558 | return false; |
| 5559 | } |
| 5560 | |
| 5561 | /* Figure out what kind of a node we have */ |
| 5562 | oper = tree->OperGet(); |
| 5563 | kind = tree->OperKind(); |
| 5564 | |
| 5565 | if (oper == GT_ASG) |
| 5566 | { |
| 5567 | noway_assert(doit == false); |
| 5568 | return false; |
| 5569 | } |
| 5570 | |
| 5571 | ValueNumPair NoVNPair = ValueNumPair(); |
| 5572 | |
| 5573 | if (kind & GTK_LEAF) |
| 5574 | { |
| 5575 | switch (oper) |
| 5576 | { |
| 5577 | /* Constants can usually be narrowed by changing their value */ |
| 5578 | CLANG_FORMAT_COMMENT_ANCHOR; |
| 5579 | |
| 5580 | #ifndef _TARGET_64BIT_ |
| 5581 | __int64 lval; |
| 5582 | __int64 lmask; |
| 5583 | |
| 5584 | case GT_CNS_LNG: |
| 5585 | lval = tree->gtIntConCommon.LngValue(); |
| 5586 | lmask = 0; |
| 5587 | |
| 5588 | switch (dstt) |
| 5589 | { |
| 5590 | case TYP_BYTE: |
| 5591 | lmask = 0x0000007F; |
| 5592 | break; |
| 5593 | case TYP_BOOL: |
| 5594 | case TYP_UBYTE: |
| 5595 | lmask = 0x000000FF; |
| 5596 | break; |
| 5597 | case TYP_SHORT: |
| 5598 | lmask = 0x00007FFF; |
| 5599 | break; |
| 5600 | case TYP_USHORT: |
| 5601 | lmask = 0x0000FFFF; |
| 5602 | break; |
| 5603 | case TYP_INT: |
| 5604 | lmask = 0x7FFFFFFF; |
| 5605 | break; |
| 5606 | case TYP_UINT: |
| 5607 | lmask = 0xFFFFFFFF; |
| 5608 | break; |
| 5609 | |
| 5610 | default: |
| 5611 | return false; |
| 5612 | } |
| 5613 | |
| 5614 | if ((lval & lmask) != lval) |
| 5615 | return false; |
| 5616 | |
| 5617 | if (doit) |
| 5618 | { |
| 5619 | tree->ChangeOperConst(GT_CNS_INT); |
| 5620 | tree->gtType = TYP_INT; |
| 5621 | tree->gtIntCon.gtIconVal = (int)lval; |
| 5622 | if (vnStore != nullptr) |
| 5623 | { |
| 5624 | fgValueNumberTreeConst(tree); |
| 5625 | } |
| 5626 | } |
| 5627 | |
| 5628 | return true; |
| 5629 | #endif |
| 5630 | |
| 5631 | case GT_CNS_INT: |
| 5632 | |
| 5633 | ssize_t ival; |
| 5634 | ival = tree->gtIntCon.gtIconVal; |
| 5635 | ssize_t imask; |
| 5636 | imask = 0; |
| 5637 | |
| 5638 | switch (dstt) |
| 5639 | { |
| 5640 | case TYP_BYTE: |
| 5641 | imask = 0x0000007F; |
| 5642 | break; |
| 5643 | case TYP_BOOL: |
| 5644 | case TYP_UBYTE: |
| 5645 | imask = 0x000000FF; |
| 5646 | break; |
| 5647 | case TYP_SHORT: |
| 5648 | imask = 0x00007FFF; |
| 5649 | break; |
| 5650 | case TYP_USHORT: |
| 5651 | imask = 0x0000FFFF; |
| 5652 | break; |
| 5653 | #ifdef _TARGET_64BIT_ |
| 5654 | case TYP_INT: |
| 5655 | imask = 0x7FFFFFFF; |
| 5656 | break; |
| 5657 | case TYP_UINT: |
| 5658 | imask = 0xFFFFFFFF; |
| 5659 | break; |
| 5660 | #endif // _TARGET_64BIT_ |
| 5661 | default: |
| 5662 | return false; |
| 5663 | } |
| 5664 | |
| 5665 | if ((ival & imask) != ival) |
| 5666 | { |
| 5667 | return false; |
| 5668 | } |
| 5669 | |
| 5670 | #ifdef _TARGET_64BIT_ |
| 5671 | if (doit) |
| 5672 | { |
| 5673 | tree->gtType = TYP_INT; |
| 5674 | tree->gtIntCon.gtIconVal = (int)ival; |
| 5675 | if (vnStore != nullptr) |
| 5676 | { |
| 5677 | fgValueNumberTreeConst(tree); |
| 5678 | } |
| 5679 | } |
| 5680 | #endif // _TARGET_64BIT_ |
| 5681 | |
| 5682 | return true; |
| 5683 | |
| 5684 | /* Operands that are in memory can usually be narrowed |
| 5685 | simply by changing their gtType */ |
| 5686 | |
| 5687 | case GT_LCL_VAR: |
| 5688 | /* We only allow narrowing long -> int for a GT_LCL_VAR */ |
| 5689 | if (dstSize == sizeof(int)) |
| 5690 | { |
| 5691 | goto NARROW_IND; |
| 5692 | } |
| 5693 | break; |
| 5694 | |
| 5695 | case GT_CLS_VAR: |
| 5696 | case GT_LCL_FLD: |
| 5697 | goto NARROW_IND; |
| 5698 | default: |
| 5699 | break; |
| 5700 | } |
| 5701 | |
| 5702 | noway_assert(doit == false); |
| 5703 | return false; |
| 5704 | } |
| 5705 | |
| 5706 | if (kind & (GTK_BINOP | GTK_UNOP)) |
| 5707 | { |
| 5708 | GenTree* op1; |
| 5709 | op1 = tree->gtOp.gtOp1; |
| 5710 | GenTree* op2; |
| 5711 | op2 = tree->gtOp.gtOp2; |
| 5712 | |
| 5713 | switch (tree->gtOper) |
| 5714 | { |
| 5715 | case GT_AND: |
| 5716 | noway_assert(genActualType(tree->gtType) == genActualType(op1->gtType)); |
| 5717 | noway_assert(genActualType(tree->gtType) == genActualType(op2->gtType)); |
| 5718 | |
| 5719 | GenTree* opToNarrow; |
| 5720 | opToNarrow = nullptr; |
| 5721 | GenTree** otherOpPtr; |
| 5722 | otherOpPtr = nullptr; |
| 5723 | bool foundOperandThatBlocksNarrowing; |
| 5724 | foundOperandThatBlocksNarrowing = false; |
| 5725 | |
| 5726 | // If 'dstt' is unsigned and one of the operands can be narrowed into 'dsst', |
| 5727 | // the result of the GT_AND will also fit into 'dstt' and can be narrowed. |
| 5728 | // The same is true if one of the operands is an int const and can be narrowed into 'dsst'. |
| 5729 | if (!gtIsActiveCSE_Candidate(op2) && ((op2->gtOper == GT_CNS_INT) || varTypeIsUnsigned(dstt))) |
| 5730 | { |
| 5731 | if (optNarrowTree(op2, srct, dstt, NoVNPair, false)) |
| 5732 | { |
| 5733 | opToNarrow = op2; |
| 5734 | otherOpPtr = &tree->gtOp.gtOp1; |
| 5735 | } |
| 5736 | else |
| 5737 | { |
| 5738 | foundOperandThatBlocksNarrowing = true; |
| 5739 | } |
| 5740 | } |
| 5741 | |
| 5742 | if ((opToNarrow == nullptr) && !gtIsActiveCSE_Candidate(op1) && |
| 5743 | ((op1->gtOper == GT_CNS_INT) || varTypeIsUnsigned(dstt))) |
| 5744 | { |
| 5745 | if (optNarrowTree(op1, srct, dstt, NoVNPair, false)) |
| 5746 | { |
| 5747 | opToNarrow = op1; |
| 5748 | otherOpPtr = &tree->gtOp.gtOp2; |
| 5749 | } |
| 5750 | else |
| 5751 | { |
| 5752 | foundOperandThatBlocksNarrowing = true; |
| 5753 | } |
| 5754 | } |
| 5755 | |
| 5756 | if (opToNarrow != nullptr) |
| 5757 | { |
| 5758 | // We will change the type of the tree and narrow opToNarrow |
| 5759 | // |
| 5760 | if (doit) |
| 5761 | { |
| 5762 | tree->gtType = genActualType(dstt); |
| 5763 | tree->SetVNs(vnpNarrow); |
| 5764 | |
| 5765 | optNarrowTree(opToNarrow, srct, dstt, NoVNPair, true); |
| 5766 | // We may also need to cast away the upper bits of *otherOpPtr |
| 5767 | if (srcSize == 8) |
| 5768 | { |
| 5769 | assert(tree->gtType == TYP_INT); |
| 5770 | GenTree* castOp = gtNewCastNode(TYP_INT, *otherOpPtr, false, TYP_INT); |
| 5771 | #ifdef DEBUG |
| 5772 | castOp->gtDebugFlags |= GTF_DEBUG_NODE_MORPHED; |
| 5773 | #endif |
| 5774 | *otherOpPtr = castOp; |
| 5775 | } |
| 5776 | } |
| 5777 | return true; |
| 5778 | } |
| 5779 | |
| 5780 | if (foundOperandThatBlocksNarrowing) |
| 5781 | { |
| 5782 | noway_assert(doit == false); |
| 5783 | return false; |
| 5784 | } |
| 5785 | |
| 5786 | goto COMMON_BINOP; |
| 5787 | |
| 5788 | case GT_ADD: |
| 5789 | case GT_MUL: |
| 5790 | |
| 5791 | if (tree->gtOverflow() || varTypeIsSmall(dstt)) |
| 5792 | { |
| 5793 | noway_assert(doit == false); |
| 5794 | return false; |
| 5795 | } |
| 5796 | __fallthrough; |
| 5797 | |
| 5798 | case GT_OR: |
| 5799 | case GT_XOR: |
| 5800 | noway_assert(genActualType(tree->gtType) == genActualType(op1->gtType)); |
| 5801 | noway_assert(genActualType(tree->gtType) == genActualType(op2->gtType)); |
| 5802 | COMMON_BINOP: |
| 5803 | if (gtIsActiveCSE_Candidate(op1) || gtIsActiveCSE_Candidate(op2) || |
| 5804 | !optNarrowTree(op1, srct, dstt, NoVNPair, doit) || !optNarrowTree(op2, srct, dstt, NoVNPair, doit)) |
| 5805 | { |
| 5806 | noway_assert(doit == false); |
| 5807 | return false; |
| 5808 | } |
| 5809 | |
| 5810 | /* Simply change the type of the tree */ |
| 5811 | |
| 5812 | if (doit) |
| 5813 | { |
| 5814 | if (tree->gtOper == GT_MUL && (tree->gtFlags & GTF_MUL_64RSLT)) |
| 5815 | { |
| 5816 | tree->gtFlags &= ~GTF_MUL_64RSLT; |
| 5817 | } |
| 5818 | |
| 5819 | tree->gtType = genActualType(dstt); |
| 5820 | tree->SetVNs(vnpNarrow); |
| 5821 | } |
| 5822 | |
| 5823 | return true; |
| 5824 | |
| 5825 | case GT_IND: |
| 5826 | |
| 5827 | NARROW_IND: |
| 5828 | |
| 5829 | if ((dstSize > genTypeSize(tree->gtType)) && |
| 5830 | (varTypeIsUnsigned(dstt) && !varTypeIsUnsigned(tree->gtType))) |
| 5831 | { |
| 5832 | return false; |
| 5833 | } |
| 5834 | |
| 5835 | /* Simply change the type of the tree */ |
| 5836 | |
| 5837 | if (doit && (dstSize <= genTypeSize(tree->gtType))) |
| 5838 | { |
| 5839 | tree->gtType = genSignedType(dstt); |
| 5840 | tree->SetVNs(vnpNarrow); |
| 5841 | |
| 5842 | /* Make sure we don't mess up the variable type */ |
| 5843 | if ((oper == GT_LCL_VAR) || (oper == GT_LCL_FLD)) |
| 5844 | { |
| 5845 | tree->gtFlags |= GTF_VAR_CAST; |
| 5846 | } |
| 5847 | } |
| 5848 | |
| 5849 | return true; |
| 5850 | |
| 5851 | case GT_EQ: |
| 5852 | case GT_NE: |
| 5853 | case GT_LT: |
| 5854 | case GT_LE: |
| 5855 | case GT_GT: |
| 5856 | case GT_GE: |
| 5857 | |
| 5858 | /* These can always be narrowed since they only represent 0 or 1 */ |
| 5859 | return true; |
| 5860 | |
| 5861 | case GT_CAST: |
| 5862 | { |
| 5863 | var_types cast = tree->CastToType(); |
| 5864 | var_types oprt = op1->TypeGet(); |
| 5865 | unsigned oprSize = genTypeSize(oprt); |
| 5866 | |
| 5867 | if (cast != srct) |
| 5868 | { |
| 5869 | return false; |
| 5870 | } |
| 5871 | |
| 5872 | if (varTypeIsIntegralOrI(dstt) != varTypeIsIntegralOrI(oprt)) |
| 5873 | { |
| 5874 | return false; |
| 5875 | } |
| 5876 | |
| 5877 | if (tree->gtOverflow()) |
| 5878 | { |
| 5879 | return false; |
| 5880 | } |
| 5881 | |
| 5882 | /* Is this a cast from the type we're narrowing to or a smaller one? */ |
| 5883 | |
| 5884 | if (oprSize <= dstSize) |
| 5885 | { |
| 5886 | /* Bash the target type of the cast */ |
| 5887 | |
| 5888 | if (doit) |
| 5889 | { |
| 5890 | dstt = genSignedType(dstt); |
| 5891 | |
| 5892 | if ((oprSize == dstSize) && |
| 5893 | ((varTypeIsUnsigned(dstt) == varTypeIsUnsigned(oprt)) || !varTypeIsSmall(dstt))) |
| 5894 | { |
| 5895 | // Same size and there is no signedness mismatch for small types: change the CAST |
| 5896 | // into a NOP |
| 5897 | |
| 5898 | JITDUMP("Cast operation has no effect, bashing [%06d] GT_CAST into a GT_NOP.\n" , |
| 5899 | dspTreeID(tree)); |
| 5900 | |
| 5901 | tree->ChangeOper(GT_NOP); |
| 5902 | tree->gtType = dstt; |
| 5903 | // Clear the GTF_UNSIGNED flag, as it may have been set on the cast node |
| 5904 | tree->gtFlags &= ~GTF_UNSIGNED; |
| 5905 | tree->gtOp.gtOp2 = nullptr; |
| 5906 | tree->gtVNPair = op1->gtVNPair; // Set to op1's ValueNumber |
| 5907 | } |
| 5908 | else |
| 5909 | { |
| 5910 | // oprSize is smaller or there is a signedness mismatch for small types |
| 5911 | |
| 5912 | // Change the CastToType in the GT_CAST node |
| 5913 | tree->CastToType() = dstt; |
| 5914 | |
| 5915 | // The result type of a GT_CAST is never a small type. |
| 5916 | // Use genActualType to widen dstt when it is a small types. |
| 5917 | tree->gtType = genActualType(dstt); |
| 5918 | tree->SetVNs(vnpNarrow); |
| 5919 | } |
| 5920 | } |
| 5921 | |
| 5922 | return true; |
| 5923 | } |
| 5924 | } |
| 5925 | return false; |
| 5926 | |
| 5927 | case GT_COMMA: |
| 5928 | if (!gtIsActiveCSE_Candidate(op2) && optNarrowTree(op2, srct, dstt, vnpNarrow, doit)) |
| 5929 | { |
| 5930 | /* Simply change the type of the tree */ |
| 5931 | |
| 5932 | if (doit) |
| 5933 | { |
| 5934 | tree->gtType = genActualType(dstt); |
| 5935 | tree->SetVNs(vnpNarrow); |
| 5936 | } |
| 5937 | return true; |
| 5938 | } |
| 5939 | return false; |
| 5940 | |
| 5941 | default: |
| 5942 | noway_assert(doit == false); |
| 5943 | return false; |
| 5944 | } |
| 5945 | } |
| 5946 | |
| 5947 | return false; |
| 5948 | } |
| 5949 | |
| 5950 | /***************************************************************************** |
| 5951 | * |
| 5952 | * The following logic figures out whether the given variable is assigned |
| 5953 | * somewhere in a list of basic blocks (or in an entire loop). |
| 5954 | */ |
| 5955 | |
| 5956 | Compiler::fgWalkResult Compiler::optIsVarAssgCB(GenTree** pTree, fgWalkData* data) |
| 5957 | { |
| 5958 | GenTree* tree = *pTree; |
| 5959 | |
| 5960 | if (tree->OperIs(GT_ASG)) |
| 5961 | { |
| 5962 | GenTree* dest = tree->gtOp.gtOp1; |
| 5963 | genTreeOps destOper = dest->OperGet(); |
| 5964 | |
| 5965 | isVarAssgDsc* desc = (isVarAssgDsc*)data->pCallbackData; |
| 5966 | assert(desc && desc->ivaSelf == desc); |
| 5967 | |
| 5968 | if (destOper == GT_LCL_VAR) |
| 5969 | { |
| 5970 | unsigned tvar = dest->gtLclVarCommon.gtLclNum; |
| 5971 | if (tvar < lclMAX_ALLSET_TRACKED) |
| 5972 | { |
| 5973 | AllVarSetOps::AddElemD(data->compiler, desc->ivaMaskVal, tvar); |
| 5974 | } |
| 5975 | else |
| 5976 | { |
| 5977 | desc->ivaMaskIncomplete = true; |
| 5978 | } |
| 5979 | |
| 5980 | if (tvar == desc->ivaVar) |
| 5981 | { |
| 5982 | if (tree != desc->ivaSkip) |
| 5983 | { |
| 5984 | return WALK_ABORT; |
| 5985 | } |
| 5986 | } |
| 5987 | } |
| 5988 | else if (destOper == GT_LCL_FLD) |
| 5989 | { |
| 5990 | /* We can't track every field of every var. Moreover, indirections |
| 5991 | may access different parts of the var as different (but |
| 5992 | overlapping) fields. So just treat them as indirect accesses */ |
| 5993 | |
| 5994 | // unsigned lclNum = dest->gtLclFld.gtLclNum; |
| 5995 | // noway_assert(lvaTable[lclNum].lvAddrTaken); |
| 5996 | |
| 5997 | varRefKinds refs = varTypeIsGC(tree->TypeGet()) ? VR_IND_REF : VR_IND_SCL; |
| 5998 | desc->ivaMaskInd = varRefKinds(desc->ivaMaskInd | refs); |
| 5999 | } |
| 6000 | else if (destOper == GT_CLS_VAR) |
| 6001 | { |
| 6002 | desc->ivaMaskInd = varRefKinds(desc->ivaMaskInd | VR_GLB_VAR); |
| 6003 | } |
| 6004 | else if (destOper == GT_IND) |
| 6005 | { |
| 6006 | /* Set the proper indirection bits */ |
| 6007 | |
| 6008 | varRefKinds refs = varTypeIsGC(tree->TypeGet()) ? VR_IND_REF : VR_IND_SCL; |
| 6009 | desc->ivaMaskInd = varRefKinds(desc->ivaMaskInd | refs); |
| 6010 | } |
| 6011 | } |
| 6012 | else if (tree->gtOper == GT_CALL) |
| 6013 | { |
| 6014 | isVarAssgDsc* desc = (isVarAssgDsc*)data->pCallbackData; |
| 6015 | assert(desc && desc->ivaSelf == desc); |
| 6016 | |
| 6017 | desc->ivaMaskCall = optCallInterf(tree->AsCall()); |
| 6018 | } |
| 6019 | |
| 6020 | return WALK_CONTINUE; |
| 6021 | } |
| 6022 | |
| 6023 | /*****************************************************************************/ |
| 6024 | |
| 6025 | bool Compiler::optIsVarAssigned(BasicBlock* beg, BasicBlock* end, GenTree* skip, unsigned var) |
| 6026 | { |
| 6027 | bool result; |
| 6028 | isVarAssgDsc desc; |
| 6029 | |
| 6030 | desc.ivaSkip = skip; |
| 6031 | #ifdef DEBUG |
| 6032 | desc.ivaSelf = &desc; |
| 6033 | #endif |
| 6034 | desc.ivaVar = var; |
| 6035 | desc.ivaMaskCall = CALLINT_NONE; |
| 6036 | AllVarSetOps::AssignNoCopy(this, desc.ivaMaskVal, AllVarSetOps::MakeEmpty(this)); |
| 6037 | |
| 6038 | for (;;) |
| 6039 | { |
| 6040 | noway_assert(beg); |
| 6041 | |
| 6042 | for (GenTreeStmt* stmt = beg->firstStmt(); stmt; stmt = stmt->gtNextStmt) |
| 6043 | { |
| 6044 | noway_assert(stmt->gtOper == GT_STMT); |
| 6045 | if (fgWalkTreePre(&stmt->gtStmtExpr, optIsVarAssgCB, &desc)) |
| 6046 | { |
| 6047 | result = true; |
| 6048 | goto DONE; |
| 6049 | } |
| 6050 | } |
| 6051 | |
| 6052 | if (beg == end) |
| 6053 | { |
| 6054 | break; |
| 6055 | } |
| 6056 | |
| 6057 | beg = beg->bbNext; |
| 6058 | } |
| 6059 | |
| 6060 | result = false; |
| 6061 | |
| 6062 | DONE: |
| 6063 | |
| 6064 | return result; |
| 6065 | } |
| 6066 | |
| 6067 | /*****************************************************************************/ |
| 6068 | int Compiler::optIsSetAssgLoop(unsigned lnum, ALLVARSET_VALARG_TP vars, varRefKinds inds) |
| 6069 | { |
| 6070 | LoopDsc* loop; |
| 6071 | |
| 6072 | /* Get hold of the loop descriptor */ |
| 6073 | |
| 6074 | noway_assert(lnum < optLoopCount); |
| 6075 | loop = optLoopTable + lnum; |
| 6076 | |
| 6077 | /* Do we already know what variables are assigned within this loop? */ |
| 6078 | |
| 6079 | if (!(loop->lpFlags & LPFLG_ASGVARS_YES)) |
| 6080 | { |
| 6081 | isVarAssgDsc desc; |
| 6082 | |
| 6083 | BasicBlock* beg; |
| 6084 | BasicBlock* end; |
| 6085 | |
| 6086 | /* Prepare the descriptor used by the tree walker call-back */ |
| 6087 | |
| 6088 | desc.ivaVar = (unsigned)-1; |
| 6089 | desc.ivaSkip = nullptr; |
| 6090 | #ifdef DEBUG |
| 6091 | desc.ivaSelf = &desc; |
| 6092 | #endif |
| 6093 | AllVarSetOps::AssignNoCopy(this, desc.ivaMaskVal, AllVarSetOps::MakeEmpty(this)); |
| 6094 | desc.ivaMaskInd = VR_NONE; |
| 6095 | desc.ivaMaskCall = CALLINT_NONE; |
| 6096 | desc.ivaMaskIncomplete = false; |
| 6097 | |
