| 1 | /* |
| 2 | * Copyright (c) 1999, 2019, Oracle and/or its affiliates. All rights reserved. |
| 3 | * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
| 4 | * |
| 5 | * This code is free software; you can redistribute it and/or modify it |
| 6 | * under the terms of the GNU General Public License version 2 only, as |
| 7 | * published by the Free Software Foundation. |
| 8 | * |
| 9 | * This code is distributed in the hope that it will be useful, but WITHOUT |
| 10 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| 11 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| 12 | * version 2 for more details (a copy is included in the LICENSE file that |
| 13 | * accompanied this code). |
| 14 | * |
| 15 | * You should have received a copy of the GNU General Public License version |
| 16 | * 2 along with this work; if not, write to the Free Software Foundation, |
| 17 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
| 18 | * |
| 19 | * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
| 20 | * or visit www.oracle.com if you need additional information or have any |
| 21 | * questions. |
| 22 | * |
| 23 | */ |
| 24 | |
| 25 | #include "precompiled.hpp" |
| 26 | #include "asm/codeBuffer.hpp" |
| 27 | #include "c1/c1_CodeStubs.hpp" |
| 28 | #include "c1/c1_Defs.hpp" |
| 29 | #include "c1/c1_FrameMap.hpp" |
| 30 | #include "c1/c1_LIRAssembler.hpp" |
| 31 | #include "c1/c1_MacroAssembler.hpp" |
| 32 | #include "c1/c1_Runtime1.hpp" |
| 33 | #include "classfile/systemDictionary.hpp" |
| 34 | #include "classfile/vmSymbols.hpp" |
| 35 | #include "code/codeBlob.hpp" |
| 36 | #include "code/compiledIC.hpp" |
| 37 | #include "code/pcDesc.hpp" |
| 38 | #include "code/scopeDesc.hpp" |
| 39 | #include "code/vtableStubs.hpp" |
| 40 | #include "compiler/disassembler.hpp" |
| 41 | #include "gc/shared/barrierSet.hpp" |
| 42 | #include "gc/shared/c1/barrierSetC1.hpp" |
| 43 | #include "gc/shared/collectedHeap.hpp" |
| 44 | #include "interpreter/bytecode.hpp" |
| 45 | #include "interpreter/interpreter.hpp" |
| 46 | #include "jfr/support/jfrIntrinsics.hpp" |
| 47 | #include "logging/log.hpp" |
| 48 | #include "memory/allocation.inline.hpp" |
| 49 | #include "memory/oopFactory.hpp" |
| 50 | #include "memory/resourceArea.hpp" |
| 51 | #include "memory/universe.hpp" |
| 52 | #include "oops/access.inline.hpp" |
| 53 | #include "oops/objArrayOop.inline.hpp" |
| 54 | #include "oops/objArrayKlass.hpp" |
| 55 | #include "oops/oop.inline.hpp" |
| 56 | #include "runtime/atomic.hpp" |
| 57 | #include "runtime/biasedLocking.hpp" |
| 58 | #include "runtime/compilationPolicy.hpp" |
| 59 | #include "runtime/fieldDescriptor.inline.hpp" |
| 60 | #include "runtime/frame.inline.hpp" |
| 61 | #include "runtime/handles.inline.hpp" |
| 62 | #include "runtime/interfaceSupport.inline.hpp" |
| 63 | #include "runtime/javaCalls.hpp" |
| 64 | #include "runtime/sharedRuntime.hpp" |
| 65 | #include "runtime/threadCritical.hpp" |
| 66 | #include "runtime/vframe.inline.hpp" |
| 67 | #include "runtime/vframeArray.hpp" |
| 68 | #include "runtime/vm_version.hpp" |
| 69 | #include "utilities/copy.hpp" |
| 70 | #include "utilities/events.hpp" |
| 71 | |
| 72 | |
| 73 | // Implementation of StubAssembler |
| 74 | |
| 75 | StubAssembler::StubAssembler(CodeBuffer* code, const char * name, int stub_id) : C1_MacroAssembler(code) { |
| 76 | _name = name; |
| 77 | _must_gc_arguments = false; |
| 78 | _frame_size = no_frame_size; |
| 79 | _num_rt_args = 0; |
| 80 | _stub_id = stub_id; |
| 81 | } |
| 82 | |
| 83 | |
| 84 | void StubAssembler::set_info(const char* name, bool must_gc_arguments) { |
| 85 | _name = name; |
| 86 | _must_gc_arguments = must_gc_arguments; |
| 87 | } |
| 88 | |
| 89 | |
| 90 | void StubAssembler::set_frame_size(int size) { |
| 91 | if (_frame_size == no_frame_size) { |
| 92 | _frame_size = size; |
| 93 | } |
| 94 | assert(_frame_size == size, "can't change the frame size" ); |
| 95 | } |
| 96 | |
| 97 | |
| 98 | void StubAssembler::set_num_rt_args(int args) { |
| 99 | if (_num_rt_args == 0) { |
| 100 | _num_rt_args = args; |
| 101 | } |
| 102 | assert(_num_rt_args == args, "can't change the number of args" ); |
| 103 | } |
| 104 | |
| 105 | // Implementation of Runtime1 |
| 106 | |
| 107 | CodeBlob* Runtime1::_blobs[Runtime1::number_of_ids]; |
| 108 | const char *Runtime1::_blob_names[] = { |
| 109 | RUNTIME1_STUBS(STUB_NAME, LAST_STUB_NAME) |
| 110 | }; |
| 111 | |
| 112 | #ifndef PRODUCT |
| 113 | // statistics |
| 114 | int Runtime1::_generic_arraycopy_cnt = 0; |
| 115 | int Runtime1::_generic_arraycopystub_cnt = 0; |
| 116 | int Runtime1::_arraycopy_slowcase_cnt = 0; |
| 117 | int Runtime1::_arraycopy_checkcast_cnt = 0; |
| 118 | int Runtime1::_arraycopy_checkcast_attempt_cnt = 0; |
| 119 | int Runtime1::_new_type_array_slowcase_cnt = 0; |
| 120 | int Runtime1::_new_object_array_slowcase_cnt = 0; |
| 121 | int Runtime1::_new_instance_slowcase_cnt = 0; |
| 122 | int Runtime1::_new_multi_array_slowcase_cnt = 0; |
| 123 | int Runtime1::_monitorenter_slowcase_cnt = 0; |
| 124 | int Runtime1::_monitorexit_slowcase_cnt = 0; |
| 125 | int Runtime1::_patch_code_slowcase_cnt = 0; |
