1 | /**************************************************************************/ |
2 | /* godot_collision_solver_3d.cpp */ |
3 | /**************************************************************************/ |
4 | /* This file is part of: */ |
5 | /* GODOT ENGINE */ |
6 | /* https://godotengine.org */ |
7 | /**************************************************************************/ |
8 | /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */ |
9 | /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */ |
10 | /* */ |
11 | /* Permission is hereby granted, free of charge, to any person obtaining */ |
12 | /* a copy of this software and associated documentation files (the */ |
13 | /* "Software"), to deal in the Software without restriction, including */ |
14 | /* without limitation the rights to use, copy, modify, merge, publish, */ |
15 | /* distribute, sublicense, and/or sell copies of the Software, and to */ |
16 | /* permit persons to whom the Software is furnished to do so, subject to */ |
17 | /* the following conditions: */ |
18 | /* */ |
19 | /* The above copyright notice and this permission notice shall be */ |
20 | /* included in all copies or substantial portions of the Software. */ |
21 | /* */ |
22 | /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ |
23 | /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ |
24 | /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */ |
25 | /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ |
26 | /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ |
27 | /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ |
28 | /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ |
29 | /**************************************************************************/ |
30 | |
31 | #include "godot_collision_solver_3d.h" |
32 | |
33 | #include "godot_collision_solver_3d_sat.h" |
34 | #include "godot_soft_body_3d.h" |
35 | |
36 | #include "gjk_epa.h" |
37 | |
38 | #define collision_solver sat_calculate_penetration |
39 | //#define collision_solver gjk_epa_calculate_penetration |
40 | |
41 | bool GodotCollisionSolver3D::solve_static_world_boundary(const GodotShape3D *p_shape_A, const Transform3D &p_transform_A, const GodotShape3D *p_shape_B, const Transform3D &p_transform_B, CallbackResult p_result_callback, void *p_userdata, bool p_swap_result, real_t p_margin) { |
42 | const GodotWorldBoundaryShape3D *world_boundary = static_cast<const GodotWorldBoundaryShape3D *>(p_shape_A); |
43 | if (p_shape_B->get_type() == PhysicsServer3D::SHAPE_WORLD_BOUNDARY) { |
44 | return false; |
45 | } |
46 | Plane p = p_transform_A.xform(world_boundary->get_plane()); |
47 | |
48 | static const int max_supports = 16; |
49 | Vector3 supports[max_supports]; |
50 | int support_count; |
51 | GodotShape3D::FeatureType support_type = GodotShape3D::FeatureType::FEATURE_POINT; |
52 | p_shape_B->get_supports(p_transform_B.basis.xform_inv(-p.normal).normalized(), max_supports, supports, support_count, support_type); |
53 | |
54 | if (support_type == GodotShape3D::FEATURE_CIRCLE) { |
55 | ERR_FAIL_COND_V(support_count != 3, false); |
56 | |
57 | Vector3 circle_pos = supports[0]; |
58 | Vector3 circle_axis_1 = supports[1] - circle_pos; |
59 | Vector3 circle_axis_2 = supports[2] - circle_pos; |
60 | |
61 | // Use 3 equidistant points on the circle. |
62 | for (int i = 0; i < 3; ++i) { |
63 | Vector3 vertex_pos = circle_pos; |
64 | vertex_pos += circle_axis_1 * Math::cos(2.0 * Math_PI * i / 3.0); |
