| 1 | /* |
| 2 | * Copyright (c) 2003, 2019, Oracle and/or its affiliates. All rights reserved. |
| 3 | * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
| 4 | * |
| 5 | * This code is free software; you can redistribute it and/or modify it |
| 6 | * under the terms of the GNU General Public License version 2 only, as |
| 7 | * published by the Free Software Foundation. |
| 8 | * |
| 9 | * This code is distributed in the hope that it will be useful, but WITHOUT |
| 10 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| 11 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| 12 | * version 2 for more details (a copy is included in the LICENSE file that |
| 13 | * accompanied this code). |
| 14 | * |
| 15 | * You should have received a copy of the GNU General Public License version |
| 16 | * 2 along with this work; if not, write to the Free Software Foundation, |
| 17 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
| 18 | * |
| 19 | * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
| 20 | * or visit www.oracle.com if you need additional information or have any |
| 21 | * questions. |
| 22 | * |
| 23 | */ |
| 24 | |
| 25 | #include "precompiled.hpp" |
| 26 | #include "asm/macroAssembler.hpp" |
| 27 | #include "asm/macroAssembler.inline.hpp" |
| 28 | #include "ci/ciUtilities.hpp" |
| 29 | #include "gc/shared/barrierSet.hpp" |
| 30 | #include "gc/shared/barrierSetAssembler.hpp" |
| 31 | #include "gc/shared/barrierSetNMethod.hpp" |
| 32 | #include "interpreter/interpreter.hpp" |
| 33 | #include "memory/universe.hpp" |
| 34 | #include "nativeInst_x86.hpp" |
| 35 | #include "oops/instanceOop.hpp" |
| 36 | #include "oops/method.hpp" |
| 37 | #include "oops/objArrayKlass.hpp" |
| 38 | #include "oops/oop.inline.hpp" |
| 39 | #include "prims/methodHandles.hpp" |
| 40 | #include "runtime/frame.inline.hpp" |
| 41 | #include "runtime/handles.inline.hpp" |
| 42 | #include "runtime/sharedRuntime.hpp" |
| 43 | #include "runtime/stubCodeGenerator.hpp" |
| 44 | #include "runtime/stubRoutines.hpp" |
| 45 | #include "runtime/thread.inline.hpp" |
| 46 | #ifdef COMPILER2 |
| 47 | #include "opto/runtime.hpp" |
| 48 | #endif |
| 49 | #if INCLUDE_ZGC |
| 50 | #include "gc/z/zThreadLocalData.hpp" |
| 51 | #endif |
| 52 | |
| 53 | // Declaration and definition of StubGenerator (no .hpp file). |
| 54 | // For a more detailed description of the stub routine structure |
| 55 | // see the comment in stubRoutines.hpp |
| 56 | |
| 57 | #define __ _masm-> |
| 58 | #define TIMES_OOP (UseCompressedOops ? Address::times_4 : Address::times_8) |
| 59 | #define a__ ((Assembler*)_masm)-> |
| 60 | |
| 61 | #ifdef PRODUCT |
| 62 | #define (str) /* nothing */ |
| 63 | #else |
| 64 | #define BLOCK_COMMENT(str) __ block_comment(str) |
| 65 | #endif |
| 66 | |
| 67 | #define BIND(label) bind(label); BLOCK_COMMENT(#label ":") |
| 68 | const int MXCSR_MASK = 0xFFC0; // Mask out any pending exceptions |
| 69 | |
| 70 | // Stub Code definitions |
| 71 | |
| 72 | class StubGenerator: public StubCodeGenerator { |
| 73 | private: |
| 74 | |
| 75 | #ifdef PRODUCT |
| 76 | #define inc_counter_np(counter) ((void)0) |
| 77 | #else |
| 78 | void inc_counter_np_(int& counter) { |
| 79 | // This can destroy rscratch1 if counter is far from the code cache |
| 80 | __ incrementl(ExternalAddress((address)&counter)); |
| 81 | } |
| 82 | #define inc_counter_np(counter) \ |
| 83 | BLOCK_COMMENT("inc_counter " #counter); \ |
| 84 | inc_counter_np_(counter); |
| 85 | #endif |
| 86 | |
| 87 | // Call stubs are used to call Java from C |
| 88 | // |
| 89 | // Linux Arguments: |
| 90 | // c_rarg0: call wrapper address address |
| 91 | // c_rarg1: result address |
| 92 | // c_rarg2: result type BasicType |
| 93 | // c_rarg3: method Method* |
| 94 | // c_rarg4: (interpreter) entry point address |
| 95 | // c_rarg5: parameters intptr_t* |
| 96 | // 16(rbp): parameter size (in words) int |
| 97 | // 24(rbp): thread Thread* |
| 98 | // |
| 99 | // [ return_from_Java ] <--- rsp |
| 100 | // [ argument word n ] |
| 101 | // ... |
| 102 | // -12 [ argument word 1 ] |
| 103 | // -11 [ saved r15 ] <--- rsp_after_call |
| 104 | // -10 [ saved r14 ] |
| 105 | // -9 [ saved r13 ] |
| 106 | // -8 [ saved r12 ] |
| 107 | // -7 [ saved rbx ] |
| 108 | // -6 [ call wrapper ] |
| 109 | // -5 [ result ] |
| 110 | // -4 [ result type ] |
| 111 | // -3 [ method ] |
| 112 | // -2 [ entry point ] |
| 113 | // -1 [ parameters ] |
| 114 | // 0 [ saved rbp ] <--- rbp |
| 115 | // 1 [ return address ] |
| 116 | // 2 [ parameter size ] |
| 117 | // 3 [ thread ] |
| 118 | // |
| 119 | // Windows Arguments: |
| 120 | // c_rarg0: call wrapper address address |
| 121 | // c_rarg1: result address |
| 122 | // c_rarg2: result type BasicType |
| 123 | // c_rarg3: method Method* |
| 124 | // 48(rbp): (interpreter) entry point address |
| 125 | // 56(rbp): parameters intptr_t* |
| 126 | // 64(rbp): parameter size (in words) int |
| 127 | // 72(rbp): thread Thread* |
| 128 | // |
| 129 | // [ return_from_Java ] <--- rsp |
| 130 | // [ argument word n ] |
| 131 | // ... |
| 132 | // -60 [ argument word 1 ] |
| 133 | // -59 [ saved xmm31 ] <--- rsp after_call |
| 134 | // [ saved xmm16-xmm30 ] (EVEX enabled, else the space is blank) |
| 135 | // -27 [ saved xmm15 ] |
| 136 | // [ saved xmm7-xmm14 ] |
| 137 | // -9 [ saved xmm6 ] (each xmm register takes 2 slots) |
| 138 | // -7 [ saved r15 ] |
| 139 | // -6 [ saved r14 ] |
| 140 | // -5 [ saved r13 ] |
| 141 | // -4 [ saved r12 ] |
| 142 | // -3 [ saved rdi ] |
| 143 | // -2 [ saved rsi ] |
| 144 | // -1 [ saved rbx ] |
| 145 | // 0 [ saved rbp ] <--- rbp |
| 146 | // 1 [ return address ] |
| 147 | // 2 [ call wrapper ] |
| 148 | // 3 [ result ] |
| 149 | // 4 [ result type ] |
| 150 | // 5 [ method ] |
| 151 | // 6 [ entry point ] |
| 152 | // 7 [ parameters ] |
| 153 | // 8 [ parameter size ] |
| 154 | // 9 [ thread ] |
| 155 | // |
| 156 | // Windows reserves the callers stack space for arguments 1-4. |
| 157 | // We spill c_rarg0-c_rarg3 to this space. |
| 158 | |
| 159 | // Call stub stack layout word offsets from rbp |
| 160 | enum call_stub_layout { |
| 161 | #ifdef _WIN64 |
| 162 | xmm_save_first = 6, // save from xmm6 |
| 163 | xmm_save_last = 31, // to xmm31 |
| 164 | xmm_save_base = -9, |
| 165 | rsp_after_call_off = xmm_save_base - 2 * (xmm_save_last - xmm_save_first), // -27 |
| 166 | r15_off = -7, |
| 167 | r14_off = -6, |
| 168 | r13_off = -5, |
| 169 | r12_off = -4, |
| 170 | rdi_off = -3, |
| 171 | rsi_off = -2, |
| 172 | rbx_off = -1, |
| 173 | rbp_off = 0, |
| 174 | retaddr_off = 1, |
| 175 | call_wrapper_off = 2, |
| 176 | result_off = 3, |
| 177 | result_type_off = 4, |
| 178 | method_off = 5, |
| 179 | entry_point_off = 6, |
| 180 | parameters_off = 7, |
| 181 | parameter_size_off = 8, |
| 182 | thread_off = 9 |
| 183 | #else |
| 184 | rsp_after_call_off = -12, |
| 185 | mxcsr_off = rsp_after_call_off, |
| 186 | r15_off = -11, |
| 187 | r14_off = -10, |
| 188 | r13_off = -9, |
| 189 | r12_off = -8, |
| 190 | rbx_off = -7, |
| 191 | call_wrapper_off = -6, |
| 192 | result_off = -5, |
| 193 | result_type_off = -4, |
| 194 | method_off = -3, |
| 195 | entry_point_off = -2, |
| 196 | parameters_off = -1, |
| 197 | rbp_off = 0, |
| 198 | retaddr_off = 1, |
| 199 | parameter_size_off = 2, |
| 200 | thread_off = 3 |
| 201 | #endif |
| 202 | }; |
| 203 | |
| 204 | #ifdef _WIN64 |
| 205 | Address xmm_save(int reg) { |
| 206 | assert(reg >= xmm_save_first && reg <= xmm_save_last, "XMM register number out of range" ); |
| 207 | return Address(rbp, (xmm_save_base - (reg - xmm_save_first) * 2) * wordSize); |
| 208 | } |
| 209 | #endif |
| 210 | |
| 211 | address generate_call_stub(address& return_address) { |
| 212 | assert((int)frame::entry_frame_after_call_words == -(int)rsp_after_call_off + 1 && |
| 213 | (int)frame::entry_frame_call_wrapper_offset == (int)call_wrapper_off, |
| 214 | "adjust this code" ); |
| 215 | StubCodeMark mark(this, "StubRoutines" , "call_stub" ); |
| 216 | address start = __ pc(); |
| 217 | |
| 218 | // same as in generate_catch_exception()! |
| 219 | const Address rsp_after_call(rbp, rsp_after_call_off * wordSize); |
| 220 | |
| 221 | const Address call_wrapper (rbp, call_wrapper_off * wordSize); |
| 222 | const Address result (rbp, result_off * wordSize); |
| 223 | const Address result_type (rbp, result_type_off * wordSize); |
| 224 | const Address method (rbp, method_off * wordSize); |
| 225 | const Address entry_point (rbp, entry_point_off * wordSize); |
| 226 | const Address parameters (rbp, parameters_off * wordSize); |
| 227 | const Address parameter_size(rbp, parameter_size_off * wordSize); |
| 228 | |
| 229 | // same as in generate_catch_exception()! |
| 230 | const Address thread (rbp, thread_off * wordSize); |
| 231 | |
| 232 | const Address r15_save(rbp, r15_off * wordSize); |
| 233 | const Address r14_save(rbp, r14_off * wordSize); |
| 234 | const Address r13_save(rbp, r13_off * wordSize); |
| 235 | const Address r12_save(rbp, r12_off * wordSize); |
| 236 | const Address rbx_save(rbp, rbx_off * wordSize); |
| 237 | |
| 238 | // stub code |
| 239 | __ enter(); |
| 240 | __ subptr(rsp, -rsp_after_call_off * wordSize); |
| 241 | |
| 242 | // save register parameters |
| 243 | #ifndef _WIN64 |
| 244 | __ movptr(parameters, c_rarg5); // parameters |
| 245 | __ movptr(entry_point, c_rarg4); // entry_point |
| 246 | #endif |
| 247 | |
| 248 | __ movptr(method, c_rarg3); // method |
| 249 | __ movl(result_type, c_rarg2); // result type |
| 250 | __ movptr(result, c_rarg1); // result |
| 251 | __ movptr(call_wrapper, c_rarg0); // call wrapper |
| 252 | |
| 253 | // save regs belonging to calling function |
| 254 | __ movptr(rbx_save, rbx); |
| 255 | __ movptr(r12_save, r12); |
| 256 | __ movptr(r13_save, r13); |
| 257 | __ movptr(r14_save, r14); |
| 258 | __ movptr(r15_save, r15); |
| 259 | |
| 260 | #ifdef _WIN64 |
| 261 | int last_reg = 15; |
| 262 | if (UseAVX > 2) { |
| 263 | last_reg = 31; |
| 264 | } |
| 265 | if (VM_Version::supports_evex()) { |
| 266 | for (int i = xmm_save_first; i <= last_reg; i++) { |
| 267 | __ vextractf32x4(xmm_save(i), as_XMMRegister(i), 0); |
| 268 | } |
| 269 | } else { |
| 270 | for (int i = xmm_save_first; i <= last_reg; i++) { |
| 271 | __ movdqu(xmm_save(i), as_XMMRegister(i)); |
| 272 | } |
| 273 | } |
| 274 | |
| 275 | const Address rdi_save(rbp, rdi_off * wordSize); |
| 276 | const Address rsi_save(rbp, rsi_off * wordSize); |
| 277 | |
| 278 | __ movptr(rsi_save, rsi); |
| 279 | __ movptr(rdi_save, rdi); |
| 280 | #else |
| 281 | const Address mxcsr_save(rbp, mxcsr_off * wordSize); |
| 282 | { |
| 283 | Label skip_ldmx; |
| 284 | __ stmxcsr(mxcsr_save); |
| 285 | __ movl(rax, mxcsr_save); |
| 286 | __ andl(rax, MXCSR_MASK); // Only check control and mask bits |
| 287 | ExternalAddress mxcsr_std(StubRoutines::addr_mxcsr_std()); |
| 288 | __ cmp32(rax, mxcsr_std); |
| 289 | __ jcc(Assembler::equal, skip_ldmx); |
| 290 | __ ldmxcsr(mxcsr_std); |
| 291 | __ bind(skip_ldmx); |
| 292 | } |
| 293 | #endif |
| 294 | |
| 295 | // Load up thread register |
| 296 | __ movptr(r15_thread, thread); |
| 297 | __ reinit_heapbase(); |
| 298 | |
| 299 | #ifdef ASSERT |
| 300 | // make sure we have no pending exceptions |
| 301 | { |
| 302 | Label L; |
| 303 | __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD); |
| 304 | __ jcc(Assembler::equal, L); |
| 305 | __ stop("StubRoutines::call_stub: entered with pending exception" ); |
| 306 | __ bind(L); |
| 307 | } |
| 308 | #endif |
| 309 | |
| 310 | // pass parameters if any |
| 311 | BLOCK_COMMENT("pass parameters if any" ); |
| 312 | Label parameters_done; |
| 313 | __ movl(c_rarg3, parameter_size); |
| 314 | __ testl(c_rarg3, c_rarg3); |
| 315 | __ jcc(Assembler::zero, parameters_done); |
| 316 | |
| 317 | Label loop; |
| 318 | __ movptr(c_rarg2, parameters); // parameter pointer |
| 319 | __ movl(c_rarg1, c_rarg3); // parameter counter is in c_rarg1 |
| 320 | __ BIND(loop); |
| 321 | __ movptr(rax, Address(c_rarg2, 0));// get parameter |
| 322 | __ addptr(c_rarg2, wordSize); // advance to next parameter |
| 323 | __ decrementl(c_rarg1); // decrement counter |
| 324 | __ push(rax); // pass parameter |
| 325 | __ jcc(Assembler::notZero, loop); |
| 326 | |
| 327 | // call Java function |
| 328 | __ BIND(parameters_done); |
| 329 | __ movptr(rbx, method); // get Method* |
| 330 | __ movptr(c_rarg1, entry_point); // get entry_point |
| 331 | __ mov(r13, rsp); // set sender sp |
| 332 | BLOCK_COMMENT("call Java function" ); |
| 333 | __ call(c_rarg1); |
| 334 | |
| 335 | BLOCK_COMMENT("call_stub_return_address:" ); |
| 336 | return_address = __ pc(); |
| 337 | |
| 338 | // store result depending on type (everything that is not |
| 339 | // T_OBJECT, T_LONG, T_FLOAT or T_DOUBLE is treated as T_INT) |
| 340 | __ movptr(c_rarg0, result); |
| 341 | Label is_long, is_float, is_double, exit; |
| 342 | __ movl(c_rarg1, result_type); |
| 343 | __ cmpl(c_rarg1, T_OBJECT); |
| 344 | __ jcc(Assembler::equal, is_long); |
| 345 | __ cmpl(c_rarg1, T_LONG); |
| 346 | __ jcc(Assembler::equal, is_long); |
| 347 | __ cmpl(c_rarg1, T_FLOAT); |
| 348 | __ jcc(Assembler::equal, is_float); |
| 349 | __ cmpl(c_rarg1, T_DOUBLE); |
| 350 | __ jcc(Assembler::equal, is_double); |
| 351 | |
| 352 | // handle T_INT case |
| 353 | __ movl(Address(c_rarg0, 0), rax); |
| 354 | |
| 355 | __ BIND(exit); |
| 356 | |
| 357 | // pop parameters |
| 358 | __ lea(rsp, rsp_after_call); |
| 359 | |
| 360 | #ifdef ASSERT |
| 361 | // verify that threads correspond |
| 362 | { |
| 363 | Label L1, L2, L3; |
| 364 | __ cmpptr(r15_thread, thread); |
| 365 | __ jcc(Assembler::equal, L1); |
| 366 | __ stop("StubRoutines::call_stub: r15_thread is corrupted" ); |
| 367 | __ bind(L1); |
| 368 | __ get_thread(rbx); |
| 369 | __ cmpptr(r15_thread, thread); |
| 370 | __ jcc(Assembler::equal, L2); |
| 371 | __ stop("StubRoutines::call_stub: r15_thread is modified by call" ); |
| 372 | __ bind(L2); |
| 373 | __ cmpptr(r15_thread, rbx); |
| 374 | __ jcc(Assembler::equal, L3); |
| 375 | __ stop("StubRoutines::call_stub: threads must correspond" ); |
| 376 | __ bind(L3); |
| 377 | } |
| 378 | #endif |
| 379 | |
| 380 | // restore regs belonging to calling function |
| 381 | #ifdef _WIN64 |
| 382 | // emit the restores for xmm regs |
| 383 | if (VM_Version::supports_evex()) { |
| 384 | for (int i = xmm_save_first; i <= last_reg; i++) { |
| 385 | __ vinsertf32x4(as_XMMRegister(i), as_XMMRegister(i), xmm_save(i), 0); |
| 386 | } |
| 387 | } else { |
| 388 | for (int i = xmm_save_first; i <= last_reg; i++) { |
| 389 | __ movdqu(as_XMMRegister(i), xmm_save(i)); |
| 390 | } |
| 391 | } |
| 392 | #endif |
| 393 | __ movptr(r15, r15_save); |
| 394 | __ movptr(r14, r14_save); |
| 395 | __ movptr(r13, r13_save); |
| 396 | __ movptr(r12, r12_save); |
| 397 | __ movptr(rbx, rbx_save); |
| 398 | |
| 399 | #ifdef _WIN64 |
| 400 | __ movptr(rdi, rdi_save); |
| 401 | __ movptr(rsi, rsi_save); |
| 402 | #else |
| 403 | __ ldmxcsr(mxcsr_save); |
| 404 | #endif |
| 405 | |
| 406 | // restore rsp |
| 407 | __ addptr(rsp, -rsp_after_call_off * wordSize); |
| 408 | |
| 409 | // return |
| 410 | __ vzeroupper(); |
| 411 | __ pop(rbp); |
| 412 | __ ret(0); |
| 413 | |
| 414 | // handle return types different from T_INT |
| 415 | __ BIND(is_long); |
| 416 | __ movq(Address(c_rarg0, 0), rax); |
| 417 | __ jmp(exit); |
| 418 | |
| 419 | __ BIND(is_float); |
| 420 | __ movflt(Address(c_rarg0, 0), xmm0); |
| 421 | __ jmp(exit); |
| 422 | |
| 423 | __ BIND(is_double); |
| 424 | __ movdbl(Address(c_rarg0, 0), xmm0); |
| 425 | __ jmp(exit); |
| 426 | |
| 427 | return start; |
| 428 | } |
| 429 | |
| 430 | // Return point for a Java call if there's an exception thrown in |
| 431 | // Java code. The exception is caught and transformed into a |
| 432 | // pending exception stored in JavaThread that can be tested from |
| 433 | // within the VM. |
| 434 | // |
| 435 | // Note: Usually the parameters are removed by the callee. In case |
| 436 | // of an exception crossing an activation frame boundary, that is |
| 437 | // not the case if the callee is compiled code => need to setup the |
| 438 | // rsp. |
| 439 | // |
| 440 | // rax: exception oop |
| 441 | |
| 442 | address generate_catch_exception() { |
| 443 | StubCodeMark mark(this, "StubRoutines" , "catch_exception" ); |
| 444 | address start = __ pc(); |
| 445 | |
| 446 | // same as in generate_call_stub(): |
| 447 | const Address rsp_after_call(rbp, rsp_after_call_off * wordSize); |
| 448 | const Address thread (rbp, thread_off * wordSize); |
| 449 | |
| 450 | #ifdef ASSERT |
| 451 | // verify that threads correspond |
| 452 | { |
| 453 | Label L1, L2, L3; |
| 454 | __ cmpptr(r15_thread, thread); |
| 455 | __ jcc(Assembler::equal, L1); |
| 456 | __ stop("StubRoutines::catch_exception: r15_thread is corrupted" ); |
| 457 | __ bind(L1); |
| 458 | __ get_thread(rbx); |
| 459 | __ cmpptr(r15_thread, thread); |
| 460 | __ jcc(Assembler::equal, L2); |
| 461 | __ stop("StubRoutines::catch_exception: r15_thread is modified by call" ); |
| 462 | __ bind(L2); |
| 463 | __ cmpptr(r15_thread, rbx); |
| 464 | __ jcc(Assembler::equal, L3); |
| 465 | __ stop("StubRoutines::catch_exception: threads must correspond" ); |
| 466 | __ bind(L3); |
| 467 | } |
| 468 | #endif |
| 469 | |
| 470 | // set pending exception |
| 471 | __ verify_oop(rax); |
| 472 | |
| 473 | __ movptr(Address(r15_thread, Thread::pending_exception_offset()), rax); |
| 474 | __ lea(rscratch1, ExternalAddress((address)__FILE__)); |
| 475 | __ movptr(Address(r15_thread, Thread::exception_file_offset()), rscratch1); |
| 476 | __ movl(Address(r15_thread, Thread::exception_line_offset()), (int) __LINE__); |
| 477 | |
| 478 | // complete return to VM |
| 479 | assert(StubRoutines::_call_stub_return_address != NULL, |
| 480 | "_call_stub_return_address must have been generated before" ); |
| 481 | __ jump(RuntimeAddress(StubRoutines::_call_stub_return_address)); |
| 482 | |
| 483 | return start; |
| 484 | } |
| 485 | |
| 486 | // Continuation point for runtime calls returning with a pending |
| 487 | // exception. The pending exception check happened in the runtime |
| 488 | // or native call stub. The pending exception in Thread is |
| 489 | // converted into a Java-level exception. |
| 490 | // |
| 491 | // Contract with Java-level exception handlers: |
| 492 | // rax: exception |
| 493 | // rdx: throwing pc |
| 494 | // |
| 495 | // NOTE: At entry of this stub, exception-pc must be on stack !! |
| 496 | |
| 497 | address generate_forward_exception() { |
| 498 | StubCodeMark mark(this, "StubRoutines" , "forward exception" ); |
| 499 | address start = __ pc(); |
| 500 | |
| 501 | // Upon entry, the sp points to the return address returning into |
| 502 | // Java (interpreted or compiled) code; i.e., the return address |
| 503 | // becomes the throwing pc. |
| 504 | // |
| 505 | // Arguments pushed before the runtime call are still on the stack |
| 506 | // but the exception handler will reset the stack pointer -> |
| 507 | // ignore them. A potential result in registers can be ignored as |
| 508 | // well. |
| 509 | |
| 510 | #ifdef ASSERT |
| 511 | // make sure this code is only executed if there is a pending exception |
| 512 | { |
| 513 | Label L; |
| 514 | __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t) NULL); |
| 515 | __ jcc(Assembler::notEqual, L); |
| 516 | __ stop("StubRoutines::forward exception: no pending exception (1)" ); |
| 517 | __ bind(L); |
| 518 | } |
| 519 | #endif |
| 520 | |
| 521 | // compute exception handler into rbx |
| 522 | __ movptr(c_rarg0, Address(rsp, 0)); |
| 523 | BLOCK_COMMENT("call exception_handler_for_return_address" ); |
| 524 | __ call_VM_leaf(CAST_FROM_FN_PTR(address, |
| 525 | SharedRuntime::exception_handler_for_return_address), |
| 526 | r15_thread, c_rarg0); |
| 527 | __ mov(rbx, rax); |
| 528 | |
| 529 | // setup rax & rdx, remove return address & clear pending exception |
| 530 | __ pop(rdx); |
| 531 | __ movptr(rax, Address(r15_thread, Thread::pending_exception_offset())); |
| 532 | __ movptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD); |
| 533 | |
| 534 | #ifdef ASSERT |
| 535 | // make sure exception is set |
| 536 | { |
| 537 | Label L; |
| 538 | __ testptr(rax, rax); |
| 539 | __ jcc(Assembler::notEqual, L); |
| 540 | __ stop("StubRoutines::forward exception: no pending exception (2)" ); |
| 541 | __ bind(L); |
| 542 | } |
| 543 | #endif |
| 544 | |
| 545 | // continue at exception handler (return address removed) |
| 546 | // rax: exception |
| 547 | // rbx: exception handler |
| 548 | // rdx: throwing pc |
| 549 | __ verify_oop(rax); |
| 550 | __ jmp(rbx); |
| 551 | |
| 552 | return start; |
| 553 | } |
| 554 | |
| 555 | // Support for jint atomic::xchg(jint exchange_value, volatile jint* dest) |
| 556 | // |
| 557 | // Arguments : |
| 558 | // c_rarg0: exchange_value |
| 559 | // c_rarg0: dest |
| 560 | // |
| 561 | // Result: |
| 562 | // *dest <- ex, return (orig *dest) |
| 563 | address generate_atomic_xchg() { |
| 564 | StubCodeMark mark(this, "StubRoutines" , "atomic_xchg" ); |
| 565 | address start = __ pc(); |
| 566 | |
| 567 | __ movl(rax, c_rarg0); // Copy to eax we need a return value anyhow |
| 568 | __ xchgl(rax, Address(c_rarg1, 0)); // automatic LOCK |
| 569 | __ ret(0); |
| 570 | |
| 571 | return start; |
| 572 | } |
| 573 | |
| 574 | // Support for intptr_t atomic::xchg_long(jlong exchange_value, volatile jlong* dest) |
| 575 | // |
| 576 | // Arguments : |
| 577 | // c_rarg0: exchange_value |
| 578 | // c_rarg1: dest |
| 579 | // |
| 580 | // Result: |
| 581 | // *dest <- ex, return (orig *dest) |
| 582 | address generate_atomic_xchg_long() { |
| 583 | StubCodeMark mark(this, "StubRoutines" , "atomic_xchg_long" ); |
| 584 | address start = __ pc(); |
| 585 | |
| 586 | __ movptr(rax, c_rarg0); // Copy to eax we need a return value anyhow |
| 587 | __ xchgptr(rax, Address(c_rarg1, 0)); // automatic LOCK |
| 588 | __ ret(0); |
| 589 | |
| 590 | return start; |
| 591 | } |
| 592 | |
| 593 | // Support for jint atomic::atomic_cmpxchg(jint exchange_value, volatile jint* dest, |
| 594 | // jint compare_value) |
| 595 | // |
| 596 | // Arguments : |
| 597 | // c_rarg0: exchange_value |
| 598 | // c_rarg1: dest |
| 599 | // c_rarg2: compare_value |
| 600 | // |
| 601 | // Result: |
| 602 | // if ( compare_value == *dest ) { |
| 603 | // *dest = exchange_value |
| 604 | // return compare_value; |
| 605 | // else |
| 606 | // return *dest; |
| 607 | address generate_atomic_cmpxchg() { |
| 608 | StubCodeMark mark(this, "StubRoutines" , "atomic_cmpxchg" ); |
| 609 | address start = __ pc(); |
| 610 | |
| 611 | __ movl(rax, c_rarg2); |
| 612 | __ lock(); |
| 613 | __ cmpxchgl(c_rarg0, Address(c_rarg1, 0)); |
| 614 | __ ret(0); |
| 615 | |
| 616 | return start; |
| 617 | } |
| 618 | |
| 619 | // Support for int8_t atomic::atomic_cmpxchg(int8_t exchange_value, volatile int8_t* dest, |
| 620 | // int8_t compare_value) |
| 621 | // |
| 622 | // Arguments : |
| 623 | // c_rarg0: exchange_value |
| 624 | // c_rarg1: dest |
| 625 | // c_rarg2: compare_value |
| 626 | // |
| 627 | // Result: |
| 628 | // if ( compare_value == *dest ) { |
| 629 | // *dest = exchange_value |
| 630 | // return compare_value; |
| 631 | // else |
| 632 | // return *dest; |
| 633 | address generate_atomic_cmpxchg_byte() { |
| 634 | StubCodeMark mark(this, "StubRoutines" , "atomic_cmpxchg_byte" ); |
| 635 | address start = __ pc(); |
| 636 | |
| 637 | __ movsbq(rax, c_rarg2); |
| 638 | __ lock(); |
| 639 | __ cmpxchgb(c_rarg0, Address(c_rarg1, 0)); |
| 640 | __ ret(0); |
| 641 | |
| 642 | return start; |
| 643 | } |
| 644 | |
| 645 | // Support for int64_t atomic::atomic_cmpxchg(int64_t exchange_value, |
| 646 | // volatile int64_t* dest, |
| 647 | // int64_t compare_value) |
| 648 | // Arguments : |
| 649 | // c_rarg0: exchange_value |
| 650 | // c_rarg1: dest |
| 651 | // c_rarg2: compare_value |
| 652 | // |
| 653 | // Result: |
| 654 | // if ( compare_value == *dest ) { |
| 655 | // *dest = exchange_value |
| 656 | // return compare_value; |
| 657 | // else |
| 658 | // return *dest; |
| 659 | address generate_atomic_cmpxchg_long() { |
| 660 | StubCodeMark mark(this, "StubRoutines" , "atomic_cmpxchg_long" ); |
| 661 | address start = __ pc(); |
| 662 | |
| 663 | __ movq(rax, c_rarg2); |
| 664 | __ lock(); |
| 665 | __ cmpxchgq(c_rarg0, Address(c_rarg1, 0)); |
| 666 | __ ret(0); |
| 667 | |
| 668 | return start; |
| 669 | } |
| 670 | |
| 671 | // Support for jint atomic::add(jint add_value, volatile jint* dest) |
| 672 | // |
| 673 | // Arguments : |
| 674 | // c_rarg0: add_value |
| 675 | // c_rarg1: dest |
| 676 | // |
| 677 | // Result: |
| 678 | // *dest += add_value |
| 679 | // return *dest; |
| 680 | address generate_atomic_add() { |
| 681 | StubCodeMark mark(this, "StubRoutines" , "atomic_add" ); |
| 682 | address start = __ pc(); |
| 683 | |
| 684 | __ movl(rax, c_rarg0); |
| 685 | __ lock(); |
| 686 | __ xaddl(Address(c_rarg1, 0), c_rarg0); |
| 687 | __ addl(rax, c_rarg0); |
| 688 | __ ret(0); |
| 689 | |
| 690 | return start; |
| 691 | } |
| 692 | |
| 693 | // Support for intptr_t atomic::add_ptr(intptr_t add_value, volatile intptr_t* dest) |
| 694 | // |
| 695 | // Arguments : |
| 696 | // c_rarg0: add_value |
| 697 | // c_rarg1: dest |
| 698 | // |
| 699 | // Result: |
| 700 | // *dest += add_value |
| 701 | // return *dest; |
| 702 | address generate_atomic_add_long() { |
| 703 | StubCodeMark mark(this, "StubRoutines" , "atomic_add_long" ); |
| 704 | address start = __ pc(); |
| 705 | |
| 706 | __ movptr(rax, c_rarg0); // Copy to eax we need a return value anyhow |
| 707 | __ lock(); |
| 708 | __ xaddptr(Address(c_rarg1, 0), c_rarg0); |
| 709 | __ addptr(rax, c_rarg0); |
| 710 | __ ret(0); |
| 711 | |
| 712 | return start; |
| 713 | } |
| 714 | |
| 715 | // Support for intptr_t OrderAccess::fence() |
| 716 | // |
| 717 | // Arguments : |
| 718 | // |
| 719 | // Result: |
| 720 | address generate_orderaccess_fence() { |
| 721 | StubCodeMark mark(this, "StubRoutines" , "orderaccess_fence" ); |
| 722 | address start = __ pc(); |
| 723 | __ membar(Assembler::StoreLoad); |
| 724 | __ ret(0); |
| 725 | |
| 726 | return start; |
| 727 | } |
| 728 | |
| 729 | // Support for intptr_t get_previous_fp() |
| 730 | // |
| 731 | // This routine is used to find the previous frame pointer for the |
| 732 | // caller (current_frame_guess). This is used as part of debugging |
| 733 | // ps() is seemingly lost trying to find frames. |
| 734 | // This code assumes that caller current_frame_guess) has a frame. |
| 735 | address generate_get_previous_fp() { |
| 736 | StubCodeMark mark(this, "StubRoutines" , "get_previous_fp" ); |
| 737 | const Address old_fp(rbp, 0); |
| 738 | const Address older_fp(rax, 0); |
| 739 | address start = __ pc(); |
| 740 | |
| 741 | __ enter(); |
| 742 | __ movptr(rax, old_fp); // callers fp |
| 743 | __ movptr(rax, older_fp); // the frame for ps() |
| 744 | __ pop(rbp); |
| 745 | __ ret(0); |
| 746 | |
| 747 | return start; |
| 748 | } |
| 749 | |
| 750 | // Support for intptr_t get_previous_sp() |
| 751 | // |
| 752 | // This routine is used to find the previous stack pointer for the |
| 753 | // caller. |
| 754 | address generate_get_previous_sp() { |
| 755 | StubCodeMark mark(this, "StubRoutines" , "get_previous_sp" ); |
| 756 | address start = __ pc(); |
| 757 | |
| 758 | __ movptr(rax, rsp); |
| 759 | __ addptr(rax, 8); // return address is at the top of the stack. |
| 760 | __ ret(0); |
| 761 | |
| 762 | return start; |
| 763 | } |
| 764 | |
| 765 | //---------------------------------------------------------------------------------------------------- |
| 766 | // Support for void verify_mxcsr() |
| 767 | // |
| 768 | // This routine is used with -Xcheck:jni to verify that native |
| 769 | // JNI code does not return to Java code without restoring the |
| 770 | // MXCSR register to our expected state. |
| 771 | |
| 772 | address generate_verify_mxcsr() { |
| 773 | StubCodeMark mark(this, "StubRoutines" , "verify_mxcsr" ); |
| 774 | address start = __ pc(); |
| 775 | |
| 776 | const Address mxcsr_save(rsp, 0); |
| 777 | |
| 778 | if (CheckJNICalls) { |
| 779 | Label ok_ret; |
| 780 | ExternalAddress mxcsr_std(StubRoutines::addr_mxcsr_std()); |
| 781 | __ push(rax); |
| 782 | __ subptr(rsp, wordSize); // allocate a temp location |
| 783 | __ stmxcsr(mxcsr_save); |
| 784 | __ movl(rax, mxcsr_save); |
| 785 | __ andl(rax, MXCSR_MASK); // Only check control and mask bits |
| 786 | __ cmp32(rax, mxcsr_std); |
| 787 | __ jcc(Assembler::equal, ok_ret); |
| 788 | |
| 789 | __ warn("MXCSR changed by native JNI code, use -XX:+RestoreMXCSROnJNICall" ); |
| 790 | |
| 791 | __ ldmxcsr(mxcsr_std); |
| 792 | |
| 793 | __ bind(ok_ret); |
| 794 | __ addptr(rsp, wordSize); |
| 795 | __ pop(rax); |
| 796 | } |
| 797 | |
| 798 | __ ret(0); |
| 799 | |
| 800 | return start; |
| 801 | } |
| 802 | |
| 803 | address generate_f2i_fixup() { |
| 804 | StubCodeMark mark(this, "StubRoutines" , "f2i_fixup" ); |
| 805 | Address inout(rsp, 5 * wordSize); // return address + 4 saves |
| 806 | |
| 807 | address start = __ pc(); |
| 808 | |
| 809 | Label L; |
| 810 | |
| 811 | __ push(rax); |
| 812 | __ push(c_rarg3); |
| 813 | __ push(c_rarg2); |
| 814 | __ push(c_rarg1); |
| 815 | |
| 816 | __ movl(rax, 0x7f800000); |
| 817 | __ xorl(c_rarg3, c_rarg3); |
| 818 | __ movl(c_rarg2, inout); |
| 819 | __ movl(c_rarg1, c_rarg2); |
| 820 | __ andl(c_rarg1, 0x7fffffff); |
| 821 | __ cmpl(rax, c_rarg1); // NaN? -> 0 |
| 822 | __ jcc(Assembler::negative, L); |
| 823 | __ testl(c_rarg2, c_rarg2); // signed ? min_jint : max_jint |
| 824 | __ movl(c_rarg3, 0x80000000); |
| 825 | __ movl(rax, 0x7fffffff); |
| 826 | __ cmovl(Assembler::positive, c_rarg3, rax); |
| 827 | |
| 828 | __ bind(L); |
| 829 | __ movptr(inout, c_rarg3); |
| 830 | |
| 831 | __ pop(c_rarg1); |
| 832 | __ pop(c_rarg2); |
| 833 | __ pop(c_rarg3); |
| 834 | __ pop(rax); |
| 835 | |
| 836 | __ ret(0); |
| 837 | |
| 838 | return start; |
| 839 | } |
| 840 | |
| 841 | address generate_f2l_fixup() { |
| 842 | StubCodeMark mark(this, "StubRoutines" , "f2l_fixup" ); |
| 843 | Address inout(rsp, 5 * wordSize); // return address + 4 saves |
| 844 | address start = __ pc(); |
| 845 | |
| 846 | Label L; |
| 847 | |
| 848 | __ push(rax); |
| 849 | __ push(c_rarg3); |
| 850 | __ push(c_rarg2); |
| 851 | __ push(c_rarg1); |
| 852 | |
| 853 | __ movl(rax, 0x7f800000); |
| 854 | __ xorl(c_rarg3, c_rarg3); |
| 855 | __ movl(c_rarg2, inout); |
| 856 | __ movl(c_rarg1, c_rarg2); |
| 857 | __ andl(c_rarg1, 0x7fffffff); |
| 858 | __ cmpl(rax, c_rarg1); // NaN? -> 0 |
| 859 | __ jcc(Assembler::negative, L); |
| 860 | __ testl(c_rarg2, c_rarg2); // signed ? min_jlong : max_jlong |
| 861 | __ mov64(c_rarg3, 0x8000000000000000); |
| 862 | __ mov64(rax, 0x7fffffffffffffff); |
| 863 | __ cmov(Assembler::positive, c_rarg3, rax); |
| 864 | |
| 865 | __ bind(L); |
| 866 | __ movptr(inout, c_rarg3); |
| 867 | |
| 868 | __ pop(c_rarg1); |
| 869 | __ pop(c_rarg2); |
| 870 | __ pop(c_rarg3); |
| 871 | __ pop(rax); |
| 872 | |
| 873 | __ ret(0); |
| 874 | |
| 875 | return start; |
| 876 | } |
| 877 | |
| 878 | address generate_d2i_fixup() { |
| 879 | StubCodeMark mark(this, "StubRoutines" , "d2i_fixup" ); |
| 880 | Address inout(rsp, 6 * wordSize); // return address + 5 saves |
| 881 | |
| 882 | address start = __ pc(); |
| 883 | |
| 884 | Label L; |
| 885 | |
| 886 | __ push(rax); |
| 887 | __ push(c_rarg3); |
| 888 | __ push(c_rarg2); |
| 889 | __ push(c_rarg1); |
| 890 | __ push(c_rarg0); |
| 891 | |
| 892 | __ movl(rax, 0x7ff00000); |
| 893 | __ movq(c_rarg2, inout); |
| 894 | __ movl(c_rarg3, c_rarg2); |
| 895 | __ mov(c_rarg1, c_rarg2); |
| 896 | __ mov(c_rarg0, c_rarg2); |
| 897 | __ negl(c_rarg3); |
| 898 | __ shrptr(c_rarg1, 0x20); |
| 899 | __ orl(c_rarg3, c_rarg2); |
| 900 | __ andl(c_rarg1, 0x7fffffff); |
| 901 | __ xorl(c_rarg2, c_rarg2); |
| 902 | __ shrl(c_rarg3, 0x1f); |
| 903 | __ orl(c_rarg1, c_rarg3); |
| 904 | __ cmpl(rax, c_rarg1); |
| 905 | __ jcc(Assembler::negative, L); // NaN -> 0 |
| 906 | __ testptr(c_rarg0, c_rarg0); // signed ? min_jint : max_jint |
| 907 | __ movl(c_rarg2, 0x80000000); |
| 908 | __ movl(rax, 0x7fffffff); |
| 909 | __ cmov(Assembler::positive, c_rarg2, rax); |
| 910 | |
| 911 | __ bind(L); |
| 912 | __ movptr(inout, c_rarg2); |
| 913 | |
| 914 | __ pop(c_rarg0); |
| 915 | __ pop(c_rarg1); |
| 916 | __ pop(c_rarg2); |
| 917 | __ pop(c_rarg3); |
| 918 | __ pop(rax); |
| 919 | |
| 920 | __ ret(0); |
| 921 | |
| 922 | return start; |
| 923 | } |
| 924 | |
| 925 | address generate_d2l_fixup() { |
| 926 | StubCodeMark mark(this, "StubRoutines" , "d2l_fixup" ); |
