| 1 | /**************************************************************************/ |
| 2 | /* lightmap_gi.cpp */ |
| 3 | /**************************************************************************/ |
| 4 | /* This file is part of: */ |
| 5 | /* GODOT ENGINE */ |
| 6 | /* https://godotengine.org */ |
| 7 | /**************************************************************************/ |
| 8 | /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */ |
| 9 | /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */ |
| 10 | /* */ |
| 11 | /* Permission is hereby granted, free of charge, to any person obtaining */ |
| 12 | /* a copy of this software and associated documentation files (the */ |
| 13 | /* "Software"), to deal in the Software without restriction, including */ |
| 14 | /* without limitation the rights to use, copy, modify, merge, publish, */ |
| 15 | /* distribute, sublicense, and/or sell copies of the Software, and to */ |
| 16 | /* permit persons to whom the Software is furnished to do so, subject to */ |
| 17 | /* the following conditions: */ |
| 18 | /* */ |
| 19 | /* The above copyright notice and this permission notice shall be */ |
| 20 | /* included in all copies or substantial portions of the Software. */ |
| 21 | /* */ |
| 22 | /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ |
| 23 | /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ |
| 24 | /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */ |
| 25 | /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ |
| 26 | /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ |
| 27 | /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ |
| 28 | /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ |
| 29 | /**************************************************************************/ |
| 30 | |
| 31 | #include "lightmap_gi.h" |
| 32 | |
| 33 | #include "core/config/project_settings.h" |
| 34 | #include "core/io/config_file.h" |
| 35 | #include "core/math/delaunay_3d.h" |
| 36 | #include "lightmap_probe.h" |
| 37 | #include "scene/3d/mesh_instance_3d.h" |
| 38 | #include "scene/resources/camera_attributes.h" |
| 39 | #include "scene/resources/environment.h" |
| 40 | #include "scene/resources/image_texture.h" |
| 41 | #include "scene/resources/sky.h" |
| 42 | |
| 43 | void LightmapGIData::add_user(const NodePath &p_path, const Rect2 &p_uv_scale, int p_slice_index, int32_t p_sub_instance) { |
| 44 | User user; |
| 45 | user.path = p_path; |
| 46 | user.uv_scale = p_uv_scale; |
| 47 | user.slice_index = p_slice_index; |
| 48 | user.sub_instance = p_sub_instance; |
| 49 | users.push_back(user); |
| 50 | } |
| 51 | |
| 52 | int LightmapGIData::get_user_count() const { |
| 53 | return users.size(); |
| 54 | } |
| 55 | |
| 56 | NodePath LightmapGIData::get_user_path(int p_user) const { |
| 57 | ERR_FAIL_INDEX_V(p_user, users.size(), NodePath()); |
| 58 | return users[p_user].path; |
| 59 | } |
| 60 | |
| 61 | int32_t LightmapGIData::get_user_sub_instance(int p_user) const { |
| 62 | ERR_FAIL_INDEX_V(p_user, users.size(), -1); |
| 63 | return users[p_user].sub_instance; |
| 64 | } |
| 65 | |
| 66 | Rect2 LightmapGIData::get_user_lightmap_uv_scale(int p_user) const { |
| 67 | ERR_FAIL_INDEX_V(p_user, users.size(), Rect2()); |
| 68 | return users[p_user].uv_scale; |
| 69 | } |
| 70 | |
| 71 | int LightmapGIData::get_user_lightmap_slice_index(int p_user) const { |
| 72 | ERR_FAIL_INDEX_V(p_user, users.size(), -1); |
| 73 | return users[p_user].slice_index; |
| 74 | } |
| 75 | |
| 76 | void LightmapGIData::clear_users() { |
| 77 | users.clear(); |
| 78 | } |
| 79 | |
| 80 | void LightmapGIData::_set_user_data(const Array &p_data) { |
| 81 | ERR_FAIL_COND(p_data.is_empty()); |
| 82 | ERR_FAIL_COND((p_data.size() % 4) != 0); |
| 83 | |
| 84 | for (int i = 0; i < p_data.size(); i += 4) { |
| 85 | add_user(p_data[i + 0], p_data[i + 1], p_data[i + 2], p_data[i + 3]); |
| 86 | } |
| 87 | } |
| 88 | |
| 89 | Array LightmapGIData::_get_user_data() const { |
| 90 | Array ret; |
| 91 | for (int i = 0; i < users.size(); i++) { |
| 92 | ret.push_back(users[i].path); |
| 93 | ret.push_back(users[i].uv_scale); |
| 94 | ret.push_back(users[i].slice_index); |
| 95 | ret.push_back(users[i].sub_instance); |
| 96 | } |
| 97 | return ret; |
| 98 | } |
| 99 | |
| 100 | void LightmapGIData::_set_light_textures_data(const Array &p_data) { |
| 101 | ERR_FAIL_COND(p_data.is_empty()); |
| 102 | |
| 103 | if (p_data.size() == 1) { |
| 104 | set_light_texture(p_data[0]); |
| 105 | } else { |
| 106 | Vector<Ref<Image>> images; |
| 107 | for (int i = 0; i < p_data.size(); i++) { |
| 108 | Ref<TextureLayered> texture = p_data[i]; |
| 109 | ERR_FAIL_COND_MSG(texture.is_null(), vformat("Invalid TextureLayered at index %d." , i)); |
| 110 | for (int j = 0; j < texture->get_layers(); j++) { |
| 111 | images.push_back(texture->get_layer_data(j)); |
| 112 | } |
| 113 | } |
| 114 | |
| 115 | Ref<Texture2DArray> combined_texture; |
| 116 | combined_texture.instantiate(); |
| 117 | |
| 118 | combined_texture->create_from_images(images); |
| 119 | set_light_texture(combined_texture); |
| 120 | } |
| 121 | } |
| 122 | |
| 123 | Array LightmapGIData::_get_light_textures_data() const { |
| 124 | Array ret; |
| 125 | if (light_texture.is_null() || light_texture->get_layers() == 0) { |
| 126 | return ret; |
| 127 | } |
| 128 | |
| 129 | Vector<Ref<Image>> images; |
| 130 | for (int i = 0; i < light_texture->get_layers(); i++) { |
| 131 | images.push_back(light_texture->get_layer_data(i)); |
| 132 | } |
| 133 | |
| 134 | int slice_count = images.size(); |
| 135 | int slice_width = images[0]->get_width(); |
| 136 | int slice_height = images[0]->get_height(); |
| 137 | |
| 138 | int slices_per_texture = Image::MAX_HEIGHT / slice_height; |
| 139 | int texture_count = Math::ceil(slice_count / (float)slices_per_texture); |
| 140 | |
| 141 | ret.resize(texture_count); |
| 142 | |
| 143 | String base_name = get_path().get_basename(); |
| 144 | |
| 145 | int last_count = slice_count % slices_per_texture; |
| 146 | for (int i = 0; i < texture_count; i++) { |
| 147 | int texture_slice_count = (i == texture_count - 1 && last_count != 0) ? last_count : slices_per_texture; |
| 148 | |
| 149 | Ref<Image> texture_image = Image::create_empty(slice_width, slice_height * texture_slice_count, false, images[0]->get_format()); |
| 150 | |
| 151 | for (int j = 0; j < texture_slice_count; j++) { |
| 152 | texture_image->blit_rect(images[i * slices_per_texture + j], Rect2i(0, 0, slice_width, slice_height), Point2i(0, slice_height * j)); |
| 153 | } |
| 154 | |
| 155 | String texture_path = texture_count > 1 ? base_name + "_" + itos(i) + ".exr" : base_name + ".exr" ; |
| 156 | |
| 157 | Ref<ConfigFile> config; |
| 158 | config.instantiate(); |
| 159 | |
| 160 | if (FileAccess::exists(texture_path + ".import" )) { |
| 161 | config->load(texture_path + ".import" ); |
| 162 | } |
| 163 | |
| 164 | config->set_value("remap" , "importer" , "2d_array_texture" ); |
| 165 | config->set_value("remap" , "type" , "CompressedTexture2DArray" ); |
| 166 | if (!config->has_section_key("params" , "compress/mode" )) { |
| 167 | // User may want another compression, so leave it be, but default to VRAM uncompressed. |
| 168 | config->set_value("params" , "compress/mode" , 3); |
| 169 | } |
| 170 | config->set_value("params" , "compress/channel_pack" , 1); |
| 171 | config->set_value("params" , "mipmaps/generate" , false); |
| 172 | config->set_value("params" , "slices/horizontal" , 1); |
| 173 | config->set_value("params" , "slices/vertical" , texture_slice_count); |
| 174 | |
| 175 | config->save(texture_path + ".import" ); |
| 176 | |
| 177 | Error err = texture_image->save_exr(texture_path, false); |
| 178 | ERR_FAIL_COND_V(err, ret); |
| 179 | ResourceLoader::import(texture_path); |
| 180 | Ref<TextureLayered> t = ResourceLoader::load(texture_path); //if already loaded, it will be updated on refocus? |
| 181 | ERR_FAIL_COND_V(t.is_null(), ret); |
| 182 | ret[i] = t; |
| 183 | } |
| 184 | |
| 185 | return ret; |
| 186 | } |
| 187 | |
| 188 | RID LightmapGIData::get_rid() const { |
| 189 | return lightmap; |
| 190 | } |
| 191 | |
| 192 | void LightmapGIData::clear() { |
| 193 | users.clear(); |
| 194 | } |
| 195 | |
| 196 | void LightmapGIData::set_light_texture(const Ref<TextureLayered> &p_light_texture) { |
| 197 | light_texture = p_light_texture; |
| 198 | RS::get_singleton()->lightmap_set_textures(lightmap, light_texture.is_valid() ? light_texture->get_rid() : RID(), uses_spherical_harmonics); |
| 199 | } |
| 200 | |
| 201 | Ref<TextureLayered> LightmapGIData::get_light_texture() const { |