| 6098 | /* Now walk all the statements of the loop */ |
| 6099 | |
| 6100 | beg = loop->lpHead->bbNext; |
| 6101 | end = loop->lpBottom; |
| 6102 | |
| 6103 | for (/**/; /**/; beg = beg->bbNext) |
| 6104 | { |
| 6105 | noway_assert(beg); |
| 6106 | |
| 6107 | for (GenTreeStmt* stmt = beg->FirstNonPhiDef(); stmt; stmt = stmt->gtNextStmt) |
| 6108 | { |
| 6109 | noway_assert(stmt->gtOper == GT_STMT); |
| 6110 | fgWalkTreePre(&stmt->gtStmtExpr, optIsVarAssgCB, &desc); |
| 6111 | |
| 6112 | if (desc.ivaMaskIncomplete) |
| 6113 | { |
| 6114 | loop->lpFlags |= LPFLG_ASGVARS_INC; |
| 6115 | } |
| 6116 | } |
| 6117 | |
| 6118 | if (beg == end) |
| 6119 | { |
| 6120 | break; |
| 6121 | } |
| 6122 | } |
| 6123 | |
| 6124 | AllVarSetOps::Assign(this, loop->lpAsgVars, desc.ivaMaskVal); |
| 6125 | loop->lpAsgInds = desc.ivaMaskInd; |
| 6126 | loop->lpAsgCall = desc.ivaMaskCall; |
| 6127 | |
| 6128 | /* Now we know what variables are assigned in the loop */ |
| 6129 | |
| 6130 | loop->lpFlags |= LPFLG_ASGVARS_YES; |
| 6131 | } |
| 6132 | |
| 6133 | /* Now we can finally test the caller's mask against the loop's */ |
| 6134 | if (!AllVarSetOps::IsEmptyIntersection(this, loop->lpAsgVars, vars) || (loop->lpAsgInds & inds)) |
| 6135 | { |
| 6136 | return 1; |
| 6137 | } |
| 6138 | |
| 6139 | switch (loop->lpAsgCall) |
| 6140 | { |
| 6141 | case CALLINT_ALL: |
| 6142 | |
| 6143 | /* Can't hoist if the call might have side effect on an indirection. */ |
| 6144 | |
| 6145 | if (loop->lpAsgInds != VR_NONE) |
| 6146 | { |
| 6147 | return 1; |
| 6148 | } |
| 6149 | |
| 6150 | break; |
| 6151 | |
| 6152 | case CALLINT_REF_INDIRS: |
| 6153 | |
| 6154 | /* Can't hoist if the call might have side effect on an ref indirection. */ |
| 6155 | |
| 6156 | if (loop->lpAsgInds & VR_IND_REF) |
| 6157 | { |
| 6158 | return 1; |
| 6159 | } |
| 6160 | |
| 6161 | break; |
| 6162 | |
| 6163 | case CALLINT_SCL_INDIRS: |
| 6164 | |
| 6165 | /* Can't hoist if the call might have side effect on an non-ref indirection. */ |
| 6166 | |
| 6167 | if (loop->lpAsgInds & VR_IND_SCL) |
| 6168 | { |
| 6169 | return 1; |
| 6170 | } |
| 6171 | |
| 6172 | break; |
| 6173 | |
| 6174 | case CALLINT_ALL_INDIRS: |
| 6175 | |
| 6176 | /* Can't hoist if the call might have side effect on any indirection. */ |
| 6177 | |
| 6178 | if (loop->lpAsgInds & (VR_IND_REF | VR_IND_SCL)) |
| 6179 | { |
| 6180 | return 1; |
| 6181 | } |
| 6182 | |
| 6183 | break; |
| 6184 | |
| 6185 | case CALLINT_NONE: |
| 6186 | |
| 6187 | /* Other helpers kill nothing */ |
| 6188 | |
| 6189 | break; |
| 6190 | |
| 6191 | default: |
| 6192 | noway_assert(!"Unexpected lpAsgCall value" ); |
| 6193 | } |
| 6194 | |
| 6195 | return 0; |
| 6196 | } |
| 6197 | |
| 6198 | void Compiler::optPerformHoistExpr(GenTree* origExpr, unsigned lnum) |
| 6199 | { |
| 6200 | #ifdef DEBUG |
| 6201 | if (verbose) |
| 6202 | { |
| 6203 | printf("\nHoisting a copy of " ); |
| 6204 | printTreeID(origExpr); |
| 6205 | printf(" into PreHeader for loop L%02u <" FMT_BB ".." FMT_BB ">:\n" , lnum, optLoopTable[lnum].lpFirst->bbNum, |
| 6206 | optLoopTable[lnum].lpBottom->bbNum); |
| 6207 | gtDispTree(origExpr); |
| 6208 | printf("\n" ); |
| 6209 | } |
| 6210 | #endif |
| 6211 | |
| 6212 | // This loop has to be in a form that is approved for hoisting. |
| 6213 | assert(optLoopTable[lnum].lpFlags & LPFLG_HOISTABLE); |
| 6214 | |
| 6215 | // Create a copy of the expression and mark it for CSE's. |
| 6216 | GenTree* hoistExpr = gtCloneExpr(origExpr, GTF_MAKE_CSE); |
| 6217 | |
| 6218 | // At this point we should have a cloned expression, marked with the GTF_MAKE_CSE flag |
| 6219 | assert(hoistExpr != origExpr); |
| 6220 | assert(hoistExpr->gtFlags & GTF_MAKE_CSE); |
| 6221 | |
| 6222 | GenTree* hoist = hoistExpr; |
| 6223 | // The value of the expression isn't used (unless it's an assignment). |
| 6224 | if (hoistExpr->OperGet() != GT_ASG) |
| 6225 | { |
| 6226 | hoist = gtUnusedValNode(hoistExpr); |
| 6227 | } |
| 6228 | |
| 6229 | /* Put the statement in the preheader */ |
| 6230 | |
| 6231 | fgCreateLoopPreHeader(lnum); |
| 6232 | |
| 6233 | BasicBlock* preHead = optLoopTable[lnum].lpHead; |
| 6234 | assert(preHead->bbJumpKind == BBJ_NONE); |
| 6235 | |
| 6236 | // fgMorphTree requires that compCurBB be the block that contains |
| 6237 | // (or in this case, will contain) the expression. |
| 6238 | compCurBB = preHead; |
| 6239 | hoist = fgMorphTree(hoist); |
| 6240 | |
| 6241 | GenTree* hoistStmt = gtNewStmt(hoist); |
| 6242 | hoistStmt->gtFlags |= GTF_STMT_CMPADD; |
| 6243 | |
| 6244 | /* simply append the statement at the end of the preHead's list */ |
| 6245 | |
| 6246 | GenTree* treeList = preHead->bbTreeList; |
| 6247 | |
| 6248 | if (treeList) |
| 6249 | { |
| 6250 | /* append after last statement */ |
| 6251 | |
| 6252 | GenTree* last = treeList->gtPrev; |
| 6253 | assert(last->gtNext == nullptr); |
| 6254 | |
| 6255 | last->gtNext = hoistStmt; |
| 6256 | hoistStmt->gtPrev = last; |
| 6257 | treeList->gtPrev = hoistStmt; |
| 6258 | } |
| 6259 | else |
| 6260 | { |
| 6261 | /* Empty pre-header - store the single statement in the block */ |
| 6262 | |
| 6263 | preHead->bbTreeList = hoistStmt; |
| 6264 | hoistStmt->gtPrev = hoistStmt; |
| 6265 | } |
| 6266 | |
| 6267 | hoistStmt->gtNext = nullptr; |
| 6268 | |
| 6269 | #ifdef DEBUG |
| 6270 | if (verbose) |
| 6271 | { |
| 6272 | printf("This hoisted copy placed in PreHeader (" FMT_BB "):\n" , preHead->bbNum); |
| 6273 | gtDispTree(hoist); |
| 6274 | } |
| 6275 | #endif |
| 6276 | |
| 6277 | if (fgStmtListThreaded) |
| 6278 | { |
| 6279 | gtSetStmtInfo(hoistStmt); |
| 6280 | fgSetStmtSeq(hoistStmt); |
| 6281 | } |
| 6282 | |
| 6283 | #ifdef DEBUG |
| 6284 | if (m_nodeTestData != nullptr) |
| 6285 | { |
| 6286 | |
| 6287 | // What is the depth of the loop "lnum"? |
| 6288 | ssize_t depth = 0; |
| 6289 | unsigned lnumIter = lnum; |
| 6290 | while (optLoopTable[lnumIter].lpParent != BasicBlock::NOT_IN_LOOP) |
| 6291 | { |
| 6292 | depth++; |
| 6293 | lnumIter = optLoopTable[lnumIter].lpParent; |
| 6294 | } |
| 6295 | |
| 6296 | NodeToTestDataMap* testData = GetNodeTestData(); |
| 6297 | |
| 6298 | TestLabelAndNum tlAndN; |
| 6299 | if (testData->Lookup(origExpr, &tlAndN) && tlAndN.m_tl == TL_LoopHoist) |
| 6300 | { |
| 6301 | if (tlAndN.m_num == -1) |
| 6302 | { |
| 6303 | printf("Node " ); |
| 6304 | printTreeID(origExpr); |
| 6305 | printf(" was declared 'do not hoist', but is being hoisted.\n" ); |
| 6306 | assert(false); |
| 6307 | } |
| 6308 | else if (tlAndN.m_num != depth) |
| 6309 | { |
| 6310 | printf("Node " ); |
| 6311 | printTreeID(origExpr); |
| 6312 | printf(" was declared as hoistable from loop at nesting depth %d; actually hoisted from loop at depth " |
| 6313 | "%d.\n" , |
| 6314 | tlAndN.m_num, depth); |
| 6315 | assert(false); |
| 6316 | } |
| 6317 | else |
| 6318 | { |
| 6319 | // We've correctly hoisted this, so remove the annotation. Later, we'll check for any remaining "must |
| 6320 | // hoist" annotations. |
| 6321 | testData->Remove(origExpr); |
| 6322 | // Now we insert an annotation to make sure that "hoistExpr" is actually CSE'd. |
| 6323 | tlAndN.m_tl = TL_CSE_Def; |
| 6324 | tlAndN.m_num = m_loopHoistCSEClass++; |
| 6325 | testData->Set(hoistExpr, tlAndN); |
| 6326 | } |
| 6327 | } |
| 6328 | } |
| 6329 | #endif |
| 6330 | |
| 6331 | #if LOOP_HOIST_STATS |
| 6332 | if (!m_curLoopHasHoistedExpression) |
| 6333 | { |
| 6334 | m_loopsWithHoistedExpressions++; |
| 6335 | m_curLoopHasHoistedExpression = true; |
| 6336 | } |
| 6337 | m_totalHoistedExpressions++; |
| 6338 | #endif // LOOP_HOIST_STATS |
| 6339 | } |
| 6340 | |
| 6341 | void Compiler::optHoistLoopCode() |
| 6342 | { |
| 6343 | // If we don't have any loops in the method then take an early out now. |
| 6344 | if (optLoopCount == 0) |
| 6345 | { |
| 6346 | return; |
| 6347 | } |
| 6348 | |
| 6349 | #ifdef DEBUG |
| 6350 | unsigned jitNoHoist = JitConfig.JitNoHoist(); |
| 6351 | if (jitNoHoist > 0) |
| 6352 | { |
| 6353 | return; |
| 6354 | } |
| 6355 | #endif |
| 6356 | |
| 6357 | #if 0 |
| 6358 | // The code in this #if has been useful in debugging loop cloning issues, by |
| 6359 | // enabling selective enablement of the loop cloning optimization according to |
| 6360 | // method hash. |
| 6361 | #ifdef DEBUG |
| 6362 | unsigned methHash = info.compMethodHash(); |
| 6363 | char* lostr = getenv("loophoisthashlo" ); |
| 6364 | unsigned methHashLo = 0; |
| 6365 | if (lostr != NULL) |
| 6366 | { |
| 6367 | sscanf_s(lostr, "%x" , &methHashLo); |
| 6368 | // methHashLo = (unsigned(atoi(lostr)) << 2); // So we don't have to use negative numbers. |
| 6369 | } |
| 6370 | char* histr = getenv("loophoisthashhi" ); |
| 6371 | unsigned methHashHi = UINT32_MAX; |
| 6372 | if (histr != NULL) |
| 6373 | { |
| 6374 | sscanf_s(histr, "%x" , &methHashHi); |
| 6375 | // methHashHi = (unsigned(atoi(histr)) << 2); // So we don't have to use negative numbers. |
| 6376 | } |
| 6377 | if (methHash < methHashLo || methHash > methHashHi) |
| 6378 | return; |
| 6379 | printf("Doing loop hoisting in %s (0x%x).\n" , info.compFullName, methHash); |
| 6380 | #endif // DEBUG |
| 6381 | #endif // 0 -- debugging loop cloning issues |
| 6382 | |
| 6383 | #ifdef DEBUG |
| 6384 | if (verbose) |
| 6385 | { |
| 6386 | printf("\n*************** In optHoistLoopCode()\n" ); |
| 6387 | printf("Blocks/Trees before phase\n" ); |
| 6388 | fgDispBasicBlocks(true); |
| 6389 | printf("" ); |
| 6390 | } |
| 6391 | #endif |
| 6392 | |
| 6393 | // Consider all the loop nests, in outer-to-inner order (thus hoisting expressions outside the largest loop in which |
| 6394 | // they are invariant.) |
| 6395 | LoopHoistContext hoistCtxt(this); |
| 6396 | for (unsigned lnum = 0; lnum < optLoopCount; lnum++) |
| 6397 | { |
| 6398 | if (optLoopTable[lnum].lpFlags & LPFLG_REMOVED) |
| 6399 | { |
| 6400 | continue; |
| 6401 | } |
| 6402 | |
| 6403 | if (optLoopTable[lnum].lpParent == BasicBlock::NOT_IN_LOOP) |
| 6404 | { |
| 6405 | optHoistLoopNest(lnum, &hoistCtxt); |
| 6406 | } |
| 6407 | } |
| 6408 | |
| 6409 | #if DEBUG |
| 6410 | if (fgModified) |
| 6411 | { |
| 6412 | if (verbose) |
| 6413 | { |
| 6414 | printf("Blocks/Trees after optHoistLoopCode() modified flowgraph\n" ); |
| 6415 | fgDispBasicBlocks(true); |
| 6416 | printf("" ); |
| 6417 | } |
| 6418 | |
| 6419 | // Make sure that the predecessor lists are accurate |
| 6420 | fgDebugCheckBBlist(); |
| 6421 | } |
| 6422 | #endif |
| 6423 | |
| 6424 | #ifdef DEBUG |
| 6425 | // Test Data stuff.. |
| 6426 | // If we have no test data, early out. |
| 6427 | if (m_nodeTestData == nullptr) |
| 6428 | { |
| 6429 | return; |
| 6430 | } |
| 6431 | NodeToTestDataMap* testData = GetNodeTestData(); |
| 6432 | for (NodeToTestDataMap::KeyIterator ki = testData->Begin(); !ki.Equal(testData->End()); ++ki) |
| 6433 | { |
| 6434 | TestLabelAndNum tlAndN; |
| 6435 | GenTree* node = ki.Get(); |
| 6436 | bool b = testData->Lookup(node, &tlAndN); |
| 6437 | assert(b); |
| 6438 | if (tlAndN.m_tl != TL_LoopHoist) |
| 6439 | { |
| 6440 | continue; |
| 6441 | } |
| 6442 | // Otherwise, it is a loop hoist annotation. |
| 6443 | assert(tlAndN.m_num < 100); // >= 100 indicates nested static field address, should already have been moved. |
| 6444 | if (tlAndN.m_num >= 0) |
| 6445 | { |
| 6446 | printf("Node " ); |
| 6447 | printTreeID(node); |
| 6448 | printf(" was declared 'must hoist', but has not been hoisted.\n" ); |
| 6449 | assert(false); |
| 6450 | } |
| 6451 | } |
| 6452 | #endif // DEBUG |
| 6453 | } |
| 6454 | |
| 6455 | void Compiler::optHoistLoopNest(unsigned lnum, LoopHoistContext* hoistCtxt) |
| 6456 | { |
| 6457 | // Do this loop, then recursively do all nested loops. |
| 6458 | CLANG_FORMAT_COMMENT_ANCHOR; |
| 6459 | |
| 6460 | #if LOOP_HOIST_STATS |
| 6461 | // Record stats |
| 6462 | m_curLoopHasHoistedExpression = false; |
| 6463 | m_loopsConsidered++; |
| 6464 | #endif // LOOP_HOIST_STATS |
| 6465 | |
| 6466 | optHoistThisLoop(lnum, hoistCtxt); |
| 6467 | |
| 6468 | VNSet* hoistedInCurLoop = hoistCtxt->ExtractHoistedInCurLoop(); |
| 6469 | |
| 6470 | if (optLoopTable[lnum].lpChild != BasicBlock::NOT_IN_LOOP) |
| 6471 | { |
| 6472 | // Add the ones hoisted in "lnum" to "hoistedInParents" for any nested loops. |
| 6473 | // TODO-Cleanup: we should have a set abstraction for loops. |
| 6474 | if (hoistedInCurLoop != nullptr) |
| 6475 | { |
| 6476 | for (VNSet::KeyIterator keys = hoistedInCurLoop->Begin(); !keys.Equal(hoistedInCurLoop->End()); ++keys) |
| 6477 | { |
| 6478 | #ifdef DEBUG |
| 6479 | bool b; |
| 6480 | assert(!hoistCtxt->m_hoistedInParentLoops.Lookup(keys.Get(), &b)); |
| 6481 | #endif |
| 6482 | hoistCtxt->m_hoistedInParentLoops.Set(keys.Get(), true); |
| 6483 | } |
| 6484 | } |
| 6485 | |
| 6486 | for (unsigned child = optLoopTable[lnum].lpChild; child != BasicBlock::NOT_IN_LOOP; |
| 6487 | child = optLoopTable[child].lpSibling) |
| 6488 | { |
| 6489 | optHoistLoopNest(child, hoistCtxt); |
| 6490 | } |
| 6491 | |
| 6492 | // Now remove them. |
| 6493 | // TODO-Cleanup: we should have a set abstraction for loops. |
| 6494 | if (hoistedInCurLoop != nullptr) |
| 6495 | { |
| 6496 | for (VNSet::KeyIterator keys = hoistedInCurLoop->Begin(); !keys.Equal(hoistedInCurLoop->End()); ++keys) |
| 6497 | { |
| 6498 | // Note that we asserted when we added these that they hadn't been members, so removing is appropriate. |
| 6499 | hoistCtxt->m_hoistedInParentLoops.Remove(keys.Get()); |
| 6500 | } |
| 6501 | } |
| 6502 | } |
| 6503 | } |
| 6504 | |
| 6505 | void Compiler::optHoistThisLoop(unsigned lnum, LoopHoistContext* hoistCtxt) |
| 6506 | { |
| 6507 | LoopDsc* pLoopDsc = &optLoopTable[lnum]; |
| 6508 | |
| 6509 | /* If loop was removed continue */ |
| 6510 | |
| 6511 | if (pLoopDsc->lpFlags & LPFLG_REMOVED) |
| 6512 | { |
| 6513 | return; |
| 6514 | } |
| 6515 | |
| 6516 | /* Get the head and tail of the loop */ |
| 6517 | |
| 6518 | BasicBlock* head = pLoopDsc->lpHead; |
| 6519 | BasicBlock* tail = pLoopDsc->lpBottom; |
| 6520 | BasicBlock* lbeg = pLoopDsc->lpEntry; |
| 6521 | |
| 6522 | // We must have a do-while loop |
| 6523 | if ((pLoopDsc->lpFlags & LPFLG_DO_WHILE) == 0) |
| 6524 | { |
| 6525 | return; |
| 6526 | } |
| 6527 | |
| 6528 | // The loop-head must dominate the loop-entry. |
| 6529 | // TODO-CQ: Couldn't we make this true if it's not? |
| 6530 | if (!fgDominate(head, lbeg)) |
| 6531 | { |
| 6532 | return; |
| 6533 | } |
| 6534 | |
| 6535 | // if lbeg is the start of a new try block then we won't be able to hoist |
| 6536 | if (!BasicBlock::sameTryRegion(head, lbeg)) |
| 6537 | { |
| 6538 | return; |
| 6539 | } |
| 6540 | |
| 6541 | // We don't bother hoisting when inside of a catch block |
| 6542 | if ((lbeg->bbCatchTyp != BBCT_NONE) && (lbeg->bbCatchTyp != BBCT_FINALLY)) |
| 6543 | { |
| 6544 | return; |
| 6545 | } |
| 6546 | |
| 6547 | pLoopDsc->lpFlags |= LPFLG_HOISTABLE; |
| 6548 | |
| 6549 | unsigned begn = lbeg->bbNum; |
| 6550 | unsigned endn = tail->bbNum; |
| 6551 | |
| 6552 | // Ensure the per-loop sets/tables are empty. |
| 6553 | hoistCtxt->m_curLoopVnInvariantCache.RemoveAll(); |
| 6554 | |
| 6555 | #ifdef DEBUG |
| 6556 | if (verbose) |
| 6557 | { |
| 6558 | printf("optHoistLoopCode for loop L%02u <" FMT_BB ".." FMT_BB ">:\n" , lnum, begn, endn); |
| 6559 | printf(" Loop body %s a call\n" , pLoopDsc->lpContainsCall ? "contains" : "does not contain" ); |
| 6560 | } |
| 6561 | #endif |
| 6562 | |
| 6563 | VARSET_TP loopVars(VarSetOps::Intersection(this, pLoopDsc->lpVarInOut, pLoopDsc->lpVarUseDef)); |
| 6564 | |
| 6565 | pLoopDsc->lpVarInOutCount = VarSetOps::Count(this, pLoopDsc->lpVarInOut); |
| 6566 | pLoopDsc->lpLoopVarCount = VarSetOps::Count(this, loopVars); |
| 6567 | pLoopDsc->lpHoistedExprCount = 0; |
| 6568 | |
| 6569 | #ifndef _TARGET_64BIT_ |
| 6570 | unsigned longVarsCount = VarSetOps::Count(this, lvaLongVars); |
| 6571 | |
| 6572 | if (longVarsCount > 0) |
| 6573 | { |
| 6574 | // Since 64-bit variables take up two registers on 32-bit targets, we increase |
| 6575 | // the Counts such that each TYP_LONG variable counts twice. |
| 6576 | // |
| 6577 | VARSET_TP loopLongVars(VarSetOps::Intersection(this, loopVars, lvaLongVars)); |
| 6578 | VARSET_TP inOutLongVars(VarSetOps::Intersection(this, pLoopDsc->lpVarInOut, lvaLongVars)); |