| 927 | Address inout(rsp, 6 * wordSize); // return address + 5 saves |
| 928 | |
| 929 | address start = __ pc(); |
| 930 | |
| 931 | Label L; |
| 932 | |
| 933 | __ push(rax); |
| 934 | __ push(c_rarg3); |
| 935 | __ push(c_rarg2); |
| 936 | __ push(c_rarg1); |
| 937 | __ push(c_rarg0); |
| 938 | |
| 939 | __ movl(rax, 0x7ff00000); |
| 940 | __ movq(c_rarg2, inout); |
| 941 | __ movl(c_rarg3, c_rarg2); |
| 942 | __ mov(c_rarg1, c_rarg2); |
| 943 | __ mov(c_rarg0, c_rarg2); |
| 944 | __ negl(c_rarg3); |
| 945 | __ shrptr(c_rarg1, 0x20); |
| 946 | __ orl(c_rarg3, c_rarg2); |
| 947 | __ andl(c_rarg1, 0x7fffffff); |
| 948 | __ xorl(c_rarg2, c_rarg2); |
| 949 | __ shrl(c_rarg3, 0x1f); |
| 950 | __ orl(c_rarg1, c_rarg3); |
| 951 | __ cmpl(rax, c_rarg1); |
| 952 | __ jcc(Assembler::negative, L); // NaN -> 0 |
| 953 | __ testq(c_rarg0, c_rarg0); // signed ? min_jlong : max_jlong |
| 954 | __ mov64(c_rarg2, 0x8000000000000000); |
| 955 | __ mov64(rax, 0x7fffffffffffffff); |
| 956 | __ cmovq(Assembler::positive, c_rarg2, rax); |
| 957 | |
| 958 | __ bind(L); |
| 959 | __ movq(inout, c_rarg2); |
| 960 | |
| 961 | __ pop(c_rarg0); |
| 962 | __ pop(c_rarg1); |
| 963 | __ pop(c_rarg2); |
| 964 | __ pop(c_rarg3); |
| 965 | __ pop(rax); |
| 966 | |
| 967 | __ ret(0); |
| 968 | |
| 969 | return start; |
| 970 | } |
| 971 | |
| 972 | address generate_fp_mask(const char *stub_name, int64_t mask) { |
| 973 | __ align(CodeEntryAlignment); |
| 974 | StubCodeMark mark(this, "StubRoutines" , stub_name); |
| 975 | address start = __ pc(); |
| 976 | |
| 977 | __ emit_data64( mask, relocInfo::none ); |
| 978 | __ emit_data64( mask, relocInfo::none ); |
| 979 | |
| 980 | return start; |
| 981 | } |
| 982 | |
| 983 | address generate_vector_mask(const char *stub_name, int64_t mask) { |
| 984 | __ align(CodeEntryAlignment); |
| 985 | StubCodeMark mark(this, "StubRoutines" , stub_name); |
| 986 | address start = __ pc(); |
| 987 | |
| 988 | __ emit_data64(mask, relocInfo::none); |
| 989 | __ emit_data64(mask, relocInfo::none); |
| 990 | __ emit_data64(mask, relocInfo::none); |
| 991 | __ emit_data64(mask, relocInfo::none); |
| 992 | __ emit_data64(mask, relocInfo::none); |
| 993 | __ emit_data64(mask, relocInfo::none); |
| 994 | __ emit_data64(mask, relocInfo::none); |
| 995 | __ emit_data64(mask, relocInfo::none); |
| 996 | |
| 997 | return start; |
| 998 | } |
| 999 | |
| 1000 | address generate_vector_byte_perm_mask(const char *stub_name) { |
| 1001 | __ align(CodeEntryAlignment); |
| 1002 | StubCodeMark mark(this, "StubRoutines" , stub_name); |
| 1003 | address start = __ pc(); |
| 1004 | |
| 1005 | __ emit_data64(0x0000000000000001, relocInfo::none); |
| 1006 | __ emit_data64(0x0000000000000003, relocInfo::none); |
| 1007 | __ emit_data64(0x0000000000000005, relocInfo::none); |
| 1008 | __ emit_data64(0x0000000000000007, relocInfo::none); |
| 1009 | __ emit_data64(0x0000000000000000, relocInfo::none); |
| 1010 | __ emit_data64(0x0000000000000002, relocInfo::none); |
| 1011 | __ emit_data64(0x0000000000000004, relocInfo::none); |
| 1012 | __ emit_data64(0x0000000000000006, relocInfo::none); |
| 1013 | |
| 1014 | return start; |
| 1015 | } |
| 1016 | |
| 1017 | // Non-destructive plausibility checks for oops |
| 1018 | // |
| 1019 | // Arguments: |
| 1020 | // all args on stack! |
| 1021 | // |
| 1022 | // Stack after saving c_rarg3: |
| 1023 | // [tos + 0]: saved c_rarg3 |
| 1024 | // [tos + 1]: saved c_rarg2 |
| 1025 | // [tos + 2]: saved r12 (several TemplateTable methods use it) |
| 1026 | // [tos + 3]: saved flags |
| 1027 | // [tos + 4]: return address |
| 1028 | // * [tos + 5]: error message (char*) |
| 1029 | // * [tos + 6]: object to verify (oop) |
| 1030 | // * [tos + 7]: saved rax - saved by caller and bashed |
| 1031 | // * [tos + 8]: saved r10 (rscratch1) - saved by caller |
| 1032 | // * = popped on exit |
| 1033 | address generate_verify_oop() { |
| 1034 | StubCodeMark mark(this, "StubRoutines" , "verify_oop" ); |
| 1035 | address start = __ pc(); |
| 1036 | |
| 1037 | Label exit, error; |
| 1038 | |
| 1039 | __ pushf(); |
| 1040 | __ incrementl(ExternalAddress((address) StubRoutines::verify_oop_count_addr())); |
| 1041 | |
| 1042 | __ push(r12); |
| 1043 | |
| 1044 | // save c_rarg2 and c_rarg3 |
| 1045 | __ push(c_rarg2); |
| 1046 | __ push(c_rarg3); |
| 1047 | |
| 1048 | enum { |
| 1049 | // After previous pushes. |
| 1050 | oop_to_verify = 6 * wordSize, |
| 1051 | saved_rax = 7 * wordSize, |
| 1052 | saved_r10 = 8 * wordSize, |
| 1053 | |
| 1054 | // Before the call to MacroAssembler::debug(), see below. |
| 1055 | return_addr = 16 * wordSize, |
| 1056 | error_msg = 17 * wordSize |
| 1057 | }; |
| 1058 | |
| 1059 | // get object |
| 1060 | __ movptr(rax, Address(rsp, oop_to_verify)); |
| 1061 | |
| 1062 | // make sure object is 'reasonable' |
| 1063 | __ testptr(rax, rax); |
| 1064 | __ jcc(Assembler::zero, exit); // if obj is NULL it is OK |
| 1065 | |
| 1066 | #if INCLUDE_ZGC |
| 1067 | if (UseZGC) { |
| 1068 | // Check if metadata bits indicate a bad oop |
| 1069 | __ testptr(rax, Address(r15_thread, ZThreadLocalData::address_bad_mask_offset())); |
| 1070 | __ jcc(Assembler::notZero, error); |
| 1071 | } |
| 1072 | #endif |
| 1073 | |
| 1074 | // Check if the oop is in the right area of memory |
| 1075 | __ movptr(c_rarg2, rax); |
| 1076 | __ movptr(c_rarg3, (intptr_t) Universe::verify_oop_mask()); |
| 1077 | __ andptr(c_rarg2, c_rarg3); |
| 1078 | __ movptr(c_rarg3, (intptr_t) Universe::verify_oop_bits()); |
| 1079 | __ cmpptr(c_rarg2, c_rarg3); |
| 1080 | __ jcc(Assembler::notZero, error); |
| 1081 | |
| 1082 | // set r12 to heapbase for load_klass() |
| 1083 | __ reinit_heapbase(); |
| 1084 | |
| 1085 | // make sure klass is 'reasonable', which is not zero. |
| 1086 | __ load_klass(rax, rax); // get klass |
| 1087 | __ testptr(rax, rax); |
| 1088 | __ jcc(Assembler::zero, error); // if klass is NULL it is broken |
| 1089 | |
| 1090 | // return if everything seems ok |
| 1091 | __ bind(exit); |
| 1092 | __ movptr(rax, Address(rsp, saved_rax)); // get saved rax back |
| 1093 | __ movptr(rscratch1, Address(rsp, saved_r10)); // get saved r10 back |
| 1094 | __ pop(c_rarg3); // restore c_rarg3 |
| 1095 | __ pop(c_rarg2); // restore c_rarg2 |
| 1096 | __ pop(r12); // restore r12 |
| 1097 | __ popf(); // restore flags |
| 1098 | __ ret(4 * wordSize); // pop caller saved stuff |
| 1099 | |
| 1100 | // handle errors |
| 1101 | __ bind(error); |
| 1102 | __ movptr(rax, Address(rsp, saved_rax)); // get saved rax back |
| 1103 | __ movptr(rscratch1, Address(rsp, saved_r10)); // get saved r10 back |
| 1104 | __ pop(c_rarg3); // get saved c_rarg3 back |
| 1105 | __ pop(c_rarg2); // get saved c_rarg2 back |
| 1106 | __ pop(r12); // get saved r12 back |
| 1107 | __ popf(); // get saved flags off stack -- |
| 1108 | // will be ignored |
| 1109 | |
| 1110 | __ pusha(); // push registers |
| 1111 | // (rip is already |
| 1112 | // already pushed) |
| 1113 | // debug(char* msg, int64_t pc, int64_t regs[]) |
| 1114 | // We've popped the registers we'd saved (c_rarg3, c_rarg2 and flags), and |
| 1115 | // pushed all the registers, so now the stack looks like: |
| 1116 | // [tos + 0] 16 saved registers |
| 1117 | // [tos + 16] return address |
| 1118 | // * [tos + 17] error message (char*) |
| 1119 | // * [tos + 18] object to verify (oop) |
| 1120 | // * [tos + 19] saved rax - saved by caller and bashed |
| 1121 | // * [tos + 20] saved r10 (rscratch1) - saved by caller |
| 1122 | // * = popped on exit |
| 1123 | |
| 1124 | __ movptr(c_rarg0, Address(rsp, error_msg)); // pass address of error message |
| 1125 | __ movptr(c_rarg1, Address(rsp, return_addr)); // pass return address |
| 1126 | __ movq(c_rarg2, rsp); // pass address of regs on stack |
| 1127 | __ mov(r12, rsp); // remember rsp |
| 1128 | __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows |
| 1129 | __ andptr(rsp, -16); // align stack as required by ABI |
| 1130 | BLOCK_COMMENT("call MacroAssembler::debug" ); |
| 1131 | __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug64))); |
| 1132 | __ mov(rsp, r12); // restore rsp |
| 1133 | __ popa(); // pop registers (includes r12) |
| 1134 | __ ret(4 * wordSize); // pop caller saved stuff |
| 1135 | |
| 1136 | return start; |
| 1137 | } |
| 1138 | |
| 1139 | // |
| 1140 | // Verify that a register contains clean 32-bits positive value |
| 1141 | // (high 32-bits are 0) so it could be used in 64-bits shifts. |
| 1142 | // |
| 1143 | // Input: |
| 1144 | // Rint - 32-bits value |
| 1145 | // Rtmp - scratch |
| 1146 | // |
| 1147 | void assert_clean_int(Register Rint, Register Rtmp) { |
| 1148 | #ifdef ASSERT |
| 1149 | Label L; |
| 1150 | assert_different_registers(Rtmp, Rint); |
| 1151 | __ movslq(Rtmp, Rint); |
| 1152 | __ cmpq(Rtmp, Rint); |
| 1153 | __ jcc(Assembler::equal, L); |
| 1154 | __ stop("high 32-bits of int value are not 0" ); |
| 1155 | __ bind(L); |
| 1156 | #endif |
| 1157 | } |
| 1158 | |
| 1159 | // Generate overlap test for array copy stubs |
| 1160 | // |
| 1161 | // Input: |
| 1162 | // c_rarg0 - from |
| 1163 | // c_rarg1 - to |
| 1164 | // c_rarg2 - element count |
| 1165 | // |
| 1166 | // Output: |
| 1167 | // rax - &from[element count - 1] |
| 1168 | // |
| 1169 | void array_overlap_test(address no_overlap_target, Address::ScaleFactor sf) { |
| 1170 | assert(no_overlap_target != NULL, "must be generated" ); |
| 1171 | array_overlap_test(no_overlap_target, NULL, sf); |
| 1172 | } |
| 1173 | void array_overlap_test(Label& L_no_overlap, Address::ScaleFactor sf) { |
| 1174 | array_overlap_test(NULL, &L_no_overlap, sf); |
| 1175 | } |
| 1176 | void array_overlap_test(address no_overlap_target, Label* NOLp, Address::ScaleFactor sf) { |
| 1177 | const Register from = c_rarg0; |
| 1178 | const Register to = c_rarg1; |
| 1179 | const Register count = c_rarg2; |
| 1180 | const Register end_from = rax; |
| 1181 | |
| 1182 | __ cmpptr(to, from); |
| 1183 | __ lea(end_from, Address(from, count, sf, 0)); |
| 1184 | if (NOLp == NULL) { |
| 1185 | ExternalAddress no_overlap(no_overlap_target); |
| 1186 | __ jump_cc(Assembler::belowEqual, no_overlap); |
| 1187 | __ cmpptr(to, end_from); |
| 1188 | __ jump_cc(Assembler::aboveEqual, no_overlap); |
| 1189 | } else { |
| 1190 | __ jcc(Assembler::belowEqual, (*NOLp)); |
| 1191 | __ cmpptr(to, end_from); |
| 1192 | __ jcc(Assembler::aboveEqual, (*NOLp)); |
| 1193 | } |
| 1194 | } |
| 1195 | |
| 1196 | // Shuffle first three arg regs on Windows into Linux/Solaris locations. |
| 1197 | // |
| 1198 | // Outputs: |
| 1199 | // rdi - rcx |
| 1200 | // rsi - rdx |
| 1201 | // rdx - r8 |
| 1202 | // rcx - r9 |
| 1203 | // |
| 1204 | // Registers r9 and r10 are used to save rdi and rsi on Windows, which latter |
| 1205 | // are non-volatile. r9 and r10 should not be used by the caller. |
| 1206 | // |
| 1207 | DEBUG_ONLY(bool regs_in_thread;) |
| 1208 | |
| 1209 | void setup_arg_regs(int nargs = 3) { |
| 1210 | const Register saved_rdi = r9; |
| 1211 | const Register saved_rsi = r10; |
| 1212 | assert(nargs == 3 || nargs == 4, "else fix" ); |
| 1213 | #ifdef _WIN64 |
| 1214 | assert(c_rarg0 == rcx && c_rarg1 == rdx && c_rarg2 == r8 && c_rarg3 == r9, |
| 1215 | "unexpected argument registers" ); |
| 1216 | if (nargs >= 4) |
| 1217 | __ mov(rax, r9); // r9 is also saved_rdi |
| 1218 | __ movptr(saved_rdi, rdi); |
| 1219 | __ movptr(saved_rsi, rsi); |
| 1220 | __ mov(rdi, rcx); // c_rarg0 |
| 1221 | __ mov(rsi, rdx); // c_rarg1 |
| 1222 | __ mov(rdx, r8); // c_rarg2 |
| 1223 | if (nargs >= 4) |
| 1224 | __ mov(rcx, rax); // c_rarg3 (via rax) |
| 1225 | #else |
| 1226 | assert(c_rarg0 == rdi && c_rarg1 == rsi && c_rarg2 == rdx && c_rarg3 == rcx, |
| 1227 | "unexpected argument registers" ); |
| 1228 | #endif |
| 1229 | DEBUG_ONLY(regs_in_thread = false;) |
| 1230 | } |
| 1231 | |
| 1232 | void restore_arg_regs() { |
| 1233 | assert(!regs_in_thread, "wrong call to restore_arg_regs" ); |
| 1234 | const Register saved_rdi = r9; |
| 1235 | const Register saved_rsi = r10; |
| 1236 | #ifdef _WIN64 |
| 1237 | __ movptr(rdi, saved_rdi); |
| 1238 | __ movptr(rsi, saved_rsi); |
| 1239 | #endif |
| 1240 | } |
| 1241 | |
| 1242 | // This is used in places where r10 is a scratch register, and can |
| 1243 | // be adapted if r9 is needed also. |
| 1244 | void setup_arg_regs_using_thread() { |
| 1245 | const Register saved_r15 = r9; |
| 1246 | #ifdef _WIN64 |
| 1247 | __ mov(saved_r15, r15); // r15 is callee saved and needs to be restored |
| 1248 | __ get_thread(r15_thread); |
| 1249 | assert(c_rarg0 == rcx && c_rarg1 == rdx && c_rarg2 == r8 && c_rarg3 == r9, |
| 1250 | "unexpected argument registers" ); |
| 1251 | __ movptr(Address(r15_thread, in_bytes(JavaThread::windows_saved_rdi_offset())), rdi); |
| 1252 | __ movptr(Address(r15_thread, in_bytes(JavaThread::windows_saved_rsi_offset())), rsi); |
| 1253 | |
| 1254 | __ mov(rdi, rcx); // c_rarg0 |
| 1255 | __ mov(rsi, rdx); // c_rarg1 |
| 1256 | __ mov(rdx, r8); // c_rarg2 |
| 1257 | #else |
| 1258 | assert(c_rarg0 == rdi && c_rarg1 == rsi && c_rarg2 == rdx && c_rarg3 == rcx, |
| 1259 | "unexpected argument registers" ); |
| 1260 | #endif |
| 1261 | DEBUG_ONLY(regs_in_thread = true;) |
| 1262 | } |
| 1263 | |
| 1264 | void restore_arg_regs_using_thread() { |
| 1265 | assert(regs_in_thread, "wrong call to restore_arg_regs" ); |
| 1266 | const Register saved_r15 = r9; |
| 1267 | #ifdef _WIN64 |
| 1268 | __ get_thread(r15_thread); |
| 1269 | __ movptr(rsi, Address(r15_thread, in_bytes(JavaThread::windows_saved_rsi_offset()))); |
| 1270 | __ movptr(rdi, Address(r15_thread, in_bytes(JavaThread::windows_saved_rdi_offset()))); |
| 1271 | __ mov(r15, saved_r15); // r15 is callee saved and needs to be restored |
| 1272 | #endif |
| 1273 | } |
| 1274 | |
| 1275 | // Copy big chunks forward |
| 1276 | // |
| 1277 | // Inputs: |
| 1278 | // end_from - source arrays end address |
| 1279 | // end_to - destination array end address |
| 1280 | // qword_count - 64-bits element count, negative |
| 1281 | // to - scratch |
| 1282 | // L_copy_bytes - entry label |
| 1283 | // L_copy_8_bytes - exit label |
| 1284 | // |
| 1285 | void copy_bytes_forward(Register end_from, Register end_to, |
| 1286 | Register qword_count, Register to, |
| 1287 | Label& L_copy_bytes, Label& L_copy_8_bytes) { |
| 1288 | DEBUG_ONLY(__ stop("enter at entry label, not here" )); |
| 1289 | Label L_loop; |
| 1290 | __ align(OptoLoopAlignment); |
| 1291 | if (UseUnalignedLoadStores) { |
| 1292 | Label L_end; |
| 1293 | // Copy 64-bytes per iteration |
| 1294 | __ BIND(L_loop); |
| 1295 | if (UseAVX > 2) { |
| 1296 | __ evmovdqul(xmm0, Address(end_from, qword_count, Address::times_8, -56), Assembler::AVX_512bit); |
| 1297 | __ evmovdqul(Address(end_to, qword_count, Address::times_8, -56), xmm0, Assembler::AVX_512bit); |
| 1298 | } else if (UseAVX == 2) { |
| 1299 | __ vmovdqu(xmm0, Address(end_from, qword_count, Address::times_8, -56)); |
| 1300 | __ vmovdqu(Address(end_to, qword_count, Address::times_8, -56), xmm0); |
| 1301 | __ vmovdqu(xmm1, Address(end_from, qword_count, Address::times_8, -24)); |
| 1302 | __ vmovdqu(Address(end_to, qword_count, Address::times_8, -24), xmm1); |
| 1303 | } else { |
| 1304 | __ movdqu(xmm0, Address(end_from, qword_count, Address::times_8, -56)); |
| 1305 | __ movdqu(Address(end_to, qword_count, Address::times_8, -56), xmm0); |
| 1306 | __ movdqu(xmm1, Address(end_from, qword_count, Address::times_8, -40)); |
| 1307 | __ movdqu(Address(end_to, qword_count, Address::times_8, -40), xmm1); |
| 1308 | __ movdqu(xmm2, Address(end_from, qword_count, Address::times_8, -24)); |
| 1309 | __ movdqu(Address(end_to, qword_count, Address::times_8, -24), xmm2); |
| 1310 | __ movdqu(xmm3, Address(end_from, qword_count, Address::times_8, - 8)); |
| 1311 | __ movdqu(Address(end_to, qword_count, Address::times_8, - 8), xmm3); |
| 1312 | } |
| 1313 | __ BIND(L_copy_bytes); |
| 1314 | __ addptr(qword_count, 8); |
| 1315 | __ jcc(Assembler::lessEqual, L_loop); |
| 1316 | __ subptr(qword_count, 4); // sub(8) and add(4) |
| 1317 | __ jccb(Assembler::greater, L_end); |
| 1318 | // Copy trailing 32 bytes |
| 1319 | if (UseAVX >= 2) { |
| 1320 | __ vmovdqu(xmm0, Address(end_from, qword_count, Address::times_8, -24)); |
| 1321 | __ vmovdqu(Address(end_to, qword_count, Address::times_8, -24), xmm0); |
| 1322 | } else { |
| 1323 | __ movdqu(xmm0, Address(end_from, qword_count, Address::times_8, -24)); |
| 1324 | __ movdqu(Address(end_to, qword_count, Address::times_8, -24), xmm0); |
| 1325 | __ movdqu(xmm1, Address(end_from, qword_count, Address::times_8, - 8)); |
| 1326 | __ movdqu(Address(end_to, qword_count, Address::times_8, - 8), xmm1); |
| 1327 | } |
| 1328 | __ addptr(qword_count, 4); |
| 1329 | __ BIND(L_end); |
| 1330 | if (UseAVX >= 2) { |
| 1331 | // clean upper bits of YMM registers |
| 1332 | __ vpxor(xmm0, xmm0); |
| 1333 | __ vpxor(xmm1, xmm1); |
| 1334 | } |
| 1335 | } else { |
| 1336 | // Copy 32-bytes per iteration |
| 1337 | __ BIND(L_loop); |
| 1338 | __ movq(to, Address(end_from, qword_count, Address::times_8, -24)); |
| 1339 | __ movq(Address(end_to, qword_count, Address::times_8, -24), to); |
| 1340 | __ movq(to, Address(end_from, qword_count, Address::times_8, -16)); |
| 1341 | __ movq(Address(end_to, qword_count, Address::times_8, -16), to); |
| 1342 | __ movq(to, Address(end_from, qword_count, Address::times_8, - 8)); |
| 1343 | __ movq(Address(end_to, qword_count, Address::times_8, - 8), to); |
| 1344 | __ movq(to, Address(end_from, qword_count, Address::times_8, - 0)); |
| 1345 | __ movq(Address(end_to, qword_count, Address::times_8, - 0), to); |
| 1346 | |
| 1347 | __ BIND(L_copy_bytes); |
| 1348 | __ addptr(qword_count, 4); |
| 1349 | __ jcc(Assembler::lessEqual, L_loop); |
| 1350 | } |
| 1351 | __ subptr(qword_count, 4); |
| 1352 | __ jcc(Assembler::less, L_copy_8_bytes); // Copy trailing qwords |
| 1353 | } |
| 1354 | |
| 1355 | // Copy big chunks backward |
| 1356 | // |
| 1357 | // Inputs: |
| 1358 | // from - source arrays address |
| 1359 | // dest - destination array address |
| 1360 | // qword_count - 64-bits element count |
| 1361 | // to - scratch |
| 1362 | // L_copy_bytes - entry label |
| 1363 | // L_copy_8_bytes - exit label |
| 1364 | // |
| 1365 | void copy_bytes_backward(Register from, Register dest, |
| 1366 | Register qword_count, Register to, |
| 1367 | Label& L_copy_bytes, Label& L_copy_8_bytes) { |
| 1368 | DEBUG_ONLY(__ stop("enter at entry label, not here" )); |
| 1369 | Label L_loop; |
| 1370 | __ align(OptoLoopAlignment); |
| 1371 | if (UseUnalignedLoadStores) { |
| 1372 | Label L_end; |
| 1373 | // Copy 64-bytes per iteration |
| 1374 | __ BIND(L_loop); |
| 1375 | if (UseAVX > 2) { |
| 1376 | __ evmovdqul(xmm0, Address(from, qword_count, Address::times_8, 0), Assembler::AVX_512bit); |
| 1377 | __ evmovdqul(Address(dest, qword_count, Address::times_8, 0), xmm0, Assembler::AVX_512bit); |
| 1378 | } else if (UseAVX == 2) { |
| 1379 | __ vmovdqu(xmm0, Address(from, qword_count, Address::times_8, 32)); |
| 1380 | __ vmovdqu(Address(dest, qword_count, Address::times_8, 32), xmm0); |
| 1381 | __ vmovdqu(xmm1, Address(from, qword_count, Address::times_8, 0)); |
| 1382 | __ vmovdqu(Address(dest, qword_count, Address::times_8, 0), xmm1); |
| 1383 | } else { |
| 1384 | __ movdqu(xmm0, Address(from, qword_count, Address::times_8, 48)); |
| 1385 | __ movdqu(Address(dest, qword_count, Address::times_8, 48), xmm0); |
| 1386 | __ movdqu(xmm1, Address(from, qword_count, Address::times_8, 32)); |
| 1387 | __ movdqu(Address(dest, qword_count, Address::times_8, 32), xmm1); |
| 1388 | __ movdqu(xmm2, Address(from, qword_count, Address::times_8, 16)); |
| 1389 | __ movdqu(Address(dest, qword_count, Address::times_8, 16), xmm2); |
| 1390 | __ movdqu(xmm3, Address(from, qword_count, Address::times_8, 0)); |
| 1391 | __ movdqu(Address(dest, qword_count, Address::times_8, 0), xmm3); |
| 1392 | } |
| 1393 | __ BIND(L_copy_bytes); |
| 1394 | __ subptr(qword_count, 8); |
| 1395 | __ jcc(Assembler::greaterEqual, L_loop); |
| 1396 | |
| 1397 | __ addptr(qword_count, 4); // add(8) and sub(4) |
| 1398 | __ jccb(Assembler::less, L_end); |
| 1399 | // Copy trailing 32 bytes |
| 1400 | if (UseAVX >= 2) { |
| 1401 | __ vmovdqu(xmm0, Address(from, qword_count, Address::times_8, 0)); |
| 1402 | __ vmovdqu(Address(dest, qword_count, Address::times_8, 0), xmm0); |
| 1403 | } else { |
| 1404 | __ movdqu(xmm0, Address(from, qword_count, Address::times_8, 16)); |
| 1405 | __ movdqu(Address(dest, qword_count, Address::times_8, 16), xmm0); |
| 1406 | __ movdqu(xmm1, Address(from, qword_count, Address::times_8, 0)); |
| 1407 | __ movdqu(Address(dest, qword_count, Address::times_8, 0), xmm1); |
| 1408 | } |
| 1409 | __ subptr(qword_count, 4); |
| 1410 | __ BIND(L_end); |
| 1411 | if (UseAVX >= 2) { |
| 1412 | // clean upper bits of YMM registers |
| 1413 | __ vpxor(xmm0, xmm0); |
| 1414 | __ vpxor(xmm1, xmm1); |
| 1415 | } |
| 1416 | } else { |
| 1417 | // Copy 32-bytes per iteration |
| 1418 | __ BIND(L_loop); |
| 1419 | __ movq(to, Address(from, qword_count, Address::times_8, 24)); |
| 1420 | __ movq(Address(dest, qword_count, Address::times_8, 24), to); |
| 1421 | __ movq(to, Address(from, qword_count, Address::times_8, 16)); |
| 1422 | __ movq(Address(dest, qword_count, Address::times_8, 16), to); |
| 1423 | __ movq(to, Address(from, qword_count, Address::times_8, 8)); |
| 1424 | __ movq(Address(dest, qword_count, Address::times_8, 8), to); |
| 1425 | __ movq(to, Address(from, qword_count, Address::times_8, 0)); |
| 1426 | __ movq(Address(dest, qword_count, Address::times_8, 0), to); |
| 1427 | |
| 1428 | __ BIND(L_copy_bytes); |
| 1429 | __ subptr(qword_count, 4); |
| 1430 | __ jcc(Assembler::greaterEqual, L_loop); |
| 1431 | } |
| 1432 | __ addptr(qword_count, 4); |
| 1433 | __ jcc(Assembler::greater, L_copy_8_bytes); // Copy trailing qwords |
| 1434 | } |
| 1435 | |
| 1436 | |
| 1437 | // Arguments: |
| 1438 | // aligned - true => Input and output aligned on a HeapWord == 8-byte boundary |
| 1439 | // ignored |
| 1440 | // name - stub name string |
| 1441 | // |
| 1442 | // Inputs: |
| 1443 | // c_rarg0 - source array address |
| 1444 | // c_rarg1 - destination array address |
| 1445 | // c_rarg2 - element count, treated as ssize_t, can be zero |
| 1446 | // |
| 1447 | // If 'from' and/or 'to' are aligned on 4-, 2-, or 1-byte boundaries, |
| 1448 | // we let the hardware handle it. The one to eight bytes within words, |
| 1449 | // dwords or qwords that span cache line boundaries will still be loaded |
| 1450 | // and stored atomically. |
| 1451 | // |
| 1452 | // Side Effects: |
| 1453 | // disjoint_byte_copy_entry is set to the no-overlap entry point |
| 1454 | // used by generate_conjoint_byte_copy(). |
| 1455 | // |
| 1456 | address generate_disjoint_byte_copy(bool aligned, address* entry, const char *name) { |
| 1457 | __ align(CodeEntryAlignment); |
| 1458 | StubCodeMark mark(this, "StubRoutines" , name); |
| 1459 | address start = __ pc(); |
| 1460 | |
| 1461 | Label L_copy_bytes, L_copy_8_bytes, L_copy_4_bytes, L_copy_2_bytes; |
| 1462 | Label L_copy_byte, L_exit; |
| 1463 | const Register from = rdi; // source array address |
| 1464 | const Register to = rsi; // destination array address |
| 1465 | const Register count = rdx; // elements count |
| 1466 | const Register byte_count = rcx; |
| 1467 | const Register qword_count = count; |
| 1468 | const Register end_from = from; // source array end address |
| 1469 | const Register end_to = to; // destination array end address |
| 1470 | // End pointers are inclusive, and if count is not zero they point |
| 1471 | // to the last unit copied: end_to[0] := end_from[0] |
| 1472 | |
| 1473 | __ enter(); // required for proper stackwalking of RuntimeStub frame |
| 1474 | assert_clean_int(c_rarg2, rax); // Make sure 'count' is clean int. |
| 1475 | |
| 1476 | if (entry != NULL) { |
| 1477 | *entry = __ pc(); |
| 1478 | // caller can pass a 64-bit byte count here (from Unsafe.copyMemory) |
| 1479 | BLOCK_COMMENT("Entry:" ); |
| 1480 | } |
| 1481 | |
| 1482 | setup_arg_regs(); // from => rdi, to => rsi, count => rdx |
| 1483 | // r9 and r10 may be used to save non-volatile registers |
| 1484 | |
| 1485 | // 'from', 'to' and 'count' are now valid |
| 1486 | __ movptr(byte_count, count); |
| 1487 | __ shrptr(count, 3); // count => qword_count |
| 1488 | |
| 1489 | // Copy from low to high addresses. Use 'to' as scratch. |
| 1490 | __ lea(end_from, Address(from, qword_count, Address::times_8, -8)); |
| 1491 | __ lea(end_to, Address(to, qword_count, Address::times_8, -8)); |
| 1492 | __ negptr(qword_count); // make the count negative |
| 1493 | __ jmp(L_copy_bytes); |
| 1494 | |
| 1495 | // Copy trailing qwords |
| 1496 | __ BIND(L_copy_8_bytes); |
| 1497 | __ movq(rax, Address(end_from, qword_count, Address::times_8, 8)); |
| 1498 | __ movq(Address(end_to, qword_count, Address::times_8, 8), rax); |
| 1499 | __ increment(qword_count); |
| 1500 | __ jcc(Assembler::notZero, L_copy_8_bytes); |
| 1501 | |
| 1502 | // Check for and copy trailing dword |
| 1503 | __ BIND(L_copy_4_bytes); |
| 1504 | __ testl(byte_count, 4); |
| 1505 | __ jccb(Assembler::zero, L_copy_2_bytes); |
| 1506 | __ movl(rax, Address(end_from, 8)); |
| 1507 | __ movl(Address(end_to, 8), rax); |
| 1508 | |
| 1509 | __ addptr(end_from, 4); |
| 1510 | __ addptr(end_to, 4); |
| 1511 | |
| 1512 | // Check for and copy trailing word |
| 1513 | __ BIND(L_copy_2_bytes); |
| 1514 | __ testl(byte_count, 2); |
| 1515 | __ jccb(Assembler::zero, L_copy_byte); |
| 1516 | __ movw(rax, Address(end_from, 8)); |
| 1517 | __ movw(Address(end_to, 8), rax); |
| 1518 | |
| 1519 | __ addptr(end_from, 2); |
| 1520 | __ addptr(end_to, 2); |
| 1521 | |
| 1522 | // Check for and copy trailing byte |
| 1523 | __ BIND(L_copy_byte); |
| 1524 | __ testl(byte_count, 1); |
| 1525 | __ jccb(Assembler::zero, L_exit); |
| 1526 | __ movb(rax, Address(end_from, 8)); |
| 1527 | __ movb(Address(end_to, 8), rax); |
| 1528 | |
| 1529 | __ BIND(L_exit); |
| 1530 | restore_arg_regs(); |
| 1531 | inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr); // Update counter after rscratch1 is free |
| 1532 | __ xorptr(rax, rax); // return 0 |
| 1533 | __ vzeroupper(); |
| 1534 | __ leave(); // required for proper stackwalking of RuntimeStub frame |
| 1535 | __ ret(0); |
| 1536 | |
| 1537 | // Copy in multi-bytes chunks |
| 1538 | copy_bytes_forward(end_from, end_to, qword_count, rax, L_copy_bytes, L_copy_8_bytes); |
| 1539 | __ jmp(L_copy_4_bytes); |
| 1540 | |
| 1541 | return start; |
| 1542 | } |
| 1543 | |
| 1544 | // Arguments: |
| 1545 | // aligned - true => Input and output aligned on a HeapWord == 8-byte boundary |
| 1546 | // ignored |
| 1547 | // name - stub name string |
| 1548 | // |
| 1549 | // Inputs: |
| 1550 | // c_rarg0 - source array address |
| 1551 | // c_rarg1 - destination array address |
| 1552 | // c_rarg2 - element count, treated as ssize_t, can be zero |
| 1553 | // |
| 1554 | // If 'from' and/or 'to' are aligned on 4-, 2-, or 1-byte boundaries, |
| 1555 | // we let the hardware handle it. The one to eight bytes within words, |
| 1556 | // dwords or qwords that span cache line boundaries will still be loaded |
| 1557 | // and stored atomically. |
| 1558 | // |
| 1559 | address generate_conjoint_byte_copy(bool aligned, address nooverlap_target, |
| 1560 | address* entry, const char *name) { |
| 1561 | __ align(CodeEntryAlignment); |
| 1562 | StubCodeMark mark(this, "StubRoutines" , name); |
| 1563 | address start = __ pc(); |
| 1564 | |
| 1565 | Label L_copy_bytes, L_copy_8_bytes, L_copy_4_bytes, L_copy_2_bytes; |
| 1566 | const Register from = rdi; // source array address |
| 1567 | const Register to = rsi; // destination array address |
| 1568 | const Register count = rdx; // elements count |
| 1569 | const Register byte_count = rcx; |
| 1570 | const Register qword_count = count; |
| 1571 | |
| 1572 | __ enter(); // required for proper stackwalking of RuntimeStub frame |
| 1573 | assert_clean_int(c_rarg2, rax); // Make sure 'count' is clean int. |
| 1574 | |
| 1575 | if (entry != NULL) { |
| 1576 | *entry = __ pc(); |
| 1577 | // caller can pass a 64-bit byte count here (from Unsafe.copyMemory) |
| 1578 | BLOCK_COMMENT("Entry:" ); |
| 1579 | } |
| 1580 | |
| 1581 | array_overlap_test(nooverlap_target, Address::times_1); |
| 1582 | setup_arg_regs(); // from => rdi, to => rsi, count => rdx |
| 1583 | // r9 and r10 may be used to save non-volatile registers |
| 1584 | |
| 1585 | // 'from', 'to' and 'count' are now valid |
| 1586 | __ movptr(byte_count, count); |
| 1587 | __ shrptr(count, 3); // count => qword_count |
| 1588 | |
| 1589 | // Copy from high to low addresses. |
| 1590 | |
| 1591 | // Check for and copy trailing byte |
| 1592 | __ testl(byte_count, 1); |
| 1593 | __ jcc(Assembler::zero, L_copy_2_bytes); |
| 1594 | __ movb(rax, Address(from, byte_count, Address::times_1, -1)); |
| 1595 | __ movb(Address(to, byte_count, Address::times_1, -1), rax); |
| 1596 | __ decrement(byte_count); // Adjust for possible trailing word |
| 1597 | |
| 1598 | // Check for and copy trailing word |
| 1599 | __ BIND(L_copy_2_bytes); |
| 1600 | __ testl(byte_count, 2); |
| 1601 | __ jcc(Assembler::zero, L_copy_4_bytes); |
| 1602 | __ movw(rax, Address(from, byte_count, Address::times_1, -2)); |
| 1603 | __ movw(Address(to, byte_count, Address::times_1, -2), rax); |
| 1604 | |
| 1605 | // Check for and copy trailing dword |
| 1606 | __ BIND(L_copy_4_bytes); |
| 1607 | __ testl(byte_count, 4); |
| 1608 | __ jcc(Assembler::zero, L_copy_bytes); |
| 1609 | __ movl(rax, Address(from, qword_count, Address::times_8)); |
| 1610 | __ movl(Address(to, qword_count, Address::times_8), rax); |
| 1611 | __ jmp(L_copy_bytes); |
| 1612 | |
| 1613 | // Copy trailing qwords |
| 1614 | __ BIND(L_copy_8_bytes); |
| 1615 | __ movq(rax, Address(from, qword_count, Address::times_8, -8)); |
| 1616 | __ movq(Address(to, qword_count, Address::times_8, -8), rax); |
| 1617 | __ decrement(qword_count); |
| 1618 | __ jcc(Assembler::notZero, L_copy_8_bytes); |
| 1619 | |
| 1620 | restore_arg_regs(); |
| 1621 | inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr); // Update counter after rscratch1 is free |
| 1622 | __ xorptr(rax, rax); // return 0 |
| 1623 | __ vzeroupper(); |
| 1624 | __ leave(); // required for proper stackwalking of RuntimeStub frame |
| 1625 | __ ret(0); |
| 1626 | |
| 1627 | // Copy in multi-bytes chunks |
| 1628 | copy_bytes_backward(from, to, qword_count, rax, L_copy_bytes, L_copy_8_bytes); |
| 1629 | |
| 1630 | restore_arg_regs(); |
| 1631 | inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr); // Update counter after rscratch1 is free |
| 1632 | __ xorptr(rax, rax); // return 0 |
| 1633 | __ vzeroupper(); |
| 1634 | __ leave(); // required for proper stackwalking of RuntimeStub frame |
| 1635 | __ ret(0); |
| 1636 | |
| 1637 | return start; |
| 1638 | } |
| 1639 | |
| 1640 | // Arguments: |
| 1641 | // aligned - true => Input and output aligned on a HeapWord == 8-byte boundary |
| 1642 | // ignored |
| 1643 | // name - stub name string |
| 1644 | // |
| 1645 | // Inputs: |
| 1646 | // c_rarg0 - source array address |
| 1647 | // c_rarg1 - destination array address |
| 1648 | // c_rarg2 - element count, treated as ssize_t, can be zero |
| 1649 | // |
| 1650 | // If 'from' and/or 'to' are aligned on 4- or 2-byte boundaries, we |
| 1651 | // let the hardware handle it. The two or four words within dwords |
| 1652 | // or qwords that span cache line boundaries will still be loaded |
| 1653 | // and stored atomically. |
| 1654 | // |
| 1655 | // Side Effects: |
| 1656 | // disjoint_short_copy_entry is set to the no-overlap entry point |
| 1657 | // used by generate_conjoint_short_copy(). |
| 1658 | // |
| 1659 | address generate_disjoint_short_copy(bool aligned, address *entry, const char *name) { |
| 1660 | __ align(CodeEntryAlignment); |
| 1661 | StubCodeMark mark(this, "StubRoutines" , name); |
| 1662 | address start = __ pc(); |
| 1663 | |
| 1664 | Label L_copy_bytes, L_copy_8_bytes, L_copy_4_bytes,L_copy_2_bytes,L_exit; |
| 1665 | const Register from = rdi; // source array address |
| 1666 | const Register to = rsi; // destination array address |
| 1667 | const Register count = rdx; // elements count |
| 1668 | const Register word_count = rcx; |
| 1669 | const Register qword_count = count; |
| 1670 | const Register end_from = from; // source array end address |
| 1671 | const Register end_to = to; // destination array end address |
| 1672 | // End pointers are inclusive, and if count is not zero they point |
| 1673 | // to the last unit copied: end_to[0] := end_from[0] |
| 1674 | |
| 1675 | __ enter(); // required for proper stackwalking of RuntimeStub frame |
