1 | /**************************************************************************/ |
2 | /* variant_converters.h */ |
3 | /**************************************************************************/ |
4 | /* This file is part of: */ |
5 | /* GODOT ENGINE */ |
6 | /* https://godotengine.org */ |
7 | /**************************************************************************/ |
8 | /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */ |
9 | /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */ |
10 | /* */ |
11 | /* Permission is hereby granted, free of charge, to any person obtaining */ |
12 | /* a copy of this software and associated documentation files (the */ |
13 | /* "Software"), to deal in the Software without restriction, including */ |
14 | /* without limitation the rights to use, copy, modify, merge, publish, */ |
15 | /* distribute, sublicense, and/or sell copies of the Software, and to */ |
16 | /* permit persons to whom the Software is furnished to do so, subject to */ |
17 | /* the following conditions: */ |
18 | /* */ |
19 | /* The above copyright notice and this permission notice shall be */ |
20 | /* included in all copies or substantial portions of the Software. */ |
21 | /* */ |
22 | /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ |
23 | /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ |
24 | /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */ |
25 | /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ |
26 | /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ |
27 | /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ |
28 | /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ |
29 | /**************************************************************************/ |
30 | |
31 | #ifndef VARIANT_CONVERTERS_H |
32 | #define VARIANT_CONVERTERS_H |
33 | |
34 | #include "core/error/error_macros.h" |
35 | #include "core/variant/array.h" |
36 | #include "core/variant/variant.h" |
37 | |
38 | #include <initializer_list> |
39 | #include <type_traits> |
40 | |
41 | template <typename T> |
42 | struct VariantConverterStd140 { |
43 | // Generic base template for all Vector2/3/4(i) classes. |
44 | static constexpr int Elements = T::AXIS_COUNT; |
45 | |
46 | template <typename P> |
47 | static void convert(const T &p_v, P *p_write, bool p_compact) { |
48 | for (int i = 0; i < Elements; i++) { |
49 | p_write[i] = p_v[i]; |
50 | } |
51 | } |
52 | }; |
53 | |
54 | template <> |
55 | struct VariantConverterStd140<float> { |
56 | static constexpr int Elements = 1; |
57 | |
58 | template <typename P> |
59 | static void convert(float p_v, P *p_write, bool p_compact) { |
60 | p_write[0] = p_v; |
61 | } |
62 | }; |
63 | |
64 | template <> |
65 | struct VariantConverterStd140<int32_t> { |
66 | static constexpr int Elements = 1; |
67 | |
68 | template <typename P> |
69 | static void convert(int32_t p_v, P *p_write, bool p_compact) { |
70 | p_write[0] = p_v; |
71 | } |
72 | }; |
73 | |
74 | template <> |
75 | struct VariantConverterStd140<uint32_t> { |
76 | static constexpr int Elements = 1; |
77 | |
78 | template <typename P> |
79 | static void convert(uint32_t p_v, P *p_write, bool p_compact) { |
80 | p_write[0] = p_v; |
81 | } |
82 | }; |
83 | |
84 | template <> |
85 | struct VariantConverterStd140<Basis> { |
86 | static constexpr int Elements = 9; |
87 | |
88 | template <typename P> |
89 | static void convert(const Basis &p_v, P *p_write, bool p_compact) { |
90 | // Basis can have compact 9 floats or std140 layout 12 floats. |
91 | int i = 0; |
92 | |
93 | p_write[i++] = p_v.rows[0][0]; |
94 | p_write[i++] = p_v.rows[1][0]; |
95 | p_write[i++] = p_v.rows[2][0]; |
96 | if (!p_compact) { |
97 | p_write[i++] = 0; |
98 | } |
99 | |
100 | p_write[i++] = p_v.rows[0][1]; |
101 | p_write[i++] = p_v.rows[1][1]; |
102 | p_write[i++] = p_v.rows[2][1]; |
