1 | /**************************************************************************/ |
2 | /* delaunay_3d.h */ |
3 | /**************************************************************************/ |
4 | /* This file is part of: */ |
5 | /* GODOT ENGINE */ |
6 | /* https://godotengine.org */ |
7 | /**************************************************************************/ |
8 | /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */ |
9 | /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */ |
10 | /* */ |
11 | /* Permission is hereby granted, free of charge, to any person obtaining */ |
12 | /* a copy of this software and associated documentation files (the */ |
13 | /* "Software"), to deal in the Software without restriction, including */ |
14 | /* without limitation the rights to use, copy, modify, merge, publish, */ |
15 | /* distribute, sublicense, and/or sell copies of the Software, and to */ |
16 | /* permit persons to whom the Software is furnished to do so, subject to */ |
17 | /* the following conditions: */ |
18 | /* */ |
19 | /* The above copyright notice and this permission notice shall be */ |
20 | /* included in all copies or substantial portions of the Software. */ |
21 | /* */ |
22 | /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ |
23 | /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ |
24 | /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */ |
25 | /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ |
26 | /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ |
27 | /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ |
28 | /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ |
29 | /**************************************************************************/ |
30 | |
31 | #ifndef DELAUNAY_3D_H |
32 | #define DELAUNAY_3D_H |
33 | |
34 | #include "core/io/file_access.h" |
35 | #include "core/math/aabb.h" |
36 | #include "core/math/projection.h" |
37 | #include "core/math/vector3.h" |
38 | #include "core/templates/local_vector.h" |
39 | #include "core/templates/oa_hash_map.h" |
40 | #include "core/templates/vector.h" |
41 | #include "core/variant/variant.h" |
42 | |
43 | #include "thirdparty/misc/r128.h" |
44 | |
45 | class Delaunay3D { |
46 | struct Simplex; |
47 | |
48 | enum { |
49 | ACCEL_GRID_SIZE = 16 |
50 | }; |
51 | struct GridPos { |
52 | Vector3i pos; |
53 | List<Simplex *>::Element *E = nullptr; |
54 | }; |
55 | |
56 | struct Simplex { |
57 | uint32_t points[4]; |
58 | R128 circum_center_x; |
59 | R128 circum_center_y; |
60 | R128 circum_center_z; |
61 | R128 circum_r2; |
62 | LocalVector<GridPos> grid_positions; |
63 | List<Simplex *>::Element *SE = nullptr; |
64 | |
65 | _FORCE_INLINE_ Simplex() {} |
66 | _FORCE_INLINE_ Simplex(uint32_t p_a, uint32_t p_b, uint32_t p_c, uint32_t p_d) { |
67 | points[0] = p_a; |
68 | points[1] = p_b; |
69 | points[2] = p_c; |
70 | points[3] = p_d; |
71 | } |
72 | }; |
73 | |
74 | struct Triangle { |
75 | uint32_t triangle[3]; |
76 | bool bad = false; |
77 | _FORCE_INLINE_ bool operator==(const Triangle &p_triangle) const { |
78 | return triangle[0] == p_triangle.triangle[0] && triangle[1] == p_triangle.triangle[1] && triangle[2] == p_triangle.triangle[2]; |