| 1676 | assert_clean_int(c_rarg2, rax); // Make sure 'count' is clean int. |
| 1677 | |
| 1678 | if (entry != NULL) { |
| 1679 | *entry = __ pc(); |
| 1680 | // caller can pass a 64-bit byte count here (from Unsafe.copyMemory) |
| 1681 | BLOCK_COMMENT("Entry:" ); |
| 1682 | } |
| 1683 | |
| 1684 | setup_arg_regs(); // from => rdi, to => rsi, count => rdx |
| 1685 | // r9 and r10 may be used to save non-volatile registers |
| 1686 | |
| 1687 | // 'from', 'to' and 'count' are now valid |
| 1688 | __ movptr(word_count, count); |
| 1689 | __ shrptr(count, 2); // count => qword_count |
| 1690 | |
| 1691 | // Copy from low to high addresses. Use 'to' as scratch. |
| 1692 | __ lea(end_from, Address(from, qword_count, Address::times_8, -8)); |
| 1693 | __ lea(end_to, Address(to, qword_count, Address::times_8, -8)); |
| 1694 | __ negptr(qword_count); |
| 1695 | __ jmp(L_copy_bytes); |
| 1696 | |
| 1697 | // Copy trailing qwords |
| 1698 | __ BIND(L_copy_8_bytes); |
| 1699 | __ movq(rax, Address(end_from, qword_count, Address::times_8, 8)); |
| 1700 | __ movq(Address(end_to, qword_count, Address::times_8, 8), rax); |
| 1701 | __ increment(qword_count); |
| 1702 | __ jcc(Assembler::notZero, L_copy_8_bytes); |
| 1703 | |
| 1704 | // Original 'dest' is trashed, so we can't use it as a |
| 1705 | // base register for a possible trailing word copy |
| 1706 | |
| 1707 | // Check for and copy trailing dword |
| 1708 | __ BIND(L_copy_4_bytes); |
| 1709 | __ testl(word_count, 2); |
| 1710 | __ jccb(Assembler::zero, L_copy_2_bytes); |
| 1711 | __ movl(rax, Address(end_from, 8)); |
| 1712 | __ movl(Address(end_to, 8), rax); |
| 1713 | |
| 1714 | __ addptr(end_from, 4); |
| 1715 | __ addptr(end_to, 4); |
| 1716 | |
| 1717 | // Check for and copy trailing word |
| 1718 | __ BIND(L_copy_2_bytes); |
| 1719 | __ testl(word_count, 1); |
| 1720 | __ jccb(Assembler::zero, L_exit); |
| 1721 | __ movw(rax, Address(end_from, 8)); |
| 1722 | __ movw(Address(end_to, 8), rax); |
| 1723 | |
| 1724 | __ BIND(L_exit); |
| 1725 | restore_arg_regs(); |
| 1726 | inc_counter_np(SharedRuntime::_jshort_array_copy_ctr); // Update counter after rscratch1 is free |
| 1727 | __ xorptr(rax, rax); // return 0 |
| 1728 | __ vzeroupper(); |
| 1729 | __ leave(); // required for proper stackwalking of RuntimeStub frame |
| 1730 | __ ret(0); |
| 1731 | |
| 1732 | // Copy in multi-bytes chunks |
| 1733 | copy_bytes_forward(end_from, end_to, qword_count, rax, L_copy_bytes, L_copy_8_bytes); |
| 1734 | __ jmp(L_copy_4_bytes); |
| 1735 | |
| 1736 | return start; |
| 1737 | } |
| 1738 | |
| 1739 | address generate_fill(BasicType t, bool aligned, const char *name) { |
| 1740 | __ align(CodeEntryAlignment); |
| 1741 | StubCodeMark mark(this, "StubRoutines" , name); |
| 1742 | address start = __ pc(); |
| 1743 | |
| 1744 | BLOCK_COMMENT("Entry:" ); |
| 1745 | |
| 1746 | const Register to = c_rarg0; // source array address |
| 1747 | const Register value = c_rarg1; // value |
| 1748 | const Register count = c_rarg2; // elements count |
| 1749 | |
| 1750 | __ enter(); // required for proper stackwalking of RuntimeStub frame |
| 1751 | |
| 1752 | __ generate_fill(t, aligned, to, value, count, rax, xmm0); |
| 1753 | |
| 1754 | __ vzeroupper(); |
| 1755 | __ leave(); // required for proper stackwalking of RuntimeStub frame |
| 1756 | __ ret(0); |
| 1757 | return start; |
| 1758 | } |
| 1759 | |
| 1760 | // Arguments: |
| 1761 | // aligned - true => Input and output aligned on a HeapWord == 8-byte boundary |
| 1762 | // ignored |
| 1763 | // name - stub name string |
| 1764 | // |
| 1765 | // Inputs: |
| 1766 | // c_rarg0 - source array address |
| 1767 | // c_rarg1 - destination array address |
| 1768 | // c_rarg2 - element count, treated as ssize_t, can be zero |
| 1769 | // |
| 1770 | // If 'from' and/or 'to' are aligned on 4- or 2-byte boundaries, we |
| 1771 | // let the hardware handle it. The two or four words within dwords |
| 1772 | // or qwords that span cache line boundaries will still be loaded |
| 1773 | // and stored atomically. |
| 1774 | // |
| 1775 | address generate_conjoint_short_copy(bool aligned, address nooverlap_target, |
| 1776 | address *entry, const char *name) { |
| 1777 | __ align(CodeEntryAlignment); |
| 1778 | StubCodeMark mark(this, "StubRoutines" , name); |
| 1779 | address start = __ pc(); |
| 1780 | |
| 1781 | Label L_copy_bytes, L_copy_8_bytes, L_copy_4_bytes; |
| 1782 | const Register from = rdi; // source array address |
| 1783 | const Register to = rsi; // destination array address |
| 1784 | const Register count = rdx; // elements count |
| 1785 | const Register word_count = rcx; |
| 1786 | const Register qword_count = count; |
| 1787 | |
| 1788 | __ enter(); // required for proper stackwalking of RuntimeStub frame |
| 1789 | assert_clean_int(c_rarg2, rax); // Make sure 'count' is clean int. |
| 1790 | |
| 1791 | if (entry != NULL) { |
| 1792 | *entry = __ pc(); |
| 1793 | // caller can pass a 64-bit byte count here (from Unsafe.copyMemory) |
| 1794 | BLOCK_COMMENT("Entry:" ); |
| 1795 | } |
| 1796 | |
| 1797 | array_overlap_test(nooverlap_target, Address::times_2); |
| 1798 | setup_arg_regs(); // from => rdi, to => rsi, count => rdx |
| 1799 | // r9 and r10 may be used to save non-volatile registers |
| 1800 | |
| 1801 | // 'from', 'to' and 'count' are now valid |
| 1802 | __ movptr(word_count, count); |
| 1803 | __ shrptr(count, 2); // count => qword_count |
| 1804 | |
| 1805 | // Copy from high to low addresses. Use 'to' as scratch. |
| 1806 | |
| 1807 | // Check for and copy trailing word |
| 1808 | __ testl(word_count, 1); |
| 1809 | __ jccb(Assembler::zero, L_copy_4_bytes); |
| 1810 | __ movw(rax, Address(from, word_count, Address::times_2, -2)); |
| 1811 | __ movw(Address(to, word_count, Address::times_2, -2), rax); |
| 1812 | |
| 1813 | // Check for and copy trailing dword |
| 1814 | __ BIND(L_copy_4_bytes); |
| 1815 | __ testl(word_count, 2); |
| 1816 | __ jcc(Assembler::zero, L_copy_bytes); |
| 1817 | __ movl(rax, Address(from, qword_count, Address::times_8)); |
| 1818 | __ movl(Address(to, qword_count, Address::times_8), rax); |
| 1819 | __ jmp(L_copy_bytes); |
| 1820 | |
| 1821 | // Copy trailing qwords |
| 1822 | __ BIND(L_copy_8_bytes); |
| 1823 | __ movq(rax, Address(from, qword_count, Address::times_8, -8)); |
| 1824 | __ movq(Address(to, qword_count, Address::times_8, -8), rax); |
| 1825 | __ decrement(qword_count); |
| 1826 | __ jcc(Assembler::notZero, L_copy_8_bytes); |
| 1827 | |
| 1828 | restore_arg_regs(); |
| 1829 | inc_counter_np(SharedRuntime::_jshort_array_copy_ctr); // Update counter after rscratch1 is free |
| 1830 | __ xorptr(rax, rax); // return 0 |
| 1831 | __ vzeroupper(); |
| 1832 | __ leave(); // required for proper stackwalking of RuntimeStub frame |
| 1833 | __ ret(0); |
| 1834 | |
| 1835 | // Copy in multi-bytes chunks |
| 1836 | copy_bytes_backward(from, to, qword_count, rax, L_copy_bytes, L_copy_8_bytes); |
| 1837 | |
| 1838 | restore_arg_regs(); |
| 1839 | inc_counter_np(SharedRuntime::_jshort_array_copy_ctr); // Update counter after rscratch1 is free |
| 1840 | __ xorptr(rax, rax); // return 0 |
| 1841 | __ vzeroupper(); |
| 1842 | __ leave(); // required for proper stackwalking of RuntimeStub frame |
| 1843 | __ ret(0); |
| 1844 | |
| 1845 | return start; |
| 1846 | } |
| 1847 | |
| 1848 | // Arguments: |
| 1849 | // aligned - true => Input and output aligned on a HeapWord == 8-byte boundary |
| 1850 | // ignored |
| 1851 | // is_oop - true => oop array, so generate store check code |
| 1852 | // name - stub name string |
| 1853 | // |
| 1854 | // Inputs: |
| 1855 | // c_rarg0 - source array address |
| 1856 | // c_rarg1 - destination array address |
| 1857 | // c_rarg2 - element count, treated as ssize_t, can be zero |
| 1858 | // |
| 1859 | // If 'from' and/or 'to' are aligned on 4-byte boundaries, we let |
| 1860 | // the hardware handle it. The two dwords within qwords that span |
| 1861 | // cache line boundaries will still be loaded and stored atomicly. |
| 1862 | // |
| 1863 | // Side Effects: |
| 1864 | // disjoint_int_copy_entry is set to the no-overlap entry point |
| 1865 | // used by generate_conjoint_int_oop_copy(). |
| 1866 | // |
| 1867 | address generate_disjoint_int_oop_copy(bool aligned, bool is_oop, address* entry, |
| 1868 | const char *name, bool dest_uninitialized = false) { |
| 1869 | __ align(CodeEntryAlignment); |
| 1870 | StubCodeMark mark(this, "StubRoutines" , name); |
| 1871 | address start = __ pc(); |
| 1872 | |
| 1873 | Label L_copy_bytes, L_copy_8_bytes, L_copy_4_bytes, L_exit; |
| 1874 | const Register from = rdi; // source array address |
| 1875 | const Register to = rsi; // destination array address |
| 1876 | const Register count = rdx; // elements count |
| 1877 | const Register dword_count = rcx; |
| 1878 | const Register qword_count = count; |
| 1879 | const Register end_from = from; // source array end address |
| 1880 | const Register end_to = to; // destination array end address |
| 1881 | // End pointers are inclusive, and if count is not zero they point |
| 1882 | // to the last unit copied: end_to[0] := end_from[0] |
| 1883 | |
| 1884 | __ enter(); // required for proper stackwalking of RuntimeStub frame |
| 1885 | assert_clean_int(c_rarg2, rax); // Make sure 'count' is clean int. |
| 1886 | |
| 1887 | if (entry != NULL) { |
| 1888 | *entry = __ pc(); |
| 1889 | // caller can pass a 64-bit byte count here (from Unsafe.copyMemory) |
| 1890 | BLOCK_COMMENT("Entry:" ); |
| 1891 | } |
| 1892 | |
| 1893 | setup_arg_regs_using_thread(); // from => rdi, to => rsi, count => rdx |
| 1894 | // r9 is used to save r15_thread |
| 1895 | |
| 1896 | DecoratorSet decorators = IN_HEAP | IS_ARRAY | ARRAYCOPY_DISJOINT; |
| 1897 | if (dest_uninitialized) { |
| 1898 | decorators |= IS_DEST_UNINITIALIZED; |
| 1899 | } |
| 1900 | if (aligned) { |
| 1901 | decorators |= ARRAYCOPY_ALIGNED; |
| 1902 | } |
| 1903 | |
| 1904 | BasicType type = is_oop ? T_OBJECT : T_INT; |
| 1905 | BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler(); |
| 1906 | bs->arraycopy_prologue(_masm, decorators, type, from, to, count); |
| 1907 | |
| 1908 | // 'from', 'to' and 'count' are now valid |
| 1909 | __ movptr(dword_count, count); |
| 1910 | __ shrptr(count, 1); // count => qword_count |
| 1911 | |
| 1912 | // Copy from low to high addresses. Use 'to' as scratch. |
| 1913 | __ lea(end_from, Address(from, qword_count, Address::times_8, -8)); |
| 1914 | __ lea(end_to, Address(to, qword_count, Address::times_8, -8)); |
| 1915 | __ negptr(qword_count); |
| 1916 | __ jmp(L_copy_bytes); |
| 1917 | |
| 1918 | // Copy trailing qwords |
| 1919 | __ BIND(L_copy_8_bytes); |
| 1920 | __ movq(rax, Address(end_from, qword_count, Address::times_8, 8)); |
| 1921 | __ movq(Address(end_to, qword_count, Address::times_8, 8), rax); |
| 1922 | __ increment(qword_count); |
| 1923 | __ jcc(Assembler::notZero, L_copy_8_bytes); |
| 1924 | |
| 1925 | // Check for and copy trailing dword |
| 1926 | __ BIND(L_copy_4_bytes); |
| 1927 | __ testl(dword_count, 1); // Only byte test since the value is 0 or 1 |
| 1928 | __ jccb(Assembler::zero, L_exit); |
| 1929 | __ movl(rax, Address(end_from, 8)); |
| 1930 | __ movl(Address(end_to, 8), rax); |
| 1931 | |
| 1932 | __ BIND(L_exit); |
| 1933 | bs->arraycopy_epilogue(_masm, decorators, type, from, to, dword_count); |
| 1934 | restore_arg_regs_using_thread(); |
| 1935 | inc_counter_np(SharedRuntime::_jint_array_copy_ctr); // Update counter after rscratch1 is free |
| 1936 | __ vzeroupper(); |
| 1937 | __ xorptr(rax, rax); // return 0 |
| 1938 | __ leave(); // required for proper stackwalking of RuntimeStub frame |
| 1939 | __ ret(0); |
| 1940 | |
| 1941 | // Copy in multi-bytes chunks |
| 1942 | copy_bytes_forward(end_from, end_to, qword_count, rax, L_copy_bytes, L_copy_8_bytes); |
| 1943 | __ jmp(L_copy_4_bytes); |
| 1944 | |
| 1945 | return start; |
| 1946 | } |
| 1947 | |
| 1948 | // Arguments: |
| 1949 | // aligned - true => Input and output aligned on a HeapWord == 8-byte boundary |
| 1950 | // ignored |
| 1951 | // is_oop - true => oop array, so generate store check code |
| 1952 | // name - stub name string |
| 1953 | // |
| 1954 | // Inputs: |
| 1955 | // c_rarg0 - source array address |
| 1956 | // c_rarg1 - destination array address |
| 1957 | // c_rarg2 - element count, treated as ssize_t, can be zero |
| 1958 | // |
| 1959 | // If 'from' and/or 'to' are aligned on 4-byte boundaries, we let |
| 1960 | // the hardware handle it. The two dwords within qwords that span |
| 1961 | // cache line boundaries will still be loaded and stored atomicly. |
| 1962 | // |
| 1963 | address generate_conjoint_int_oop_copy(bool aligned, bool is_oop, address nooverlap_target, |
| 1964 | address *entry, const char *name, |
| 1965 | bool dest_uninitialized = false) { |
| 1966 | __ align(CodeEntryAlignment); |
| 1967 | StubCodeMark mark(this, "StubRoutines" , name); |
| 1968 | address start = __ pc(); |
| 1969 | |
| 1970 | Label L_copy_bytes, L_copy_8_bytes, L_exit; |
| 1971 | const Register from = rdi; // source array address |
| 1972 | const Register to = rsi; // destination array address |
| 1973 | const Register count = rdx; // elements count |
| 1974 | const Register dword_count = rcx; |
| 1975 | const Register qword_count = count; |
| 1976 | |
| 1977 | __ enter(); // required for proper stackwalking of RuntimeStub frame |
| 1978 | assert_clean_int(c_rarg2, rax); // Make sure 'count' is clean int. |
| 1979 | |
| 1980 | if (entry != NULL) { |
| 1981 | *entry = __ pc(); |
| 1982 | // caller can pass a 64-bit byte count here (from Unsafe.copyMemory) |
| 1983 | BLOCK_COMMENT("Entry:" ); |
| 1984 | } |
| 1985 | |
| 1986 | array_overlap_test(nooverlap_target, Address::times_4); |
| 1987 | setup_arg_regs_using_thread(); // from => rdi, to => rsi, count => rdx |
| 1988 | // r9 is used to save r15_thread |
| 1989 | |
| 1990 | DecoratorSet decorators = IN_HEAP | IS_ARRAY; |
| 1991 | if (dest_uninitialized) { |
| 1992 | decorators |= IS_DEST_UNINITIALIZED; |
| 1993 | } |
| 1994 | if (aligned) { |
| 1995 | decorators |= ARRAYCOPY_ALIGNED; |
| 1996 | } |
| 1997 | |
| 1998 | BasicType type = is_oop ? T_OBJECT : T_INT; |
| 1999 | BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler(); |
| 2000 | // no registers are destroyed by this call |
| 2001 | bs->arraycopy_prologue(_masm, decorators, type, from, to, count); |
| 2002 | |
| 2003 | assert_clean_int(count, rax); // Make sure 'count' is clean int. |
| 2004 | // 'from', 'to' and 'count' are now valid |
| 2005 | __ movptr(dword_count, count); |
| 2006 | __ shrptr(count, 1); // count => qword_count |
| 2007 | |
| 2008 | // Copy from high to low addresses. Use 'to' as scratch. |
| 2009 | |
| 2010 | // Check for and copy trailing dword |
| 2011 | __ testl(dword_count, 1); |
| 2012 | __ jcc(Assembler::zero, L_copy_bytes); |
| 2013 | __ movl(rax, Address(from, dword_count, Address::times_4, -4)); |
| 2014 | __ movl(Address(to, dword_count, Address::times_4, -4), rax); |
| 2015 | __ jmp(L_copy_bytes); |
| 2016 | |
| 2017 | // Copy trailing qwords |
| 2018 | __ BIND(L_copy_8_bytes); |
| 2019 | __ movq(rax, Address(from, qword_count, Address::times_8, -8)); |
| 2020 | __ movq(Address(to, qword_count, Address::times_8, -8), rax); |
| 2021 | __ decrement(qword_count); |
| 2022 | __ jcc(Assembler::notZero, L_copy_8_bytes); |
| 2023 | |
| 2024 | if (is_oop) { |
| 2025 | __ jmp(L_exit); |
| 2026 | } |
| 2027 | restore_arg_regs_using_thread(); |
| 2028 | inc_counter_np(SharedRuntime::_jint_array_copy_ctr); // Update counter after rscratch1 is free |
| 2029 | __ xorptr(rax, rax); // return 0 |
| 2030 | __ vzeroupper(); |
| 2031 | __ leave(); // required for proper stackwalking of RuntimeStub frame |
| 2032 | __ ret(0); |
| 2033 | |
| 2034 | // Copy in multi-bytes chunks |
| 2035 | copy_bytes_backward(from, to, qword_count, rax, L_copy_bytes, L_copy_8_bytes); |
| 2036 | |
| 2037 | __ BIND(L_exit); |
| 2038 | bs->arraycopy_epilogue(_masm, decorators, type, from, to, dword_count); |
| 2039 | restore_arg_regs_using_thread(); |
| 2040 | inc_counter_np(SharedRuntime::_jint_array_copy_ctr); // Update counter after rscratch1 is free |
| 2041 | __ xorptr(rax, rax); // return 0 |
| 2042 | __ vzeroupper(); |
| 2043 | __ leave(); // required for proper stackwalking of RuntimeStub frame |
| 2044 | __ ret(0); |
| 2045 | |
| 2046 | return start; |
| 2047 | } |
| 2048 | |
| 2049 | // Arguments: |
| 2050 | // aligned - true => Input and output aligned on a HeapWord boundary == 8 bytes |
| 2051 | // ignored |
| 2052 | // is_oop - true => oop array, so generate store check code |
| 2053 | // name - stub name string |
| 2054 | // |
| 2055 | // Inputs: |
| 2056 | // c_rarg0 - source array address |
| 2057 | // c_rarg1 - destination array address |
| 2058 | // c_rarg2 - element count, treated as ssize_t, can be zero |
| 2059 | // |
| 2060 | // Side Effects: |
| 2061 | // disjoint_oop_copy_entry or disjoint_long_copy_entry is set to the |
| 2062 | // no-overlap entry point used by generate_conjoint_long_oop_copy(). |
| 2063 | // |
| 2064 | address generate_disjoint_long_oop_copy(bool aligned, bool is_oop, address *entry, |
| 2065 | const char *name, bool dest_uninitialized = false) { |
| 2066 | __ align(CodeEntryAlignment); |
| 2067 | StubCodeMark mark(this, "StubRoutines" , name); |
| 2068 | address start = __ pc(); |
| 2069 | |
| 2070 | Label L_copy_bytes, L_copy_8_bytes, L_exit; |
| 2071 | const Register from = rdi; // source array address |
| 2072 | const Register to = rsi; // destination array address |
| 2073 | const Register qword_count = rdx; // elements count |
| 2074 | const Register end_from = from; // source array end address |
| 2075 | const Register end_to = rcx; // destination array end address |
| 2076 | const Register saved_count = r11; |
| 2077 | // End pointers are inclusive, and if count is not zero they point |
| 2078 | // to the last unit copied: end_to[0] := end_from[0] |
| 2079 | |
| 2080 | __ enter(); // required for proper stackwalking of RuntimeStub frame |
| 2081 | // Save no-overlap entry point for generate_conjoint_long_oop_copy() |
| 2082 | assert_clean_int(c_rarg2, rax); // Make sure 'count' is clean int. |
| 2083 | |
| 2084 | if (entry != NULL) { |
| 2085 | *entry = __ pc(); |
| 2086 | // caller can pass a 64-bit byte count here (from Unsafe.copyMemory) |
| 2087 | BLOCK_COMMENT("Entry:" ); |
| 2088 | } |
| 2089 | |
| 2090 | setup_arg_regs_using_thread(); // from => rdi, to => rsi, count => rdx |
| 2091 | // r9 is used to save r15_thread |
| 2092 | // 'from', 'to' and 'qword_count' are now valid |
| 2093 | |
| 2094 | DecoratorSet decorators = IN_HEAP | IS_ARRAY | ARRAYCOPY_DISJOINT; |
| 2095 | if (dest_uninitialized) { |
| 2096 | decorators |= IS_DEST_UNINITIALIZED; |
| 2097 | } |
| 2098 | if (aligned) { |
| 2099 | decorators |= ARRAYCOPY_ALIGNED; |
| 2100 | } |
| 2101 | |
| 2102 | BasicType type = is_oop ? T_OBJECT : T_LONG; |
| 2103 | BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler(); |
| 2104 | bs->arraycopy_prologue(_masm, decorators, type, from, to, qword_count); |
| 2105 | |
| 2106 | // Copy from low to high addresses. Use 'to' as scratch. |
| 2107 | __ lea(end_from, Address(from, qword_count, Address::times_8, -8)); |
| 2108 | __ lea(end_to, Address(to, qword_count, Address::times_8, -8)); |
| 2109 | __ negptr(qword_count); |
| 2110 | __ jmp(L_copy_bytes); |
| 2111 | |
| 2112 | // Copy trailing qwords |
| 2113 | __ BIND(L_copy_8_bytes); |
| 2114 | __ movq(rax, Address(end_from, qword_count, Address::times_8, 8)); |
| 2115 | __ movq(Address(end_to, qword_count, Address::times_8, 8), rax); |
| 2116 | __ increment(qword_count); |
| 2117 | __ jcc(Assembler::notZero, L_copy_8_bytes); |
| 2118 | |
| 2119 | if (is_oop) { |
| 2120 | __ jmp(L_exit); |
| 2121 | } else { |
| 2122 | restore_arg_regs_using_thread(); |
| 2123 | inc_counter_np(SharedRuntime::_jlong_array_copy_ctr); // Update counter after rscratch1 is free |
| 2124 | __ xorptr(rax, rax); // return 0 |
| 2125 | __ vzeroupper(); |
| 2126 | __ leave(); // required for proper stackwalking of RuntimeStub frame |
| 2127 | __ ret(0); |
| 2128 | } |
| 2129 | |
| 2130 | // Copy in multi-bytes chunks |
| 2131 | copy_bytes_forward(end_from, end_to, qword_count, rax, L_copy_bytes, L_copy_8_bytes); |
| 2132 | |
| 2133 | __ BIND(L_exit); |
| 2134 | bs->arraycopy_epilogue(_masm, decorators, type, from, to, qword_count); |
| 2135 | restore_arg_regs_using_thread(); |
| 2136 | if (is_oop) { |
| 2137 | inc_counter_np(SharedRuntime::_oop_array_copy_ctr); // Update counter after rscratch1 is free |
| 2138 | } else { |
| 2139 | inc_counter_np(SharedRuntime::_jlong_array_copy_ctr); // Update counter after rscratch1 is free |
| 2140 | } |
| 2141 | __ vzeroupper(); |
| 2142 | __ xorptr(rax, rax); // return 0 |
| 2143 | __ leave(); // required for proper stackwalking of RuntimeStub frame |
| 2144 | __ ret(0); |
| 2145 | |
| 2146 | return start; |
| 2147 | } |
| 2148 | |
| 2149 | // Arguments: |
| 2150 | // aligned - true => Input and output aligned on a HeapWord boundary == 8 bytes |
| 2151 | // ignored |
| 2152 | // is_oop - true => oop array, so generate store check code |
| 2153 | // name - stub name string |
| 2154 | // |
| 2155 | // Inputs: |
| 2156 | // c_rarg0 - source array address |
| 2157 | // c_rarg1 - destination array address |
| 2158 | // c_rarg2 - element count, treated as ssize_t, can be zero |
| 2159 | // |
| 2160 | address generate_conjoint_long_oop_copy(bool aligned, bool is_oop, |
| 2161 | address nooverlap_target, address *entry, |
| 2162 | const char *name, bool dest_uninitialized = false) { |
| 2163 | __ align(CodeEntryAlignment); |
| 2164 | StubCodeMark mark(this, "StubRoutines" , name); |
| 2165 | address start = __ pc(); |
| 2166 | |
| 2167 | Label L_copy_bytes, L_copy_8_bytes, L_exit; |
| 2168 | const Register from = rdi; // source array address |
| 2169 | const Register to = rsi; // destination array address |
| 2170 | const Register qword_count = rdx; // elements count |
| 2171 | const Register saved_count = rcx; |
| 2172 | |
| 2173 | __ enter(); // required for proper stackwalking of RuntimeStub frame |
| 2174 | assert_clean_int(c_rarg2, rax); // Make sure 'count' is clean int. |
| 2175 | |
| 2176 | if (entry != NULL) { |
| 2177 | *entry = __ pc(); |
| 2178 | // caller can pass a 64-bit byte count here (from Unsafe.copyMemory) |
| 2179 | BLOCK_COMMENT("Entry:" ); |
| 2180 | } |
| 2181 | |
| 2182 | array_overlap_test(nooverlap_target, Address::times_8); |
| 2183 | setup_arg_regs_using_thread(); // from => rdi, to => rsi, count => rdx |
| 2184 | // r9 is used to save r15_thread |
| 2185 | // 'from', 'to' and 'qword_count' are now valid |
| 2186 | |
| 2187 | DecoratorSet decorators = IN_HEAP | IS_ARRAY; |
| 2188 | if (dest_uninitialized) { |
| 2189 | decorators |= IS_DEST_UNINITIALIZED; |
| 2190 | } |
| 2191 | if (aligned) { |
| 2192 | decorators |= ARRAYCOPY_ALIGNED; |
| 2193 | } |
| 2194 | |
| 2195 | BasicType type = is_oop ? T_OBJECT : T_LONG; |
| 2196 | BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler(); |
| 2197 | bs->arraycopy_prologue(_masm, decorators, type, from, to, qword_count); |
| 2198 | |
| 2199 | __ jmp(L_copy_bytes); |
| 2200 | |
| 2201 | // Copy trailing qwords |
| 2202 | __ BIND(L_copy_8_bytes); |
| 2203 | __ movq(rax, Address(from, qword_count, Address::times_8, -8)); |
| 2204 | __ movq(Address(to, qword_count, Address::times_8, -8), rax); |
| 2205 | __ decrement(qword_count); |
| 2206 | __ jcc(Assembler::notZero, L_copy_8_bytes); |
| 2207 | |
| 2208 | if (is_oop) { |
| 2209 | __ jmp(L_exit); |
| 2210 | } else { |
| 2211 | restore_arg_regs_using_thread(); |
| 2212 | inc_counter_np(SharedRuntime::_jlong_array_copy_ctr); // Update counter after rscratch1 is free |
| 2213 | __ xorptr(rax, rax); // return 0 |
| 2214 | __ vzeroupper(); |
| 2215 | __ leave(); // required for proper stackwalking of RuntimeStub frame |
| 2216 | __ ret(0); |
| 2217 | } |
| 2218 | |
| 2219 | // Copy in multi-bytes chunks |
| 2220 | copy_bytes_backward(from, to, qword_count, rax, L_copy_bytes, L_copy_8_bytes); |
| 2221 | |
| 2222 | __ BIND(L_exit); |
| 2223 | bs->arraycopy_epilogue(_masm, decorators, type, from, to, qword_count); |
| 2224 | restore_arg_regs_using_thread(); |
| 2225 | if (is_oop) { |
| 2226 | inc_counter_np(SharedRuntime::_oop_array_copy_ctr); // Update counter after rscratch1 is free |
| 2227 | } else { |
| 2228 | inc_counter_np(SharedRuntime::_jlong_array_copy_ctr); // Update counter after rscratch1 is free |
| 2229 | } |
| 2230 | __ vzeroupper(); |
| 2231 | __ xorptr(rax, rax); // return 0 |
| 2232 | __ leave(); // required for proper stackwalking of RuntimeStub frame |
| 2233 | __ ret(0); |
| 2234 | |
| 2235 | return start; |
| 2236 | } |
| 2237 | |
| 2238 | |
| 2239 | // Helper for generating a dynamic type check. |
| 2240 | // Smashes no registers. |
| 2241 | void generate_type_check(Register sub_klass, |
| 2242 | Register super_check_offset, |
| 2243 | Register super_klass, |
| 2244 | Label& L_success) { |
| 2245 | assert_different_registers(sub_klass, super_check_offset, super_klass); |
| 2246 | |
| 2247 | BLOCK_COMMENT("type_check:" ); |
| 2248 | |
| 2249 | Label L_miss; |
| 2250 | |
| 2251 | __ check_klass_subtype_fast_path(sub_klass, super_klass, noreg, &L_success, &L_miss, NULL, |
| 2252 | super_check_offset); |
| 2253 | __ check_klass_subtype_slow_path(sub_klass, super_klass, noreg, noreg, &L_success, NULL); |
| 2254 | |
| 2255 | // Fall through on failure! |
| 2256 | __ BIND(L_miss); |
| 2257 | } |
| 2258 | |
| 2259 | // |
| 2260 | // Generate checkcasting array copy stub |
| 2261 | // |
| 2262 | // Input: |
| 2263 | // c_rarg0 - source array address |
| 2264 | // c_rarg1 - destination array address |
| 2265 | // c_rarg2 - element count, treated as ssize_t, can be zero |
| 2266 | // c_rarg3 - size_t ckoff (super_check_offset) |
| 2267 | // not Win64 |
| 2268 | // c_rarg4 - oop ckval (super_klass) |
| 2269 | // Win64 |
| 2270 | // rsp+40 - oop ckval (super_klass) |
| 2271 | // |
| 2272 | // Output: |
| 2273 | // rax == 0 - success |
| 2274 | // rax == -1^K - failure, where K is partial transfer count |
| 2275 | // |
| 2276 | address generate_checkcast_copy(const char *name, address *entry, |
| 2277 | bool dest_uninitialized = false) { |
| 2278 | |
| 2279 | Label L_load_element, L_store_element, L_do_card_marks, L_done; |
| 2280 | |
| 2281 | // Input registers (after setup_arg_regs) |
| 2282 | const Register from = rdi; // source array address |
| 2283 | const Register to = rsi; // destination array address |
| 2284 | const Register length = rdx; // elements count |
| 2285 | const Register ckoff = rcx; // super_check_offset |
| 2286 | const Register ckval = r8; // super_klass |
| 2287 | |
| 2288 | // Registers used as temps (r13, r14 are save-on-entry) |
| 2289 | const Register end_from = from; // source array end address |
| 2290 | const Register end_to = r13; // destination array end address |
| 2291 | const Register count = rdx; // -(count_remaining) |
| 2292 | const Register r14_length = r14; // saved copy of length |
| 2293 | // End pointers are inclusive, and if length is not zero they point |
| 2294 | // to the last unit copied: end_to[0] := end_from[0] |
| 2295 | |
| 2296 | const Register rax_oop = rax; // actual oop copied |
| 2297 | const Register r11_klass = r11; // oop._klass |
| 2298 | |
| 2299 | //--------------------------------------------------------------- |
| 2300 | // Assembler stub will be used for this call to arraycopy |
| 2301 | // if the two arrays are subtypes of Object[] but the |
| 2302 | // destination array type is not equal to or a supertype |
| 2303 | // of the source type. Each element must be separately |
| 2304 | // checked. |
| 2305 | |
| 2306 | __ align(CodeEntryAlignment); |
| 2307 | StubCodeMark mark(this, "StubRoutines" , name); |
| 2308 | address start = __ pc(); |
| 2309 | |
| 2310 | __ enter(); // required for proper stackwalking of RuntimeStub frame |
| 2311 | |
| 2312 | #ifdef ASSERT |
| 2313 | // caller guarantees that the arrays really are different |
| 2314 | // otherwise, we would have to make conjoint checks |
| 2315 | { Label L; |
| 2316 | array_overlap_test(L, TIMES_OOP); |
| 2317 | __ stop("checkcast_copy within a single array" ); |
| 2318 | __ bind(L); |
| 2319 | } |
| 2320 | #endif //ASSERT |
| 2321 | |
| 2322 | setup_arg_regs(4); // from => rdi, to => rsi, length => rdx |
| 2323 | // ckoff => rcx, ckval => r8 |
| 2324 | // r9 and r10 may be used to save non-volatile registers |
| 2325 | #ifdef _WIN64 |
| 2326 | // last argument (#4) is on stack on Win64 |
| 2327 | __ movptr(ckval, Address(rsp, 6 * wordSize)); |
| 2328 | #endif |
| 2329 | |
| 2330 | // Caller of this entry point must set up the argument registers. |
| 2331 | if (entry != NULL) { |
| 2332 | *entry = __ pc(); |
| 2333 | BLOCK_COMMENT("Entry:" ); |
| 2334 | } |
| 2335 | |
| 2336 | // allocate spill slots for r13, r14 |
| 2337 | enum { |
| 2338 | saved_r13_offset, |
| 2339 | saved_r14_offset, |
| 2340 | saved_r10_offset, |
| 2341 | saved_rbp_offset |
| 2342 | }; |
| 2343 | __ subptr(rsp, saved_rbp_offset * wordSize); |
| 2344 | __ movptr(Address(rsp, saved_r13_offset * wordSize), r13); |
| 2345 | __ movptr(Address(rsp, saved_r14_offset * wordSize), r14); |
| 2346 | __ movptr(Address(rsp, saved_r10_offset * wordSize), r10); |
| 2347 | |
| 2348 | #ifdef ASSERT |
| 2349 | Label L2; |
| 2350 | __ get_thread(r14); |
| 2351 | __ cmpptr(r15_thread, r14); |
| 2352 | __ jcc(Assembler::equal, L2); |
| 2353 | __ stop("StubRoutines::call_stub: r15_thread is modified by call" ); |
| 2354 | __ bind(L2); |
| 2355 | #endif // ASSERT |
| 2356 | |
| 2357 | // check that int operands are properly extended to size_t |
| 2358 | assert_clean_int(length, rax); |
| 2359 | assert_clean_int(ckoff, rax); |
| 2360 | |
| 2361 | #ifdef ASSERT |
| 2362 | BLOCK_COMMENT("assert consistent ckoff/ckval" ); |
| 2363 | // The ckoff and ckval must be mutually consistent, |
| 2364 | // even though caller generates both. |
| 2365 | { Label L; |
| 2366 | int sco_offset = in_bytes(Klass::super_check_offset_offset()); |
| 2367 | __ cmpl(ckoff, Address(ckval, sco_offset)); |
| 2368 | __ jcc(Assembler::equal, L); |
| 2369 | __ stop("super_check_offset inconsistent" ); |
| 2370 | __ bind(L); |
| 2371 | } |
| 2372 | #endif //ASSERT |
| 2373 | |
| 2374 | // Loop-invariant addresses. They are exclusive end pointers. |
| 2375 | Address end_from_addr(from, length, TIMES_OOP, 0); |
| 2376 | Address end_to_addr(to, length, TIMES_OOP, 0); |
| 2377 | // Loop-variant addresses. They assume post-incremented count < 0. |
| 2378 | Address from_element_addr(end_from, count, TIMES_OOP, 0); |
| 2379 | Address to_element_addr(end_to, count, TIMES_OOP, 0); |
| 2380 | |
| 2381 | DecoratorSet decorators = IN_HEAP | IS_ARRAY | ARRAYCOPY_CHECKCAST | ARRAYCOPY_DISJOINT; |
| 2382 | if (dest_uninitialized) { |
| 2383 | decorators |= IS_DEST_UNINITIALIZED; |
| 2384 | } |
| 2385 | |
| 2386 | BasicType type = T_OBJECT; |
| 2387 | BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler(); |
| 2388 | bs->arraycopy_prologue(_masm, decorators, type, from, to, count); |
| 2389 | |
| 2390 | // Copy from low to high addresses, indexed from the end of each array. |
| 2391 | __ lea(end_from, end_from_addr); |
| 2392 | __ lea(end_to, end_to_addr); |
| 2393 | __ movptr(r14_length, length); // save a copy of the length |
| 2394 | assert(length == count, "" ); // else fix next line: |
| 2395 | __ negptr(count); // negate and test the length |
| 2396 | __ jcc(Assembler::notZero, L_load_element); |
| 2397 | |
| 2398 | // Empty array: Nothing to do. |
| 2399 | __ xorptr(rax, rax); // return 0 on (trivial) success |
| 2400 | __ jmp(L_done); |
| 2401 | |
| 2402 | // ======== begin loop ======== |
| 2403 | // (Loop is rotated; its entry is L_load_element.) |
| 2404 | // Loop control: |
| 2405 | // for (count = -count; count != 0; count++) |
| 2406 | // Base pointers src, dst are biased by 8*(count-1),to last element. |
| 2407 | __ align(OptoLoopAlignment); |
| 2408 | |
| 2409 | __ BIND(L_store_element); |
| 2410 | __ store_heap_oop(to_element_addr, rax_oop, noreg, noreg, AS_RAW); // store the oop |
| 2411 | __ increment(count); // increment the count toward zero |
| 2412 | __ jcc(Assembler::zero, L_do_card_marks); |
| 2413 | |
| 2414 | // ======== loop entry is here ======== |
| 2415 | __ BIND(L_load_element); |
| 2416 | __ load_heap_oop(rax_oop, from_element_addr, noreg, noreg, AS_RAW); // load the oop |
| 2417 | __ testptr(rax_oop, rax_oop); |
| 2418 | __ jcc(Assembler::zero, L_store_element); |
| 2419 | |
| 2420 | __ load_klass(r11_klass, rax_oop);// query the object klass |
| 2421 | generate_type_check(r11_klass, ckoff, ckval, L_store_element); |
| 2422 | // ======== end loop ======== |
| 2423 | |