| 126 | int Runtime1::_throw_range_check_exception_count = 0; |
| 127 | int Runtime1::_throw_index_exception_count = 0; |
| 128 | int Runtime1::_throw_div0_exception_count = 0; |
| 129 | int Runtime1::_throw_null_pointer_exception_count = 0; |
| 130 | int Runtime1::_throw_class_cast_exception_count = 0; |
| 131 | int Runtime1::_throw_incompatible_class_change_error_count = 0; |
| 132 | int Runtime1::_throw_array_store_exception_count = 0; |
| 133 | int Runtime1::_throw_count = 0; |
| 134 | |
| 135 | static int _byte_arraycopy_stub_cnt = 0; |
| 136 | static int _short_arraycopy_stub_cnt = 0; |
| 137 | static int _int_arraycopy_stub_cnt = 0; |
| 138 | static int _long_arraycopy_stub_cnt = 0; |
| 139 | static int _oop_arraycopy_stub_cnt = 0; |
| 140 | |
| 141 | address Runtime1::arraycopy_count_address(BasicType type) { |
| 142 | switch (type) { |
| 143 | case T_BOOLEAN: |
| 144 | case T_BYTE: return (address)&_byte_arraycopy_stub_cnt; |
| 145 | case T_CHAR: |
| 146 | case T_SHORT: return (address)&_short_arraycopy_stub_cnt; |
| 147 | case T_FLOAT: |
| 148 | case T_INT: return (address)&_int_arraycopy_stub_cnt; |
| 149 | case T_DOUBLE: |
| 150 | case T_LONG: return (address)&_long_arraycopy_stub_cnt; |
| 151 | case T_ARRAY: |
| 152 | case T_OBJECT: return (address)&_oop_arraycopy_stub_cnt; |
| 153 | default: |
| 154 | ShouldNotReachHere(); |
| 155 | return NULL; |
| 156 | } |
| 157 | } |
| 158 | |
| 159 | |
| 160 | #endif |
| 161 | |
| 162 | // Simple helper to see if the caller of a runtime stub which |
| 163 | // entered the VM has been deoptimized |
| 164 | |
| 165 | static bool caller_is_deopted() { |
| 166 | JavaThread* thread = JavaThread::current(); |
| 167 | RegisterMap reg_map(thread, false); |
| 168 | frame runtime_frame = thread->last_frame(); |
| 169 | frame caller_frame = runtime_frame.sender(®_map); |
| 170 | assert(caller_frame.is_compiled_frame(), "must be compiled" ); |
| 171 | return caller_frame.is_deoptimized_frame(); |
| 172 | } |
| 173 | |
| 174 | // Stress deoptimization |
| 175 | static void deopt_caller() { |
| 176 | if ( !caller_is_deopted()) { |
| 177 | JavaThread* thread = JavaThread::current(); |
| 178 | RegisterMap reg_map(thread, false); |
| 179 | frame runtime_frame = thread->last_frame(); |
| 180 | frame caller_frame = runtime_frame.sender(®_map); |
| 181 | Deoptimization::deoptimize_frame(thread, caller_frame.id()); |
| 182 | assert(caller_is_deopted(), "Must be deoptimized" ); |
| 183 | } |
| 184 | } |
| 185 | |
| 186 | class StubIDStubAssemblerCodeGenClosure: public StubAssemblerCodeGenClosure { |
| 187 | private: |
| 188 | Runtime1::StubID _id; |
| 189 | public: |
| 190 | StubIDStubAssemblerCodeGenClosure(Runtime1::StubID id) : _id(id) {} |
| 191 | virtual OopMapSet* generate_code(StubAssembler* sasm) { |
| 192 | return Runtime1::generate_code_for(_id, sasm); |
| 193 | } |
| 194 | }; |
| 195 | |
| 196 | CodeBlob* Runtime1::generate_blob(BufferBlob* buffer_blob, int stub_id, const char* name, bool expect_oop_map, StubAssemblerCodeGenClosure* cl) { |
| 197 | ResourceMark rm; |
| 198 | // create code buffer for code storage |
| 199 | CodeBuffer code(buffer_blob); |
| 200 | |
| 201 | OopMapSet* oop_maps; |
| 202 | int frame_size; |
| 203 | bool must_gc_arguments; |
| 204 | |
| 205 | Compilation::setup_code_buffer(&code, 0); |
| 206 | |
| 207 | // create assembler for code generation |
| 208 | StubAssembler* sasm = new StubAssembler(&code, name, stub_id); |
| 209 | // generate code for runtime stub |
| 210 | oop_maps = cl->generate_code(sasm); |
| 211 | assert(oop_maps == NULL || sasm->frame_size() != no_frame_size, |
| 212 | "if stub has an oop map it must have a valid frame size" ); |
| 213 | assert(!expect_oop_map || oop_maps != NULL, "must have an oopmap" ); |
| 214 | |
| 215 | // align so printing shows nop's instead of random code at the end (SimpleStubs are aligned) |
| 216 | sasm->align(BytesPerWord); |
| 217 | // make sure all code is in code buffer |
| 218 | sasm->flush(); |
| 219 | |
| 220 | frame_size = sasm->frame_size(); |
| 221 | must_gc_arguments = sasm->must_gc_arguments(); |
| 222 | // create blob - distinguish a few special cases |
| 223 | CodeBlob* blob = RuntimeStub::new_runtime_stub(name, |
| 224 | &code, |
| 225 | CodeOffsets::frame_never_safe, |
| 226 | frame_size, |
| 227 | oop_maps, |
| 228 | must_gc_arguments); |
| 229 | assert(blob != NULL, "blob must exist" ); |
| 230 | return blob; |
| 231 | } |
| 232 | |
| 233 | void Runtime1::generate_blob_for(BufferBlob* buffer_blob, StubID id) { |
| 234 | assert(0 <= id && id < number_of_ids, "illegal stub id" ); |
| 235 | bool expect_oop_map = true; |
| 236 | #ifdef ASSERT |
| 237 | // Make sure that stubs that need oopmaps have them |
| 238 | switch (id) { |
| 239 | // These stubs don't need to have an oopmap |
| 240 | case dtrace_object_alloc_id: |
| 241 | case slow_subtype_check_id: |
| 242 | case fpu2long_stub_id: |
| 243 | case unwind_exception_id: |
| 244 | case counter_overflow_id: |
| 245 | #if defined(SPARC) || defined(PPC32) |
| 246 | case handle_exception_nofpu_id: // Unused on sparc |
| 247 | #endif |
| 248 | expect_oop_map = false; |
