1 | /**************************************************************************/ |
2 | /* godot_cone_twist_joint_3d.cpp */ |
3 | /**************************************************************************/ |
4 | /* This file is part of: */ |
5 | /* GODOT ENGINE */ |
6 | /* https://godotengine.org */ |
7 | /**************************************************************************/ |
8 | /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */ |
9 | /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */ |
10 | /* */ |
11 | /* Permission is hereby granted, free of charge, to any person obtaining */ |
12 | /* a copy of this software and associated documentation files (the */ |
13 | /* "Software"), to deal in the Software without restriction, including */ |
14 | /* without limitation the rights to use, copy, modify, merge, publish, */ |
15 | /* distribute, sublicense, and/or sell copies of the Software, and to */ |
16 | /* permit persons to whom the Software is furnished to do so, subject to */ |
17 | /* the following conditions: */ |
18 | /* */ |
19 | /* The above copyright notice and this permission notice shall be */ |
20 | /* included in all copies or substantial portions of the Software. */ |
21 | /* */ |
22 | /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ |
23 | /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ |
24 | /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */ |
25 | /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ |
26 | /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ |
27 | /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ |
28 | /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ |
29 | /**************************************************************************/ |
30 | |
31 | /* |
32 | Adapted to Godot from the Bullet library. |
33 | */ |
34 | |
35 | /* |
36 | Bullet Continuous Collision Detection and Physics Library |
37 | ConeTwistJointSW is Copyright (c) 2007 Starbreeze Studios |
38 | |
39 | This software is provided 'as-is', without any express or implied warranty. |
40 | In no event will the authors be held liable for any damages arising from the use of this software. |
41 | Permission is granted to anyone to use this software for any purpose, |
42 | including commercial applications, and to alter it and redistribute it freely, |
43 | subject to the following restrictions: |
44 | |
45 | 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. |
46 | 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. |
47 | 3. This notice may not be removed or altered from any source distribution. |
48 | |
49 | Written by: Marcus Hennix |
50 | */ |
51 | |
52 | #include "godot_cone_twist_joint_3d.h" |
53 | |
54 | GodotConeTwistJoint3D::GodotConeTwistJoint3D(GodotBody3D *rbA, GodotBody3D *rbB, const Transform3D &rbAFrame, const Transform3D &rbBFrame) : |
55 | GodotJoint3D(_arr, 2) { |
56 | A = rbA; |
57 | B = rbB; |
58 | |
59 | m_rbAFrame = rbAFrame; |
60 | m_rbBFrame = rbBFrame; |
61 | |
62 | A->add_constraint(this, 0); |
63 | B->add_constraint(this, 1); |
64 | } |
65 | |
66 | bool GodotConeTwistJoint3D::setup(real_t p_timestep) { |
67 | dynamic_A = (A->get_mode() > PhysicsServer3D::BODY_MODE_KINEMATIC); |
68 | dynamic_B = (B->get_mode() > PhysicsServer3D::BODY_MODE_KINEMATIC); |
69 | |