| 202 | return light_texture; |
| 203 | } |
| 204 | |
| 205 | void LightmapGIData::set_uses_spherical_harmonics(bool p_enable) { |
| 206 | uses_spherical_harmonics = p_enable; |
| 207 | RS::get_singleton()->lightmap_set_textures(lightmap, light_texture.is_valid() ? light_texture->get_rid() : RID(), uses_spherical_harmonics); |
| 208 | } |
| 209 | |
| 210 | bool LightmapGIData::is_using_spherical_harmonics() const { |
| 211 | return uses_spherical_harmonics; |
| 212 | } |
| 213 | |
| 214 | void LightmapGIData::set_capture_data(const AABB &p_bounds, bool p_interior, const PackedVector3Array &p_points, const PackedColorArray &p_point_sh, const PackedInt32Array &p_tetrahedra, const PackedInt32Array &p_bsp_tree, float p_baked_exposure) { |
| 215 | if (p_points.size()) { |
| 216 | int pc = p_points.size(); |
| 217 | ERR_FAIL_COND(pc * 9 != p_point_sh.size()); |
| 218 | ERR_FAIL_COND((p_tetrahedra.size() % 4) != 0); |
| 219 | ERR_FAIL_COND((p_bsp_tree.size() % 6) != 0); |
| 220 | RS::get_singleton()->lightmap_set_probe_capture_data(lightmap, p_points, p_point_sh, p_tetrahedra, p_bsp_tree); |
| 221 | RS::get_singleton()->lightmap_set_probe_bounds(lightmap, p_bounds); |
| 222 | RS::get_singleton()->lightmap_set_probe_interior(lightmap, p_interior); |
| 223 | } else { |
| 224 | RS::get_singleton()->lightmap_set_probe_capture_data(lightmap, PackedVector3Array(), PackedColorArray(), PackedInt32Array(), PackedInt32Array()); |
| 225 | RS::get_singleton()->lightmap_set_probe_bounds(lightmap, AABB()); |
| 226 | RS::get_singleton()->lightmap_set_probe_interior(lightmap, false); |
| 227 | } |
| 228 | RS::get_singleton()->lightmap_set_baked_exposure_normalization(lightmap, p_baked_exposure); |
| 229 | baked_exposure = p_baked_exposure; |
| 230 | interior = p_interior; |
| 231 | bounds = p_bounds; |
| 232 | } |
| 233 | |
| 234 | PackedVector3Array LightmapGIData::get_capture_points() const { |
| 235 | return RS::get_singleton()->lightmap_get_probe_capture_points(lightmap); |
| 236 | } |
| 237 | |
| 238 | PackedColorArray LightmapGIData::get_capture_sh() const { |
| 239 | return RS::get_singleton()->lightmap_get_probe_capture_sh(lightmap); |
| 240 | } |
| 241 | |
| 242 | PackedInt32Array LightmapGIData::get_capture_tetrahedra() const { |
| 243 | return RS::get_singleton()->lightmap_get_probe_capture_tetrahedra(lightmap); |
| 244 | } |
| 245 | |
| 246 | PackedInt32Array LightmapGIData::get_capture_bsp_tree() const { |
| 247 | return RS::get_singleton()->lightmap_get_probe_capture_bsp_tree(lightmap); |
| 248 | } |
| 249 | |
| 250 | AABB LightmapGIData::get_capture_bounds() const { |
| 251 | return bounds; |
| 252 | } |
| 253 | |
| 254 | bool LightmapGIData::is_interior() const { |
| 255 | return interior; |
| 256 | } |
| 257 | |
| 258 | float LightmapGIData::get_baked_exposure() const { |
| 259 | return baked_exposure; |
| 260 | } |
| 261 | |
| 262 | void LightmapGIData::_set_probe_data(const Dictionary &p_data) { |
| 263 | ERR_FAIL_COND(!p_data.has("bounds" )); |
| 264 | ERR_FAIL_COND(!p_data.has("points" )); |
| 265 | ERR_FAIL_COND(!p_data.has("tetrahedra" )); |
| 266 | ERR_FAIL_COND(!p_data.has("bsp" )); |
| 267 | ERR_FAIL_COND(!p_data.has("sh" )); |
| 268 | ERR_FAIL_COND(!p_data.has("interior" )); |
| 269 | ERR_FAIL_COND(!p_data.has("baked_exposure" )); |
| 270 | set_capture_data(p_data["bounds" ], p_data["interior" ], p_data["points" ], p_data["sh" ], p_data["tetrahedra" ], p_data["bsp" ], p_data["baked_exposure" ]); |
| 271 | } |
| 272 | |
| 273 | Dictionary LightmapGIData::_get_probe_data() const { |
| 274 | Dictionary d; |
| 275 | d["bounds" ] = get_capture_bounds(); |
| 276 | d["points" ] = get_capture_points(); |
| 277 | d["tetrahedra" ] = get_capture_tetrahedra(); |
| 278 | d["bsp" ] = get_capture_bsp_tree(); |
| 279 | d["sh" ] = get_capture_sh(); |
| 280 | d["interior" ] = is_interior(); |
| 281 | d["baked_exposure" ] = get_baked_exposure(); |
| 282 | return d; |
| 283 | } |
| 284 | |
| 285 | void LightmapGIData::_bind_methods() { |
| 286 | ClassDB::bind_method(D_METHOD("_set_user_data" , "data" ), &LightmapGIData::_set_user_data); |
| 287 | ClassDB::bind_method(D_METHOD("_get_user_data" ), &LightmapGIData::_get_user_data); |
| 288 | |
| 289 | ClassDB::bind_method(D_METHOD("set_light_texture" , "light_texture" ), &LightmapGIData::set_light_texture); |
| 290 | ClassDB::bind_method(D_METHOD("get_light_texture" ), &LightmapGIData::get_light_texture); |
| 291 | |
| 292 | ClassDB::bind_method(D_METHOD("_set_light_textures_data" , "data" ), &LightmapGIData::_set_light_textures_data); |
| 293 | ClassDB::bind_method(D_METHOD("_get_light_textures_data" ), &LightmapGIData::_get_light_textures_data); |
| 294 | |
| 295 | ClassDB::bind_method(D_METHOD("set_uses_spherical_harmonics" , "uses_spherical_harmonics" ), &LightmapGIData::set_uses_spherical_harmonics); |
| 296 | ClassDB::bind_method(D_METHOD("is_using_spherical_harmonics" ), &LightmapGIData::is_using_spherical_harmonics); |
| 297 | |
| 298 | ClassDB::bind_method(D_METHOD("add_user" , "path" , "uv_scale" , "slice_index" , "sub_instance" ), &LightmapGIData::add_user); |
| 299 | ClassDB::bind_method(D_METHOD("get_user_count" ), &LightmapGIData::get_user_count); |
| 300 | ClassDB::bind_method(D_METHOD("get_user_path" , "user_idx" ), &LightmapGIData::get_user_path); |
| 301 | ClassDB::bind_method(D_METHOD("clear_users" ), &LightmapGIData::clear_users); |
| 302 | |
| 303 | ClassDB::bind_method(D_METHOD("_set_probe_data" , "data" ), &LightmapGIData::_set_probe_data); |
| 304 | ClassDB::bind_method(D_METHOD("_get_probe_data" ), &LightmapGIData::_get_probe_data); |
| 305 | |
| 306 | ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "light_texture" , PROPERTY_HINT_RESOURCE_TYPE, "TextureLayered" , PROPERTY_USAGE_EDITOR), "set_light_texture" , "get_light_texture" ); // property usage default but no save |
| 307 | ADD_PROPERTY(PropertyInfo(Variant::ARRAY, "light_textures" , PROPERTY_HINT_NONE, "" , PROPERTY_USAGE_NO_EDITOR | PROPERTY_USAGE_INTERNAL), "_set_light_textures_data" , "_get_light_textures_data" ); |
| 308 | ADD_PROPERTY(PropertyInfo(Variant::BOOL, "uses_spherical_harmonics" , PROPERTY_HINT_NONE, "" , PROPERTY_USAGE_NO_EDITOR | PROPERTY_USAGE_INTERNAL), "set_uses_spherical_harmonics" , "is_using_spherical_harmonics" ); |
| 309 | ADD_PROPERTY(PropertyInfo(Variant::ARRAY, "user_data" , PROPERTY_HINT_NONE, "" , PROPERTY_USAGE_NO_EDITOR | PROPERTY_USAGE_INTERNAL), "_set_user_data" , "_get_user_data" ); |
| 310 | ADD_PROPERTY(PropertyInfo(Variant::DICTIONARY, "probe_data" , PROPERTY_HINT_NONE, "" , PROPERTY_USAGE_NO_EDITOR | PROPERTY_USAGE_INTERNAL), "_set_probe_data" , "_get_probe_data" ); |
| 311 | } |
| 312 | |
| 313 | LightmapGIData::LightmapGIData() { |
| 314 | lightmap = RS::get_singleton()->lightmap_create(); |
| 315 | } |
| 316 | |
| 317 | LightmapGIData::~LightmapGIData() { |
| 318 | ERR_FAIL_NULL(RenderingServer::get_singleton()); |
| 319 | RS::get_singleton()->free(lightmap); |
| 320 | } |
| 321 | |
| 322 | /////////////////////////// |
| 323 | |
| 324 | void LightmapGI::_find_meshes_and_lights(Node *p_at_node, Vector<MeshesFound> &meshes, Vector<LightsFound> &lights, Vector<Vector3> &probes) { |
| 325 | MeshInstance3D *mi = Object::cast_to<MeshInstance3D>(p_at_node); |
| 326 | if (mi && mi->get_gi_mode() == GeometryInstance3D::GI_MODE_STATIC && mi->is_visible_in_tree()) { |
| 327 | Ref<Mesh> mesh = mi->get_mesh(); |
| 328 | if (mesh.is_valid()) { |
| 329 | bool all_have_uv2_and_normal = true; |
| 330 | bool surfaces_found = false; |
| 331 | for (int i = 0; i < mesh->get_surface_count(); i++) { |
| 332 | if (mesh->surface_get_primitive_type(i) != Mesh::PRIMITIVE_TRIANGLES) { |
| 333 | continue; |
| 334 | } |
| 335 | if (!(mesh->surface_get_format(i) & Mesh::ARRAY_FORMAT_TEX_UV2)) { |
| 336 | all_have_uv2_and_normal = false; |
| 337 | break; |
| 338 | } |
| 339 | if (!(mesh->surface_get_format(i) & Mesh::ARRAY_FORMAT_NORMAL)) { |
| 340 | all_have_uv2_and_normal = false; |
| 341 | break; |
| 342 | } |
| 343 | surfaces_found = true; |
| 344 | } |
| 345 | |
| 346 | if (surfaces_found && all_have_uv2_and_normal) { |
| 347 | //READY TO BAKE! size hint could be computed if not found, actually.. |
| 348 | |
| 349 | MeshesFound mf; |
| 350 | mf.xform = get_global_transform().affine_inverse() * mi->get_global_transform(); |
| 351 | mf.node_path = get_path_to(mi); |
| 352 | mf.subindex = -1; |
| 353 | mf.mesh = mesh; |
| 354 | |
| 355 | static const int lightmap_scale[GeometryInstance3D::LIGHTMAP_SCALE_MAX] = { 1, 2, 4, 8 }; |
| 356 | mf.lightmap_scale = lightmap_scale[mi->get_lightmap_scale()]; |