| 6579 | |
| 6580 | #ifdef DEBUG |
| 6581 | if (verbose) |
| 6582 | { |
| 6583 | printf("\n LONGVARS(%d)=" , VarSetOps::Count(this, lvaLongVars)); |
| 6584 | lvaDispVarSet(lvaLongVars); |
| 6585 | } |
| 6586 | #endif |
| 6587 | pLoopDsc->lpLoopVarCount += VarSetOps::Count(this, loopLongVars); |
| 6588 | pLoopDsc->lpVarInOutCount += VarSetOps::Count(this, inOutLongVars); |
| 6589 | } |
| 6590 | #endif // !_TARGET_64BIT_ |
| 6591 | |
| 6592 | #ifdef DEBUG |
| 6593 | if (verbose) |
| 6594 | { |
| 6595 | printf("\n USEDEF (%d)=" , VarSetOps::Count(this, pLoopDsc->lpVarUseDef)); |
| 6596 | lvaDispVarSet(pLoopDsc->lpVarUseDef); |
| 6597 | |
| 6598 | printf("\n INOUT (%d)=" , pLoopDsc->lpVarInOutCount); |
| 6599 | lvaDispVarSet(pLoopDsc->lpVarInOut); |
| 6600 | |
| 6601 | printf("\n LOOPVARS(%d)=" , pLoopDsc->lpLoopVarCount); |
| 6602 | lvaDispVarSet(loopVars); |
| 6603 | printf("\n" ); |
| 6604 | } |
| 6605 | #endif |
| 6606 | |
| 6607 | unsigned floatVarsCount = VarSetOps::Count(this, lvaFloatVars); |
| 6608 | |
| 6609 | if (floatVarsCount > 0) |
| 6610 | { |
| 6611 | VARSET_TP loopFPVars(VarSetOps::Intersection(this, loopVars, lvaFloatVars)); |
| 6612 | VARSET_TP inOutFPVars(VarSetOps::Intersection(this, pLoopDsc->lpVarInOut, lvaFloatVars)); |
| 6613 | |
| 6614 | pLoopDsc->lpLoopVarFPCount = VarSetOps::Count(this, loopFPVars); |
| 6615 | pLoopDsc->lpVarInOutFPCount = VarSetOps::Count(this, inOutFPVars); |
| 6616 | pLoopDsc->lpHoistedFPExprCount = 0; |
| 6617 | |
| 6618 | pLoopDsc->lpLoopVarCount -= pLoopDsc->lpLoopVarFPCount; |
| 6619 | pLoopDsc->lpVarInOutCount -= pLoopDsc->lpVarInOutFPCount; |
| 6620 | |
| 6621 | #ifdef DEBUG |
| 6622 | if (verbose) |
| 6623 | { |
| 6624 | printf(" INOUT-FP(%d)=" , pLoopDsc->lpVarInOutFPCount); |
| 6625 | lvaDispVarSet(inOutFPVars); |
| 6626 | |
| 6627 | printf("\n LOOPV-FP(%d)=" , pLoopDsc->lpLoopVarFPCount); |
| 6628 | lvaDispVarSet(loopFPVars); |
| 6629 | } |
| 6630 | #endif |
| 6631 | } |
| 6632 | else // (floatVarsCount == 0) |
| 6633 | { |
| 6634 | pLoopDsc->lpLoopVarFPCount = 0; |
| 6635 | pLoopDsc->lpVarInOutFPCount = 0; |
| 6636 | pLoopDsc->lpHoistedFPExprCount = 0; |
| 6637 | } |
| 6638 | |
| 6639 | // Find the set of definitely-executed blocks. |
| 6640 | // Ideally, the definitely-executed blocks are the ones that post-dominate the entry block. |
| 6641 | // Until we have post-dominators, we'll special-case for single-exit blocks. |
| 6642 | JitExpandArrayStack<BasicBlock*> defExec(getAllocatorLoopHoist()); |
| 6643 | if (pLoopDsc->lpFlags & LPFLG_ONE_EXIT) |
| 6644 | { |
| 6645 | assert(pLoopDsc->lpExit != nullptr); |
| 6646 | BasicBlock* cur = pLoopDsc->lpExit; |
| 6647 | // Push dominators, until we reach "entry" or exit the loop. |
| 6648 | while (cur != nullptr && pLoopDsc->lpContains(cur) && cur != pLoopDsc->lpEntry) |
| 6649 | { |
| 6650 | defExec.Push(cur); |
| 6651 | cur = cur->bbIDom; |
| 6652 | } |
| 6653 | // If we didn't reach the entry block, give up and *just* push the entry block. |
| 6654 | if (cur != pLoopDsc->lpEntry) |
| 6655 | { |
| 6656 | defExec.Reset(); |
| 6657 | } |
| 6658 | defExec.Push(pLoopDsc->lpEntry); |
| 6659 | } |
| 6660 | else // More than one exit |
| 6661 | { |
| 6662 | // We'll assume that only the entry block is definitely executed. |
| 6663 | // We could in the future do better. |
| 6664 | defExec.Push(pLoopDsc->lpEntry); |
| 6665 | } |
| 6666 | |
| 6667 | while (defExec.Size() > 0) |
| 6668 | { |
| 6669 | // Consider in reverse order: dominator before dominatee. |
| 6670 | BasicBlock* blk = defExec.Pop(); |
| 6671 | optHoistLoopExprsForBlock(blk, lnum, hoistCtxt); |
| 6672 | } |
| 6673 | } |
| 6674 | |
| 6675 | // Hoist any expressions in "blk" that are invariant in loop "lnum" outside of "blk" and into a PreHead for loop "lnum". |
| 6676 | void Compiler::optHoistLoopExprsForBlock(BasicBlock* blk, unsigned lnum, LoopHoistContext* hoistCtxt) |
| 6677 | { |
| 6678 | LoopDsc* pLoopDsc = &optLoopTable[lnum]; |
| 6679 | bool firstBlockAndBeforeSideEffect = (blk == pLoopDsc->lpEntry); |
| 6680 | unsigned blkWeight = blk->getBBWeight(this); |
| 6681 | |
| 6682 | #ifdef DEBUG |
| 6683 | if (verbose) |
| 6684 | { |
| 6685 | printf(" optHoistLoopExprsForBlock " FMT_BB " (weight=%6s) of loop L%02u <" FMT_BB ".." FMT_BB |
| 6686 | ">, firstBlock is %s\n" , |
| 6687 | blk->bbNum, refCntWtd2str(blkWeight), lnum, pLoopDsc->lpFirst->bbNum, pLoopDsc->lpBottom->bbNum, |
| 6688 | firstBlockAndBeforeSideEffect ? "true" : "false" ); |
| 6689 | if (blkWeight < (BB_UNITY_WEIGHT / 10)) |
| 6690 | { |
| 6691 | printf(" block weight is too small to perform hoisting.\n" ); |
| 6692 | } |
| 6693 | } |
| 6694 | #endif |
| 6695 | |
| 6696 | if (blkWeight < (BB_UNITY_WEIGHT / 10)) |
| 6697 | { |
| 6698 | // Block weight is too small to perform hoisting. |
| 6699 | return; |
| 6700 | } |
| 6701 | |
| 6702 | for (GenTreeStmt* stmt = blk->FirstNonPhiDef(); stmt; stmt = stmt->gtNextStmt) |
| 6703 | { |
| 6704 | GenTree* stmtTree = stmt->gtStmtExpr; |
| 6705 | bool hoistable; |
| 6706 | bool cctorDependent; |
| 6707 | (void)optHoistLoopExprsForTree(stmtTree, lnum, hoistCtxt, &firstBlockAndBeforeSideEffect, &hoistable, |
| 6708 | &cctorDependent); |
| 6709 | if (hoistable) |
| 6710 | { |
| 6711 | // we will try to hoist the top-level stmtTree |
| 6712 | optHoistCandidate(stmtTree, lnum, hoistCtxt); |
| 6713 | } |
| 6714 | } |
| 6715 | } |
| 6716 | |
| 6717 | bool Compiler::optIsProfitableToHoistableTree(GenTree* tree, unsigned lnum) |
| 6718 | { |
| 6719 | LoopDsc* pLoopDsc = &optLoopTable[lnum]; |
| 6720 | |
| 6721 | bool loopContainsCall = pLoopDsc->lpContainsCall; |
| 6722 | |
| 6723 | int availRegCount; |
| 6724 | int hoistedExprCount; |
| 6725 | int loopVarCount; |
| 6726 | int varInOutCount; |
| 6727 | |
| 6728 | if (varTypeIsFloating(tree->TypeGet())) |
| 6729 | { |
| 6730 | hoistedExprCount = pLoopDsc->lpHoistedFPExprCount; |
| 6731 | loopVarCount = pLoopDsc->lpLoopVarFPCount; |
| 6732 | varInOutCount = pLoopDsc->lpVarInOutFPCount; |
| 6733 | |
| 6734 | availRegCount = CNT_CALLEE_SAVED_FLOAT; |
| 6735 | if (!loopContainsCall) |
| 6736 | { |
| 6737 | availRegCount += CNT_CALLEE_TRASH_FLOAT - 1; |
| 6738 | } |
| 6739 | #ifdef _TARGET_ARM_ |
| 6740 | // For ARM each double takes two FP registers |
| 6741 | // For now on ARM we won't track singles/doubles |
| 6742 | // and instead just assume that we always have doubles. |
| 6743 | // |
| 6744 | availRegCount /= 2; |
| 6745 | #endif |
| 6746 | } |
| 6747 | else |
| 6748 | { |
| 6749 | hoistedExprCount = pLoopDsc->lpHoistedExprCount; |
| 6750 | loopVarCount = pLoopDsc->lpLoopVarCount; |
| 6751 | varInOutCount = pLoopDsc->lpVarInOutCount; |
| 6752 | |
| 6753 | availRegCount = CNT_CALLEE_SAVED - 1; |
| 6754 | if (!loopContainsCall) |
| 6755 | { |
| 6756 | availRegCount += CNT_CALLEE_TRASH - 1; |
| 6757 | } |
| 6758 | #ifndef _TARGET_64BIT_ |
| 6759 | // For our 32-bit targets Long types take two registers. |
| 6760 | if (varTypeIsLong(tree->TypeGet())) |
| 6761 | { |
| 6762 | availRegCount = (availRegCount + 1) / 2; |
| 6763 | } |
| 6764 | #endif |
| 6765 | } |
| 6766 | |
| 6767 | // decrement the availRegCount by the count of expression that we have already hoisted. |
| 6768 | availRegCount -= hoistedExprCount; |
| 6769 | |
| 6770 | // the variables that are read/written inside the loop should |
| 6771 | // always be a subset of the InOut variables for the loop |
| 6772 | assert(loopVarCount <= varInOutCount); |
| 6773 | |
| 6774 | // When loopVarCount >= availRegCount we believe that all of the |
| 6775 | // available registers will get used to hold LclVars inside the loop. |
| 6776 | // This pessimistically assumes that each loopVar has a conflicting |
| 6777 | // lifetime with every other loopVar. |
| 6778 | // For this case we will hoist the expression only if is profitable |
| 6779 | // to place it in a stack home location (gtCostEx >= 2*IND_COST_EX) |
| 6780 | // as we believe it will be placed in the stack or one of the other |
| 6781 | // loopVars will be spilled into the stack |
| 6782 | // |
| 6783 | if (loopVarCount >= availRegCount) |
| 6784 | { |
| 6785 | // Don't hoist expressions that are not heavy: tree->gtCostEx < (2*IND_COST_EX) |
| 6786 | if (tree->gtCostEx < (2 * IND_COST_EX)) |
| 6787 | { |
| 6788 | return false; |
| 6789 | } |
| 6790 | } |
| 6791 | |
| 6792 | // When varInOutCount < availRegCount we are know that there are |
| 6793 | // some available register(s) when we enter the loop body. |
| 6794 | // When varInOutCount == availRegCount there often will be a register |
| 6795 | // available when we enter the loop body, since a loop often defines a |
| 6796 | // LclVar on exit or there is often at least one LclVar that is worth |
| 6797 | // spilling to the stack to make way for this hoisted expression. |
| 6798 | // So we are willing hoist an expression with gtCostEx == MIN_CSE_COST |
| 6799 | // |
| 6800 | if (varInOutCount > availRegCount) |
| 6801 | { |
| 6802 | // Don't hoist expressions that barely meet CSE cost requirements: tree->gtCostEx == MIN_CSE_COST |
| 6803 | if (tree->gtCostEx <= MIN_CSE_COST + 1) |
| 6804 | { |
| 6805 | return false; |
| 6806 | } |
| 6807 | } |
| 6808 | |
| 6809 | return true; |
| 6810 | } |
| 6811 | |
| 6812 | // |
| 6813 | // This function returns true if 'tree' is a loop invariant expression. |
| 6814 | // It also sets '*pHoistable' to true if 'tree' can be hoisted into a loop PreHeader block, |
| 6815 | // and sets '*pCctorDependent' if 'tree' is a function of a static field that must not be |
| 6816 | // hoisted (even if '*pHoistable' is true) unless a preceding corresponding cctor init helper |
| 6817 | // call is also hoisted. |
| 6818 | // |
| 6819 | bool Compiler::optHoistLoopExprsForTree(GenTree* tree, |
| 6820 | unsigned lnum, |
| 6821 | LoopHoistContext* hoistCtxt, |
| 6822 | bool* pFirstBlockAndBeforeSideEffect, |
| 6823 | bool* pHoistable, |
| 6824 | bool* pCctorDependent) |
| 6825 | { |
| 6826 | // First do the children. |
| 6827 | // We must keep track of whether each child node was hoistable or not |
| 6828 | // |
| 6829 | unsigned nChildren = tree->NumChildren(); |
| 6830 | bool childrenHoistable[GenTree::MAX_CHILDREN]; |
| 6831 | bool childrenCctorDependent[GenTree::MAX_CHILDREN]; |
| 6832 | |
| 6833 | // Initialize the array elements for childrenHoistable[] to false |
| 6834 | for (unsigned i = 0; i < nChildren; i++) |
| 6835 | { |
| 6836 | childrenHoistable[i] = false; |
| 6837 | childrenCctorDependent[i] = false; |
| 6838 | } |
| 6839 | |
| 6840 | // Initclass CLS_VARs and IconHandles are the base cases of cctor dependent trees. |
| 6841 | // In the IconHandle case, it's of course the dereference, rather than the constant itself, that is |
| 6842 | // truly dependent on the cctor. So a more precise approach would be to separately propagate |
| 6843 | // isCctorDependent and isAddressWhoseDereferenceWouldBeCctorDependent, but we don't for simplicity/throughput; |
| 6844 | // the constant itself would be considered non-hoistable anyway, since optIsCSEcandidate returns |
| 6845 | // false for constants. |
| 6846 | bool treeIsCctorDependent = ((tree->OperIs(GT_CLS_VAR) && ((tree->gtFlags & GTF_CLS_VAR_INITCLASS) != 0)) || |
| 6847 | (tree->OperIs(GT_CNS_INT) && ((tree->gtFlags & GTF_ICON_INITCLASS) != 0))); |
| 6848 | bool treeIsInvariant = true; |
| 6849 | for (unsigned childNum = 0; childNum < nChildren; childNum++) |
| 6850 | { |
| 6851 | if (!optHoistLoopExprsForTree(tree->GetChild(childNum), lnum, hoistCtxt, pFirstBlockAndBeforeSideEffect, |
| 6852 | &childrenHoistable[childNum], &childrenCctorDependent[childNum])) |
| 6853 | { |
| 6854 | treeIsInvariant = false; |
| 6855 | } |
| 6856 | |
| 6857 | if (childrenCctorDependent[childNum]) |
| 6858 | { |
| 6859 | // Normally, a parent of a cctor-dependent tree is also cctor-dependent. |
| 6860 | treeIsCctorDependent = true; |
| 6861 | |
| 6862 | // Check for the case where we can stop propagating cctor-dependent upwards. |
| 6863 | if (tree->OperIs(GT_COMMA) && (childNum == 1)) |
| 6864 | { |
| 6865 | GenTree* op1 = tree->gtGetOp1(); |
| 6866 | if (op1->OperIs(GT_CALL)) |
| 6867 | { |
| 6868 | GenTreeCall* call = op1->AsCall(); |
| 6869 | if ((call->gtCallType == CT_HELPER) && |
| 6870 | s_helperCallProperties.MayRunCctor(eeGetHelperNum(call->gtCallMethHnd))) |
| 6871 | { |
| 6872 | // Hoisting the comma is ok because it would hoist the initialization along |
| 6873 | // with the static field reference. |
| 6874 | treeIsCctorDependent = false; |
| 6875 | // Hoisting the static field without hoisting the initialization would be |
| 6876 | // incorrect, make sure we consider the field (which we flagged as |
| 6877 | // cctor-dependent) non-hoistable. |
| 6878 | noway_assert(!childrenHoistable[childNum]); |
| 6879 | } |
| 6880 | } |
| 6881 | } |
| 6882 | } |
| 6883 | } |
| 6884 | |
| 6885 | // If all the children of "tree" are hoistable, then "tree" itself can be hoisted, |
| 6886 | // unless it has a static var reference that can't be hoisted past its cctor call. |
| 6887 | bool treeIsHoistable = treeIsInvariant && !treeIsCctorDependent; |
| 6888 | |
| 6889 | // But we must see if anything else prevents "tree" from being hoisted. |
| 6890 | // |
| 6891 | if (treeIsInvariant) |
| 6892 | { |
| 6893 | // Tree must be a suitable CSE candidate for us to be able to hoist it. |
| 6894 | treeIsHoistable &= optIsCSEcandidate(tree); |
| 6895 | |
| 6896 | // If it's a call, it must be a helper call, and be pure. |
| 6897 | // Further, if it may run a cctor, it must be labeled as "Hoistable" |
| 6898 | // (meaning it won't run a cctor because the class is not precise-init). |
| 6899 | if (treeIsHoistable && tree->OperGet() == GT_CALL) |
| 6900 | { |
| 6901 | GenTreeCall* call = tree->AsCall(); |
| 6902 | if (call->gtCallType != CT_HELPER) |
| 6903 | { |
| 6904 | treeIsHoistable = false; |
| 6905 | } |
| 6906 | else |
| 6907 | { |
| 6908 | CorInfoHelpFunc helpFunc = eeGetHelperNum(call->gtCallMethHnd); |
| 6909 | if (!s_helperCallProperties.IsPure(helpFunc)) |
| 6910 | { |
| 6911 | treeIsHoistable = false; |
| 6912 | } |
| 6913 | else if (s_helperCallProperties.MayRunCctor(helpFunc) && (call->gtFlags & GTF_CALL_HOISTABLE) == 0) |
| 6914 | { |
| 6915 | treeIsHoistable = false; |
| 6916 | } |
| 6917 | } |
| 6918 | } |
| 6919 | |
| 6920 | if (treeIsHoistable) |
| 6921 | { |
| 6922 | if (!(*pFirstBlockAndBeforeSideEffect)) |
| 6923 | { |
| 6924 | // For now, we give up on an expression that might raise an exception if it is after the |
| 6925 | // first possible global side effect (and we assume we're after that if we're not in the first block). |
| 6926 | // TODO-CQ: this is when we might do loop cloning. |
| 6927 | // |
| 6928 | if ((tree->gtFlags & GTF_EXCEPT) != 0) |
| 6929 | { |
| 6930 | treeIsHoistable = false; |
| 6931 | } |
| 6932 | } |
| 6933 | } |
| 6934 | |
| 6935 | // Is the value of the whole tree loop invariant? |
| 6936 | treeIsInvariant = |
| 6937 | optVNIsLoopInvariant(tree->gtVNPair.GetLiberal(), lnum, &hoistCtxt->m_curLoopVnInvariantCache); |
| 6938 | |
| 6939 | // Is the value of the whole tree loop invariant? |
| 6940 | if (!treeIsInvariant) |
| 6941 | { |
| 6942 | treeIsHoistable = false; |
| 6943 | } |
| 6944 | } |
| 6945 | |
| 6946 | // Check if we need to set '*pFirstBlockAndBeforeSideEffect' to false. |
| 6947 | // If we encounter a tree with a call in it |
| 6948 | // or if we see an assignment to global we set it to false. |
| 6949 | // |
| 6950 | // If we are already set to false then we can skip these checks |
| 6951 | // |
| 6952 | if (*pFirstBlockAndBeforeSideEffect) |
| 6953 | { |
| 6954 | // For this purpose, we only care about memory side effects. We assume that expressions will |
| 6955 | // be hoisted so that they are evaluated in the same order as they would have been in the loop, |
| 6956 | // and therefore throw exceptions in the same order. (So we don't use GTF_GLOBALLY_VISIBLE_SIDE_EFFECTS |
| 6957 | // here, since that includes exceptions.) |
| 6958 | if (tree->IsCall()) |
| 6959 | { |
| 6960 | // If it's a call, it must be a helper call that does not mutate the heap. |
| 6961 | // Further, if it may run a cctor, it must be labeled as "Hoistable" |