65 | vertex_pos += circle_axis_2 * Math::sin(2.0 * Math_PI * i / 3.0); |
66 | supports[i] = vertex_pos; |
67 | } |
68 | } |
69 | |
70 | bool found = false; |
71 | |
72 | for (int i = 0; i < support_count; i++) { |
73 | supports[i] += p_margin * supports[i].normalized(); |
74 | supports[i] = p_transform_B.xform(supports[i]); |
75 | if (p.distance_to(supports[i]) >= 0) { |
76 | continue; |
77 | } |
78 | found = true; |
79 | |
80 | Vector3 support_A = p.project(supports[i]); |
81 | |
82 | if (p_result_callback) { |
83 | if (p_swap_result) { |
84 | Vector3 normal = (support_A - supports[i]).normalized(); |
85 | p_result_callback(supports[i], 0, support_A, 0, normal, p_userdata); |
86 | } else { |
87 | Vector3 normal = (supports[i] - support_A).normalized(); |
88 | p_result_callback(support_A, 0, supports[i], 0, normal, p_userdata); |
89 | } |
90 | } |
91 | } |
92 | |
93 | return found; |
94 | } |
95 | |
96 | bool GodotCollisionSolver3D::solve_separation_ray(const GodotShape3D *p_shape_A, const Transform3D &p_transform_A, const GodotShape3D *p_shape_B, const Transform3D &p_transform_B, CallbackResult p_result_callback, void *p_userdata, bool p_swap_result, real_t p_margin) { |
97 | const GodotSeparationRayShape3D *ray = static_cast<const GodotSeparationRayShape3D *>(p_shape_A); |
98 | |
99 | Vector3 from = p_transform_A.origin; |
100 | Vector3 to = from + p_transform_A.basis.get_column(2) * (ray->get_length() + p_margin); |
101 | Vector3 support_A = to; |
102 | |
103 | Transform3D ai = p_transform_B.affine_inverse(); |
104 | |
105 | from = ai.xform(from); |
106 | to = ai.xform(to); |
107 | |
108 | Vector3 p, n; |
109 | int fi = -1; |
110 | if (!p_shape_B->intersect_segment(from, to, p, n, fi, true)) { |
111 | return false; |
112 | } |
113 | |
114 | // Discard contacts when the ray is fully contained inside the shape. |
115 | if (n == Vector3()) { |
116 | return false; |
117 | } |
118 | |
119 | // Discard contacts in the wrong direction. |
120 | if (n.dot(from - to) < CMP_EPSILON) { |
121 | return false; |
122 | } |
123 | |
124 | Vector3 support_B = p_transform_B.xform(p); |
125 | if (ray->get_slide_on_slope()) { |
126 | Vector3 global_n = ai.basis.xform_inv(n).normalized(); |
127 | support_B = support_A + (support_B - support_A).length() * global_n; |
128 | } |
129 | |
130 | if (p_result_callback) { |
131 | Vector3 normal = (support_B - support_A).normalized(); |
132 | if (p_swap_result) { |
133 | p_result_callback(support_B, 0, support_A, 0, -normal, p_userdata); |
134 | } else { |
135 | p_result_callback(support_A, 0, support_B, 0, normal, p_userdata); |
136 | } |
137 | } |
138 | return true; |
139 | } |
140 | |
141 | struct _SoftBodyContactCollisionInfo { |
142 | int node_index = 0; |
143 | GodotCollisionSolver3D::CallbackResult result_callback = nullptr; |
144 | void *userdata = nullptr; |
145 | bool swap_result = false; |
146 | int contact_count = 0; |
147 | }; |
148 | |
149 | void GodotCollisionSolver3D::soft_body_contact_callback(const Vector3 &p_point_A, int p_index_A, const Vector3 &p_point_B, int p_index_B, const Vector3 &normal, void *p_userdata) { |
150 | _SoftBodyContactCollisionInfo &cinfo = *(static_cast<_SoftBodyContactCollisionInfo *>(p_userdata)); |
151 | |
152 | ++cinfo.contact_count; |
153 | |
154 | if (!cinfo.result_callback) { |
155 | return; |
156 | } |
157 | |
158 | if (cinfo.swap_result) { |
159 | cinfo.result_callback(p_point_B, cinfo.node_index, p_point_A, p_index_A, -normal, cinfo.userdata); |
160 | } else { |