| 357 | |
| 358 | Ref<Material> all_override = mi->get_material_override(); |
| 359 | for (int i = 0; i < mesh->get_surface_count(); i++) { |
| 360 | if (all_override.is_valid()) { |
| 361 | mf.overrides.push_back(all_override); |
| 362 | } else { |
| 363 | mf.overrides.push_back(mi->get_surface_override_material(i)); |
| 364 | } |
| 365 | } |
| 366 | |
| 367 | meshes.push_back(mf); |
| 368 | } |
| 369 | } |
| 370 | } |
| 371 | |
| 372 | Node3D *s = Object::cast_to<Node3D>(p_at_node); |
| 373 | |
| 374 | if (!mi && s) { |
| 375 | Array bmeshes = p_at_node->call("get_bake_bmeshes" ); |
| 376 | if (bmeshes.size() && (bmeshes.size() & 1) == 0) { |
| 377 | Transform3D xf = get_global_transform().affine_inverse() * s->get_global_transform(); |
| 378 | for (int i = 0; i < bmeshes.size(); i += 2) { |
| 379 | Ref<Mesh> mesh = bmeshes[i]; |
| 380 | if (!mesh.is_valid()) { |
| 381 | continue; |
| 382 | } |
| 383 | |
| 384 | MeshesFound mf; |
| 385 | |
| 386 | Transform3D mesh_xf = bmeshes[i + 1]; |
| 387 | mf.xform = xf * mesh_xf; |
| 388 | mf.node_path = get_path_to(s); |
| 389 | mf.subindex = i / 2; |
| 390 | mf.lightmap_scale = 1; |
| 391 | mf.mesh = mesh; |
| 392 | |
| 393 | meshes.push_back(mf); |
| 394 | } |
| 395 | } |
| 396 | } |
| 397 | |
| 398 | Light3D *light = Object::cast_to<Light3D>(p_at_node); |
| 399 | |
| 400 | if (light && light->get_bake_mode() != Light3D::BAKE_DISABLED) { |
| 401 | LightsFound lf; |
| 402 | lf.xform = get_global_transform().affine_inverse() * light->get_global_transform(); |
| 403 | lf.light = light; |
| 404 | lights.push_back(lf); |
| 405 | } |
| 406 | |
| 407 | LightmapProbe *probe = Object::cast_to<LightmapProbe>(p_at_node); |
| 408 | |
| 409 | if (probe) { |
| 410 | Transform3D xf = get_global_transform().affine_inverse() * probe->get_global_transform(); |
| 411 | probes.push_back(xf.origin); |
| 412 | } |
| 413 | |
| 414 | for (int i = 0; i < p_at_node->get_child_count(); i++) { |
| 415 | Node *child = p_at_node->get_child(i); |
| 416 | if (!child->get_owner()) { |
| 417 | continue; //maybe a helper |
| 418 | } |
| 419 | |
| 420 | _find_meshes_and_lights(child, meshes, lights, probes); |
| 421 | } |
| 422 | } |
| 423 | |
| 424 | int LightmapGI::_bsp_get_simplex_side(const Vector<Vector3> &p_points, const LocalVector<BSPSimplex> &p_simplices, const Plane &p_plane, uint32_t p_simplex) const { |
| 425 | int over = 0; |
| 426 | int under = 0; |
| 427 | const BSPSimplex &s = p_simplices[p_simplex]; |
| 428 | for (int i = 0; i < 4; i++) { |
| 429 | const Vector3 v = p_points[s.vertices[i]]; |
| 430 | if (p_plane.has_point(v)) { |
| 431 | // Coplanar. |
| 432 | } else if (p_plane.is_point_over(v)) { |
| 433 | over++; |
| 434 | } else { |
| 435 | under++; |
| 436 | } |
| 437 | } |
| 438 | |
| 439 | ERR_FAIL_COND_V(under == 0 && over == 0, -2); //should never happen, we discarded flat simplices before, but in any case drop it from the bsp tree and throw an error |
| 440 | if (under == 0) { |
| 441 | return 1; // all over |
| 442 | } else if (over == 0) { |
| 443 | return -1; // all under |
| 444 | } else { |
| 445 | return 0; // crossing |
| 446 | } |
| 447 | } |
| 448 | |
| 449 | //#define DEBUG_BSP |
| 450 | |
| 451 | int32_t LightmapGI::_compute_bsp_tree(const Vector<Vector3> &p_points, const LocalVector<Plane> &p_planes, LocalVector<int32_t> &planes_tested, const LocalVector<BSPSimplex> &p_simplices, const LocalVector<int32_t> &p_simplex_indices, LocalVector<BSPNode> &bsp_nodes) { |
| 452 | //if we reach here, it means there is more than one simplex |
| 453 | int32_t node_index = (int32_t)bsp_nodes.size(); |
| 454 | bsp_nodes.push_back(BSPNode()); |
| 455 | |
| 456 | //test with all the simplex planes |
| 457 | Plane best_plane; |
| 458 | float best_plane_score = -1.0; |
| 459 | |
| 460 | for (const int idx : p_simplex_indices) { |
| 461 | const BSPSimplex &s = p_simplices[idx]; |
| 462 | for (int j = 0; j < 4; j++) { |
| 463 | uint32_t plane_index = s.planes[j]; |
| 464 | if (planes_tested[plane_index] == node_index) { |
| 465 | continue; //tested this plane already |
| 466 | } |
| 467 | |
| 468 | planes_tested[plane_index] = node_index; |
| 469 | |
| 470 | static const int face_order[4][3] = { |
| 471 | { 0, 1, 2 }, |
| 472 | { 0, 2, 3 }, |
| 473 | { 0, 1, 3 }, |
| 474 | { 1, 2, 3 } |
| 475 | }; |
| 476 | |
| 477 | // despite getting rid of plane duplicates, we should still use here the actual plane to avoid numerical error |
| 478 | // from thinking this same simplex is intersecting rather than on a side |
| 479 | Vector3 v0 = p_points[s.vertices[face_order[j][0]]]; |
| 480 | Vector3 v1 = p_points[s.vertices[face_order[j][1]]]; |
| 481 | Vector3 v2 = p_points[s.vertices[face_order[j][2]]]; |
| 482 | |
| 483 | Plane plane(v0, v1, v2); |
| 484 | |
| 485 | //test with all the simplices |
| 486 | int over_count = 0; |
| 487 | int under_count = 0; |
| 488 | |
| 489 | for (const int &index : p_simplex_indices) { |
| 490 | int side = _bsp_get_simplex_side(p_points, p_simplices, plane, index); |
| 491 | if (side == -2) { |
| 492 | continue; //this simplex is invalid, skip for now |
| 493 | } else if (side < 0) { |
| 494 | under_count++; |
| 495 | } else if (side > 0) { |
| 496 | over_count++; |
| 497 | } |
| 498 | } |
| 499 | |
| 500 | if (under_count == 0 && over_count == 0) { |
| 501 | continue; //most likely precision issue with a flat simplex, do not try this plane |
| 502 | } |
| 503 | |
| 504 | if (under_count > over_count) { //make sure under is always less than over, so we can compute the same ratio |
| 505 | SWAP(under_count, over_count); |
| 506 | } |
| 507 | |
| 508 | float score = 0; //by default, score is 0 (worst) |
| 509 | if (over_count > 0) { |
| 510 | //give score mainly based on ratio (under / over), this means that this plane is splitting simplices a lot, but its balanced |
| 511 | score = float(under_count) / over_count; |
| 512 | } |
| 513 | |
| 514 | //adjusting priority over least splits, probably not a great idea |
| 515 | //score *= Math::sqrt(float(over_count + under_count) / p_simplex_indices.size()); //also multiply score |
| 516 | |
| 517 | if (score > best_plane_score) { |
| 518 | best_plane = plane; |
| 519 | best_plane_score = score; |
| 520 | } |
| 521 | } |
| 522 | } |
| 523 | |
| 524 | LocalVector<int32_t> indices_over; |
| 525 | LocalVector<int32_t> indices_under; |
| 526 | |
| 527 | //split again, but add to list |
| 528 | for (const uint32_t index : p_simplex_indices) { |
| 529 | int side = _bsp_get_simplex_side(p_points, p_simplices, best_plane, index); |
| 530 | |
| 531 | if (side == -2) { |
| 532 | continue; //simplex sits on the plane, does not make sense to use it |
| 533 | } |
| 534 | if (side <= 0) { |
| 535 | indices_under.push_back(index); |
| 536 | } |
| 537 | |
| 538 | if (side >= 0) { |
| 539 | indices_over.push_back(index); |
| 540 | } |
| 541 | } |
| 542 | |
| 543 | #ifdef DEBUG_BSP |
| 544 | print_line("node " + itos(node_index) + " found plane: " + best_plane + " score:" + rtos(best_plane_score) + " - over " + itos(indices_over.size()) + " under " + itos(indices_under.size()) + " intersecting " + itos(intersecting)); |
| 545 | #endif |
| 546 | |
| 547 | if (best_plane_score < 0.0 || indices_over.size() == p_simplex_indices.size() || indices_under.size() == p_simplex_indices.size()) { |
| 548 | ERR_FAIL_COND_V(p_simplex_indices.size() <= 1, 0); //should not happen, this is a bug |
| 549 | |
| 550 | // Failed to separate the tetrahedrons using planes |
| 551 | // this means Delaunay broke at some point. |
| 552 | // Luckily, because we are using tetrahedrons, we can resort to |
| 553 | // less precise but still working ways to generate the separating plane |
| 554 | // this will most likely look bad when interpolating, but at least it will not crash. |
| 555 | // and the artifact will most likely also be very small, so too difficult to notice. |
| 556 | |
| 557 | //find the longest axis |
| 558 | |
| 559 | WARN_PRINT("Inconsistency found in triangulation while building BSP, probe interpolation quality may degrade a bit." ); |
| 560 | |
| 561 | LocalVector<Vector3> centers; |
| 562 | AABB bounds_all; |
| 563 | for (uint32_t i = 0; i < p_simplex_indices.size(); i++) { |
| 564 | AABB bounds; |
| 565 | for (uint32_t j = 0; j < 4; j++) { |
| 566 | Vector3 p = p_points[p_simplices[p_simplex_indices[i]].vertices[j]]; |
| 567 | if (j == 0) { |
| 568 | bounds.position = p; |
| 569 | } else { |
| 570 | bounds.expand_to(p); |
| 571 | } |
| 572 | } |
| 573 | if (i == 0) { |
| 574 | centers.push_back(bounds.get_center()); |
| 575 | } else { |
| 576 | bounds_all.merge_with(bounds); |