| 6962 | // (meaning it won't run a cctor because the class is not precise-init). |
| 6963 | GenTreeCall* call = tree->AsCall(); |
| 6964 | if (call->gtCallType != CT_HELPER) |
| 6965 | { |
| 6966 | *pFirstBlockAndBeforeSideEffect = false; |
| 6967 | } |
| 6968 | else |
| 6969 | { |
| 6970 | CorInfoHelpFunc helpFunc = eeGetHelperNum(call->gtCallMethHnd); |
| 6971 | if (s_helperCallProperties.MutatesHeap(helpFunc)) |
| 6972 | { |
| 6973 | *pFirstBlockAndBeforeSideEffect = false; |
| 6974 | } |
| 6975 | else if (s_helperCallProperties.MayRunCctor(helpFunc) && (call->gtFlags & GTF_CALL_HOISTABLE) == 0) |
| 6976 | { |
| 6977 | *pFirstBlockAndBeforeSideEffect = false; |
| 6978 | } |
| 6979 | } |
| 6980 | } |
| 6981 | else if (tree->OperIs(GT_ASG)) |
| 6982 | { |
| 6983 | // If the LHS of the assignment has a global reference, then assume it's a global side effect. |
| 6984 | GenTree* lhs = tree->gtOp.gtOp1; |
| 6985 | if (lhs->gtFlags & GTF_GLOB_REF) |
| 6986 | { |
| 6987 | *pFirstBlockAndBeforeSideEffect = false; |
| 6988 | } |
| 6989 | } |
| 6990 | else if (tree->OperIsCopyBlkOp()) |
| 6991 | { |
| 6992 | GenTree* args = tree->gtOp.gtOp1; |
| 6993 | assert(args->OperGet() == GT_LIST); |
| 6994 | if (args->gtOp.gtOp1->gtFlags & GTF_GLOB_REF) |
| 6995 | { |
| 6996 | *pFirstBlockAndBeforeSideEffect = false; |
| 6997 | } |
| 6998 | } |
| 6999 | } |
| 7000 | |
| 7001 | // If this 'tree' is hoistable then we return and the caller will |
| 7002 | // decide to hoist it as part of larger hoistable expression. |
| 7003 | // |
| 7004 | if (!treeIsHoistable) |
| 7005 | { |
| 7006 | // We are not hoistable so we will now hoist any hoistable children. |
| 7007 | // |
| 7008 | for (unsigned childNum = 0; childNum < nChildren; childNum++) |
| 7009 | { |
| 7010 | if (childrenHoistable[childNum]) |
| 7011 | { |
| 7012 | // We can't hoist the LHS of an assignment, isn't a real use. |
| 7013 | if ((childNum == 0) && tree->OperIs(GT_ASG)) |
| 7014 | { |
| 7015 | continue; |
| 7016 | } |
| 7017 | |
| 7018 | GenTree* child = tree->GetChild(childNum); |
| 7019 | |
| 7020 | // We try to hoist this 'child' tree |
| 7021 | optHoistCandidate(child, lnum, hoistCtxt); |
| 7022 | } |
| 7023 | } |
| 7024 | } |
| 7025 | |
| 7026 | *pHoistable = treeIsHoistable; |
| 7027 | *pCctorDependent = treeIsCctorDependent; |
| 7028 | return treeIsInvariant; |
| 7029 | } |
| 7030 | |
| 7031 | void Compiler::optHoistCandidate(GenTree* tree, unsigned lnum, LoopHoistContext* hoistCtxt) |
| 7032 | { |
| 7033 | if (lnum == BasicBlock::NOT_IN_LOOP) |
| 7034 | { |
| 7035 | // The hoisted expression isn't valid at any loop head so don't hoist this expression. |
| 7036 | return; |
| 7037 | } |
| 7038 | |
| 7039 | // The outer loop also must be suitable for hoisting... |
| 7040 | if ((optLoopTable[lnum].lpFlags & LPFLG_HOISTABLE) == 0) |
| 7041 | { |
| 7042 | return; |
| 7043 | } |
| 7044 | |
| 7045 | // If the hoisted expression isn't valid at this loop head then break |
| 7046 | if (!optTreeIsValidAtLoopHead(tree, lnum)) |
| 7047 | { |
| 7048 | return; |
| 7049 | } |
| 7050 | |
| 7051 | // It must pass the hoistable profitablity tests for this loop level |
| 7052 | if (!optIsProfitableToHoistableTree(tree, lnum)) |
| 7053 | { |
| 7054 | return; |
| 7055 | } |
| 7056 | |
| 7057 | bool b; |
| 7058 | if (hoistCtxt->m_hoistedInParentLoops.Lookup(tree->gtVNPair.GetLiberal(), &b)) |
| 7059 | { |
| 7060 | // already hoisted in a parent loop, so don't hoist this expression. |
| 7061 | return; |
| 7062 | } |
| 7063 | |
| 7064 | if (hoistCtxt->GetHoistedInCurLoop(this)->Lookup(tree->gtVNPair.GetLiberal(), &b)) |
| 7065 | { |
| 7066 | // already hoisted this expression in the current loop, so don't hoist this expression. |
| 7067 | return; |
| 7068 | } |
| 7069 | |
| 7070 | // Expression can be hoisted |
| 7071 | optPerformHoistExpr(tree, lnum); |
| 7072 | |
| 7073 | // Increment lpHoistedExprCount or lpHoistedFPExprCount |
| 7074 | if (!varTypeIsFloating(tree->TypeGet())) |
| 7075 | { |
| 7076 | optLoopTable[lnum].lpHoistedExprCount++; |
| 7077 | #ifndef _TARGET_64BIT_ |
| 7078 | // For our 32-bit targets Long types take two registers. |
| 7079 | if (varTypeIsLong(tree->TypeGet())) |
| 7080 | { |
| 7081 | optLoopTable[lnum].lpHoistedExprCount++; |
| 7082 | } |
| 7083 | #endif |
| 7084 | } |
| 7085 | else // Floating point expr hoisted |
| 7086 | { |
| 7087 | optLoopTable[lnum].lpHoistedFPExprCount++; |
| 7088 | } |
| 7089 | |
| 7090 | // Record the hoisted expression in hoistCtxt |
| 7091 | hoistCtxt->GetHoistedInCurLoop(this)->Set(tree->gtVNPair.GetLiberal(), true); |
| 7092 | } |
| 7093 | |
| 7094 | bool Compiler::optVNIsLoopInvariant(ValueNum vn, unsigned lnum, VNToBoolMap* loopVnInvariantCache) |
| 7095 | { |
| 7096 | // If it is not a VN, is not loop-invariant. |
| 7097 | if (vn == ValueNumStore::NoVN) |
| 7098 | { |
| 7099 | return false; |
| 7100 | } |
| 7101 | |
| 7102 | // We'll always short-circuit constants. |
| 7103 | if (vnStore->IsVNConstant(vn) || vn == vnStore->VNForVoid()) |
| 7104 | { |
| 7105 | return true; |
| 7106 | } |
| 7107 | |
| 7108 | // If we've done this query previously, don't repeat. |
| 7109 | bool previousRes = false; |
| 7110 | if (loopVnInvariantCache->Lookup(vn, &previousRes)) |
| 7111 | { |
| 7112 | return previousRes; |
| 7113 | } |
| 7114 | |
| 7115 | bool res = true; |
| 7116 | VNFuncApp funcApp; |
| 7117 | if (vnStore->GetVNFunc(vn, &funcApp)) |
| 7118 | { |
| 7119 | if (funcApp.m_func == VNF_PhiDef) |
| 7120 | { |
| 7121 | // First, make sure it's a "proper" phi -- the definition is a Phi application. |
| 7122 | VNFuncApp phiDefValFuncApp; |
| 7123 | if (!vnStore->GetVNFunc(funcApp.m_args[2], &phiDefValFuncApp) || phiDefValFuncApp.m_func != VNF_Phi) |
| 7124 | { |
| 7125 | // It's not *really* a definition, rather a pass-through of some other VN. |
| 7126 | // (This could occur, say if both sides of an if-then-else diamond made the |
| 7127 | // same assignment to a variable.) |
| 7128 | res = optVNIsLoopInvariant(funcApp.m_args[2], lnum, loopVnInvariantCache); |
| 7129 | } |
| 7130 | else |
| 7131 | { |
| 7132 | // Is the definition within the loop? If so, is not loop-invariant. |
| 7133 | unsigned lclNum = funcApp.m_args[0]; |
| 7134 | unsigned ssaNum = funcApp.m_args[1]; |
| 7135 | LclSsaVarDsc* ssaDef = lvaTable[lclNum].GetPerSsaData(ssaNum); |
| 7136 | res = !optLoopContains(lnum, ssaDef->m_defLoc.m_blk->bbNatLoopNum); |
| 7137 | } |
| 7138 | } |
| 7139 | else if (funcApp.m_func == VNF_PhiMemoryDef) |
| 7140 | { |
| 7141 | BasicBlock* defnBlk = reinterpret_cast<BasicBlock*>(vnStore->ConstantValue<ssize_t>(funcApp.m_args[0])); |
| 7142 | res = !optLoopContains(lnum, defnBlk->bbNatLoopNum); |
| 7143 | } |
| 7144 | else |
| 7145 | { |
| 7146 | for (unsigned i = 0; i < funcApp.m_arity; i++) |
| 7147 | { |
| 7148 | // TODO-CQ: We need to either make sure that *all* VN functions |
| 7149 | // always take VN args, or else have a list of arg positions to exempt, as implicitly |
| 7150 | // constant. |
| 7151 | if (!optVNIsLoopInvariant(funcApp.m_args[i], lnum, loopVnInvariantCache)) |
| 7152 | { |
| 7153 | res = false; |
| 7154 | break; |
| 7155 | } |
| 7156 | } |
| 7157 | } |
| 7158 | } |
| 7159 | else |
| 7160 | { |
| 7161 | // Non-function "new, unique" VN's may be annotated with the loop nest where |
| 7162 | // their definition occurs. |
| 7163 | BasicBlock::loopNumber vnLoopNum = vnStore->LoopOfVN(vn); |
| 7164 | |
| 7165 | if (vnLoopNum == MAX_LOOP_NUM) |
| 7166 | { |
| 7167 | res = false; |
| 7168 | } |
| 7169 | else |
| 7170 | { |
| 7171 | res = !optLoopContains(lnum, vnLoopNum); |
| 7172 | } |
| 7173 | } |
| 7174 | |
| 7175 | loopVnInvariantCache->Set(vn, res); |
| 7176 | return res; |
| 7177 | } |
| 7178 | |
| 7179 | bool Compiler::optTreeIsValidAtLoopHead(GenTree* tree, unsigned lnum) |
| 7180 | { |
| 7181 | if (tree->OperIsLocal()) |
| 7182 | { |
| 7183 | GenTreeLclVarCommon* lclVar = tree->AsLclVarCommon(); |
| 7184 | unsigned lclNum = lclVar->gtLclNum; |
| 7185 | |
| 7186 | // The lvlVar must be have an Ssa tracked lifetime |
| 7187 | if (!lvaInSsa(lclNum)) |
| 7188 | { |
| 7189 | return false; |
| 7190 | } |
| 7191 | |
| 7192 | // If the loop does not contains the SSA def we can hoist it. |
| 7193 | if (!optLoopTable[lnum].lpContains(lvaTable[lclNum].GetPerSsaData(lclVar->GetSsaNum())->m_defLoc.m_blk)) |
| 7194 | { |
| 7195 | return true; |
| 7196 | } |
| 7197 | } |
| 7198 | else if (tree->OperIsConst()) |
| 7199 | { |
| 7200 | return true; |
| 7201 | } |
| 7202 | else // If every one of the children nodes are valid at this Loop's Head. |
| 7203 | { |
| 7204 | unsigned nChildren = tree->NumChildren(); |
| 7205 | for (unsigned childNum = 0; childNum < nChildren; childNum++) |
| 7206 | { |
| 7207 | if (!optTreeIsValidAtLoopHead(tree->GetChild(childNum), lnum)) |
| 7208 | { |
| 7209 | return false; |
| 7210 | } |
| 7211 | } |
| 7212 | return true; |
| 7213 | } |
| 7214 | return false; |
| 7215 | } |
| 7216 | |
| 7217 | /***************************************************************************** |
| 7218 | * |
| 7219 | * Creates a pre-header block for the given loop - a preheader is a BBJ_NONE |
| 7220 | * header. The pre-header will replace the current lpHead in the loop table. |
| 7221 | * The loop has to be a do-while loop. Thus, all blocks dominated by lpHead |
| 7222 | * will also be dominated by the loop-top, lpHead->bbNext. |
| 7223 | * |
| 7224 | */ |
| 7225 | |
| 7226 | void Compiler::(unsigned lnum) |
| 7227 | { |
| 7228 | LoopDsc* pLoopDsc = &optLoopTable[lnum]; |
| 7229 | |
| 7230 | /* This loop has to be a "do-while" loop */ |
| 7231 | |
| 7232 | assert(pLoopDsc->lpFlags & LPFLG_DO_WHILE); |
| 7233 | |
| 7234 | /* Have we already created a loop-preheader block? */ |
| 7235 | |
| 7236 | if (pLoopDsc->lpFlags & LPFLG_HAS_PREHEAD) |
| 7237 | { |
| 7238 | return; |
| 7239 | } |
| 7240 | |
| 7241 | BasicBlock* head = pLoopDsc->lpHead; |
| 7242 | BasicBlock* top = pLoopDsc->lpTop; |
| 7243 | BasicBlock* entry = pLoopDsc->lpEntry; |
| 7244 | |
| 7245 | // if 'entry' and 'head' are in different try regions then we won't be able to hoist |
| 7246 | if (!BasicBlock::sameTryRegion(head, entry)) |
| 7247 | { |
| 7248 | return; |
| 7249 | } |
| 7250 | |
| 7251 | // Ensure that lpHead always dominates lpEntry |
| 7252 | |
| 7253 | noway_assert(fgDominate(head, entry)); |
| 7254 | |
| 7255 | /* Get hold of the first block of the loop body */ |
| 7256 | |
| 7257 | assert(top == entry); |
| 7258 | |
| 7259 | /* Allocate a new basic block */ |
| 7260 | |
| 7261 | BasicBlock* preHead = bbNewBasicBlock(BBJ_NONE); |
| 7262 | preHead->bbFlags |= BBF_INTERNAL | BBF_LOOP_PREHEADER; |
| 7263 | |
| 7264 | // Must set IL code offset |
| 7265 | preHead->bbCodeOffs = top->bbCodeOffs; |
| 7266 | |
| 7267 | // Set the default value of the preHead weight in case we don't have |
| 7268 | // valid profile data and since this blocks weight is just an estimate |
| 7269 | // we clear any BBF_PROF_WEIGHT flag that we may have picked up from head. |
| 7270 | // |
| 7271 | preHead->inheritWeight(head); |
| 7272 | preHead->bbFlags &= ~BBF_PROF_WEIGHT; |
| 7273 | |
| 7274 | #ifdef DEBUG |
| 7275 | if (verbose) |
| 7276 | { |
| 7277 | printf("\nCreated PreHeader (" FMT_BB ") for loop L%02u (" FMT_BB " - " FMT_BB "), with weight = %s\n" , |
| 7278 | preHead->bbNum, lnum, top->bbNum, pLoopDsc->lpBottom->bbNum, refCntWtd2str(preHead->getBBWeight(this))); |
| 7279 | } |
| 7280 | #endif |
| 7281 | |
| 7282 | // The preheader block is part of the containing loop (if any). |
| 7283 | preHead->bbNatLoopNum = pLoopDsc->lpParent; |
| 7284 | |
| 7285 | if (fgIsUsingProfileWeights() && (head->bbJumpKind == BBJ_COND)) |
| 7286 | { |
| 7287 | if ((head->bbWeight == 0) || (head->bbNext->bbWeight == 0)) |
| 7288 | { |
| 7289 | preHead->bbWeight = 0; |
| 7290 | preHead->bbFlags |= BBF_RUN_RARELY; |
| 7291 | } |
| 7292 | else |
| 7293 | { |
| 7294 | bool allValidProfileWeights = |
| 7295 | (head->hasProfileWeight() && head->bbJumpDest->hasProfileWeight() && head->bbNext->hasProfileWeight()); |
| 7296 | |
| 7297 | if (allValidProfileWeights) |
| 7298 | { |
| 7299 | double loopEnteredCount; |
| 7300 | double loopSkippedCount; |
| 7301 | |
| 7302 | if (fgHaveValidEdgeWeights) |
| 7303 | { |
| 7304 | flowList* edgeToNext = fgGetPredForBlock(head->bbNext, head); |
| 7305 | flowList* edgeToJump = fgGetPredForBlock(head->bbJumpDest, head); |
| 7306 | noway_assert(edgeToNext != nullptr); |
| 7307 | noway_assert(edgeToJump != nullptr); |
| 7308 | |
| 7309 | loopEnteredCount = |
| 7310 | ((double)edgeToNext->flEdgeWeightMin + (double)edgeToNext->flEdgeWeightMax) / 2.0; |
| 7311 | loopSkippedCount = |
| 7312 | ((double)edgeToJump->flEdgeWeightMin + (double)edgeToJump->flEdgeWeightMax) / 2.0; |
| 7313 | } |
| 7314 | else |
| 7315 | { |
| 7316 | loopEnteredCount = (double)head->bbNext->bbWeight; |
| 7317 | loopSkippedCount = (double)head->bbJumpDest->bbWeight; |
| 7318 | } |
| 7319 | |
| 7320 | double loopTakenRatio = loopEnteredCount / (loopEnteredCount + loopSkippedCount); |
| 7321 | |
| 7322 | // Calculate a good approximation of the preHead's block weight |
| 7323 | unsigned preHeadWeight = (unsigned)(((double)head->bbWeight * loopTakenRatio) + 0.5); |
| 7324 | preHead->setBBWeight(max(preHeadWeight, 1)); |
| 7325 | noway_assert(!preHead->isRunRarely()); |
| 7326 | } |
| 7327 | } |
| 7328 | } |
| 7329 | |
| 7330 | // Link in the preHead block. |
| 7331 | fgInsertBBbefore(top, preHead); |
| 7332 | |
| 7333 | // Ideally we would re-run SSA and VN if we optimized by doing loop hoisting. |
| 7334 | // However, that is too expensive at this point. Instead, we update the phi |
| 7335 | // node block references, if we created pre-header block due to hoisting. |
| 7336 | // This is sufficient because any definition participating in SSA that flowed |
| 7337 | // into the phi via the loop header block will now flow through the preheader |
| 7338 | // block from the header block. |
| 7339 | |
| 7340 | for (GenTree* stmt = top->bbTreeList; stmt; stmt = stmt->gtNext) |
| 7341 | { |
| 7342 | GenTree* tree = stmt->gtStmt.gtStmtExpr; |
| 7343 | if (tree->OperGet() != GT_ASG) |
| 7344 | { |
| 7345 | break; |
| 7346 | } |
| 7347 | GenTree* op2 = tree->gtGetOp2(); |
| 7348 | if (op2->OperGet() != GT_PHI) |
| 7349 | { |
| 7350 | break; |
| 7351 | } |
| 7352 | GenTreeArgList* args = op2->gtGetOp1()->AsArgList(); |
| 7353 | while (args != nullptr) |
| 7354 | { |
| 7355 | GenTreePhiArg* phiArg = args->Current()->AsPhiArg(); |
| 7356 | if (phiArg->gtPredBB == head) |
| 7357 | { |
| 7358 | phiArg->gtPredBB = preHead; |
| 7359 | } |
| 7360 | args = args->Rest(); |
| 7361 | } |
| 7362 | } |
| 7363 | |
| 7364 | // The handler can't begin at the top of the loop. If it did, it would be incorrect |
| 7365 | // to set the handler index on the pre header without updating the exception table. |
| 7366 | noway_assert(!top->hasHndIndex() || fgFirstBlockOfHandler(top) != top); |
| 7367 | |
| 7368 | // Update the EH table to make the hoisted block part of the loop's EH block. |
| 7369 | fgExtendEHRegionBefore(top); |
| 7370 | |
| 7371 | // TODO-CQ: set dominators for this block, to allow loop optimizations requiring them |
| 7372 | // (e.g: hoisting expression in a loop with the same 'head' as this one) |
| 7373 | |
| 7374 | /* Update the loop entry */ |
| 7375 | |
| 7376 | pLoopDsc->lpHead = preHead; |
| 7377 | pLoopDsc->lpFlags |= LPFLG_HAS_PREHEAD; |
| 7378 | |
| 7379 | /* The new block becomes the 'head' of the loop - update bbRefs and bbPreds |
| 7380 | All predecessors of 'beg', (which is the entry in the loop) |
| 7381 | now have to jump to 'preHead', unless they are dominated by 'head' */ |
| 7382 | |
| 7383 | preHead->bbRefs = 0; |
| 7384 | fgAddRefPred(preHead, head); |
| 7385 | bool checkNestedLoops = false; |
| 7386 | |
| 7387 | for (flowList* pred = top->bbPreds; pred; pred = pred->flNext) |
| 7388 | { |
| 7389 | BasicBlock* predBlock = pred->flBlock; |
| 7390 | |
| 7391 | if (fgDominate(top, predBlock)) |
| 7392 | { |
| 7393 | // note: if 'top' dominates predBlock, 'head' dominates predBlock too |
| 7394 | // (we know that 'head' dominates 'top'), but using 'top' instead of |