79 | } |
80 | |
81 | _FORCE_INLINE_ Triangle() {} |
82 | _FORCE_INLINE_ Triangle(uint32_t p_a, uint32_t p_b, uint32_t p_c) { |
83 | if (p_a > p_b) { |
84 | SWAP(p_a, p_b); |
85 | } |
86 | if (p_b > p_c) { |
87 | SWAP(p_b, p_c); |
88 | } |
89 | if (p_a > p_b) { |
90 | SWAP(p_a, p_b); |
91 | } |
92 | |
93 | triangle[0] = p_a; |
94 | triangle[1] = p_b; |
95 | triangle[2] = p_c; |
96 | } |
97 | }; |
98 | |
99 | struct TriangleHasher { |
100 | _FORCE_INLINE_ static uint32_t hash(const Triangle &p_triangle) { |
101 | uint32_t h = hash_djb2_one_32(p_triangle.triangle[0]); |
102 | h = hash_djb2_one_32(p_triangle.triangle[1], h); |
103 | return hash_fmix32(hash_djb2_one_32(p_triangle.triangle[2], h)); |
104 | } |
105 | }; |
106 | |
107 | _FORCE_INLINE_ static void circum_sphere_compute(const Vector3 *p_points, Simplex *p_simplex) { |
108 | // The only part in the algorithm where there may be precision errors is this one, |
109 | // so ensure that we do it with the maximum precision possible. |
110 | |
111 | R128 v0_x = p_points[p_simplex->points[0]].x; |
112 | R128 v0_y = p_points[p_simplex->points[0]].y; |
113 | R128 v0_z = p_points[p_simplex->points[0]].z; |
114 | R128 v1_x = p_points[p_simplex->points[1]].x; |
115 | R128 v1_y = p_points[p_simplex->points[1]].y; |
116 | R128 v1_z = p_points[p_simplex->points[1]].z; |
117 | R128 v2_x = p_points[p_simplex->points[2]].x; |
118 | R128 v2_y = p_points[p_simplex->points[2]].y; |
119 | R128 v2_z = p_points[p_simplex->points[2]].z; |
120 | R128 v3_x = p_points[p_simplex->points[3]].x; |
121 | R128 v3_y = p_points[p_simplex->points[3]].y; |
122 | R128 v3_z = p_points[p_simplex->points[3]].z; |
123 | |
124 | // Create the rows of our "unrolled" 3x3 matrix. |
125 | R128 row1_x = v1_x - v0_x; |
126 | R128 row1_y = v1_y - v0_y; |
127 | R128 row1_z = v1_z - v0_z; |
128 | |
129 | R128 row2_x = v2_x - v0_x; |
130 | R128 row2_y = v2_y - v0_y; |
131 | R128 row2_z = v2_z - v0_z; |
132 | |
133 | R128 row3_x = v3_x - v0_x; |
134 | R128 row3_y = v3_y - v0_y; |
135 | R128 row3_z = v3_z - v0_z; |
136 | |
137 | R128 sq_lenght1 = row1_x * row1_x + row1_y * row1_y + row1_z * row1_z; |
138 | R128 sq_lenght2 = row2_x * row2_x + row2_y * row2_y + row2_z * row2_z; |
139 | R128 sq_lenght3 = row3_x * row3_x + row3_y * row3_y + row3_z * row3_z; |
140 | |
141 | // Compute the determinant of said matrix. |
142 | R128 determinant = row1_x * (row2_y * row3_z - row3_y * row2_z) - row2_x * (row1_y * row3_z - row3_y * row1_z) + row3_x * (row1_y * row2_z - row2_y * row1_z); |
143 | |
144 | // Compute the volume of the tetrahedron, and precompute a scalar quantity for reuse in the formula. |
145 | R128 volume = determinant / R128(6.f); |
146 | R128 i12volume = R128(1.f) / (volume * R128(12.f)); |
147 | |
148 | R128 center_x = v0_x + i12volume * ((row2_y * row3_z - row3_y * row2_z) * sq_lenght1 - (row1_y * row3_z - row3_y * row1_z) * sq_lenght2 + (row1_y * row2_z - row2_y * row1_z) * sq_lenght3); |
149 | R128 center_y = v0_y + i12volume * (-(row2_x * row3_z - row3_x * row2_z) * sq_lenght1 + (row1_x * row3_z - row3_x * row1_z) * sq_lenght2 - (row1_x * row2_z - row2_x * row1_z) * sq_lenght3); |