| 577 | } |
| 578 | } |
| 579 | Vector3::Axis longest_axis = Vector3::Axis(bounds_all.get_longest_axis_index()); |
| 580 | |
| 581 | //find the simplex that will go under |
| 582 | uint32_t min_d_idx = 0xFFFFFFFF; |
| 583 | float min_d_dist = 1e20; |
| 584 | |
| 585 | for (uint32_t i = 0; i < centers.size(); i++) { |
| 586 | if (centers[i][longest_axis] < min_d_dist) { |
| 587 | min_d_idx = i; |
| 588 | min_d_dist = centers[i][longest_axis]; |
| 589 | } |
| 590 | } |
| 591 | //rebuild best_plane and over/under arrays |
| 592 | best_plane = Plane(); |
| 593 | best_plane.normal[longest_axis] = 1.0; |
| 594 | best_plane.d = min_d_dist; |
| 595 | |
| 596 | indices_under.clear(); |
| 597 | indices_under.push_back(min_d_idx); |
| 598 | |
| 599 | indices_over.clear(); |
| 600 | |
| 601 | for (uint32_t i = 0; i < p_simplex_indices.size(); i++) { |
| 602 | if (i == min_d_idx) { |
| 603 | continue; |
| 604 | } |
| 605 | indices_over.push_back(p_simplex_indices[i]); |
| 606 | } |
| 607 | } |
| 608 | |
| 609 | BSPNode node; |
| 610 | node.plane = best_plane; |
| 611 | |
| 612 | if (indices_under.size() == 0) { |
| 613 | //nothing to do here |
| 614 | node.under = BSPNode::EMPTY_LEAF; |
| 615 | } else if (indices_under.size() == 1) { |
| 616 | node.under = -(indices_under[0] + 1); |
| 617 | } else { |
| 618 | node.under = _compute_bsp_tree(p_points, p_planes, planes_tested, p_simplices, indices_under, bsp_nodes); |
| 619 | } |
| 620 | |
| 621 | if (indices_over.size() == 0) { |
| 622 | //nothing to do here |
| 623 | node.over = BSPNode::EMPTY_LEAF; |
| 624 | } else if (indices_over.size() == 1) { |
| 625 | node.over = -(indices_over[0] + 1); |
| 626 | } else { |
| 627 | node.over = _compute_bsp_tree(p_points, p_planes, planes_tested, p_simplices, indices_over, bsp_nodes); |
| 628 | } |
| 629 | |
| 630 | bsp_nodes[node_index] = node; |
| 631 | |
| 632 | return node_index; |
| 633 | } |
| 634 | |
| 635 | bool LightmapGI::_lightmap_bake_step_function(float p_completion, const String &p_text, void *ud, bool p_refresh) { |
| 636 | BakeStepUD *bsud = (BakeStepUD *)ud; |
| 637 | bool ret = false; |
| 638 | if (bsud->func) { |
| 639 | ret = bsud->func(bsud->from_percent + p_completion * (bsud->to_percent - bsud->from_percent), p_text, bsud->ud, p_refresh); |
| 640 | } |
| 641 | return ret; |
| 642 | } |
| 643 | |
| 644 | void LightmapGI::_plot_triangle_into_octree(GenProbesOctree *p_cell, float p_cell_size, const Vector3 *p_triangle) { |
| 645 | for (int i = 0; i < 8; i++) { |
| 646 | Vector3i pos = p_cell->offset; |
| 647 | uint32_t half_size = p_cell->size / 2; |
| 648 | if (i & 1) { |
| 649 | pos.x += half_size; |
| 650 | } |
| 651 | if (i & 2) { |
| 652 | pos.y += half_size; |
| 653 | } |
| 654 | if (i & 4) { |
| 655 | pos.z += half_size; |
| 656 | } |
| 657 | |
| 658 | AABB subcell; |
| 659 | subcell.position = Vector3(pos) * p_cell_size; |
| 660 | subcell.size = Vector3(half_size, half_size, half_size) * p_cell_size; |
| 661 | |
| 662 | if (!Geometry3D::triangle_box_overlap(subcell.get_center(), subcell.size * 0.5, p_triangle)) { |
| 663 | continue; |
| 664 | } |
| 665 | |
| 666 | if (p_cell->children[i] == nullptr) { |
| 667 | GenProbesOctree *child = memnew(GenProbesOctree); |
| 668 | child->offset = pos; |
| 669 | child->size = half_size; |
| 670 | p_cell->children[i] = child; |
| 671 | } |
| 672 | |
| 673 | if (half_size > 1) { |
| 674 | //still levels missing |
| 675 | _plot_triangle_into_octree(p_cell->children[i], p_cell_size, p_triangle); |
| 676 | } |
| 677 | } |
| 678 | } |
| 679 | |
| 680 | void LightmapGI::_gen_new_positions_from_octree(const GenProbesOctree *p_cell, float p_cell_size, const Vector<Vector3> &probe_positions, LocalVector<Vector3> &new_probe_positions, HashMap<Vector3i, bool> &positions_used, const AABB &p_bounds) { |
| 681 | for (int i = 0; i < 8; i++) { |
| 682 | Vector3i pos = p_cell->offset; |
| 683 | if (i & 1) { |
| 684 | pos.x += p_cell->size; |
| 685 | } |
| 686 | if (i & 2) { |
| 687 | pos.y += p_cell->size; |
| 688 | } |
| 689 | if (i & 4) { |
| 690 | pos.z += p_cell->size; |
| 691 | } |
| 692 | |
| 693 | if (p_cell->size == 1 && !positions_used.has(pos)) { |
| 694 | //new position to insert! |
| 695 | Vector3 real_pos = p_bounds.position + Vector3(pos) * p_cell_size; |
| 696 | //see if a user submitted probe is too close |
| 697 | int ppcount = probe_positions.size(); |
| 698 | const Vector3 *pp = probe_positions.ptr(); |
| 699 | bool exists = false; |
| 700 | for (int j = 0; j < ppcount; j++) { |
| 701 | if (pp[j].is_equal_approx(real_pos)) { |
| 702 | exists = true; |
| 703 | break; |
| 704 | } |
| 705 | } |
| 706 | |
| 707 | if (!exists) { |
| 708 | new_probe_positions.push_back(real_pos); |
| 709 | } |
| 710 | |
| 711 | positions_used[pos] = true; |
| 712 | } |
| 713 | |
| 714 | if (p_cell->children[i] != nullptr) { |
| 715 | _gen_new_positions_from_octree(p_cell->children[i], p_cell_size, probe_positions, new_probe_positions, positions_used, p_bounds); |
| 716 | } |
| 717 | } |
| 718 | } |
| 719 | |
| 720 | LightmapGI::BakeError LightmapGI::bake(Node *p_from_node, String p_image_data_path, Lightmapper::BakeStepFunc p_bake_step, void *p_bake_userdata) { |
| 721 | if (p_image_data_path.is_empty()) { |
| 722 | if (get_light_data().is_null()) { |
| 723 | return BAKE_ERROR_NO_SAVE_PATH; |
| 724 | } |
| 725 | |
| 726 | p_image_data_path = get_light_data()->get_path(); |
| 727 | if (!p_image_data_path.is_resource_file()) { |
| 728 | return BAKE_ERROR_NO_SAVE_PATH; |
| 729 | } |
| 730 | } |
| 731 | |
| 732 | Ref<Lightmapper> lightmapper = Lightmapper::create(); |
| 733 | ERR_FAIL_COND_V(lightmapper.is_null(), BAKE_ERROR_NO_LIGHTMAPPER); |
| 734 | |
| 735 | BakeStepUD bsud; |
| 736 | bsud.func = p_bake_step; |
| 737 | bsud.ud = p_bake_userdata; |
| 738 | bsud.from_percent = 0.2; |
| 739 | bsud.to_percent = 0.8; |
| 740 | |
| 741 | if (p_bake_step) { |
| 742 | p_bake_step(0.0, RTR("Finding meshes, lights and probes" ), p_bake_userdata, true); |
| 743 | } |
| 744 | /* STEP 1, FIND MESHES, LIGHTS AND PROBES */ |
| 745 | Vector<Lightmapper::MeshData> mesh_data; |
| 746 | Vector<LightsFound> lights_found; |
| 747 | Vector<Vector3> probes_found; |
| 748 | AABB bounds; |
| 749 | { |
| 750 | Vector<MeshesFound> meshes_found; |
| 751 | _find_meshes_and_lights(p_from_node ? p_from_node : get_parent(), meshes_found, lights_found, probes_found); |
| 752 | |
| 753 | if (meshes_found.size() == 0) { |
| 754 | return BAKE_ERROR_NO_MESHES; |
| 755 | } |
| 756 | // create mesh data for insert |
| 757 | |
| 758 | //get the base material textures, help compute atlas size and bounds |
| 759 | for (int m_i = 0; m_i < meshes_found.size(); m_i++) { |
| 760 | if (p_bake_step) { |
| 761 | float p = (float)(m_i) / meshes_found.size(); |
| 762 | p_bake_step(p * 0.1, vformat(RTR("Preparing geometry %d/%d" ), m_i, meshes_found.size()), p_bake_userdata, false); |
| 763 | } |
| 764 | |
| 765 | MeshesFound &mf = meshes_found.write[m_i]; |
| 766 | |
| 767 | Size2i lightmap_size = mf.mesh->get_lightmap_size_hint(); |
| 768 | |
| 769 | if (lightmap_size == Size2i(0, 0)) { |
| 770 | // TODO we should compute a size if no lightmap hint is set, as we did in 3.x. |
| 771 | // For now set to basic size to avoid crash. |
| 772 | lightmap_size = Size2i(64, 64); |
| 773 | } |
| 774 | |
| 775 | lightmap_size *= mf.lightmap_scale; |
| 776 | TypedArray<RID> overrides; |
| 777 | overrides.resize(mf.overrides.size()); |
| 778 | for (int i = 0; i < mf.overrides.size(); i++) { |
| 779 | if (mf.overrides[i].is_valid()) { |
| 780 | overrides[i] = mf.overrides[i]->get_rid(); |
| 781 | } |
| 782 | } |
| 783 | TypedArray<Image> images = RS::get_singleton()->bake_render_uv2(mf.mesh->get_rid(), overrides, lightmap_size); |
| 784 | |
| 785 | ERR_FAIL_COND_V(images.is_empty(), BAKE_ERROR_CANT_CREATE_IMAGE); |
| 786 | |
| 787 | Ref<Image> albedo = images[RS::BAKE_CHANNEL_ALBEDO_ALPHA]; |
| 788 | Ref<Image> orm = images[RS::BAKE_CHANNEL_ORM]; |
| 789 | |
| 790 | //multiply albedo by metal |
| 791 | |
| 792 | Lightmapper::MeshData md; |
| 793 | |
| 794 | { |
| 795 | Dictionary d; |
| 796 | d["path" ] = mf.node_path; |
| 797 | if (mf.subindex >= 0) { |
| 798 | d["subindex" ] = mf.subindex; |
| 799 | } |
| 800 | md.userdata = d; |
| 801 | } |
| 802 | |
| 803 | { |
| 804 | if (albedo->get_format() != Image::FORMAT_RGBA8) { |
| 805 | albedo->convert(Image::FORMAT_RGBA8); |
| 806 | } |
| 807 | if (orm->get_format() != Image::FORMAT_RGBA8) { |
| 808 | orm->convert(Image::FORMAT_RGBA8); |
| 809 | } |
| 810 | Vector<uint8_t> albedo_alpha = albedo->get_data(); |
