| 1 | /**************************************************************************/ |
| 2 | /* variant_converters.h */ |
| 3 | /**************************************************************************/ |
| 4 | /* This file is part of: */ |
| 5 | /* GODOT ENGINE */ |
| 6 | /* https://godotengine.org */ |
| 7 | /**************************************************************************/ |
| 8 | /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */ |
| 9 | /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */ |
| 10 | /* */ |
| 11 | /* Permission is hereby granted, free of charge, to any person obtaining */ |
| 12 | /* a copy of this software and associated documentation files (the */ |
| 13 | /* "Software"), to deal in the Software without restriction, including */ |
| 14 | /* without limitation the rights to use, copy, modify, merge, publish, */ |
| 15 | /* distribute, sublicense, and/or sell copies of the Software, and to */ |
| 16 | /* permit persons to whom the Software is furnished to do so, subject to */ |
| 17 | /* the following conditions: */ |
| 18 | /* */ |
| 19 | /* The above copyright notice and this permission notice shall be */ |
| 20 | /* included in all copies or substantial portions of the Software. */ |
| 21 | /* */ |
| 22 | /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ |
| 23 | /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ |
| 24 | /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */ |
| 25 | /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ |
| 26 | /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ |
| 27 | /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ |
| 28 | /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ |
| 29 | /**************************************************************************/ |
| 30 | |
| 31 | #ifndef VARIANT_CONVERTERS_H |
| 32 | #define VARIANT_CONVERTERS_H |
| 33 | |
| 34 | #include "core/error/error_macros.h" |
| 35 | #include "core/variant/array.h" |
| 36 | #include "core/variant/variant.h" |
| 37 | |
| 38 | #include <initializer_list> |
| 39 | #include <type_traits> |
| 40 | |
| 41 | template <typename T> |
| 42 | struct VariantConverterStd140 { |
| 43 | // Generic base template for all Vector2/3/4(i) classes. |
| 44 | static constexpr int Elements = T::AXIS_COUNT; |
| 45 | |
| 46 | template <typename P> |
| 47 | static void convert(const T &p_v, P *p_write, bool p_compact) { |
| 48 | for (int i = 0; i < Elements; i++) { |
| 49 | p_write[i] = p_v[i]; |
| 50 | } |
| 51 | } |
| 52 | }; |
| 53 | |
| 54 | template <> |
| 55 | struct VariantConverterStd140<float> { |
| 56 | static constexpr int Elements = 1; |
| 57 | |
| 58 | template <typename P> |
| 59 | static void convert(float p_v, P *p_write, bool p_compact) { |
| 60 | p_write[0] = p_v; |
| 61 | } |
| 62 | }; |
| 63 | |
| 64 | template <> |
| 65 | struct VariantConverterStd140<int32_t> { |
| 66 | static constexpr int Elements = 1; |
| 67 | |
| 68 | template <typename P> |
| 69 | static void convert(int32_t p_v, P *p_write, bool p_compact) { |
| 70 | p_write[0] = p_v; |
| 71 | } |
| 72 | }; |
| 73 | |
| 74 | template <> |
| 75 | struct VariantConverterStd140<uint32_t> { |
| 76 | static constexpr int Elements = 1; |
| 77 | |
| 78 | template <typename P> |
| 79 | static void convert(uint32_t p_v, P *p_write, bool p_compact) { |
| 80 | p_write[0] = p_v; |
| 81 | } |
| 82 | }; |
| 83 | |
| 84 | template <> |
| 85 | struct VariantConverterStd140<Basis> { |
| 86 | static constexpr int Elements = 9; |
| 87 | |
| 88 | template <typename P> |
| 89 | static void convert(const Basis &p_v, P *p_write, bool p_compact) { |
| 90 | // Basis can have compact 9 floats or std140 layout 12 floats. |
| 91 | int i = 0; |
| 92 | |
| 93 | p_write[i++] = p_v.rows[0][0]; |
| 94 | p_write[i++] = p_v.rows[1][0]; |
| 95 | p_write[i++] = p_v.rows[2][0]; |
| 96 | if (!p_compact) { |
| 97 | p_write[i++] = 0; |
| 98 | } |
| 99 | |
| 100 | p_write[i++] = p_v.rows[0][1]; |
| 101 | p_write[i++] = p_v.rows[1][1]; |
| 102 | p_write[i++] = p_v.rows[2][1]; |