| 249 | break; |
| 250 | default: |
| 251 | break; |
| 252 | } |
| 253 | #endif |
| 254 | StubIDStubAssemblerCodeGenClosure cl(id); |
| 255 | CodeBlob* blob = generate_blob(buffer_blob, id, name_for(id), expect_oop_map, &cl); |
| 256 | // install blob |
| 257 | _blobs[id] = blob; |
| 258 | } |
| 259 | |
| 260 | void Runtime1::initialize(BufferBlob* blob) { |
| 261 | // platform-dependent initialization |
| 262 | initialize_pd(); |
| 263 | // generate stubs |
| 264 | for (int id = 0; id < number_of_ids; id++) generate_blob_for(blob, (StubID)id); |
| 265 | // printing |
| 266 | #ifndef PRODUCT |
| 267 | if (PrintSimpleStubs) { |
| 268 | ResourceMark rm; |
| 269 | for (int id = 0; id < number_of_ids; id++) { |
| 270 | _blobs[id]->print(); |
| 271 | if (_blobs[id]->oop_maps() != NULL) { |
| 272 | _blobs[id]->oop_maps()->print(); |
| 273 | } |
| 274 | } |
| 275 | } |
| 276 | #endif |
| 277 | BarrierSetC1* bs = BarrierSet::barrier_set()->barrier_set_c1(); |
| 278 | bs->generate_c1_runtime_stubs(blob); |
| 279 | } |
| 280 | |
| 281 | CodeBlob* Runtime1::blob_for(StubID id) { |
| 282 | assert(0 <= id && id < number_of_ids, "illegal stub id" ); |
| 283 | return _blobs[id]; |
| 284 | } |
| 285 | |
| 286 | |
| 287 | const char* Runtime1::name_for(StubID id) { |
| 288 | assert(0 <= id && id < number_of_ids, "illegal stub id" ); |
| 289 | return _blob_names[id]; |
| 290 | } |
| 291 | |
| 292 | const char* Runtime1::name_for_address(address entry) { |
| 293 | for (int id = 0; id < number_of_ids; id++) { |
| 294 | if (entry == entry_for((StubID)id)) return name_for((StubID)id); |
| 295 | } |
| 296 | |
| 297 | #define FUNCTION_CASE(a, f) \ |
| 298 | if ((intptr_t)a == CAST_FROM_FN_PTR(intptr_t, f)) return #f |
| 299 | |
| 300 | FUNCTION_CASE(entry, os::javaTimeMillis); |
| 301 | FUNCTION_CASE(entry, os::javaTimeNanos); |
| 302 | FUNCTION_CASE(entry, SharedRuntime::OSR_migration_end); |
| 303 | FUNCTION_CASE(entry, SharedRuntime::d2f); |
| 304 | FUNCTION_CASE(entry, SharedRuntime::d2i); |
| 305 | FUNCTION_CASE(entry, SharedRuntime::d2l); |
| 306 | FUNCTION_CASE(entry, SharedRuntime::dcos); |
| 307 | FUNCTION_CASE(entry, SharedRuntime::dexp); |
| 308 | FUNCTION_CASE(entry, SharedRuntime::dlog); |
| 309 | FUNCTION_CASE(entry, SharedRuntime::dlog10); |
| 310 | FUNCTION_CASE(entry, SharedRuntime::dpow); |
| 311 | FUNCTION_CASE(entry, SharedRuntime::drem); |
| 312 | FUNCTION_CASE(entry, SharedRuntime::dsin); |
| 313 | FUNCTION_CASE(entry, SharedRuntime::dtan); |
| 314 | FUNCTION_CASE(entry, SharedRuntime::f2i); |
| 315 | FUNCTION_CASE(entry, SharedRuntime::f2l); |
| 316 | FUNCTION_CASE(entry, SharedRuntime::frem); |
| 317 | FUNCTION_CASE(entry, SharedRuntime::l2d); |
| 318 | FUNCTION_CASE(entry, SharedRuntime::l2f); |
| 319 | FUNCTION_CASE(entry, SharedRuntime::ldiv); |
| 320 | FUNCTION_CASE(entry, SharedRuntime::lmul); |
| 321 | FUNCTION_CASE(entry, SharedRuntime::lrem); |
| 322 | FUNCTION_CASE(entry, SharedRuntime::lrem); |
| 323 | FUNCTION_CASE(entry, SharedRuntime::dtrace_method_entry); |
| 324 | FUNCTION_CASE(entry, SharedRuntime::dtrace_method_exit); |
| 325 | FUNCTION_CASE(entry, is_instance_of); |
| 326 | FUNCTION_CASE(entry, trace_block_entry); |
| 327 | #ifdef JFR_HAVE_INTRINSICS |
| 328 | FUNCTION_CASE(entry, JFR_TIME_FUNCTION); |
| 329 | #endif |
| 330 | FUNCTION_CASE(entry, StubRoutines::updateBytesCRC32()); |
| 331 | FUNCTION_CASE(entry, StubRoutines::updateBytesCRC32C()); |
| 332 | FUNCTION_CASE(entry, StubRoutines::vectorizedMismatch()); |
| 333 | FUNCTION_CASE(entry, StubRoutines::dexp()); |
| 334 | FUNCTION_CASE(entry, StubRoutines::dlog()); |
| 335 | FUNCTION_CASE(entry, StubRoutines::dlog10()); |
| 336 | FUNCTION_CASE(entry, StubRoutines::dpow()); |
| 337 | FUNCTION_CASE(entry, StubRoutines::dsin()); |
| 338 | FUNCTION_CASE(entry, StubRoutines::dcos()); |
| 339 | FUNCTION_CASE(entry, StubRoutines::dtan()); |
| 340 | |
| 341 | #undef FUNCTION_CASE |
| 342 | |
| 343 | // Soft float adds more runtime names. |
| 344 | return pd_name_for_address(entry); |
| 345 | } |
| 346 | |
| 347 | |
| 348 | JRT_ENTRY(void, Runtime1::new_instance(JavaThread* thread, Klass* klass)) |
| 349 | NOT_PRODUCT(_new_instance_slowcase_cnt++;) |
| 350 | |
| 351 | assert(klass->is_klass(), "not a class" ); |
| 352 | Handle holder(THREAD, klass->klass_holder()); // keep the klass alive |
| 353 | InstanceKlass* h = InstanceKlass::cast(klass); |
| 354 | h->check_valid_for_instantiation(true, CHECK); |
| 355 | // make sure klass is initialized |
| 356 | h->initialize(CHECK); |
| 357 | // allocate instance and return via TLS |
| 358 | oop obj = h->allocate_instance(CHECK); |
| 359 | thread->set_vm_result(obj); |
| 360 | JRT_END |
| 361 | |
| 362 | |
| 363 | JRT_ENTRY(void, Runtime1::new_type_array(JavaThread* thread, Klass* klass, jint length)) |
| 364 | NOT_PRODUCT(_new_type_array_slowcase_cnt++;) |
| 365 | // Note: no handle for klass needed since they are not used |
| 366 | // anymore after new_typeArray() and no GC can happen before. |
| 367 | // (This may have to change if this code changes!) |
| 368 | assert(klass->is_klass(), "not a class" ); |
