1 | /* ==================================================================== |
2 | * Copyright (c) 1998-2005 The OpenSSL Project. All rights reserved. |
3 | * |
4 | * Redistribution and use in source and binary forms, with or without |
5 | * modification, are permitted provided that the following conditions |
6 | * are met: |
7 | * |
8 | * 1. Redistributions of source code must retain the above copyright |
9 | * notice, this list of conditions and the following disclaimer. |
10 | * |
11 | * 2. Redistributions in binary form must reproduce the above copyright |
12 | * notice, this list of conditions and the following disclaimer in |
13 | * the documentation and/or other materials provided with the |
14 | * distribution. |
15 | * |
16 | * 3. All advertising materials mentioning features or use of this |
17 | * software must display the following acknowledgment: |
18 | * "This product includes software developed by the OpenSSL Project |
19 | * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)" |
20 | * |
21 | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to |
22 | * endorse or promote products derived from this software without |
23 | * prior written permission. For written permission, please contact |
24 | * openssl-core@OpenSSL.org. |
25 | * |
26 | * 5. Products derived from this software may not be called "OpenSSL" |
27 | * nor may "OpenSSL" appear in their names without prior written |
28 | * permission of the OpenSSL Project. |
29 | * |
30 | * 6. Redistributions of any form whatsoever must retain the following |
31 | * acknowledgment: |
32 | * "This product includes software developed by the OpenSSL Project |
33 | * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)" |
34 | * |
35 | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY |
36 | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
37 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
38 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR |
39 | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
40 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
41 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
42 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
43 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
44 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
45 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED |
46 | * OF THE POSSIBILITY OF SUCH DAMAGE. |
47 | * ==================================================================== |
48 | * |
49 | * This product includes cryptographic software written by Eric Young |
50 | * (eay@cryptsoft.com). This product includes software written by Tim |
51 | * Hudson (tjh@cryptsoft.com). */ |
52 | |
53 | #include <openssl/ecdsa.h> |
54 | |
55 | #include <assert.h> |
56 | #include <string.h> |
57 | |
58 | #include <openssl/bn.h> |
59 | #include <openssl/err.h> |
60 | #include <openssl/mem.h> |
61 | #include <openssl/sha.h> |
62 | #include <openssl/type_check.h> |
63 | |
64 | #include "../bn/internal.h" |
65 | #include "../ec/internal.h" |
66 | #include "../../internal.h" |
67 | |
68 | |
69 | // digest_to_scalar interprets |digest_len| bytes from |digest| as a scalar for |
70 | // ECDSA. Note this value is not fully reduced modulo the order, only the |
71 | // correct number of bits. |
72 | static void digest_to_scalar(const EC_GROUP *group, EC_SCALAR *out, |
73 | const uint8_t *digest, size_t digest_len) { |
74 | const BIGNUM *order = &group->order; |
75 | size_t num_bits = BN_num_bits(order); |
76 | // Need to truncate digest if it is too long: first truncate whole bytes. |
77 | size_t num_bytes = (num_bits + 7) / 8; |
78 | if (digest_len > num_bytes) { |
79 | digest_len = num_bytes; |
80 | } |
81 | OPENSSL_memset(out, 0, sizeof(EC_SCALAR)); |
82 | for (size_t i = 0; i < digest_len; i++) { |
83 | out->bytes[i] = digest[digest_len - 1 - i]; |
84 | } |
85 | |
86 | // If it is still too long, truncate remaining bits with a shift. |
87 | if (8 * digest_len > num_bits) { |