| 7395 | // 'head' in the test allows us to not enter here if 'predBlock == head' |
| 7396 | |
| 7397 | if (predBlock != pLoopDsc->lpBottom) |
| 7398 | { |
| 7399 | noway_assert(predBlock != head); |
| 7400 | checkNestedLoops = true; |
| 7401 | } |
| 7402 | continue; |
| 7403 | } |
| 7404 | |
| 7405 | switch (predBlock->bbJumpKind) |
| 7406 | { |
| 7407 | case BBJ_NONE: |
| 7408 | noway_assert(predBlock == head); |
| 7409 | break; |
| 7410 | |
| 7411 | case BBJ_COND: |
| 7412 | if (predBlock == head) |
| 7413 | { |
| 7414 | noway_assert(predBlock->bbJumpDest != top); |
| 7415 | break; |
| 7416 | } |
| 7417 | __fallthrough; |
| 7418 | |
| 7419 | case BBJ_ALWAYS: |
| 7420 | case BBJ_EHCATCHRET: |
| 7421 | noway_assert(predBlock->bbJumpDest == top); |
| 7422 | predBlock->bbJumpDest = preHead; |
| 7423 | preHead->bbFlags |= BBF_JMP_TARGET | BBF_HAS_LABEL; |
| 7424 | |
| 7425 | if (predBlock == head) |
| 7426 | { |
| 7427 | // This is essentially the same case of predBlock being a BBJ_NONE. We may not be |
| 7428 | // able to make this a BBJ_NONE if it's an internal block (for example, a leave). |
| 7429 | // Just break, pred will be removed after switch. |
| 7430 | } |
| 7431 | else |
| 7432 | { |
| 7433 | fgRemoveRefPred(top, predBlock); |
| 7434 | fgAddRefPred(preHead, predBlock); |
| 7435 | } |
| 7436 | break; |
| 7437 | |
| 7438 | case BBJ_SWITCH: |
| 7439 | unsigned jumpCnt; |
| 7440 | jumpCnt = predBlock->bbJumpSwt->bbsCount; |
| 7441 | BasicBlock** jumpTab; |
| 7442 | jumpTab = predBlock->bbJumpSwt->bbsDstTab; |
| 7443 | |
| 7444 | do |
| 7445 | { |
| 7446 | assert(*jumpTab); |
| 7447 | if ((*jumpTab) == top) |
| 7448 | { |
| 7449 | (*jumpTab) = preHead; |
| 7450 | |
| 7451 | fgRemoveRefPred(top, predBlock); |
| 7452 | fgAddRefPred(preHead, predBlock); |
| 7453 | preHead->bbFlags |= BBF_JMP_TARGET | BBF_HAS_LABEL; |
| 7454 | } |
| 7455 | } while (++jumpTab, --jumpCnt); |
| 7456 | |
| 7457 | default: |
| 7458 | noway_assert(!"Unexpected bbJumpKind" ); |
| 7459 | break; |
| 7460 | } |
| 7461 | } |
| 7462 | |
| 7463 | noway_assert(!fgGetPredForBlock(top, preHead)); |
| 7464 | fgRemoveRefPred(top, head); |
| 7465 | fgAddRefPred(top, preHead); |
| 7466 | |
| 7467 | /* |
| 7468 | If we found at least one back-edge in the flowgraph pointing to the top/entry of the loop |
| 7469 | (other than the back-edge of the loop we are considering) then we likely have nested |
| 7470 | do-while loops with the same entry block and inserting the preheader block changes the head |
| 7471 | of all the nested loops. Now we will update this piece of information in the loop table, and |
| 7472 | mark all nested loops as having a preheader (the preheader block can be shared among all nested |
| 7473 | do-while loops with the same entry block). |
| 7474 | */ |
| 7475 | if (checkNestedLoops) |
| 7476 | { |
| 7477 | for (unsigned l = 0; l < optLoopCount; l++) |
| 7478 | { |
| 7479 | if (optLoopTable[l].lpHead == head) |
| 7480 | { |
| 7481 | noway_assert(l != lnum); // pLoopDsc->lpHead was already changed from 'head' to 'preHead' |
| 7482 | noway_assert(optLoopTable[l].lpEntry == top); |
| 7483 | optUpdateLoopHead(l, optLoopTable[l].lpHead, preHead); |
| 7484 | optLoopTable[l].lpFlags |= LPFLG_HAS_PREHEAD; |
| 7485 | #ifdef DEBUG |
| 7486 | if (verbose) |
| 7487 | { |
| 7488 | printf("Same PreHeader (" FMT_BB ") can be used for loop L%02u (" FMT_BB " - " FMT_BB ")\n\n" , |
| 7489 | preHead->bbNum, l, top->bbNum, optLoopTable[l].lpBottom->bbNum); |
| 7490 | } |
| 7491 | #endif |
| 7492 | } |
| 7493 | } |
| 7494 | } |
| 7495 | } |
| 7496 | |
| 7497 | bool Compiler::optBlockIsLoopEntry(BasicBlock* blk, unsigned* pLnum) |
| 7498 | { |
| 7499 | for (unsigned lnum = blk->bbNatLoopNum; lnum != BasicBlock::NOT_IN_LOOP; lnum = optLoopTable[lnum].lpParent) |
| 7500 | { |
| 7501 | if (optLoopTable[lnum].lpFlags & LPFLG_REMOVED) |
| 7502 | { |
| 7503 | continue; |
| 7504 | } |
| 7505 | if (optLoopTable[lnum].lpEntry == blk) |
| 7506 | { |
| 7507 | *pLnum = lnum; |
| 7508 | return true; |
| 7509 | } |
| 7510 | } |
| 7511 | return false; |
| 7512 | } |
| 7513 | |
| 7514 | void Compiler::optComputeLoopSideEffects() |
| 7515 | { |
| 7516 | unsigned lnum; |
| 7517 | for (lnum = 0; lnum < optLoopCount; lnum++) |
| 7518 | { |
| 7519 | VarSetOps::AssignNoCopy(this, optLoopTable[lnum].lpVarInOut, VarSetOps::MakeEmpty(this)); |
| 7520 | VarSetOps::AssignNoCopy(this, optLoopTable[lnum].lpVarUseDef, VarSetOps::MakeEmpty(this)); |
| 7521 | optLoopTable[lnum].lpContainsCall = false; |
| 7522 | } |
| 7523 | |
| 7524 | for (lnum = 0; lnum < optLoopCount; lnum++) |
| 7525 | { |
| 7526 | if (optLoopTable[lnum].lpFlags & LPFLG_REMOVED) |
| 7527 | { |
| 7528 | continue; |
| 7529 | } |
| 7530 | |
| 7531 | if (optLoopTable[lnum].lpParent == BasicBlock::NOT_IN_LOOP) |
| 7532 | { // Is outermost... |
| 7533 | optComputeLoopNestSideEffects(lnum); |
| 7534 | } |
| 7535 | } |
| 7536 | |
| 7537 | VarSetOps::AssignNoCopy(this, lvaFloatVars, VarSetOps::MakeEmpty(this)); |
| 7538 | #ifndef _TARGET_64BIT_ |
| 7539 | VarSetOps::AssignNoCopy(this, lvaLongVars, VarSetOps::MakeEmpty(this)); |
| 7540 | #endif |
| 7541 | |
| 7542 | for (unsigned i = 0; i < lvaCount; i++) |
| 7543 | { |
| 7544 | LclVarDsc* varDsc = &lvaTable[i]; |
| 7545 | if (varDsc->lvTracked) |
| 7546 | { |
| 7547 | if (varTypeIsFloating(varDsc->lvType)) |
| 7548 | { |
| 7549 | VarSetOps::AddElemD(this, lvaFloatVars, varDsc->lvVarIndex); |
| 7550 | } |
| 7551 | #ifndef _TARGET_64BIT_ |
| 7552 | else if (varTypeIsLong(varDsc->lvType)) |
| 7553 | { |
| 7554 | VarSetOps::AddElemD(this, lvaLongVars, varDsc->lvVarIndex); |
| 7555 | } |
| 7556 | #endif |
| 7557 | } |
| 7558 | } |
| 7559 | } |
| 7560 | |
| 7561 | void Compiler::optComputeLoopNestSideEffects(unsigned lnum) |
| 7562 | { |
| 7563 | assert(optLoopTable[lnum].lpParent == BasicBlock::NOT_IN_LOOP); // Requires: lnum is outermost. |
| 7564 | BasicBlock* botNext = optLoopTable[lnum].lpBottom->bbNext; |
| 7565 | for (BasicBlock* bbInLoop = optLoopTable[lnum].lpFirst; bbInLoop != botNext; bbInLoop = bbInLoop->bbNext) |
| 7566 | { |
| 7567 | optComputeLoopSideEffectsOfBlock(bbInLoop); |
| 7568 | } |
| 7569 | } |
| 7570 | |
| 7571 | void Compiler::optComputeLoopSideEffectsOfBlock(BasicBlock* blk) |
| 7572 | { |
| 7573 | unsigned mostNestedLoop = blk->bbNatLoopNum; |
| 7574 | assert(mostNestedLoop != BasicBlock::NOT_IN_LOOP); |
| 7575 | |
| 7576 | AddVariableLivenessAllContainingLoops(mostNestedLoop, blk); |
| 7577 | |
| 7578 | // MemoryKinds for which an in-loop call or store has arbitrary effects. |
| 7579 | MemoryKindSet memoryHavoc = emptyMemoryKindSet; |
| 7580 | |
| 7581 | // Now iterate over the remaining statements, and their trees. |
| 7582 | for (GenTree* stmts = blk->FirstNonPhiDef(); (stmts != nullptr); stmts = stmts->gtNext) |
| 7583 | { |
| 7584 | for (GenTree* tree = stmts->gtStmt.gtStmtList; (tree != nullptr); tree = tree->gtNext) |
| 7585 | { |
| 7586 | genTreeOps oper = tree->OperGet(); |
| 7587 | |
| 7588 | // Even after we set memoryHavoc we still may want to know if a loop contains calls |
| 7589 | if (memoryHavoc == fullMemoryKindSet) |
| 7590 | { |
| 7591 | if (oper == GT_CALL) |
| 7592 | { |
| 7593 | // Record that this loop contains a call |
| 7594 | AddContainsCallAllContainingLoops(mostNestedLoop); |
| 7595 | } |
| 7596 | |
| 7597 | // If we just set lpContainsCall or it was previously set |
| 7598 | if (optLoopTable[mostNestedLoop].lpContainsCall) |
| 7599 | { |
| 7600 | // We can early exit after both memoryHavoc and lpContainsCall are both set to true. |
| 7601 | break; |
| 7602 | } |
| 7603 | |
| 7604 | // We are just looking for GT_CALL nodes after memoryHavoc was set. |
| 7605 | continue; |
| 7606 | } |
| 7607 | |
| 7608 | // otherwise memoryHavoc is not set for at least one heap ID |
| 7609 | assert(memoryHavoc != fullMemoryKindSet); |
| 7610 | |
| 7611 | // This body is a distillation of the memory side-effect code of value numbering. |
| 7612 | // We also do a very limited analysis if byref PtrTo values, to cover some cases |
| 7613 | // that the compiler creates. |
| 7614 | |
| 7615 | if (oper == GT_ASG) |
| 7616 | { |
| 7617 | GenTree* lhs = tree->gtOp.gtOp1->gtEffectiveVal(/*commaOnly*/ true); |
| 7618 | |
| 7619 | if (lhs->OperGet() == GT_IND) |
| 7620 | { |
| 7621 | GenTree* arg = lhs->gtOp.gtOp1->gtEffectiveVal(/*commaOnly*/ true); |
| 7622 | FieldSeqNode* fldSeqArrElem = nullptr; |
| 7623 | |
| 7624 | if ((tree->gtFlags & GTF_IND_VOLATILE) != 0) |
| 7625 | { |
| 7626 | memoryHavoc |= memoryKindSet(GcHeap, ByrefExposed); |
| 7627 | continue; |
| 7628 | } |
| 7629 | |
| 7630 | ArrayInfo arrInfo; |
| 7631 | |
| 7632 | if (arg->TypeGet() == TYP_BYREF && arg->OperGet() == GT_LCL_VAR) |
| 7633 | { |
| 7634 | // If it's a local byref for which we recorded a value number, use that... |
| 7635 | GenTreeLclVar* argLcl = arg->AsLclVar(); |
| 7636 | if (lvaInSsa(argLcl->GetLclNum())) |
| 7637 | { |
| 7638 | ValueNum argVN = |
| 7639 | lvaTable[argLcl->GetLclNum()].GetPerSsaData(argLcl->GetSsaNum())->m_vnPair.GetLiberal(); |
| 7640 | VNFuncApp funcApp; |
| 7641 | if (argVN != ValueNumStore::NoVN && vnStore->GetVNFunc(argVN, &funcApp) && |
| 7642 | funcApp.m_func == VNF_PtrToArrElem) |
| 7643 | { |
| 7644 | assert(vnStore->IsVNHandle(funcApp.m_args[0])); |
| 7645 | CORINFO_CLASS_HANDLE elemType = |
| 7646 | CORINFO_CLASS_HANDLE(vnStore->ConstantValue<size_t>(funcApp.m_args[0])); |
| 7647 | AddModifiedElemTypeAllContainingLoops(mostNestedLoop, elemType); |
| 7648 | // Don't set memoryHavoc for GcHeap below. Do set memoryHavoc for ByrefExposed |
| 7649 | // (conservatively assuming that a byref may alias the array element) |
| 7650 | memoryHavoc |= memoryKindSet(ByrefExposed); |
| 7651 | continue; |
| 7652 | } |
| 7653 | } |
| 7654 | // Otherwise... |
| 7655 | memoryHavoc |= memoryKindSet(GcHeap, ByrefExposed); |
| 7656 | } |
| 7657 | // Is the LHS an array index expression? |
| 7658 | else if (lhs->ParseArrayElemForm(this, &arrInfo, &fldSeqArrElem)) |
| 7659 | { |
| 7660 | // We actually ignore "fldSeq" -- any modification to an S[], at any |
| 7661 | // field of "S", will lose all information about the array type. |
| 7662 | CORINFO_CLASS_HANDLE elemTypeEq = EncodeElemType(arrInfo.m_elemType, arrInfo.m_elemStructType); |
| 7663 | AddModifiedElemTypeAllContainingLoops(mostNestedLoop, elemTypeEq); |
| 7664 | // Conservatively assume byrefs may alias this array element |
| 7665 | memoryHavoc |= memoryKindSet(ByrefExposed); |
| 7666 | } |
| 7667 | else |
| 7668 | { |
| 7669 | // We are only interested in IsFieldAddr()'s fldSeq out parameter. |
| 7670 | // |
| 7671 | GenTree* obj = nullptr; // unused |
| 7672 | GenTree* staticOffset = nullptr; // unused |
| 7673 | FieldSeqNode* fldSeq = nullptr; |
| 7674 | |
| 7675 | if (arg->IsFieldAddr(this, &obj, &staticOffset, &fldSeq) && |
| 7676 | (fldSeq != FieldSeqStore::NotAField())) |
| 7677 | { |
| 7678 | // Get the first (object) field from field seq. GcHeap[field] will yield the "field map". |
| 7679 | assert(fldSeq != nullptr); |
| 7680 | if (fldSeq->IsFirstElemFieldSeq()) |
| 7681 | { |
| 7682 | fldSeq = fldSeq->m_next; |
| 7683 | assert(fldSeq != nullptr); |
| 7684 | } |
| 7685 | |
| 7686 | AddModifiedFieldAllContainingLoops(mostNestedLoop, fldSeq->m_fieldHnd); |
| 7687 | // Conservatively assume byrefs may alias this object. |
| 7688 | memoryHavoc |= memoryKindSet(ByrefExposed); |
| 7689 | } |
| 7690 | else |
| 7691 | { |
| 7692 | memoryHavoc |= memoryKindSet(GcHeap, ByrefExposed); |
| 7693 | } |
| 7694 | } |
| 7695 | } |
| 7696 | else if (lhs->OperIsBlk()) |
| 7697 | { |
| 7698 | GenTreeLclVarCommon* lclVarTree; |
| 7699 | bool isEntire; |
| 7700 | if (!tree->DefinesLocal(this, &lclVarTree, &isEntire)) |
| 7701 | { |
| 7702 | // For now, assume arbitrary side effects on GcHeap/ByrefExposed... |
| 7703 | memoryHavoc |= memoryKindSet(GcHeap, ByrefExposed); |
| 7704 | } |
| 7705 | else if (lvaVarAddrExposed(lclVarTree->gtLclNum)) |
| 7706 | { |
| 7707 | memoryHavoc |= memoryKindSet(ByrefExposed); |
| 7708 | } |
| 7709 | } |
| 7710 | else if (lhs->OperGet() == GT_CLS_VAR) |
| 7711 | { |
| 7712 | AddModifiedFieldAllContainingLoops(mostNestedLoop, lhs->gtClsVar.gtClsVarHnd); |
| 7713 | // Conservatively assume byrefs may alias this static field |
| 7714 | memoryHavoc |= memoryKindSet(ByrefExposed); |
| 7715 | } |
| 7716 | // Otherwise, must be local lhs form. I should assert that. |
| 7717 | else if (lhs->OperGet() == GT_LCL_VAR) |
| 7718 | { |
| 7719 | GenTreeLclVar* lhsLcl = lhs->AsLclVar(); |
| 7720 | GenTree* rhs = tree->gtOp.gtOp2; |
| 7721 | ValueNum rhsVN = rhs->gtVNPair.GetLiberal(); |
| 7722 | // If we gave the RHS a value number, propagate it. |
| 7723 | if (rhsVN != ValueNumStore::NoVN) |
| 7724 | { |
| 7725 | rhsVN = vnStore->VNNormalValue(rhsVN); |
| 7726 | if (lvaInSsa(lhsLcl->GetLclNum())) |
| 7727 | { |
| 7728 | lvaTable[lhsLcl->GetLclNum()] |
| 7729 | .GetPerSsaData(lhsLcl->GetSsaNum()) |
| 7730 | ->m_vnPair.SetLiberal(rhsVN); |
| 7731 | } |
| 7732 | } |
| 7733 | // If the local is address-exposed, count this as ByrefExposed havoc |
| 7734 | if (lvaVarAddrExposed(lhsLcl->gtLclNum)) |
| 7735 | { |
| 7736 | memoryHavoc |= memoryKindSet(ByrefExposed); |
| 7737 | } |
| 7738 | } |
| 7739 | } |
| 7740 | else // if (oper != GT_ASG) |
| 7741 | { |
| 7742 | switch (oper) |
| 7743 | { |
| 7744 | case GT_COMMA: |
| 7745 | tree->gtVNPair = tree->gtOp.gtOp2->gtVNPair; |
| 7746 | break; |
| 7747 | |
| 7748 | case GT_ADDR: |
| 7749 | // Is it an addr of a array index expression? |
| 7750 | { |
| 7751 | GenTree* addrArg = tree->gtOp.gtOp1; |
| 7752 | if (addrArg->OperGet() == GT_IND) |
| 7753 | { |
| 7754 | // Is the LHS an array index expression? |
| 7755 | if (addrArg->gtFlags & GTF_IND_ARR_INDEX) |
| 7756 | { |
| 7757 | ArrayInfo arrInfo; |
| 7758 | bool b = GetArrayInfoMap()->Lookup(addrArg, &arrInfo); |
| 7759 | assert(b); |
| 7760 | CORINFO_CLASS_HANDLE elemTypeEq = |
| 7761 | EncodeElemType(arrInfo.m_elemType, arrInfo.m_elemStructType); |
| 7762 | ValueNum elemTypeEqVN = |
| 7763 | vnStore->VNForHandle(ssize_t(elemTypeEq), GTF_ICON_CLASS_HDL); |
| 7764 | ValueNum ptrToArrElemVN = |
| 7765 | vnStore->VNForFunc(TYP_BYREF, VNF_PtrToArrElem, elemTypeEqVN, |
| 7766 | // The rest are dummy arguments. |
| 7767 | vnStore->VNForNull(), vnStore->VNForNull(), |
| 7768 | vnStore->VNForNull()); |
| 7769 | tree->gtVNPair.SetBoth(ptrToArrElemVN); |
| 7770 | } |
| 7771 | } |
| 7772 | } |
| 7773 | break; |
| 7774 | |
| 7775 | case GT_LOCKADD: // Binop |
| 7776 | case GT_XADD: // Binop |
| 7777 | case GT_XCHG: // Binop |
| 7778 | case GT_CMPXCHG: // Specialop |
| 7779 | { |
| 7780 | assert(!tree->OperIs(GT_LOCKADD) && "LOCKADD should not appear before lowering" ); |
| 7781 | memoryHavoc |= memoryKindSet(GcHeap, ByrefExposed); |
| 7782 | } |
| 7783 | break; |
| 7784 | |
| 7785 | case GT_CALL: |
| 7786 | { |
| 7787 | GenTreeCall* call = tree->AsCall(); |
| 7788 | |
| 7789 | // Record that this loop contains a call |
| 7790 | AddContainsCallAllContainingLoops(mostNestedLoop); |
| 7791 | |
| 7792 | if (call->gtCallType == CT_HELPER) |
| 7793 | { |
| 7794 | CorInfoHelpFunc helpFunc = eeGetHelperNum(call->gtCallMethHnd); |
| 7795 | if (s_helperCallProperties.MutatesHeap(helpFunc)) |
| 7796 | { |
| 7797 | memoryHavoc |= memoryKindSet(GcHeap, ByrefExposed); |
| 7798 | } |
| 7799 | else if (s_helperCallProperties.MayRunCctor(helpFunc)) |
| 7800 | { |
| 7801 | // If the call is labeled as "Hoistable", then we've checked the |
| 7802 | // class that would be constructed, and it is not precise-init, so |
| 7803 | // the cctor will not be run by this call. Otherwise, it might be, |
| 7804 | // and might have arbitrary side effects. |
| 7805 | if ((tree->gtFlags & GTF_CALL_HOISTABLE) == 0) |
| 7806 | { |
| 7807 | memoryHavoc |= memoryKindSet(GcHeap, ByrefExposed); |
| 7808 | } |
| 7809 | } |
| 7810 | } |
| 7811 | else |
| 7812 | { |
| 7813 | memoryHavoc |= memoryKindSet(GcHeap, ByrefExposed); |
| 7814 | } |
| 7815 | break; |
| 7816 | } |
| 7817 | |
| 7818 | default: |
| 7819 | // All other gtOper node kinds, leave 'memoryHavoc' unchanged (i.e. false) |
| 7820 | break; |
| 7821 | } |
| 7822 | } |
| 7823 | } |
| 7824 | } |
| 7825 | |
| 7826 | if (memoryHavoc != emptyMemoryKindSet) |