| 2424 | // It was a real error; we must depend on the caller to finish the job. |
| 2425 | // Register rdx = -1 * number of *remaining* oops, r14 = *total* oops. |
| 2426 | // Emit GC store barriers for the oops we have copied (r14 + rdx), |
| 2427 | // and report their number to the caller. |
| 2428 | assert_different_registers(rax, r14_length, count, to, end_to, rcx, rscratch1); |
| 2429 | Label L_post_barrier; |
| 2430 | __ addptr(r14_length, count); // K = (original - remaining) oops |
| 2431 | __ movptr(rax, r14_length); // save the value |
| 2432 | __ notptr(rax); // report (-1^K) to caller (does not affect flags) |
| 2433 | __ jccb(Assembler::notZero, L_post_barrier); |
| 2434 | __ jmp(L_done); // K == 0, nothing was copied, skip post barrier |
| 2435 | |
| 2436 | // Come here on success only. |
| 2437 | __ BIND(L_do_card_marks); |
| 2438 | __ xorptr(rax, rax); // return 0 on success |
| 2439 | |
| 2440 | __ BIND(L_post_barrier); |
| 2441 | bs->arraycopy_epilogue(_masm, decorators, type, from, to, r14_length); |
| 2442 | |
| 2443 | // Common exit point (success or failure). |
| 2444 | __ BIND(L_done); |
| 2445 | __ movptr(r13, Address(rsp, saved_r13_offset * wordSize)); |
| 2446 | __ movptr(r14, Address(rsp, saved_r14_offset * wordSize)); |
| 2447 | __ movptr(r10, Address(rsp, saved_r10_offset * wordSize)); |
| 2448 | restore_arg_regs(); |
| 2449 | inc_counter_np(SharedRuntime::_checkcast_array_copy_ctr); // Update counter after rscratch1 is free |
| 2450 | __ leave(); // required for proper stackwalking of RuntimeStub frame |
| 2451 | __ ret(0); |
| 2452 | |
| 2453 | return start; |
| 2454 | } |
| 2455 | |
| 2456 | // |
| 2457 | // Generate 'unsafe' array copy stub |
| 2458 | // Though just as safe as the other stubs, it takes an unscaled |
| 2459 | // size_t argument instead of an element count. |
| 2460 | // |
| 2461 | // Input: |
| 2462 | // c_rarg0 - source array address |
| 2463 | // c_rarg1 - destination array address |
| 2464 | // c_rarg2 - byte count, treated as ssize_t, can be zero |
| 2465 | // |
| 2466 | // Examines the alignment of the operands and dispatches |
| 2467 | // to a long, int, short, or byte copy loop. |
| 2468 | // |
| 2469 | address generate_unsafe_copy(const char *name, |
| 2470 | address byte_copy_entry, address short_copy_entry, |
| 2471 | address int_copy_entry, address long_copy_entry) { |
| 2472 | |
| 2473 | Label L_long_aligned, L_int_aligned, L_short_aligned; |
| 2474 | |
| 2475 | // Input registers (before setup_arg_regs) |
| 2476 | const Register from = c_rarg0; // source array address |
| 2477 | const Register to = c_rarg1; // destination array address |
| 2478 | const Register size = c_rarg2; // byte count (size_t) |
| 2479 | |
| 2480 | // Register used as a temp |
| 2481 | const Register bits = rax; // test copy of low bits |
| 2482 | |
| 2483 | __ align(CodeEntryAlignment); |
| 2484 | StubCodeMark mark(this, "StubRoutines" , name); |
| 2485 | address start = __ pc(); |
| 2486 | |
| 2487 | __ enter(); // required for proper stackwalking of RuntimeStub frame |
| 2488 | |
| 2489 | // bump this on entry, not on exit: |
| 2490 | inc_counter_np(SharedRuntime::_unsafe_array_copy_ctr); |
| 2491 | |
| 2492 | __ mov(bits, from); |
| 2493 | __ orptr(bits, to); |
| 2494 | __ orptr(bits, size); |
| 2495 | |
| 2496 | __ testb(bits, BytesPerLong-1); |
| 2497 | __ jccb(Assembler::zero, L_long_aligned); |
| 2498 | |
| 2499 | __ testb(bits, BytesPerInt-1); |
| 2500 | __ jccb(Assembler::zero, L_int_aligned); |
| 2501 | |
| 2502 | __ testb(bits, BytesPerShort-1); |
| 2503 | __ jump_cc(Assembler::notZero, RuntimeAddress(byte_copy_entry)); |
| 2504 | |
| 2505 | __ BIND(L_short_aligned); |
| 2506 | __ shrptr(size, LogBytesPerShort); // size => short_count |
| 2507 | __ jump(RuntimeAddress(short_copy_entry)); |
| 2508 | |
| 2509 | __ BIND(L_int_aligned); |
| 2510 | __ shrptr(size, LogBytesPerInt); // size => int_count |
| 2511 | __ jump(RuntimeAddress(int_copy_entry)); |
| 2512 | |
| 2513 | __ BIND(L_long_aligned); |
| 2514 | __ shrptr(size, LogBytesPerLong); // size => qword_count |
| 2515 | __ jump(RuntimeAddress(long_copy_entry)); |
| 2516 | |
| 2517 | return start; |
| 2518 | } |
| 2519 | |
| 2520 | // Perform range checks on the proposed arraycopy. |
| 2521 | // Kills temp, but nothing else. |
| 2522 | // Also, clean the sign bits of src_pos and dst_pos. |
| 2523 | void arraycopy_range_checks(Register src, // source array oop (c_rarg0) |
| 2524 | Register src_pos, // source position (c_rarg1) |
| 2525 | Register dst, // destination array oo (c_rarg2) |
| 2526 | Register dst_pos, // destination position (c_rarg3) |
| 2527 | Register length, |
| 2528 | Register temp, |
| 2529 | Label& L_failed) { |
| 2530 | BLOCK_COMMENT("arraycopy_range_checks:" ); |
| 2531 | |
| 2532 | // if (src_pos + length > arrayOop(src)->length()) FAIL; |
| 2533 | __ movl(temp, length); |
| 2534 | __ addl(temp, src_pos); // src_pos + length |
| 2535 | __ cmpl(temp, Address(src, arrayOopDesc::length_offset_in_bytes())); |
| 2536 | __ jcc(Assembler::above, L_failed); |
| 2537 | |
| 2538 | // if (dst_pos + length > arrayOop(dst)->length()) FAIL; |
| 2539 | __ movl(temp, length); |
| 2540 | __ addl(temp, dst_pos); // dst_pos + length |
| 2541 | __ cmpl(temp, Address(dst, arrayOopDesc::length_offset_in_bytes())); |
| 2542 | __ jcc(Assembler::above, L_failed); |
| 2543 | |
| 2544 | // Have to clean up high 32-bits of 'src_pos' and 'dst_pos'. |
| 2545 | // Move with sign extension can be used since they are positive. |
| 2546 | __ movslq(src_pos, src_pos); |
| 2547 | __ movslq(dst_pos, dst_pos); |
| 2548 | |
| 2549 | BLOCK_COMMENT("arraycopy_range_checks done" ); |
| 2550 | } |
| 2551 | |
| 2552 | // |
| 2553 | // Generate generic array copy stubs |
| 2554 | // |
| 2555 | // Input: |
| 2556 | // c_rarg0 - src oop |
| 2557 | // c_rarg1 - src_pos (32-bits) |
| 2558 | // c_rarg2 - dst oop |
| 2559 | // c_rarg3 - dst_pos (32-bits) |
| 2560 | // not Win64 |
| 2561 | // c_rarg4 - element count (32-bits) |
| 2562 | // Win64 |
| 2563 | // rsp+40 - element count (32-bits) |
| 2564 | // |
| 2565 | // Output: |
| 2566 | // rax == 0 - success |
| 2567 | // rax == -1^K - failure, where K is partial transfer count |
| 2568 | // |
| 2569 | address generate_generic_copy(const char *name, |
| 2570 | address byte_copy_entry, address short_copy_entry, |
| 2571 | address int_copy_entry, address oop_copy_entry, |
| 2572 | address long_copy_entry, address checkcast_copy_entry) { |
| 2573 | |
| 2574 | Label L_failed, L_failed_0, L_objArray; |
| 2575 | Label L_copy_bytes, L_copy_shorts, L_copy_ints, L_copy_longs; |
| 2576 | |
| 2577 | // Input registers |
| 2578 | const Register src = c_rarg0; // source array oop |
| 2579 | const Register src_pos = c_rarg1; // source position |
| 2580 | const Register dst = c_rarg2; // destination array oop |
| 2581 | const Register dst_pos = c_rarg3; // destination position |
| 2582 | #ifndef _WIN64 |
| 2583 | const Register length = c_rarg4; |
| 2584 | #else |
| 2585 | const Address length(rsp, 6 * wordSize); // elements count is on stack on Win64 |
| 2586 | #endif |
| 2587 | |
| 2588 | { int modulus = CodeEntryAlignment; |
| 2589 | int target = modulus - 5; // 5 = sizeof jmp(L_failed) |
| 2590 | int advance = target - (__ offset() % modulus); |
| 2591 | if (advance < 0) advance += modulus; |
| 2592 | if (advance > 0) __ nop(advance); |
| 2593 | } |
| 2594 | StubCodeMark mark(this, "StubRoutines" , name); |
| 2595 | |
| 2596 | // Short-hop target to L_failed. Makes for denser prologue code. |
| 2597 | __ BIND(L_failed_0); |
| 2598 | __ jmp(L_failed); |
| 2599 | assert(__ offset() % CodeEntryAlignment == 0, "no further alignment needed" ); |
| 2600 | |
| 2601 | __ align(CodeEntryAlignment); |
| 2602 | address start = __ pc(); |
| 2603 | |
| 2604 | __ enter(); // required for proper stackwalking of RuntimeStub frame |
| 2605 | |
| 2606 | // bump this on entry, not on exit: |
| 2607 | inc_counter_np(SharedRuntime::_generic_array_copy_ctr); |
| 2608 | |
| 2609 | //----------------------------------------------------------------------- |
| 2610 | // Assembler stub will be used for this call to arraycopy |
| 2611 | // if the following conditions are met: |
| 2612 | // |
| 2613 | // (1) src and dst must not be null. |
| 2614 | // (2) src_pos must not be negative. |
| 2615 | // (3) dst_pos must not be negative. |
| 2616 | // (4) length must not be negative. |
| 2617 | // (5) src klass and dst klass should be the same and not NULL. |
| 2618 | // (6) src and dst should be arrays. |
| 2619 | // (7) src_pos + length must not exceed length of src. |
| 2620 | // (8) dst_pos + length must not exceed length of dst. |
| 2621 | // |
| 2622 | |
| 2623 | // if (src == NULL) return -1; |
| 2624 | __ testptr(src, src); // src oop |
| 2625 | size_t j1off = __ offset(); |
| 2626 | __ jccb(Assembler::zero, L_failed_0); |
| 2627 | |
| 2628 | // if (src_pos < 0) return -1; |
| 2629 | __ testl(src_pos, src_pos); // src_pos (32-bits) |
| 2630 | __ jccb(Assembler::negative, L_failed_0); |
| 2631 | |
| 2632 | // if (dst == NULL) return -1; |
| 2633 | __ testptr(dst, dst); // dst oop |
| 2634 | __ jccb(Assembler::zero, L_failed_0); |
| 2635 | |
| 2636 | // if (dst_pos < 0) return -1; |
| 2637 | __ testl(dst_pos, dst_pos); // dst_pos (32-bits) |
| 2638 | size_t j4off = __ offset(); |
| 2639 | __ jccb(Assembler::negative, L_failed_0); |
| 2640 | |
| 2641 | // The first four tests are very dense code, |
| 2642 | // but not quite dense enough to put four |
| 2643 | // jumps in a 16-byte instruction fetch buffer. |
| 2644 | // That's good, because some branch predicters |
| 2645 | // do not like jumps so close together. |
| 2646 | // Make sure of this. |
| 2647 | guarantee(((j1off ^ j4off) & ~15) != 0, "I$ line of 1st & 4th jumps" ); |
| 2648 | |
| 2649 | // registers used as temp |
| 2650 | const Register r11_length = r11; // elements count to copy |
| 2651 | const Register r10_src_klass = r10; // array klass |
| 2652 | |
| 2653 | // if (length < 0) return -1; |
| 2654 | __ movl(r11_length, length); // length (elements count, 32-bits value) |
| 2655 | __ testl(r11_length, r11_length); |
| 2656 | __ jccb(Assembler::negative, L_failed_0); |
| 2657 | |
| 2658 | __ load_klass(r10_src_klass, src); |
| 2659 | #ifdef ASSERT |
| 2660 | // assert(src->klass() != NULL); |
| 2661 | { |
| 2662 | BLOCK_COMMENT("assert klasses not null {" ); |
| 2663 | Label L1, L2; |
| 2664 | __ testptr(r10_src_klass, r10_src_klass); |
| 2665 | __ jcc(Assembler::notZero, L2); // it is broken if klass is NULL |
| 2666 | __ bind(L1); |
| 2667 | __ stop("broken null klass" ); |
| 2668 | __ bind(L2); |
| 2669 | __ load_klass(rax, dst); |
| 2670 | __ cmpq(rax, 0); |
| 2671 | __ jcc(Assembler::equal, L1); // this would be broken also |
| 2672 | BLOCK_COMMENT("} assert klasses not null done" ); |
| 2673 | } |
| 2674 | #endif |
| 2675 | |
| 2676 | // Load layout helper (32-bits) |
| 2677 | // |
| 2678 | // |array_tag| | header_size | element_type | |log2_element_size| |
| 2679 | // 32 30 24 16 8 2 0 |
| 2680 | // |
| 2681 | // array_tag: typeArray = 0x3, objArray = 0x2, non-array = 0x0 |
| 2682 | // |
| 2683 | |
| 2684 | const int lh_offset = in_bytes(Klass::layout_helper_offset()); |
| 2685 | |
| 2686 | // Handle objArrays completely differently... |
| 2687 | const jint objArray_lh = Klass::array_layout_helper(T_OBJECT); |
| 2688 | __ cmpl(Address(r10_src_klass, lh_offset), objArray_lh); |
| 2689 | __ jcc(Assembler::equal, L_objArray); |
| 2690 | |
| 2691 | // if (src->klass() != dst->klass()) return -1; |
| 2692 | __ load_klass(rax, dst); |
| 2693 | __ cmpq(r10_src_klass, rax); |
| 2694 | __ jcc(Assembler::notEqual, L_failed); |
| 2695 | |
| 2696 | const Register rax_lh = rax; // layout helper |
| 2697 | __ movl(rax_lh, Address(r10_src_klass, lh_offset)); |
| 2698 | |
| 2699 | // if (!src->is_Array()) return -1; |
| 2700 | __ cmpl(rax_lh, Klass::_lh_neutral_value); |
| 2701 | __ jcc(Assembler::greaterEqual, L_failed); |
| 2702 | |
| 2703 | // At this point, it is known to be a typeArray (array_tag 0x3). |
| 2704 | #ifdef ASSERT |
| 2705 | { |
| 2706 | BLOCK_COMMENT("assert primitive array {" ); |
| 2707 | Label L; |
| 2708 | __ cmpl(rax_lh, (Klass::_lh_array_tag_type_value << Klass::_lh_array_tag_shift)); |
| 2709 | __ jcc(Assembler::greaterEqual, L); |
| 2710 | __ stop("must be a primitive array" ); |
| 2711 | __ bind(L); |
| 2712 | BLOCK_COMMENT("} assert primitive array done" ); |
| 2713 | } |
| 2714 | #endif |
| 2715 | |
| 2716 | arraycopy_range_checks(src, src_pos, dst, dst_pos, r11_length, |
| 2717 | r10, L_failed); |
| 2718 | |
| 2719 | // TypeArrayKlass |
| 2720 | // |
| 2721 | // src_addr = (src + array_header_in_bytes()) + (src_pos << log2elemsize); |
| 2722 | // dst_addr = (dst + array_header_in_bytes()) + (dst_pos << log2elemsize); |
| 2723 | // |
| 2724 | |
| 2725 | const Register r10_offset = r10; // array offset |
| 2726 | const Register rax_elsize = rax_lh; // element size |
| 2727 | |
| 2728 | __ movl(r10_offset, rax_lh); |
| 2729 | __ shrl(r10_offset, Klass::_lh_header_size_shift); |
| 2730 | __ andptr(r10_offset, Klass::_lh_header_size_mask); // array_offset |
| 2731 | __ addptr(src, r10_offset); // src array offset |
| 2732 | __ addptr(dst, r10_offset); // dst array offset |
| 2733 | BLOCK_COMMENT("choose copy loop based on element size" ); |
| 2734 | __ andl(rax_lh, Klass::_lh_log2_element_size_mask); // rax_lh -> rax_elsize |
| 2735 | |
| 2736 | // next registers should be set before the jump to corresponding stub |
| 2737 | const Register from = c_rarg0; // source array address |
| 2738 | const Register to = c_rarg1; // destination array address |
| 2739 | const Register count = c_rarg2; // elements count |
| 2740 | |
| 2741 | // 'from', 'to', 'count' registers should be set in such order |
| 2742 | // since they are the same as 'src', 'src_pos', 'dst'. |
| 2743 | |
| 2744 | __ BIND(L_copy_bytes); |
| 2745 | __ cmpl(rax_elsize, 0); |
| 2746 | __ jccb(Assembler::notEqual, L_copy_shorts); |
| 2747 | __ lea(from, Address(src, src_pos, Address::times_1, 0));// src_addr |
| 2748 | __ lea(to, Address(dst, dst_pos, Address::times_1, 0));// dst_addr |
| 2749 | __ movl2ptr(count, r11_length); // length |
| 2750 | __ jump(RuntimeAddress(byte_copy_entry)); |
| 2751 | |
| 2752 | __ BIND(L_copy_shorts); |
| 2753 | __ cmpl(rax_elsize, LogBytesPerShort); |
| 2754 | __ jccb(Assembler::notEqual, L_copy_ints); |
| 2755 | __ lea(from, Address(src, src_pos, Address::times_2, 0));// src_addr |
| 2756 | __ lea(to, Address(dst, dst_pos, Address::times_2, 0));// dst_addr |
| 2757 | __ movl2ptr(count, r11_length); // length |
| 2758 | __ jump(RuntimeAddress(short_copy_entry)); |
| 2759 | |
| 2760 | __ BIND(L_copy_ints); |
| 2761 | __ cmpl(rax_elsize, LogBytesPerInt); |
| 2762 | __ jccb(Assembler::notEqual, L_copy_longs); |
| 2763 | __ lea(from, Address(src, src_pos, Address::times_4, 0));// src_addr |
| 2764 | __ lea(to, Address(dst, dst_pos, Address::times_4, 0));// dst_addr |
| 2765 | __ movl2ptr(count, r11_length); // length |
| 2766 | __ jump(RuntimeAddress(int_copy_entry)); |
| 2767 | |
| 2768 | __ BIND(L_copy_longs); |
| 2769 | #ifdef ASSERT |
| 2770 | { |
| 2771 | BLOCK_COMMENT("assert long copy {" ); |
| 2772 | Label L; |
| 2773 | __ cmpl(rax_elsize, LogBytesPerLong); |
| 2774 | __ jcc(Assembler::equal, L); |
| 2775 | __ stop("must be long copy, but elsize is wrong" ); |
| 2776 | __ bind(L); |
| 2777 | BLOCK_COMMENT("} assert long copy done" ); |
| 2778 | } |
| 2779 | #endif |
| 2780 | __ lea(from, Address(src, src_pos, Address::times_8, 0));// src_addr |
| 2781 | __ lea(to, Address(dst, dst_pos, Address::times_8, 0));// dst_addr |
| 2782 | __ movl2ptr(count, r11_length); // length |
| 2783 | __ jump(RuntimeAddress(long_copy_entry)); |
| 2784 | |
| 2785 | // ObjArrayKlass |
| 2786 | __ BIND(L_objArray); |
| 2787 | // live at this point: r10_src_klass, r11_length, src[_pos], dst[_pos] |
| 2788 | |
| 2789 | Label L_plain_copy, L_checkcast_copy; |
| 2790 | // test array classes for subtyping |
| 2791 | __ load_klass(rax, dst); |
| 2792 | __ cmpq(r10_src_klass, rax); // usual case is exact equality |
| 2793 | __ jcc(Assembler::notEqual, L_checkcast_copy); |
| 2794 | |
| 2795 | // Identically typed arrays can be copied without element-wise checks. |
| 2796 | arraycopy_range_checks(src, src_pos, dst, dst_pos, r11_length, |
| 2797 | r10, L_failed); |
| 2798 | |
| 2799 | __ lea(from, Address(src, src_pos, TIMES_OOP, |
| 2800 | arrayOopDesc::base_offset_in_bytes(T_OBJECT))); // src_addr |
| 2801 | __ lea(to, Address(dst, dst_pos, TIMES_OOP, |
| 2802 | arrayOopDesc::base_offset_in_bytes(T_OBJECT))); // dst_addr |
| 2803 | __ movl2ptr(count, r11_length); // length |
| 2804 | __ BIND(L_plain_copy); |
| 2805 | __ jump(RuntimeAddress(oop_copy_entry)); |
| 2806 | |
| 2807 | __ BIND(L_checkcast_copy); |
| 2808 | // live at this point: r10_src_klass, r11_length, rax (dst_klass) |
| 2809 | { |
| 2810 | // Before looking at dst.length, make sure dst is also an objArray. |
| 2811 | __ cmpl(Address(rax, lh_offset), objArray_lh); |
| 2812 | __ jcc(Assembler::notEqual, L_failed); |
| 2813 | |
| 2814 | // It is safe to examine both src.length and dst.length. |
| 2815 | arraycopy_range_checks(src, src_pos, dst, dst_pos, r11_length, |
| 2816 | rax, L_failed); |
| 2817 | |
| 2818 | const Register r11_dst_klass = r11; |
| 2819 | __ load_klass(r11_dst_klass, dst); // reload |
| 2820 | |
| 2821 | // Marshal the base address arguments now, freeing registers. |
| 2822 | __ lea(from, Address(src, src_pos, TIMES_OOP, |
| 2823 | arrayOopDesc::base_offset_in_bytes(T_OBJECT))); |
| 2824 | __ lea(to, Address(dst, dst_pos, TIMES_OOP, |
| 2825 | arrayOopDesc::base_offset_in_bytes(T_OBJECT))); |
| 2826 | __ movl(count, length); // length (reloaded) |
| 2827 | Register sco_temp = c_rarg3; // this register is free now |
| 2828 | assert_different_registers(from, to, count, sco_temp, |
| 2829 | r11_dst_klass, r10_src_klass); |
| 2830 | assert_clean_int(count, sco_temp); |
| 2831 | |
| 2832 | // Generate the type check. |
| 2833 | const int sco_offset = in_bytes(Klass::super_check_offset_offset()); |
| 2834 | __ movl(sco_temp, Address(r11_dst_klass, sco_offset)); |
| 2835 | assert_clean_int(sco_temp, rax); |
| 2836 | generate_type_check(r10_src_klass, sco_temp, r11_dst_klass, L_plain_copy); |
| 2837 | |
| 2838 | // Fetch destination element klass from the ObjArrayKlass header. |
| 2839 | int ek_offset = in_bytes(ObjArrayKlass::element_klass_offset()); |
| 2840 | __ movptr(r11_dst_klass, Address(r11_dst_klass, ek_offset)); |
| 2841 | __ movl( sco_temp, Address(r11_dst_klass, sco_offset)); |
| 2842 | assert_clean_int(sco_temp, rax); |
| 2843 | |
| 2844 | // the checkcast_copy loop needs two extra arguments: |
| 2845 | assert(c_rarg3 == sco_temp, "#3 already in place" ); |
| 2846 | // Set up arguments for checkcast_copy_entry. |
| 2847 | setup_arg_regs(4); |
| 2848 | __ movptr(r8, r11_dst_klass); // dst.klass.element_klass, r8 is c_rarg4 on Linux/Solaris |
| 2849 | __ jump(RuntimeAddress(checkcast_copy_entry)); |
| 2850 | } |
| 2851 | |
| 2852 | __ BIND(L_failed); |
| 2853 | __ xorptr(rax, rax); |
| 2854 | __ notptr(rax); // return -1 |
| 2855 | __ leave(); // required for proper stackwalking of RuntimeStub frame |
| 2856 | __ ret(0); |
| 2857 | |
| 2858 | return start; |
| 2859 | } |
| 2860 | |
| 2861 | void generate_arraycopy_stubs() { |
| 2862 | address entry; |
| 2863 | address entry_jbyte_arraycopy; |
| 2864 | address entry_jshort_arraycopy; |
| 2865 | address entry_jint_arraycopy; |
| 2866 | address entry_oop_arraycopy; |
| 2867 | address entry_jlong_arraycopy; |
| 2868 | address entry_checkcast_arraycopy; |
| 2869 | |
| 2870 | StubRoutines::_jbyte_disjoint_arraycopy = generate_disjoint_byte_copy(false, &entry, |
| 2871 | "jbyte_disjoint_arraycopy" ); |
| 2872 | StubRoutines::_jbyte_arraycopy = generate_conjoint_byte_copy(false, entry, &entry_jbyte_arraycopy, |
| 2873 | "jbyte_arraycopy" ); |
| 2874 | |
| 2875 | StubRoutines::_jshort_disjoint_arraycopy = generate_disjoint_short_copy(false, &entry, |
| 2876 | "jshort_disjoint_arraycopy" ); |
| 2877 | StubRoutines::_jshort_arraycopy = generate_conjoint_short_copy(false, entry, &entry_jshort_arraycopy, |
| 2878 | "jshort_arraycopy" ); |
| 2879 | |
| 2880 | StubRoutines::_jint_disjoint_arraycopy = generate_disjoint_int_oop_copy(false, false, &entry, |
| 2881 | "jint_disjoint_arraycopy" ); |
| 2882 | StubRoutines::_jint_arraycopy = generate_conjoint_int_oop_copy(false, false, entry, |
| 2883 | &entry_jint_arraycopy, "jint_arraycopy" ); |
| 2884 | |
| 2885 | StubRoutines::_jlong_disjoint_arraycopy = generate_disjoint_long_oop_copy(false, false, &entry, |
| 2886 | "jlong_disjoint_arraycopy" ); |
| 2887 | StubRoutines::_jlong_arraycopy = generate_conjoint_long_oop_copy(false, false, entry, |
| 2888 | &entry_jlong_arraycopy, "jlong_arraycopy" ); |
| 2889 | |
| 2890 | |
| 2891 | if (UseCompressedOops) { |
| 2892 | StubRoutines::_oop_disjoint_arraycopy = generate_disjoint_int_oop_copy(false, true, &entry, |
| 2893 | "oop_disjoint_arraycopy" ); |
| 2894 | StubRoutines::_oop_arraycopy = generate_conjoint_int_oop_copy(false, true, entry, |
| 2895 | &entry_oop_arraycopy, "oop_arraycopy" ); |
| 2896 | StubRoutines::_oop_disjoint_arraycopy_uninit = generate_disjoint_int_oop_copy(false, true, &entry, |
| 2897 | "oop_disjoint_arraycopy_uninit" , |
| 2898 | /*dest_uninitialized*/true); |
| 2899 | StubRoutines::_oop_arraycopy_uninit = generate_conjoint_int_oop_copy(false, true, entry, |
| 2900 | NULL, "oop_arraycopy_uninit" , |
| 2901 | /*dest_uninitialized*/true); |
| 2902 | } else { |
| 2903 | StubRoutines::_oop_disjoint_arraycopy = generate_disjoint_long_oop_copy(false, true, &entry, |
| 2904 | "oop_disjoint_arraycopy" ); |
| 2905 | StubRoutines::_oop_arraycopy = generate_conjoint_long_oop_copy(false, true, entry, |
| 2906 | &entry_oop_arraycopy, "oop_arraycopy" ); |
| 2907 | StubRoutines::_oop_disjoint_arraycopy_uninit = generate_disjoint_long_oop_copy(false, true, &entry, |
| 2908 | "oop_disjoint_arraycopy_uninit" , |
| 2909 | /*dest_uninitialized*/true); |
| 2910 | StubRoutines::_oop_arraycopy_uninit = generate_conjoint_long_oop_copy(false, true, entry, |
| 2911 | NULL, "oop_arraycopy_uninit" , |
| 2912 | /*dest_uninitialized*/true); |
| 2913 | } |
| 2914 | |
| 2915 | StubRoutines::_checkcast_arraycopy = generate_checkcast_copy("checkcast_arraycopy" , &entry_checkcast_arraycopy); |
| 2916 | StubRoutines::_checkcast_arraycopy_uninit = generate_checkcast_copy("checkcast_arraycopy_uninit" , NULL, |
| 2917 | /*dest_uninitialized*/true); |
| 2918 | |
| 2919 | StubRoutines::_unsafe_arraycopy = generate_unsafe_copy("unsafe_arraycopy" , |
| 2920 | entry_jbyte_arraycopy, |
| 2921 | entry_jshort_arraycopy, |
| 2922 | entry_jint_arraycopy, |
| 2923 | entry_jlong_arraycopy); |
| 2924 | StubRoutines::_generic_arraycopy = generate_generic_copy("generic_arraycopy" , |
| 2925 | entry_jbyte_arraycopy, |
| 2926 | entry_jshort_arraycopy, |
| 2927 | entry_jint_arraycopy, |
| 2928 | entry_oop_arraycopy, |
| 2929 | entry_jlong_arraycopy, |
| 2930 | entry_checkcast_arraycopy); |
| 2931 | |
| 2932 | StubRoutines::_jbyte_fill = generate_fill(T_BYTE, false, "jbyte_fill" ); |
| 2933 | StubRoutines::_jshort_fill = generate_fill(T_SHORT, false, "jshort_fill" ); |
| 2934 | StubRoutines::_jint_fill = generate_fill(T_INT, false, "jint_fill" ); |
| 2935 | StubRoutines::_arrayof_jbyte_fill = generate_fill(T_BYTE, true, "arrayof_jbyte_fill" ); |
| 2936 | StubRoutines::_arrayof_jshort_fill = generate_fill(T_SHORT, true, "arrayof_jshort_fill" ); |
| 2937 | StubRoutines::_arrayof_jint_fill = generate_fill(T_INT, true, "arrayof_jint_fill" ); |
| 2938 | |
| 2939 | // We don't generate specialized code for HeapWord-aligned source |
| 2940 | // arrays, so just use the code we've already generated |
| 2941 | StubRoutines::_arrayof_jbyte_disjoint_arraycopy = StubRoutines::_jbyte_disjoint_arraycopy; |
| 2942 | StubRoutines::_arrayof_jbyte_arraycopy = StubRoutines::_jbyte_arraycopy; |
| 2943 | |
| 2944 | StubRoutines::_arrayof_jshort_disjoint_arraycopy = StubRoutines::_jshort_disjoint_arraycopy; |
| 2945 | StubRoutines::_arrayof_jshort_arraycopy = StubRoutines::_jshort_arraycopy; |
| 2946 | |
| 2947 | StubRoutines::_arrayof_jint_disjoint_arraycopy = StubRoutines::_jint_disjoint_arraycopy; |
| 2948 | StubRoutines::_arrayof_jint_arraycopy = StubRoutines::_jint_arraycopy; |
| 2949 | |
| 2950 | StubRoutines::_arrayof_jlong_disjoint_arraycopy = StubRoutines::_jlong_disjoint_arraycopy; |
| 2951 | StubRoutines::_arrayof_jlong_arraycopy = StubRoutines::_jlong_arraycopy; |
| 2952 | |
| 2953 | StubRoutines::_arrayof_oop_disjoint_arraycopy = StubRoutines::_oop_disjoint_arraycopy; |
| 2954 | StubRoutines::_arrayof_oop_arraycopy = StubRoutines::_oop_arraycopy; |
| 2955 | |
| 2956 | StubRoutines::_arrayof_oop_disjoint_arraycopy_uninit = StubRoutines::_oop_disjoint_arraycopy_uninit; |
| 2957 | StubRoutines::_arrayof_oop_arraycopy_uninit = StubRoutines::_oop_arraycopy_uninit; |
| 2958 | } |
| 2959 | |
| 2960 | // AES intrinsic stubs |
| 2961 | enum {AESBlockSize = 16}; |
| 2962 | |
| 2963 | address generate_key_shuffle_mask() { |
| 2964 | __ align(16); |
| 2965 | StubCodeMark mark(this, "StubRoutines" , "key_shuffle_mask" ); |
| 2966 | address start = __ pc(); |
| 2967 | __ emit_data64( 0x0405060700010203, relocInfo::none ); |
| 2968 | __ emit_data64( 0x0c0d0e0f08090a0b, relocInfo::none ); |
| 2969 | return start; |
| 2970 | } |
| 2971 | |
| 2972 | address generate_counter_shuffle_mask() { |
| 2973 | __ align(16); |
| 2974 | StubCodeMark mark(this, "StubRoutines" , "counter_shuffle_mask" ); |
| 2975 | address start = __ pc(); |
| 2976 | __ emit_data64(0x08090a0b0c0d0e0f, relocInfo::none); |
| 2977 | __ emit_data64(0x0001020304050607, relocInfo::none); |
| 2978 | return start; |
| 2979 | } |
| 2980 | |
| 2981 | // Utility routine for loading a 128-bit key word in little endian format |
| 2982 | // can optionally specify that the shuffle mask is already in an xmmregister |
| 2983 | void load_key(XMMRegister xmmdst, Register key, int offset, XMMRegister xmm_shuf_mask=NULL) { |
| 2984 | __ movdqu(xmmdst, Address(key, offset)); |
| 2985 | if (xmm_shuf_mask != NULL) { |
| 2986 | __ pshufb(xmmdst, xmm_shuf_mask); |
| 2987 | } else { |
| 2988 | __ pshufb(xmmdst, ExternalAddress(StubRoutines::x86::key_shuffle_mask_addr())); |
| 2989 | } |
| 2990 | } |
| 2991 | |
| 2992 | // Utility routine for increase 128bit counter (iv in CTR mode) |
| 2993 | void inc_counter(Register reg, XMMRegister xmmdst, int inc_delta, Label& next_block) { |
| 2994 | __ pextrq(reg, xmmdst, 0x0); |
| 2995 | __ addq(reg, inc_delta); |
| 2996 | __ pinsrq(xmmdst, reg, 0x0); |
| 2997 | __ jcc(Assembler::carryClear, next_block); // jump if no carry |
| 2998 | __ pextrq(reg, xmmdst, 0x01); // Carry |
| 2999 | __ addq(reg, 0x01); |
| 3000 | __ pinsrq(xmmdst, reg, 0x01); //Carry end |
| 3001 | __ BIND(next_block); // next instruction |
| 3002 | } |
| 3003 | |
| 3004 | // Arguments: |
| 3005 | // |
| 3006 | // Inputs: |
| 3007 | // c_rarg0 - source byte array address |
| 3008 | // c_rarg1 - destination byte array address |
| 3009 | // c_rarg2 - K (key) in little endian int array |
| 3010 | // |
| 3011 | address generate_aescrypt_encryptBlock() { |
| 3012 | assert(UseAES, "need AES instructions and misaligned SSE support" ); |
| 3013 | __ align(CodeEntryAlignment); |
| 3014 | StubCodeMark mark(this, "StubRoutines" , "aescrypt_encryptBlock" ); |
| 3015 | Label L_doLast; |
| 3016 | address start = __ pc(); |
| 3017 | |
| 3018 | const Register from = c_rarg0; // source array address |
| 3019 | const Register to = c_rarg1; // destination array address |
| 3020 | const Register key = c_rarg2; // key array address |
| 3021 | const Register keylen = rax; |
| 3022 | |
| 3023 | const XMMRegister xmm_result = xmm0; |
| 3024 | const XMMRegister xmm_key_shuf_mask = xmm1; |
| 3025 | // On win64 xmm6-xmm15 must be preserved so don't use them. |
| 3026 | const XMMRegister xmm_temp1 = xmm2; |
| 3027 | const XMMRegister xmm_temp2 = xmm3; |
| 3028 | const XMMRegister xmm_temp3 = xmm4; |
| 3029 | const XMMRegister xmm_temp4 = xmm5; |
| 3030 | |
| 3031 | __ enter(); // required for proper stackwalking of RuntimeStub frame |
| 3032 | |
| 3033 | // keylen could be only {11, 13, 15} * 4 = {44, 52, 60} |
| 3034 | __ movl(keylen, Address(key, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT))); |
| 3035 | |
| 3036 | __ movdqu(xmm_key_shuf_mask, ExternalAddress(StubRoutines::x86::key_shuffle_mask_addr())); |
| 3037 | __ movdqu(xmm_result, Address(from, 0)); // get 16 bytes of input |
| 3038 | |
| 3039 | // For encryption, the java expanded key ordering is just what we need |
| 3040 | // we don't know if the key is aligned, hence not using load-execute form |
| 3041 | |
| 3042 | load_key(xmm_temp1, key, 0x00, xmm_key_shuf_mask); |
| 3043 | __ pxor(xmm_result, xmm_temp1); |
| 3044 | |
| 3045 | load_key(xmm_temp1, key, 0x10, xmm_key_shuf_mask); |
| 3046 | load_key(xmm_temp2, key, 0x20, xmm_key_shuf_mask); |
| 3047 | load_key(xmm_temp3, key, 0x30, xmm_key_shuf_mask); |
| 3048 | load_key(xmm_temp4, key, 0x40, xmm_key_shuf_mask); |
| 3049 | |
| 3050 | __ aesenc(xmm_result, xmm_temp1); |
| 3051 | __ aesenc(xmm_result, xmm_temp2); |
| 3052 | __ aesenc(xmm_result, xmm_temp3); |
| 3053 | __ aesenc(xmm_result, xmm_temp4); |
| 3054 | |
| 3055 | load_key(xmm_temp1, key, 0x50, xmm_key_shuf_mask); |
| 3056 | load_key(xmm_temp2, key, 0x60, xmm_key_shuf_mask); |
| 3057 | load_key(xmm_temp3, key, 0x70, xmm_key_shuf_mask); |
| 3058 | load_key(xmm_temp4, key, 0x80, xmm_key_shuf_mask); |
| 3059 | |
| 3060 | __ aesenc(xmm_result, xmm_temp1); |
| 3061 | __ aesenc(xmm_result, xmm_temp2); |
| 3062 | __ aesenc(xmm_result, xmm_temp3); |
| 3063 | __ aesenc(xmm_result, xmm_temp4); |
| 3064 | |
| 3065 | load_key(xmm_temp1, key, 0x90, xmm_key_shuf_mask); |
| 3066 | load_key(xmm_temp2, key, 0xa0, xmm_key_shuf_mask); |
| 3067 | |
| 3068 | __ cmpl(keylen, 44); |
| 3069 | __ jccb(Assembler::equal, L_doLast); |
| 3070 | |
| 3071 | __ aesenc(xmm_result, xmm_temp1); |
| 3072 | __ aesenc(xmm_result, xmm_temp2); |
| 3073 | |
| 3074 | load_key(xmm_temp1, key, 0xb0, xmm_key_shuf_mask); |
| 3075 | load_key(xmm_temp2, key, 0xc0, xmm_key_shuf_mask); |
| 3076 | |
| 3077 | __ cmpl(keylen, 52); |
| 3078 | __ jccb(Assembler::equal, L_doLast); |
| 3079 | |
| 3080 | __ aesenc(xmm_result, xmm_temp1); |
| 3081 | __ aesenc(xmm_result, xmm_temp2); |
| 3082 | |
| 3083 | load_key(xmm_temp1, key, 0xd0, xmm_key_shuf_mask); |
| 3084 | load_key(xmm_temp2, key, 0xe0, xmm_key_shuf_mask); |
| 3085 | |
| 3086 | __ BIND(L_doLast); |
| 3087 | __ aesenc(xmm_result, xmm_temp1); |
| 3088 | __ aesenclast(xmm_result, xmm_temp2); |
| 3089 | __ movdqu(Address(to, 0), xmm_result); // store the result |
| 3090 | __ xorptr(rax, rax); // return 0 |
| 3091 | __ leave(); // required for proper stackwalking of RuntimeStub frame |
| 3092 | __ ret(0); |
| 3093 | |
| 3094 | return start; |
| 3095 | } |
| 3096 | |
| 3097 | |
| 3098 | // Arguments: |
| 3099 | // |
| 3100 | // Inputs: |
| 3101 | // c_rarg0 - source byte array address |
| 3102 | // c_rarg1 - destination byte array address |
| 3103 | // c_rarg2 - K (key) in little endian int array |
| 3104 | // |
| 3105 | address generate_aescrypt_decryptBlock() { |
| 3106 | assert(UseAES, "need AES instructions and misaligned SSE support" ); |
| 3107 | __ align(CodeEntryAlignment); |
| 3108 | StubCodeMark mark(this, "StubRoutines" , "aescrypt_decryptBlock" ); |
| 3109 | Label L_doLast; |
| 3110 | address start = __ pc(); |
| 3111 | |
| 3112 | const Register from = c_rarg0; // source array address |
| 3113 | const Register to = c_rarg1; // destination array address |
| 3114 | const Register key = c_rarg2; // key array address |
| 3115 | const Register keylen = rax; |
| 3116 | |
| 3117 | const XMMRegister xmm_result = xmm0; |
| 3118 | const XMMRegister xmm_key_shuf_mask = xmm1; |
| 3119 | // On win64 xmm6-xmm15 must be preserved so don't use them. |
| 3120 | const XMMRegister xmm_temp1 = xmm2; |
| 3121 | const XMMRegister xmm_temp2 = xmm3; |
| 3122 | const XMMRegister xmm_temp3 = xmm4; |
| 3123 | const XMMRegister xmm_temp4 = xmm5; |
| 3124 | |
| 3125 | __ enter(); // required for proper stackwalking of RuntimeStub frame |
| 3126 | |
| 3127 | // keylen could be only {11, 13, 15} * 4 = {44, 52, 60} |
| 3128 | __ movl(keylen, Address(key, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT))); |
| 3129 | |
| 3130 | __ movdqu(xmm_key_shuf_mask, ExternalAddress(StubRoutines::x86::key_shuffle_mask_addr())); |
| 3131 | __ movdqu(xmm_result, Address(from, 0)); |
| 3132 | |
| 3133 | // for decryption java expanded key ordering is rotated one position from what we want |
| 3134 | // so we start from 0x10 here and hit 0x00 last |