| 103 | if (!p_compact) { |
| 104 | p_write[i++] = 0; |
| 105 | } |
| 106 | |
| 107 | p_write[i++] = p_v.rows[0][2]; |
| 108 | p_write[i++] = p_v.rows[1][2]; |
| 109 | p_write[i++] = p_v.rows[2][2]; |
| 110 | if (!p_compact) { |
| 111 | p_write[i++] = 0; |
| 112 | } |
| 113 | } |
| 114 | }; |
| 115 | |
| 116 | template <> |
| 117 | struct VariantConverterStd140<Transform2D> { |
| 118 | static constexpr int Elements = 12; |
| 119 | |
| 120 | template <typename P> |
| 121 | static void convert(const Transform2D &p_v, P *p_write, bool p_compact) { |
| 122 | p_write[0] = p_v.columns[0][0]; |
| 123 | p_write[1] = p_v.columns[0][1]; |
| 124 | p_write[2] = 0; |
| 125 | p_write[3] = 0; |
| 126 | |
| 127 | p_write[4] = p_v.columns[1][0]; |
| 128 | p_write[5] = p_v.columns[1][1]; |
| 129 | p_write[6] = 0; |
| 130 | p_write[7] = 0; |
| 131 | |
| 132 | p_write[8] = p_v.columns[2][0]; |
| 133 | p_write[9] = p_v.columns[2][1]; |
| 134 | p_write[10] = 1; |
| 135 | p_write[11] = 0; |
| 136 | } |
| 137 | }; |
| 138 | |
| 139 | template <> |
| 140 | struct VariantConverterStd140<Transform3D> { |
| 141 | static constexpr int Elements = 16; |
| 142 | |
| 143 | template <typename P> |
| 144 | static void convert(const Transform3D &p_v, P *p_write, bool p_compact) { |
| 145 | p_write[0] = p_v.basis.rows[0][0]; |
| 146 | p_write[1] = p_v.basis.rows[1][0]; |
| 147 | p_write[2] = p_v.basis.rows[2][0]; |
| 148 | p_write[3] = 0; |
| 149 | |
| 150 | p_write[4] = p_v.basis.rows[0][1]; |
| 151 | p_write[5] = p_v.basis.rows[1][1]; |
| 152 | p_write[6] = p_v.basis.rows[2][1]; |
| 153 | p_write[7] = 0; |
| 154 | |
| 155 | p_write[8] = p_v.basis.rows[0][2]; |
| 156 | p_write[9] = p_v.basis.rows[1][2]; |
| 157 | p_write[10] = p_v.basis.rows[2][2]; |
| 158 | p_write[11] = 0; |
| 159 | |
| 160 | p_write[12] = p_v.origin.x; |
| 161 | p_write[13] = p_v.origin.y; |
| 162 | p_write[14] = p_v.origin.z; |
| 163 | p_write[15] = 1; |
| 164 | } |
| 165 | }; |
| 166 | |
| 167 | template <> |
| 168 | struct VariantConverterStd140<Projection> { |
| 169 | static constexpr int Elements = 16; |
| 170 | |
| 171 | template <typename P> |
| 172 | static void convert(const Projection &p_v, P *p_write, bool p_compact) { |
| 173 | for (int i = 0; i < 4; i++) { |
| 174 | for (int j = 0; j < 4; j++) { |
| 175 | p_write[i * 4 + j] = p_v.columns[i][j]; |
| 176 | } |
| 177 | } |
| 178 | } |
| 179 | }; |
| 180 | |
| 181 | template <typename T, typename P> |
| 182 | T construct_vector(const std::initializer_list<P> &values) { |
| 183 | T vector{}; |
| 184 | int index = 0; |
| 185 | for (P v : values) { |
| 186 | vector[index++] = v; |
| 187 | if (index >= T::AXIS_COUNT) { |
| 188 | break; |
| 189 | } |
| 190 | } |
| 191 | return vector; |
| 192 | } |
| 193 | |
| 194 | // Compatibility converter, tries to convert certain Variant types into a Vector2/3/4(i). |
| 195 | |
| 196 | template <typename T> |
| 197 | T convert_to_vector(const Variant &p_variant, bool p_linear_color = false) { |
| 198 | const Variant::Type type = p_variant.get_type(); |
| 199 | |
| 200 | if (type == Variant::QUATERNION) { |
| 201 | Quaternion quat = p_variant; |
| 202 | return construct_vector<T>({ quat.x, quat.y, quat.z, quat.w }); |
| 203 | } else if (type == Variant::PLANE) { |
| 204 | Plane p = p_variant; |
| 205 | return construct_vector<T>({ p.normal.x, p.normal.y, p.normal.z, p.d }); |
| 206 | } else if (type == Variant::RECT2 || type == Variant::RECT2I) { |
| 207 | Rect2 r = p_variant; |
| 208 | return construct_vector<T>({ r.position.x, r.position.y, r.size.x, r.size.y }); |
| 209 | } else if (type == Variant::COLOR) { |
| 210 | Color c = p_variant; |
| 211 | if (p_linear_color) { |
| 212 | c = c.srgb_to_linear(); |
| 213 | } |
| 214 | return construct_vector<T>({ c.r, c.g, c.b, c.a }); |
| 215 | } else if (p_variant.is_array()) { |
| 216 | const Array &array = p_variant; |
| 217 | const int size = MIN(array.size(), T::AXIS_COUNT); |
| 218 | T vector{}; |
| 219 | for (int i = 0; i < size; i++) { |
| 220 | vector[i] = array.get(i); |
| 221 | } |