| 369 | BasicType elt_type = TypeArrayKlass::cast(klass)->element_type(); |
| 370 | oop obj = oopFactory::new_typeArray(elt_type, length, CHECK); |
| 371 | thread->set_vm_result(obj); |
| 372 | // This is pretty rare but this runtime patch is stressful to deoptimization |
| 373 | // if we deoptimize here so force a deopt to stress the path. |
| 374 | if (DeoptimizeALot) { |
| 375 | deopt_caller(); |
| 376 | } |
| 377 | |
| 378 | JRT_END |
| 379 | |
| 380 | |
| 381 | JRT_ENTRY(void, Runtime1::new_object_array(JavaThread* thread, Klass* array_klass, jint length)) |
| 382 | NOT_PRODUCT(_new_object_array_slowcase_cnt++;) |
| 383 | |
| 384 | // Note: no handle for klass needed since they are not used |
| 385 | // anymore after new_objArray() and no GC can happen before. |
| 386 | // (This may have to change if this code changes!) |
| 387 | assert(array_klass->is_klass(), "not a class" ); |
| 388 | Handle holder(THREAD, array_klass->klass_holder()); // keep the klass alive |
| 389 | Klass* elem_klass = ObjArrayKlass::cast(array_klass)->element_klass(); |
| 390 | objArrayOop obj = oopFactory::new_objArray(elem_klass, length, CHECK); |
| 391 | thread->set_vm_result(obj); |
| 392 | // This is pretty rare but this runtime patch is stressful to deoptimization |
| 393 | // if we deoptimize here so force a deopt to stress the path. |
| 394 | if (DeoptimizeALot) { |
| 395 | deopt_caller(); |
| 396 | } |
| 397 | JRT_END |
| 398 | |
| 399 | |
| 400 | JRT_ENTRY(void, Runtime1::new_multi_array(JavaThread* thread, Klass* klass, int rank, jint* dims)) |
| 401 | NOT_PRODUCT(_new_multi_array_slowcase_cnt++;) |
| 402 | |
| 403 | assert(klass->is_klass(), "not a class" ); |
| 404 | assert(rank >= 1, "rank must be nonzero" ); |
| 405 | Handle holder(THREAD, klass->klass_holder()); // keep the klass alive |
| 406 | oop obj = ArrayKlass::cast(klass)->multi_allocate(rank, dims, CHECK); |
| 407 | thread->set_vm_result(obj); |
| 408 | JRT_END |
| 409 | |
| 410 | |
| 411 | JRT_ENTRY(void, Runtime1::unimplemented_entry(JavaThread* thread, StubID id)) |
| 412 | tty->print_cr("Runtime1::entry_for(%d) returned unimplemented entry point" , id); |
| 413 | JRT_END |
| 414 | |
| 415 | |
| 416 | JRT_ENTRY(void, Runtime1::throw_array_store_exception(JavaThread* thread, oopDesc* obj)) |
| 417 | ResourceMark rm(thread); |
| 418 | const char* klass_name = obj->klass()->external_name(); |
| 419 | SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArrayStoreException(), klass_name); |
| 420 | JRT_END |
| 421 | |
| 422 | |
| 423 | // counter_overflow() is called from within C1-compiled methods. The enclosing method is the method |
| 424 | // associated with the top activation record. The inlinee (that is possibly included in the enclosing |
| 425 | // method) method oop is passed as an argument. In order to do that it is embedded in the code as |
| 426 | // a constant. |
| 427 | static nmethod* counter_overflow_helper(JavaThread* THREAD, int branch_bci, Method* m) { |
| 428 | nmethod* osr_nm = NULL; |
| 429 | methodHandle method(THREAD, m); |
| 430 | |
| 431 | RegisterMap map(THREAD, false); |
| 432 | frame fr = THREAD->last_frame().sender(&map); |
| 433 | nmethod* nm = (nmethod*) fr.cb(); |
| 434 | assert(nm!= NULL && nm->is_nmethod(), "Sanity check" ); |
| 435 | methodHandle enclosing_method(THREAD, nm->method()); |
| 436 | |
| 437 | CompLevel level = (CompLevel)nm->comp_level(); |
| 438 | int bci = InvocationEntryBci; |
| 439 | if (branch_bci != InvocationEntryBci) { |
| 440 | // Compute destination bci |
| 441 | address pc = method()->code_base() + branch_bci; |
| 442 | Bytecodes::Code branch = Bytecodes::code_at(method(), pc); |
| 443 | int offset = 0; |
| 444 | switch (branch) { |
| 445 | case Bytecodes::_if_icmplt: case Bytecodes::_iflt: |
| 446 | case Bytecodes::_if_icmpgt: case Bytecodes::_ifgt: |
| 447 | case Bytecodes::_if_icmple: case Bytecodes::_ifle: |
| 448 | case Bytecodes::_if_icmpge: case Bytecodes::_ifge: |
| 449 | case Bytecodes::_if_icmpeq: case Bytecodes::_if_acmpeq: case Bytecodes::_ifeq: |
| 450 | case Bytecodes::_if_icmpne: case Bytecodes::_if_acmpne: case Bytecodes::_ifne: |
| 451 | case Bytecodes::_ifnull: case Bytecodes::_ifnonnull: case Bytecodes::_goto: |
| 452 | offset = (int16_t)Bytes::get_Java_u2(pc + 1); |
| 453 | break; |
| 454 | case Bytecodes::_goto_w: |
| 455 | offset = Bytes::get_Java_u4(pc + 1); |
| 456 | break; |
| 457 | default: ; |
| 458 | } |
| 459 | bci = branch_bci + offset; |
| 460 | } |
| 461 | assert(!HAS_PENDING_EXCEPTION, "Should not have any exceptions pending" ); |
| 462 | osr_nm = CompilationPolicy::policy()->event(enclosing_method, method, branch_bci, bci, level, nm, THREAD); |
| 463 | assert(!HAS_PENDING_EXCEPTION, "Event handler should not throw any exceptions" ); |
| 464 | return osr_nm; |
| 465 | } |
| 466 | |
| 467 | JRT_BLOCK_ENTRY(address, Runtime1::counter_overflow(JavaThread* thread, int bci, Method* method)) |
| 468 | nmethod* osr_nm; |
| 469 | JRT_BLOCK |
| 470 | osr_nm = counter_overflow_helper(thread, bci, method); |
| 471 | if (osr_nm != NULL) { |
| 472 | RegisterMap map(thread, false); |
| 473 | frame fr = thread->last_frame().sender(&map); |