| 3135 | // we don't know if the key is aligned, hence not using load-execute form |
| 3136 | load_key(xmm_temp1, key, 0x10, xmm_key_shuf_mask); |
| 3137 | load_key(xmm_temp2, key, 0x20, xmm_key_shuf_mask); |
| 3138 | load_key(xmm_temp3, key, 0x30, xmm_key_shuf_mask); |
| 3139 | load_key(xmm_temp4, key, 0x40, xmm_key_shuf_mask); |
| 3140 | |
| 3141 | __ pxor (xmm_result, xmm_temp1); |
| 3142 | __ aesdec(xmm_result, xmm_temp2); |
| 3143 | __ aesdec(xmm_result, xmm_temp3); |
| 3144 | __ aesdec(xmm_result, xmm_temp4); |
| 3145 | |
| 3146 | load_key(xmm_temp1, key, 0x50, xmm_key_shuf_mask); |
| 3147 | load_key(xmm_temp2, key, 0x60, xmm_key_shuf_mask); |
| 3148 | load_key(xmm_temp3, key, 0x70, xmm_key_shuf_mask); |
| 3149 | load_key(xmm_temp4, key, 0x80, xmm_key_shuf_mask); |
| 3150 | |
| 3151 | __ aesdec(xmm_result, xmm_temp1); |
| 3152 | __ aesdec(xmm_result, xmm_temp2); |
| 3153 | __ aesdec(xmm_result, xmm_temp3); |
| 3154 | __ aesdec(xmm_result, xmm_temp4); |
| 3155 | |
| 3156 | load_key(xmm_temp1, key, 0x90, xmm_key_shuf_mask); |
| 3157 | load_key(xmm_temp2, key, 0xa0, xmm_key_shuf_mask); |
| 3158 | load_key(xmm_temp3, key, 0x00, xmm_key_shuf_mask); |
| 3159 | |
| 3160 | __ cmpl(keylen, 44); |
| 3161 | __ jccb(Assembler::equal, L_doLast); |
| 3162 | |
| 3163 | __ aesdec(xmm_result, xmm_temp1); |
| 3164 | __ aesdec(xmm_result, xmm_temp2); |
| 3165 | |
| 3166 | load_key(xmm_temp1, key, 0xb0, xmm_key_shuf_mask); |
| 3167 | load_key(xmm_temp2, key, 0xc0, xmm_key_shuf_mask); |
| 3168 | |
| 3169 | __ cmpl(keylen, 52); |
| 3170 | __ jccb(Assembler::equal, L_doLast); |
| 3171 | |
| 3172 | __ aesdec(xmm_result, xmm_temp1); |
| 3173 | __ aesdec(xmm_result, xmm_temp2); |
| 3174 | |
| 3175 | load_key(xmm_temp1, key, 0xd0, xmm_key_shuf_mask); |
| 3176 | load_key(xmm_temp2, key, 0xe0, xmm_key_shuf_mask); |
| 3177 | |
| 3178 | __ BIND(L_doLast); |
| 3179 | __ aesdec(xmm_result, xmm_temp1); |
| 3180 | __ aesdec(xmm_result, xmm_temp2); |
| 3181 | |
| 3182 | // for decryption the aesdeclast operation is always on key+0x00 |
| 3183 | __ aesdeclast(xmm_result, xmm_temp3); |
| 3184 | __ movdqu(Address(to, 0), xmm_result); // store the result |
| 3185 | __ xorptr(rax, rax); // return 0 |
| 3186 | __ leave(); // required for proper stackwalking of RuntimeStub frame |
| 3187 | __ ret(0); |
| 3188 | |
| 3189 | return start; |
| 3190 | } |
| 3191 | |
| 3192 | |
| 3193 | // Arguments: |
| 3194 | // |
| 3195 | // Inputs: |
| 3196 | // c_rarg0 - source byte array address |
| 3197 | // c_rarg1 - destination byte array address |
| 3198 | // c_rarg2 - K (key) in little endian int array |
| 3199 | // c_rarg3 - r vector byte array address |
| 3200 | // c_rarg4 - input length |
| 3201 | // |
| 3202 | // Output: |
| 3203 | // rax - input length |
| 3204 | // |
| 3205 | address generate_cipherBlockChaining_encryptAESCrypt() { |
| 3206 | assert(UseAES, "need AES instructions and misaligned SSE support" ); |
| 3207 | __ align(CodeEntryAlignment); |
| 3208 | StubCodeMark mark(this, "StubRoutines" , "cipherBlockChaining_encryptAESCrypt" ); |
| 3209 | address start = __ pc(); |
| 3210 | |
| 3211 | Label L_exit, L_key_192_256, L_key_256, L_loopTop_128, L_loopTop_192, L_loopTop_256; |
| 3212 | const Register from = c_rarg0; // source array address |
| 3213 | const Register to = c_rarg1; // destination array address |
| 3214 | const Register key = c_rarg2; // key array address |
| 3215 | const Register rvec = c_rarg3; // r byte array initialized from initvector array address |
| 3216 | // and left with the results of the last encryption block |
| 3217 | #ifndef _WIN64 |
| 3218 | const Register len_reg = c_rarg4; // src len (must be multiple of blocksize 16) |
| 3219 | #else |
| 3220 | const Address len_mem(rbp, 6 * wordSize); // length is on stack on Win64 |
| 3221 | const Register len_reg = r11; // pick the volatile windows register |
| 3222 | #endif |
| 3223 | const Register pos = rax; |
| 3224 | |
| 3225 | // xmm register assignments for the loops below |
| 3226 | const XMMRegister xmm_result = xmm0; |
| 3227 | const XMMRegister xmm_temp = xmm1; |
| 3228 | // keys 0-10 preloaded into xmm2-xmm12 |
| 3229 | const int XMM_REG_NUM_KEY_FIRST = 2; |
| 3230 | const int XMM_REG_NUM_KEY_LAST = 15; |
| 3231 | const XMMRegister xmm_key0 = as_XMMRegister(XMM_REG_NUM_KEY_FIRST); |
| 3232 | const XMMRegister xmm_key10 = as_XMMRegister(XMM_REG_NUM_KEY_FIRST+10); |
| 3233 | const XMMRegister xmm_key11 = as_XMMRegister(XMM_REG_NUM_KEY_FIRST+11); |
| 3234 | const XMMRegister xmm_key12 = as_XMMRegister(XMM_REG_NUM_KEY_FIRST+12); |
| 3235 | const XMMRegister xmm_key13 = as_XMMRegister(XMM_REG_NUM_KEY_FIRST+13); |
| 3236 | |
| 3237 | __ enter(); // required for proper stackwalking of RuntimeStub frame |
| 3238 | |
| 3239 | #ifdef _WIN64 |
| 3240 | // on win64, fill len_reg from stack position |
| 3241 | __ movl(len_reg, len_mem); |
| 3242 | #else |
| 3243 | __ push(len_reg); // Save |
| 3244 | #endif |
| 3245 | |
| 3246 | const XMMRegister xmm_key_shuf_mask = xmm_temp; // used temporarily to swap key bytes up front |
| 3247 | __ movdqu(xmm_key_shuf_mask, ExternalAddress(StubRoutines::x86::key_shuffle_mask_addr())); |
| 3248 | // load up xmm regs xmm2 thru xmm12 with key 0x00 - 0xa0 |
| 3249 | for (int rnum = XMM_REG_NUM_KEY_FIRST, offset = 0x00; rnum <= XMM_REG_NUM_KEY_FIRST+10; rnum++) { |
| 3250 | load_key(as_XMMRegister(rnum), key, offset, xmm_key_shuf_mask); |
| 3251 | offset += 0x10; |
| 3252 | } |
| 3253 | __ movdqu(xmm_result, Address(rvec, 0x00)); // initialize xmm_result with r vec |
| 3254 | |
| 3255 | // now split to different paths depending on the keylen (len in ints of AESCrypt.KLE array (52=192, or 60=256)) |
| 3256 | __ movl(rax, Address(key, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT))); |
| 3257 | __ cmpl(rax, 44); |
| 3258 | __ jcc(Assembler::notEqual, L_key_192_256); |
| 3259 | |
| 3260 | // 128 bit code follows here |
| 3261 | __ movptr(pos, 0); |
| 3262 | __ align(OptoLoopAlignment); |
| 3263 | |
| 3264 | __ BIND(L_loopTop_128); |
| 3265 | __ movdqu(xmm_temp, Address(from, pos, Address::times_1, 0)); // get next 16 bytes of input |
| 3266 | __ pxor (xmm_result, xmm_temp); // xor with the current r vector |
| 3267 | __ pxor (xmm_result, xmm_key0); // do the aes rounds |
| 3268 | for (int rnum = XMM_REG_NUM_KEY_FIRST + 1; rnum <= XMM_REG_NUM_KEY_FIRST + 9; rnum++) { |
| 3269 | __ aesenc(xmm_result, as_XMMRegister(rnum)); |
| 3270 | } |
| 3271 | __ aesenclast(xmm_result, xmm_key10); |
| 3272 | __ movdqu(Address(to, pos, Address::times_1, 0), xmm_result); // store into the next 16 bytes of output |
| 3273 | // no need to store r to memory until we exit |
| 3274 | __ addptr(pos, AESBlockSize); |
| 3275 | __ subptr(len_reg, AESBlockSize); |
| 3276 | __ jcc(Assembler::notEqual, L_loopTop_128); |
| 3277 | |
| 3278 | __ BIND(L_exit); |
| 3279 | __ movdqu(Address(rvec, 0), xmm_result); // final value of r stored in rvec of CipherBlockChaining object |
| 3280 | |
| 3281 | #ifdef _WIN64 |
| 3282 | __ movl(rax, len_mem); |
| 3283 | #else |
| 3284 | __ pop(rax); // return length |
| 3285 | #endif |
| 3286 | __ leave(); // required for proper stackwalking of RuntimeStub frame |
| 3287 | __ ret(0); |
| 3288 | |
| 3289 | __ BIND(L_key_192_256); |
| 3290 | // here rax = len in ints of AESCrypt.KLE array (52=192, or 60=256) |
| 3291 | load_key(xmm_key11, key, 0xb0, xmm_key_shuf_mask); |
| 3292 | load_key(xmm_key12, key, 0xc0, xmm_key_shuf_mask); |
| 3293 | __ cmpl(rax, 52); |
| 3294 | __ jcc(Assembler::notEqual, L_key_256); |
| 3295 | |
| 3296 | // 192-bit code follows here (could be changed to use more xmm registers) |
| 3297 | __ movptr(pos, 0); |
| 3298 | __ align(OptoLoopAlignment); |
| 3299 | |
| 3300 | __ BIND(L_loopTop_192); |
| 3301 | __ movdqu(xmm_temp, Address(from, pos, Address::times_1, 0)); // get next 16 bytes of input |
| 3302 | __ pxor (xmm_result, xmm_temp); // xor with the current r vector |
| 3303 | __ pxor (xmm_result, xmm_key0); // do the aes rounds |
| 3304 | for (int rnum = XMM_REG_NUM_KEY_FIRST + 1; rnum <= XMM_REG_NUM_KEY_FIRST + 11; rnum++) { |
| 3305 | __ aesenc(xmm_result, as_XMMRegister(rnum)); |
| 3306 | } |
| 3307 | __ aesenclast(xmm_result, xmm_key12); |
| 3308 | __ movdqu(Address(to, pos, Address::times_1, 0), xmm_result); // store into the next 16 bytes of output |
| 3309 | // no need to store r to memory until we exit |
| 3310 | __ addptr(pos, AESBlockSize); |
| 3311 | __ subptr(len_reg, AESBlockSize); |
| 3312 | __ jcc(Assembler::notEqual, L_loopTop_192); |
| 3313 | __ jmp(L_exit); |
| 3314 | |
| 3315 | __ BIND(L_key_256); |
| 3316 | // 256-bit code follows here (could be changed to use more xmm registers) |
| 3317 | load_key(xmm_key13, key, 0xd0, xmm_key_shuf_mask); |
| 3318 | __ movptr(pos, 0); |
| 3319 | __ align(OptoLoopAlignment); |
| 3320 | |
| 3321 | __ BIND(L_loopTop_256); |
| 3322 | __ movdqu(xmm_temp, Address(from, pos, Address::times_1, 0)); // get next 16 bytes of input |
| 3323 | __ pxor (xmm_result, xmm_temp); // xor with the current r vector |
| 3324 | __ pxor (xmm_result, xmm_key0); // do the aes rounds |
| 3325 | for (int rnum = XMM_REG_NUM_KEY_FIRST + 1; rnum <= XMM_REG_NUM_KEY_FIRST + 13; rnum++) { |
| 3326 | __ aesenc(xmm_result, as_XMMRegister(rnum)); |
| 3327 | } |
| 3328 | load_key(xmm_temp, key, 0xe0); |
| 3329 | __ aesenclast(xmm_result, xmm_temp); |
| 3330 | __ movdqu(Address(to, pos, Address::times_1, 0), xmm_result); // store into the next 16 bytes of output |
| 3331 | // no need to store r to memory until we exit |
| 3332 | __ addptr(pos, AESBlockSize); |
| 3333 | __ subptr(len_reg, AESBlockSize); |
| 3334 | __ jcc(Assembler::notEqual, L_loopTop_256); |
| 3335 | __ jmp(L_exit); |
| 3336 | |
| 3337 | return start; |
| 3338 | } |
| 3339 | |
| 3340 | // Safefetch stubs. |
| 3341 | void generate_safefetch(const char* name, int size, address* entry, |
| 3342 | address* fault_pc, address* continuation_pc) { |
| 3343 | // safefetch signatures: |
| 3344 | // int SafeFetch32(int* adr, int errValue); |
| 3345 | // intptr_t SafeFetchN (intptr_t* adr, intptr_t errValue); |
| 3346 | // |
| 3347 | // arguments: |
| 3348 | // c_rarg0 = adr |
| 3349 | // c_rarg1 = errValue |
| 3350 | // |
| 3351 | // result: |
| 3352 | // PPC_RET = *adr or errValue |
| 3353 | |
| 3354 | StubCodeMark mark(this, "StubRoutines" , name); |
| 3355 | |
| 3356 | // Entry point, pc or function descriptor. |
| 3357 | *entry = __ pc(); |
| 3358 | |
| 3359 | // Load *adr into c_rarg1, may fault. |
| 3360 | *fault_pc = __ pc(); |
| 3361 | switch (size) { |
| 3362 | case 4: |
| 3363 | // int32_t |
| 3364 | __ movl(c_rarg1, Address(c_rarg0, 0)); |
| 3365 | break; |
| 3366 | case 8: |
| 3367 | // int64_t |
| 3368 | __ movq(c_rarg1, Address(c_rarg0, 0)); |
| 3369 | break; |
| 3370 | default: |
| 3371 | ShouldNotReachHere(); |
| 3372 | } |
| 3373 | |
| 3374 | // return errValue or *adr |
| 3375 | *continuation_pc = __ pc(); |
| 3376 | __ movq(rax, c_rarg1); |
| 3377 | __ ret(0); |
| 3378 | } |
| 3379 | |
| 3380 | // This is a version of CBC/AES Decrypt which does 4 blocks in a loop at a time |
| 3381 | // to hide instruction latency |
| 3382 | // |
| 3383 | // Arguments: |
| 3384 | // |
| 3385 | // Inputs: |
| 3386 | // c_rarg0 - source byte array address |
| 3387 | // c_rarg1 - destination byte array address |
| 3388 | // c_rarg2 - K (key) in little endian int array |
| 3389 | // c_rarg3 - r vector byte array address |
| 3390 | // c_rarg4 - input length |
| 3391 | // |
| 3392 | // Output: |
| 3393 | // rax - input length |
| 3394 | // |
| 3395 | address generate_cipherBlockChaining_decryptAESCrypt_Parallel() { |
| 3396 | assert(UseAES, "need AES instructions and misaligned SSE support" ); |
| 3397 | __ align(CodeEntryAlignment); |
| 3398 | StubCodeMark mark(this, "StubRoutines" , "cipherBlockChaining_decryptAESCrypt" ); |
| 3399 | address start = __ pc(); |
| 3400 | |
| 3401 | const Register from = c_rarg0; // source array address |
| 3402 | const Register to = c_rarg1; // destination array address |
| 3403 | const Register key = c_rarg2; // key array address |
| 3404 | const Register rvec = c_rarg3; // r byte array initialized from initvector array address |
| 3405 | // and left with the results of the last encryption block |
| 3406 | #ifndef _WIN64 |
| 3407 | const Register len_reg = c_rarg4; // src len (must be multiple of blocksize 16) |
| 3408 | #else |
| 3409 | const Address len_mem(rbp, 6 * wordSize); // length is on stack on Win64 |
| 3410 | const Register len_reg = r11; // pick the volatile windows register |
| 3411 | #endif |
| 3412 | const Register pos = rax; |
| 3413 | |
| 3414 | const int PARALLEL_FACTOR = 4; |
| 3415 | const int ROUNDS[3] = { 10, 12, 14 }; // aes rounds for key128, key192, key256 |
| 3416 | |
| 3417 | Label L_exit; |
| 3418 | Label L_singleBlock_loopTopHead[3]; // 128, 192, 256 |
| 3419 | Label L_singleBlock_loopTopHead2[3]; // 128, 192, 256 |
| 3420 | Label L_singleBlock_loopTop[3]; // 128, 192, 256 |
| 3421 | Label L_multiBlock_loopTopHead[3]; // 128, 192, 256 |
| 3422 | Label L_multiBlock_loopTop[3]; // 128, 192, 256 |
| 3423 | |
| 3424 | // keys 0-10 preloaded into xmm5-xmm15 |
| 3425 | const int XMM_REG_NUM_KEY_FIRST = 5; |
| 3426 | const int XMM_REG_NUM_KEY_LAST = 15; |
| 3427 | const XMMRegister xmm_key_first = as_XMMRegister(XMM_REG_NUM_KEY_FIRST); |
| 3428 | const XMMRegister xmm_key_last = as_XMMRegister(XMM_REG_NUM_KEY_LAST); |
| 3429 | |
| 3430 | __ enter(); // required for proper stackwalking of RuntimeStub frame |
| 3431 | |
| 3432 | #ifdef _WIN64 |
| 3433 | // on win64, fill len_reg from stack position |
| 3434 | __ movl(len_reg, len_mem); |
| 3435 | #else |
| 3436 | __ push(len_reg); // Save |
| 3437 | #endif |
| 3438 | __ push(rbx); |
| 3439 | // the java expanded key ordering is rotated one position from what we want |
| 3440 | // so we start from 0x10 here and hit 0x00 last |
| 3441 | const XMMRegister xmm_key_shuf_mask = xmm1; // used temporarily to swap key bytes up front |
| 3442 | __ movdqu(xmm_key_shuf_mask, ExternalAddress(StubRoutines::x86::key_shuffle_mask_addr())); |
| 3443 | // load up xmm regs 5 thru 15 with key 0x10 - 0xa0 - 0x00 |
| 3444 | for (int rnum = XMM_REG_NUM_KEY_FIRST, offset = 0x10; rnum < XMM_REG_NUM_KEY_LAST; rnum++) { |
| 3445 | load_key(as_XMMRegister(rnum), key, offset, xmm_key_shuf_mask); |
| 3446 | offset += 0x10; |
| 3447 | } |
| 3448 | load_key(xmm_key_last, key, 0x00, xmm_key_shuf_mask); |
| 3449 | |
| 3450 | const XMMRegister xmm_prev_block_cipher = xmm1; // holds cipher of previous block |
| 3451 | |
| 3452 | // registers holding the four results in the parallelized loop |
| 3453 | const XMMRegister xmm_result0 = xmm0; |
| 3454 | const XMMRegister xmm_result1 = xmm2; |
| 3455 | const XMMRegister xmm_result2 = xmm3; |
| 3456 | const XMMRegister xmm_result3 = xmm4; |
| 3457 | |
| 3458 | __ movdqu(xmm_prev_block_cipher, Address(rvec, 0x00)); // initialize with initial rvec |
| 3459 | |
| 3460 | __ xorptr(pos, pos); |
| 3461 | |
| 3462 | // now split to different paths depending on the keylen (len in ints of AESCrypt.KLE array (52=192, or 60=256)) |
| 3463 | __ movl(rbx, Address(key, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT))); |
| 3464 | __ cmpl(rbx, 52); |
| 3465 | __ jcc(Assembler::equal, L_multiBlock_loopTopHead[1]); |
| 3466 | __ cmpl(rbx, 60); |
| 3467 | __ jcc(Assembler::equal, L_multiBlock_loopTopHead[2]); |
| 3468 | |
| 3469 | #define DoFour(opc, src_reg) \ |
| 3470 | __ opc(xmm_result0, src_reg); \ |
| 3471 | __ opc(xmm_result1, src_reg); \ |
| 3472 | __ opc(xmm_result2, src_reg); \ |
| 3473 | __ opc(xmm_result3, src_reg); \ |
| 3474 | |
| 3475 | for (int k = 0; k < 3; ++k) { |
| 3476 | __ BIND(L_multiBlock_loopTopHead[k]); |
| 3477 | if (k != 0) { |
| 3478 | __ cmpptr(len_reg, PARALLEL_FACTOR * AESBlockSize); // see if at least 4 blocks left |
| 3479 | __ jcc(Assembler::less, L_singleBlock_loopTopHead2[k]); |
| 3480 | } |
| 3481 | if (k == 1) { |
| 3482 | __ subptr(rsp, 6 * wordSize); |
| 3483 | __ movdqu(Address(rsp, 0), xmm15); //save last_key from xmm15 |
| 3484 | load_key(xmm15, key, 0xb0); // 0xb0; 192-bit key goes up to 0xc0 |
| 3485 | __ movdqu(Address(rsp, 2 * wordSize), xmm15); |
| 3486 | load_key(xmm1, key, 0xc0); // 0xc0; |
| 3487 | __ movdqu(Address(rsp, 4 * wordSize), xmm1); |
| 3488 | } else if (k == 2) { |
| 3489 | __ subptr(rsp, 10 * wordSize); |
| 3490 | __ movdqu(Address(rsp, 0), xmm15); //save last_key from xmm15 |
| 3491 | load_key(xmm15, key, 0xd0); // 0xd0; 256-bit key goes upto 0xe0 |
| 3492 | __ movdqu(Address(rsp, 6 * wordSize), xmm15); |
| 3493 | load_key(xmm1, key, 0xe0); // 0xe0; |
| 3494 | __ movdqu(Address(rsp, 8 * wordSize), xmm1); |
| 3495 | load_key(xmm15, key, 0xb0); // 0xb0; |
| 3496 | __ movdqu(Address(rsp, 2 * wordSize), xmm15); |
| 3497 | load_key(xmm1, key, 0xc0); // 0xc0; |
| 3498 | __ movdqu(Address(rsp, 4 * wordSize), xmm1); |
| 3499 | } |
| 3500 | __ align(OptoLoopAlignment); |
| 3501 | __ BIND(L_multiBlock_loopTop[k]); |
| 3502 | __ cmpptr(len_reg, PARALLEL_FACTOR * AESBlockSize); // see if at least 4 blocks left |
| 3503 | __ jcc(Assembler::less, L_singleBlock_loopTopHead[k]); |
| 3504 | |
| 3505 | if (k != 0) { |
| 3506 | __ movdqu(xmm15, Address(rsp, 2 * wordSize)); |
| 3507 | __ movdqu(xmm1, Address(rsp, 4 * wordSize)); |
| 3508 | } |
| 3509 | |
| 3510 | __ movdqu(xmm_result0, Address(from, pos, Address::times_1, 0 * AESBlockSize)); // get next 4 blocks into xmmresult registers |
| 3511 | __ movdqu(xmm_result1, Address(from, pos, Address::times_1, 1 * AESBlockSize)); |
| 3512 | __ movdqu(xmm_result2, Address(from, pos, Address::times_1, 2 * AESBlockSize)); |
| 3513 | __ movdqu(xmm_result3, Address(from, pos, Address::times_1, 3 * AESBlockSize)); |
| 3514 | |
| 3515 | DoFour(pxor, xmm_key_first); |
| 3516 | if (k == 0) { |
| 3517 | for (int rnum = 1; rnum < ROUNDS[k]; rnum++) { |
| 3518 | DoFour(aesdec, as_XMMRegister(rnum + XMM_REG_NUM_KEY_FIRST)); |
| 3519 | } |
| 3520 | DoFour(aesdeclast, xmm_key_last); |
| 3521 | } else if (k == 1) { |
| 3522 | for (int rnum = 1; rnum <= ROUNDS[k]-2; rnum++) { |
| 3523 | DoFour(aesdec, as_XMMRegister(rnum + XMM_REG_NUM_KEY_FIRST)); |
| 3524 | } |
| 3525 | __ movdqu(xmm_key_last, Address(rsp, 0)); // xmm15 needs to be loaded again. |
| 3526 | DoFour(aesdec, xmm1); // key : 0xc0 |
| 3527 | __ movdqu(xmm_prev_block_cipher, Address(rvec, 0x00)); // xmm1 needs to be loaded again |
| 3528 | DoFour(aesdeclast, xmm_key_last); |
| 3529 | } else if (k == 2) { |
| 3530 | for (int rnum = 1; rnum <= ROUNDS[k] - 4; rnum++) { |
| 3531 | DoFour(aesdec, as_XMMRegister(rnum + XMM_REG_NUM_KEY_FIRST)); |
| 3532 | } |
| 3533 | DoFour(aesdec, xmm1); // key : 0xc0 |
| 3534 | __ movdqu(xmm15, Address(rsp, 6 * wordSize)); |
| 3535 | __ movdqu(xmm1, Address(rsp, 8 * wordSize)); |
| 3536 | DoFour(aesdec, xmm15); // key : 0xd0 |
| 3537 | __ movdqu(xmm_key_last, Address(rsp, 0)); // xmm15 needs to be loaded again. |
| 3538 | DoFour(aesdec, xmm1); // key : 0xe0 |
| 3539 | __ movdqu(xmm_prev_block_cipher, Address(rvec, 0x00)); // xmm1 needs to be loaded again |
| 3540 | DoFour(aesdeclast, xmm_key_last); |
| 3541 | } |
| 3542 | |
| 3543 | // for each result, xor with the r vector of previous cipher block |
| 3544 | __ pxor(xmm_result0, xmm_prev_block_cipher); |
| 3545 | __ movdqu(xmm_prev_block_cipher, Address(from, pos, Address::times_1, 0 * AESBlockSize)); |
| 3546 | __ pxor(xmm_result1, xmm_prev_block_cipher); |
| 3547 | __ movdqu(xmm_prev_block_cipher, Address(from, pos, Address::times_1, 1 * AESBlockSize)); |
| 3548 | __ pxor(xmm_result2, xmm_prev_block_cipher); |
| 3549 | __ movdqu(xmm_prev_block_cipher, Address(from, pos, Address::times_1, 2 * AESBlockSize)); |
| 3550 | __ pxor(xmm_result3, xmm_prev_block_cipher); |
| 3551 | __ movdqu(xmm_prev_block_cipher, Address(from, pos, Address::times_1, 3 * AESBlockSize)); // this will carry over to next set of blocks |
| 3552 | if (k != 0) { |
| 3553 | __ movdqu(Address(rvec, 0x00), xmm_prev_block_cipher); |
| 3554 | } |
| 3555 | |
| 3556 | __ movdqu(Address(to, pos, Address::times_1, 0 * AESBlockSize), xmm_result0); // store 4 results into the next 64 bytes of output |
| 3557 | __ movdqu(Address(to, pos, Address::times_1, 1 * AESBlockSize), xmm_result1); |
| 3558 | __ movdqu(Address(to, pos, Address::times_1, 2 * AESBlockSize), xmm_result2); |
| 3559 | __ movdqu(Address(to, pos, Address::times_1, 3 * AESBlockSize), xmm_result3); |
| 3560 | |
| 3561 | __ addptr(pos, PARALLEL_FACTOR * AESBlockSize); |
| 3562 | __ subptr(len_reg, PARALLEL_FACTOR * AESBlockSize); |
| 3563 | __ jmp(L_multiBlock_loopTop[k]); |
| 3564 | |
| 3565 | // registers used in the non-parallelized loops |
| 3566 | // xmm register assignments for the loops below |
| 3567 | const XMMRegister xmm_result = xmm0; |
| 3568 | const XMMRegister xmm_prev_block_cipher_save = xmm2; |
| 3569 | const XMMRegister xmm_key11 = xmm3; |
| 3570 | const XMMRegister xmm_key12 = xmm4; |
| 3571 | const XMMRegister key_tmp = xmm4; |
| 3572 | |
| 3573 | __ BIND(L_singleBlock_loopTopHead[k]); |
| 3574 | if (k == 1) { |
| 3575 | __ addptr(rsp, 6 * wordSize); |
| 3576 | } else if (k == 2) { |
| 3577 | __ addptr(rsp, 10 * wordSize); |
| 3578 | } |
| 3579 | __ cmpptr(len_reg, 0); // any blocks left?? |
| 3580 | __ jcc(Assembler::equal, L_exit); |
| 3581 | __ BIND(L_singleBlock_loopTopHead2[k]); |
| 3582 | if (k == 1) { |
| 3583 | load_key(xmm_key11, key, 0xb0); // 0xb0; 192-bit key goes upto 0xc0 |
| 3584 | load_key(xmm_key12, key, 0xc0); // 0xc0; 192-bit key goes upto 0xc0 |
| 3585 | } |
| 3586 | if (k == 2) { |
| 3587 | load_key(xmm_key11, key, 0xb0); // 0xb0; 256-bit key goes upto 0xe0 |
| 3588 | } |
| 3589 | __ align(OptoLoopAlignment); |
| 3590 | __ BIND(L_singleBlock_loopTop[k]); |
| 3591 | __ movdqu(xmm_result, Address(from, pos, Address::times_1, 0)); // get next 16 bytes of cipher input |
| 3592 | __ movdqa(xmm_prev_block_cipher_save, xmm_result); // save for next r vector |
| 3593 | __ pxor(xmm_result, xmm_key_first); // do the aes dec rounds |
| 3594 | for (int rnum = 1; rnum <= 9 ; rnum++) { |
| 3595 | __ aesdec(xmm_result, as_XMMRegister(rnum + XMM_REG_NUM_KEY_FIRST)); |
| 3596 | } |
| 3597 | if (k == 1) { |
| 3598 | __ aesdec(xmm_result, xmm_key11); |
| 3599 | __ aesdec(xmm_result, xmm_key12); |
| 3600 | } |
| 3601 | if (k == 2) { |
| 3602 | __ aesdec(xmm_result, xmm_key11); |
| 3603 | load_key(key_tmp, key, 0xc0); |
| 3604 | __ aesdec(xmm_result, key_tmp); |
| 3605 | load_key(key_tmp, key, 0xd0); |
| 3606 | __ aesdec(xmm_result, key_tmp); |
| 3607 | load_key(key_tmp, key, 0xe0); |
| 3608 | __ aesdec(xmm_result, key_tmp); |
| 3609 | } |
| 3610 | |
| 3611 | __ aesdeclast(xmm_result, xmm_key_last); // xmm15 always came from key+0 |
| 3612 | __ pxor(xmm_result, xmm_prev_block_cipher); // xor with the current r vector |
| 3613 | __ movdqu(Address(to, pos, Address::times_1, 0), xmm_result); // store into the next 16 bytes of output |
| 3614 | // no need to store r to memory until we exit |
| 3615 | __ movdqa(xmm_prev_block_cipher, xmm_prev_block_cipher_save); // set up next r vector with cipher input from this block |
| 3616 | __ addptr(pos, AESBlockSize); |
| 3617 | __ subptr(len_reg, AESBlockSize); |
| 3618 | __ jcc(Assembler::notEqual, L_singleBlock_loopTop[k]); |
| 3619 | if (k != 2) { |
| 3620 | __ jmp(L_exit); |
| 3621 | } |
| 3622 | } //for 128/192/256 |
| 3623 | |
| 3624 | __ BIND(L_exit); |
| 3625 | __ movdqu(Address(rvec, 0), xmm_prev_block_cipher); // final value of r stored in rvec of CipherBlockChaining object |
| 3626 | __ pop(rbx); |
| 3627 | #ifdef _WIN64 |
| 3628 | __ movl(rax, len_mem); |
| 3629 | #else |
| 3630 | __ pop(rax); // return length |
| 3631 | #endif |
| 3632 | __ leave(); // required for proper stackwalking of RuntimeStub frame |
| 3633 | __ ret(0); |
| 3634 | return start; |
| 3635 | } |
| 3636 | |
| 3637 | address generate_upper_word_mask() { |
| 3638 | __ align(64); |
| 3639 | StubCodeMark mark(this, "StubRoutines" , "upper_word_mask" ); |
| 3640 | address start = __ pc(); |
| 3641 | __ emit_data64(0x0000000000000000, relocInfo::none); |
| 3642 | __ emit_data64(0xFFFFFFFF00000000, relocInfo::none); |
| 3643 | return start; |
| 3644 | } |
| 3645 | |
| 3646 | address generate_shuffle_byte_flip_mask() { |
| 3647 | __ align(64); |
| 3648 | StubCodeMark mark(this, "StubRoutines" , "shuffle_byte_flip_mask" ); |
| 3649 | address start = __ pc(); |
| 3650 | __ emit_data64(0x08090a0b0c0d0e0f, relocInfo::none); |
| 3651 | __ emit_data64(0x0001020304050607, relocInfo::none); |
| 3652 | return start; |
| 3653 | } |
| 3654 | |
| 3655 | // ofs and limit are use for multi-block byte array. |
| 3656 | // int com.sun.security.provider.DigestBase.implCompressMultiBlock(byte[] b, int ofs, int limit) |
| 3657 | address generate_sha1_implCompress(bool multi_block, const char *name) { |
| 3658 | __ align(CodeEntryAlignment); |
| 3659 | StubCodeMark mark(this, "StubRoutines" , name); |
| 3660 | address start = __ pc(); |
| 3661 | |
| 3662 | Register buf = c_rarg0; |
| 3663 | Register state = c_rarg1; |
| 3664 | Register ofs = c_rarg2; |
| 3665 | Register limit = c_rarg3; |
| 3666 | |
| 3667 | const XMMRegister abcd = xmm0; |
| 3668 | const XMMRegister e0 = xmm1; |
| 3669 | const XMMRegister e1 = xmm2; |
| 3670 | const XMMRegister msg0 = xmm3; |
| 3671 | |
| 3672 | const XMMRegister msg1 = xmm4; |
| 3673 | const XMMRegister msg2 = xmm5; |
| 3674 | const XMMRegister msg3 = xmm6; |
| 3675 | const XMMRegister shuf_mask = xmm7; |
| 3676 | |
| 3677 | __ enter(); |
| 3678 | |
| 3679 | __ subptr(rsp, 4 * wordSize); |
| 3680 | |
| 3681 | __ fast_sha1(abcd, e0, e1, msg0, msg1, msg2, msg3, shuf_mask, |
| 3682 | buf, state, ofs, limit, rsp, multi_block); |
| 3683 | |
| 3684 | __ addptr(rsp, 4 * wordSize); |
| 3685 | |
| 3686 | __ leave(); |
| 3687 | __ ret(0); |
| 3688 | return start; |
| 3689 | } |
| 3690 | |
| 3691 | address generate_pshuffle_byte_flip_mask() { |
| 3692 | __ align(64); |
| 3693 | StubCodeMark mark(this, "StubRoutines" , "pshuffle_byte_flip_mask" ); |
| 3694 | address start = __ pc(); |
| 3695 | __ emit_data64(0x0405060700010203, relocInfo::none); |
| 3696 | __ emit_data64(0x0c0d0e0f08090a0b, relocInfo::none); |
| 3697 | |
| 3698 | if (VM_Version::supports_avx2()) { |
| 3699 | __ emit_data64(0x0405060700010203, relocInfo::none); // second copy |
| 3700 | __ emit_data64(0x0c0d0e0f08090a0b, relocInfo::none); |
| 3701 | // _SHUF_00BA |
| 3702 | __ emit_data64(0x0b0a090803020100, relocInfo::none); |
| 3703 | __ emit_data64(0xFFFFFFFFFFFFFFFF, relocInfo::none); |
| 3704 | __ emit_data64(0x0b0a090803020100, relocInfo::none); |
| 3705 | __ emit_data64(0xFFFFFFFFFFFFFFFF, relocInfo::none); |
| 3706 | // _SHUF_DC00 |
| 3707 | __ emit_data64(0xFFFFFFFFFFFFFFFF, relocInfo::none); |
| 3708 | __ emit_data64(0x0b0a090803020100, relocInfo::none); |
| 3709 | __ emit_data64(0xFFFFFFFFFFFFFFFF, relocInfo::none); |
| 3710 | __ emit_data64(0x0b0a090803020100, relocInfo::none); |
| 3711 | } |
| 3712 | |
| 3713 | return start; |
| 3714 | } |
| 3715 | |
| 3716 | //Mask for byte-swapping a couple of qwords in an XMM register using (v)pshufb. |
| 3717 | address generate_pshuffle_byte_flip_mask_sha512() { |
| 3718 | __ align(32); |
| 3719 | StubCodeMark mark(this, "StubRoutines" , "pshuffle_byte_flip_mask_sha512" ); |
| 3720 | address start = __ pc(); |
| 3721 | if (VM_Version::supports_avx2()) { |
| 3722 | __ emit_data64(0x0001020304050607, relocInfo::none); // PSHUFFLE_BYTE_FLIP_MASK |
| 3723 | __ emit_data64(0x08090a0b0c0d0e0f, relocInfo::none); |
| 3724 | __ emit_data64(0x1011121314151617, relocInfo::none); |
| 3725 | __ emit_data64(0x18191a1b1c1d1e1f, relocInfo::none); |
| 3726 | __ emit_data64(0x0000000000000000, relocInfo::none); //MASK_YMM_LO |
| 3727 | __ emit_data64(0x0000000000000000, relocInfo::none); |
| 3728 | __ emit_data64(0xFFFFFFFFFFFFFFFF, relocInfo::none); |
| 3729 | __ emit_data64(0xFFFFFFFFFFFFFFFF, relocInfo::none); |
| 3730 | } |
| 3731 | |
| 3732 | return start; |
| 3733 | } |
| 3734 | |
| 3735 | // ofs and limit are use for multi-block byte array. |
| 3736 | // int com.sun.security.provider.DigestBase.implCompressMultiBlock(byte[] b, int ofs, int limit) |
| 3737 | address generate_sha256_implCompress(bool multi_block, const char *name) { |
| 3738 | assert(VM_Version::supports_sha() || VM_Version::supports_avx2(), "" ); |
| 3739 | __ align(CodeEntryAlignment); |
| 3740 | StubCodeMark mark(this, "StubRoutines" , name); |
| 3741 | address start = __ pc(); |
| 3742 | |
| 3743 | Register buf = c_rarg0; |
| 3744 | Register state = c_rarg1; |
| 3745 | Register ofs = c_rarg2; |
| 3746 | Register limit = c_rarg3; |
| 3747 | |
| 3748 | const XMMRegister msg = xmm0; |
| 3749 | const XMMRegister state0 = xmm1; |
| 3750 | const XMMRegister state1 = xmm2; |
| 3751 | const XMMRegister msgtmp0 = xmm3; |
| 3752 | |
| 3753 | const XMMRegister msgtmp1 = xmm4; |
| 3754 | const XMMRegister msgtmp2 = xmm5; |
| 3755 | const XMMRegister msgtmp3 = xmm6; |
| 3756 | const XMMRegister msgtmp4 = xmm7; |
| 3757 | |
| 3758 | const XMMRegister shuf_mask = xmm8; |
| 3759 | |
| 3760 | __ enter(); |
| 3761 | |
| 3762 | __ subptr(rsp, 4 * wordSize); |
| 3763 | |
| 3764 | if (VM_Version::supports_sha()) { |
| 3765 | __ fast_sha256(msg, state0, state1, msgtmp0, msgtmp1, msgtmp2, msgtmp3, msgtmp4, |
| 3766 | buf, state, ofs, limit, rsp, multi_block, shuf_mask); |
| 3767 | } else if (VM_Version::supports_avx2()) { |
| 3768 | __ sha256_AVX2(msg, state0, state1, msgtmp0, msgtmp1, msgtmp2, msgtmp3, msgtmp4, |
| 3769 | buf, state, ofs, limit, rsp, multi_block, shuf_mask); |
| 3770 | } |
| 3771 | __ addptr(rsp, 4 * wordSize); |
| 3772 | __ vzeroupper(); |
| 3773 | __ leave(); |
| 3774 | __ ret(0); |
| 3775 | return start; |
| 3776 | } |
| 3777 | |
| 3778 | address generate_sha512_implCompress(bool multi_block, const char *name) { |
| 3779 | assert(VM_Version::supports_avx2(), "" ); |
| 3780 | assert(VM_Version::supports_bmi2(), "" ); |
| 3781 | __ align(CodeEntryAlignment); |
| 3782 | StubCodeMark mark(this, "StubRoutines" , name); |
| 3783 | address start = __ pc(); |
| 3784 | |
| 3785 | Register buf = c_rarg0; |
| 3786 | Register state = c_rarg1; |
| 3787 | Register ofs = c_rarg2; |
| 3788 | Register limit = c_rarg3; |
| 3789 | |
| 3790 | const XMMRegister msg = xmm0; |
| 3791 | const XMMRegister state0 = xmm1; |
| 3792 | const XMMRegister state1 = xmm2; |
| 3793 | const XMMRegister msgtmp0 = xmm3; |
| 3794 | const XMMRegister msgtmp1 = xmm4; |
| 3795 | const XMMRegister msgtmp2 = xmm5; |
| 3796 | const XMMRegister msgtmp3 = xmm6; |
| 3797 | const XMMRegister msgtmp4 = xmm7; |
| 3798 | |
| 3799 | const XMMRegister shuf_mask = xmm8; |
| 3800 | |
| 3801 | __ enter(); |
| 3802 | |
| 3803 | __ sha512_AVX2(msg, state0, state1, msgtmp0, msgtmp1, msgtmp2, msgtmp3, msgtmp4, |
| 3804 | buf, state, ofs, limit, rsp, multi_block, shuf_mask); |
| 3805 | |
| 3806 | __ vzeroupper(); |
| 3807 | __ leave(); |
| 3808 | __ ret(0); |
| 3809 | return start; |
| 3810 | } |
| 3811 | |
| 3812 | // This is a version of CTR/AES crypt which does 6 blocks in a loop at a time |
| 3813 | // to hide instruction latency |
| 3814 | // |
| 3815 | // Arguments: |
| 3816 | // |
| 3817 | // Inputs: |
| 3818 | // c_rarg0 - source byte array address |
| 3819 | // c_rarg1 - destination byte array address |
| 3820 | // c_rarg2 - K (key) in little endian int array |
| 3821 | // c_rarg3 - counter vector byte array address |
| 3822 | // Linux |
| 3823 | // c_rarg4 - input length |
| 3824 | // c_rarg5 - saved encryptedCounter start |
| 3825 | // rbp + 6 * wordSize - saved used length |
| 3826 | // Windows |
| 3827 | // rbp + 6 * wordSize - input length |
| 3828 | // rbp + 7 * wordSize - saved encryptedCounter start |
| 3829 | // rbp + 8 * wordSize - saved used length |
| 3830 | // |
| 3831 | // Output: |
| 3832 | // rax - input length |
| 3833 | // |
| 3834 | address generate_counterMode_AESCrypt_Parallel() { |
| 3835 | assert(UseAES, "need AES instructions and misaligned SSE support" ); |
| 3836 | __ align(CodeEntryAlignment); |
| 3837 | StubCodeMark mark(this, "StubRoutines" , "counterMode_AESCrypt" ); |
| 3838 | address start = __ pc(); |
| 3839 | const Register from = c_rarg0; // source array address |
| 3840 | const Register to = c_rarg1; // destination array address |
| 3841 | const Register key = c_rarg2; // key array address |
| 3842 | const Register counter = c_rarg3; // counter byte array initialized from counter array address |
| 3843 | // and updated with the incremented counter in the end |
| 3844 | #ifndef _WIN64 |
| 3845 | const Register len_reg = c_rarg4; |
| 3846 | const Register saved_encCounter_start = c_rarg5; |
| 3847 | const Register used_addr = r10; |
| 3848 | const Address used_mem(rbp, 2 * wordSize); |
| 3849 | const Register used = r11; |
| 3850 | #else |
| 3851 | const Address len_mem(rbp, 6 * wordSize); // length is on stack on Win64 |