88 | bn_rshift_words(out->words, out->words, 8 - (num_bits & 0x7), order->width); |
89 | } |
90 | |
91 | // |out| now has the same bit width as |order|, but this only bounds by |
92 | // 2*|order|. Subtract the order if out of range. |
93 | // |
94 | // Montgomery multiplication accepts the looser bounds, so this isn't strictly |
95 | // necessary, but it is a cleaner abstraction and has no performance impact. |
96 | BN_ULONG tmp[EC_MAX_WORDS]; |
97 | bn_reduce_once_in_place(out->words, 0 /* no carry */, order->d, tmp, |
98 | order->width); |
99 | } |
100 | |
101 | ECDSA_SIG *ECDSA_SIG_new(void) { |
102 | ECDSA_SIG *sig = OPENSSL_malloc(sizeof(ECDSA_SIG)); |
103 | if (sig == NULL) { |
104 | return NULL; |
105 | } |
106 | sig->r = BN_new(); |
107 | sig->s = BN_new(); |
108 | if (sig->r == NULL || sig->s == NULL) { |
109 | ECDSA_SIG_free(sig); |
110 | return NULL; |
111 | } |
112 | return sig; |
113 | } |
114 | |
115 | void ECDSA_SIG_free(ECDSA_SIG *sig) { |
116 | if (sig == NULL) { |
117 | return; |
118 | } |
119 | |
120 | BN_free(sig->r); |
121 | BN_free(sig->s); |
122 | OPENSSL_free(sig); |
123 | } |
124 | |
125 | void ECDSA_SIG_get0(const ECDSA_SIG *sig, const BIGNUM **out_r, |
126 | const BIGNUM **out_s) { |
127 | if (out_r != NULL) { |
128 | *out_r = sig->r; |
129 | } |
130 | if (out_s != NULL) { |
131 | *out_s = sig->s; |
132 | } |
133 | } |
134 | |
135 | int ECDSA_SIG_set0(ECDSA_SIG *sig, BIGNUM *r, BIGNUM *s) { |
136 | if (r == NULL || s == NULL) { |
137 | return 0; |
138 | } |
139 | BN_free(sig->r); |
140 | BN_free(sig->s); |
141 | sig->r = r; |
142 | sig->s = s; |
143 | return 1; |
144 | } |
145 | |
146 | int ECDSA_do_verify(const uint8_t *digest, size_t digest_len, |
147 | const ECDSA_SIG *sig, const EC_KEY *eckey) { |
148 | const EC_GROUP *group = EC_KEY_get0_group(eckey); |
149 | const EC_POINT *pub_key = EC_KEY_get0_public_key(eckey); |
150 | if (group == NULL || pub_key == NULL || sig == NULL) { |
151 | OPENSSL_PUT_ERROR(ECDSA, ECDSA_R_MISSING_PARAMETERS); |
152 | return 0; |
153 | } |
154 | |
155 | EC_SCALAR r, s, u1, u2, s_inv_mont, m; |
156 | if (BN_is_zero(sig->r) || |
157 | !ec_bignum_to_scalar(group, &r, sig->r) || |
158 | BN_is_zero(sig->s) || |
159 | !ec_bignum_to_scalar(group, &s, sig->s)) { |
160 | OPENSSL_PUT_ERROR(ECDSA, ECDSA_R_BAD_SIGNATURE); |
161 | return 0; |
162 | } |
163 | |
164 | // s_inv_mont = s^-1 in the Montgomery domain. This is |
165 | ec_scalar_inv_montgomery_vartime(group, &s_inv_mont, &s); |
166 | |
167 | // u1 = m * s^-1 mod order |
168 | // u2 = r * s^-1 mod order |
169 | // |
170 | // |s_inv_mont| is in Montgomery form while |m| and |r| are not, so |u1| and |
171 | // |u2| will be taken out of Montgomery form, as desired. |
172 | digest_to_scalar(group, &m, digest, digest_len); |
173 | ec_scalar_mul_montgomery(group, &u1, &m, &s_inv_mont); |
174 | ec_scalar_mul_montgomery(group, &u2, &r, &s_inv_mont); |
175 | |
176 | EC_RAW_POINT point; |
177 | if (!ec_point_mul_scalar_public(group, &point, &u1, &pub_key->raw, &u2)) { |
178 | OPENSSL_PUT_ERROR(ECDSA, ERR_R_EC_LIB); |
179 | return 0; |
180 | } |
181 | |
182 | if (!ec_cmp_x_coordinate(group, &point, &r)) { |
183 | OPENSSL_PUT_ERROR(ECDSA, ECDSA_R_BAD_SIGNATURE); |
184 | return 0; |
185 | } |
186 | |
187 | return 1; |
188 | } |
189 | |
190 | static int ecdsa_sign_setup(const EC_KEY *eckey, EC_SCALAR *out_kinv_mont, |
191 | EC_SCALAR *out_r, const uint8_t *digest, |
192 | size_t digest_len, const EC_SCALAR *priv_key) { |
193 | // Check that the size of the group order is FIPS compliant (FIPS 186-4 |
194 | // B.5.2). |
195 | const EC_GROUP *group = EC_KEY_get0_group(eckey); |
196 | const BIGNUM *order = EC_GROUP_get0_order(group); |
197 | if (BN_num_bits(order) < 160) { |
198 | OPENSSL_PUT_ERROR(ECDSA, EC_R_INVALID_GROUP_ORDER); |
199 | return 0; |
200 | } |
201 | |
202 | int ret = 0; |
203 | EC_SCALAR k; |
204 | EC_RAW_POINT tmp_point; |
205 | do { |
206 | // Include the private key and message digest in the k generation. |