| 474 | Deoptimization::deoptimize_frame(thread, fr.id()); |
| 475 | } |
| 476 | JRT_BLOCK_END |
| 477 | return NULL; |
| 478 | JRT_END |
| 479 | |
| 480 | extern void vm_exit(int code); |
| 481 | |
| 482 | // Enter this method from compiled code handler below. This is where we transition |
| 483 | // to VM mode. This is done as a helper routine so that the method called directly |
| 484 | // from compiled code does not have to transition to VM. This allows the entry |
| 485 | // method to see if the nmethod that we have just looked up a handler for has |
| 486 | // been deoptimized while we were in the vm. This simplifies the assembly code |
| 487 | // cpu directories. |
| 488 | // |
| 489 | // We are entering here from exception stub (via the entry method below) |
| 490 | // If there is a compiled exception handler in this method, we will continue there; |
| 491 | // otherwise we will unwind the stack and continue at the caller of top frame method |
| 492 | // Note: we enter in Java using a special JRT wrapper. This wrapper allows us to |
| 493 | // control the area where we can allow a safepoint. After we exit the safepoint area we can |
| 494 | // check to see if the handler we are going to return is now in a nmethod that has |
| 495 | // been deoptimized. If that is the case we return the deopt blob |
| 496 | // unpack_with_exception entry instead. This makes life for the exception blob easier |
| 497 | // because making that same check and diverting is painful from assembly language. |
| 498 | JRT_ENTRY_NO_ASYNC(static address, exception_handler_for_pc_helper(JavaThread* thread, oopDesc* ex, address pc, nmethod*& nm)) |
| 499 | // Reset method handle flag. |
| 500 | thread->set_is_method_handle_return(false); |
| 501 | |
| 502 | Handle exception(thread, ex); |
| 503 | nm = CodeCache::find_nmethod(pc); |
| 504 | assert(nm != NULL, "this is not an nmethod" ); |
| 505 | // Adjust the pc as needed/ |
| 506 | if (nm->is_deopt_pc(pc)) { |
| 507 | RegisterMap map(thread, false); |
| 508 | frame exception_frame = thread->last_frame().sender(&map); |
| 509 | // if the frame isn't deopted then pc must not correspond to the caller of last_frame |
| 510 | assert(exception_frame.is_deoptimized_frame(), "must be deopted" ); |
| 511 | pc = exception_frame.pc(); |
| 512 | } |
| 513 | #ifdef ASSERT |
| 514 | assert(exception.not_null(), "NULL exceptions should be handled by throw_exception" ); |
| 515 | // Check that exception is a subclass of Throwable, otherwise we have a VerifyError |
| 516 | if (!(exception->is_a(SystemDictionary::Throwable_klass()))) { |
| 517 | if (ExitVMOnVerifyError) vm_exit(-1); |
| 518 | ShouldNotReachHere(); |
| 519 | } |
| 520 | #endif |
| 521 | |
| 522 | // Check the stack guard pages and reenable them if necessary and there is |
| 523 | // enough space on the stack to do so. Use fast exceptions only if the guard |
| 524 | // pages are enabled. |
| 525 | bool guard_pages_enabled = thread->stack_guards_enabled(); |
| 526 | if (!guard_pages_enabled) guard_pages_enabled = thread->reguard_stack(); |
| 527 | |
| 528 | if (JvmtiExport::can_post_on_exceptions()) { |
| 529 | // To ensure correct notification of exception catches and throws |
| 530 | // we have to deoptimize here. If we attempted to notify the |
| 531 | // catches and throws during this exception lookup it's possible |
| 532 | // we could deoptimize on the way out of the VM and end back in |
| 533 | // the interpreter at the throw site. This would result in double |
| 534 | // notifications since the interpreter would also notify about |
| 535 | // these same catches and throws as it unwound the frame. |
| 536 | |
| 537 | RegisterMap reg_map(thread); |
| 538 | frame stub_frame = thread->last_frame(); |
| 539 | frame caller_frame = stub_frame.sender(®_map); |
| 540 | |
| 541 | // We don't really want to deoptimize the nmethod itself since we |
| 542 | // can actually continue in the exception handler ourselves but I |
| 543 | // don't see an easy way to have the desired effect. |
| 544 | Deoptimization::deoptimize_frame(thread, caller_frame.id()); |
| 545 | assert(caller_is_deopted(), "Must be deoptimized" ); |
| 546 | |
| 547 | return SharedRuntime::deopt_blob()->unpack_with_exception_in_tls(); |
| 548 | } |
| 549 | |
| 550 | // ExceptionCache is used only for exceptions at call sites and not for implicit exceptions |
| 551 | if (guard_pages_enabled) { |
| 552 | address fast_continuation = nm->handler_for_exception_and_pc(exception, pc); |
| 553 | if (fast_continuation != NULL) { |
| 554 | // Set flag if return address is a method handle call site. |
| 555 | thread->set_is_method_handle_return(nm->is_method_handle_return(pc)); |
| 556 | return fast_continuation; |
| 557 | } |
| 558 | } |
| 559 | |
| 560 | // If the stack guard pages are enabled, check whether there is a handler in |
| 561 | // the current method. Otherwise (guard pages disabled), force an unwind and |
| 562 | // skip the exception cache update (i.e., just leave continuation==NULL). |
| 563 | address continuation = NULL; |
| 564 | if (guard_pages_enabled) { |
| 565 | |