| 3852 | const Address saved_encCounter_mem(rbp, 7 * wordSize); // length is on stack on Win64 |
| 3853 | const Address used_mem(rbp, 8 * wordSize); // length is on stack on Win64 |
| 3854 | const Register len_reg = r10; // pick the first volatile windows register |
| 3855 | const Register saved_encCounter_start = r11; |
| 3856 | const Register used_addr = r13; |
| 3857 | const Register used = r14; |
| 3858 | #endif |
| 3859 | const Register pos = rax; |
| 3860 | |
| 3861 | const int PARALLEL_FACTOR = 6; |
| 3862 | const XMMRegister xmm_counter_shuf_mask = xmm0; |
| 3863 | const XMMRegister xmm_key_shuf_mask = xmm1; // used temporarily to swap key bytes up front |
| 3864 | const XMMRegister xmm_curr_counter = xmm2; |
| 3865 | |
| 3866 | const XMMRegister xmm_key_tmp0 = xmm3; |
| 3867 | const XMMRegister xmm_key_tmp1 = xmm4; |
| 3868 | |
| 3869 | // registers holding the four results in the parallelized loop |
| 3870 | const XMMRegister xmm_result0 = xmm5; |
| 3871 | const XMMRegister xmm_result1 = xmm6; |
| 3872 | const XMMRegister xmm_result2 = xmm7; |
| 3873 | const XMMRegister xmm_result3 = xmm8; |
| 3874 | const XMMRegister xmm_result4 = xmm9; |
| 3875 | const XMMRegister xmm_result5 = xmm10; |
| 3876 | |
| 3877 | const XMMRegister xmm_from0 = xmm11; |
| 3878 | const XMMRegister xmm_from1 = xmm12; |
| 3879 | const XMMRegister xmm_from2 = xmm13; |
| 3880 | const XMMRegister xmm_from3 = xmm14; //the last one is xmm14. we have to preserve it on WIN64. |
| 3881 | const XMMRegister xmm_from4 = xmm3; //reuse xmm3~4. Because xmm_key_tmp0~1 are useless when loading input text |
| 3882 | const XMMRegister xmm_from5 = xmm4; |
| 3883 | |
| 3884 | //for key_128, key_192, key_256 |
| 3885 | const int rounds[3] = {10, 12, 14}; |
| 3886 | Label L_exit_preLoop, L_preLoop_start; |
| 3887 | Label L_multiBlock_loopTop[3]; |
| 3888 | Label L_singleBlockLoopTop[3]; |
| 3889 | Label L__incCounter[3][6]; //for 6 blocks |
| 3890 | Label L__incCounter_single[3]; //for single block, key128, key192, key256 |
| 3891 | Label L_processTail_insr[3], L_processTail_4_insr[3], L_processTail_2_insr[3], L_processTail_1_insr[3], L_processTail_exit_insr[3]; |
| 3892 | Label L_processTail_4_extr[3], L_processTail_2_extr[3], L_processTail_1_extr[3], L_processTail_exit_extr[3]; |
| 3893 | |
| 3894 | Label L_exit; |
| 3895 | |
| 3896 | __ enter(); // required for proper stackwalking of RuntimeStub frame |
| 3897 | |
| 3898 | #ifdef _WIN64 |
| 3899 | // allocate spill slots for r13, r14 |
| 3900 | enum { |
| 3901 | saved_r13_offset, |
| 3902 | saved_r14_offset |
| 3903 | }; |
| 3904 | __ subptr(rsp, 2 * wordSize); |
| 3905 | __ movptr(Address(rsp, saved_r13_offset * wordSize), r13); |
| 3906 | __ movptr(Address(rsp, saved_r14_offset * wordSize), r14); |
| 3907 | |
| 3908 | // on win64, fill len_reg from stack position |
| 3909 | __ movl(len_reg, len_mem); |
| 3910 | __ movptr(saved_encCounter_start, saved_encCounter_mem); |
| 3911 | __ movptr(used_addr, used_mem); |
| 3912 | __ movl(used, Address(used_addr, 0)); |
| 3913 | #else |
| 3914 | __ push(len_reg); // Save |
| 3915 | __ movptr(used_addr, used_mem); |
| 3916 | __ movl(used, Address(used_addr, 0)); |
| 3917 | #endif |
| 3918 | |
| 3919 | __ push(rbx); // Save RBX |
| 3920 | __ movdqu(xmm_curr_counter, Address(counter, 0x00)); // initialize counter with initial counter |
| 3921 | __ movdqu(xmm_counter_shuf_mask, ExternalAddress(StubRoutines::x86::counter_shuffle_mask_addr()), pos); // pos as scratch |
| 3922 | __ pshufb(xmm_curr_counter, xmm_counter_shuf_mask); //counter is shuffled |
| 3923 | __ movptr(pos, 0); |
| 3924 | |
| 3925 | // Use the partially used encrpyted counter from last invocation |
| 3926 | __ BIND(L_preLoop_start); |
| 3927 | __ cmpptr(used, 16); |
| 3928 | __ jcc(Assembler::aboveEqual, L_exit_preLoop); |
| 3929 | __ cmpptr(len_reg, 0); |
| 3930 | __ jcc(Assembler::lessEqual, L_exit_preLoop); |
| 3931 | __ movb(rbx, Address(saved_encCounter_start, used)); |
| 3932 | __ xorb(rbx, Address(from, pos)); |
| 3933 | __ movb(Address(to, pos), rbx); |
| 3934 | __ addptr(pos, 1); |
| 3935 | __ addptr(used, 1); |
| 3936 | __ subptr(len_reg, 1); |
| 3937 | |
| 3938 | __ jmp(L_preLoop_start); |
| 3939 | |
| 3940 | __ BIND(L_exit_preLoop); |
| 3941 | __ movl(Address(used_addr, 0), used); |
| 3942 | |
| 3943 | // key length could be only {11, 13, 15} * 4 = {44, 52, 60} |
| 3944 | __ movdqu(xmm_key_shuf_mask, ExternalAddress(StubRoutines::x86::key_shuffle_mask_addr()), rbx); // rbx as scratch |
| 3945 | __ movl(rbx, Address(key, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT))); |
| 3946 | __ cmpl(rbx, 52); |
| 3947 | __ jcc(Assembler::equal, L_multiBlock_loopTop[1]); |
| 3948 | __ cmpl(rbx, 60); |
| 3949 | __ jcc(Assembler::equal, L_multiBlock_loopTop[2]); |
| 3950 | |
| 3951 | #define CTR_DoSix(opc, src_reg) \ |
| 3952 | __ opc(xmm_result0, src_reg); \ |
| 3953 | __ opc(xmm_result1, src_reg); \ |
| 3954 | __ opc(xmm_result2, src_reg); \ |
| 3955 | __ opc(xmm_result3, src_reg); \ |
| 3956 | __ opc(xmm_result4, src_reg); \ |
| 3957 | __ opc(xmm_result5, src_reg); |
| 3958 | |
| 3959 | // k == 0 : generate code for key_128 |
| 3960 | // k == 1 : generate code for key_192 |
| 3961 | // k == 2 : generate code for key_256 |
| 3962 | for (int k = 0; k < 3; ++k) { |
| 3963 | //multi blocks starts here |
| 3964 | __ align(OptoLoopAlignment); |
| 3965 | __ BIND(L_multiBlock_loopTop[k]); |
| 3966 | __ cmpptr(len_reg, PARALLEL_FACTOR * AESBlockSize); // see if at least PARALLEL_FACTOR blocks left |
| 3967 | __ jcc(Assembler::less, L_singleBlockLoopTop[k]); |
| 3968 | load_key(xmm_key_tmp0, key, 0x00, xmm_key_shuf_mask); |
| 3969 | |
| 3970 | //load, then increase counters |
| 3971 | CTR_DoSix(movdqa, xmm_curr_counter); |
| 3972 | inc_counter(rbx, xmm_result1, 0x01, L__incCounter[k][0]); |
| 3973 | inc_counter(rbx, xmm_result2, 0x02, L__incCounter[k][1]); |
| 3974 | inc_counter(rbx, xmm_result3, 0x03, L__incCounter[k][2]); |
| 3975 | inc_counter(rbx, xmm_result4, 0x04, L__incCounter[k][3]); |
| 3976 | inc_counter(rbx, xmm_result5, 0x05, L__incCounter[k][4]); |
| 3977 | inc_counter(rbx, xmm_curr_counter, 0x06, L__incCounter[k][5]); |
| 3978 | CTR_DoSix(pshufb, xmm_counter_shuf_mask); // after increased, shuffled counters back for PXOR |
| 3979 | CTR_DoSix(pxor, xmm_key_tmp0); //PXOR with Round 0 key |
| 3980 | |
| 3981 | //load two ROUND_KEYs at a time |
| 3982 | for (int i = 1; i < rounds[k]; ) { |
| 3983 | load_key(xmm_key_tmp1, key, (0x10 * i), xmm_key_shuf_mask); |
| 3984 | load_key(xmm_key_tmp0, key, (0x10 * (i+1)), xmm_key_shuf_mask); |
| 3985 | CTR_DoSix(aesenc, xmm_key_tmp1); |
| 3986 | i++; |
| 3987 | if (i != rounds[k]) { |
| 3988 | CTR_DoSix(aesenc, xmm_key_tmp0); |
| 3989 | } else { |
| 3990 | CTR_DoSix(aesenclast, xmm_key_tmp0); |
| 3991 | } |
| 3992 | i++; |
| 3993 | } |
| 3994 | |
| 3995 | // get next PARALLEL_FACTOR blocks into xmm_result registers |
| 3996 | __ movdqu(xmm_from0, Address(from, pos, Address::times_1, 0 * AESBlockSize)); |
| 3997 | __ movdqu(xmm_from1, Address(from, pos, Address::times_1, 1 * AESBlockSize)); |
| 3998 | __ movdqu(xmm_from2, Address(from, pos, Address::times_1, 2 * AESBlockSize)); |
| 3999 | __ movdqu(xmm_from3, Address(from, pos, Address::times_1, 3 * AESBlockSize)); |
| 4000 | __ movdqu(xmm_from4, Address(from, pos, Address::times_1, 4 * AESBlockSize)); |
| 4001 | __ movdqu(xmm_from5, Address(from, pos, Address::times_1, 5 * AESBlockSize)); |
| 4002 | |
| 4003 | __ pxor(xmm_result0, xmm_from0); |
| 4004 | __ pxor(xmm_result1, xmm_from1); |
| 4005 | __ pxor(xmm_result2, xmm_from2); |
| 4006 | __ pxor(xmm_result3, xmm_from3); |
| 4007 | __ pxor(xmm_result4, xmm_from4); |
| 4008 | __ pxor(xmm_result5, xmm_from5); |
| 4009 | |
| 4010 | // store 6 results into the next 64 bytes of output |
| 4011 | __ movdqu(Address(to, pos, Address::times_1, 0 * AESBlockSize), xmm_result0); |
| 4012 | __ movdqu(Address(to, pos, Address::times_1, 1 * AESBlockSize), xmm_result1); |
| 4013 | __ movdqu(Address(to, pos, Address::times_1, 2 * AESBlockSize), xmm_result2); |
| 4014 | __ movdqu(Address(to, pos, Address::times_1, 3 * AESBlockSize), xmm_result3); |
| 4015 | __ movdqu(Address(to, pos, Address::times_1, 4 * AESBlockSize), xmm_result4); |
| 4016 | __ movdqu(Address(to, pos, Address::times_1, 5 * AESBlockSize), xmm_result5); |
| 4017 | |
| 4018 | __ addptr(pos, PARALLEL_FACTOR * AESBlockSize); // increase the length of crypt text |
| 4019 | __ subptr(len_reg, PARALLEL_FACTOR * AESBlockSize); // decrease the remaining length |
| 4020 | __ jmp(L_multiBlock_loopTop[k]); |
| 4021 | |
| 4022 | // singleBlock starts here |
| 4023 | __ align(OptoLoopAlignment); |
| 4024 | __ BIND(L_singleBlockLoopTop[k]); |
| 4025 | __ cmpptr(len_reg, 0); |
| 4026 | __ jcc(Assembler::lessEqual, L_exit); |
| 4027 | load_key(xmm_key_tmp0, key, 0x00, xmm_key_shuf_mask); |
| 4028 | __ movdqa(xmm_result0, xmm_curr_counter); |
| 4029 | inc_counter(rbx, xmm_curr_counter, 0x01, L__incCounter_single[k]); |
| 4030 | __ pshufb(xmm_result0, xmm_counter_shuf_mask); |
| 4031 | __ pxor(xmm_result0, xmm_key_tmp0); |
| 4032 | for (int i = 1; i < rounds[k]; i++) { |
| 4033 | load_key(xmm_key_tmp0, key, (0x10 * i), xmm_key_shuf_mask); |
| 4034 | __ aesenc(xmm_result0, xmm_key_tmp0); |
| 4035 | } |
| 4036 | load_key(xmm_key_tmp0, key, (rounds[k] * 0x10), xmm_key_shuf_mask); |
| 4037 | __ aesenclast(xmm_result0, xmm_key_tmp0); |
| 4038 | __ cmpptr(len_reg, AESBlockSize); |
| 4039 | __ jcc(Assembler::less, L_processTail_insr[k]); |
| 4040 | __ movdqu(xmm_from0, Address(from, pos, Address::times_1, 0 * AESBlockSize)); |
| 4041 | __ pxor(xmm_result0, xmm_from0); |
| 4042 | __ movdqu(Address(to, pos, Address::times_1, 0 * AESBlockSize), xmm_result0); |
| 4043 | __ addptr(pos, AESBlockSize); |
| 4044 | __ subptr(len_reg, AESBlockSize); |
| 4045 | __ jmp(L_singleBlockLoopTop[k]); |
| 4046 | __ BIND(L_processTail_insr[k]); // Process the tail part of the input array |
| 4047 | __ addptr(pos, len_reg); // 1. Insert bytes from src array into xmm_from0 register |
| 4048 | __ testptr(len_reg, 8); |
| 4049 | __ jcc(Assembler::zero, L_processTail_4_insr[k]); |
| 4050 | __ subptr(pos,8); |
| 4051 | __ pinsrq(xmm_from0, Address(from, pos), 0); |
| 4052 | __ BIND(L_processTail_4_insr[k]); |
| 4053 | __ testptr(len_reg, 4); |
| 4054 | __ jcc(Assembler::zero, L_processTail_2_insr[k]); |
| 4055 | __ subptr(pos,4); |
| 4056 | __ pslldq(xmm_from0, 4); |
| 4057 | __ pinsrd(xmm_from0, Address(from, pos), 0); |
| 4058 | __ BIND(L_processTail_2_insr[k]); |
| 4059 | __ testptr(len_reg, 2); |
| 4060 | __ jcc(Assembler::zero, L_processTail_1_insr[k]); |
| 4061 | __ subptr(pos, 2); |
| 4062 | __ pslldq(xmm_from0, 2); |
| 4063 | __ pinsrw(xmm_from0, Address(from, pos), 0); |
| 4064 | __ BIND(L_processTail_1_insr[k]); |
| 4065 | __ testptr(len_reg, 1); |
| 4066 | __ jcc(Assembler::zero, L_processTail_exit_insr[k]); |
| 4067 | __ subptr(pos, 1); |
| 4068 | __ pslldq(xmm_from0, 1); |
| 4069 | __ pinsrb(xmm_from0, Address(from, pos), 0); |
| 4070 | __ BIND(L_processTail_exit_insr[k]); |
| 4071 | |
| 4072 | __ movdqu(Address(saved_encCounter_start, 0), xmm_result0); // 2. Perform pxor of the encrypted counter and plaintext Bytes. |
| 4073 | __ pxor(xmm_result0, xmm_from0); // Also the encrypted counter is saved for next invocation. |
| 4074 | |
| 4075 | __ testptr(len_reg, 8); |
| 4076 | __ jcc(Assembler::zero, L_processTail_4_extr[k]); // 3. Extract bytes from xmm_result0 into the dest. array |
| 4077 | __ pextrq(Address(to, pos), xmm_result0, 0); |
| 4078 | __ psrldq(xmm_result0, 8); |
| 4079 | __ addptr(pos, 8); |
| 4080 | __ BIND(L_processTail_4_extr[k]); |
| 4081 | __ testptr(len_reg, 4); |
| 4082 | __ jcc(Assembler::zero, L_processTail_2_extr[k]); |
| 4083 | __ pextrd(Address(to, pos), xmm_result0, 0); |
| 4084 | __ psrldq(xmm_result0, 4); |
| 4085 | __ addptr(pos, 4); |
| 4086 | __ BIND(L_processTail_2_extr[k]); |
| 4087 | __ testptr(len_reg, 2); |
| 4088 | __ jcc(Assembler::zero, L_processTail_1_extr[k]); |
| 4089 | __ pextrw(Address(to, pos), xmm_result0, 0); |
| 4090 | __ psrldq(xmm_result0, 2); |
| 4091 | __ addptr(pos, 2); |
| 4092 | __ BIND(L_processTail_1_extr[k]); |
| 4093 | __ testptr(len_reg, 1); |
| 4094 | __ jcc(Assembler::zero, L_processTail_exit_extr[k]); |
| 4095 | __ pextrb(Address(to, pos), xmm_result0, 0); |
| 4096 | |
| 4097 | __ BIND(L_processTail_exit_extr[k]); |
| 4098 | __ movl(Address(used_addr, 0), len_reg); |
| 4099 | __ jmp(L_exit); |
| 4100 | |
| 4101 | } |
| 4102 | |
| 4103 | __ BIND(L_exit); |
| 4104 | __ pshufb(xmm_curr_counter, xmm_counter_shuf_mask); //counter is shuffled back. |
| 4105 | __ movdqu(Address(counter, 0), xmm_curr_counter); //save counter back |
| 4106 | __ pop(rbx); // pop the saved RBX. |
| 4107 | #ifdef _WIN64 |
| 4108 | __ movl(rax, len_mem); |
| 4109 | __ movptr(r13, Address(rsp, saved_r13_offset * wordSize)); |
| 4110 | __ movptr(r14, Address(rsp, saved_r14_offset * wordSize)); |
| 4111 | __ addptr(rsp, 2 * wordSize); |
| 4112 | #else |
| 4113 | __ pop(rax); // return 'len' |
| 4114 | #endif |
| 4115 | __ leave(); // required for proper stackwalking of RuntimeStub frame |
| 4116 | __ ret(0); |
| 4117 | return start; |
| 4118 | } |
| 4119 | |
| 4120 | void roundDec(XMMRegister xmm_reg) { |
| 4121 | __ vaesdec(xmm1, xmm1, xmm_reg, Assembler::AVX_512bit); |
| 4122 | __ vaesdec(xmm2, xmm2, xmm_reg, Assembler::AVX_512bit); |
| 4123 | __ vaesdec(xmm3, xmm3, xmm_reg, Assembler::AVX_512bit); |
| 4124 | __ vaesdec(xmm4, xmm4, xmm_reg, Assembler::AVX_512bit); |
| 4125 | __ vaesdec(xmm5, xmm5, xmm_reg, Assembler::AVX_512bit); |
| 4126 | __ vaesdec(xmm6, xmm6, xmm_reg, Assembler::AVX_512bit); |
| 4127 | __ vaesdec(xmm7, xmm7, xmm_reg, Assembler::AVX_512bit); |
| 4128 | __ vaesdec(xmm8, xmm8, xmm_reg, Assembler::AVX_512bit); |
| 4129 | } |
| 4130 | |
| 4131 | void roundDeclast(XMMRegister xmm_reg) { |
| 4132 | __ vaesdeclast(xmm1, xmm1, xmm_reg, Assembler::AVX_512bit); |
| 4133 | __ vaesdeclast(xmm2, xmm2, xmm_reg, Assembler::AVX_512bit); |
| 4134 | __ vaesdeclast(xmm3, xmm3, xmm_reg, Assembler::AVX_512bit); |
| 4135 | __ vaesdeclast(xmm4, xmm4, xmm_reg, Assembler::AVX_512bit); |
| 4136 | __ vaesdeclast(xmm5, xmm5, xmm_reg, Assembler::AVX_512bit); |
| 4137 | __ vaesdeclast(xmm6, xmm6, xmm_reg, Assembler::AVX_512bit); |
| 4138 | __ vaesdeclast(xmm7, xmm7, xmm_reg, Assembler::AVX_512bit); |
| 4139 | __ vaesdeclast(xmm8, xmm8, xmm_reg, Assembler::AVX_512bit); |
| 4140 | } |
| 4141 | |
| 4142 | void ev_load_key(XMMRegister xmmdst, Register key, int offset, XMMRegister xmm_shuf_mask = NULL) { |
| 4143 | __ movdqu(xmmdst, Address(key, offset)); |
| 4144 | if (xmm_shuf_mask != NULL) { |
| 4145 | __ pshufb(xmmdst, xmm_shuf_mask); |
| 4146 | } else { |
| 4147 | __ pshufb(xmmdst, ExternalAddress(StubRoutines::x86::key_shuffle_mask_addr())); |
| 4148 | } |
| 4149 | __ evshufi64x2(xmmdst, xmmdst, xmmdst, 0x0, Assembler::AVX_512bit); |
| 4150 | |
| 4151 | } |
| 4152 | |
| 4153 | address generate_cipherBlockChaining_decryptVectorAESCrypt() { |
| 4154 | assert(VM_Version::supports_vaes(), "need AES instructions and misaligned SSE support" ); |
| 4155 | __ align(CodeEntryAlignment); |
| 4156 | StubCodeMark mark(this, "StubRoutines" , "cipherBlockChaining_decryptAESCrypt" ); |
| 4157 | address start = __ pc(); |
| 4158 | |
| 4159 | const Register from = c_rarg0; // source array address |
| 4160 | const Register to = c_rarg1; // destination array address |
| 4161 | const Register key = c_rarg2; // key array address |
| 4162 | const Register rvec = c_rarg3; // r byte array initialized from initvector array address |
| 4163 | // and left with the results of the last encryption block |
| 4164 | #ifndef _WIN64 |
| 4165 | const Register len_reg = c_rarg4; // src len (must be multiple of blocksize 16) |
| 4166 | #else |
| 4167 | const Address len_mem(rbp, 6 * wordSize); // length is on stack on Win64 |
| 4168 | const Register len_reg = r11; // pick the volatile windows register |
| 4169 | #endif |
| 4170 | |
| 4171 | Label Loop, Loop1, L_128, L_256, L_192, KEY_192, KEY_256, Loop2, Lcbc_dec_rem_loop, |
| 4172 | Lcbc_dec_rem_last, Lcbc_dec_ret, Lcbc_dec_rem, Lcbc_exit; |
| 4173 | |
| 4174 | __ enter(); |
| 4175 | |
| 4176 | #ifdef _WIN64 |
| 4177 | // on win64, fill len_reg from stack position |
| 4178 | __ movl(len_reg, len_mem); |
| 4179 | #else |
| 4180 | __ push(len_reg); // Save |
| 4181 | #endif |
| 4182 | __ push(rbx); |
| 4183 | __ vzeroupper(); |
| 4184 | |
| 4185 | // Temporary variable declaration for swapping key bytes |
| 4186 | const XMMRegister xmm_key_shuf_mask = xmm1; |
| 4187 | __ movdqu(xmm_key_shuf_mask, ExternalAddress(StubRoutines::x86::key_shuffle_mask_addr())); |
| 4188 | |
| 4189 | // Calculate number of rounds from key size: 44 for 10-rounds, 52 for 12-rounds, 60 for 14-rounds |
| 4190 | const Register rounds = rbx; |
| 4191 | __ movl(rounds, Address(key, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT))); |
| 4192 | |
| 4193 | const XMMRegister IV = xmm0; |
| 4194 | // Load IV and broadcast value to 512-bits |
| 4195 | __ evbroadcasti64x2(IV, Address(rvec, 0), Assembler::AVX_512bit); |
| 4196 | |
| 4197 | // Temporary variables for storing round keys |
| 4198 | const XMMRegister RK0 = xmm30; |
| 4199 | const XMMRegister RK1 = xmm9; |
| 4200 | const XMMRegister RK2 = xmm18; |
| 4201 | const XMMRegister RK3 = xmm19; |
| 4202 | const XMMRegister RK4 = xmm20; |
| 4203 | const XMMRegister RK5 = xmm21; |
| 4204 | const XMMRegister RK6 = xmm22; |
| 4205 | const XMMRegister RK7 = xmm23; |
| 4206 | const XMMRegister RK8 = xmm24; |
| 4207 | const XMMRegister RK9 = xmm25; |
| 4208 | const XMMRegister RK10 = xmm26; |
| 4209 | |
| 4210 | // Load and shuffle key |
| 4211 | // the java expanded key ordering is rotated one position from what we want |
| 4212 | // so we start from 1*16 here and hit 0*16 last |
| 4213 | ev_load_key(RK1, key, 1 * 16, xmm_key_shuf_mask); |
| 4214 | ev_load_key(RK2, key, 2 * 16, xmm_key_shuf_mask); |
| 4215 | ev_load_key(RK3, key, 3 * 16, xmm_key_shuf_mask); |
| 4216 | ev_load_key(RK4, key, 4 * 16, xmm_key_shuf_mask); |
| 4217 | ev_load_key(RK5, key, 5 * 16, xmm_key_shuf_mask); |
| 4218 | ev_load_key(RK6, key, 6 * 16, xmm_key_shuf_mask); |
| 4219 | ev_load_key(RK7, key, 7 * 16, xmm_key_shuf_mask); |
| 4220 | ev_load_key(RK8, key, 8 * 16, xmm_key_shuf_mask); |
| 4221 | ev_load_key(RK9, key, 9 * 16, xmm_key_shuf_mask); |
| 4222 | ev_load_key(RK10, key, 10 * 16, xmm_key_shuf_mask); |
| 4223 | ev_load_key(RK0, key, 0*16, xmm_key_shuf_mask); |
| 4224 | |
| 4225 | // Variables for storing source cipher text |
| 4226 | const XMMRegister S0 = xmm10; |
| 4227 | const XMMRegister S1 = xmm11; |
| 4228 | const XMMRegister S2 = xmm12; |
| 4229 | const XMMRegister S3 = xmm13; |
| 4230 | const XMMRegister S4 = xmm14; |
| 4231 | const XMMRegister S5 = xmm15; |
| 4232 | const XMMRegister S6 = xmm16; |
| 4233 | const XMMRegister S7 = xmm17; |
| 4234 | |
| 4235 | // Variables for storing decrypted text |
| 4236 | const XMMRegister B0 = xmm1; |
| 4237 | const XMMRegister B1 = xmm2; |
| 4238 | const XMMRegister B2 = xmm3; |
| 4239 | const XMMRegister B3 = xmm4; |
| 4240 | const XMMRegister B4 = xmm5; |
| 4241 | const XMMRegister B5 = xmm6; |
| 4242 | const XMMRegister B6 = xmm7; |
| 4243 | const XMMRegister B7 = xmm8; |
| 4244 | |
| 4245 | __ cmpl(rounds, 44); |
| 4246 | __ jcc(Assembler::greater, KEY_192); |
| 4247 | __ jmp(Loop); |
| 4248 | |
| 4249 | __ BIND(KEY_192); |
| 4250 | const XMMRegister RK11 = xmm27; |
| 4251 | const XMMRegister RK12 = xmm28; |
| 4252 | ev_load_key(RK11, key, 11*16, xmm_key_shuf_mask); |
| 4253 | ev_load_key(RK12, key, 12*16, xmm_key_shuf_mask); |
| 4254 | |
| 4255 | __ cmpl(rounds, 52); |
| 4256 | __ jcc(Assembler::greater, KEY_256); |
| 4257 | __ jmp(Loop); |
| 4258 | |
| 4259 | __ BIND(KEY_256); |
| 4260 | const XMMRegister RK13 = xmm29; |
| 4261 | const XMMRegister RK14 = xmm31; |
| 4262 | ev_load_key(RK13, key, 13*16, xmm_key_shuf_mask); |
| 4263 | ev_load_key(RK14, key, 14*16, xmm_key_shuf_mask); |
| 4264 | |
| 4265 | __ BIND(Loop); |
| 4266 | __ cmpl(len_reg, 512); |
| 4267 | __ jcc(Assembler::below, Lcbc_dec_rem); |
| 4268 | __ BIND(Loop1); |
| 4269 | __ subl(len_reg, 512); |
| 4270 | __ evmovdquq(S0, Address(from, 0 * 64), Assembler::AVX_512bit); |
| 4271 | __ evmovdquq(S1, Address(from, 1 * 64), Assembler::AVX_512bit); |
| 4272 | __ evmovdquq(S2, Address(from, 2 * 64), Assembler::AVX_512bit); |
| 4273 | __ evmovdquq(S3, Address(from, 3 * 64), Assembler::AVX_512bit); |
| 4274 | __ evmovdquq(S4, Address(from, 4 * 64), Assembler::AVX_512bit); |
| 4275 | __ evmovdquq(S5, Address(from, 5 * 64), Assembler::AVX_512bit); |
| 4276 | __ evmovdquq(S6, Address(from, 6 * 64), Assembler::AVX_512bit); |
| 4277 | __ evmovdquq(S7, Address(from, 7 * 64), Assembler::AVX_512bit); |
| 4278 | __ leaq(from, Address(from, 8 * 64)); |
| 4279 | |
| 4280 | __ evpxorq(B0, S0, RK1, Assembler::AVX_512bit); |
| 4281 | __ evpxorq(B1, S1, RK1, Assembler::AVX_512bit); |
| 4282 | __ evpxorq(B2, S2, RK1, Assembler::AVX_512bit); |
| 4283 | __ evpxorq(B3, S3, RK1, Assembler::AVX_512bit); |
| 4284 | __ evpxorq(B4, S4, RK1, Assembler::AVX_512bit); |
| 4285 | __ evpxorq(B5, S5, RK1, Assembler::AVX_512bit); |
| 4286 | __ evpxorq(B6, S6, RK1, Assembler::AVX_512bit); |
| 4287 | __ evpxorq(B7, S7, RK1, Assembler::AVX_512bit); |
| 4288 | |
| 4289 | __ evalignq(IV, S0, IV, 0x06); |
| 4290 | __ evalignq(S0, S1, S0, 0x06); |
| 4291 | __ evalignq(S1, S2, S1, 0x06); |
| 4292 | __ evalignq(S2, S3, S2, 0x06); |
| 4293 | __ evalignq(S3, S4, S3, 0x06); |
| 4294 | __ evalignq(S4, S5, S4, 0x06); |
| 4295 | __ evalignq(S5, S6, S5, 0x06); |
| 4296 | __ evalignq(S6, S7, S6, 0x06); |
| 4297 | |
| 4298 | roundDec(RK2); |
| 4299 | roundDec(RK3); |
| 4300 | roundDec(RK4); |
| 4301 | roundDec(RK5); |
| 4302 | roundDec(RK6); |
| 4303 | roundDec(RK7); |
| 4304 | roundDec(RK8); |
| 4305 | roundDec(RK9); |
| 4306 | roundDec(RK10); |
| 4307 | |
| 4308 | __ cmpl(rounds, 44); |
| 4309 | __ jcc(Assembler::belowEqual, L_128); |
| 4310 | roundDec(RK11); |
| 4311 | roundDec(RK12); |
| 4312 | |
| 4313 | __ cmpl(rounds, 52); |
| 4314 | __ jcc(Assembler::belowEqual, L_192); |
| 4315 | roundDec(RK13); |
| 4316 | roundDec(RK14); |
| 4317 | |
| 4318 | __ BIND(L_256); |
| 4319 | roundDeclast(RK0); |
| 4320 | __ jmp(Loop2); |
| 4321 | |
| 4322 | __ BIND(L_128); |
| 4323 | roundDeclast(RK0); |
| 4324 | __ jmp(Loop2); |
| 4325 | |
| 4326 | __ BIND(L_192); |
| 4327 | roundDeclast(RK0); |
| 4328 | |
| 4329 | __ BIND(Loop2); |
| 4330 | __ evpxorq(B0, B0, IV, Assembler::AVX_512bit); |
| 4331 | __ evpxorq(B1, B1, S0, Assembler::AVX_512bit); |
| 4332 | __ evpxorq(B2, B2, S1, Assembler::AVX_512bit); |
| 4333 | __ evpxorq(B3, B3, S2, Assembler::AVX_512bit); |
| 4334 | __ evpxorq(B4, B4, S3, Assembler::AVX_512bit); |
| 4335 | __ evpxorq(B5, B5, S4, Assembler::AVX_512bit); |
| 4336 | __ evpxorq(B6, B6, S5, Assembler::AVX_512bit); |
| 4337 | __ evpxorq(B7, B7, S6, Assembler::AVX_512bit); |
| 4338 | __ evmovdquq(IV, S7, Assembler::AVX_512bit); |
| 4339 | |
| 4340 | __ evmovdquq(Address(to, 0 * 64), B0, Assembler::AVX_512bit); |
| 4341 | __ evmovdquq(Address(to, 1 * 64), B1, Assembler::AVX_512bit); |
| 4342 | __ evmovdquq(Address(to, 2 * 64), B2, Assembler::AVX_512bit); |
| 4343 | __ evmovdquq(Address(to, 3 * 64), B3, Assembler::AVX_512bit); |
| 4344 | __ evmovdquq(Address(to, 4 * 64), B4, Assembler::AVX_512bit); |
| 4345 | __ evmovdquq(Address(to, 5 * 64), B5, Assembler::AVX_512bit); |
| 4346 | __ evmovdquq(Address(to, 6 * 64), B6, Assembler::AVX_512bit); |
| 4347 | __ evmovdquq(Address(to, 7 * 64), B7, Assembler::AVX_512bit); |
| 4348 | __ leaq(to, Address(to, 8 * 64)); |
| 4349 | __ jmp(Loop); |
| 4350 | |
| 4351 | __ BIND(Lcbc_dec_rem); |
| 4352 | __ evshufi64x2(IV, IV, IV, 0x03, Assembler::AVX_512bit); |
| 4353 | |
| 4354 | __ BIND(Lcbc_dec_rem_loop); |
| 4355 | __ subl(len_reg, 16); |
| 4356 | __ jcc(Assembler::carrySet, Lcbc_dec_ret); |
| 4357 | |
| 4358 | __ movdqu(S0, Address(from, 0)); |
| 4359 | __ evpxorq(B0, S0, RK1, Assembler::AVX_512bit); |
| 4360 | __ vaesdec(B0, B0, RK2, Assembler::AVX_512bit); |
| 4361 | __ vaesdec(B0, B0, RK3, Assembler::AVX_512bit); |
| 4362 | __ vaesdec(B0, B0, RK4, Assembler::AVX_512bit); |
| 4363 | __ vaesdec(B0, B0, RK5, Assembler::AVX_512bit); |
| 4364 | __ vaesdec(B0, B0, RK6, Assembler::AVX_512bit); |
| 4365 | __ vaesdec(B0, B0, RK7, Assembler::AVX_512bit); |
| 4366 | __ vaesdec(B0, B0, RK8, Assembler::AVX_512bit); |
| 4367 | __ vaesdec(B0, B0, RK9, Assembler::AVX_512bit); |
| 4368 | __ vaesdec(B0, B0, RK10, Assembler::AVX_512bit); |
| 4369 | __ cmpl(rounds, 44); |
| 4370 | __ jcc(Assembler::belowEqual, Lcbc_dec_rem_last); |
| 4371 | |
| 4372 | __ vaesdec(B0, B0, RK11, Assembler::AVX_512bit); |
| 4373 | __ vaesdec(B0, B0, RK12, Assembler::AVX_512bit); |
| 4374 | __ cmpl(rounds, 52); |
| 4375 | __ jcc(Assembler::belowEqual, Lcbc_dec_rem_last); |
| 4376 | |
| 4377 | __ vaesdec(B0, B0, RK13, Assembler::AVX_512bit); |
| 4378 | __ vaesdec(B0, B0, RK14, Assembler::AVX_512bit); |
| 4379 | |
| 4380 | __ BIND(Lcbc_dec_rem_last); |
| 4381 | __ vaesdeclast(B0, B0, RK0, Assembler::AVX_512bit); |
| 4382 | |
| 4383 | __ evpxorq(B0, B0, IV, Assembler::AVX_512bit); |
| 4384 | __ evmovdquq(IV, S0, Assembler::AVX_512bit); |
| 4385 | __ movdqu(Address(to, 0), B0); |
| 4386 | __ leaq(from, Address(from, 16)); |
| 4387 | __ leaq(to, Address(to, 16)); |
| 4388 | __ jmp(Lcbc_dec_rem_loop); |
| 4389 | |
| 4390 | __ BIND(Lcbc_dec_ret); |
| 4391 | __ movdqu(Address(rvec, 0), IV); |
| 4392 | |
| 4393 | // Zero out the round keys |
| 4394 | __ evpxorq(RK0, RK0, RK0, Assembler::AVX_512bit); |
| 4395 | __ evpxorq(RK1, RK1, RK1, Assembler::AVX_512bit); |
| 4396 | __ evpxorq(RK2, RK2, RK2, Assembler::AVX_512bit); |
| 4397 | __ evpxorq(RK3, RK3, RK3, Assembler::AVX_512bit); |
| 4398 | __ evpxorq(RK4, RK4, RK4, Assembler::AVX_512bit); |
| 4399 | __ evpxorq(RK5, RK5, RK5, Assembler::AVX_512bit); |
| 4400 | __ evpxorq(RK6, RK6, RK6, Assembler::AVX_512bit); |
| 4401 | __ evpxorq(RK7, RK7, RK7, Assembler::AVX_512bit); |
| 4402 | __ evpxorq(RK8, RK8, RK8, Assembler::AVX_512bit); |
| 4403 | __ evpxorq(RK9, RK9, RK9, Assembler::AVX_512bit); |
| 4404 | __ evpxorq(RK10, RK10, RK10, Assembler::AVX_512bit); |
| 4405 | __ cmpl(rounds, 44); |
| 4406 | __ jcc(Assembler::belowEqual, Lcbc_exit); |
| 4407 | __ evpxorq(RK11, RK11, RK11, Assembler::AVX_512bit); |
| 4408 | __ evpxorq(RK12, RK12, RK12, Assembler::AVX_512bit); |
| 4409 | __ cmpl(rounds, 52); |
| 4410 | __ jcc(Assembler::belowEqual, Lcbc_exit); |
| 4411 | __ evpxorq(RK13, RK13, RK13, Assembler::AVX_512bit); |
| 4412 | __ evpxorq(RK14, RK14, RK14, Assembler::AVX_512bit); |
| 4413 | |
| 4414 | __ BIND(Lcbc_exit); |
| 4415 | __ pop(rbx); |
| 4416 | #ifdef _WIN64 |
| 4417 | __ movl(rax, len_mem); |
| 4418 | #else |
| 4419 | __ pop(rax); // return length |
| 4420 | #endif |
| 4421 | __ leave(); // required for proper stackwalking of RuntimeStub frame |
| 4422 | __ ret(0); |
| 4423 | return start; |
| 4424 | } |
| 4425 | |
| 4426 | // Polynomial x^128+x^127+x^126+x^121+1 |
| 4427 | address ghash_polynomial_addr() { |
| 4428 | __ align(CodeEntryAlignment); |
| 4429 | StubCodeMark mark(this, "StubRoutines" , "_ghash_poly_addr" ); |
| 4430 | address start = __ pc(); |
| 4431 | __ emit_data64(0x0000000000000001, relocInfo::none); |
| 4432 | __ emit_data64(0xc200000000000000, relocInfo::none); |
| 4433 | return start; |
| 4434 | } |
| 4435 | |
| 4436 | address ghash_shufflemask_addr() { |
| 4437 | __ align(CodeEntryAlignment); |
| 4438 | StubCodeMark mark(this, "StubRoutines" , "_ghash_shuffmask_addr" ); |
| 4439 | address start = __ pc(); |
| 4440 | __ emit_data64(0x0f0f0f0f0f0f0f0f, relocInfo::none); |
| 4441 | __ emit_data64(0x0f0f0f0f0f0f0f0f, relocInfo::none); |
| 4442 | return start; |
| 4443 | } |
| 4444 | |
| 4445 | // Ghash single and multi block operations using AVX instructions |
| 4446 | address generate_avx_ghash_processBlocks() { |
| 4447 | __ align(CodeEntryAlignment); |
| 4448 | |
| 4449 | StubCodeMark mark(this, "StubRoutines" , "ghash_processBlocks" ); |
| 4450 | address start = __ pc(); |
| 4451 | |
| 4452 | // arguments |
| 4453 | const Register state = c_rarg0; |
| 4454 | const Register htbl = c_rarg1; |
| 4455 | const Register data = c_rarg2; |
| 4456 | const Register blocks = c_rarg3; |
| 4457 | __ enter(); |
| 4458 | // Save state before entering routine |
| 4459 | __ avx_ghash(state, htbl, data, blocks); |
| 4460 | __ leave(); // required for proper stackwalking of RuntimeStub frame |
| 4461 | __ ret(0); |
| 4462 | return start; |
| 4463 | } |
| 4464 | |
| 4465 | // byte swap x86 long |
| 4466 | address generate_ghash_long_swap_mask() { |
| 4467 | __ align(CodeEntryAlignment); |
| 4468 | StubCodeMark mark(this, "StubRoutines" , "ghash_long_swap_mask" ); |
| 4469 | address start = __ pc(); |
| 4470 | __ emit_data64(0x0f0e0d0c0b0a0908, relocInfo::none ); |
| 4471 | __ emit_data64(0x0706050403020100, relocInfo::none ); |
| 4472 | return start; |
| 4473 | } |
| 4474 | |
| 4475 | // byte swap x86 byte array |
| 4476 | address generate_ghash_byte_swap_mask() { |
| 4477 | __ align(CodeEntryAlignment); |
| 4478 | StubCodeMark mark(this, "StubRoutines" , "ghash_byte_swap_mask" ); |
| 4479 | address start = __ pc(); |
| 4480 | __ emit_data64(0x08090a0b0c0d0e0f, relocInfo::none ); |
| 4481 | __ emit_data64(0x0001020304050607, relocInfo::none ); |
| 4482 | return start; |
| 4483 | } |
| 4484 | |
| 4485 | /* Single and multi-block ghash operations */ |
| 4486 | address generate_ghash_processBlocks() { |
| 4487 | __ align(CodeEntryAlignment); |
| 4488 | Label L_ghash_loop, L_exit; |
| 4489 | StubCodeMark mark(this, "StubRoutines" , "ghash_processBlocks" ); |
| 4490 | address start = __ pc(); |
| 4491 | |
| 4492 | const Register state = c_rarg0; |
| 4493 | const Register subkeyH = c_rarg1; |
| 4494 | const Register data = c_rarg2; |
| 4495 | const Register blocks = c_rarg3; |
| 4496 | |
| 4497 | const XMMRegister xmm_temp0 = xmm0; |
| 4498 | const XMMRegister xmm_temp1 = xmm1; |
| 4499 | const XMMRegister xmm_temp2 = xmm2; |
| 4500 | const XMMRegister xmm_temp3 = xmm3; |
| 4501 | const XMMRegister xmm_temp4 = xmm4; |
| 4502 | const XMMRegister xmm_temp5 = xmm5; |
| 4503 | const XMMRegister xmm_temp6 = xmm6; |
| 4504 | const XMMRegister xmm_temp7 = xmm7; |
| 4505 | const XMMRegister xmm_temp8 = xmm8; |
| 4506 | const XMMRegister xmm_temp9 = xmm9; |
| 4507 | const XMMRegister xmm_temp10 = xmm10; |
| 4508 | |
| 4509 | __ enter(); |
| 4510 | |
| 4511 | __ movdqu(xmm_temp10, ExternalAddress(StubRoutines::x86::ghash_long_swap_mask_addr())); |
| 4512 | |
| 4513 | __ movdqu(xmm_temp0, Address(state, 0)); |
| 4514 | __ pshufb(xmm_temp0, xmm_temp10); |
| 4515 | |
| 4516 | |
| 4517 | __ BIND(L_ghash_loop); |
| 4518 | __ movdqu(xmm_temp2, Address(data, 0)); |
| 4519 | __ pshufb(xmm_temp2, ExternalAddress(StubRoutines::x86::ghash_byte_swap_mask_addr())); |
| 4520 | |
| 4521 | __ movdqu(xmm_temp1, Address(subkeyH, 0)); |
| 4522 | __ pshufb(xmm_temp1, xmm_temp10); |
| 4523 | |
| 4524 | __ pxor(xmm_temp0, xmm_temp2); |
| 4525 | |
| 4526 | // |
| 4527 | // Multiply with the hash key |
| 4528 | // |
| 4529 | __ movdqu(xmm_temp3, xmm_temp0); |
| 4530 | __ pclmulqdq(xmm_temp3, xmm_temp1, 0); // xmm3 holds a0*b0 |
| 4531 | __ movdqu(xmm_temp4, xmm_temp0); |
| 4532 | __ pclmulqdq(xmm_temp4, xmm_temp1, 16); // xmm4 holds a0*b1 |
| 4533 | |
| 4534 | __ movdqu(xmm_temp5, xmm_temp0); |
| 4535 | __ pclmulqdq(xmm_temp5, xmm_temp1, 1); // xmm5 holds a1*b0 |
| 4536 | __ movdqu(xmm_temp6, xmm_temp0); |
| 4537 | __ pclmulqdq(xmm_temp6, xmm_temp1, 17); // xmm6 holds a1*b1 |
| 4538 | |
| 4539 | __ pxor(xmm_temp4, xmm_temp5); // xmm4 holds a0*b1 + a1*b0 |
| 4540 | |
| 4541 | __ movdqu(xmm_temp5, xmm_temp4); // move the contents of xmm4 to xmm5 |
| 4542 | __ psrldq(xmm_temp4, 8); // shift by xmm4 64 bits to the right |
| 4543 | __ pslldq(xmm_temp5, 8); // shift by xmm5 64 bits to the left |
| 4544 | __ pxor(xmm_temp3, xmm_temp5); |
| 4545 | __ pxor(xmm_temp6, xmm_temp4); // Register pair <xmm6:xmm3> holds the result |
| 4546 | // of the carry-less multiplication of |
| 4547 | // xmm0 by xmm1. |
| 4548 | |
| 4549 | // We shift the result of the multiplication by one bit position |
| 4550 | // to the left to cope for the fact that the bits are reversed. |
| 4551 | __ movdqu(xmm_temp7, xmm_temp3); |
| 4552 | __ movdqu(xmm_temp8, xmm_temp6); |
| 4553 | __ pslld(xmm_temp3, 1); |
| 4554 | __ pslld(xmm_temp6, 1); |
| 4555 | __ psrld(xmm_temp7, 31); |
| 4556 | __ psrld(xmm_temp8, 31); |
| 4557 | __ movdqu(xmm_temp9, xmm_temp7); |
| 4558 | __ pslldq(xmm_temp8, 4); |
| 4559 | __ pslldq(xmm_temp7, 4); |
| 4560 | __ psrldq(xmm_temp9, 12); |
| 4561 | __ por(xmm_temp3, xmm_temp7); |