161 | cinfo.result_callback(p_point_A, p_index_A, p_point_B, cinfo.node_index, normal, cinfo.userdata); |
162 | } |
163 | } |
164 | |
165 | struct _SoftBodyQueryInfo { |
166 | GodotSoftBody3D *soft_body = nullptr; |
167 | const GodotShape3D *shape_A = nullptr; |
168 | const GodotShape3D *shape_B = nullptr; |
169 | Transform3D transform_A; |
170 | Transform3D node_transform; |
171 | _SoftBodyContactCollisionInfo contact_info; |
172 | #ifdef DEBUG_ENABLED |
173 | int node_query_count = 0; |
174 | int convex_query_count = 0; |
175 | #endif |
176 | }; |
177 | |
178 | bool GodotCollisionSolver3D::soft_body_query_callback(uint32_t p_node_index, void *p_userdata) { |
179 | _SoftBodyQueryInfo &query_cinfo = *(static_cast<_SoftBodyQueryInfo *>(p_userdata)); |
180 | |
181 | Vector3 node_position = query_cinfo.soft_body->get_node_position(p_node_index); |
182 | |
183 | Transform3D transform_B; |
184 | transform_B.origin = query_cinfo.node_transform.xform(node_position); |
185 | |
186 | query_cinfo.contact_info.node_index = p_node_index; |
187 | bool collided = solve_static(query_cinfo.shape_A, query_cinfo.transform_A, query_cinfo.shape_B, transform_B, soft_body_contact_callback, &query_cinfo.contact_info); |
188 | |
189 | #ifdef DEBUG_ENABLED |
190 | ++query_cinfo.node_query_count; |
191 | #endif |
192 | |
193 | // Stop at first collision if contacts are not needed. |
194 | return (collided && !query_cinfo.contact_info.result_callback); |
195 | } |
196 | |
197 | bool GodotCollisionSolver3D::soft_body_concave_callback(void *p_userdata, GodotShape3D *p_convex) { |
198 | _SoftBodyQueryInfo &query_cinfo = *(static_cast<_SoftBodyQueryInfo *>(p_userdata)); |
199 | |
200 | query_cinfo.shape_A = p_convex; |
201 | |
202 | // Calculate AABB for internal soft body query (in world space). |
203 | AABB shape_aabb; |
204 | for (int i = 0; i < 3; i++) { |
205 | Vector3 axis; |
206 | axis[i] = 1.0; |
207 | |
208 | real_t smin, smax; |
209 | p_convex->project_range(axis, query_cinfo.transform_A, smin, smax); |
210 | |
211 | shape_aabb.position[i] = smin; |
212 | shape_aabb.size[i] = smax - smin; |
213 | } |
214 | |
215 | shape_aabb.grow_by(query_cinfo.soft_body->get_collision_margin()); |
216 | |
217 | query_cinfo.soft_body->query_aabb(shape_aabb, soft_body_query_callback, &query_cinfo); |
218 | |
219 | bool collided = (query_cinfo.contact_info.contact_count > 0); |
220 | |
221 | #ifdef DEBUG_ENABLED |
222 | ++query_cinfo.convex_query_count; |
223 | #endif |
224 | |
225 | // Stop at first collision if contacts are not needed. |
226 | return (collided && !query_cinfo.contact_info.result_callback); |
227 | } |
228 | |
229 | bool GodotCollisionSolver3D::solve_soft_body(const GodotShape3D *p_shape_A, const Transform3D &p_transform_A, const GodotShape3D *p_shape_B, const Transform3D &p_transform_B, CallbackResult p_result_callback, void *p_userdata, bool p_swap_result) { |
230 | const GodotSoftBodyShape3D *soft_body_shape_B = static_cast<const GodotSoftBodyShape3D *>(p_shape_B); |
231 | |
232 | GodotSoftBody3D *soft_body = soft_body_shape_B->get_soft_body(); |
233 | const Transform3D &world_to_local = soft_body->get_inv_transform(); |
234 | |
235 | const real_t collision_margin = soft_body->get_collision_margin(); |
236 | |
237 | GodotSphereShape3D sphere_shape; |
238 | sphere_shape.set_data(collision_margin); |
239 | |
240 | _SoftBodyQueryInfo query_cinfo; |
241 | query_cinfo.contact_info.result_callback = p_result_callback; |
242 | query_cinfo.contact_info.userdata = p_userdata; |