150 | R128 center_z = v0_z + i12volume * ((row2_x * row3_y - row3_x * row2_y) * sq_lenght1 - (row1_x * row3_y - row3_x * row1_y) * sq_lenght2 + (row1_x * row2_y - row2_x * row1_y) * sq_lenght3); |
151 | |
152 | // Once we know the center, the radius is clearly the distance to any vertex. |
153 | R128 rel1_x = center_x - v0_x; |
154 | R128 rel1_y = center_y - v0_y; |
155 | R128 rel1_z = center_z - v0_z; |
156 | |
157 | R128 radius1 = rel1_x * rel1_x + rel1_y * rel1_y + rel1_z * rel1_z; |
158 | |
159 | p_simplex->circum_center_x = center_x; |
160 | p_simplex->circum_center_y = center_y; |
161 | p_simplex->circum_center_z = center_z; |
162 | p_simplex->circum_r2 = radius1; |
163 | } |
164 | |
165 | _FORCE_INLINE_ static bool simplex_contains(const Vector3 *p_points, const Simplex &p_simplex, uint32_t p_vertex) { |
166 | R128 v_x = p_points[p_vertex].x; |
167 | R128 v_y = p_points[p_vertex].y; |
168 | R128 v_z = p_points[p_vertex].z; |
169 | |
170 | R128 rel2_x = p_simplex.circum_center_x - v_x; |
171 | R128 rel2_y = p_simplex.circum_center_y - v_y; |
172 | R128 rel2_z = p_simplex.circum_center_z - v_z; |
173 | |
174 | R128 radius2 = rel2_x * rel2_x + rel2_y * rel2_y + rel2_z * rel2_z; |
175 | |
176 | return radius2 < (p_simplex.circum_r2 - R128(0.00001)); |
177 | } |
178 | |
179 | static bool simplex_is_coplanar(const Vector3 *p_points, const Simplex &p_simplex) { |
180 | Plane p(p_points[p_simplex.points[0]], p_points[p_simplex.points[1]], p_points[p_simplex.points[2]]); |
181 | if (ABS(p.distance_to(p_points[p_simplex.points[3]])) < CMP_EPSILON) { |
182 | return true; |
183 | } |
184 | |
185 | Projection cm; |
186 | |
187 | cm.columns[0][0] = p_points[p_simplex.points[0]].x; |
188 | cm.columns[0][1] = p_points[p_simplex.points[1]].x; |
189 | cm.columns[0][2] = p_points[p_simplex.points[2]].x; |
190 | cm.columns[0][3] = p_points[p_simplex.points[3]].x; |
191 | |
192 | cm.columns[1][0] = p_points[p_simplex.points[0]].y; |
193 | cm.columns[1][1] = p_points[p_simplex.points[1]].y; |
194 | cm.columns[1][2] = p_points[p_simplex.points[2]].y; |
195 | cm.columns[1][3] = p_points[p_simplex.points[3]].y; |
196 | |
197 | cm.columns[2][0] = p_points[p_simplex.points[0]].z; |
198 | cm.columns[2][1] = p_points[p_simplex.points[1]].z; |
199 | cm.columns[2][2] = p_points[p_simplex.points[2]].z; |
200 | cm.columns[2][3] = p_points[p_simplex.points[3]].z; |
201 | |
202 | cm.columns[3][0] = 1.0; |
203 | cm.columns[3][1] = 1.0; |
204 | cm.columns[3][2] = 1.0; |
205 | cm.columns[3][3] = 1.0; |
206 | |
207 | return ABS(cm.determinant()) <= CMP_EPSILON; |
208 | } |
209 | |
210 | public: |
211 | struct OutputSimplex { |
212 | uint32_t points[4]; |
213 | }; |
214 | |
215 | static Vector<OutputSimplex> tetrahedralize(const Vector<Vector3> &p_points) { |
216 | uint32_t point_count = p_points.size(); |
217 | Vector3 *points = (Vector3 *)memalloc(sizeof(Vector3) * (point_count + 4)); |
218 | |
219 | { |
220 | const Vector3 *src_points = p_points.ptr(); |
221 | AABB rect; |
222 | for (uint32_t i = 0; i < point_count; i++) { |
223 | Vector3 point = src_points[i]; |