| 4562 | __ por(xmm_temp6, xmm_temp8); |
| 4563 | __ por(xmm_temp6, xmm_temp9); |
| 4564 | |
| 4565 | // |
| 4566 | // First phase of the reduction |
| 4567 | // |
| 4568 | // Move xmm3 into xmm7, xmm8, xmm9 in order to perform the shifts |
| 4569 | // independently. |
| 4570 | __ movdqu(xmm_temp7, xmm_temp3); |
| 4571 | __ movdqu(xmm_temp8, xmm_temp3); |
| 4572 | __ movdqu(xmm_temp9, xmm_temp3); |
| 4573 | __ pslld(xmm_temp7, 31); // packed right shift shifting << 31 |
| 4574 | __ pslld(xmm_temp8, 30); // packed right shift shifting << 30 |
| 4575 | __ pslld(xmm_temp9, 25); // packed right shift shifting << 25 |
| 4576 | __ pxor(xmm_temp7, xmm_temp8); // xor the shifted versions |
| 4577 | __ pxor(xmm_temp7, xmm_temp9); |
| 4578 | __ movdqu(xmm_temp8, xmm_temp7); |
| 4579 | __ pslldq(xmm_temp7, 12); |
| 4580 | __ psrldq(xmm_temp8, 4); |
| 4581 | __ pxor(xmm_temp3, xmm_temp7); // first phase of the reduction complete |
| 4582 | |
| 4583 | // |
| 4584 | // Second phase of the reduction |
| 4585 | // |
| 4586 | // Make 3 copies of xmm3 in xmm2, xmm4, xmm5 for doing these |
| 4587 | // shift operations. |
| 4588 | __ movdqu(xmm_temp2, xmm_temp3); |
| 4589 | __ movdqu(xmm_temp4, xmm_temp3); |
| 4590 | __ movdqu(xmm_temp5, xmm_temp3); |
| 4591 | __ psrld(xmm_temp2, 1); // packed left shifting >> 1 |
| 4592 | __ psrld(xmm_temp4, 2); // packed left shifting >> 2 |
| 4593 | __ psrld(xmm_temp5, 7); // packed left shifting >> 7 |
| 4594 | __ pxor(xmm_temp2, xmm_temp4); // xor the shifted versions |
| 4595 | __ pxor(xmm_temp2, xmm_temp5); |
| 4596 | __ pxor(xmm_temp2, xmm_temp8); |
| 4597 | __ pxor(xmm_temp3, xmm_temp2); |
| 4598 | __ pxor(xmm_temp6, xmm_temp3); // the result is in xmm6 |
| 4599 | |
| 4600 | __ decrement(blocks); |
| 4601 | __ jcc(Assembler::zero, L_exit); |
| 4602 | __ movdqu(xmm_temp0, xmm_temp6); |
| 4603 | __ addptr(data, 16); |
| 4604 | __ jmp(L_ghash_loop); |
| 4605 | |
| 4606 | __ BIND(L_exit); |
| 4607 | __ pshufb(xmm_temp6, xmm_temp10); // Byte swap 16-byte result |
| 4608 | __ movdqu(Address(state, 0), xmm_temp6); // store the result |
| 4609 | __ leave(); |
| 4610 | __ ret(0); |
| 4611 | return start; |
| 4612 | } |
| 4613 | |
| 4614 | //base64 character set |
| 4615 | address base64_charset_addr() { |
| 4616 | __ align(CodeEntryAlignment); |
| 4617 | StubCodeMark mark(this, "StubRoutines" , "base64_charset" ); |
| 4618 | address start = __ pc(); |
| 4619 | __ emit_data64(0x0000004200000041, relocInfo::none); |
| 4620 | __ emit_data64(0x0000004400000043, relocInfo::none); |
| 4621 | __ emit_data64(0x0000004600000045, relocInfo::none); |
| 4622 | __ emit_data64(0x0000004800000047, relocInfo::none); |
| 4623 | __ emit_data64(0x0000004a00000049, relocInfo::none); |
| 4624 | __ emit_data64(0x0000004c0000004b, relocInfo::none); |
| 4625 | __ emit_data64(0x0000004e0000004d, relocInfo::none); |
| 4626 | __ emit_data64(0x000000500000004f, relocInfo::none); |
| 4627 | __ emit_data64(0x0000005200000051, relocInfo::none); |
| 4628 | __ emit_data64(0x0000005400000053, relocInfo::none); |
| 4629 | __ emit_data64(0x0000005600000055, relocInfo::none); |
| 4630 | __ emit_data64(0x0000005800000057, relocInfo::none); |
| 4631 | __ emit_data64(0x0000005a00000059, relocInfo::none); |
| 4632 | __ emit_data64(0x0000006200000061, relocInfo::none); |
| 4633 | __ emit_data64(0x0000006400000063, relocInfo::none); |
| 4634 | __ emit_data64(0x0000006600000065, relocInfo::none); |
| 4635 | __ emit_data64(0x0000006800000067, relocInfo::none); |
| 4636 | __ emit_data64(0x0000006a00000069, relocInfo::none); |
| 4637 | __ emit_data64(0x0000006c0000006b, relocInfo::none); |
| 4638 | __ emit_data64(0x0000006e0000006d, relocInfo::none); |
| 4639 | __ emit_data64(0x000000700000006f, relocInfo::none); |
| 4640 | __ emit_data64(0x0000007200000071, relocInfo::none); |
| 4641 | __ emit_data64(0x0000007400000073, relocInfo::none); |
| 4642 | __ emit_data64(0x0000007600000075, relocInfo::none); |
| 4643 | __ emit_data64(0x0000007800000077, relocInfo::none); |
| 4644 | __ emit_data64(0x0000007a00000079, relocInfo::none); |
| 4645 | __ emit_data64(0x0000003100000030, relocInfo::none); |
| 4646 | __ emit_data64(0x0000003300000032, relocInfo::none); |
| 4647 | __ emit_data64(0x0000003500000034, relocInfo::none); |
| 4648 | __ emit_data64(0x0000003700000036, relocInfo::none); |
| 4649 | __ emit_data64(0x0000003900000038, relocInfo::none); |
| 4650 | __ emit_data64(0x0000002f0000002b, relocInfo::none); |
| 4651 | return start; |
| 4652 | } |
| 4653 | |
| 4654 | //base64 url character set |
| 4655 | address base64url_charset_addr() { |
| 4656 | __ align(CodeEntryAlignment); |
| 4657 | StubCodeMark mark(this, "StubRoutines" , "base64url_charset" ); |
| 4658 | address start = __ pc(); |
| 4659 | __ emit_data64(0x0000004200000041, relocInfo::none); |
| 4660 | __ emit_data64(0x0000004400000043, relocInfo::none); |
| 4661 | __ emit_data64(0x0000004600000045, relocInfo::none); |
| 4662 | __ emit_data64(0x0000004800000047, relocInfo::none); |
| 4663 | __ emit_data64(0x0000004a00000049, relocInfo::none); |
| 4664 | __ emit_data64(0x0000004c0000004b, relocInfo::none); |
| 4665 | __ emit_data64(0x0000004e0000004d, relocInfo::none); |
| 4666 | __ emit_data64(0x000000500000004f, relocInfo::none); |
| 4667 | __ emit_data64(0x0000005200000051, relocInfo::none); |
| 4668 | __ emit_data64(0x0000005400000053, relocInfo::none); |
| 4669 | __ emit_data64(0x0000005600000055, relocInfo::none); |
| 4670 | __ emit_data64(0x0000005800000057, relocInfo::none); |
| 4671 | __ emit_data64(0x0000005a00000059, relocInfo::none); |
| 4672 | __ emit_data64(0x0000006200000061, relocInfo::none); |
| 4673 | __ emit_data64(0x0000006400000063, relocInfo::none); |
| 4674 | __ emit_data64(0x0000006600000065, relocInfo::none); |
| 4675 | __ emit_data64(0x0000006800000067, relocInfo::none); |
| 4676 | __ emit_data64(0x0000006a00000069, relocInfo::none); |
| 4677 | __ emit_data64(0x0000006c0000006b, relocInfo::none); |
| 4678 | __ emit_data64(0x0000006e0000006d, relocInfo::none); |
| 4679 | __ emit_data64(0x000000700000006f, relocInfo::none); |
| 4680 | __ emit_data64(0x0000007200000071, relocInfo::none); |
| 4681 | __ emit_data64(0x0000007400000073, relocInfo::none); |
| 4682 | __ emit_data64(0x0000007600000075, relocInfo::none); |
| 4683 | __ emit_data64(0x0000007800000077, relocInfo::none); |
| 4684 | __ emit_data64(0x0000007a00000079, relocInfo::none); |
| 4685 | __ emit_data64(0x0000003100000030, relocInfo::none); |
| 4686 | __ emit_data64(0x0000003300000032, relocInfo::none); |
| 4687 | __ emit_data64(0x0000003500000034, relocInfo::none); |
| 4688 | __ emit_data64(0x0000003700000036, relocInfo::none); |
| 4689 | __ emit_data64(0x0000003900000038, relocInfo::none); |
| 4690 | __ emit_data64(0x0000005f0000002d, relocInfo::none); |
| 4691 | |
| 4692 | return start; |
| 4693 | } |
| 4694 | |
| 4695 | address base64_bswap_mask_addr() { |
| 4696 | __ align(CodeEntryAlignment); |
| 4697 | StubCodeMark mark(this, "StubRoutines" , "bswap_mask_base64" ); |
| 4698 | address start = __ pc(); |
| 4699 | __ emit_data64(0x0504038002010080, relocInfo::none); |
| 4700 | __ emit_data64(0x0b0a098008070680, relocInfo::none); |
| 4701 | __ emit_data64(0x0908078006050480, relocInfo::none); |
| 4702 | __ emit_data64(0x0f0e0d800c0b0a80, relocInfo::none); |
| 4703 | __ emit_data64(0x0605048003020180, relocInfo::none); |
| 4704 | __ emit_data64(0x0c0b0a8009080780, relocInfo::none); |
| 4705 | __ emit_data64(0x0504038002010080, relocInfo::none); |
| 4706 | __ emit_data64(0x0b0a098008070680, relocInfo::none); |
| 4707 | |
| 4708 | return start; |
| 4709 | } |
| 4710 | |
| 4711 | address base64_right_shift_mask_addr() { |
| 4712 | __ align(CodeEntryAlignment); |
| 4713 | StubCodeMark mark(this, "StubRoutines" , "right_shift_mask" ); |
| 4714 | address start = __ pc(); |
| 4715 | __ emit_data64(0x0006000400020000, relocInfo::none); |
| 4716 | __ emit_data64(0x0006000400020000, relocInfo::none); |
| 4717 | __ emit_data64(0x0006000400020000, relocInfo::none); |
| 4718 | __ emit_data64(0x0006000400020000, relocInfo::none); |
| 4719 | __ emit_data64(0x0006000400020000, relocInfo::none); |
| 4720 | __ emit_data64(0x0006000400020000, relocInfo::none); |
| 4721 | __ emit_data64(0x0006000400020000, relocInfo::none); |
| 4722 | __ emit_data64(0x0006000400020000, relocInfo::none); |
| 4723 | |
| 4724 | return start; |
| 4725 | } |
| 4726 | |
| 4727 | address base64_left_shift_mask_addr() { |
| 4728 | __ align(CodeEntryAlignment); |
| 4729 | StubCodeMark mark(this, "StubRoutines" , "left_shift_mask" ); |
| 4730 | address start = __ pc(); |
| 4731 | __ emit_data64(0x0000000200040000, relocInfo::none); |
| 4732 | __ emit_data64(0x0000000200040000, relocInfo::none); |
| 4733 | __ emit_data64(0x0000000200040000, relocInfo::none); |
| 4734 | __ emit_data64(0x0000000200040000, relocInfo::none); |
| 4735 | __ emit_data64(0x0000000200040000, relocInfo::none); |
| 4736 | __ emit_data64(0x0000000200040000, relocInfo::none); |
| 4737 | __ emit_data64(0x0000000200040000, relocInfo::none); |
| 4738 | __ emit_data64(0x0000000200040000, relocInfo::none); |
| 4739 | |
| 4740 | return start; |
| 4741 | } |
| 4742 | |
| 4743 | address base64_and_mask_addr() { |
| 4744 | __ align(CodeEntryAlignment); |
| 4745 | StubCodeMark mark(this, "StubRoutines" , "and_mask" ); |
| 4746 | address start = __ pc(); |
| 4747 | __ emit_data64(0x3f003f003f000000, relocInfo::none); |
| 4748 | __ emit_data64(0x3f003f003f000000, relocInfo::none); |
| 4749 | __ emit_data64(0x3f003f003f000000, relocInfo::none); |
| 4750 | __ emit_data64(0x3f003f003f000000, relocInfo::none); |
| 4751 | __ emit_data64(0x3f003f003f000000, relocInfo::none); |
| 4752 | __ emit_data64(0x3f003f003f000000, relocInfo::none); |
| 4753 | __ emit_data64(0x3f003f003f000000, relocInfo::none); |
| 4754 | __ emit_data64(0x3f003f003f000000, relocInfo::none); |
| 4755 | return start; |
| 4756 | } |
| 4757 | |
| 4758 | address base64_gather_mask_addr() { |
| 4759 | __ align(CodeEntryAlignment); |
| 4760 | StubCodeMark mark(this, "StubRoutines" , "gather_mask" ); |
| 4761 | address start = __ pc(); |
| 4762 | __ emit_data64(0xffffffffffffffff, relocInfo::none); |
| 4763 | return start; |
| 4764 | } |
| 4765 | |
| 4766 | // Code for generating Base64 encoding. |
| 4767 | // Intrinsic function prototype in Base64.java: |
| 4768 | // private void encodeBlock(byte[] src, int sp, int sl, byte[] dst, int dp, boolean isURL) { |
| 4769 | address generate_base64_encodeBlock() { |
| 4770 | __ align(CodeEntryAlignment); |
| 4771 | StubCodeMark mark(this, "StubRoutines" , "implEncode" ); |
| 4772 | address start = __ pc(); |
| 4773 | __ enter(); |
| 4774 | |
| 4775 | // Save callee-saved registers before using them |
| 4776 | __ push(r12); |
| 4777 | __ push(r13); |
| 4778 | __ push(r14); |
| 4779 | __ push(r15); |
| 4780 | |
| 4781 | // arguments |
| 4782 | const Register source = c_rarg0; // Source Array |
| 4783 | const Register start_offset = c_rarg1; // start offset |
| 4784 | const Register end_offset = c_rarg2; // end offset |
| 4785 | const Register dest = c_rarg3; // destination array |
| 4786 | |
| 4787 | #ifndef _WIN64 |
| 4788 | const Register dp = c_rarg4; // Position for writing to dest array |
| 4789 | const Register isURL = c_rarg5;// Base64 or URL character set |
| 4790 | #else |
| 4791 | const Address dp_mem(rbp, 6 * wordSize); // length is on stack on Win64 |
| 4792 | const Address isURL_mem(rbp, 7 * wordSize); |
| 4793 | const Register isURL = r10; // pick the volatile windows register |
| 4794 | const Register dp = r12; |
| 4795 | __ movl(dp, dp_mem); |
| 4796 | __ movl(isURL, isURL_mem); |
| 4797 | #endif |
| 4798 | |
| 4799 | const Register length = r14; |
| 4800 | Label L_process80, L_process32, L_process3, L_exit, L_processdata; |
| 4801 | |
| 4802 | // calculate length from offsets |
| 4803 | __ movl(length, end_offset); |
| 4804 | __ subl(length, start_offset); |
| 4805 | __ cmpl(length, 0); |
| 4806 | __ jcc(Assembler::lessEqual, L_exit); |
| 4807 | |
| 4808 | __ lea(r11, ExternalAddress(StubRoutines::x86::base64_charset_addr())); |
| 4809 | // check if base64 charset(isURL=0) or base64 url charset(isURL=1) needs to be loaded |
| 4810 | __ cmpl(isURL, 0); |
| 4811 | __ jcc(Assembler::equal, L_processdata); |
| 4812 | __ lea(r11, ExternalAddress(StubRoutines::x86::base64url_charset_addr())); |
| 4813 | |
| 4814 | // load masks required for encoding data |
| 4815 | __ BIND(L_processdata); |
| 4816 | __ movdqu(xmm16, ExternalAddress(StubRoutines::x86::base64_gather_mask_addr())); |
| 4817 | // Set 64 bits of K register. |
| 4818 | __ evpcmpeqb(k3, xmm16, xmm16, Assembler::AVX_512bit); |
| 4819 | __ evmovdquq(xmm12, ExternalAddress(StubRoutines::x86::base64_bswap_mask_addr()), Assembler::AVX_256bit, r13); |
| 4820 | __ evmovdquq(xmm13, ExternalAddress(StubRoutines::x86::base64_right_shift_mask_addr()), Assembler::AVX_512bit, r13); |
| 4821 | __ evmovdquq(xmm14, ExternalAddress(StubRoutines::x86::base64_left_shift_mask_addr()), Assembler::AVX_512bit, r13); |
| 4822 | __ evmovdquq(xmm15, ExternalAddress(StubRoutines::x86::base64_and_mask_addr()), Assembler::AVX_512bit, r13); |
| 4823 | |
| 4824 | // Vector Base64 implementation, producing 96 bytes of encoded data |
| 4825 | __ BIND(L_process80); |
| 4826 | __ cmpl(length, 80); |
| 4827 | __ jcc(Assembler::below, L_process32); |
| 4828 | __ evmovdquq(xmm0, Address(source, start_offset, Address::times_1, 0), Assembler::AVX_256bit); |
| 4829 | __ evmovdquq(xmm1, Address(source, start_offset, Address::times_1, 24), Assembler::AVX_256bit); |
| 4830 | __ evmovdquq(xmm2, Address(source, start_offset, Address::times_1, 48), Assembler::AVX_256bit); |
| 4831 | |
| 4832 | //permute the input data in such a manner that we have continuity of the source |
| 4833 | __ vpermq(xmm3, xmm0, 148, Assembler::AVX_256bit); |
| 4834 | __ vpermq(xmm4, xmm1, 148, Assembler::AVX_256bit); |
| 4835 | __ vpermq(xmm5, xmm2, 148, Assembler::AVX_256bit); |
| 4836 | |
| 4837 | //shuffle input and group 3 bytes of data and to it add 0 as the 4th byte. |
| 4838 | //we can deal with 12 bytes at a time in a 128 bit register |
| 4839 | __ vpshufb(xmm3, xmm3, xmm12, Assembler::AVX_256bit); |
| 4840 | __ vpshufb(xmm4, xmm4, xmm12, Assembler::AVX_256bit); |
| 4841 | __ vpshufb(xmm5, xmm5, xmm12, Assembler::AVX_256bit); |
| 4842 | |
| 4843 | //convert byte to word. Each 128 bit register will have 6 bytes for processing |
| 4844 | __ vpmovzxbw(xmm3, xmm3, Assembler::AVX_512bit); |
| 4845 | __ vpmovzxbw(xmm4, xmm4, Assembler::AVX_512bit); |
| 4846 | __ vpmovzxbw(xmm5, xmm5, Assembler::AVX_512bit); |
| 4847 | |
| 4848 | // Extract bits in the following pattern 6, 4+2, 2+4, 6 to convert 3, 8 bit numbers to 4, 6 bit numbers |
| 4849 | __ evpsrlvw(xmm0, xmm3, xmm13, Assembler::AVX_512bit); |
| 4850 | __ evpsrlvw(xmm1, xmm4, xmm13, Assembler::AVX_512bit); |
| 4851 | __ evpsrlvw(xmm2, xmm5, xmm13, Assembler::AVX_512bit); |
| 4852 | |
| 4853 | __ evpsllvw(xmm3, xmm3, xmm14, Assembler::AVX_512bit); |
| 4854 | __ evpsllvw(xmm4, xmm4, xmm14, Assembler::AVX_512bit); |
| 4855 | __ evpsllvw(xmm5, xmm5, xmm14, Assembler::AVX_512bit); |
| 4856 | |
| 4857 | __ vpsrlq(xmm0, xmm0, 8, Assembler::AVX_512bit); |
| 4858 | __ vpsrlq(xmm1, xmm1, 8, Assembler::AVX_512bit); |
| 4859 | __ vpsrlq(xmm2, xmm2, 8, Assembler::AVX_512bit); |
| 4860 | |
| 4861 | __ vpsllq(xmm3, xmm3, 8, Assembler::AVX_512bit); |
| 4862 | __ vpsllq(xmm4, xmm4, 8, Assembler::AVX_512bit); |
| 4863 | __ vpsllq(xmm5, xmm5, 8, Assembler::AVX_512bit); |
| 4864 | |
| 4865 | __ vpandq(xmm3, xmm3, xmm15, Assembler::AVX_512bit); |
| 4866 | __ vpandq(xmm4, xmm4, xmm15, Assembler::AVX_512bit); |
| 4867 | __ vpandq(xmm5, xmm5, xmm15, Assembler::AVX_512bit); |
| 4868 | |
| 4869 | // Get the final 4*6 bits base64 encoding |
| 4870 | __ vporq(xmm3, xmm3, xmm0, Assembler::AVX_512bit); |
| 4871 | __ vporq(xmm4, xmm4, xmm1, Assembler::AVX_512bit); |
| 4872 | __ vporq(xmm5, xmm5, xmm2, Assembler::AVX_512bit); |
| 4873 | |
| 4874 | // Shift |
| 4875 | __ vpsrlq(xmm3, xmm3, 8, Assembler::AVX_512bit); |
| 4876 | __ vpsrlq(xmm4, xmm4, 8, Assembler::AVX_512bit); |
| 4877 | __ vpsrlq(xmm5, xmm5, 8, Assembler::AVX_512bit); |
| 4878 | |
| 4879 | // look up 6 bits in the base64 character set to fetch the encoding |
| 4880 | // we are converting word to dword as gather instructions need dword indices for looking up encoding |
| 4881 | __ vextracti64x4(xmm6, xmm3, 0); |
| 4882 | __ vpmovzxwd(xmm0, xmm6, Assembler::AVX_512bit); |
| 4883 | __ vextracti64x4(xmm6, xmm3, 1); |
| 4884 | __ vpmovzxwd(xmm1, xmm6, Assembler::AVX_512bit); |
| 4885 | |
| 4886 | __ vextracti64x4(xmm6, xmm4, 0); |
| 4887 | __ vpmovzxwd(xmm2, xmm6, Assembler::AVX_512bit); |
| 4888 | __ vextracti64x4(xmm6, xmm4, 1); |
| 4889 | __ vpmovzxwd(xmm3, xmm6, Assembler::AVX_512bit); |
| 4890 | |
| 4891 | __ vextracti64x4(xmm4, xmm5, 0); |
| 4892 | __ vpmovzxwd(xmm6, xmm4, Assembler::AVX_512bit); |
| 4893 | |
| 4894 | __ vextracti64x4(xmm4, xmm5, 1); |
| 4895 | __ vpmovzxwd(xmm7, xmm4, Assembler::AVX_512bit); |
| 4896 | |
| 4897 | __ kmovql(k2, k3); |
| 4898 | __ evpgatherdd(xmm4, k2, Address(r11, xmm0, Address::times_4, 0), Assembler::AVX_512bit); |
| 4899 | __ kmovql(k2, k3); |
| 4900 | __ evpgatherdd(xmm5, k2, Address(r11, xmm1, Address::times_4, 0), Assembler::AVX_512bit); |
| 4901 | __ kmovql(k2, k3); |
| 4902 | __ evpgatherdd(xmm8, k2, Address(r11, xmm2, Address::times_4, 0), Assembler::AVX_512bit); |
| 4903 | __ kmovql(k2, k3); |
| 4904 | __ evpgatherdd(xmm9, k2, Address(r11, xmm3, Address::times_4, 0), Assembler::AVX_512bit); |
| 4905 | __ kmovql(k2, k3); |
| 4906 | __ evpgatherdd(xmm10, k2, Address(r11, xmm6, Address::times_4, 0), Assembler::AVX_512bit); |
| 4907 | __ kmovql(k2, k3); |
| 4908 | __ evpgatherdd(xmm11, k2, Address(r11, xmm7, Address::times_4, 0), Assembler::AVX_512bit); |
| 4909 | |
| 4910 | //Down convert dword to byte. Final output is 16*6 = 96 bytes long |
| 4911 | __ evpmovdb(Address(dest, dp, Address::times_1, 0), xmm4, Assembler::AVX_512bit); |
| 4912 | __ evpmovdb(Address(dest, dp, Address::times_1, 16), xmm5, Assembler::AVX_512bit); |
| 4913 | __ evpmovdb(Address(dest, dp, Address::times_1, 32), xmm8, Assembler::AVX_512bit); |
| 4914 | __ evpmovdb(Address(dest, dp, Address::times_1, 48), xmm9, Assembler::AVX_512bit); |
| 4915 | __ evpmovdb(Address(dest, dp, Address::times_1, 64), xmm10, Assembler::AVX_512bit); |
| 4916 | __ evpmovdb(Address(dest, dp, Address::times_1, 80), xmm11, Assembler::AVX_512bit); |
| 4917 | |
| 4918 | __ addq(dest, 96); |
| 4919 | __ addq(source, 72); |
| 4920 | __ subq(length, 72); |
| 4921 | __ jmp(L_process80); |
| 4922 | |
| 4923 | // Vector Base64 implementation generating 32 bytes of encoded data |
| 4924 | __ BIND(L_process32); |
| 4925 | __ cmpl(length, 32); |
| 4926 | __ jcc(Assembler::below, L_process3); |
| 4927 | __ evmovdquq(xmm0, Address(source, start_offset), Assembler::AVX_256bit); |
| 4928 | __ vpermq(xmm0, xmm0, 148, Assembler::AVX_256bit); |
| 4929 | __ vpshufb(xmm6, xmm0, xmm12, Assembler::AVX_256bit); |
| 4930 | __ vpmovzxbw(xmm6, xmm6, Assembler::AVX_512bit); |
| 4931 | __ evpsrlvw(xmm2, xmm6, xmm13, Assembler::AVX_512bit); |
| 4932 | __ evpsllvw(xmm3, xmm6, xmm14, Assembler::AVX_512bit); |
| 4933 | |
| 4934 | __ vpsrlq(xmm2, xmm2, 8, Assembler::AVX_512bit); |
| 4935 | __ vpsllq(xmm3, xmm3, 8, Assembler::AVX_512bit); |
| 4936 | __ vpandq(xmm3, xmm3, xmm15, Assembler::AVX_512bit); |
| 4937 | __ vporq(xmm1, xmm2, xmm3, Assembler::AVX_512bit); |
| 4938 | __ vpsrlq(xmm1, xmm1, 8, Assembler::AVX_512bit); |
| 4939 | __ vextracti64x4(xmm9, xmm1, 0); |
| 4940 | __ vpmovzxwd(xmm6, xmm9, Assembler::AVX_512bit); |
| 4941 | __ vextracti64x4(xmm9, xmm1, 1); |
| 4942 | __ vpmovzxwd(xmm5, xmm9, Assembler::AVX_512bit); |
| 4943 | __ kmovql(k2, k3); |
| 4944 | __ evpgatherdd(xmm8, k2, Address(r11, xmm6, Address::times_4, 0), Assembler::AVX_512bit); |
| 4945 | __ kmovql(k2, k3); |
| 4946 | __ evpgatherdd(xmm10, k2, Address(r11, xmm5, Address::times_4, 0), Assembler::AVX_512bit); |
| 4947 | __ evpmovdb(Address(dest, dp, Address::times_1, 0), xmm8, Assembler::AVX_512bit); |
| 4948 | __ evpmovdb(Address(dest, dp, Address::times_1, 16), xmm10, Assembler::AVX_512bit); |
| 4949 | __ subq(length, 24); |
| 4950 | __ addq(dest, 32); |
| 4951 | __ addq(source, 24); |
| 4952 | __ jmp(L_process32); |
| 4953 | |
| 4954 | // Scalar data processing takes 3 bytes at a time and produces 4 bytes of encoded data |
| 4955 | /* This code corresponds to the scalar version of the following snippet in Base64.java |
| 4956 | ** int bits = (src[sp0++] & 0xff) << 16 |(src[sp0++] & 0xff) << 8 |(src[sp0++] & 0xff); |
| 4957 | ** dst[dp0++] = (byte)base64[(bits >> > 18) & 0x3f]; |
| 4958 | ** dst[dp0++] = (byte)base64[(bits >> > 12) & 0x3f]; |
| 4959 | ** dst[dp0++] = (byte)base64[(bits >> > 6) & 0x3f]; |
| 4960 | ** dst[dp0++] = (byte)base64[bits & 0x3f];*/ |
| 4961 | __ BIND(L_process3); |
| 4962 | __ cmpl(length, 3); |
| 4963 | __ jcc(Assembler::below, L_exit); |
| 4964 | // Read 1 byte at a time |
| 4965 | __ movzbl(rax, Address(source, start_offset)); |
| 4966 | __ shll(rax, 0x10); |
| 4967 | __ movl(r15, rax); |
| 4968 | __ movzbl(rax, Address(source, start_offset, Address::times_1, 1)); |
| 4969 | __ shll(rax, 0x8); |
| 4970 | __ movzwl(rax, rax); |
| 4971 | __ orl(r15, rax); |
| 4972 | __ movzbl(rax, Address(source, start_offset, Address::times_1, 2)); |
| 4973 | __ orl(rax, r15); |
| 4974 | // Save 3 bytes read in r15 |
| 4975 | __ movl(r15, rax); |
| 4976 | __ shrl(rax, 0x12); |
| 4977 | __ andl(rax, 0x3f); |
| 4978 | // rax contains the index, r11 contains base64 lookup table |
| 4979 | __ movb(rax, Address(r11, rax, Address::times_4)); |
| 4980 | // Write the encoded byte to destination |
| 4981 | __ movb(Address(dest, dp, Address::times_1, 0), rax); |
| 4982 | __ movl(rax, r15); |
| 4983 | __ shrl(rax, 0xc); |
| 4984 | __ andl(rax, 0x3f); |
| 4985 | __ movb(rax, Address(r11, rax, Address::times_4)); |
| 4986 | __ movb(Address(dest, dp, Address::times_1, 1), rax); |
| 4987 | __ movl(rax, r15); |
| 4988 | __ shrl(rax, 0x6); |
| 4989 | __ andl(rax, 0x3f); |
| 4990 | __ movb(rax, Address(r11, rax, Address::times_4)); |
| 4991 | __ movb(Address(dest, dp, Address::times_1, 2), rax); |
| 4992 | __ movl(rax, r15); |
| 4993 | __ andl(rax, 0x3f); |
| 4994 | __ movb(rax, Address(r11, rax, Address::times_4)); |
| 4995 | __ movb(Address(dest, dp, Address::times_1, 3), rax); |
| 4996 | __ subl(length, 3); |
| 4997 | __ addq(dest, 4); |
| 4998 | __ addq(source, 3); |
| 4999 | __ jmp(L_process3); |
| 5000 | __ BIND(L_exit); |
| 5001 | __ pop(r15); |
| 5002 | __ pop(r14); |
| 5003 | __ pop(r13); |
| 5004 | __ pop(r12); |
| 5005 | __ leave(); |
| 5006 | __ ret(0); |
| 5007 | return start; |
| 5008 | } |
| 5009 | |
| 5010 | /** |
| 5011 | * Arguments: |
| 5012 | * |
| 5013 | * Inputs: |
| 5014 | * c_rarg0 - int crc |
| 5015 | * c_rarg1 - byte* buf |
| 5016 | * c_rarg2 - int length |
| 5017 | * |
| 5018 | * Ouput: |
| 5019 | * rax - int crc result |
| 5020 | */ |
| 5021 | address generate_updateBytesCRC32() { |
| 5022 | assert(UseCRC32Intrinsics, "need AVX and CLMUL instructions" ); |
| 5023 | |
| 5024 | __ align(CodeEntryAlignment); |
| 5025 | StubCodeMark mark(this, "StubRoutines" , "updateBytesCRC32" ); |
| 5026 | |
| 5027 | address start = __ pc(); |
| 5028 | // Win64: rcx, rdx, r8, r9 (c_rarg0, c_rarg1, ...) |
| 5029 | // Unix: rdi, rsi, rdx, rcx, r8, r9 (c_rarg0, c_rarg1, ...) |
| 5030 | // rscratch1: r10 |
| 5031 | const Register crc = c_rarg0; // crc |
| 5032 | const Register buf = c_rarg1; // source java byte array address |
| 5033 | const Register len = c_rarg2; // length |
| 5034 | const Register table = c_rarg3; // crc_table address (reuse register) |
| 5035 | const Register tmp = r11; |
| 5036 | assert_different_registers(crc, buf, len, table, tmp, rax); |
| 5037 | |
| 5038 | BLOCK_COMMENT("Entry:" ); |
| 5039 | __ enter(); // required for proper stackwalking of RuntimeStub frame |
| 5040 | |
| 5041 | __ kernel_crc32(crc, buf, len, table, tmp); |
| 5042 | |
| 5043 | __ movl(rax, crc); |
| 5044 | __ vzeroupper(); |
| 5045 | __ leave(); // required for proper stackwalking of RuntimeStub frame |
| 5046 | __ ret(0); |
| 5047 | |
| 5048 | return start; |
| 5049 | } |
| 5050 | |
| 5051 | /** |
| 5052 | * Arguments: |
| 5053 | * |
| 5054 | * Inputs: |
| 5055 | * c_rarg0 - int crc |
| 5056 | * c_rarg1 - byte* buf |
| 5057 | * c_rarg2 - long length |
| 5058 | * c_rarg3 - table_start - optional (present only when doing a library_call, |
| 5059 | * not used by x86 algorithm) |
| 5060 | * |
| 5061 | * Ouput: |
| 5062 | * rax - int crc result |
| 5063 | */ |
| 5064 | address generate_updateBytesCRC32C(bool is_pclmulqdq_supported) { |
| 5065 | assert(UseCRC32CIntrinsics, "need SSE4_2" ); |
| 5066 | __ align(CodeEntryAlignment); |
| 5067 | StubCodeMark mark(this, "StubRoutines" , "updateBytesCRC32C" ); |
| 5068 | address start = __ pc(); |
| 5069 | //reg.arg int#0 int#1 int#2 int#3 int#4 int#5 float regs |
| 5070 | //Windows RCX RDX R8 R9 none none XMM0..XMM3 |
| 5071 | //Lin / Sol RDI RSI RDX RCX R8 R9 XMM0..XMM7 |
| 5072 | const Register crc = c_rarg0; // crc |
| 5073 | const Register buf = c_rarg1; // source java byte array address |
| 5074 | const Register len = c_rarg2; // length |
| 5075 | const Register a = rax; |
| 5076 | const Register j = r9; |
| 5077 | const Register k = r10; |
| 5078 | const Register l = r11; |
| 5079 | #ifdef _WIN64 |
| 5080 | const Register y = rdi; |
| 5081 | const Register z = rsi; |
| 5082 | #else |
| 5083 | const Register y = rcx; |
| 5084 | const Register z = r8; |
| 5085 | #endif |
| 5086 | assert_different_registers(crc, buf, len, a, j, k, l, y, z); |
| 5087 | |
| 5088 | BLOCK_COMMENT("Entry:" ); |
| 5089 | __ enter(); // required for proper stackwalking of RuntimeStub frame |
| 5090 | #ifdef _WIN64 |
| 5091 | __ push(y); |
| 5092 | __ push(z); |
| 5093 | #endif |
| 5094 | __ crc32c_ipl_alg2_alt2(crc, buf, len, |
| 5095 | a, j, k, |
| 5096 | l, y, z, |
| 5097 | c_farg0, c_farg1, c_farg2, |
| 5098 | is_pclmulqdq_supported); |
| 5099 | __ movl(rax, crc); |
| 5100 | #ifdef _WIN64 |
| 5101 | __ pop(z); |
| 5102 | __ pop(y); |
| 5103 | #endif |
| 5104 | __ vzeroupper(); |
| 5105 | __ leave(); // required for proper stackwalking of RuntimeStub frame |
| 5106 | __ ret(0); |
| 5107 | |
| 5108 | return start; |
| 5109 | } |
| 5110 | |
| 5111 | /** |
| 5112 | * Arguments: |
| 5113 | * |
| 5114 | * Input: |
| 5115 | * c_rarg0 - x address |
| 5116 | * c_rarg1 - x length |
| 5117 | * c_rarg2 - y address |
| 5118 | * c_rarg3 - y length |
| 5119 | * not Win64 |
| 5120 | * c_rarg4 - z address |
| 5121 | * c_rarg5 - z length |
| 5122 | * Win64 |
| 5123 | * rsp+40 - z address |
| 5124 | * rsp+48 - z length |
| 5125 | */ |
| 5126 | address generate_multiplyToLen() { |
| 5127 | __ align(CodeEntryAlignment); |
| 5128 | StubCodeMark mark(this, "StubRoutines" , "multiplyToLen" ); |
| 5129 | |
| 5130 | address start = __ pc(); |
| 5131 | // Win64: rcx, rdx, r8, r9 (c_rarg0, c_rarg1, ...) |
| 5132 | // Unix: rdi, rsi, rdx, rcx, r8, r9 (c_rarg0, c_rarg1, ...) |
| 5133 | const Register x = rdi; |
| 5134 | const Register xlen = rax; |
| 5135 | const Register y = rsi; |
| 5136 | const Register ylen = rcx; |
| 5137 | const Register z = r8; |
| 5138 | const Register zlen = r11; |
| 5139 | |
| 5140 | // Next registers will be saved on stack in multiply_to_len(). |
| 5141 | const Register tmp1 = r12; |
| 5142 | const Register tmp2 = r13; |
| 5143 | const Register tmp3 = r14; |
| 5144 | const Register tmp4 = r15; |
| 5145 | const Register tmp5 = rbx; |
| 5146 | |
| 5147 | BLOCK_COMMENT("Entry:" ); |
| 5148 | __ enter(); // required for proper stackwalking of RuntimeStub frame |
| 5149 | |
| 5150 | #ifndef _WIN64 |
| 5151 | __ movptr(zlen, r9); // Save r9 in r11 - zlen |
| 5152 | #endif |
| 5153 | setup_arg_regs(4); // x => rdi, xlen => rsi, y => rdx |
| 5154 | // ylen => rcx, z => r8, zlen => r11 |
| 5155 | // r9 and r10 may be used to save non-volatile registers |
| 5156 | #ifdef _WIN64 |
| 5157 | // last 2 arguments (#4, #5) are on stack on Win64 |
| 5158 | __ movptr(z, Address(rsp, 6 * wordSize)); |
| 5159 | __ movptr(zlen, Address(rsp, 7 * wordSize)); |
| 5160 | #endif |
| 5161 | |
| 5162 | __ movptr(xlen, rsi); |
| 5163 | __ movptr(y, rdx); |
| 5164 | __ multiply_to_len(x, xlen, y, ylen, z, zlen, tmp1, tmp2, tmp3, tmp4, tmp5); |
| 5165 | |
| 5166 | restore_arg_regs(); |
| 5167 | |
| 5168 | __ leave(); // required for proper stackwalking of RuntimeStub frame |
| 5169 | __ ret(0); |
| 5170 | |
| 5171 | return start; |
| 5172 | } |
| 5173 | |
| 5174 | /** |
| 5175 | * Arguments: |
| 5176 | * |
| 5177 | * Input: |
| 5178 | * c_rarg0 - obja address |
| 5179 | * c_rarg1 - objb address |
| 5180 | * c_rarg3 - length length |
| 5181 | * c_rarg4 - scale log2_array_indxscale |
| 5182 | * |
| 5183 | * Output: |
| 5184 | * rax - int >= mismatched index, < 0 bitwise complement of tail |
| 5185 | */ |
| 5186 | address generate_vectorizedMismatch() { |
| 5187 | __ align(CodeEntryAlignment); |
| 5188 | StubCodeMark mark(this, "StubRoutines" , "vectorizedMismatch" ); |
| 5189 | address start = __ pc(); |
| 5190 | |
| 5191 | BLOCK_COMMENT("Entry:" ); |
| 5192 | __ enter(); |
| 5193 | |
| 5194 | #ifdef _WIN64 // Win64: rcx, rdx, r8, r9 (c_rarg0, c_rarg1, ...) |
| 5195 | const Register scale = c_rarg0; //rcx, will exchange with r9 |
| 5196 | const Register objb = c_rarg1; //rdx |
| 5197 | const Register length = c_rarg2; //r8 |
| 5198 | const Register obja = c_rarg3; //r9 |
| 5199 | __ xchgq(obja, scale); //now obja and scale contains the correct contents |
| 5200 | |
| 5201 | const Register tmp1 = r10; |
| 5202 | const Register tmp2 = r11; |
| 5203 | #endif |
| 5204 | #ifndef _WIN64 // Unix: rdi, rsi, rdx, rcx, r8, r9 (c_rarg0, c_rarg1, ...) |
| 5205 | const Register obja = c_rarg0; //U:rdi |
| 5206 | const Register objb = c_rarg1; //U:rsi |
| 5207 | const Register length = c_rarg2; //U:rdx |
| 5208 | const Register scale = c_rarg3; //U:rcx |
| 5209 | const Register tmp1 = r8; |
| 5210 | const Register tmp2 = r9; |
| 5211 | #endif |
| 5212 | const Register result = rax; //return value |
| 5213 | const XMMRegister vec0 = xmm0; |
| 5214 | const XMMRegister vec1 = xmm1; |
| 5215 | const XMMRegister vec2 = xmm2; |
| 5216 | |
| 5217 | __ vectorized_mismatch(obja, objb, length, scale, result, tmp1, tmp2, vec0, vec1, vec2); |
| 5218 | |
| 5219 | __ vzeroupper(); |
| 5220 | __ leave(); |
| 5221 | __ ret(0); |
| 5222 | |
| 5223 | return start; |
| 5224 | } |
| 5225 | |
| 5226 | /** |
| 5227 | * Arguments: |
| 5228 | * |
| 5229 | // Input: |
| 5230 | // c_rarg0 - x address |
| 5231 | // c_rarg1 - x length |
| 5232 | // c_rarg2 - z address |
| 5233 | // c_rarg3 - z lenth |
| 5234 | * |
| 5235 | */ |
| 5236 | address generate_squareToLen() { |
| 5237 | |
| 5238 | __ align(CodeEntryAlignment); |
| 5239 | StubCodeMark mark(this, "StubRoutines" , "squareToLen" ); |
| 5240 | |
| 5241 | address start = __ pc(); |
| 5242 | // Win64: rcx, rdx, r8, r9 (c_rarg0, c_rarg1, ...) |
| 5243 | // Unix: rdi, rsi, rdx, rcx (c_rarg0, c_rarg1, ...) |
| 5244 | const Register x = rdi; |
| 5245 | const Register len = rsi; |
| 5246 | const Register z = r8; |
| 5247 | const Register zlen = rcx; |
| 5248 | |
| 5249 | const Register tmp1 = r12; |
| 5250 | const Register tmp2 = r13; |
| 5251 | const Register tmp3 = r14; |
| 5252 | const Register tmp4 = r15; |
| 5253 | const Register tmp5 = rbx; |
| 5254 | |
| 5255 | BLOCK_COMMENT("Entry:" ); |
| 5256 | __ enter(); // required for proper stackwalking of RuntimeStub frame |
| 5257 | |
| 5258 | setup_arg_regs(4); // x => rdi, len => rsi, z => rdx |
| 5259 | // zlen => rcx |
| 5260 | // r9 and r10 may be used to save non-volatile registers |
| 5261 | __ movptr(r8, rdx); |
| 5262 | __ square_to_len(x, len, z, zlen, tmp1, tmp2, tmp3, tmp4, tmp5, rdx, rax); |
| 5263 | |
| 5264 | restore_arg_regs(); |
| 5265 | |
| 5266 | __ leave(); // required for proper stackwalking of RuntimeStub frame |
| 5267 | __ ret(0); |
| 5268 | |
| 5269 | return start; |
| 5270 | } |
| 5271 | |
| 5272 | address generate_method_entry_barrier() { |
| 5273 | __ align(CodeEntryAlignment); |
| 5274 | StubCodeMark mark(this, "StubRoutines" , "nmethod_entry_barrier" ); |
| 5275 | |
| 5276 | Label deoptimize_label; |
| 5277 | |
| 5278 | address start = __ pc(); |
| 5279 | |
| 5280 | __ push(-1); // cookie, this is used for writing the new rsp when deoptimizing |
| 5281 | |
| 5282 | BLOCK_COMMENT("Entry:" ); |
| 5283 | __ enter(); // save rbp |
| 5284 | |
| 5285 | // save c_rarg0, because we want to use that value. |
| 5286 | // We could do without it but then we depend on the number of slots used by pusha |
| 5287 | __ push(c_rarg0); |
| 5288 | |