70 | if (!dynamic_A && !dynamic_B) { |
71 | return false; |
72 | } |
73 | |
74 | m_appliedImpulse = real_t(0.); |
75 | |
76 | //set bias, sign, clear accumulator |
77 | m_swingCorrection = real_t(0.); |
78 | m_twistLimitSign = real_t(0.); |
79 | m_solveTwistLimit = false; |
80 | m_solveSwingLimit = false; |
81 | m_accTwistLimitImpulse = real_t(0.); |
82 | m_accSwingLimitImpulse = real_t(0.); |
83 | |
84 | if (!m_angularOnly) { |
85 | Vector3 pivotAInW = A->get_transform().xform(m_rbAFrame.origin); |
86 | Vector3 pivotBInW = B->get_transform().xform(m_rbBFrame.origin); |
87 | Vector3 relPos = pivotBInW - pivotAInW; |
88 | |
89 | Vector3 normal[3]; |
90 | if (Math::is_zero_approx(relPos.length_squared())) { |
91 | normal[0] = Vector3(real_t(1.0), 0, 0); |
92 | } else { |
93 | normal[0] = relPos.normalized(); |
94 | } |
95 | |
96 | plane_space(normal[0], normal[1], normal[2]); |
97 | |
98 | for (int i = 0; i < 3; i++) { |
99 | memnew_placement( |
100 | &m_jac[i], |
101 | GodotJacobianEntry3D( |
102 | A->get_principal_inertia_axes().transposed(), |
103 | B->get_principal_inertia_axes().transposed(), |
104 | pivotAInW - A->get_transform().origin - A->get_center_of_mass(), |
105 | pivotBInW - B->get_transform().origin - B->get_center_of_mass(), |
106 | normal[i], |
107 | A->get_inv_inertia(), |
108 | A->get_inv_mass(), |
109 | B->get_inv_inertia(), |
110 | B->get_inv_mass())); |
111 | } |
112 | } |
113 | |
114 | Vector3 b1Axis1, b1Axis2, b1Axis3; |
115 | Vector3 b2Axis1, b2Axis2; |
116 | |
117 | b1Axis1 = A->get_transform().basis.xform(this->m_rbAFrame.basis.get_column(0)); |
118 | b2Axis1 = B->get_transform().basis.xform(this->m_rbBFrame.basis.get_column(0)); |
119 | |
120 | real_t swing1 = real_t(0.), swing2 = real_t(0.); |
121 | |
122 | real_t swx = real_t(0.), swy = real_t(0.); |
123 | real_t thresh = real_t(10.); |
124 | real_t fact; |
125 | |
126 | // Get Frame into world space |
127 | if (m_swingSpan1 >= real_t(0.05f)) { |
128 | b1Axis2 = A->get_transform().basis.xform(this->m_rbAFrame.basis.get_column(1)); |
129 | //swing1 = btAtan2Fast( b2Axis1.dot(b1Axis2),b2Axis1.dot(b1Axis1) ); |
130 | swx = b2Axis1.dot(b1Axis1); |
131 | swy = b2Axis1.dot(b1Axis2); |
132 | swing1 = atan2fast(swy, swx); |
133 | fact = (swy * swy + swx * swx) * thresh * thresh; |
134 | fact = fact / (fact + real_t(1.0)); |
135 | swing1 *= fact; |
136 | } |
137 | |
138 | if (m_swingSpan2 >= real_t(0.05f)) { |
139 | b1Axis3 = A->get_transform().basis.xform(this->m_rbAFrame.basis.get_column(2)); |
140 | //swing2 = btAtan2Fast( b2Axis1.dot(b1Axis3),b2Axis1.dot(b1Axis1) ); |
141 | swx = b2Axis1.dot(b1Axis1); |
142 | swy = b2Axis1.dot(b1Axis3); |
143 | swing2 = atan2fast(swy, swx); |
144 | fact = (swy * swy + swx * swx) * thresh * thresh; |
145 | fact = fact / (fact + real_t(1.0)); |
146 | swing2 *= fact; |
147 | } |
148 | |
149 | real_t RMaxAngle1Sq = 1.0f / (m_swingSpan1 * m_swingSpan1); |
150 | real_t RMaxAngle2Sq = 1.0f / (m_swingSpan2 * m_swingSpan2); |
151 | real_t EllipseAngle = Math::abs(swing1 * swing1) * RMaxAngle1Sq + Math::abs(swing2 * swing2) * RMaxAngle2Sq; |
152 | |
153 | if (EllipseAngle > 1.0f) { |
154 | m_swingCorrection = EllipseAngle - 1.0f; |
155 | m_solveSwingLimit = true; |
156 | |
157 | // Calculate necessary axis & factors |