| 566 | // New exception handling mechanism can support inlined methods |
| 567 | // with exception handlers since the mappings are from PC to PC |
| 568 | |
| 569 | // debugging support |
| 570 | // tracing |
| 571 | if (log_is_enabled(Info, exceptions)) { |
| 572 | ResourceMark rm; |
| 573 | stringStream tempst; |
| 574 | assert(nm->method() != NULL, "Unexpected NULL method()" ); |
| 575 | tempst.print("compiled method <%s>\n" |
| 576 | " at PC" INTPTR_FORMAT " for thread " INTPTR_FORMAT, |
| 577 | nm->method()->print_value_string(), p2i(pc), p2i(thread)); |
| 578 | Exceptions::log_exception(exception, tempst.as_string()); |
| 579 | } |
| 580 | // for AbortVMOnException flag |
| 581 | Exceptions::debug_check_abort(exception); |
| 582 | |
| 583 | // Clear out the exception oop and pc since looking up an |
| 584 | // exception handler can cause class loading, which might throw an |
| 585 | // exception and those fields are expected to be clear during |
| 586 | // normal bytecode execution. |
| 587 | thread->clear_exception_oop_and_pc(); |
| 588 | |
| 589 | bool recursive_exception = false; |
| 590 | continuation = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, false, false, recursive_exception); |
| 591 | // If an exception was thrown during exception dispatch, the exception oop may have changed |
| 592 | thread->set_exception_oop(exception()); |
| 593 | thread->set_exception_pc(pc); |
| 594 | |
| 595 | // the exception cache is used only by non-implicit exceptions |
| 596 | // Update the exception cache only when there didn't happen |
| 597 | // another exception during the computation of the compiled |
| 598 | // exception handler. Checking for exception oop equality is not |
| 599 | // sufficient because some exceptions are pre-allocated and reused. |
| 600 | if (continuation != NULL && !recursive_exception) { |
| 601 | nm->add_handler_for_exception_and_pc(exception, pc, continuation); |
| 602 | } |
| 603 | } |
| 604 | |
| 605 | thread->set_vm_result(exception()); |
| 606 | // Set flag if return address is a method handle call site. |
| 607 | thread->set_is_method_handle_return(nm->is_method_handle_return(pc)); |
| 608 | |
| 609 | if (log_is_enabled(Info, exceptions)) { |
| 610 | ResourceMark rm; |
| 611 | log_info(exceptions)("Thread " PTR_FORMAT " continuing at PC " PTR_FORMAT |
| 612 | " for exception thrown at PC " PTR_FORMAT, |
| 613 | p2i(thread), p2i(continuation), p2i(pc)); |
| 614 | } |
| 615 | |
| 616 | return continuation; |
| 617 | JRT_END |
| 618 | |
| 619 | // Enter this method from compiled code only if there is a Java exception handler |
| 620 | // in the method handling the exception. |
| 621 | // We are entering here from exception stub. We don't do a normal VM transition here. |
| 622 | // We do it in a helper. This is so we can check to see if the nmethod we have just |
| 623 | // searched for an exception handler has been deoptimized in the meantime. |
| 624 | address Runtime1::exception_handler_for_pc(JavaThread* thread) { |
| 625 | oop exception = thread->exception_oop(); |
| 626 | address pc = thread->exception_pc(); |
| 627 | // Still in Java mode |
| 628 | DEBUG_ONLY(ResetNoHandleMark rnhm); |
| 629 | nmethod* nm = NULL; |
| 630 | address continuation = NULL; |
| 631 | { |
| 632 | // Enter VM mode by calling the helper |
| 633 | ResetNoHandleMark rnhm; |
| 634 | continuation = exception_handler_for_pc_helper(thread, exception, pc, nm); |
| 635 | } |
| 636 | // Back in JAVA, use no oops DON'T safepoint |
| 637 | |
| 638 | // Now check to see if the nmethod we were called from is now deoptimized. |
| 639 | // If so we must return to the deopt blob and deoptimize the nmethod |
| 640 | if (nm != NULL && caller_is_deopted()) { |
| 641 | continuation = SharedRuntime::deopt_blob()->unpack_with_exception_in_tls(); |
| 642 | } |
| 643 | |
| 644 | assert(continuation != NULL, "no handler found" ); |
| 645 | return continuation; |
| 646 | } |
| 647 | |
| 648 | |
| 649 | JRT_ENTRY(void, Runtime1::throw_range_check_exception(JavaThread* thread, int index, arrayOopDesc* a)) |
| 650 | NOT_PRODUCT(_throw_range_check_exception_count++;) |
| 651 | const int len = 35; |
| 652 | assert(len < strlen("Index %d out of bounds for length %d" ), "Must allocate more space for message." ); |
| 653 | char message[2 * jintAsStringSize + len]; |
| 654 | sprintf(message, "Index %d out of bounds for length %d" , index, a->length()); |
| 655 | SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArrayIndexOutOfBoundsException(), message); |
| 656 | JRT_END |
| 657 | |
| 658 | |
| 659 | JRT_ENTRY(void, Runtime1::throw_index_exception(JavaThread* thread, int index)) |
| 660 | NOT_PRODUCT(_throw_index_exception_count++;) |
| 661 | char message[16]; |
| 662 | sprintf(message, "%d" , index); |
| 663 | SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IndexOutOfBoundsException(), message); |
| 664 | JRT_END |
| 665 | |
| 666 | |
| 667 | JRT_ENTRY(void, Runtime1::throw_div0_exception(JavaThread* thread)) |
| 668 | NOT_PRODUCT(_throw_div0_exception_count++;) |
| 669 | SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero" ); |
| 670 | JRT_END |
| 671 | |