103 | if (!p_compact) { |
104 | p_write[i++] = 0; |
105 | } |
106 | |
107 | p_write[i++] = p_v.rows[0][2]; |
108 | p_write[i++] = p_v.rows[1][2]; |
109 | p_write[i++] = p_v.rows[2][2]; |
110 | if (!p_compact) { |
111 | p_write[i++] = 0; |
112 | } |
113 | } |
114 | }; |
115 | |
116 | template <> |
117 | struct VariantConverterStd140<Transform2D> { |
118 | static constexpr int Elements = 12; |
119 | |
120 | template <typename P> |
121 | static void convert(const Transform2D &p_v, P *p_write, bool p_compact) { |
122 | p_write[0] = p_v.columns[0][0]; |
123 | p_write[1] = p_v.columns[0][1]; |
124 | p_write[2] = 0; |
125 | p_write[3] = 0; |
126 | |
127 | p_write[4] = p_v.columns[1][0]; |
128 | p_write[5] = p_v.columns[1][1]; |
129 | p_write[6] = 0; |
130 | p_write[7] = 0; |
131 | |
132 | p_write[8] = p_v.columns[2][0]; |
133 | p_write[9] = p_v.columns[2][1]; |
134 | p_write[10] = 1; |
135 | p_write[11] = 0; |
136 | } |
137 | }; |
138 | |
139 | template <> |
140 | struct VariantConverterStd140<Transform3D> { |
141 | static constexpr int Elements = 16; |
142 | |
143 | template <typename P> |
144 | static void convert(const Transform3D &p_v, P *p_write, bool p_compact) { |
145 | p_write[0] = p_v.basis.rows[0][0]; |
146 | p_write[1] = p_v.basis.rows[1][0]; |
147 | p_write[2] = p_v.basis.rows[2][0]; |
148 | p_write[3] = 0; |
149 | |
150 | p_write[4] = p_v.basis.rows[0][1]; |
151 | p_write[5] = p_v.basis.rows[1][1]; |
152 | p_write[6] = p_v.basis.rows[2][1]; |
153 | p_write[7] = 0; |
154 | |
155 | p_write[8] = p_v.basis.rows[0][2]; |
156 | p_write[9] = p_v.basis.rows[1][2]; |
157 | p_write[10] = p_v.basis.rows[2][2]; |
158 | p_write[11] = 0; |
159 | |
160 | p_write[12] = p_v.origin.x; |
161 | p_write[13] = p_v.origin.y; |
162 | p_write[14] = p_v.origin.z; |
163 | p_write[15] = 1; |
164 | } |
165 | }; |
166 | |
167 | template <> |
168 | struct VariantConverterStd140<Projection> { |
169 | static constexpr int Elements = 16; |
170 | |
171 | template <typename P> |
172 | static void convert(const Projection &p_v, P *p_write, bool p_compact) { |
173 | for (int i = 0; i < 4; i++) { |
174 | for (int j = 0; j < 4; j++) { |
175 | p_write[i * 4 + j] = p_v.columns[i][j]; |
176 | } |
177 | } |
178 | } |
179 | }; |
180 | |
181 | template <typename T, typename P> |
182 | T construct_vector(const std::initializer_list<P> &values) { |
183 | T vector{}; |
184 | int index = 0; |
185 | for (P v : values) { |
186 | vector[index++] = v; |
187 | if (index >= T::AXIS_COUNT) { |
188 | break; |
189 | } |
190 | } |
191 | return vector; |
192 | } |
193 | |
194 | // Compatibility converter, tries to convert certain Variant types into a Vector2/3/4(i). |
195 | |
196 | template <typename T> |
197 | T convert_to_vector(const Variant &p_variant, bool p_linear_color = false) { |
198 | const Variant::Type type = p_variant.get_type(); |
199 | |
200 | if (type == Variant::QUATERNION) { |
201 | Quaternion quat = p_variant; |
202 | return construct_vector<T>({ quat.x, quat.y, quat.z, quat.w }); |
203 | } else if (type == Variant::PLANE) { |
204 | Plane p = p_variant; |
205 | return construct_vector<T>({ p.normal.x, p.normal.y, p.normal.z, p.d }); |
206 | } else if (type == Variant::RECT2 || type == Variant::RECT2I) { |
207 | Rect2 r = p_variant; |
208 | return construct_vector<T>({ r.position.x, r.position.y, r.size.x, r.size.y }); |
209 | } else if (type == Variant::COLOR) { |
210 | Color c = p_variant; |
211 | if (p_linear_color) { |
212 | c = c.srgb_to_linear(); |
213 | } |
214 | return construct_vector<T>({ c.r, c.g, c.b, c.a }); |
215 | } else if (p_variant.is_array()) { |
216 | const Array &array = p_variant; |
217 | const int size = MIN(array.size(), T::AXIS_COUNT); |
218 | T vector{}; |
219 | for (int i = 0; i < size; i++) { |
220 | vector[i] = array.get(i); |
221 | } |
222 | return vector; |