| 222 | return vector; |
| 223 | } |
| 224 | |
| 225 | return p_variant; // Default Variant conversion, covers all Vector2/3/4(i) types. |
| 226 | } |
| 227 | |
| 228 | inline bool is_number_array(const Array &p_array) { |
| 229 | const int size = p_array.size(); |
| 230 | for (int i = 0; i < size; i++) { |
| 231 | if (!p_array.get(i).is_num()) { |
| 232 | return false; |
| 233 | } |
| 234 | } |
| 235 | return true; |
| 236 | } |
| 237 | |
| 238 | inline bool is_convertible_array(Variant::Type type) { |
| 239 | return type == Variant::ARRAY || |
| 240 | type == Variant::PACKED_VECTOR2_ARRAY || |
| 241 | type == Variant::PACKED_VECTOR3_ARRAY || |
| 242 | type == Variant::PACKED_COLOR_ARRAY; |
| 243 | } |
| 244 | |
| 245 | template <class, class = void> |
| 246 | struct is_vector_type : std::false_type {}; |
| 247 | |
| 248 | template <class T> |
| 249 | struct is_vector_type<T, std::void_t<decltype(T::AXIS_COUNT)>> : std::true_type {}; |
| 250 | |
| 251 | template <typename T, typename P> |
| 252 | void convert_item_std140(const T &p_item, P *p_write, bool p_compact = false) { |
| 253 | VariantConverterStd140<T>::template convert<P>(p_item, p_write, p_compact); |
| 254 | } |
| 255 | |
| 256 | template <typename T, typename P> |
| 257 | Vector<P> convert_array_std140(const Variant &p_variant, [[maybe_unused]] bool p_linear_color = false) { |
| 258 | if (is_convertible_array(p_variant.get_type())) { |
| 259 | // Slow path, convert Variant arrays and some packed arrays manually into primitive types. |
| 260 | const Array &array = p_variant; |
| 261 | if (is_number_array(array)) { |
| 262 | // Already flattened and converted (or empty) array, usually coming from saved resources. |
| 263 | return p_variant; |
| 264 | } |
| 265 | |
| 266 | const int items = array.size(); |
| 267 | constexpr int elements = VariantConverterStd140<T>::Elements; |
| 268 | |
| 269 | Vector<P> result; |
| 270 | result.resize(items * elements); |
| 271 | P *write = result.ptrw(); |
| 272 | |
| 273 | for (int i = 0; i < items; i++) { |
| 274 | const Variant &item = array.get(i); |
| 275 | P *offset = write + (i * elements); |
| 276 | |
| 277 | if constexpr (is_vector_type<T>::value) { |
| 278 | const T &vec = convert_to_vector<T>(item, p_linear_color); |
| 279 | convert_item_std140<T, P>(vec, offset, true); |
| 280 | } else { |
| 281 | convert_item_std140<T, P>(item.operator T(), offset, true); |
| 282 | } |
| 283 | } |
| 284 | return result; |
| 285 | |
| 286 | } else if (p_variant.is_array()) { |
| 287 | // Fast path, return the packed array directly. |
| 288 | return p_variant; |
| 289 | } |
| 290 | |
| 291 | // Not an array type. Usually happens with uninitialized null shader resource parameters. |
| 292 | // Just return an empty array, uniforms will be default initialized later. |
| 293 | |
| 294 | return Vector<P>(); |
| 295 | } |
| 296 | |
| 297 | template <typename T, typename From, typename To> |
| 298 | void write_array_std140(const Vector<From> &p_values, To *p_write, int p_array_size, int p_stride) { |
| 299 | constexpr int elements = VariantConverterStd140<T>::Elements; |
| 300 | const int src_count = p_values.size(); |
| 301 | const int dst_count = elements * p_array_size; |
| 302 | const int stride_count = p_stride * p_array_size; |
| 303 | const From *read = p_values.ptr(); |
| 304 | const T default_value{}; |
| 305 | |
| 306 | memset(p_write, 0, sizeof(To) * stride_count); |
| 307 | |
| 308 | for (int i = 0, j = 0; i < dst_count; i += elements, j += p_stride) { |
| 309 | if (i + elements - 1 < src_count) { |
| 310 | // Only copy full items with all elements, no partial or missing data. |
| 311 | for (int e = 0; e < elements; e++) { |
| 312 | DEV_ASSERT(j + e < stride_count && i + e < src_count); |
| 313 | p_write[j + e] = read[i + e]; |
| 314 | } |
| 315 | } else { |
| 316 | // If not enough source data was passed in, write default values. |
| 317 | convert_item_std140(default_value, p_write + j); |
| 318 | } |
| 319 | } |
| 320 | } |
| 321 | |
| 322 | #endif // VARIANT_CONVERTERS_H |
| 323 | |