207 | if (eckey->fixed_k != NULL) { |
208 | if (!ec_bignum_to_scalar(group, &k, eckey->fixed_k)) { |
209 | goto err; |
210 | } |
211 | } else { |
212 | // Pass a SHA512 hash of the private key and digest as additional data |
213 | // into the RBG. This is a hardening measure against entropy failure. |
214 | OPENSSL_STATIC_ASSERT(SHA512_DIGEST_LENGTH >= 32, |
215 | "additional_data is too large for SHA-512" ); |
216 | SHA512_CTX sha; |
217 | uint8_t additional_data[SHA512_DIGEST_LENGTH]; |
218 | SHA512_Init(&sha); |
219 | SHA512_Update(&sha, priv_key->words, order->width * sizeof(BN_ULONG)); |
220 | SHA512_Update(&sha, digest, digest_len); |
221 | SHA512_Final(additional_data, &sha); |
222 | if (!ec_random_nonzero_scalar(group, &k, additional_data)) { |
223 | goto err; |
224 | } |
225 | } |
226 | |
227 | // Compute k^-1 in the Montgomery domain. This is |ec_scalar_to_montgomery| |
228 | // followed by |ec_scalar_inv_montgomery|, but |ec_scalar_inv_montgomery| |
229 | // followed by |ec_scalar_from_montgomery| is equivalent and slightly more |
230 | // efficient. |
231 | ec_scalar_inv_montgomery(group, out_kinv_mont, &k); |
232 | ec_scalar_from_montgomery(group, out_kinv_mont, out_kinv_mont); |
233 | |
234 | // Compute r, the x-coordinate of generator * k. |
235 | if (!ec_point_mul_scalar_base(group, &tmp_point, &k) || |
236 | !ec_get_x_coordinate_as_scalar(group, out_r, &tmp_point)) { |
237 | goto err; |
238 | } |
239 | } while (ec_scalar_is_zero(group, out_r)); |
240 | |
241 | ret = 1; |
242 | |
243 | err: |
244 | OPENSSL_cleanse(&k, sizeof(k)); |
245 | return ret; |
246 | } |
247 | |
248 | ECDSA_SIG *ECDSA_do_sign(const uint8_t *digest, size_t digest_len, |
249 | const EC_KEY *eckey) { |
250 | if (eckey->ecdsa_meth && eckey->ecdsa_meth->sign) { |
251 | OPENSSL_PUT_ERROR(ECDSA, ECDSA_R_NOT_IMPLEMENTED); |
252 | return NULL; |
253 | } |
254 | |
255 | const EC_GROUP *group = EC_KEY_get0_group(eckey); |
256 | if (group == NULL || eckey->priv_key == NULL) { |
257 | OPENSSL_PUT_ERROR(ECDSA, ERR_R_PASSED_NULL_PARAMETER); |
258 | return NULL; |
259 | } |
260 | const BIGNUM *order = EC_GROUP_get0_order(group); |
261 | const EC_SCALAR *priv_key = &eckey->priv_key->scalar; |
262 | |
263 | int ok = 0; |
264 | ECDSA_SIG *ret = ECDSA_SIG_new(); |
265 | EC_SCALAR kinv_mont, r_mont, s, m, tmp; |
266 | if (ret == NULL) { |
267 | OPENSSL_PUT_ERROR(ECDSA, ERR_R_MALLOC_FAILURE); |
268 | return NULL; |
269 | } |
270 | |
271 | digest_to_scalar(group, &m, digest, digest_len); |
272 | for (;;) { |
273 | if (!ecdsa_sign_setup(eckey, &kinv_mont, &r_mont, digest, digest_len, |
274 | priv_key) || |
275 | !bn_set_words(ret->r, r_mont.words, order->width)) { |
276 | goto err; |
277 | } |
278 | |
279 | // Compute priv_key * r (mod order). Note if only one parameter is in the |
280 | // Montgomery domain, |ec_scalar_mod_mul_montgomery| will compute the answer |
281 | // in the normal domain. |
282 | ec_scalar_to_montgomery(group, &r_mont, &r_mont); |
283 | ec_scalar_mul_montgomery(group, &s, priv_key, &r_mont); |
284 | |
285 | // Compute tmp = m + priv_key * r. |
286 | ec_scalar_add(group, &tmp, &m, &s); |
287 | |
288 | // Finally, multiply s by k^-1. That was retained in Montgomery form, so the |
289 | // same technique as the previous multiplication works. |
290 | ec_scalar_mul_montgomery(group, &s, &tmp, &kinv_mont); |
291 | if (!bn_set_words(ret->s, s.words, order->width)) { |
292 | goto err; |
293 | } |
294 | if (!BN_is_zero(ret->s)) { |
295 | // s != 0 => we have a valid signature |
296 | break; |
297 | } |
298 | } |
299 | |
300 | ok = 1; |
301 | |
302 | err: |
303 | if (!ok) { |
304 | ECDSA_SIG_free(ret); |
305 | ret = NULL; |
306 | } |
307 | OPENSSL_cleanse(&kinv_mont, sizeof(kinv_mont)); |
308 | OPENSSL_cleanse(&r_mont, sizeof(r_mont)); |
309 | OPENSSL_cleanse(&s, sizeof(s)); |
310 | OPENSSL_cleanse(&tmp, sizeof(tmp)); |
311 | OPENSSL_cleanse(&m, sizeof(m)); |
312 | return ret; |
313 | } |
314 | |