| 811 | Vector<uint8_t> orm_data = orm->get_data(); |
| 812 | |
| 813 | Vector<uint8_t> albedom; |
| 814 | uint32_t len = albedo_alpha.size(); |
| 815 | albedom.resize(len); |
| 816 | const uint8_t *r_aa = albedo_alpha.ptr(); |
| 817 | const uint8_t *r_orm = orm_data.ptr(); |
| 818 | uint8_t *w_albedo = albedom.ptrw(); |
| 819 | |
| 820 | for (uint32_t i = 0; i < len; i += 4) { |
| 821 | w_albedo[i + 0] = uint8_t(CLAMP(float(r_aa[i + 0]) * (1.0 - float(r_orm[i + 2] / 255.0)), 0, 255)); |
| 822 | w_albedo[i + 1] = uint8_t(CLAMP(float(r_aa[i + 1]) * (1.0 - float(r_orm[i + 2] / 255.0)), 0, 255)); |
| 823 | w_albedo[i + 2] = uint8_t(CLAMP(float(r_aa[i + 2]) * (1.0 - float(r_orm[i + 2] / 255.0)), 0, 255)); |
| 824 | w_albedo[i + 3] = 255; |
| 825 | } |
| 826 | |
| 827 | md.albedo_on_uv2.instantiate(); |
| 828 | md.albedo_on_uv2->set_data(lightmap_size.width, lightmap_size.height, false, Image::FORMAT_RGBA8, albedom); |
| 829 | } |
| 830 | |
| 831 | md.emission_on_uv2 = images[RS::BAKE_CHANNEL_EMISSION]; |
| 832 | if (md.emission_on_uv2->get_format() != Image::FORMAT_RGBAH) { |
| 833 | md.emission_on_uv2->convert(Image::FORMAT_RGBAH); |
| 834 | } |
| 835 | |
| 836 | //get geometry |
| 837 | |
| 838 | Basis normal_xform = mf.xform.basis.inverse().transposed(); |
| 839 | |
| 840 | for (int i = 0; i < mf.mesh->get_surface_count(); i++) { |
| 841 | if (mf.mesh->surface_get_primitive_type(i) != Mesh::PRIMITIVE_TRIANGLES) { |
| 842 | continue; |
| 843 | } |
| 844 | Array a = mf.mesh->surface_get_arrays(i); |
| 845 | |
| 846 | Vector<Vector3> vertices = a[Mesh::ARRAY_VERTEX]; |
| 847 | const Vector3 *vr = vertices.ptr(); |
| 848 | Vector<Vector2> uv = a[Mesh::ARRAY_TEX_UV2]; |
| 849 | const Vector2 *uvr = nullptr; |
| 850 | Vector<Vector3> normals = a[Mesh::ARRAY_NORMAL]; |
| 851 | const Vector3 *nr = nullptr; |
| 852 | Vector<int> index = a[Mesh::ARRAY_INDEX]; |
| 853 | |
| 854 | ERR_CONTINUE(uv.size() == 0); |
| 855 | ERR_CONTINUE(normals.size() == 0); |
| 856 | |
| 857 | uvr = uv.ptr(); |
| 858 | nr = normals.ptr(); |
| 859 | |
| 860 | int facecount; |
| 861 | const int *ir = nullptr; |
| 862 | |
| 863 | if (index.size()) { |
| 864 | facecount = index.size() / 3; |
| 865 | ir = index.ptr(); |
| 866 | } else { |
| 867 | facecount = vertices.size() / 3; |
| 868 | } |
| 869 | |
| 870 | for (int j = 0; j < facecount; j++) { |
| 871 | uint32_t vidx[3]; |
| 872 | |
| 873 | if (ir) { |
| 874 | for (int k = 0; k < 3; k++) { |
| 875 | vidx[k] = ir[j * 3 + k]; |
| 876 | } |
| 877 | } else { |
| 878 | for (int k = 0; k < 3; k++) { |
| 879 | vidx[k] = j * 3 + k; |
| 880 | } |
| 881 | } |
| 882 | |
| 883 | for (int k = 0; k < 3; k++) { |
| 884 | Vector3 v = mf.xform.xform(vr[vidx[k]]); |
| 885 | if (bounds == AABB()) { |
| 886 | bounds.position = v; |
| 887 | } else { |
| 888 | bounds.expand_to(v); |
| 889 | } |
| 890 | md.points.push_back(v); |
| 891 | |
| 892 | md.uv2.push_back(uvr[vidx[k]]); |
| 893 | md.normal.push_back(normal_xform.xform(nr[vidx[k]]).normalized()); |
| 894 | } |
| 895 | } |
| 896 | } |
| 897 | |
| 898 | mesh_data.push_back(md); |
| 899 | } |
| 900 | } |
| 901 | |
| 902 | /* STEP 2, CREATE PROBES */ |
| 903 | |
| 904 | if (p_bake_step) { |
| 905 | p_bake_step(0.3, RTR("Creating probes" ), p_bake_userdata, true); |
| 906 | } |
| 907 | |
| 908 | //bounds need to include the user probes |
| 909 | for (int i = 0; i < probes_found.size(); i++) { |
| 910 | bounds.expand_to(probes_found[i]); |
| 911 | } |
| 912 | |
| 913 | bounds.grow_by(bounds.size.length() * 0.001); |
| 914 | |
| 915 | if (gen_probes == GENERATE_PROBES_DISABLED) { |
| 916 | // generate 8 probes on bound endpoints |
| 917 | for (int i = 0; i < 8; i++) { |
| 918 | probes_found.push_back(bounds.get_endpoint(i)); |
| 919 | } |
| 920 | } else { |
| 921 | // detect probes from geometry |
| 922 | static const int subdiv_values[6] = { 0, 4, 8, 16, 32 }; |
| 923 | int subdiv = subdiv_values[gen_probes]; |
| 924 | |
| 925 | float subdiv_cell_size; |
| 926 | Vector3i bound_limit; |
| 927 | { |
| 928 | int longest_axis = bounds.get_longest_axis_index(); |
| 929 | subdiv_cell_size = bounds.size[longest_axis] / subdiv; |
| 930 | int axis_n1 = (longest_axis + 1) % 3; |
| 931 | int axis_n2 = (longest_axis + 2) % 3; |
| 932 | |
| 933 | bound_limit[longest_axis] = subdiv; |
| 934 | bound_limit[axis_n1] = int(Math::ceil(bounds.size[axis_n1] / subdiv_cell_size)); |
| 935 | bound_limit[axis_n2] = int(Math::ceil(bounds.size[axis_n2] / subdiv_cell_size)); |
| 936 | //compensate bounds |
| 937 | bounds.size[axis_n1] = bound_limit[axis_n1] * subdiv_cell_size; |
| 938 | bounds.size[axis_n2] = bound_limit[axis_n2] * subdiv_cell_size; |
| 939 | } |
| 940 | |
| 941 | GenProbesOctree octree; |
| 942 | octree.size = subdiv; |
| 943 | |
| 944 | for (int i = 0; i < mesh_data.size(); i++) { |
| 945 | if (p_bake_step) { |
| 946 | float p = (float)(i) / mesh_data.size(); |
| 947 | p_bake_step(0.3 + p * 0.1, vformat(RTR("Creating probes from mesh %d/%d" ), i, mesh_data.size()), p_bake_userdata, false); |
| 948 | } |
| 949 | |
| 950 | for (int j = 0; j < mesh_data[i].points.size(); j += 3) { |
| 951 | Vector3 points[3] = { mesh_data[i].points[j + 0] - bounds.position, mesh_data[i].points[j + 1] - bounds.position, mesh_data[i].points[j + 2] - bounds.position }; |
| 952 | _plot_triangle_into_octree(&octree, subdiv_cell_size, points); |
| 953 | } |
| 954 | } |
| 955 | |
| 956 | LocalVector<Vector3> new_probe_positions; |
| 957 | HashMap<Vector3i, bool> positions_used; |
| 958 | for (uint32_t i = 0; i < 8; i++) { //insert bounding endpoints |
| 959 | Vector3i pos; |
| 960 | if (i & 1) { |
| 961 | pos.x += bound_limit.x; |
| 962 | } |
| 963 | if (i & 2) { |
| 964 | pos.y += bound_limit.y; |
| 965 | } |
| 966 | if (i & 4) { |
| 967 | pos.z += bound_limit.z; |
| 968 | } |
| 969 | |
| 970 | positions_used[pos] = true; |
| 971 | Vector3 real_pos = bounds.position + Vector3(pos) * subdiv_cell_size; //use same formula for numerical stability |
| 972 | new_probe_positions.push_back(real_pos); |
| 973 | } |
| 974 | //skip first level, since probes are always added at bounds endpoints anyway (code above this) |
| 975 | for (int i = 0; i < 8; i++) { |
| 976 | if (octree.children[i]) { |
| 977 | _gen_new_positions_from_octree(octree.children[i], subdiv_cell_size, probes_found, new_probe_positions, positions_used, bounds); |
| 978 | } |
| 979 | } |
| 980 | |
| 981 | for (const Vector3 &position : new_probe_positions) { |
| 982 | probes_found.push_back(position); |
| 983 | } |
| 984 | } |
| 985 | |
| 986 | // Add everything to lightmapper |
| 987 | if (p_bake_step) { |
| 988 | p_bake_step(0.4, RTR("Preparing Lightmapper" ), p_bake_userdata, true); |
| 989 | } |
| 990 | |
| 991 | { |
| 992 | for (int i = 0; i < mesh_data.size(); i++) { |
| 993 | lightmapper->add_mesh(mesh_data[i]); |
| 994 | } |
| 995 | for (int i = 0; i < lights_found.size(); i++) { |
| 996 | Light3D *light = lights_found[i].light; |
| 997 | Transform3D xf = lights_found[i].xform; |
| 998 | |
| 999 | Color linear_color = light->get_color().srgb_to_linear(); |
| 1000 | float energy = light->get_param(Light3D::PARAM_ENERGY); |
| 1001 | if (GLOBAL_GET("rendering/lights_and_shadows/use_physical_light_units" )) { |
| 1002 | energy *= light->get_param(Light3D::PARAM_INTENSITY); |
| 1003 | linear_color *= light->get_correlated_color().srgb_to_linear(); |
| 1004 | } |
| 1005 | |
| 1006 | if (Object::cast_to<DirectionalLight3D>(light)) { |
| 1007 | DirectionalLight3D *l = Object::cast_to<DirectionalLight3D>(light); |
| 1008 | lightmapper->add_directional_light(light->get_bake_mode() == Light3D::BAKE_STATIC, -xf.basis.get_column(Vector3::AXIS_Z).normalized(), linear_color, energy, l->get_param(Light3D::PARAM_SIZE), l->get_param(Light3D::PARAM_SHADOW_BLUR)); |
| 1009 | } else if (Object::cast_to<OmniLight3D>(light)) { |
| 1010 | OmniLight3D *l = Object::cast_to<OmniLight3D>(light); |
| 1011 | if (GLOBAL_GET("rendering/lights_and_shadows/use_physical_light_units" )) { |
| 1012 | energy *= (1.0 / (Math_PI * 4.0)); |
| 1013 | } |
| 1014 | lightmapper->add_omni_light(light->get_bake_mode() == Light3D::BAKE_STATIC, xf.origin, linear_color, energy, l->get_param(Light3D::PARAM_RANGE), l->get_param(Light3D::PARAM_ATTENUATION), l->get_param(Light3D::PARAM_SIZE), l->get_param(Light3D::PARAM_SHADOW_BLUR)); |
| 1015 | } else if (Object::cast_to<SpotLight3D>(light)) { |
| 1016 | SpotLight3D *l = Object::cast_to<SpotLight3D>(light); |
| 1017 | if (GLOBAL_GET("rendering/lights_and_shadows/use_physical_light_units" )) { |
| 1018 | energy *= (1.0 / Math_PI); |
| 1019 | } |