| 7827 | { |
| 7828 | // Record that all loops containing this block have memory havoc effects. |
| 7829 | unsigned lnum = mostNestedLoop; |
| 7830 | while (lnum != BasicBlock::NOT_IN_LOOP) |
| 7831 | { |
| 7832 | for (MemoryKind memoryKind : allMemoryKinds()) |
| 7833 | { |
| 7834 | if ((memoryHavoc & memoryKindSet(memoryKind)) != 0) |
| 7835 | { |
| 7836 | optLoopTable[lnum].lpLoopHasMemoryHavoc[memoryKind] = true; |
| 7837 | } |
| 7838 | } |
| 7839 | lnum = optLoopTable[lnum].lpParent; |
| 7840 | } |
| 7841 | } |
| 7842 | } |
| 7843 | |
| 7844 | // Marks the containsCall information to "lnum" and any parent loops. |
| 7845 | void Compiler::AddContainsCallAllContainingLoops(unsigned lnum) |
| 7846 | { |
| 7847 | assert(0 <= lnum && lnum < optLoopCount); |
| 7848 | while (lnum != BasicBlock::NOT_IN_LOOP) |
| 7849 | { |
| 7850 | optLoopTable[lnum].lpContainsCall = true; |
| 7851 | lnum = optLoopTable[lnum].lpParent; |
| 7852 | } |
| 7853 | } |
| 7854 | |
| 7855 | // Adds the variable liveness information for 'blk' to 'this' LoopDsc |
| 7856 | void Compiler::LoopDsc::AddVariableLiveness(Compiler* comp, BasicBlock* blk) |
| 7857 | { |
| 7858 | VarSetOps::UnionD(comp, this->lpVarInOut, blk->bbLiveIn); |
| 7859 | VarSetOps::UnionD(comp, this->lpVarInOut, blk->bbLiveOut); |
| 7860 | |
| 7861 | VarSetOps::UnionD(comp, this->lpVarUseDef, blk->bbVarUse); |
| 7862 | VarSetOps::UnionD(comp, this->lpVarUseDef, blk->bbVarDef); |
| 7863 | } |
| 7864 | |
| 7865 | // Adds the variable liveness information for 'blk' to "lnum" and any parent loops. |
| 7866 | void Compiler::AddVariableLivenessAllContainingLoops(unsigned lnum, BasicBlock* blk) |
| 7867 | { |
| 7868 | assert(0 <= lnum && lnum < optLoopCount); |
| 7869 | while (lnum != BasicBlock::NOT_IN_LOOP) |
| 7870 | { |
| 7871 | optLoopTable[lnum].AddVariableLiveness(this, blk); |
| 7872 | lnum = optLoopTable[lnum].lpParent; |
| 7873 | } |
| 7874 | } |
| 7875 | |
| 7876 | // Adds "fldHnd" to the set of modified fields of "lnum" and any parent loops. |
| 7877 | void Compiler::AddModifiedFieldAllContainingLoops(unsigned lnum, CORINFO_FIELD_HANDLE fldHnd) |
| 7878 | { |
| 7879 | assert(0 <= lnum && lnum < optLoopCount); |
| 7880 | while (lnum != BasicBlock::NOT_IN_LOOP) |
| 7881 | { |
| 7882 | optLoopTable[lnum].AddModifiedField(this, fldHnd); |
| 7883 | lnum = optLoopTable[lnum].lpParent; |
| 7884 | } |
| 7885 | } |
| 7886 | |
| 7887 | // Adds "elemType" to the set of modified array element types of "lnum" and any parent loops. |
| 7888 | void Compiler::AddModifiedElemTypeAllContainingLoops(unsigned lnum, CORINFO_CLASS_HANDLE elemClsHnd) |
| 7889 | { |
| 7890 | assert(0 <= lnum && lnum < optLoopCount); |
| 7891 | while (lnum != BasicBlock::NOT_IN_LOOP) |
| 7892 | { |
| 7893 | optLoopTable[lnum].AddModifiedElemType(this, elemClsHnd); |
| 7894 | lnum = optLoopTable[lnum].lpParent; |
| 7895 | } |
| 7896 | } |
| 7897 | |
| 7898 | /***************************************************************************** |
| 7899 | * |
| 7900 | * Helper passed to Compiler::fgWalkAllTreesPre() to decrement the LclVar usage counts |
| 7901 | * The 'keepList'is either a single tree or a list of trees that are formed by |
| 7902 | * one or more GT_COMMA nodes. It is the kept side-effects as returned by the |
| 7903 | * gtExtractSideEffList method. |
| 7904 | */ |
| 7905 | |
| 7906 | /* static */ |
| 7907 | Compiler::fgWalkResult Compiler::optRemoveTreeVisitor(GenTree** pTree, fgWalkData* data) |
| 7908 | { |
| 7909 | GenTree* tree = *pTree; |
| 7910 | Compiler* comp = data->compiler; |
| 7911 | GenTree* keepList = (GenTree*)(data->pCallbackData); |
| 7912 | |
| 7913 | // We may have a non-NULL side effect list that is being kept |
| 7914 | // |
| 7915 | if (keepList) |
| 7916 | { |
| 7917 | GenTree* keptTree = keepList; |
| 7918 | while (keptTree->OperGet() == GT_COMMA) |
| 7919 | { |
| 7920 | assert(keptTree->OperKind() & GTK_SMPOP); |
| 7921 | GenTree* op1 = keptTree->gtOp.gtOp1; |
| 7922 | GenTree* op2 = keptTree->gtGetOp2(); |
| 7923 | |
| 7924 | // For the GT_COMMA case the op1 is part of the orginal CSE tree |
| 7925 | // that is being kept because it contains some side-effect |
| 7926 | // |
| 7927 | if (tree == op1) |
| 7928 | { |
| 7929 | // This tree and all of its sub trees are being kept. |
| 7930 | return WALK_SKIP_SUBTREES; |
| 7931 | } |
| 7932 | |
| 7933 | // For the GT_COMMA case the op2 are the remaining side-effects of the orginal CSE tree |
| 7934 | // which can again be another GT_COMMA or the final side-effect part |
| 7935 | // |
| 7936 | keptTree = op2; |
| 7937 | } |
| 7938 | if (tree == keptTree) |
| 7939 | { |
| 7940 | // This tree and all of its sub trees are being kept. |
| 7941 | return WALK_SKIP_SUBTREES; |
| 7942 | } |
| 7943 | } |
| 7944 | |
| 7945 | return WALK_CONTINUE; |
| 7946 | } |
| 7947 | |
| 7948 | /***************************************************************************** |
| 7949 | * |
| 7950 | * Routine called to decrement the LclVar ref counts when removing a tree |
| 7951 | * during the remove RangeCheck phase. |
| 7952 | * This method will decrement the refcounts for any LclVars used below 'deadTree', |
| 7953 | * unless the node is found in the 'keepList' (which are saved side effects) |
| 7954 | * The keepList is communicated using the walkData.pCallbackData field |
| 7955 | * Also the compCurBB must be set to the current BasicBlock which contains |
| 7956 | * 'deadTree' as we need to fetch the block weight when decrementing the ref counts. |
| 7957 | */ |
| 7958 | |
| 7959 | void Compiler::optRemoveTree(GenTree* deadTree, GenTree* keepList) |
| 7960 | { |
| 7961 | // We communicate this value using the walkData.pCallbackData field |
| 7962 | // |
| 7963 | fgWalkTreePre(&deadTree, optRemoveTreeVisitor, (void*)keepList); |
| 7964 | } |
| 7965 | |
| 7966 | //------------------------------------------------------------------------------ |
| 7967 | // optRemoveRangeCheck : Given an array index node, mark it as not needing a range check. |
| 7968 | // |
| 7969 | // Arguments: |
| 7970 | // tree - Range check tree |
| 7971 | // stmt - Statement the tree belongs to |
| 7972 | |
| 7973 | void Compiler::optRemoveRangeCheck(GenTree* tree, GenTree* stmt) |
| 7974 | { |
| 7975 | #if !REARRANGE_ADDS |
| 7976 | noway_assert(!"can't remove range checks without REARRANGE_ADDS right now" ); |
| 7977 | #endif |
| 7978 | |
| 7979 | noway_assert(stmt->gtOper == GT_STMT); |
| 7980 | noway_assert(tree->gtOper == GT_COMMA); |
| 7981 | |
| 7982 | GenTree* bndsChkTree = tree->gtOp.gtOp1; |
| 7983 | |
| 7984 | noway_assert(bndsChkTree->OperIsBoundsCheck()); |
| 7985 | |
| 7986 | GenTreeBoundsChk* bndsChk = tree->gtOp.gtOp1->AsBoundsChk(); |
| 7987 | |
| 7988 | #ifdef DEBUG |
| 7989 | if (verbose) |
| 7990 | { |
| 7991 | printf("Before optRemoveRangeCheck:\n" ); |
| 7992 | gtDispTree(tree); |
| 7993 | } |
| 7994 | #endif |
| 7995 | |
| 7996 | GenTree* sideEffList = nullptr; |
| 7997 | |
| 7998 | gtExtractSideEffList(bndsChkTree, &sideEffList, GTF_ASG); |
| 7999 | |
| 8000 | // Decrement the ref counts for any LclVars that are being deleted |
| 8001 | // |
| 8002 | optRemoveTree(bndsChkTree, sideEffList); |
| 8003 | |
| 8004 | // Just replace the bndsChk with a NOP as an operand to the GT_COMMA, if there are no side effects. |
| 8005 | tree->gtOp.gtOp1 = (sideEffList != nullptr) ? sideEffList : gtNewNothingNode(); |
| 8006 | // TODO-CQ: We should also remove the GT_COMMA, but in any case we can no longer CSE the GT_COMMA. |
| 8007 | tree->gtFlags |= GTF_DONT_CSE; |
| 8008 | |
| 8009 | gtUpdateSideEffects(stmt, tree); |
| 8010 | |
| 8011 | /* Recalculate the gtCostSz, etc... */ |
| 8012 | gtSetStmtInfo(stmt); |
| 8013 | |
| 8014 | /* Re-thread the nodes if necessary */ |
| 8015 | if (fgStmtListThreaded) |
| 8016 | { |
| 8017 | fgSetStmtSeq(stmt); |
| 8018 | } |
| 8019 | |
| 8020 | #ifdef DEBUG |
| 8021 | if (verbose) |
| 8022 | { |
| 8023 | printf("After optRemoveRangeCheck:\n" ); |
| 8024 | gtDispTree(tree); |
| 8025 | } |
| 8026 | #endif |
| 8027 | } |
| 8028 | |
| 8029 | /***************************************************************************** |
| 8030 | * Return the scale in an array reference, given a pointer to the |
| 8031 | * multiplication node. |
| 8032 | */ |
| 8033 | |
| 8034 | ssize_t Compiler::optGetArrayRefScaleAndIndex(GenTree* mul, GenTree** pIndex DEBUGARG(bool bRngChk)) |
| 8035 | { |
| 8036 | assert(mul); |
| 8037 | assert(mul->gtOper == GT_MUL || mul->gtOper == GT_LSH); |
| 8038 | assert(mul->gtOp.gtOp2->IsCnsIntOrI()); |
| 8039 | |
| 8040 | ssize_t scale = mul->gtOp.gtOp2->gtIntConCommon.IconValue(); |
| 8041 | |
| 8042 | if (mul->gtOper == GT_LSH) |
| 8043 | { |
| 8044 | scale = ((ssize_t)1) << scale; |
| 8045 | } |
| 8046 | |
| 8047 | GenTree* index = mul->gtOp.gtOp1; |
| 8048 | |
| 8049 | if (index->gtOper == GT_MUL && index->gtOp.gtOp2->IsCnsIntOrI()) |
| 8050 | { |
| 8051 | // case of two cascading multiplications for constant int (e.g. * 20 morphed to * 5 * 4): |
| 8052 | // When index->gtOper is GT_MUL and index->gtOp.gtOp2->gtOper is GT_CNS_INT (i.e. * 5), |
| 8053 | // we can bump up the scale from 4 to 5*4, and then change index to index->gtOp.gtOp1. |
| 8054 | // Otherwise, we cannot optimize it. We will simply keep the original scale and index. |
| 8055 | scale *= index->gtOp.gtOp2->gtIntConCommon.IconValue(); |
| 8056 | index = index->gtOp.gtOp1; |
| 8057 | } |
| 8058 | |
| 8059 | assert(!bRngChk || index->gtOper != GT_COMMA); |
| 8060 | |
| 8061 | if (pIndex) |
| 8062 | { |
| 8063 | *pIndex = index; |
| 8064 | } |
| 8065 | |
| 8066 | return scale; |
| 8067 | } |
| 8068 | |
| 8069 | //------------------------------------------------------------------------------ |
| 8070 | // optObtainLoopCloningOpts: Identify optimization candidates and update |
| 8071 | // the "context" for array optimizations. |
| 8072 | // |
| 8073 | // Arguments: |
| 8074 | // context - data structure where all loop cloning info is kept. The |
| 8075 | // optInfo fields of the context are updated with the |
| 8076 | // identified optimization candidates. |
| 8077 | // |
| 8078 | void Compiler::optObtainLoopCloningOpts(LoopCloneContext* context) |
| 8079 | { |
| 8080 | for (unsigned i = 0; i < optLoopCount; i++) |
| 8081 | { |
| 8082 | JITDUMP("Considering loop %d to clone for optimizations.\n" , i); |
| 8083 | if (optIsLoopClonable(i)) |
| 8084 | { |
| 8085 | if (!(optLoopTable[i].lpFlags & LPFLG_REMOVED)) |
| 8086 | { |
| 8087 | optIdentifyLoopOptInfo(i, context); |
| 8088 | } |
| 8089 | } |
| 8090 | JITDUMP("------------------------------------------------------------\n" ); |
| 8091 | } |
| 8092 | JITDUMP("\n" ); |
| 8093 | } |
| 8094 | |
| 8095 | //------------------------------------------------------------------------ |
| 8096 | // optIdentifyLoopOptInfo: Identify loop optimization candidates an also |
| 8097 | // check if the loop is suitable for the optimizations performed. |
| 8098 | // |
| 8099 | // Arguments: |
| 8100 | // loopNum - the current loop index for which conditions are derived. |
| 8101 | // context - data structure where all loop cloning candidates will be |
| 8102 | // updated. |
| 8103 | // |
| 8104 | // Return Value: |
| 8105 | // If the loop is not suitable for the optimizations, return false - context |
| 8106 | // should not contain any optimization candidate for the loop if false. |
| 8107 | // Else return true. |
| 8108 | // |
| 8109 | // Operation: |
| 8110 | // Check if the loop is well formed for this optimization and identify the |
| 8111 | // optimization candidates and update the "context" parameter with all the |
| 8112 | // contextual information necessary to perform the optimization later. |
| 8113 | // |
| 8114 | bool Compiler::optIdentifyLoopOptInfo(unsigned loopNum, LoopCloneContext* context) |
| 8115 | { |
| 8116 | noway_assert(loopNum < optLoopCount); |
| 8117 | |
| 8118 | LoopDsc* pLoop = &optLoopTable[loopNum]; |
| 8119 | |
| 8120 | if (!(pLoop->lpFlags & LPFLG_ITER)) |
| 8121 | { |
| 8122 | JITDUMP("> No iter flag on loop %d.\n" , loopNum); |
| 8123 | return false; |
| 8124 | } |
| 8125 | |
| 8126 | unsigned ivLclNum = pLoop->lpIterVar(); |
| 8127 | if (lvaVarAddrExposed(ivLclNum)) |
| 8128 | { |
| 8129 | JITDUMP("> Rejected V%02u as iter var because is address-exposed.\n" , ivLclNum); |
| 8130 | return false; |
| 8131 | } |
| 8132 | |
| 8133 | BasicBlock* head = pLoop->lpHead; |
| 8134 | BasicBlock* end = pLoop->lpBottom; |
| 8135 | BasicBlock* beg = head->bbNext; |
| 8136 | |
| 8137 | if (end->bbJumpKind != BBJ_COND) |
| 8138 | { |
| 8139 | JITDUMP("> Couldn't find termination test.\n" ); |
| 8140 | return false; |
| 8141 | } |
| 8142 | |
| 8143 | if (end->bbJumpDest != beg) |
| 8144 | { |
| 8145 | JITDUMP("> Branch at loop 'end' not looping to 'begin'.\n" ); |
| 8146 | return false; |
| 8147 | } |
| 8148 | |
| 8149 | // TODO-CQ: CLONE: Mark increasing or decreasing loops. |
| 8150 | if ((pLoop->lpIterOper() != GT_ADD) || (pLoop->lpIterConst() != 1)) |
| 8151 | { |
| 8152 | JITDUMP("> Loop iteration operator not matching\n" ); |
| 8153 | return false; |
| 8154 | } |
| 8155 | |
| 8156 | if ((pLoop->lpFlags & LPFLG_CONST_LIMIT) == 0 && (pLoop->lpFlags & LPFLG_VAR_LIMIT) == 0 && |
| 8157 | (pLoop->lpFlags & LPFLG_ARRLEN_LIMIT) == 0) |
| 8158 | { |
| 8159 | JITDUMP("> Loop limit is neither constant, variable or array length\n" ); |
| 8160 | return false; |
| 8161 | } |
| 8162 | |
| 8163 | if (!(((pLoop->lpTestOper() == GT_LT || pLoop->lpTestOper() == GT_LE) && (pLoop->lpIterOper() == GT_ADD)) || |
| 8164 | ((pLoop->lpTestOper() == GT_GT || pLoop->lpTestOper() == GT_GE) && (pLoop->lpIterOper() == GT_SUB)))) |
| 8165 | { |
| 8166 | JITDUMP("> Loop test (%s) doesn't agree with the direction (%s) of the pLoop->\n" , |
| 8167 | GenTree::OpName(pLoop->lpTestOper()), GenTree::OpName(pLoop->lpIterOper())); |
| 8168 | return false; |
| 8169 | } |
| 8170 | |
| 8171 | if (!(pLoop->lpTestTree->OperKind() & GTK_RELOP) || !(pLoop->lpTestTree->gtFlags & GTF_RELOP_ZTT)) |
| 8172 | { |
| 8173 | JITDUMP("> Loop inversion NOT present, loop test [%06u] may not protect entry from head.\n" , |
| 8174 | pLoop->lpTestTree->gtTreeID); |
| 8175 | return false; |
| 8176 | } |
| 8177 | |
| 8178 | #ifdef DEBUG |
| 8179 | GenTree* op1 = pLoop->lpIterator(); |
| 8180 | noway_assert((op1->gtOper == GT_LCL_VAR) && (op1->gtLclVarCommon.gtLclNum == ivLclNum)); |
| 8181 | #endif |
| 8182 | |
| 8183 | JITDUMP("Checking blocks " FMT_BB ".." FMT_BB " for optimization candidates\n" , beg->bbNum, |
| 8184 | end->bbNext ? end->bbNext->bbNum : 0); |
| 8185 | |
| 8186 | LoopCloneVisitorInfo info(context, loopNum, nullptr); |
| 8187 | for (BasicBlock* block = beg; block != end->bbNext; block = block->bbNext) |
| 8188 | { |
| 8189 | compCurBB = block; |
| 8190 | for (GenTree* stmt = block->bbTreeList; stmt; stmt = stmt->gtNext) |
| 8191 | { |
| 8192 | info.stmt = stmt; |
| 8193 | const bool lclVarsOnly = false; |
| 8194 | const bool computeStack = false; |
| 8195 | fgWalkTreePre(&stmt->gtStmt.gtStmtExpr, optCanOptimizeByLoopCloningVisitor, &info, lclVarsOnly, |
| 8196 | computeStack); |
| 8197 | } |
| 8198 | } |
| 8199 | |
| 8200 | return true; |
| 8201 | } |
| 8202 | |
| 8203 | //--------------------------------------------------------------------------------------------------------------- |
| 8204 | // optExtractArrIndex: Try to extract the array index from "tree". |
| 8205 | // |
| 8206 | // Arguments: |
| 8207 | // tree the tree to be checked if it is the array [] operation. |
| 8208 | // result the extracted GT_INDEX information is updated in result. |
| 8209 | // lhsNum for the root level (function is recursive) callers should be BAD_VAR_NUM. |
| 8210 | // |
| 8211 | // Return Value: |
| 8212 | // Returns true if array index can be extracted, else, return false. See assumption about |
| 8213 | // what will be extracted. The "result" variable's rank parameter is advanced for every |
| 8214 | // dimension of [] encountered. |
| 8215 | // |
| 8216 | // Operation: |
| 8217 | // Given a "tree" extract the GT_INDEX node in "result" as ArrIndex. In FlowGraph morph |
| 8218 | // we have converted a GT_INDEX tree into a scaled index base offset expression. We need |