243 | query_cinfo.contact_info.swap_result = p_swap_result; |
244 | query_cinfo.soft_body = soft_body; |
245 | query_cinfo.node_transform = p_transform_B * world_to_local; |
246 | query_cinfo.shape_A = p_shape_A; |
247 | query_cinfo.transform_A = p_transform_A; |
248 | query_cinfo.shape_B = &sphere_shape; |
249 | |
250 | if (p_shape_A->is_concave()) { |
251 | // In case of concave shape, query convex shapes first. |
252 | const GodotConcaveShape3D *concave_shape_A = static_cast<const GodotConcaveShape3D *>(p_shape_A); |
253 | |
254 | AABB soft_body_aabb = soft_body->get_bounds(); |
255 | soft_body_aabb.grow_by(collision_margin); |
256 | |
257 | // Calculate AABB for internal concave shape query (in local space). |
258 | AABB local_aabb; |
259 | for (int i = 0; i < 3; i++) { |
260 | Vector3 axis(p_transform_A.basis.get_column(i)); |
261 | real_t axis_scale = 1.0 / axis.length(); |
262 | |
263 | real_t smin = soft_body_aabb.position[i]; |
264 | real_t smax = smin + soft_body_aabb.size[i]; |
265 | |
266 | smin *= axis_scale; |
267 | smax *= axis_scale; |
268 | |
269 | local_aabb.position[i] = smin; |
270 | local_aabb.size[i] = smax - smin; |
271 | } |
272 | |
273 | concave_shape_A->cull(local_aabb, soft_body_concave_callback, &query_cinfo, true); |
274 | } else { |
275 | AABB shape_aabb = p_transform_A.xform(p_shape_A->get_aabb()); |
276 | shape_aabb.grow_by(collision_margin); |
277 | |
278 | soft_body->query_aabb(shape_aabb, soft_body_query_callback, &query_cinfo); |
279 | } |
280 | |
281 | return (query_cinfo.contact_info.contact_count > 0); |
282 | } |
283 | |
284 | struct _ConcaveCollisionInfo { |
285 | const Transform3D *transform_A = nullptr; |
286 | const GodotShape3D *shape_A = nullptr; |
287 | const Transform3D *transform_B = nullptr; |
288 | GodotCollisionSolver3D::CallbackResult result_callback = nullptr; |
289 | void *userdata = nullptr; |
290 | bool swap_result = false; |
291 | bool collided = false; |
292 | int aabb_tests = 0; |
293 | int collisions = 0; |
294 | bool tested = false; |
295 | real_t margin_A = 0.0f; |
296 | real_t margin_B = 0.0f; |
297 | Vector3 close_A; |
298 | Vector3 close_B; |
299 | }; |
300 | |
301 | bool GodotCollisionSolver3D::concave_callback(void *p_userdata, GodotShape3D *p_convex) { |
302 | _ConcaveCollisionInfo &cinfo = *(static_cast<_ConcaveCollisionInfo *>(p_userdata)); |
303 | cinfo.aabb_tests++; |
304 | |
305 | bool collided = collision_solver(cinfo.shape_A, *cinfo.transform_A, p_convex, *cinfo.transform_B, cinfo.result_callback, cinfo.userdata, cinfo.swap_result, nullptr, cinfo.margin_A, cinfo.margin_B); |
306 | if (!collided) { |
307 | return false; |
308 | } |
309 | |
310 | cinfo.collided = true; |
311 | cinfo.collisions++; |
312 | |
313 | // Stop at first collision if contacts are not needed. |
314 | return !cinfo.result_callback; |
315 | } |
316 | |
317 | bool GodotCollisionSolver3D::solve_concave(const GodotShape3D *p_shape_A, const Transform3D &p_transform_A, const GodotShape3D *p_shape_B, const Transform3D &p_transform_B, CallbackResult p_result_callback, void *p_userdata, bool p_swap_result, real_t p_margin_A, real_t p_margin_B) { |
318 | const GodotConcaveShape3D *concave_B = static_cast<const GodotConcaveShape3D *>(p_shape_B); |
319 | |
320 | _ConcaveCollisionInfo cinfo; |
321 | cinfo.transform_A = &p_transform_A; |
322 | cinfo.shape_A = p_shape_A; |
323 | cinfo.transform_B = &p_transform_B; |
324 | cinfo.result_callback = p_result_callback; |
325 | cinfo.userdata = p_userdata; |