| 672 | |
| 673 | JRT_ENTRY(void, Runtime1::throw_null_pointer_exception(JavaThread* thread)) |
| 674 | NOT_PRODUCT(_throw_null_pointer_exception_count++;) |
| 675 | SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException()); |
| 676 | JRT_END |
| 677 | |
| 678 | |
| 679 | JRT_ENTRY(void, Runtime1::throw_class_cast_exception(JavaThread* thread, oopDesc* object)) |
| 680 | NOT_PRODUCT(_throw_class_cast_exception_count++;) |
| 681 | ResourceMark rm(thread); |
| 682 | char* message = SharedRuntime::generate_class_cast_message( |
| 683 | thread, object->klass()); |
| 684 | SharedRuntime::throw_and_post_jvmti_exception( |
| 685 | thread, vmSymbols::java_lang_ClassCastException(), message); |
| 686 | JRT_END |
| 687 | |
| 688 | |
| 689 | JRT_ENTRY(void, Runtime1::throw_incompatible_class_change_error(JavaThread* thread)) |
| 690 | NOT_PRODUCT(_throw_incompatible_class_change_error_count++;) |
| 691 | ResourceMark rm(thread); |
| 692 | SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError()); |
| 693 | JRT_END |
| 694 | |
| 695 | |
| 696 | JRT_ENTRY_NO_ASYNC(void, Runtime1::monitorenter(JavaThread* thread, oopDesc* obj, BasicObjectLock* lock)) |
| 697 | NOT_PRODUCT(_monitorenter_slowcase_cnt++;) |
| 698 | if (PrintBiasedLockingStatistics) { |
| 699 | Atomic::inc(BiasedLocking::slow_path_entry_count_addr()); |
| 700 | } |
| 701 | Handle h_obj(thread, obj); |
| 702 | if (UseBiasedLocking) { |
| 703 | // Retry fast entry if bias is revoked to avoid unnecessary inflation |
| 704 | ObjectSynchronizer::fast_enter(h_obj, lock->lock(), true, CHECK); |
| 705 | } else { |
| 706 | if (UseFastLocking) { |
| 707 | // When using fast locking, the compiled code has already tried the fast case |
| 708 | assert(obj == lock->obj(), "must match" ); |
| 709 | ObjectSynchronizer::slow_enter(h_obj, lock->lock(), THREAD); |
| 710 | } else { |
| 711 | lock->set_obj(obj); |
| 712 | ObjectSynchronizer::fast_enter(h_obj, lock->lock(), false, THREAD); |
| 713 | } |
| 714 | } |
| 715 | JRT_END |
| 716 | |
| 717 | |
| 718 | JRT_LEAF(void, Runtime1::monitorexit(JavaThread* thread, BasicObjectLock* lock)) |
| 719 | NOT_PRODUCT(_monitorexit_slowcase_cnt++;) |
| 720 | assert(thread == JavaThread::current(), "threads must correspond" ); |
| 721 | assert(thread->last_Java_sp(), "last_Java_sp must be set" ); |
| 722 | // monitorexit is non-blocking (leaf routine) => no exceptions can be thrown |
| 723 | EXCEPTION_MARK; |
| 724 | |
| 725 | oop obj = lock->obj(); |
| 726 | assert(oopDesc::is_oop(obj), "must be NULL or an object" ); |
| 727 | if (UseFastLocking) { |
| 728 | // When using fast locking, the compiled code has already tried the fast case |
| 729 | ObjectSynchronizer::slow_exit(obj, lock->lock(), THREAD); |
| 730 | } else { |
| 731 | ObjectSynchronizer::fast_exit(obj, lock->lock(), THREAD); |
| 732 | } |
| 733 | JRT_END |
| 734 | |
| 735 | // Cf. OptoRuntime::deoptimize_caller_frame |
| 736 | JRT_ENTRY(void, Runtime1::deoptimize(JavaThread* thread, jint trap_request)) |
| 737 | // Called from within the owner thread, so no need for safepoint |
| 738 | RegisterMap reg_map(thread, false); |
| 739 | frame stub_frame = thread->last_frame(); |
| 740 | assert(stub_frame.is_runtime_frame(), "Sanity check" ); |
| 741 | frame caller_frame = stub_frame.sender(®_map); |
| 742 | nmethod* nm = caller_frame.cb()->as_nmethod_or_null(); |
| 743 | assert(nm != NULL, "Sanity check" ); |
| 744 | methodHandle method(thread, nm->method()); |
| 745 | assert(nm == CodeCache::find_nmethod(caller_frame.pc()), "Should be the same" ); |
| 746 | Deoptimization::DeoptAction action = Deoptimization::trap_request_action(trap_request); |
| 747 | Deoptimization::DeoptReason reason = Deoptimization::trap_request_reason(trap_request); |
| 748 | |
| 749 | if (action == Deoptimization::Action_make_not_entrant) { |
| 750 | if (nm->make_not_entrant()) { |
| 751 | if (reason == Deoptimization::Reason_tenured) { |
| 752 | MethodData* trap_mdo = Deoptimization::get_method_data(thread, method, true /*create_if_missing*/); |
| 753 | if (trap_mdo != NULL) { |
| 754 | trap_mdo->inc_tenure_traps(); |
| 755 | } |
| 756 | } |
| 757 | } |
| 758 | } |
| 759 | |
| 760 | // Deoptimize the caller frame. |
| 761 | Deoptimization::deoptimize_frame(thread, caller_frame.id()); |
| 762 | // Return to the now deoptimized frame. |
| 763 | JRT_END |
| 764 | |
| 765 | |
| 766 | #ifndef DEOPTIMIZE_WHEN_PATCHING |
| 767 | |
| 768 | static Klass* resolve_field_return_klass(const methodHandle& caller, int bci, TRAPS) { |
| 769 | Bytecode_field field_access(caller, bci); |
| 770 | // This can be static or non-static field access |
| 771 | Bytecodes::Code code = field_access.code(); |
| 772 | |
| 773 | // We must load class, initialize class and resolve the field |
| 774 | fieldDescriptor result; // initialize class if needed |
| 775 | constantPoolHandle constants(THREAD, caller->constants()); |
| 776 | LinkResolver::resolve_field_access(result, constants, field_access.index(), caller, Bytecodes::java_code(code), CHECK_NULL); |
| 777 | return result.field_holder(); |
| 778 | } |
| 779 | |
| 780 | |
| 781 | // |