| 8219 | // to reconstruct this to be able to know if this is an array access. |
| 8220 | // |
| 8221 | // Assumption: |
| 8222 | // The method extracts only if the array base and indices are GT_LCL_VAR. |
| 8223 | // |
| 8224 | // TODO-CQ: CLONE: After morph make sure this method extracts values before morph. |
| 8225 | // |
| 8226 | // [000024] ------------ * STMT void(IL 0x007...0x00C) |
| 8227 | // [000021] a--XG+------ | /--* IND int |
| 8228 | // [000045] -----+------ | | | /--* CNS_INT long 16 Fseq[#FirstElem] |
| 8229 | // [000046] -----+------ | | | /--* ADD long |
| 8230 | // [000043] -----+-N---- | | | | | /--* CNS_INT long 2 |
| 8231 | // [000044] -----+------ | | | | \--* LSH long |
| 8232 | // [000042] -----+------ | | | | \--* CAST long < -int |
| 8233 | // [000039] i----+------ | | | | \--* LCL_VAR int V04 loc0 |
| 8234 | // [000047] -----+------ | | \--* ADD byref |
| 8235 | // [000038] -----+------ | | \--* LCL_VAR ref V00 arg0 |
| 8236 | // [000048] ---XG+------ | /--* COMMA int |
| 8237 | // [000041] ---X-+------ | | \--* ARR_BOUNDS_CHECK_Rng void |
| 8238 | // [000020] -----+------ | | +--* LCL_VAR int V04 loc0 |
| 8239 | // [000040] ---X-+------ | | \--* ARR_LENGTH int |
| 8240 | // [000019] -----+------ | | \--* LCL_VAR ref V00 arg0 |
| 8241 | // [000023] -A-XG+------ \--* ASG int |
| 8242 | // [000022] D----+-N---- \--* LCL_VAR int V06 tmp1 |
| 8243 | |
| 8244 | bool Compiler::(GenTree* tree, ArrIndex* result, unsigned lhsNum) |
| 8245 | { |
| 8246 | if (tree->gtOper != GT_COMMA) |
| 8247 | { |
| 8248 | return false; |
| 8249 | } |
| 8250 | GenTree* before = tree->gtGetOp1(); |
| 8251 | if (before->gtOper != GT_ARR_BOUNDS_CHECK) |
| 8252 | { |
| 8253 | return false; |
| 8254 | } |
| 8255 | GenTreeBoundsChk* arrBndsChk = before->AsBoundsChk(); |
| 8256 | if (arrBndsChk->gtIndex->gtOper != GT_LCL_VAR) |
| 8257 | { |
| 8258 | return false; |
| 8259 | } |
| 8260 | |
| 8261 | // For span we may see gtArrLen is a local var or local field or constant. |
| 8262 | // We won't try and extract those. |
| 8263 | if (arrBndsChk->gtArrLen->OperIs(GT_LCL_VAR, GT_LCL_FLD, GT_CNS_INT)) |
| 8264 | { |
| 8265 | return false; |
| 8266 | } |
| 8267 | if (arrBndsChk->gtArrLen->gtGetOp1()->gtOper != GT_LCL_VAR) |
| 8268 | { |
| 8269 | return false; |
| 8270 | } |
| 8271 | unsigned arrLcl = arrBndsChk->gtArrLen->gtGetOp1()->gtLclVarCommon.gtLclNum; |
| 8272 | if (lhsNum != BAD_VAR_NUM && arrLcl != lhsNum) |
| 8273 | { |
| 8274 | return false; |
| 8275 | } |
| 8276 | |
| 8277 | unsigned indLcl = arrBndsChk->gtIndex->gtLclVarCommon.gtLclNum; |
| 8278 | |
| 8279 | GenTree* after = tree->gtGetOp2(); |
| 8280 | |
| 8281 | if (after->gtOper != GT_IND) |
| 8282 | { |
| 8283 | return false; |
| 8284 | } |
| 8285 | // It used to be the case that arrBndsChks for struct types would fail the previous check because |
| 8286 | // after->gtOper was an address (for a block op). In order to avoid asmDiffs we will for now |
| 8287 | // return false if the type of 'after' is a struct type. (This was causing us to clone loops |
| 8288 | // that we were not previously cloning.) |
| 8289 | // TODO-1stClassStructs: Remove this check to enable optimization of array bounds checks for struct |
| 8290 | // types. |
| 8291 | if (varTypeIsStruct(after)) |
| 8292 | { |
| 8293 | return false; |
| 8294 | } |
| 8295 | |
| 8296 | GenTree* sibo = after->gtGetOp1(); // sibo = scale*index + base + offset |
| 8297 | if (sibo->gtOper != GT_ADD) |
| 8298 | { |
| 8299 | return false; |
| 8300 | } |
| 8301 | GenTree* base = sibo->gtGetOp1(); |
| 8302 | GenTree* sio = sibo->gtGetOp2(); // sio == scale*index + offset |
| 8303 | if (base->OperGet() != GT_LCL_VAR || base->gtLclVarCommon.gtLclNum != arrLcl) |
| 8304 | { |
| 8305 | return false; |
| 8306 | } |
| 8307 | if (sio->gtOper != GT_ADD) |
| 8308 | { |
| 8309 | return false; |
| 8310 | } |
| 8311 | GenTree* ofs = sio->gtGetOp2(); |
| 8312 | GenTree* si = sio->gtGetOp1(); // si = scale*index |
| 8313 | if (ofs->gtOper != GT_CNS_INT) |
| 8314 | { |
| 8315 | return false; |
| 8316 | } |
| 8317 | if (si->gtOper != GT_LSH) |
| 8318 | { |
| 8319 | return false; |
| 8320 | } |
| 8321 | GenTree* scale = si->gtGetOp2(); |
| 8322 | GenTree* index = si->gtGetOp1(); |
| 8323 | if (scale->gtOper != GT_CNS_INT) |
| 8324 | { |
| 8325 | return false; |
| 8326 | } |
| 8327 | #ifdef _TARGET_64BIT_ |
| 8328 | if (index->gtOper != GT_CAST) |
| 8329 | { |
| 8330 | return false; |
| 8331 | } |
| 8332 | GenTree* indexVar = index->gtGetOp1(); |
| 8333 | #else |
| 8334 | GenTree* indexVar = index; |
| 8335 | #endif |
| 8336 | if (indexVar->gtOper != GT_LCL_VAR || indexVar->gtLclVarCommon.gtLclNum != indLcl) |
| 8337 | { |
| 8338 | return false; |
| 8339 | } |
| 8340 | if (lhsNum == BAD_VAR_NUM) |
| 8341 | { |
| 8342 | result->arrLcl = arrLcl; |
| 8343 | } |
| 8344 | result->indLcls.Push(indLcl); |
| 8345 | result->bndsChks.Push(tree); |
| 8346 | result->useBlock = compCurBB; |
| 8347 | result->rank++; |
| 8348 | |
| 8349 | return true; |
| 8350 | } |
| 8351 | |
| 8352 | //--------------------------------------------------------------------------------------------------------------- |
| 8353 | // optReconstructArrIndex: Reconstruct array index. |
| 8354 | // |
| 8355 | // Arguments: |
| 8356 | // tree the tree to be checked if it is an array [][][] operation. |
| 8357 | // result the extracted GT_INDEX information. |
| 8358 | // lhsNum for the root level (function is recursive) callers should be BAD_VAR_NUM. |
| 8359 | // |
| 8360 | // Return Value: |
| 8361 | // Returns true if array index can be extracted, else, return false. "rank" field in |
| 8362 | // "result" contains the array access depth. The "indLcls" fields contain the indices. |
| 8363 | // |
| 8364 | // Operation: |
| 8365 | // Recursively look for a list of array indices. In the example below, we encounter, |
| 8366 | // V03 = ((V05 = V00[V01]), (V05[V02])) which corresponds to access of V00[V01][V02] |
| 8367 | // The return value would then be: |
| 8368 | // ArrIndex result { arrLcl: V00, indLcls: [V01, V02], rank: 2 } |
| 8369 | // |
| 8370 | // V00[V01][V02] would be morphed as: |
| 8371 | // |
| 8372 | // [000000001B366848] ---XG------- indir int |
| 8373 | // [000000001B36BC50] ------------ V05 + (V02 << 2) + 16 |
| 8374 | // [000000001B36C200] ---XG------- comma int |
| 8375 | // [000000001B36BDB8] ---X-------- arrBndsChk(V05, V02) |
| 8376 | // [000000001B36C278] -A-XG------- comma int |
| 8377 | // [000000001B366730] R--XG------- indir ref |
| 8378 | // [000000001B36C2F0] ------------ V00 + (V01 << 3) + 24 |
| 8379 | // [000000001B36C818] ---XG------- comma ref |
| 8380 | // [000000001B36C458] ---X-------- arrBndsChk(V00, V01) |
| 8381 | // [000000001B36BB60] -A-XG------- = ref |
| 8382 | // [000000001B36BAE8] D------N---- lclVar ref V05 tmp2 |
| 8383 | // [000000001B36A668] -A-XG------- = int |
| 8384 | // [000000001B36A5F0] D------N---- lclVar int V03 tmp0 |
| 8385 | // |
| 8386 | // Assumption: |
| 8387 | // The method extracts only if the array base and indices are GT_LCL_VAR. |
| 8388 | // |
| 8389 | bool Compiler::optReconstructArrIndex(GenTree* tree, ArrIndex* result, unsigned lhsNum) |
| 8390 | { |
| 8391 | // If we can extract "tree" (which is a top level comma) return. |
| 8392 | if (optExtractArrIndex(tree, result, lhsNum)) |
| 8393 | { |
| 8394 | return true; |
| 8395 | } |
| 8396 | // We have a comma (check if array base expr is computed in "before"), descend further. |
| 8397 | else if (tree->OperGet() == GT_COMMA) |
| 8398 | { |
| 8399 | GenTree* before = tree->gtGetOp1(); |
| 8400 | // "before" should evaluate an array base for the "after" indexing. |
| 8401 | if (before->OperGet() != GT_ASG) |
| 8402 | { |
| 8403 | return false; |
| 8404 | } |
| 8405 | GenTree* lhs = before->gtGetOp1(); |
| 8406 | GenTree* rhs = before->gtGetOp2(); |
| 8407 | |
| 8408 | // "rhs" should contain an GT_INDEX |
| 8409 | if (!lhs->IsLocal() || !optReconstructArrIndex(rhs, result, lhsNum)) |
| 8410 | { |
| 8411 | return false; |
| 8412 | } |
| 8413 | unsigned lhsNum = lhs->gtLclVarCommon.gtLclNum; |
| 8414 | GenTree* after = tree->gtGetOp2(); |
| 8415 | // Pass the "lhsNum", so we can verify if indeed it is used as the array base. |
| 8416 | return optExtractArrIndex(after, result, lhsNum); |
| 8417 | } |
| 8418 | return false; |
| 8419 | } |
| 8420 | |
| 8421 | /* static */ |
| 8422 | Compiler::fgWalkResult Compiler::optCanOptimizeByLoopCloningVisitor(GenTree** pTree, Compiler::fgWalkData* data) |
| 8423 | { |
| 8424 | return data->compiler->optCanOptimizeByLoopCloning(*pTree, (LoopCloneVisitorInfo*)data->pCallbackData); |
| 8425 | } |
| 8426 | |
| 8427 | //------------------------------------------------------------------------- |
| 8428 | // optIsStackLocalInvariant: Is stack local invariant in loop. |
| 8429 | // |
| 8430 | // Arguments: |
| 8431 | // loopNum The loop in which the variable is tested for invariance. |
| 8432 | // lclNum The local that is tested for invariance in the loop. |
| 8433 | // |
| 8434 | // Return Value: |
| 8435 | // Returns true if the variable is loop invariant in loopNum. |
| 8436 | // |
| 8437 | bool Compiler::optIsStackLocalInvariant(unsigned loopNum, unsigned lclNum) |
| 8438 | { |
| 8439 | if (lvaVarAddrExposed(lclNum)) |
| 8440 | { |
| 8441 | return false; |
| 8442 | } |
| 8443 | if (optIsVarAssgLoop(loopNum, lclNum)) |
| 8444 | { |
| 8445 | return false; |
| 8446 | } |
| 8447 | return true; |
| 8448 | } |
| 8449 | |
| 8450 | //---------------------------------------------------------------------------------------------- |
| 8451 | // optCanOptimizeByLoopCloning: Check if the tree can be optimized by loop cloning and if so, |
| 8452 | // identify as potential candidate and update the loop context. |
| 8453 | // |
| 8454 | // Arguments: |
| 8455 | // tree The tree encountered during the tree walk. |
| 8456 | // info Supplies information about the current block or stmt in which the tree is. |
| 8457 | // Also supplies the "context" pointer for updating with loop cloning |
| 8458 | // candidates. Also supplies loopNum. |
| 8459 | // |
| 8460 | // Operation: |
| 8461 | // If array index can be reconstructed, check if the iter var of the loop matches the |
| 8462 | // array index var in some dim. Also ensure other index vars before the identified |
| 8463 | // dim are loop invariant. |
| 8464 | // |
| 8465 | // Return Value: |
| 8466 | // Skip sub trees if the optimization candidate is identified or else continue walking |
| 8467 | // |
| 8468 | Compiler::fgWalkResult Compiler::optCanOptimizeByLoopCloning(GenTree* tree, LoopCloneVisitorInfo* info) |
| 8469 | { |
| 8470 | ArrIndex arrIndex(getAllocator()); |
| 8471 | |
| 8472 | // Check if array index can be optimized. |
| 8473 | if (optReconstructArrIndex(tree, &arrIndex, BAD_VAR_NUM)) |
| 8474 | { |
| 8475 | assert(tree->gtOper == GT_COMMA); |
| 8476 | #ifdef DEBUG |
| 8477 | if (verbose) |
| 8478 | { |
| 8479 | JITDUMP("Found ArrIndex at tree " ); |
| 8480 | printTreeID(tree); |
| 8481 | printf(" which is equivalent to: " ); |
| 8482 | arrIndex.Print(); |
| 8483 | JITDUMP("\n" ); |
| 8484 | } |
| 8485 | #endif |
| 8486 | if (!optIsStackLocalInvariant(info->loopNum, arrIndex.arrLcl)) |
| 8487 | { |
| 8488 | return WALK_SKIP_SUBTREES; |
| 8489 | } |
| 8490 | |
| 8491 | // Walk the dimensions and see if iterVar of the loop is used as index. |
| 8492 | for (unsigned dim = 0; dim < arrIndex.rank; ++dim) |
| 8493 | { |
| 8494 | // Is index variable also used as the loop iter var. |
| 8495 | if (arrIndex.indLcls[dim] == optLoopTable[info->loopNum].lpIterVar()) |
| 8496 | { |
| 8497 | // Check the previous indices are all loop invariant. |
| 8498 | for (unsigned dim2 = 0; dim2 < dim; ++dim2) |
| 8499 | { |
| 8500 | if (optIsVarAssgLoop(info->loopNum, arrIndex.indLcls[dim2])) |
| 8501 | { |
| 8502 | JITDUMP("V%02d is assigned in loop\n" , arrIndex.indLcls[dim2]); |
| 8503 | return WALK_SKIP_SUBTREES; |
| 8504 | } |
| 8505 | } |
| 8506 | #ifdef DEBUG |
| 8507 | if (verbose) |
| 8508 | { |
| 8509 | JITDUMP("Loop %d can be cloned for ArrIndex " , info->loopNum); |
| 8510 | arrIndex.Print(); |
| 8511 | JITDUMP(" on dim %d\n" , dim); |
| 8512 | } |
| 8513 | #endif |
| 8514 | // Update the loop context. |
| 8515 | info->context->EnsureLoopOptInfo(info->loopNum) |
| 8516 | ->Push(new (this, CMK_LoopOpt) LcJaggedArrayOptInfo(arrIndex, dim, info->stmt)); |
| 8517 | } |
| 8518 | else |
| 8519 | { |
| 8520 | JITDUMP("Induction V%02d is not used as index on dim %d\n" , optLoopTable[info->loopNum].lpIterVar(), |
| 8521 | dim); |
| 8522 | } |
| 8523 | } |
| 8524 | return WALK_SKIP_SUBTREES; |
| 8525 | } |
| 8526 | else if (tree->gtOper == GT_ARR_ELEM) |
| 8527 | { |
| 8528 | // TODO-CQ: CLONE: Implement. |
| 8529 | return WALK_SKIP_SUBTREES; |
| 8530 | } |
| 8531 | return WALK_CONTINUE; |
| 8532 | } |
| 8533 | |
| 8534 | struct optRangeCheckDsc |
| 8535 | { |
| 8536 | Compiler* pCompiler; |
| 8537 | bool bValidIndex; |
| 8538 | }; |
| 8539 | /* |
| 8540 | Walk to make sure that only locals and constants are contained in the index |
| 8541 | for a range check |
| 8542 | */ |
| 8543 | Compiler::fgWalkResult Compiler::optValidRangeCheckIndex(GenTree** pTree, fgWalkData* data) |
| 8544 | { |
| 8545 | GenTree* tree = *pTree; |
| 8546 | optRangeCheckDsc* pData = (optRangeCheckDsc*)data->pCallbackData; |
| 8547 | |
| 8548 | if (tree->gtOper == GT_IND || tree->gtOper == GT_CLS_VAR || tree->gtOper == GT_FIELD || tree->gtOper == GT_LCL_FLD) |
| 8549 | { |
| 8550 | pData->bValidIndex = false; |
| 8551 | return WALK_ABORT; |
| 8552 | } |
| 8553 | |
| 8554 | if (tree->gtOper == GT_LCL_VAR) |
| 8555 | { |
| 8556 | if (pData->pCompiler->lvaTable[tree->gtLclVarCommon.gtLclNum].lvAddrExposed) |
| 8557 | { |
| 8558 | pData->bValidIndex = false; |
| 8559 | return WALK_ABORT; |
| 8560 | } |
| 8561 | } |
| 8562 | |
| 8563 | return WALK_CONTINUE; |
| 8564 | } |
| 8565 | |
| 8566 | /* |
| 8567 | returns true if a range check can legally be removed (for the moment it checks |
| 8568 | that the array is a local array (non subject to racing conditions) and that the |
| 8569 | index is either a constant or a local |
| 8570 | */ |
| 8571 | bool Compiler::optIsRangeCheckRemovable(GenTree* tree) |
| 8572 | { |
| 8573 | noway_assert(tree->gtOper == GT_ARR_BOUNDS_CHECK); |
| 8574 | GenTreeBoundsChk* bndsChk = tree->AsBoundsChk(); |
| 8575 | GenTree* pArray = bndsChk->GetArray(); |
| 8576 | if (pArray == nullptr && !bndsChk->gtArrLen->IsCnsIntOrI()) |
| 8577 | { |
| 8578 | return false; |
| 8579 | } |
| 8580 | GenTree* pIndex = bndsChk->gtIndex; |
| 8581 | |
| 8582 | // The length must be a constant (the pArray == NULL case) or the array reference must be a local. |
| 8583 | // Otherwise we can be targeted by malicious race-conditions. |
| 8584 | if (pArray != nullptr) |
| 8585 | { |
| 8586 | if (pArray->gtOper != GT_LCL_VAR) |
| 8587 | { |
| 8588 | |
| 8589 | #ifdef DEBUG |
| 8590 | if (verbose) |
| 8591 | { |
| 8592 | printf("Can't remove range check if the array isn't referenced with a local\n" ); |
| 8593 | gtDispTree(pArray); |
| 8594 | } |
| 8595 | #endif |
| 8596 | return false; |
| 8597 | } |
| 8598 | else |
| 8599 | { |
| 8600 | noway_assert(pArray->gtType == TYP_REF); |
| 8601 | noway_assert(pArray->gtLclVarCommon.gtLclNum < lvaCount); |
| 8602 | |
| 8603 | if (lvaTable[pArray->gtLclVarCommon.gtLclNum].lvAddrExposed) |
| 8604 | { |
| 8605 | // If the array address has been taken, don't do the optimization |
| 8606 | // (this restriction can be lowered a bit, but i don't think it's worth it) |
| 8607 | CLANG_FORMAT_COMMENT_ANCHOR; |
| 8608 | #ifdef DEBUG |
| 8609 | if (verbose) |
| 8610 | { |
| 8611 | printf("Can't remove range check if the array has its address taken\n" ); |
| 8612 | gtDispTree(pArray); |
| 8613 | } |
| 8614 | #endif |
| 8615 | return false; |
| 8616 | } |
| 8617 | } |
| 8618 | } |
| 8619 | |
| 8620 | optRangeCheckDsc Data; |
| 8621 | Data.pCompiler = this; |
| 8622 | Data.bValidIndex = true; |
| 8623 | |
| 8624 | fgWalkTreePre(&pIndex, optValidRangeCheckIndex, &Data); |
| 8625 | |
| 8626 | if (!Data.bValidIndex) |
| 8627 | { |
| 8628 | #ifdef DEBUG |
| 8629 | if (verbose) |
| 8630 | { |