158 | m_swingAxis = b2Axis1.cross(b1Axis2 * b2Axis1.dot(b1Axis2) + b1Axis3 * b2Axis1.dot(b1Axis3)); |
159 | m_swingAxis.normalize(); |
160 | |
161 | real_t swingAxisSign = (b2Axis1.dot(b1Axis1) >= 0.0f) ? 1.0f : -1.0f; |
162 | m_swingAxis *= swingAxisSign; |
163 | |
164 | m_kSwing = real_t(1.) / (A->compute_angular_impulse_denominator(m_swingAxis) + B->compute_angular_impulse_denominator(m_swingAxis)); |
165 | } |
166 | |
167 | // Twist limits |
168 | if (m_twistSpan >= real_t(0.)) { |
169 | Vector3 b2Axis22 = B->get_transform().basis.xform(this->m_rbBFrame.basis.get_column(1)); |
170 | Quaternion rotationArc = Quaternion(b2Axis1, b1Axis1); |
171 | Vector3 TwistRef = rotationArc.xform(b2Axis22); |
172 | real_t twist = atan2fast(TwistRef.dot(b1Axis3), TwistRef.dot(b1Axis2)); |
173 | |
174 | real_t lockedFreeFactor = (m_twistSpan > real_t(0.05f)) ? m_limitSoftness : real_t(0.); |
175 | if (twist <= -m_twistSpan * lockedFreeFactor) { |
176 | m_twistCorrection = -(twist + m_twistSpan); |
177 | m_solveTwistLimit = true; |
178 | |
179 | m_twistAxis = (b2Axis1 + b1Axis1) * 0.5f; |
180 | m_twistAxis.normalize(); |
181 | m_twistAxis *= -1.0f; |
182 | |
183 | m_kTwist = real_t(1.) / (A->compute_angular_impulse_denominator(m_twistAxis) + B->compute_angular_impulse_denominator(m_twistAxis)); |
184 | |
185 | } else if (twist > m_twistSpan * lockedFreeFactor) { |
186 | m_twistCorrection = (twist - m_twistSpan); |
187 | m_solveTwistLimit = true; |
188 | |
189 | m_twistAxis = (b2Axis1 + b1Axis1) * 0.5f; |
190 | m_twistAxis.normalize(); |
191 | |
192 | m_kTwist = real_t(1.) / (A->compute_angular_impulse_denominator(m_twistAxis) + B->compute_angular_impulse_denominator(m_twistAxis)); |
193 | } |
194 | } |
195 | |
196 | return true; |
197 | } |
198 | |
199 | void GodotConeTwistJoint3D::solve(real_t p_timestep) { |
200 | Vector3 pivotAInW = A->get_transform().xform(m_rbAFrame.origin); |
201 | Vector3 pivotBInW = B->get_transform().xform(m_rbBFrame.origin); |
202 | |
203 | real_t tau = real_t(0.3); |
204 | |
205 | //linear part |
206 | if (!m_angularOnly) { |
207 | Vector3 rel_pos1 = pivotAInW - A->get_transform().origin; |
208 | Vector3 rel_pos2 = pivotBInW - B->get_transform().origin; |
209 | |
210 | Vector3 vel1 = A->get_velocity_in_local_point(rel_pos1); |
211 | Vector3 vel2 = B->get_velocity_in_local_point(rel_pos2); |
212 | Vector3 vel = vel1 - vel2; |
213 | |
214 | for (int i = 0; i < 3; i++) { |
215 | const Vector3 &normal = m_jac[i].m_linearJointAxis; |
216 | real_t jacDiagABInv = real_t(1.) / m_jac[i].getDiagonal(); |
217 | |
218 | real_t rel_vel; |
219 | rel_vel = normal.dot(vel); |
220 | //positional error (zeroth order error) |
221 | real_t depth = -(pivotAInW - pivotBInW).dot(normal); //this is the error projected on the normal |
222 | real_t impulse = depth * tau / p_timestep * jacDiagABInv - rel_vel * jacDiagABInv; |
223 | m_appliedImpulse += impulse; |
224 | Vector3 impulse_vector = normal * impulse; |
225 | if (dynamic_A) { |
226 | A->apply_impulse(impulse_vector, pivotAInW - A->get_transform().origin); |
227 | } |
228 | if (dynamic_B) { |
229 | B->apply_impulse(-impulse_vector, pivotBInW - B->get_transform().origin); |
230 | } |
231 | } |
232 | } |
233 | |
234 | { |
235 | ///solve angular part |
236 | const Vector3 &angVelA = A->get_angular_velocity(); |