326 | cinfo.swap_result = p_swap_result; |
327 | cinfo.collided = false; |
328 | cinfo.collisions = 0; |
329 | cinfo.margin_A = p_margin_A; |
330 | cinfo.margin_B = p_margin_B; |
331 | |
332 | cinfo.aabb_tests = 0; |
333 | |
334 | Transform3D rel_transform = p_transform_A; |
335 | rel_transform.origin -= p_transform_B.origin; |
336 | |
337 | //quickly compute a local AABB |
338 | |
339 | AABB local_aabb; |
340 | for (int i = 0; i < 3; i++) { |
341 | Vector3 axis(p_transform_B.basis.get_column(i)); |
342 | real_t axis_scale = 1.0 / axis.length(); |
343 | axis *= axis_scale; |
344 | |
345 | real_t smin = 0.0, smax = 0.0; |
346 | p_shape_A->project_range(axis, rel_transform, smin, smax); |
347 | smin -= p_margin_A; |
348 | smax += p_margin_A; |
349 | smin *= axis_scale; |
350 | smax *= axis_scale; |
351 | |
352 | local_aabb.position[i] = smin; |
353 | local_aabb.size[i] = smax - smin; |
354 | } |
355 | |
356 | concave_B->cull(local_aabb, concave_callback, &cinfo, false); |
357 | |
358 | return cinfo.collided; |
359 | } |
360 | |
361 | bool GodotCollisionSolver3D::solve_static(const GodotShape3D *p_shape_A, const Transform3D &p_transform_A, const GodotShape3D *p_shape_B, const Transform3D &p_transform_B, CallbackResult p_result_callback, void *p_userdata, Vector3 *r_sep_axis, real_t p_margin_A, real_t p_margin_B) { |
362 | PhysicsServer3D::ShapeType type_A = p_shape_A->get_type(); |
363 | PhysicsServer3D::ShapeType type_B = p_shape_B->get_type(); |
364 | bool concave_A = p_shape_A->is_concave(); |
365 | bool concave_B = p_shape_B->is_concave(); |
366 | |
367 | bool swap = false; |
368 | |
369 | if (type_A > type_B) { |
370 | SWAP(type_A, type_B); |
371 | SWAP(concave_A, concave_B); |
372 | swap = true; |
373 | } |
374 | |
375 | if (type_A == PhysicsServer3D::SHAPE_WORLD_BOUNDARY) { |
376 | if (type_B == PhysicsServer3D::SHAPE_WORLD_BOUNDARY) { |
377 | WARN_PRINT_ONCE("Collisions between world boundaries are not supported." ); |
378 | return false; |
379 | } |
380 | if (type_B == PhysicsServer3D::SHAPE_SEPARATION_RAY) { |
381 | WARN_PRINT_ONCE("Collisions between world boundaries and rays are not supported." ); |
382 | return false; |
383 | } |
384 | if (type_B == PhysicsServer3D::SHAPE_SOFT_BODY) { |
385 | WARN_PRINT_ONCE("Collisions between world boundaries and soft bodies are not supported." ); |
386 | return false; |
387 | } |
388 | |
389 | if (swap) { |
390 | return solve_static_world_boundary(p_shape_B, p_transform_B, p_shape_A, p_transform_A, p_result_callback, p_userdata, true, p_margin_A); |
391 | } else { |
392 | return solve_static_world_boundary(p_shape_A, p_transform_A, p_shape_B, p_transform_B, p_result_callback, p_userdata, false, p_margin_B); |
393 | } |
394 | |
395 | } else if (type_A == PhysicsServer3D::SHAPE_SEPARATION_RAY) { |
396 | if (type_B == PhysicsServer3D::SHAPE_SEPARATION_RAY) { |
397 | WARN_PRINT_ONCE("Collisions between rays are not supported." ); |
398 | return false; |
399 | } |
400 | |
401 | if (swap) { |
402 | return solve_separation_ray(p_shape_B, p_transform_B, p_shape_A, p_transform_A, p_result_callback, p_userdata, true, p_margin_B); |
403 | } else { |
404 | return solve_separation_ray(p_shape_A, p_transform_A, p_shape_B, p_transform_B, p_result_callback, p_userdata, false, p_margin_A); |
405 | } |
406 | |
407 | } else if (type_B == PhysicsServer3D::SHAPE_SOFT_BODY) { |
408 | if (type_A == PhysicsServer3D::SHAPE_SOFT_BODY) { |
409 | WARN_PRINT_ONCE("Collisions between soft bodies are not supported." ); |