| 5289 | __ lea(c_rarg0, Address(rsp, wordSize * 3)); // 1 for cookie, 1 for rbp, 1 for c_rarg0 - this should be the return address |
| 5290 | |
| 5291 | __ pusha(); |
| 5292 | |
| 5293 | // The method may have floats as arguments, and we must spill them before calling |
| 5294 | // the VM runtime. |
| 5295 | assert(Argument::n_float_register_parameters_j == 8, "Assumption" ); |
| 5296 | const int xmm_size = wordSize * 2; |
| 5297 | const int xmm_spill_size = xmm_size * Argument::n_float_register_parameters_j; |
| 5298 | __ subptr(rsp, xmm_spill_size); |
| 5299 | __ movdqu(Address(rsp, xmm_size * 7), xmm7); |
| 5300 | __ movdqu(Address(rsp, xmm_size * 6), xmm6); |
| 5301 | __ movdqu(Address(rsp, xmm_size * 5), xmm5); |
| 5302 | __ movdqu(Address(rsp, xmm_size * 4), xmm4); |
| 5303 | __ movdqu(Address(rsp, xmm_size * 3), xmm3); |
| 5304 | __ movdqu(Address(rsp, xmm_size * 2), xmm2); |
| 5305 | __ movdqu(Address(rsp, xmm_size * 1), xmm1); |
| 5306 | __ movdqu(Address(rsp, xmm_size * 0), xmm0); |
| 5307 | |
| 5308 | __ call_VM_leaf(CAST_FROM_FN_PTR(address, static_cast<int (*)(address*)>(BarrierSetNMethod::nmethod_stub_entry_barrier)), 1); |
| 5309 | |
| 5310 | __ movdqu(xmm0, Address(rsp, xmm_size * 0)); |
| 5311 | __ movdqu(xmm1, Address(rsp, xmm_size * 1)); |
| 5312 | __ movdqu(xmm2, Address(rsp, xmm_size * 2)); |
| 5313 | __ movdqu(xmm3, Address(rsp, xmm_size * 3)); |
| 5314 | __ movdqu(xmm4, Address(rsp, xmm_size * 4)); |
| 5315 | __ movdqu(xmm5, Address(rsp, xmm_size * 5)); |
| 5316 | __ movdqu(xmm6, Address(rsp, xmm_size * 6)); |
| 5317 | __ movdqu(xmm7, Address(rsp, xmm_size * 7)); |
| 5318 | __ addptr(rsp, xmm_spill_size); |
| 5319 | |
| 5320 | __ cmpl(rax, 1); // 1 means deoptimize |
| 5321 | __ jcc(Assembler::equal, deoptimize_label); |
| 5322 | |
| 5323 | __ popa(); |
| 5324 | __ pop(c_rarg0); |
| 5325 | |
| 5326 | __ leave(); |
| 5327 | |
| 5328 | __ addptr(rsp, 1 * wordSize); // cookie |
| 5329 | __ ret(0); |
| 5330 | |
| 5331 | |
| 5332 | __ BIND(deoptimize_label); |
| 5333 | |
| 5334 | __ popa(); |
| 5335 | __ pop(c_rarg0); |
| 5336 | |
| 5337 | __ leave(); |
| 5338 | |
| 5339 | // this can be taken out, but is good for verification purposes. getting a SIGSEGV |
| 5340 | // here while still having a correct stack is valuable |
| 5341 | __ testptr(rsp, Address(rsp, 0)); |
| 5342 | |
| 5343 | __ movptr(rsp, Address(rsp, 0)); // new rsp was written in the barrier |
| 5344 | __ jmp(Address(rsp, -1 * wordSize)); // jmp target should be callers verified_entry_point |
| 5345 | |
| 5346 | return start; |
| 5347 | } |
| 5348 | |
| 5349 | /** |
| 5350 | * Arguments: |
| 5351 | * |
| 5352 | * Input: |
| 5353 | * c_rarg0 - out address |
| 5354 | * c_rarg1 - in address |
| 5355 | * c_rarg2 - offset |
| 5356 | * c_rarg3 - len |
| 5357 | * not Win64 |
| 5358 | * c_rarg4 - k |
| 5359 | * Win64 |
| 5360 | * rsp+40 - k |
| 5361 | */ |
| 5362 | address generate_mulAdd() { |
| 5363 | __ align(CodeEntryAlignment); |
| 5364 | StubCodeMark mark(this, "StubRoutines" , "mulAdd" ); |
| 5365 | |
| 5366 | address start = __ pc(); |
| 5367 | // Win64: rcx, rdx, r8, r9 (c_rarg0, c_rarg1, ...) |
| 5368 | // Unix: rdi, rsi, rdx, rcx, r8, r9 (c_rarg0, c_rarg1, ...) |
| 5369 | const Register out = rdi; |
| 5370 | const Register in = rsi; |
| 5371 | const Register offset = r11; |
| 5372 | const Register len = rcx; |
| 5373 | const Register k = r8; |
| 5374 | |
| 5375 | // Next registers will be saved on stack in mul_add(). |
| 5376 | const Register tmp1 = r12; |
| 5377 | const Register tmp2 = r13; |
| 5378 | const Register tmp3 = r14; |
| 5379 | const Register tmp4 = r15; |
| 5380 | const Register tmp5 = rbx; |
| 5381 | |
| 5382 | BLOCK_COMMENT("Entry:" ); |
| 5383 | __ enter(); // required for proper stackwalking of RuntimeStub frame |
| 5384 | |
| 5385 | setup_arg_regs(4); // out => rdi, in => rsi, offset => rdx |
| 5386 | // len => rcx, k => r8 |
| 5387 | // r9 and r10 may be used to save non-volatile registers |
| 5388 | #ifdef _WIN64 |
| 5389 | // last argument is on stack on Win64 |
| 5390 | __ movl(k, Address(rsp, 6 * wordSize)); |
| 5391 | #endif |
| 5392 | __ movptr(r11, rdx); // move offset in rdx to offset(r11) |
| 5393 | __ mul_add(out, in, offset, len, k, tmp1, tmp2, tmp3, tmp4, tmp5, rdx, rax); |
| 5394 | |
| 5395 | restore_arg_regs(); |
| 5396 | |
| 5397 | __ leave(); // required for proper stackwalking of RuntimeStub frame |
| 5398 | __ ret(0); |
| 5399 | |
| 5400 | return start; |
| 5401 | } |
| 5402 | |
| 5403 | address generate_libmExp() { |
| 5404 | StubCodeMark mark(this, "StubRoutines" , "libmExp" ); |
| 5405 | |
| 5406 | address start = __ pc(); |
| 5407 | |
| 5408 | const XMMRegister x0 = xmm0; |
| 5409 | const XMMRegister x1 = xmm1; |
| 5410 | const XMMRegister x2 = xmm2; |
| 5411 | const XMMRegister x3 = xmm3; |
| 5412 | |
| 5413 | const XMMRegister x4 = xmm4; |
| 5414 | const XMMRegister x5 = xmm5; |
| 5415 | const XMMRegister x6 = xmm6; |
| 5416 | const XMMRegister x7 = xmm7; |
| 5417 | |
| 5418 | const Register tmp = r11; |
| 5419 | |
| 5420 | BLOCK_COMMENT("Entry:" ); |
| 5421 | __ enter(); // required for proper stackwalking of RuntimeStub frame |
| 5422 | |
| 5423 | __ fast_exp(x0, x1, x2, x3, x4, x5, x6, x7, rax, rcx, rdx, tmp); |
| 5424 | |
| 5425 | __ leave(); // required for proper stackwalking of RuntimeStub frame |
| 5426 | __ ret(0); |
| 5427 | |
| 5428 | return start; |
| 5429 | |
| 5430 | } |
| 5431 | |
| 5432 | address generate_libmLog() { |
| 5433 | StubCodeMark mark(this, "StubRoutines" , "libmLog" ); |
| 5434 | |
| 5435 | address start = __ pc(); |
| 5436 | |
| 5437 | const XMMRegister x0 = xmm0; |
| 5438 | const XMMRegister x1 = xmm1; |
| 5439 | const XMMRegister x2 = xmm2; |
| 5440 | const XMMRegister x3 = xmm3; |
| 5441 | |
| 5442 | const XMMRegister x4 = xmm4; |
| 5443 | const XMMRegister x5 = xmm5; |
| 5444 | const XMMRegister x6 = xmm6; |
| 5445 | const XMMRegister x7 = xmm7; |
| 5446 | |
| 5447 | const Register tmp1 = r11; |
| 5448 | const Register tmp2 = r8; |
| 5449 | |
| 5450 | BLOCK_COMMENT("Entry:" ); |
| 5451 | __ enter(); // required for proper stackwalking of RuntimeStub frame |
| 5452 | |
| 5453 | __ fast_log(x0, x1, x2, x3, x4, x5, x6, x7, rax, rcx, rdx, tmp1, tmp2); |
| 5454 | |
| 5455 | __ leave(); // required for proper stackwalking of RuntimeStub frame |
| 5456 | __ ret(0); |
| 5457 | |
| 5458 | return start; |
| 5459 | |
| 5460 | } |
| 5461 | |
| 5462 | address generate_libmLog10() { |
| 5463 | StubCodeMark mark(this, "StubRoutines" , "libmLog10" ); |
| 5464 | |
| 5465 | address start = __ pc(); |
| 5466 | |
| 5467 | const XMMRegister x0 = xmm0; |
| 5468 | const XMMRegister x1 = xmm1; |
| 5469 | const XMMRegister x2 = xmm2; |
| 5470 | const XMMRegister x3 = xmm3; |
| 5471 | |
| 5472 | const XMMRegister x4 = xmm4; |
| 5473 | const XMMRegister x5 = xmm5; |
| 5474 | const XMMRegister x6 = xmm6; |
| 5475 | const XMMRegister x7 = xmm7; |
| 5476 | |
| 5477 | const Register tmp = r11; |
| 5478 | |
| 5479 | BLOCK_COMMENT("Entry:" ); |
| 5480 | __ enter(); // required for proper stackwalking of RuntimeStub frame |
| 5481 | |
| 5482 | __ fast_log10(x0, x1, x2, x3, x4, x5, x6, x7, rax, rcx, rdx, tmp); |
| 5483 | |
| 5484 | __ leave(); // required for proper stackwalking of RuntimeStub frame |
| 5485 | __ ret(0); |
| 5486 | |
| 5487 | return start; |
| 5488 | |
| 5489 | } |
| 5490 | |
| 5491 | address generate_libmPow() { |
| 5492 | StubCodeMark mark(this, "StubRoutines" , "libmPow" ); |
| 5493 | |
| 5494 | address start = __ pc(); |
| 5495 | |
| 5496 | const XMMRegister x0 = xmm0; |
| 5497 | const XMMRegister x1 = xmm1; |
| 5498 | const XMMRegister x2 = xmm2; |
| 5499 | const XMMRegister x3 = xmm3; |
| 5500 | |
| 5501 | const XMMRegister x4 = xmm4; |
| 5502 | const XMMRegister x5 = xmm5; |
| 5503 | const XMMRegister x6 = xmm6; |
| 5504 | const XMMRegister x7 = xmm7; |
| 5505 | |
| 5506 | const Register tmp1 = r8; |
| 5507 | const Register tmp2 = r9; |
| 5508 | const Register tmp3 = r10; |
| 5509 | const Register tmp4 = r11; |
| 5510 | |
| 5511 | BLOCK_COMMENT("Entry:" ); |
| 5512 | __ enter(); // required for proper stackwalking of RuntimeStub frame |
| 5513 | |
| 5514 | __ fast_pow(x0, x1, x2, x3, x4, x5, x6, x7, rax, rcx, rdx, tmp1, tmp2, tmp3, tmp4); |
| 5515 | |
| 5516 | __ leave(); // required for proper stackwalking of RuntimeStub frame |
| 5517 | __ ret(0); |
| 5518 | |
| 5519 | return start; |
| 5520 | |
| 5521 | } |
| 5522 | |
| 5523 | address generate_libmSin() { |
| 5524 | StubCodeMark mark(this, "StubRoutines" , "libmSin" ); |
| 5525 | |
| 5526 | address start = __ pc(); |
| 5527 | |
| 5528 | const XMMRegister x0 = xmm0; |
| 5529 | const XMMRegister x1 = xmm1; |
| 5530 | const XMMRegister x2 = xmm2; |
| 5531 | const XMMRegister x3 = xmm3; |
| 5532 | |
| 5533 | const XMMRegister x4 = xmm4; |
| 5534 | const XMMRegister x5 = xmm5; |
| 5535 | const XMMRegister x6 = xmm6; |
| 5536 | const XMMRegister x7 = xmm7; |
| 5537 | |
| 5538 | const Register tmp1 = r8; |
| 5539 | const Register tmp2 = r9; |
| 5540 | const Register tmp3 = r10; |
| 5541 | const Register tmp4 = r11; |
| 5542 | |
| 5543 | BLOCK_COMMENT("Entry:" ); |
| 5544 | __ enter(); // required for proper stackwalking of RuntimeStub frame |
| 5545 | |
| 5546 | #ifdef _WIN64 |
| 5547 | __ push(rsi); |
| 5548 | __ push(rdi); |
| 5549 | #endif |
| 5550 | __ fast_sin(x0, x1, x2, x3, x4, x5, x6, x7, rax, rbx, rcx, rdx, tmp1, tmp2, tmp3, tmp4); |
| 5551 | |
| 5552 | #ifdef _WIN64 |
| 5553 | __ pop(rdi); |
| 5554 | __ pop(rsi); |
| 5555 | #endif |
| 5556 | |
| 5557 | __ leave(); // required for proper stackwalking of RuntimeStub frame |
| 5558 | __ ret(0); |
| 5559 | |
| 5560 | return start; |
| 5561 | |
| 5562 | } |
| 5563 | |
| 5564 | address generate_libmCos() { |
| 5565 | StubCodeMark mark(this, "StubRoutines" , "libmCos" ); |
| 5566 | |
| 5567 | address start = __ pc(); |
| 5568 | |
| 5569 | const XMMRegister x0 = xmm0; |
| 5570 | const XMMRegister x1 = xmm1; |
| 5571 | const XMMRegister x2 = xmm2; |
| 5572 | const XMMRegister x3 = xmm3; |
| 5573 | |
| 5574 | const XMMRegister x4 = xmm4; |
| 5575 | const XMMRegister x5 = xmm5; |
| 5576 | const XMMRegister x6 = xmm6; |
| 5577 | const XMMRegister x7 = xmm7; |
| 5578 | |
| 5579 | const Register tmp1 = r8; |
| 5580 | const Register tmp2 = r9; |
| 5581 | const Register tmp3 = r10; |
| 5582 | const Register tmp4 = r11; |
| 5583 | |
| 5584 | BLOCK_COMMENT("Entry:" ); |
| 5585 | __ enter(); // required for proper stackwalking of RuntimeStub frame |
| 5586 | |
| 5587 | #ifdef _WIN64 |
| 5588 | __ push(rsi); |
| 5589 | __ push(rdi); |
| 5590 | #endif |
| 5591 | __ fast_cos(x0, x1, x2, x3, x4, x5, x6, x7, rax, rcx, rdx, tmp1, tmp2, tmp3, tmp4); |
| 5592 | |
| 5593 | #ifdef _WIN64 |
| 5594 | __ pop(rdi); |
| 5595 | __ pop(rsi); |
| 5596 | #endif |
| 5597 | |
| 5598 | __ leave(); // required for proper stackwalking of RuntimeStub frame |
| 5599 | __ ret(0); |
| 5600 | |
| 5601 | return start; |
| 5602 | |
| 5603 | } |
| 5604 | |
| 5605 | address generate_libmTan() { |
| 5606 | StubCodeMark mark(this, "StubRoutines" , "libmTan" ); |
| 5607 | |
| 5608 | address start = __ pc(); |
| 5609 | |
| 5610 | const XMMRegister x0 = xmm0; |
| 5611 | const XMMRegister x1 = xmm1; |
| 5612 | const XMMRegister x2 = xmm2; |
| 5613 | const XMMRegister x3 = xmm3; |
| 5614 | |
| 5615 | const XMMRegister x4 = xmm4; |
| 5616 | const XMMRegister x5 = xmm5; |
| 5617 | const XMMRegister x6 = xmm6; |
| 5618 | const XMMRegister x7 = xmm7; |
| 5619 | |
| 5620 | const Register tmp1 = r8; |
| 5621 | const Register tmp2 = r9; |
| 5622 | const Register tmp3 = r10; |
| 5623 | const Register tmp4 = r11; |
| 5624 | |
| 5625 | BLOCK_COMMENT("Entry:" ); |
| 5626 | __ enter(); // required for proper stackwalking of RuntimeStub frame |
| 5627 | |
| 5628 | #ifdef _WIN64 |
| 5629 | __ push(rsi); |
| 5630 | __ push(rdi); |
| 5631 | #endif |
| 5632 | __ fast_tan(x0, x1, x2, x3, x4, x5, x6, x7, rax, rcx, rdx, tmp1, tmp2, tmp3, tmp4); |
| 5633 | |
| 5634 | #ifdef _WIN64 |
| 5635 | __ pop(rdi); |
| 5636 | __ pop(rsi); |
| 5637 | #endif |
| 5638 | |
| 5639 | __ leave(); // required for proper stackwalking of RuntimeStub frame |
| 5640 | __ ret(0); |
| 5641 | |
| 5642 | return start; |
| 5643 | |
| 5644 | } |
| 5645 | |
| 5646 | #undef __ |
| 5647 | #define __ masm-> |
| 5648 | |
| 5649 | // Continuation point for throwing of implicit exceptions that are |
| 5650 | // not handled in the current activation. Fabricates an exception |
| 5651 | // oop and initiates normal exception dispatching in this |
| 5652 | // frame. Since we need to preserve callee-saved values (currently |
| 5653 | // only for C2, but done for C1 as well) we need a callee-saved oop |
| 5654 | // map and therefore have to make these stubs into RuntimeStubs |
| 5655 | // rather than BufferBlobs. If the compiler needs all registers to |
| 5656 | // be preserved between the fault point and the exception handler |
| 5657 | // then it must assume responsibility for that in |
| 5658 | // AbstractCompiler::continuation_for_implicit_null_exception or |
| 5659 | // continuation_for_implicit_division_by_zero_exception. All other |
| 5660 | // implicit exceptions (e.g., NullPointerException or |
| 5661 | // AbstractMethodError on entry) are either at call sites or |
| 5662 | // otherwise assume that stack unwinding will be initiated, so |
| 5663 | // caller saved registers were assumed volatile in the compiler. |
| 5664 | address generate_throw_exception(const char* name, |
| 5665 | address runtime_entry, |
| 5666 | Register arg1 = noreg, |
| 5667 | Register arg2 = noreg) { |
| 5668 | // Information about frame layout at time of blocking runtime call. |
| 5669 | // Note that we only have to preserve callee-saved registers since |
| 5670 | // the compilers are responsible for supplying a continuation point |
| 5671 | // if they expect all registers to be preserved. |
| 5672 | enum layout { |
| 5673 | rbp_off = frame::arg_reg_save_area_bytes/BytesPerInt, |
| 5674 | rbp_off2, |
| 5675 | return_off, |
| 5676 | return_off2, |
| 5677 | framesize // inclusive of return address |
| 5678 | }; |
| 5679 | |
| 5680 | int insts_size = 512; |
| 5681 | int locs_size = 64; |
| 5682 | |
| 5683 | CodeBuffer code(name, insts_size, locs_size); |
| 5684 | OopMapSet* oop_maps = new OopMapSet(); |
| 5685 | MacroAssembler* masm = new MacroAssembler(&code); |
| 5686 | |
| 5687 | address start = __ pc(); |
| 5688 | |
| 5689 | // This is an inlined and slightly modified version of call_VM |
| 5690 | // which has the ability to fetch the return PC out of |
| 5691 | // thread-local storage and also sets up last_Java_sp slightly |
| 5692 | // differently than the real call_VM |
| 5693 | |
| 5694 | __ enter(); // required for proper stackwalking of RuntimeStub frame |
| 5695 | |
| 5696 | assert(is_even(framesize/2), "sp not 16-byte aligned" ); |
| 5697 | |
| 5698 | // return address and rbp are already in place |
| 5699 | __ subptr(rsp, (framesize-4) << LogBytesPerInt); // prolog |
| 5700 | |
| 5701 | int frame_complete = __ pc() - start; |
| 5702 | |
| 5703 | // Set up last_Java_sp and last_Java_fp |
| 5704 | address the_pc = __ pc(); |
| 5705 | __ set_last_Java_frame(rsp, rbp, the_pc); |
| 5706 | __ andptr(rsp, -(StackAlignmentInBytes)); // Align stack |
| 5707 | |
| 5708 | // Call runtime |
| 5709 | if (arg1 != noreg) { |
| 5710 | assert(arg2 != c_rarg1, "clobbered" ); |
| 5711 | __ movptr(c_rarg1, arg1); |
| 5712 | } |
| 5713 | if (arg2 != noreg) { |
| 5714 | __ movptr(c_rarg2, arg2); |
| 5715 | } |
| 5716 | __ movptr(c_rarg0, r15_thread); |
| 5717 | BLOCK_COMMENT("call runtime_entry" ); |
| 5718 | __ call(RuntimeAddress(runtime_entry)); |
| 5719 | |
| 5720 | // Generate oop map |
| 5721 | OopMap* map = new OopMap(framesize, 0); |
| 5722 | |
| 5723 | oop_maps->add_gc_map(the_pc - start, map); |
| 5724 | |
| 5725 | __ reset_last_Java_frame(true); |
| 5726 | |
| 5727 | __ leave(); // required for proper stackwalking of RuntimeStub frame |
| 5728 | |
| 5729 | // check for pending exceptions |
| 5730 | #ifdef ASSERT |
| 5731 | Label L; |
| 5732 | __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), |
| 5733 | (int32_t) NULL_WORD); |
| 5734 | __ jcc(Assembler::notEqual, L); |
| 5735 | __ should_not_reach_here(); |
| 5736 | __ bind(L); |
| 5737 | #endif // ASSERT |
| 5738 | __ jump(RuntimeAddress(StubRoutines::forward_exception_entry())); |
| 5739 | |
| 5740 | |
| 5741 | // codeBlob framesize is in words (not VMRegImpl::slot_size) |
| 5742 | RuntimeStub* stub = |
| 5743 | RuntimeStub::new_runtime_stub(name, |
| 5744 | &code, |
| 5745 | frame_complete, |
| 5746 | (framesize >> (LogBytesPerWord - LogBytesPerInt)), |
| 5747 | oop_maps, false); |
| 5748 | return stub->entry_point(); |
| 5749 | } |
| 5750 | |
| 5751 | void create_control_words() { |
| 5752 | // Round to nearest, 53-bit mode, exceptions masked |
| 5753 | StubRoutines::_fpu_cntrl_wrd_std = 0x027F; |
| 5754 | // Round to zero, 53-bit mode, exception mased |
| 5755 | StubRoutines::_fpu_cntrl_wrd_trunc = 0x0D7F; |
| 5756 | // Round to nearest, 24-bit mode, exceptions masked |
| 5757 | StubRoutines::_fpu_cntrl_wrd_24 = 0x007F; |
| 5758 | // Round to nearest, 64-bit mode, exceptions masked |
| 5759 | StubRoutines::_mxcsr_std = 0x1F80; |
| 5760 | // Note: the following two constants are 80-bit values |
| 5761 | // layout is critical for correct loading by FPU. |
| 5762 | // Bias for strict fp multiply/divide |
| 5763 | StubRoutines::_fpu_subnormal_bias1[0]= 0x00000000; // 2^(-15360) == 0x03ff 8000 0000 0000 0000 |
| 5764 | StubRoutines::_fpu_subnormal_bias1[1]= 0x80000000; |
| 5765 | StubRoutines::_fpu_subnormal_bias1[2]= 0x03ff; |
| 5766 | // Un-Bias for strict fp multiply/divide |
| 5767 | StubRoutines::_fpu_subnormal_bias2[0]= 0x00000000; // 2^(+15360) == 0x7bff 8000 0000 0000 0000 |
| 5768 | StubRoutines::_fpu_subnormal_bias2[1]= 0x80000000; |
| 5769 | StubRoutines::_fpu_subnormal_bias2[2]= 0x7bff; |
| 5770 | } |
| 5771 | |
| 5772 | // Initialization |
| 5773 | void generate_initial() { |
| 5774 | // Generates all stubs and initializes the entry points |
| 5775 | |
| 5776 | // This platform-specific settings are needed by generate_call_stub() |
| 5777 | create_control_words(); |
| 5778 | |
| 5779 | // entry points that exist in all platforms Note: This is code |
| 5780 | // that could be shared among different platforms - however the |
| 5781 | // benefit seems to be smaller than the disadvantage of having a |
| 5782 | // much more complicated generator structure. See also comment in |
| 5783 | // stubRoutines.hpp. |
| 5784 | |
| 5785 | StubRoutines::_forward_exception_entry = generate_forward_exception(); |
| 5786 | |
| 5787 | StubRoutines::_call_stub_entry = |
| 5788 | generate_call_stub(StubRoutines::_call_stub_return_address); |
| 5789 | |
| 5790 | // is referenced by megamorphic call |
| 5791 | StubRoutines::_catch_exception_entry = generate_catch_exception(); |
| 5792 | |
| 5793 | // atomic calls |
| 5794 | StubRoutines::_atomic_xchg_entry = generate_atomic_xchg(); |
| 5795 | StubRoutines::_atomic_xchg_long_entry = generate_atomic_xchg_long(); |
| 5796 | StubRoutines::_atomic_cmpxchg_entry = generate_atomic_cmpxchg(); |
| 5797 | StubRoutines::_atomic_cmpxchg_byte_entry = generate_atomic_cmpxchg_byte(); |
| 5798 | StubRoutines::_atomic_cmpxchg_long_entry = generate_atomic_cmpxchg_long(); |
| 5799 | StubRoutines::_atomic_add_entry = generate_atomic_add(); |
| 5800 | StubRoutines::_atomic_add_long_entry = generate_atomic_add_long(); |
| 5801 | StubRoutines::_fence_entry = generate_orderaccess_fence(); |
| 5802 | |
| 5803 | // platform dependent |
| 5804 | StubRoutines::x86::_get_previous_fp_entry = generate_get_previous_fp(); |
| 5805 | StubRoutines::x86::_get_previous_sp_entry = generate_get_previous_sp(); |
| 5806 | |
| 5807 | StubRoutines::x86::_verify_mxcsr_entry = generate_verify_mxcsr(); |
| 5808 | |
| 5809 | // Build this early so it's available for the interpreter. |
| 5810 | StubRoutines::_throw_StackOverflowError_entry = |
| 5811 | generate_throw_exception("StackOverflowError throw_exception" , |
| 5812 | CAST_FROM_FN_PTR(address, |
| 5813 | SharedRuntime:: |
| 5814 | throw_StackOverflowError)); |
| 5815 | StubRoutines::_throw_delayed_StackOverflowError_entry = |
| 5816 | generate_throw_exception("delayed StackOverflowError throw_exception" , |
| 5817 | CAST_FROM_FN_PTR(address, |
| 5818 | SharedRuntime:: |
| 5819 | throw_delayed_StackOverflowError)); |
| 5820 | if (UseCRC32Intrinsics) { |
| 5821 | // set table address before stub generation which use it |
| 5822 | StubRoutines::_crc_table_adr = (address)StubRoutines::x86::_crc_table; |
| 5823 | StubRoutines::_updateBytesCRC32 = generate_updateBytesCRC32(); |
| 5824 | } |
| 5825 | |
| 5826 | if (UseCRC32CIntrinsics) { |
| 5827 | bool supports_clmul = VM_Version::supports_clmul(); |
| 5828 | StubRoutines::x86::generate_CRC32C_table(supports_clmul); |
| 5829 | StubRoutines::_crc32c_table_addr = (address)StubRoutines::x86::_crc32c_table; |
| 5830 | StubRoutines::_updateBytesCRC32C = generate_updateBytesCRC32C(supports_clmul); |
| 5831 | } |
| 5832 | if (VM_Version::supports_sse2() && UseLibmIntrinsic && InlineIntrinsics) { |
| 5833 | if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dsin) || |
| 5834 | vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dcos) || |
| 5835 | vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dtan)) { |
| 5836 | StubRoutines::x86::_ONEHALF_adr = (address)StubRoutines::x86::_ONEHALF; |
| 5837 | StubRoutines::x86::_P_2_adr = (address)StubRoutines::x86::_P_2; |
| 5838 | StubRoutines::x86::_SC_4_adr = (address)StubRoutines::x86::_SC_4; |
| 5839 | StubRoutines::x86::_Ctable_adr = (address)StubRoutines::x86::_Ctable; |
| 5840 | StubRoutines::x86::_SC_2_adr = (address)StubRoutines::x86::_SC_2; |
| 5841 | StubRoutines::x86::_SC_3_adr = (address)StubRoutines::x86::_SC_3; |
| 5842 | StubRoutines::x86::_SC_1_adr = (address)StubRoutines::x86::_SC_1; |
| 5843 | StubRoutines::x86::_PI_INV_TABLE_adr = (address)StubRoutines::x86::_PI_INV_TABLE; |
| 5844 | StubRoutines::x86::_PI_4_adr = (address)StubRoutines::x86::_PI_4; |
| 5845 | StubRoutines::x86::_PI32INV_adr = (address)StubRoutines::x86::_PI32INV; |
| 5846 | StubRoutines::x86::_SIGN_MASK_adr = (address)StubRoutines::x86::_SIGN_MASK; |
| 5847 | StubRoutines::x86::_P_1_adr = (address)StubRoutines::x86::_P_1; |
| 5848 | StubRoutines::x86::_P_3_adr = (address)StubRoutines::x86::_P_3; |
| 5849 | StubRoutines::x86::_NEG_ZERO_adr = (address)StubRoutines::x86::_NEG_ZERO; |
| 5850 | } |
| 5851 | if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dexp)) { |
| 5852 | StubRoutines::_dexp = generate_libmExp(); |
| 5853 | } |
| 5854 | if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dlog)) { |
| 5855 | StubRoutines::_dlog = generate_libmLog(); |
| 5856 | } |
| 5857 | if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dlog10)) { |
| 5858 | StubRoutines::_dlog10 = generate_libmLog10(); |
| 5859 | } |
| 5860 | if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dpow)) { |
| 5861 | StubRoutines::_dpow = generate_libmPow(); |
| 5862 | } |
| 5863 | if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dsin)) { |
| 5864 | StubRoutines::_dsin = generate_libmSin(); |
| 5865 | } |
| 5866 | if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dcos)) { |
| 5867 | StubRoutines::_dcos = generate_libmCos(); |
| 5868 | } |
| 5869 | if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dtan)) { |
| 5870 | StubRoutines::_dtan = generate_libmTan(); |
| 5871 | } |
| 5872 | } |
| 5873 | } |
| 5874 | |
| 5875 | void generate_all() { |
| 5876 | // Generates all stubs and initializes the entry points |
| 5877 | |
| 5878 | // These entry points require SharedInfo::stack0 to be set up in |
| 5879 | // non-core builds and need to be relocatable, so they each |
| 5880 | // fabricate a RuntimeStub internally. |
| 5881 | StubRoutines::_throw_AbstractMethodError_entry = |
| 5882 | generate_throw_exception("AbstractMethodError throw_exception" , |
| 5883 | CAST_FROM_FN_PTR(address, |
| 5884 | SharedRuntime:: |
| 5885 | throw_AbstractMethodError)); |
| 5886 | |
| 5887 | StubRoutines::_throw_IncompatibleClassChangeError_entry = |
| 5888 | generate_throw_exception("IncompatibleClassChangeError throw_exception" , |
| 5889 | CAST_FROM_FN_PTR(address, |
| 5890 | SharedRuntime:: |
| 5891 | throw_IncompatibleClassChangeError)); |
| 5892 | |
| 5893 | StubRoutines::_throw_NullPointerException_at_call_entry = |
| 5894 | generate_throw_exception("NullPointerException at call throw_exception" , |
| 5895 | CAST_FROM_FN_PTR(address, |
| 5896 | SharedRuntime:: |
| 5897 | throw_NullPointerException_at_call)); |
| 5898 | |
| 5899 | // entry points that are platform specific |
| 5900 | StubRoutines::x86::_f2i_fixup = generate_f2i_fixup(); |
| 5901 | StubRoutines::x86::_f2l_fixup = generate_f2l_fixup(); |
| 5902 | StubRoutines::x86::_d2i_fixup = generate_d2i_fixup(); |
| 5903 | StubRoutines::x86::_d2l_fixup = generate_d2l_fixup(); |
| 5904 | |
| 5905 | StubRoutines::x86::_float_sign_mask = generate_fp_mask("float_sign_mask" , 0x7FFFFFFF7FFFFFFF); |
| 5906 | StubRoutines::x86::_float_sign_flip = generate_fp_mask("float_sign_flip" , 0x8000000080000000); |
| 5907 | StubRoutines::x86::_double_sign_mask = generate_fp_mask("double_sign_mask" , 0x7FFFFFFFFFFFFFFF); |
| 5908 | StubRoutines::x86::_double_sign_flip = generate_fp_mask("double_sign_flip" , 0x8000000000000000); |
| 5909 | StubRoutines::x86::_vector_float_sign_mask = generate_vector_mask("vector_float_sign_mask" , 0x7FFFFFFF7FFFFFFF); |
| 5910 | StubRoutines::x86::_vector_float_sign_flip = generate_vector_mask("vector_float_sign_flip" , 0x8000000080000000); |
| 5911 | StubRoutines::x86::_vector_double_sign_mask = generate_vector_mask("vector_double_sign_mask" , 0x7FFFFFFFFFFFFFFF); |
| 5912 | StubRoutines::x86::_vector_double_sign_flip = generate_vector_mask("vector_double_sign_flip" , 0x8000000000000000); |
| 5913 | StubRoutines::x86::_vector_short_to_byte_mask = generate_vector_mask("vector_short_to_byte_mask" , 0x00ff00ff00ff00ff); |
| 5914 | StubRoutines::x86::_vector_byte_perm_mask = generate_vector_byte_perm_mask("vector_byte_perm_mask" ); |
| 5915 | StubRoutines::x86::_vector_long_sign_mask = generate_vector_mask("vector_long_sign_mask" , 0x8000000000000000); |
| 5916 | |
| 5917 | // support for verify_oop (must happen after universe_init) |
| 5918 | StubRoutines::_verify_oop_subroutine_entry = generate_verify_oop(); |
| 5919 | |
| 5920 | // arraycopy stubs used by compilers |
| 5921 | generate_arraycopy_stubs(); |
| 5922 | |
| 5923 | // don't bother generating these AES intrinsic stubs unless global flag is set |
| 5924 | if (UseAESIntrinsics) { |
| 5925 | StubRoutines::x86::_key_shuffle_mask_addr = generate_key_shuffle_mask(); // needed by the others |
| 5926 | StubRoutines::_aescrypt_encryptBlock = generate_aescrypt_encryptBlock(); |
| 5927 | StubRoutines::_aescrypt_decryptBlock = generate_aescrypt_decryptBlock(); |
| 5928 | StubRoutines::_cipherBlockChaining_encryptAESCrypt = generate_cipherBlockChaining_encryptAESCrypt(); |
| 5929 | if (VM_Version::supports_vaes() && VM_Version::supports_avx512vl() && VM_Version::supports_avx512dq() ) { |
| 5930 | StubRoutines::_cipherBlockChaining_decryptAESCrypt = generate_cipherBlockChaining_decryptVectorAESCrypt(); |
| 5931 | } else { |
| 5932 | StubRoutines::_cipherBlockChaining_decryptAESCrypt = generate_cipherBlockChaining_decryptAESCrypt_Parallel(); |
| 5933 | } |
| 5934 | } |
| 5935 | if (UseAESCTRIntrinsics){ |
| 5936 | StubRoutines::x86::_counter_shuffle_mask_addr = generate_counter_shuffle_mask(); |
| 5937 | StubRoutines::_counterMode_AESCrypt = generate_counterMode_AESCrypt_Parallel(); |
| 5938 | } |
| 5939 | |
| 5940 | if (UseSHA1Intrinsics) { |
| 5941 | StubRoutines::x86::_upper_word_mask_addr = generate_upper_word_mask(); |
| 5942 | StubRoutines::x86::_shuffle_byte_flip_mask_addr = generate_shuffle_byte_flip_mask(); |
| 5943 | StubRoutines::_sha1_implCompress = generate_sha1_implCompress(false, "sha1_implCompress" ); |
| 5944 | StubRoutines::_sha1_implCompressMB = generate_sha1_implCompress(true, "sha1_implCompressMB" ); |
| 5945 | } |
| 5946 | if (UseSHA256Intrinsics) { |
| 5947 | StubRoutines::x86::_k256_adr = (address)StubRoutines::x86::_k256; |
| 5948 | char* dst = (char*)StubRoutines::x86::_k256_W; |
| 5949 | char* src = (char*)StubRoutines::x86::_k256; |
| 5950 | for (int ii = 0; ii < 16; ++ii) { |
| 5951 | memcpy(dst + 32 * ii, src + 16 * ii, 16); |
| 5952 | memcpy(dst + 32 * ii + 16, src + 16 * ii, 16); |
| 5953 | } |
| 5954 | StubRoutines::x86::_k256_W_adr = (address)StubRoutines::x86::_k256_W; |
| 5955 | StubRoutines::x86::_pshuffle_byte_flip_mask_addr = generate_pshuffle_byte_flip_mask(); |
| 5956 | StubRoutines::_sha256_implCompress = generate_sha256_implCompress(false, "sha256_implCompress" ); |
| 5957 | StubRoutines::_sha256_implCompressMB = generate_sha256_implCompress(true, "sha256_implCompressMB" ); |
| 5958 | } |
| 5959 | if (UseSHA512Intrinsics) { |
| 5960 | StubRoutines::x86::_k512_W_addr = (address)StubRoutines::x86::_k512_W; |
| 5961 | StubRoutines::x86::_pshuffle_byte_flip_mask_addr_sha512 = generate_pshuffle_byte_flip_mask_sha512(); |
| 5962 | StubRoutines::_sha512_implCompress = generate_sha512_implCompress(false, "sha512_implCompress" ); |
| 5963 | StubRoutines::_sha512_implCompressMB = generate_sha512_implCompress(true, "sha512_implCompressMB" ); |
| 5964 | } |
| 5965 | |
| 5966 | // Generate GHASH intrinsics code |
| 5967 | if (UseGHASHIntrinsics) { |
| 5968 | StubRoutines::x86::_ghash_long_swap_mask_addr = generate_ghash_long_swap_mask(); |
| 5969 | StubRoutines::x86::_ghash_byte_swap_mask_addr = generate_ghash_byte_swap_mask(); |
| 5970 | if (VM_Version::supports_avx()) { |
| 5971 | StubRoutines::x86::_ghash_shuffmask_addr = ghash_shufflemask_addr(); |
| 5972 | StubRoutines::x86::_ghash_poly_addr = ghash_polynomial_addr(); |
| 5973 | StubRoutines::_ghash_processBlocks = generate_avx_ghash_processBlocks(); |
| 5974 | } else { |
| 5975 | StubRoutines::_ghash_processBlocks = generate_ghash_processBlocks(); |
| 5976 | } |
| 5977 | } |
| 5978 | |
| 5979 | if (UseBASE64Intrinsics) { |
| 5980 | StubRoutines::x86::_and_mask = base64_and_mask_addr(); |
| 5981 | StubRoutines::x86::_bswap_mask = base64_bswap_mask_addr(); |
| 5982 | StubRoutines::x86::_base64_charset = base64_charset_addr(); |
| 5983 | StubRoutines::x86::_url_charset = base64url_charset_addr(); |
| 5984 | StubRoutines::x86::_gather_mask = base64_gather_mask_addr(); |
| 5985 | StubRoutines::x86::_left_shift_mask = base64_left_shift_mask_addr(); |
| 5986 | StubRoutines::x86::_right_shift_mask = base64_right_shift_mask_addr(); |
| 5987 | StubRoutines::_base64_encodeBlock = generate_base64_encodeBlock(); |
| 5988 | } |
| 5989 | |
| 5990 | // Safefetch stubs. |
| 5991 | generate_safefetch("SafeFetch32" , sizeof(int), &StubRoutines::_safefetch32_entry, |
| 5992 | &StubRoutines::_safefetch32_fault_pc, |
| 5993 | &StubRoutines::_safefetch32_continuation_pc); |
| 5994 | generate_safefetch("SafeFetchN" , sizeof(intptr_t), &StubRoutines::_safefetchN_entry, |
| 5995 | &StubRoutines::_safefetchN_fault_pc, |
| 5996 | &StubRoutines::_safefetchN_continuation_pc); |
| 5997 | |
| 5998 | BarrierSetNMethod* bs_nm = BarrierSet::barrier_set()->barrier_set_nmethod(); |
| 5999 | if (bs_nm != NULL) { |
| 6000 | StubRoutines::x86::_method_entry_barrier = generate_method_entry_barrier(); |
| 6001 | } |
| 6002 | #ifdef COMPILER2 |
| 6003 | if (UseMultiplyToLenIntrinsic) { |
| 6004 | StubRoutines::_multiplyToLen = generate_multiplyToLen(); |
| 6005 | } |
| 6006 | if (UseSquareToLenIntrinsic) { |
| 6007 | StubRoutines::_squareToLen = generate_squareToLen(); |
| 6008 | } |
| 6009 | if (UseMulAddIntrinsic) { |
| 6010 | StubRoutines::_mulAdd = generate_mulAdd(); |
| 6011 | } |
| 6012 | #ifndef _WINDOWS |
| 6013 | if (UseMontgomeryMultiplyIntrinsic) { |
| 6014 | StubRoutines::_montgomeryMultiply |
| 6015 | = CAST_FROM_FN_PTR(address, SharedRuntime::montgomery_multiply); |
| 6016 | } |
| 6017 | if (UseMontgomerySquareIntrinsic) { |
| 6018 | StubRoutines::_montgomerySquare |
| 6019 | = CAST_FROM_FN_PTR(address, SharedRuntime::montgomery_square); |
| 6020 | } |
| 6021 | #endif // WINDOWS |
| 6022 | #endif // COMPILER2 |
| 6023 | |
| 6024 | if (UseVectorizedMismatchIntrinsic) { |
| 6025 | StubRoutines::_vectorizedMismatch = generate_vectorizedMismatch(); |
| 6026 | } |
| 6027 | } |
| 6028 | |
| 6029 | public: |
| 6030 | StubGenerator(CodeBuffer* code, bool all) : StubCodeGenerator(code) { |
| 6031 | if (all) { |
| 6032 | generate_all(); |
| 6033 | } else { |
| 6034 | generate_initial(); |
| 6035 | } |
| 6036 | } |
| 6037 | }; // end class declaration |
| 6038 | |
| 6039 | void StubGenerator_generate(CodeBuffer* code, bool all) { |
| 6040 | StubGenerator g(code, all); |
| 6041 | } |
| 6042 | |