| 1020 | lightmapper->add_spot_light(light->get_bake_mode() == Light3D::BAKE_STATIC, xf.origin, -xf.basis.get_column(Vector3::AXIS_Z).normalized(), linear_color, energy, l->get_param(Light3D::PARAM_RANGE), l->get_param(Light3D::PARAM_ATTENUATION), l->get_param(Light3D::PARAM_SPOT_ANGLE), l->get_param(Light3D::PARAM_SPOT_ATTENUATION), l->get_param(Light3D::PARAM_SIZE), l->get_param(Light3D::PARAM_SHADOW_BLUR)); |
| 1021 | } |
| 1022 | } |
| 1023 | for (int i = 0; i < probes_found.size(); i++) { |
| 1024 | lightmapper->add_probe(probes_found[i]); |
| 1025 | } |
| 1026 | } |
| 1027 | |
| 1028 | Ref<Image> environment_image; |
| 1029 | Basis environment_transform; |
| 1030 | |
| 1031 | // Add everything to lightmapper |
| 1032 | if (environment_mode != ENVIRONMENT_MODE_DISABLED) { |
| 1033 | if (p_bake_step) { |
| 1034 | p_bake_step(4.1, RTR("Preparing Environment" ), p_bake_userdata, true); |
| 1035 | } |
| 1036 | |
| 1037 | environment_transform = get_global_transform().basis; |
| 1038 | |
| 1039 | switch (environment_mode) { |
| 1040 | case ENVIRONMENT_MODE_DISABLED: { |
| 1041 | //nothing |
| 1042 | } break; |
| 1043 | case ENVIRONMENT_MODE_SCENE: { |
| 1044 | Ref<World3D> world = get_world_3d(); |
| 1045 | if (world.is_valid()) { |
| 1046 | Ref<Environment> env = world->get_environment(); |
| 1047 | if (env.is_null()) { |
| 1048 | env = world->get_fallback_environment(); |
| 1049 | } |
| 1050 | |
| 1051 | if (env.is_valid()) { |
| 1052 | environment_image = RS::get_singleton()->environment_bake_panorama(env->get_rid(), true, Size2i(128, 64)); |
| 1053 | } |
| 1054 | } |
| 1055 | } break; |
| 1056 | case ENVIRONMENT_MODE_CUSTOM_SKY: { |
| 1057 | if (environment_custom_sky.is_valid()) { |
| 1058 | environment_image = RS::get_singleton()->sky_bake_panorama(environment_custom_sky->get_rid(), environment_custom_energy, true, Size2i(128, 64)); |
| 1059 | } |
| 1060 | |
| 1061 | } break; |
| 1062 | case ENVIRONMENT_MODE_CUSTOM_COLOR: { |
| 1063 | environment_image.instantiate(); |
| 1064 | environment_image->initialize_data(128, 64, false, Image::FORMAT_RGBAF); |
| 1065 | Color c = environment_custom_color; |
| 1066 | c.r *= environment_custom_energy; |
| 1067 | c.g *= environment_custom_energy; |
| 1068 | c.b *= environment_custom_energy; |
| 1069 | environment_image->fill(c); |
| 1070 | |
| 1071 | } break; |
| 1072 | } |
| 1073 | } |
| 1074 | |
| 1075 | float exposure_normalization = 1.0; |
| 1076 | if (camera_attributes.is_valid()) { |
| 1077 | exposure_normalization = camera_attributes->get_exposure_multiplier(); |
| 1078 | if (GLOBAL_GET("rendering/lights_and_shadows/use_physical_light_units" )) { |
| 1079 | exposure_normalization = camera_attributes->calculate_exposure_normalization(); |
| 1080 | } |
| 1081 | } |
| 1082 | |
| 1083 | Lightmapper::BakeError bake_err = lightmapper->bake(Lightmapper::BakeQuality(bake_quality), use_denoiser, bounces, bias, max_texture_size, directional, Lightmapper::GenerateProbes(gen_probes), environment_image, environment_transform, _lightmap_bake_step_function, &bsud, exposure_normalization); |
| 1084 | |
| 1085 | if (bake_err == Lightmapper::BAKE_ERROR_LIGHTMAP_TOO_SMALL) { |
| 1086 | return BAKE_ERROR_TEXTURE_SIZE_TOO_SMALL; |
| 1087 | } else if (bake_err == Lightmapper::BAKE_ERROR_LIGHTMAP_CANT_PRE_BAKE_MESHES) { |
| 1088 | return BAKE_ERROR_MESHES_INVALID; |
| 1089 | } |
| 1090 | |
| 1091 | /* POSTBAKE: Save Light Data */ |
| 1092 | |
| 1093 | Ref<LightmapGIData> gi_data; |
| 1094 | if (get_light_data().is_valid()) { |
| 1095 | gi_data = get_light_data(); |
| 1096 | set_light_data(Ref<LightmapGIData>()); //clear |
| 1097 | gi_data->clear(); |
| 1098 | } else { |
| 1099 | gi_data.instantiate(); |
| 1100 | } |
| 1101 | |
| 1102 | Ref<Texture2DArray> texture; |
| 1103 | { |
| 1104 | Vector<Ref<Image>> images; |
| 1105 | for (int i = 0; i < lightmapper->get_bake_texture_count(); i++) { |
| 1106 | images.push_back(lightmapper->get_bake_texture(i)); |
| 1107 | } |
| 1108 | |
| 1109 | texture.instantiate(); |
| 1110 | texture->create_from_images(images); |
| 1111 | } |
| 1112 | |
| 1113 | gi_data->set_light_texture(texture); |
| 1114 | gi_data->set_uses_spherical_harmonics(directional); |
| 1115 | |
| 1116 | for (int i = 0; i < lightmapper->get_bake_mesh_count(); i++) { |
| 1117 | Dictionary d = lightmapper->get_bake_mesh_userdata(i); |
| 1118 | NodePath np = d["path" ]; |
| 1119 | int32_t subindex = -1; |
| 1120 | if (d.has("subindex" )) { |
| 1121 | subindex = d["subindex" ]; |
| 1122 | } |
| 1123 | |
| 1124 | Rect2 uv_scale = lightmapper->get_bake_mesh_uv_scale(i); |
| 1125 | int slice_index = lightmapper->get_bake_mesh_texture_slice(i); |
| 1126 | gi_data->add_user(np, uv_scale, slice_index, subindex); |
| 1127 | } |
| 1128 | |
| 1129 | { |
| 1130 | // create tetrahedrons |
| 1131 | Vector<Vector3> points; |
| 1132 | Vector<Color> sh; |
| 1133 | points.resize(lightmapper->get_bake_probe_count()); |
| 1134 | sh.resize(lightmapper->get_bake_probe_count() * 9); |
| 1135 | for (int i = 0; i < lightmapper->get_bake_probe_count(); i++) { |
| 1136 | points.write[i] = lightmapper->get_bake_probe_point(i); |
| 1137 | Vector<Color> colors = lightmapper->get_bake_probe_sh(i); |
| 1138 | ERR_CONTINUE(colors.size() != 9); |
| 1139 | for (int j = 0; j < 9; j++) { |
| 1140 | sh.write[i * 9 + j] = colors[j]; |
| 1141 | } |
| 1142 | } |
| 1143 | |
| 1144 | //Obtain solved simplices |
| 1145 | |
| 1146 | if (p_bake_step) { |
| 1147 | p_bake_step(0.8, RTR("Generating Probe Volumes" ), p_bake_userdata, true); |
| 1148 | } |
| 1149 | Vector<Delaunay3D::OutputSimplex> solved_simplices = Delaunay3D::tetrahedralize(points); |
| 1150 | |
| 1151 | LocalVector<BSPSimplex> bsp_simplices; |
| 1152 | LocalVector<Plane> bsp_planes; |
| 1153 | LocalVector<int32_t> bsp_simplex_indices; |
| 1154 | PackedInt32Array tetrahedrons; |
| 1155 | |
| 1156 | for (int i = 0; i < solved_simplices.size(); i++) { |
| 1157 | //Prepare a special representation of the simplex, which uses a BSP Tree |
| 1158 | BSPSimplex bsp_simplex; |
| 1159 | for (int j = 0; j < 4; j++) { |
| 1160 | bsp_simplex.vertices[j] = solved_simplices[i].points[j]; |
| 1161 | } |
| 1162 | for (int j = 0; j < 4; j++) { |
| 1163 | static const int face_order[4][3] = { |
| 1164 | { 0, 1, 2 }, |
| 1165 | { 0, 2, 3 }, |
| 1166 | { 0, 1, 3 }, |
| 1167 | { 1, 2, 3 } |
| 1168 | }; |
| 1169 | Vector3 a = points[solved_simplices[i].points[face_order[j][0]]]; |
| 1170 | Vector3 b = points[solved_simplices[i].points[face_order[j][1]]]; |
| 1171 | Vector3 c = points[solved_simplices[i].points[face_order[j][2]]]; |
| 1172 | |
| 1173 | //store planes in an array, but ensure they are reused, to speed up processing |
| 1174 | |
| 1175 | Plane p(a, b, c); |
| 1176 | int plane_index = -1; |
| 1177 | for (uint32_t k = 0; k < bsp_planes.size(); k++) { |
| 1178 | if (bsp_planes[k].is_equal_approx_any_side(p)) { |
| 1179 | plane_index = k; |
| 1180 | break; |
| 1181 | } |
| 1182 | } |
| 1183 | |
| 1184 | if (plane_index == -1) { |
| 1185 | plane_index = bsp_planes.size(); |
| 1186 | bsp_planes.push_back(p); |
| 1187 | } |
| 1188 | |
| 1189 | bsp_simplex.planes[j] = plane_index; |
| 1190 | |
| 1191 | //also fill simplex array |
| 1192 | tetrahedrons.push_back(solved_simplices[i].points[j]); |
| 1193 | } |
| 1194 | |
| 1195 | bsp_simplex_indices.push_back(bsp_simplices.size()); |
| 1196 | bsp_simplices.push_back(bsp_simplex); |
| 1197 | } |
| 1198 | |
| 1199 | //#define DEBUG_SIMPLICES_AS_OBJ_FILE |
| 1200 | #ifdef DEBUG_SIMPLICES_AS_OBJ_FILE |
| 1201 | { |
| 1202 | Ref<FileAccess> f = FileAccess::open("res://bsp.obj" , FileAccess::WRITE); |
| 1203 | for (uint32_t i = 0; i < bsp_simplices.size(); i++) { |
| 1204 | f->store_line("o Simplex" + itos(i)); |
| 1205 | for (int j = 0; j < 4; j++) { |
| 1206 | f->store_line(vformat("v %f %f %f" , points[bsp_simplices[i].vertices[j]].x, points[bsp_simplices[i].vertices[j]].y, points[bsp_simplices[i].vertices[j]].z)); |
| 1207 | } |
| 1208 | static const int face_order[4][3] = { |
| 1209 | { 1, 2, 3 }, |
| 1210 | { 1, 3, 4 }, |
| 1211 | { 1, 2, 4 }, |
| 1212 | { 2, 3, 4 } |
| 1213 | }; |
| 1214 | |
| 1215 | for (int j = 0; j < 4; j++) { |
| 1216 | f->store_line(vformat("f %d %d %d" , 4 * i + face_order[j][0], 4 * i + face_order[j][1], 4 * i + face_order[j][2])); |
| 1217 | } |
| 1218 | } |
| 1219 | } |
| 1220 | #endif |
| 1221 | |
| 1222 | LocalVector<BSPNode> bsp_nodes; |
| 1223 | LocalVector<int32_t> planes_tested; |
| 1224 | planes_tested.resize(bsp_planes.size()); |
| 1225 | for (int &index : planes_tested) { |
| 1226 | index = 0x7FFFFFFF; |
| 1227 | } |
| 1228 | |
| 1229 | if (p_bake_step) { |