410 | return false; |
411 | } |
412 | |
413 | if (swap) { |
414 | return solve_soft_body(p_shape_B, p_transform_B, p_shape_A, p_transform_A, p_result_callback, p_userdata, true); |
415 | } else { |
416 | return solve_soft_body(p_shape_A, p_transform_A, p_shape_B, p_transform_B, p_result_callback, p_userdata, false); |
417 | } |
418 | |
419 | } else if (concave_B) { |
420 | if (concave_A) { |
421 | WARN_PRINT_ONCE("Collisions between two concave shapes are not supported." ); |
422 | return false; |
423 | } |
424 | |
425 | if (!swap) { |
426 | return solve_concave(p_shape_A, p_transform_A, p_shape_B, p_transform_B, p_result_callback, p_userdata, false, p_margin_A, p_margin_B); |
427 | } else { |
428 | return solve_concave(p_shape_B, p_transform_B, p_shape_A, p_transform_A, p_result_callback, p_userdata, true, p_margin_A, p_margin_B); |
429 | } |
430 | |
431 | } else { |
432 | return collision_solver(p_shape_A, p_transform_A, p_shape_B, p_transform_B, p_result_callback, p_userdata, false, r_sep_axis, p_margin_A, p_margin_B); |
433 | } |
434 | } |
435 | |
436 | bool GodotCollisionSolver3D::concave_distance_callback(void *p_userdata, GodotShape3D *p_convex) { |
437 | _ConcaveCollisionInfo &cinfo = *(static_cast<_ConcaveCollisionInfo *>(p_userdata)); |
438 | cinfo.aabb_tests++; |
439 | |
440 | Vector3 close_A, close_B; |
441 | cinfo.collided = !gjk_epa_calculate_distance(cinfo.shape_A, *cinfo.transform_A, p_convex, *cinfo.transform_B, close_A, close_B); |
442 | |
443 | if (cinfo.collided) { |
444 | // No need to process any more result. |
445 | return true; |
446 | } |
447 | |
448 | if (!cinfo.tested || close_A.distance_squared_to(close_B) < cinfo.close_A.distance_squared_to(cinfo.close_B)) { |
449 | cinfo.close_A = close_A; |
450 | cinfo.close_B = close_B; |
451 | cinfo.tested = true; |
452 | } |
453 | |
454 | cinfo.collisions++; |
455 | return false; |
456 | } |
457 | |
458 | bool GodotCollisionSolver3D::solve_distance_world_boundary(const GodotShape3D *p_shape_A, const Transform3D &p_transform_A, const GodotShape3D *p_shape_B, const Transform3D &p_transform_B, Vector3 &r_point_A, Vector3 &r_point_B) { |
459 | const GodotWorldBoundaryShape3D *world_boundary = static_cast<const GodotWorldBoundaryShape3D *>(p_shape_A); |
460 | if (p_shape_B->get_type() == PhysicsServer3D::SHAPE_WORLD_BOUNDARY) { |
461 | return false; |
462 | } |
463 | Plane p = p_transform_A.xform(world_boundary->get_plane()); |
464 | |
465 | static const int max_supports = 16; |
466 | Vector3 supports[max_supports]; |
467 | int support_count; |
468 | GodotShape3D::FeatureType support_type; |
469 | Vector3 support_direction = p_transform_B.basis.xform_inv(-p.normal).normalized(); |
470 | |
471 | p_shape_B->get_supports(support_direction, max_supports, supports, support_count, support_type); |
472 | |
473 | if (support_count == 0) { // This is a poor man's way to detect shapes that don't implement get_supports, such as GodotMotionShape3D. |
474 | Vector3 support_B = p_transform_B.xform(p_shape_B->get_support(support_direction)); |
475 | r_point_A = p.project(support_B); |
476 | r_point_B = support_B; |
477 | bool collided = p.distance_to(support_B) <= 0; |
478 | return collided; |
479 | } |
480 | |
481 | if (support_type == GodotShape3D::FEATURE_CIRCLE) { |
482 | ERR_FAIL_COND_V(support_count != 3, false); |
483 | |
484 | Vector3 circle_pos = supports[0]; |
485 | Vector3 circle_axis_1 = supports[1] - circle_pos; |
486 | Vector3 circle_axis_2 = supports[2] - circle_pos; |