| 8631 | printf("Can't remove range check with this index" ); |
| 8632 | gtDispTree(pIndex); |
| 8633 | } |
| 8634 | #endif |
| 8635 | |
| 8636 | return false; |
| 8637 | } |
| 8638 | |
| 8639 | return true; |
| 8640 | } |
| 8641 | |
| 8642 | /****************************************************************************** |
| 8643 | * |
| 8644 | * Replace x==null with (x|x)==0 if x is a GC-type. |
| 8645 | * This will stress code-gen and the emitter to make sure they support such trees. |
| 8646 | */ |
| 8647 | |
| 8648 | #ifdef DEBUG |
| 8649 | |
| 8650 | void Compiler::optOptimizeBoolsGcStress(BasicBlock* condBlock) |
| 8651 | { |
| 8652 | if (!compStressCompile(STRESS_OPT_BOOLS_GC, 20)) |
| 8653 | { |
| 8654 | return; |
| 8655 | } |
| 8656 | |
| 8657 | noway_assert(condBlock->bbJumpKind == BBJ_COND); |
| 8658 | GenTree* condStmt = condBlock->bbTreeList->gtPrev->gtStmt.gtStmtExpr; |
| 8659 | |
| 8660 | noway_assert(condStmt->gtOper == GT_JTRUE); |
| 8661 | |
| 8662 | bool isBool; |
| 8663 | GenTree* relop; |
| 8664 | |
| 8665 | GenTree* comparand = optIsBoolCond(condStmt, &relop, &isBool); |
| 8666 | |
| 8667 | if (comparand == nullptr || !varTypeIsGC(comparand->TypeGet())) |
| 8668 | { |
| 8669 | return; |
| 8670 | } |
| 8671 | |
| 8672 | if (comparand->gtFlags & (GTF_ASG | GTF_CALL | GTF_ORDER_SIDEEFF)) |
| 8673 | { |
| 8674 | return; |
| 8675 | } |
| 8676 | |
| 8677 | GenTree* comparandClone = gtCloneExpr(comparand); |
| 8678 | |
| 8679 | noway_assert(relop->gtOp.gtOp1 == comparand); |
| 8680 | genTreeOps oper = compStressCompile(STRESS_OPT_BOOLS_GC, 50) ? GT_OR : GT_AND; |
| 8681 | relop->gtOp.gtOp1 = gtNewOperNode(oper, TYP_I_IMPL, comparand, comparandClone); |
| 8682 | |
| 8683 | // Comparand type is already checked, and we have const int, there is no harm |
| 8684 | // morphing it into a TYP_I_IMPL. |
| 8685 | noway_assert(relop->gtOp.gtOp2->gtOper == GT_CNS_INT); |
| 8686 | relop->gtOp.gtOp2->gtType = TYP_I_IMPL; |
| 8687 | } |
| 8688 | |
| 8689 | #endif |
| 8690 | |
| 8691 | /****************************************************************************** |
| 8692 | * Function used by folding of boolean conditionals |
| 8693 | * Given a GT_JTRUE node, checks that it is a boolean comparison of the form |
| 8694 | * "if (boolVal ==/!= 0/1)". This is translated into a GT_EQ node with "op1" |
| 8695 | * being a boolean lclVar and "op2" the const 0/1. |
| 8696 | * On success, the comparand (ie. boolVal) is returned. Else NULL. |
| 8697 | * compPtr returns the compare node (i.e. GT_EQ or GT_NE node) |
| 8698 | * boolPtr returns whether the comparand is a boolean value (must be 0 or 1). |
| 8699 | * When return boolPtr equal to true, if the comparison was against a 1 (i.e true) |
| 8700 | * value then we morph the tree by reversing the GT_EQ/GT_NE and change the 1 to 0. |
| 8701 | */ |
| 8702 | |
| 8703 | GenTree* Compiler::optIsBoolCond(GenTree* condBranch, GenTree** compPtr, bool* boolPtr) |
| 8704 | { |
| 8705 | bool isBool = false; |
| 8706 | |
| 8707 | noway_assert(condBranch->gtOper == GT_JTRUE); |
| 8708 | GenTree* cond = condBranch->gtOp.gtOp1; |
| 8709 | |
| 8710 | /* The condition must be "!= 0" or "== 0" */ |
| 8711 | |
| 8712 | if ((cond->gtOper != GT_EQ) && (cond->gtOper != GT_NE)) |
| 8713 | { |
| 8714 | return nullptr; |
| 8715 | } |
| 8716 | |
| 8717 | /* Return the compare node to the caller */ |
| 8718 | |
| 8719 | *compPtr = cond; |
| 8720 | |
| 8721 | /* Get hold of the comparands */ |
| 8722 | |
| 8723 | GenTree* opr1 = cond->gtOp.gtOp1; |
| 8724 | GenTree* opr2 = cond->gtOp.gtOp2; |
| 8725 | |
| 8726 | if (opr2->gtOper != GT_CNS_INT) |
| 8727 | { |
| 8728 | return nullptr; |
| 8729 | } |
| 8730 | |
| 8731 | if (!opr2->IsIntegralConst(0) && !opr2->IsIntegralConst(1)) |
| 8732 | { |
| 8733 | return nullptr; |
| 8734 | } |
| 8735 | |
| 8736 | ssize_t ival2 = opr2->gtIntCon.gtIconVal; |
| 8737 | |
| 8738 | /* Is the value a boolean? |
| 8739 | * We can either have a boolean expression (marked GTF_BOOLEAN) or |
| 8740 | * a local variable that is marked as being boolean (lvIsBoolean) */ |
| 8741 | |
| 8742 | if (opr1->gtFlags & GTF_BOOLEAN) |
| 8743 | { |
| 8744 | isBool = true; |
| 8745 | } |
| 8746 | else if ((opr1->gtOper == GT_CNS_INT) && (opr1->IsIntegralConst(0) || opr1->IsIntegralConst(1))) |
| 8747 | { |
| 8748 | isBool = true; |
| 8749 | } |
| 8750 | else if (opr1->gtOper == GT_LCL_VAR) |
| 8751 | { |
| 8752 | /* is it a boolean local variable */ |
| 8753 | |
| 8754 | unsigned lclNum = opr1->gtLclVarCommon.gtLclNum; |
| 8755 | noway_assert(lclNum < lvaCount); |
| 8756 | |
| 8757 | if (lvaTable[lclNum].lvIsBoolean) |
| 8758 | { |
| 8759 | isBool = true; |
| 8760 | } |
| 8761 | } |
| 8762 | |
| 8763 | /* Was our comparison against the constant 1 (i.e. true) */ |
| 8764 | if (ival2 == 1) |
| 8765 | { |
| 8766 | // If this is a boolean expression tree we can reverse the relop |
| 8767 | // and change the true to false. |
| 8768 | if (isBool) |
| 8769 | { |
| 8770 | gtReverseCond(cond); |
| 8771 | opr2->gtIntCon.gtIconVal = 0; |
| 8772 | } |
| 8773 | else |
| 8774 | { |
| 8775 | return nullptr; |
| 8776 | } |
| 8777 | } |
| 8778 | |
| 8779 | *boolPtr = isBool; |
| 8780 | return opr1; |
| 8781 | } |
| 8782 | |
| 8783 | void Compiler::optOptimizeBools() |
| 8784 | { |
| 8785 | #ifdef DEBUG |
| 8786 | if (verbose) |
| 8787 | { |
| 8788 | printf("*************** In optOptimizeBools()\n" ); |
| 8789 | if (verboseTrees) |
| 8790 | { |
| 8791 | printf("Blocks/Trees before phase\n" ); |
| 8792 | fgDispBasicBlocks(true); |
| 8793 | } |
| 8794 | } |
| 8795 | #endif |
| 8796 | bool change; |
| 8797 | |
| 8798 | do |
| 8799 | { |
| 8800 | change = false; |
| 8801 | |
| 8802 | for (BasicBlock* b1 = fgFirstBB; b1; b1 = b1->bbNext) |
| 8803 | { |
| 8804 | /* We're only interested in conditional jumps here */ |
| 8805 | |
| 8806 | if (b1->bbJumpKind != BBJ_COND) |
| 8807 | { |
| 8808 | continue; |
| 8809 | } |
| 8810 | |
| 8811 | /* If there is no next block, we're done */ |
| 8812 | |
| 8813 | BasicBlock* b2 = b1->bbNext; |
| 8814 | if (!b2) |
| 8815 | { |
| 8816 | break; |
| 8817 | } |
| 8818 | |
| 8819 | /* The next block must not be marked as BBF_DONT_REMOVE */ |
| 8820 | if (b2->bbFlags & BBF_DONT_REMOVE) |
| 8821 | { |
| 8822 | continue; |
| 8823 | } |
| 8824 | |
| 8825 | /* The next block also needs to be a condition */ |
| 8826 | |
| 8827 | if (b2->bbJumpKind != BBJ_COND) |
| 8828 | { |
| 8829 | #ifdef DEBUG |
| 8830 | optOptimizeBoolsGcStress(b1); |
| 8831 | #endif |
| 8832 | continue; |
| 8833 | } |
| 8834 | |
| 8835 | bool sameTarget; // Do b1 and b2 have the same bbJumpDest? |
| 8836 | |
| 8837 | if (b1->bbJumpDest == b2->bbJumpDest) |
| 8838 | { |
| 8839 | /* Given the following sequence of blocks : |
| 8840 | B1: brtrue(t1, BX) |
| 8841 | B2: brtrue(t2, BX) |
| 8842 | B3: |
| 8843 | we will try to fold it to : |
| 8844 | B1: brtrue(t1|t2, BX) |
| 8845 | B3: |
| 8846 | */ |
| 8847 | |
| 8848 | sameTarget = true; |
| 8849 | } |
| 8850 | else if (b1->bbJumpDest == b2->bbNext) /*b1->bbJumpDest->bbNum == n1+2*/ |
| 8851 | { |
| 8852 | /* Given the following sequence of blocks : |
| 8853 | B1: brtrue(t1, B3) |
| 8854 | B2: brtrue(t2, BX) |
| 8855 | B3: |
| 8856 | we will try to fold it to : |
| 8857 | B1: brtrue((!t1)&&t2, BX) |
| 8858 | B3: |
| 8859 | */ |
| 8860 | |
| 8861 | sameTarget = false; |
| 8862 | } |
| 8863 | else |
| 8864 | { |
| 8865 | continue; |
| 8866 | } |
| 8867 | |
| 8868 | /* The second block must contain a single statement */ |
| 8869 | |
| 8870 | GenTree* s2 = b2->bbTreeList; |
| 8871 | if (s2->gtPrev != s2) |
| 8872 | { |
| 8873 | continue; |
| 8874 | } |
| 8875 | |
| 8876 | noway_assert(s2->gtOper == GT_STMT); |
| 8877 | GenTree* t2 = s2->gtStmt.gtStmtExpr; |
| 8878 | noway_assert(t2->gtOper == GT_JTRUE); |
| 8879 | |
| 8880 | /* Find the condition for the first block */ |
| 8881 | |
| 8882 | GenTree* s1 = b1->bbTreeList->gtPrev; |
| 8883 | |
| 8884 | noway_assert(s1->gtOper == GT_STMT); |
| 8885 | GenTree* t1 = s1->gtStmt.gtStmtExpr; |
| 8886 | noway_assert(t1->gtOper == GT_JTRUE); |
| 8887 | |
| 8888 | if (b2->countOfInEdges() > 1) |
| 8889 | { |
| 8890 | continue; |
| 8891 | } |
| 8892 | |
| 8893 | /* Find the branch conditions of b1 and b2 */ |
| 8894 | |
| 8895 | bool bool1, bool2; |
| 8896 | |
| 8897 | GenTree* c1 = optIsBoolCond(t1, &t1, &bool1); |
| 8898 | if (!c1) |
| 8899 | { |
| 8900 | continue; |
| 8901 | } |
| 8902 | |
| 8903 | GenTree* c2 = optIsBoolCond(t2, &t2, &bool2); |
| 8904 | if (!c2) |
| 8905 | { |
| 8906 | continue; |
| 8907 | } |
| 8908 | |
| 8909 | noway_assert(t1->gtOper == GT_EQ || t1->gtOper == GT_NE && t1->gtOp.gtOp1 == c1); |
| 8910 | noway_assert(t2->gtOper == GT_EQ || t2->gtOper == GT_NE && t2->gtOp.gtOp1 == c2); |
| 8911 | |
| 8912 | // Leave out floats where the bit-representation is more complicated |
| 8913 | // - there are two representations for 0. |
| 8914 | // |
| 8915 | if (varTypeIsFloating(c1->TypeGet()) || varTypeIsFloating(c2->TypeGet())) |
| 8916 | { |
| 8917 | continue; |
| 8918 | } |
| 8919 | |
| 8920 | // Make sure the types involved are of the same sizes |
| 8921 | if (genTypeSize(c1->TypeGet()) != genTypeSize(c2->TypeGet())) |
| 8922 | { |
| 8923 | continue; |
| 8924 | } |
| 8925 | if (genTypeSize(t1->TypeGet()) != genTypeSize(t2->TypeGet())) |
| 8926 | { |
| 8927 | continue; |
| 8928 | } |
| 8929 | #ifdef _TARGET_ARMARCH_ |
| 8930 | // Skip the small operand which we cannot encode. |
| 8931 | if (varTypeIsSmall(c1->TypeGet())) |
| 8932 | continue; |
| 8933 | #endif |
| 8934 | /* The second condition must not contain side effects */ |
| 8935 | |
| 8936 | if (c2->gtFlags & GTF_GLOB_EFFECT) |
| 8937 | { |
| 8938 | continue; |
| 8939 | } |
| 8940 | |
| 8941 | /* The second condition must not be too expensive */ |
| 8942 | |
| 8943 | gtPrepareCost(c2); |
| 8944 | |
| 8945 | if (c2->gtCostEx > 12) |
| 8946 | { |
| 8947 | continue; |
| 8948 | } |
| 8949 | |
| 8950 | genTreeOps foldOp; |
| 8951 | genTreeOps cmpOp; |
| 8952 | var_types foldType = c1->TypeGet(); |
| 8953 | if (varTypeIsGC(foldType)) |
| 8954 | { |
| 8955 | foldType = TYP_I_IMPL; |
| 8956 | } |
| 8957 | |
| 8958 | if (sameTarget) |
| 8959 | { |
| 8960 | /* Both conditions must be the same */ |
| 8961 | |
| 8962 | if (t1->gtOper != t2->gtOper) |
| 8963 | { |
| 8964 | continue; |
| 8965 | } |
| 8966 | |
| 8967 | if (t1->gtOper == GT_EQ) |
| 8968 | { |
| 8969 | /* t1:c1==0 t2:c2==0 ==> Branch to BX if either value is 0 |
| 8970 | So we will branch to BX if (c1&c2)==0 */ |
| 8971 | |
| 8972 | foldOp = GT_AND; |
| 8973 | cmpOp = GT_EQ; |
| 8974 | } |
| 8975 | else |
| 8976 | { |
| 8977 | /* t1:c1!=0 t2:c2!=0 ==> Branch to BX if either value is non-0 |
| 8978 | So we will branch to BX if (c1|c2)!=0 */ |
| 8979 | |
| 8980 | foldOp = GT_OR; |
| 8981 | cmpOp = GT_NE; |
| 8982 | } |
| 8983 | } |
| 8984 | else |
| 8985 | { |
| 8986 | /* The b1 condition must be the reverse of the b2 condition */ |
| 8987 | |
| 8988 | if (t1->gtOper == t2->gtOper) |
| 8989 | { |
| 8990 | continue; |
| 8991 | } |
| 8992 | |
| 8993 | if (t1->gtOper == GT_EQ) |
| 8994 | { |
| 8995 | /* t1:c1==0 t2:c2!=0 ==> Branch to BX if both values are non-0 |
| 8996 | So we will branch to BX if (c1&c2)!=0 */ |
| 8997 | |
| 8998 | foldOp = GT_AND; |
| 8999 | cmpOp = GT_NE; |
| 9000 | } |
| 9001 | else |
| 9002 | { |
| 9003 | /* t1:c1!=0 t2:c2==0 ==> Branch to BX if both values are 0 |
| 9004 | So we will branch to BX if (c1|c2)==0 */ |
| 9005 | |
| 9006 | foldOp = GT_OR; |
| 9007 | cmpOp = GT_EQ; |
| 9008 | } |
| 9009 | } |
| 9010 | |
| 9011 | // Anding requires both values to be 0 or 1 |
| 9012 | |
| 9013 | if ((foldOp == GT_AND) && (!bool1 || !bool2)) |
| 9014 | { |
| 9015 | continue; |
| 9016 | } |
| 9017 | |
| 9018 | // |
| 9019 | // Now update the trees |
| 9020 | // |
| 9021 | GenTree* cmpOp1 = gtNewOperNode(foldOp, foldType, c1, c2); |
| 9022 | if (bool1 && bool2) |
| 9023 | { |
| 9024 | /* When we 'OR'/'AND' two booleans, the result is boolean as well */ |
| 9025 | cmpOp1->gtFlags |= GTF_BOOLEAN; |
| 9026 | } |
| 9027 | |
| 9028 | t1->SetOper(cmpOp); |
| 9029 | t1->gtOp.gtOp1 = cmpOp1; |
| 9030 | t1->gtOp.gtOp2->gtType = foldType; // Could have been varTypeIsGC() |
| 9031 | |
| 9032 | #if FEATURE_SET_FLAGS |
| 9033 | // For comparisons against zero we will have the GTF_SET_FLAGS set |
| 9034 | // and this can cause an assert to fire in fgMoveOpsLeft(GenTree* tree) |
| 9035 | // during the CSE phase. |
| 9036 | // |
| 9037 | // So make sure to clear any GTF_SET_FLAGS bit on these operations |
| 9038 | // as they are no longer feeding directly into a comparisons against zero |
| 9039 | |
| 9040 | // Make sure that the GTF_SET_FLAGS bit is cleared. |
| 9041 | // Fix 388436 ARM JitStress WP7 |
| 9042 | c1->gtFlags &= ~GTF_SET_FLAGS; |
| 9043 | c2->gtFlags &= ~GTF_SET_FLAGS; |
| 9044 | |
| 9045 | // The new top level node that we just created does feed directly into |
| 9046 | // a comparison against zero, so set the GTF_SET_FLAGS bit so that |
| 9047 | // we generate an instruction that sets the flags, which allows us |
| 9048 | // to omit the cmp with zero instruction. |
| 9049 | |
| 9050 | // Request that the codegen for cmpOp1 sets the condition flags |
| 9051 | // when it generates the code for cmpOp1. |
| 9052 | // |
| 9053 | cmpOp1->gtRequestSetFlags(); |
| 9054 | #endif |
| 9055 | |
| 9056 | flowList* edge1 = fgGetPredForBlock(b1->bbJumpDest, b1); |
| 9057 | flowList* edge2; |
| 9058 | |
| 9059 | /* Modify the target of the conditional jump and update bbRefs and bbPreds */ |
| 9060 | |
| 9061 | if (sameTarget) |
| 9062 | { |
| 9063 | edge2 = fgGetPredForBlock(b2->bbJumpDest, b2); |
| 9064 | } |
| 9065 | else |
| 9066 | { |
| 9067 | edge2 = fgGetPredForBlock(b2->bbNext, b2); |
| 9068 | |
| 9069 | fgRemoveRefPred(b1->bbJumpDest, b1); |
| 9070 | |
| 9071 | b1->bbJumpDest = b2->bbJumpDest; |
| 9072 | |
| 9073 | fgAddRefPred(b2->bbJumpDest, b1); |
| 9074 | } |
| 9075 | |
| 9076 | noway_assert(edge1 != nullptr); |
| 9077 | noway_assert(edge2 != nullptr); |
| 9078 | |
| 9079 | BasicBlock::weight_t edgeSumMin = edge1->flEdgeWeightMin + edge2->flEdgeWeightMin; |
| 9080 | BasicBlock::weight_t edgeSumMax = edge1->flEdgeWeightMax + edge2->flEdgeWeightMax; |
| 9081 | if ((edgeSumMax >= edge1->flEdgeWeightMax) && (edgeSumMax >= edge2->flEdgeWeightMax)) |
| 9082 | { |
| 9083 | edge1->flEdgeWeightMin = edgeSumMin; |
| 9084 | edge1->flEdgeWeightMax = edgeSumMax; |
| 9085 | } |
| 9086 | else |
| 9087 | { |
| 9088 | edge1->flEdgeWeightMin = BB_ZERO_WEIGHT; |
| 9089 | edge1->flEdgeWeightMax = BB_MAX_WEIGHT; |
| 9090 | } |
| 9091 | |
| 9092 | /* Get rid of the second block (which is a BBJ_COND) */ |
| 9093 | |
| 9094 | noway_assert(b1->bbJumpKind == BBJ_COND); |
| 9095 | noway_assert(b2->bbJumpKind == BBJ_COND); |
| 9096 | noway_assert(b1->bbJumpDest == b2->bbJumpDest); |
| 9097 | noway_assert(b1->bbNext == b2); |
| 9098 | noway_assert(b2->bbNext); |
| 9099 | |
| 9100 | fgUnlinkBlock(b2); |
| 9101 | b2->bbFlags |= BBF_REMOVED; |
| 9102 | |
| 9103 | // If b2 was the last block of a try or handler, update the EH table. |
| 9104 | |
| 9105 | ehUpdateForDeletedBlock(b2); |
| 9106 | |
| 9107 | /* Update bbRefs and bbPreds */ |
| 9108 | |
| 9109 | /* Replace pred 'b2' for 'b2->bbNext' with 'b1' |
| 9110 | * Remove pred 'b2' for 'b2->bbJumpDest' */ |
| 9111 | |
| 9112 | fgReplacePred(b2->bbNext, b2, b1); |
| 9113 | |
| 9114 | fgRemoveRefPred(b2->bbJumpDest, b2); |
| 9115 | |
| 9116 | /* Update the block numbers and try again */ |
| 9117 | |
| 9118 | change = true; |
| 9119 | /* |
| 9120 | do |
| 9121 | { |
| 9122 | b2->bbNum = ++n1; |
| 9123 | b2 = b2->bbNext; |
| 9124 | } |
| 9125 | while (b2); |
| 9126 | */ |
| 9127 | |
| 9128 | // Update loop table |
| 9129 | fgUpdateLoopsAfterCompacting(b1, b2); |
| 9130 | |
| 9131 | #ifdef DEBUG |
| 9132 | if (verbose) |
| 9133 | { |
| 9134 | printf("Folded %sboolean conditions of " FMT_BB " and " FMT_BB " to :\n" , |
| 9135 | c2->OperIsLeaf() ? "" : "non-leaf " , b1->bbNum, b2->bbNum); |
| 9136 | gtDispTree(s1); |
| 9137 | printf("\n" ); |
| 9138 | } |
| 9139 | #endif |
| 9140 | } |
| 9141 | } while (change); |
| 9142 | |
| 9143 | #ifdef DEBUG |
| 9144 | fgDebugCheckBBlist(); |
| 9145 | #endif |
| 9146 | } |
| 9147 | |