237 | const Vector3 &angVelB = B->get_angular_velocity(); |
238 | |
239 | // solve swing limit |
240 | if (m_solveSwingLimit) { |
241 | real_t amplitude = ((angVelB - angVelA).dot(m_swingAxis) * m_relaxationFactor * m_relaxationFactor + m_swingCorrection * (real_t(1.) / p_timestep) * m_biasFactor); |
242 | real_t impulseMag = amplitude * m_kSwing; |
243 | |
244 | // Clamp the accumulated impulse |
245 | real_t temp = m_accSwingLimitImpulse; |
246 | m_accSwingLimitImpulse = MAX(m_accSwingLimitImpulse + impulseMag, real_t(0.0)); |
247 | impulseMag = m_accSwingLimitImpulse - temp; |
248 | |
249 | Vector3 impulse = m_swingAxis * impulseMag; |
250 | |
251 | if (dynamic_A) { |
252 | A->apply_torque_impulse(impulse); |
253 | } |
254 | if (dynamic_B) { |
255 | B->apply_torque_impulse(-impulse); |
256 | } |
257 | } |
258 | |
259 | // solve twist limit |
260 | if (m_solveTwistLimit) { |
261 | real_t amplitude = ((angVelB - angVelA).dot(m_twistAxis) * m_relaxationFactor * m_relaxationFactor + m_twistCorrection * (real_t(1.) / p_timestep) * m_biasFactor); |
262 | real_t impulseMag = amplitude * m_kTwist; |
263 | |
264 | // Clamp the accumulated impulse |
265 | real_t temp = m_accTwistLimitImpulse; |
266 | m_accTwistLimitImpulse = MAX(m_accTwistLimitImpulse + impulseMag, real_t(0.0)); |
267 | impulseMag = m_accTwistLimitImpulse - temp; |
268 | |
269 | Vector3 impulse = m_twistAxis * impulseMag; |
270 | |
271 | if (dynamic_A) { |
272 | A->apply_torque_impulse(impulse); |
273 | } |
274 | if (dynamic_B) { |
275 | B->apply_torque_impulse(-impulse); |
276 | } |
277 | } |
278 | } |
279 | } |
280 | |
281 | void GodotConeTwistJoint3D::set_param(PhysicsServer3D::ConeTwistJointParam p_param, real_t p_value) { |
282 | switch (p_param) { |
283 | case PhysicsServer3D::CONE_TWIST_JOINT_SWING_SPAN: { |
284 | m_swingSpan1 = p_value; |
285 | m_swingSpan2 = p_value; |
286 | } break; |
287 | case PhysicsServer3D::CONE_TWIST_JOINT_TWIST_SPAN: { |
288 | m_twistSpan = p_value; |
289 | } break; |
290 | case PhysicsServer3D::CONE_TWIST_JOINT_BIAS: { |
291 | m_biasFactor = p_value; |
292 | } break; |
293 | case PhysicsServer3D::CONE_TWIST_JOINT_SOFTNESS: { |
294 | m_limitSoftness = p_value; |
295 | } break; |
296 | case PhysicsServer3D::CONE_TWIST_JOINT_RELAXATION: { |
297 | m_relaxationFactor = p_value; |
298 | } break; |
299 | case PhysicsServer3D::CONE_TWIST_MAX: |
300 | break; // Can't happen, but silences warning |
301 | } |
302 | } |
303 | |
304 | real_t GodotConeTwistJoint3D::get_param(PhysicsServer3D::ConeTwistJointParam p_param) const { |
305 | switch (p_param) { |
306 | case PhysicsServer3D::CONE_TWIST_JOINT_SWING_SPAN: { |
307 | return m_swingSpan1; |
308 | } break; |
309 | case PhysicsServer3D::CONE_TWIST_JOINT_TWIST_SPAN: { |
310 | return m_twistSpan; |
311 | } break; |
312 | case PhysicsServer3D::CONE_TWIST_JOINT_BIAS: { |
313 | return m_biasFactor; |
314 | } break; |
315 | case PhysicsServer3D::CONE_TWIST_JOINT_SOFTNESS: { |
316 | return m_limitSoftness; |
317 | } break; |
318 | case PhysicsServer3D::CONE_TWIST_JOINT_RELAXATION: { |
319 | return m_relaxationFactor; |
320 | } break; |
321 | case PhysicsServer3D::CONE_TWIST_MAX: |
322 | break; // Can't happen, but silences warning |
323 | } |
324 | |
325 | return 0; |
326 | } |
327 | |