224 | if (i == 0) { |
225 | rect.position = point; |
226 | } else { |
227 | rect.expand_to(point); |
228 | } |
229 | points[i] = point; |
230 | } |
231 | |
232 | for (uint32_t i = 0; i < point_count; i++) { |
233 | points[i] = (points[i] - rect.position) / rect.size; |
234 | } |
235 | |
236 | float delta_max = Math::sqrt(2.0) * 20.0; |
237 | Vector3 center = Vector3(0.5, 0.5, 0.5); |
238 | |
239 | // any simplex that contains everything is good |
240 | points[point_count + 0] = center + Vector3(0, 1, 0) * delta_max; |
241 | points[point_count + 1] = center + Vector3(0, -1, 1) * delta_max; |
242 | points[point_count + 2] = center + Vector3(1, -1, -1) * delta_max; |
243 | points[point_count + 3] = center + Vector3(-1, -1, -1) * delta_max; |
244 | } |
245 | |
246 | List<Simplex *> acceleration_grid[ACCEL_GRID_SIZE][ACCEL_GRID_SIZE][ACCEL_GRID_SIZE]; |
247 | |
248 | List<Simplex *> simplex_list; |
249 | { |
250 | //create root simplex |
251 | Simplex *root = memnew(Simplex(point_count + 0, point_count + 1, point_count + 2, point_count + 3)); |
252 | root->SE = simplex_list.push_back(root); |
253 | |
254 | for (uint32_t i = 0; i < ACCEL_GRID_SIZE; i++) { |
255 | for (uint32_t j = 0; j < ACCEL_GRID_SIZE; j++) { |
256 | for (uint32_t k = 0; k < ACCEL_GRID_SIZE; k++) { |
257 | GridPos gp; |
258 | gp.E = acceleration_grid[i][j][k].push_back(root); |
259 | gp.pos = Vector3i(i, j, k); |
260 | root->grid_positions.push_back(gp); |
261 | } |
262 | } |
263 | } |
264 | |
265 | circum_sphere_compute(points, root); |
266 | } |
267 | |
268 | OAHashMap<Triangle, uint32_t, TriangleHasher> triangles_inserted; |
269 | LocalVector<Triangle> triangles; |
270 | |
271 | for (uint32_t i = 0; i < point_count; i++) { |
272 | bool unique = true; |
273 | for (uint32_t j = i + 1; j < point_count; j++) { |
274 | if (points[i].is_equal_approx(points[j])) { |
275 | unique = false; |
276 | break; |
277 | } |
278 | } |
279 | if (!unique) { |
280 | continue; |
281 | } |
282 | |
283 | Vector3i grid_pos = Vector3i(points[i] * ACCEL_GRID_SIZE); |
284 | grid_pos.x = CLAMP(grid_pos.x, 0, ACCEL_GRID_SIZE - 1); |
285 | grid_pos.y = CLAMP(grid_pos.y, 0, ACCEL_GRID_SIZE - 1); |
286 | grid_pos.z = CLAMP(grid_pos.z, 0, ACCEL_GRID_SIZE - 1); |
287 | |
288 | for (List<Simplex *>::Element *E = acceleration_grid[grid_pos.x][grid_pos.y][grid_pos.z].front(); E;) { |
289 | List<Simplex *>::Element *N = E->next(); //may be deleted |
290 | |
291 | Simplex *simplex = E->get(); |
292 | |
293 | if (simplex_contains(points, *simplex, i)) { |
294 | static const uint32_t triangle_order[4][3] = { |
295 | { 0, 1, 2 }, |
296 | { 0, 1, 3 }, |
297 | { 0, 2, 3 }, |
298 | { 1, 2, 3 }, |
299 | }; |
300 | |
301 | for (uint32_t k = 0; k < 4; k++) { |
302 | Triangle t = Triangle(simplex->points[triangle_order[k][0]], simplex->points[triangle_order[k][1]], simplex->points[triangle_order[k][2]]); |
303 | uint32_t *p = triangles_inserted.lookup_ptr(t); |
304 | if (p) { |
305 | triangles[*p].bad = true; |
306 | } else { |
307 | triangles_inserted.insert(t, triangles.size()); |
308 | triangles.push_back(t); |
309 | } |
310 | } |
311 | |