| 1230 | p_bake_step(0.9, RTR("Generating Probe Acceleration Structures" ), p_bake_userdata, true); |
| 1231 | } |
| 1232 | |
| 1233 | _compute_bsp_tree(points, bsp_planes, planes_tested, bsp_simplices, bsp_simplex_indices, bsp_nodes); |
| 1234 | |
| 1235 | PackedInt32Array bsp_array; |
| 1236 | bsp_array.resize(bsp_nodes.size() * 6); // six 32 bits values used for each BSP node |
| 1237 | { |
| 1238 | float *fptr = (float *)bsp_array.ptrw(); |
| 1239 | int32_t *iptr = (int32_t *)bsp_array.ptrw(); |
| 1240 | for (uint32_t i = 0; i < bsp_nodes.size(); i++) { |
| 1241 | fptr[i * 6 + 0] = bsp_nodes[i].plane.normal.x; |
| 1242 | fptr[i * 6 + 1] = bsp_nodes[i].plane.normal.y; |
| 1243 | fptr[i * 6 + 2] = bsp_nodes[i].plane.normal.z; |
| 1244 | fptr[i * 6 + 3] = bsp_nodes[i].plane.d; |
| 1245 | iptr[i * 6 + 4] = bsp_nodes[i].over; |
| 1246 | iptr[i * 6 + 5] = bsp_nodes[i].under; |
| 1247 | } |
| 1248 | //#define DEBUG_BSP_TREE |
| 1249 | #ifdef DEBUG_BSP_TREE |
| 1250 | Ref<FileAccess> f = FileAccess::open("res://bsp.txt" , FileAccess::WRITE); |
| 1251 | for (uint32_t i = 0; i < bsp_nodes.size(); i++) { |
| 1252 | f->store_line(itos(i) + " - plane: " + bsp_nodes[i].plane + " over: " + itos(bsp_nodes[i].over) + " under: " + itos(bsp_nodes[i].under)); |
| 1253 | } |
| 1254 | #endif |
| 1255 | } |
| 1256 | |
| 1257 | /* Obtain the colors from the images, they will be re-created as cubemaps on the server, depending on the driver */ |
| 1258 | |
| 1259 | gi_data->set_capture_data(bounds, interior, points, sh, tetrahedrons, bsp_array, exposure_normalization); |
| 1260 | /* Compute a BSP tree of the simplices, so it's easy to find the exact one */ |
| 1261 | } |
| 1262 | |
| 1263 | gi_data->set_path(p_image_data_path); |
| 1264 | Error err = ResourceSaver::save(gi_data); |
| 1265 | |
| 1266 | if (err != OK) { |
| 1267 | return BAKE_ERROR_CANT_CREATE_IMAGE; |
| 1268 | } |
| 1269 | |
| 1270 | set_light_data(gi_data); |
| 1271 | |
| 1272 | return BAKE_ERROR_OK; |
| 1273 | } |
| 1274 | |
| 1275 | void LightmapGI::_notification(int p_what) { |
| 1276 | switch (p_what) { |
| 1277 | case NOTIFICATION_POST_ENTER_TREE: { |
| 1278 | if (light_data.is_valid()) { |
| 1279 | _assign_lightmaps(); |
| 1280 | } |
| 1281 | } break; |
| 1282 | |
| 1283 | case NOTIFICATION_EXIT_TREE: { |
| 1284 | if (light_data.is_valid()) { |
| 1285 | _clear_lightmaps(); |
| 1286 | } |
| 1287 | } break; |
| 1288 | } |
| 1289 | } |
| 1290 | |
| 1291 | void LightmapGI::_assign_lightmaps() { |
| 1292 | ERR_FAIL_COND(!light_data.is_valid()); |
| 1293 | |
| 1294 | for (int i = 0; i < light_data->get_user_count(); i++) { |
| 1295 | Node *node = get_node(light_data->get_user_path(i)); |
| 1296 | int instance_idx = light_data->get_user_sub_instance(i); |
| 1297 | if (instance_idx >= 0) { |
| 1298 | RID instance_id = node->call("get_bake_mesh_instance" , instance_idx); |
| 1299 | if (instance_id.is_valid()) { |
| 1300 | RS::get_singleton()->instance_geometry_set_lightmap(instance_id, get_instance(), light_data->get_user_lightmap_uv_scale(i), light_data->get_user_lightmap_slice_index(i)); |
| 1301 | } |
| 1302 | } else { |
| 1303 | VisualInstance3D *vi = Object::cast_to<VisualInstance3D>(node); |
| 1304 | ERR_CONTINUE(!vi); |
| 1305 | RS::get_singleton()->instance_geometry_set_lightmap(vi->get_instance(), get_instance(), light_data->get_user_lightmap_uv_scale(i), light_data->get_user_lightmap_slice_index(i)); |
| 1306 | } |
| 1307 | } |
| 1308 | } |
| 1309 | |
| 1310 | void LightmapGI::_clear_lightmaps() { |
| 1311 | ERR_FAIL_COND(!light_data.is_valid()); |
| 1312 | for (int i = 0; i < light_data->get_user_count(); i++) { |
| 1313 | Node *node = get_node(light_data->get_user_path(i)); |
| 1314 | int instance_idx = light_data->get_user_sub_instance(i); |
| 1315 | if (instance_idx >= 0) { |
| 1316 | RID instance_id = node->call("get_bake_mesh_instance" , instance_idx); |
| 1317 | if (instance_id.is_valid()) { |
| 1318 | RS::get_singleton()->instance_geometry_set_lightmap(instance_id, RID(), Rect2(), 0); |
| 1319 | } |
| 1320 | } else { |
| 1321 | VisualInstance3D *vi = Object::cast_to<VisualInstance3D>(node); |
| 1322 | ERR_CONTINUE(!vi); |
| 1323 | RS::get_singleton()->instance_geometry_set_lightmap(vi->get_instance(), RID(), Rect2(), 0); |
| 1324 | } |
| 1325 | } |
| 1326 | } |
| 1327 | |
| 1328 | void LightmapGI::set_light_data(const Ref<LightmapGIData> &p_data) { |
| 1329 | if (light_data.is_valid()) { |
| 1330 | if (is_inside_tree()) { |
| 1331 | _clear_lightmaps(); |
| 1332 | } |
| 1333 | set_base(RID()); |
| 1334 | } |
| 1335 | light_data = p_data; |
| 1336 | |
| 1337 | if (light_data.is_valid()) { |
| 1338 | set_base(light_data->get_rid()); |
| 1339 | if (is_inside_tree()) { |
| 1340 | _assign_lightmaps(); |
| 1341 | } |
| 1342 | } |
| 1343 | |
| 1344 | update_gizmos(); |
| 1345 | } |
| 1346 | |
| 1347 | Ref<LightmapGIData> LightmapGI::get_light_data() const { |
| 1348 | return light_data; |
| 1349 | } |
| 1350 | |
| 1351 | void LightmapGI::set_bake_quality(BakeQuality p_quality) { |
| 1352 | bake_quality = p_quality; |
| 1353 | } |
| 1354 | |
| 1355 | LightmapGI::BakeQuality LightmapGI::get_bake_quality() const { |
| 1356 | return bake_quality; |
| 1357 | } |
| 1358 | |
| 1359 | AABB LightmapGI::get_aabb() const { |
| 1360 | return AABB(); |
| 1361 | } |
| 1362 | |
| 1363 | void LightmapGI::set_use_denoiser(bool p_enable) { |
| 1364 | use_denoiser = p_enable; |
| 1365 | } |
| 1366 | |
| 1367 | bool LightmapGI::is_using_denoiser() const { |
| 1368 | return use_denoiser; |
| 1369 | } |
| 1370 | |
| 1371 | void LightmapGI::set_directional(bool p_enable) { |
| 1372 | directional = p_enable; |
| 1373 | } |
| 1374 | |
| 1375 | bool LightmapGI::is_directional() const { |
| 1376 | return directional; |
| 1377 | } |
| 1378 | |
| 1379 | void LightmapGI::set_interior(bool p_enable) { |
| 1380 | interior = p_enable; |
| 1381 | } |
| 1382 | |
| 1383 | bool LightmapGI::is_interior() const { |
| 1384 | return interior; |
| 1385 | } |
| 1386 | |
| 1387 | void LightmapGI::set_environment_mode(EnvironmentMode p_mode) { |
| 1388 | environment_mode = p_mode; |
| 1389 | notify_property_list_changed(); |
| 1390 | } |
| 1391 | |
| 1392 | LightmapGI::EnvironmentMode LightmapGI::get_environment_mode() const { |
| 1393 | return environment_mode; |
| 1394 | } |
| 1395 | |
| 1396 | void LightmapGI::set_environment_custom_sky(const Ref<Sky> &p_sky) { |
| 1397 | environment_custom_sky = p_sky; |
| 1398 | } |
| 1399 | |
| 1400 | Ref<Sky> LightmapGI::get_environment_custom_sky() const { |
| 1401 | return environment_custom_sky; |
| 1402 | } |
| 1403 | |
| 1404 | void LightmapGI::set_environment_custom_color(const Color &p_color) { |
| 1405 | environment_custom_color = p_color; |
| 1406 | } |
| 1407 | |
| 1408 | Color LightmapGI::get_environment_custom_color() const { |
| 1409 | return environment_custom_color; |
| 1410 | } |
| 1411 | |
| 1412 | void LightmapGI::set_environment_custom_energy(float p_energy) { |
| 1413 | environment_custom_energy = p_energy; |
| 1414 | } |
| 1415 | |
| 1416 | float LightmapGI::get_environment_custom_energy() const { |
| 1417 | return environment_custom_energy; |
| 1418 | } |
| 1419 | |
| 1420 | void LightmapGI::set_bounces(int p_bounces) { |
| 1421 | ERR_FAIL_COND(p_bounces < 0 || p_bounces > 16); |
| 1422 | bounces = p_bounces; |
| 1423 | } |
| 1424 | |
| 1425 | int LightmapGI::get_bounces() const { |
| 1426 | return bounces; |
| 1427 | } |
| 1428 | |
| 1429 | void LightmapGI::set_bias(float p_bias) { |
| 1430 | ERR_FAIL_COND(p_bias < 0.00001); |
| 1431 | bias = p_bias; |
| 1432 | } |
| 1433 | |
| 1434 | float LightmapGI::get_bias() const { |
| 1435 | return bias; |
| 1436 | } |
| 1437 | |
| 1438 | void LightmapGI::set_max_texture_size(int p_size) { |
| 1439 | ERR_FAIL_COND_MSG(p_size < 2048, vformat("The LightmapGI maximum texture size supplied (%d) is too small. The minimum allowed value is 2048." , p_size)); |
| 1440 | ERR_FAIL_COND_MSG(p_size > 16384, vformat("The LightmapGI maximum texture size supplied (%d) is too large. The maximum allowed value is 16384." , p_size)); |
| 1441 | max_texture_size = p_size; |
| 1442 | } |
| 1443 | |
| 1444 | int LightmapGI::get_max_texture_size() const { |
| 1445 | return max_texture_size; |
| 1446 | } |
| 1447 | |
| 1448 | void LightmapGI::set_generate_probes(GenerateProbes p_generate_probes) { |
| 1449 | gen_probes = p_generate_probes; |
| 1450 | } |
| 1451 | |
| 1452 | LightmapGI::GenerateProbes LightmapGI::get_generate_probes() const { |
| 1453 | return gen_probes; |
| 1454 | } |
| 1455 | |
| 1456 | void LightmapGI::set_camera_attributes(const Ref<CameraAttributes> &p_camera_attributes) { |