487 | |
488 | // Use 3 equidistant points on the circle. |
489 | for (int i = 0; i < 3; ++i) { |
490 | Vector3 vertex_pos = circle_pos; |
491 | vertex_pos += circle_axis_1 * Math::cos(2.0 * Math_PI * i / 3.0); |
492 | vertex_pos += circle_axis_2 * Math::sin(2.0 * Math_PI * i / 3.0); |
493 | supports[i] = vertex_pos; |
494 | } |
495 | } |
496 | |
497 | bool collided = false; |
498 | Vector3 closest; |
499 | real_t closest_d = 0; |
500 | |
501 | for (int i = 0; i < support_count; i++) { |
502 | supports[i] = p_transform_B.xform(supports[i]); |
503 | real_t d = p.distance_to(supports[i]); |
504 | if (i == 0 || d < closest_d) { |
505 | closest = supports[i]; |
506 | closest_d = d; |
507 | if (d <= 0) { |
508 | collided = true; |
509 | } |
510 | } |
511 | } |
512 | |
513 | r_point_A = p.project(closest); |
514 | r_point_B = closest; |
515 | |
516 | return collided; |
517 | } |
518 | |
519 | bool GodotCollisionSolver3D::solve_distance(const GodotShape3D *p_shape_A, const Transform3D &p_transform_A, const GodotShape3D *p_shape_B, const Transform3D &p_transform_B, Vector3 &r_point_A, Vector3 &r_point_B, const AABB &p_concave_hint, Vector3 *r_sep_axis) { |
520 | if (p_shape_B->get_type() == PhysicsServer3D::SHAPE_WORLD_BOUNDARY) { |
521 | Vector3 a, b; |
522 | bool col = solve_distance_world_boundary(p_shape_B, p_transform_B, p_shape_A, p_transform_A, a, b); |
523 | r_point_A = b; |
524 | r_point_B = a; |
525 | return !col; |
526 | |
527 | } else if (p_shape_B->is_concave()) { |
528 | if (p_shape_A->is_concave()) { |
529 | return false; |
530 | } |
531 | |
532 | const GodotConcaveShape3D *concave_B = static_cast<const GodotConcaveShape3D *>(p_shape_B); |
533 | |
534 | _ConcaveCollisionInfo cinfo; |
535 | cinfo.transform_A = &p_transform_A; |
536 | cinfo.shape_A = p_shape_A; |
537 | cinfo.transform_B = &p_transform_B; |
538 | cinfo.result_callback = nullptr; |
539 | cinfo.userdata = nullptr; |
540 | cinfo.swap_result = false; |
541 | cinfo.collided = false; |
542 | cinfo.collisions = 0; |
543 | cinfo.aabb_tests = 0; |
544 | cinfo.tested = false; |
545 | |
546 | Transform3D rel_transform = p_transform_A; |
547 | rel_transform.origin -= p_transform_B.origin; |
548 | |
549 | //quickly compute a local AABB |
550 | |
551 | bool use_cc_hint = p_concave_hint != AABB(); |
552 | AABB cc_hint_aabb; |
553 | if (use_cc_hint) { |
554 | cc_hint_aabb = p_concave_hint; |
555 | cc_hint_aabb.position -= p_transform_B.origin; |
556 | } |
557 | |
558 | AABB local_aabb; |
559 | for (int i = 0; i < 3; i++) { |
560 | Vector3 axis(p_transform_B.basis.get_column(i)); |
561 | real_t axis_scale = ((real_t)1.0) / axis.length(); |
562 | axis *= axis_scale; |
563 | |
564 | real_t smin, smax; |
565 | |
566 | if (use_cc_hint) { |
567 | cc_hint_aabb.project_range_in_plane(Plane(axis), smin, smax); |
568 | } else { |
569 | p_shape_A->project_range(axis, rel_transform, smin, smax); |
570 | } |
571 | |
572 | smin *= axis_scale; |
573 | smax *= axis_scale; |
574 | |
575 | local_aabb.position[i] = smin; |
576 | local_aabb.size[i] = smax - smin; |
577 | } |
578 | |
579 | concave_B->cull(local_aabb, concave_distance_callback, &cinfo, false); |
580 | if (!cinfo.collided) { |
581 | r_point_A = cinfo.close_A; |
582 | r_point_B = cinfo.close_B; |
583 | } |
584 | |
585 | return !cinfo.collided; |
586 | } else { |
587 | return gjk_epa_calculate_distance(p_shape_A, p_transform_A, p_shape_B, p_transform_B, r_point_A, r_point_B); //should pass sepaxis.. |
588 | } |
589 | } |
590 | |