223 | } |
224 | |
225 | return p_variant; // Default Variant conversion, covers all Vector2/3/4(i) types. |
226 | } |
227 | |
228 | inline bool is_number_array(const Array &p_array) { |
229 | const int size = p_array.size(); |
230 | for (int i = 0; i < size; i++) { |
231 | if (!p_array.get(i).is_num()) { |
232 | return false; |
233 | } |
234 | } |
235 | return true; |
236 | } |
237 | |
238 | inline bool is_convertible_array(Variant::Type type) { |
239 | return type == Variant::ARRAY || |
240 | type == Variant::PACKED_VECTOR2_ARRAY || |
241 | type == Variant::PACKED_VECTOR3_ARRAY || |
242 | type == Variant::PACKED_COLOR_ARRAY; |
243 | } |
244 | |
245 | template <class, class = void> |
246 | struct is_vector_type : std::false_type {}; |
247 | |
248 | template <class T> |
249 | struct is_vector_type<T, std::void_t<decltype(T::AXIS_COUNT)>> : std::true_type {}; |
250 | |
251 | template <typename T, typename P> |
252 | void convert_item_std140(const T &p_item, P *p_write, bool p_compact = false) { |
253 | VariantConverterStd140<T>::template convert<P>(p_item, p_write, p_compact); |
254 | } |
255 | |
256 | template <typename T, typename P> |
257 | Vector<P> convert_array_std140(const Variant &p_variant, [[maybe_unused]] bool p_linear_color = false) { |
258 | if (is_convertible_array(p_variant.get_type())) { |
259 | // Slow path, convert Variant arrays and some packed arrays manually into primitive types. |
260 | const Array &array = p_variant; |
261 | if (is_number_array(array)) { |
262 | // Already flattened and converted (or empty) array, usually coming from saved resources. |
263 | return p_variant; |
264 | } |
265 | |
266 | const int items = array.size(); |
267 | constexpr int elements = VariantConverterStd140<T>::Elements; |
268 | |
269 | Vector<P> result; |
270 | result.resize(items * elements); |
271 | P *write = result.ptrw(); |
272 | |
273 | for (int i = 0; i < items; i++) { |
274 | const Variant &item = array.get(i); |
275 | P *offset = write + (i * elements); |
276 | |
277 | if constexpr (is_vector_type<T>::value) { |
278 | const T &vec = convert_to_vector<T>(item, p_linear_color); |
279 | convert_item_std140<T, P>(vec, offset, true); |
280 | } else { |
281 | convert_item_std140<T, P>(item.operator T(), offset, true); |
282 | } |
283 | } |
284 | return result; |
285 | |
286 | } else if (p_variant.is_array()) { |
287 | // Fast path, return the packed array directly. |
288 | return p_variant; |
289 | } |
290 | |
291 | // Not an array type. Usually happens with uninitialized null shader resource parameters. |
292 | // Just return an empty array, uniforms will be default initialized later. |
293 | |
294 | return Vector<P>(); |
295 | } |
296 | |
297 | template <typename T, typename From, typename To> |
298 | void write_array_std140(const Vector<From> &p_values, To *p_write, int p_array_size, int p_stride) { |
299 | constexpr int elements = VariantConverterStd140<T>::Elements; |
300 | const int src_count = p_values.size(); |
301 | const int dst_count = elements * p_array_size; |
302 | const int stride_count = p_stride * p_array_size; |
303 | const From *read = p_values.ptr(); |
304 | const T default_value{}; |
305 | |
306 | memset(p_write, 0, sizeof(To) * stride_count); |
307 | |
308 | for (int i = 0, j = 0; i < dst_count; i += elements, j += p_stride) { |
309 | if (i + elements - 1 < src_count) { |
310 | // Only copy full items with all elements, no partial or missing data. |
311 | for (int e = 0; e < elements; e++) { |
312 | DEV_ASSERT(j + e < stride_count && i + e < src_count); |
313 | p_write[j + e] = read[i + e]; |
314 | } |
315 | } else { |
316 | // If not enough source data was passed in, write default values. |
317 | convert_item_std140(default_value, p_write + j); |
318 | } |
319 | } |
320 | } |
321 | |
322 | #endif // VARIANT_CONVERTERS_H |
323 | |