| 1457 | camera_attributes = p_camera_attributes; |
| 1458 | } |
| 1459 | |
| 1460 | Ref<CameraAttributes> LightmapGI::get_camera_attributes() const { |
| 1461 | return camera_attributes; |
| 1462 | } |
| 1463 | |
| 1464 | PackedStringArray LightmapGI::get_configuration_warnings() const { |
| 1465 | PackedStringArray warnings = Node::get_configuration_warnings(); |
| 1466 | |
| 1467 | if (OS::get_singleton()->get_current_rendering_method() == "gl_compatibility" ) { |
| 1468 | warnings.push_back(RTR("LightmapGI nodes are not supported when using the GL Compatibility backend yet. Support will be added in a future release." )); |
| 1469 | return warnings; |
| 1470 | } |
| 1471 | |
| 1472 | return warnings; |
| 1473 | } |
| 1474 | |
| 1475 | void LightmapGI::_validate_property(PropertyInfo &p_property) const { |
| 1476 | if (p_property.name == "environment_custom_sky" && environment_mode != ENVIRONMENT_MODE_CUSTOM_SKY) { |
| 1477 | p_property.usage = PROPERTY_USAGE_NONE; |
| 1478 | } |
| 1479 | if (p_property.name == "environment_custom_color" && environment_mode != ENVIRONMENT_MODE_CUSTOM_COLOR) { |
| 1480 | p_property.usage = PROPERTY_USAGE_NONE; |
| 1481 | } |
| 1482 | if (p_property.name == "environment_custom_energy" && environment_mode != ENVIRONMENT_MODE_CUSTOM_COLOR && environment_mode != ENVIRONMENT_MODE_CUSTOM_SKY) { |
| 1483 | p_property.usage = PROPERTY_USAGE_NONE; |
| 1484 | } |
| 1485 | } |
| 1486 | |
| 1487 | void LightmapGI::_bind_methods() { |
| 1488 | ClassDB::bind_method(D_METHOD("set_light_data" , "data" ), &LightmapGI::set_light_data); |
| 1489 | ClassDB::bind_method(D_METHOD("get_light_data" ), &LightmapGI::get_light_data); |
| 1490 | |
| 1491 | ClassDB::bind_method(D_METHOD("set_bake_quality" , "bake_quality" ), &LightmapGI::set_bake_quality); |
| 1492 | ClassDB::bind_method(D_METHOD("get_bake_quality" ), &LightmapGI::get_bake_quality); |
| 1493 | |
| 1494 | ClassDB::bind_method(D_METHOD("set_bounces" , "bounces" ), &LightmapGI::set_bounces); |
| 1495 | ClassDB::bind_method(D_METHOD("get_bounces" ), &LightmapGI::get_bounces); |
| 1496 | |
| 1497 | ClassDB::bind_method(D_METHOD("set_generate_probes" , "subdivision" ), &LightmapGI::set_generate_probes); |
| 1498 | ClassDB::bind_method(D_METHOD("get_generate_probes" ), &LightmapGI::get_generate_probes); |
| 1499 | |
| 1500 | ClassDB::bind_method(D_METHOD("set_bias" , "bias" ), &LightmapGI::set_bias); |
| 1501 | ClassDB::bind_method(D_METHOD("get_bias" ), &LightmapGI::get_bias); |
| 1502 | |
| 1503 | ClassDB::bind_method(D_METHOD("set_environment_mode" , "mode" ), &LightmapGI::set_environment_mode); |
| 1504 | ClassDB::bind_method(D_METHOD("get_environment_mode" ), &LightmapGI::get_environment_mode); |
| 1505 | |
| 1506 | ClassDB::bind_method(D_METHOD("set_environment_custom_sky" , "sky" ), &LightmapGI::set_environment_custom_sky); |
| 1507 | ClassDB::bind_method(D_METHOD("get_environment_custom_sky" ), &LightmapGI::get_environment_custom_sky); |
| 1508 | |
| 1509 | ClassDB::bind_method(D_METHOD("set_environment_custom_color" , "color" ), &LightmapGI::set_environment_custom_color); |
| 1510 | ClassDB::bind_method(D_METHOD("get_environment_custom_color" ), &LightmapGI::get_environment_custom_color); |
| 1511 | |
| 1512 | ClassDB::bind_method(D_METHOD("set_environment_custom_energy" , "energy" ), &LightmapGI::set_environment_custom_energy); |
| 1513 | ClassDB::bind_method(D_METHOD("get_environment_custom_energy" ), &LightmapGI::get_environment_custom_energy); |
| 1514 | |
| 1515 | ClassDB::bind_method(D_METHOD("set_max_texture_size" , "max_texture_size" ), &LightmapGI::set_max_texture_size); |
| 1516 | ClassDB::bind_method(D_METHOD("get_max_texture_size" ), &LightmapGI::get_max_texture_size); |
| 1517 | |
| 1518 | ClassDB::bind_method(D_METHOD("set_use_denoiser" , "use_denoiser" ), &LightmapGI::set_use_denoiser); |
| 1519 | ClassDB::bind_method(D_METHOD("is_using_denoiser" ), &LightmapGI::is_using_denoiser); |
| 1520 | |
| 1521 | ClassDB::bind_method(D_METHOD("set_interior" , "enable" ), &LightmapGI::set_interior); |
| 1522 | ClassDB::bind_method(D_METHOD("is_interior" ), &LightmapGI::is_interior); |
| 1523 | |
| 1524 | ClassDB::bind_method(D_METHOD("set_directional" , "directional" ), &LightmapGI::set_directional); |
| 1525 | ClassDB::bind_method(D_METHOD("is_directional" ), &LightmapGI::is_directional); |
| 1526 | |
| 1527 | ClassDB::bind_method(D_METHOD("set_camera_attributes" , "camera_attributes" ), &LightmapGI::set_camera_attributes); |
| 1528 | ClassDB::bind_method(D_METHOD("get_camera_attributes" ), &LightmapGI::get_camera_attributes); |
| 1529 | |
| 1530 | // ClassDB::bind_method(D_METHOD("bake", "from_node"), &LightmapGI::bake, DEFVAL(Variant())); |
| 1531 | |
| 1532 | ADD_GROUP("Tweaks" , "" ); |
| 1533 | ADD_PROPERTY(PropertyInfo(Variant::INT, "quality" , PROPERTY_HINT_ENUM, "Low,Medium,High,Ultra" ), "set_bake_quality" , "get_bake_quality" ); |
| 1534 | ADD_PROPERTY(PropertyInfo(Variant::INT, "bounces" , PROPERTY_HINT_RANGE, "0,16,1" ), "set_bounces" , "get_bounces" ); |
| 1535 | ADD_PROPERTY(PropertyInfo(Variant::BOOL, "directional" ), "set_directional" , "is_directional" ); |
| 1536 | ADD_PROPERTY(PropertyInfo(Variant::BOOL, "interior" ), "set_interior" , "is_interior" ); |
| 1537 | ADD_PROPERTY(PropertyInfo(Variant::BOOL, "use_denoiser" ), "set_use_denoiser" , "is_using_denoiser" ); |
| 1538 | ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "bias" , PROPERTY_HINT_RANGE, "0.00001,0.1,0.00001,or_greater" ), "set_bias" , "get_bias" ); |
| 1539 | ADD_PROPERTY(PropertyInfo(Variant::INT, "max_texture_size" , PROPERTY_HINT_RANGE, "2048,16384,1" ), "set_max_texture_size" , "get_max_texture_size" ); |
| 1540 | ADD_GROUP("Environment" , "environment_" ); |
| 1541 | ADD_PROPERTY(PropertyInfo(Variant::INT, "environment_mode" , PROPERTY_HINT_ENUM, "Disabled,Scene,Custom Sky,Custom Color" ), "set_environment_mode" , "get_environment_mode" ); |
| 1542 | ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "environment_custom_sky" , PROPERTY_HINT_RESOURCE_TYPE, "Sky" ), "set_environment_custom_sky" , "get_environment_custom_sky" ); |
| 1543 | ADD_PROPERTY(PropertyInfo(Variant::COLOR, "environment_custom_color" , PROPERTY_HINT_COLOR_NO_ALPHA), "set_environment_custom_color" , "get_environment_custom_color" ); |
| 1544 | ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "environment_custom_energy" , PROPERTY_HINT_RANGE, "0,64,0.01" ), "set_environment_custom_energy" , "get_environment_custom_energy" ); |
| 1545 | ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "camera_attributes" , PROPERTY_HINT_RESOURCE_TYPE, "CameraAttributesPractical,CameraAttributesPhysical" ), "set_camera_attributes" , "get_camera_attributes" ); |
| 1546 | ADD_GROUP("Gen Probes" , "generate_probes_" ); |
| 1547 | ADD_PROPERTY(PropertyInfo(Variant::INT, "generate_probes_subdiv" , PROPERTY_HINT_ENUM, "Disabled,4,8,16,32" ), "set_generate_probes" , "get_generate_probes" ); |
| 1548 | ADD_GROUP("Data" , "" ); |
| 1549 | ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "light_data" , PROPERTY_HINT_RESOURCE_TYPE, "LightmapGIData" ), "set_light_data" , "get_light_data" ); |
| 1550 | |
| 1551 | BIND_ENUM_CONSTANT(BAKE_QUALITY_LOW); |
| 1552 | BIND_ENUM_CONSTANT(BAKE_QUALITY_MEDIUM); |
| 1553 | BIND_ENUM_CONSTANT(BAKE_QUALITY_HIGH); |
| 1554 | BIND_ENUM_CONSTANT(BAKE_QUALITY_ULTRA); |
| 1555 | |
| 1556 | BIND_ENUM_CONSTANT(GENERATE_PROBES_DISABLED); |
| 1557 | BIND_ENUM_CONSTANT(GENERATE_PROBES_SUBDIV_4); |
| 1558 | BIND_ENUM_CONSTANT(GENERATE_PROBES_SUBDIV_8); |
| 1559 | BIND_ENUM_CONSTANT(GENERATE_PROBES_SUBDIV_16); |
| 1560 | BIND_ENUM_CONSTANT(GENERATE_PROBES_SUBDIV_32); |
| 1561 | |
| 1562 | BIND_ENUM_CONSTANT(BAKE_ERROR_OK); |
| 1563 | BIND_ENUM_CONSTANT(BAKE_ERROR_NO_SCENE_ROOT); |
| 1564 | BIND_ENUM_CONSTANT(BAKE_ERROR_FOREIGN_DATA); |
| 1565 | BIND_ENUM_CONSTANT(BAKE_ERROR_NO_LIGHTMAPPER); |
| 1566 | BIND_ENUM_CONSTANT(BAKE_ERROR_NO_SAVE_PATH); |
| 1567 | BIND_ENUM_CONSTANT(BAKE_ERROR_NO_MESHES); |
| 1568 | BIND_ENUM_CONSTANT(BAKE_ERROR_MESHES_INVALID); |
| 1569 | BIND_ENUM_CONSTANT(BAKE_ERROR_CANT_CREATE_IMAGE); |
| 1570 | BIND_ENUM_CONSTANT(BAKE_ERROR_USER_ABORTED); |
| 1571 | BIND_ENUM_CONSTANT(BAKE_ERROR_TEXTURE_SIZE_TOO_SMALL); |
| 1572 | |
| 1573 | BIND_ENUM_CONSTANT(ENVIRONMENT_MODE_DISABLED); |
| 1574 | BIND_ENUM_CONSTANT(ENVIRONMENT_MODE_SCENE); |
| 1575 | BIND_ENUM_CONSTANT(ENVIRONMENT_MODE_CUSTOM_SKY); |
| 1576 | BIND_ENUM_CONSTANT(ENVIRONMENT_MODE_CUSTOM_COLOR); |
| 1577 | } |
| 1578 | |
| 1579 | LightmapGI::LightmapGI() { |
| 1580 | } |
| 1581 | |