312 | //remove simplex and continue |
313 | simplex_list.erase(simplex->SE); |
314 | |
315 | for (const GridPos &gp : simplex->grid_positions) { |
316 | Vector3i p = gp.pos; |
317 | acceleration_grid[p.x][p.y][p.z].erase(gp.E); |
318 | } |
319 | memdelete(simplex); |
320 | } |
321 | E = N; |
322 | } |
323 | |
324 | for (const Triangle &triangle : triangles) { |
325 | if (triangle.bad) { |
326 | continue; |
327 | } |
328 | Simplex *new_simplex = memnew(Simplex(triangle.triangle[0], triangle.triangle[1], triangle.triangle[2], i)); |
329 | circum_sphere_compute(points, new_simplex); |
330 | new_simplex->SE = simplex_list.push_back(new_simplex); |
331 | { |
332 | Vector3 center; |
333 | center.x = double(new_simplex->circum_center_x); |
334 | center.y = double(new_simplex->circum_center_y); |
335 | center.z = double(new_simplex->circum_center_z); |
336 | |
337 | float radius2 = Math::sqrt(double(new_simplex->circum_r2)); |
338 | radius2 += 0.0001; // |
339 | Vector3 extents = Vector3(radius2, radius2, radius2); |
340 | Vector3i from = Vector3i((center - extents) * ACCEL_GRID_SIZE); |
341 | Vector3i to = Vector3i((center + extents) * ACCEL_GRID_SIZE); |
342 | from.x = CLAMP(from.x, 0, ACCEL_GRID_SIZE - 1); |
343 | from.y = CLAMP(from.y, 0, ACCEL_GRID_SIZE - 1); |
344 | from.z = CLAMP(from.z, 0, ACCEL_GRID_SIZE - 1); |
345 | to.x = CLAMP(to.x, 0, ACCEL_GRID_SIZE - 1); |
346 | to.y = CLAMP(to.y, 0, ACCEL_GRID_SIZE - 1); |
347 | to.z = CLAMP(to.z, 0, ACCEL_GRID_SIZE - 1); |
348 | |
349 | for (int32_t x = from.x; x <= to.x; x++) { |
350 | for (int32_t y = from.y; y <= to.y; y++) { |
351 | for (int32_t z = from.z; z <= to.z; z++) { |
352 | GridPos gp; |
353 | gp.pos = Vector3(x, y, z); |
354 | gp.E = acceleration_grid[x][y][z].push_back(new_simplex); |
355 | new_simplex->grid_positions.push_back(gp); |
356 | } |
357 | } |
358 | } |
359 | } |
360 | } |
361 | |
362 | triangles.clear(); |
363 | triangles_inserted.clear(); |
364 | } |
365 | |
366 | //print_line("end with simplices: " + itos(simplex_list.size())); |
367 | Vector<OutputSimplex> ret_simplices; |
368 | ret_simplices.resize(simplex_list.size()); |
369 | OutputSimplex *ret_simplicesw = ret_simplices.ptrw(); |
370 | uint32_t simplices_written = 0; |
371 | |
372 | for (Simplex *simplex : simplex_list) { |
373 | bool invalid = false; |
374 | for (int j = 0; j < 4; j++) { |
375 | if (simplex->points[j] >= point_count) { |
376 | invalid = true; |
377 | break; |
378 | } |
379 | } |
380 | if (invalid || simplex_is_coplanar(points, *simplex)) { |
381 | memdelete(simplex); |
382 | continue; |
383 | } |
384 | |
385 | ret_simplicesw[simplices_written].points[0] = simplex->points[0]; |
386 | ret_simplicesw[simplices_written].points[1] = simplex->points[1]; |
387 | ret_simplicesw[simplices_written].points[2] = simplex->points[2]; |
388 | ret_simplicesw[simplices_written].points[3] = simplex->points[3]; |
389 | simplices_written++; |
390 | memdelete(simplex); |
391 | } |
392 | |
393 | ret_simplices.resize(simplices_written); |
394 | |
395 | memfree(points); |
396 | |
397 | return ret_simplices; |
398 | } |
399 | }; |
400 | |
401 | #endif // DELAUNAY_3D_H |
402 | |