| 782 | // This routine patches sites where a class wasn't loaded or |
| 783 | // initialized at the time the code was generated. It handles |
| 784 | // references to classes, fields and forcing of initialization. Most |
| 785 | // of the cases are straightforward and involving simply forcing |
| 786 | // resolution of a class, rewriting the instruction stream with the |
| 787 | // needed constant and replacing the call in this function with the |
| 788 | // patched code. The case for static field is more complicated since |
| 789 | // the thread which is in the process of initializing a class can |
| 790 | // access it's static fields but other threads can't so the code |
| 791 | // either has to deoptimize when this case is detected or execute a |
| 792 | // check that the current thread is the initializing thread. The |
| 793 | // current |
| 794 | // |
| 795 | // Patches basically look like this: |
| 796 | // |
| 797 | // |
| 798 | // patch_site: jmp patch stub ;; will be patched |
| 799 | // continue: ... |
| 800 | // ... |
| 801 | // ... |
| 802 | // ... |
| 803 | // |
| 804 | // They have a stub which looks like this: |
| 805 | // |
| 806 | // ;; patch body |
| 807 | // movl <const>, reg (for class constants) |
| 808 | // <or> movl [reg1 + <const>], reg (for field offsets) |
| 809 | // <or> movl reg, [reg1 + <const>] (for field offsets) |
| 810 | // <being_init offset> <bytes to copy> <bytes to skip> |
| 811 | // patch_stub: call Runtime1::patch_code (through a runtime stub) |
| 812 | // jmp patch_site |
| 813 | // |
| 814 | // |
| 815 | // A normal patch is done by rewriting the patch body, usually a move, |
| 816 | // and then copying it into place over top of the jmp instruction |
| 817 | // being careful to flush caches and doing it in an MP-safe way. The |
| 818 | // constants following the patch body are used to find various pieces |
| 819 | // of the patch relative to the call site for Runtime1::patch_code. |
| 820 | // The case for getstatic and putstatic is more complicated because |
| 821 | // getstatic and putstatic have special semantics when executing while |
| 822 | // the class is being initialized. getstatic/putstatic on a class |
| 823 | // which is being_initialized may be executed by the initializing |
| 824 | // thread but other threads have to block when they execute it. This |
| 825 | // is accomplished in compiled code by executing a test of the current |
| 826 | // thread against the initializing thread of the class. It's emitted |
| 827 | // as boilerplate in their stub which allows the patched code to be |
| 828 | // executed before it's copied back into the main body of the nmethod. |
| 829 | // |
| 830 | // being_init: get_thread(<tmp reg> |
| 831 | // cmpl [reg1 + <init_thread_offset>], <tmp reg> |
| 832 | // jne patch_stub |
| 833 | // movl [reg1 + <const>], reg (for field offsets) <or> |
| 834 | // movl reg, [reg1 + <const>] (for field offsets) |
| 835 | // jmp continue |
| 836 | // <being_init offset> <bytes to copy> <bytes to skip> |
| 837 | // patch_stub: jmp Runtim1::patch_code (through a runtime stub) |
| 838 | // jmp patch_site |
| 839 | // |
| 840 | // If the class is being initialized the patch body is rewritten and |
| 841 | // the patch site is rewritten to jump to being_init, instead of |
| 842 | // patch_stub. Whenever this code is executed it checks the current |
| 843 | // thread against the intializing thread so other threads will enter |
| 844 | // the runtime and end up blocked waiting the class to finish |
| 845 | // initializing inside the calls to resolve_field below. The |
| 846 | // initializing class will continue on it's way. Once the class is |
| 847 | // fully_initialized, the intializing_thread of the class becomes |
| 848 | // NULL, so the next thread to execute this code will fail the test, |
| 849 | // call into patch_code and complete the patching process by copying |
| 850 | // the patch body back into the main part of the nmethod and resume |
| 851 | // executing. |
| 852 | |
| 853 | // NB: |
| 854 | // |
| 855 | // Patchable instruction sequences inherently exhibit race conditions, |
| 856 | // where thread A is patching an instruction at the same time thread B |
| 857 | // is executing it. The algorithms we use ensure that any observation |
| 858 | // that B can make on any intermediate states during A's patching will |
| 859 | // always end up with a correct outcome. This is easiest if there are |
| 860 | // few or no intermediate states. (Some inline caches have two |
| 861 | // related instructions that must be patched in tandem. For those, |
| 862 | // intermediate states seem to be unavoidable, but we will get the |
| 863 | // right answer from all possible observation orders.) |
| 864 | // |
| 865 | // When patching the entry instruction at the head of a method, or a |
| 866 | // linkable call instruction inside of a method, we try very hard to |
| 867 | // use a patch sequence which executes as a single memory transaction. |
| 868 | // This means, in practice, that when thread A patches an instruction, |
| 869 | // it should patch a 32-bit or 64-bit word that somehow overlaps the |
| 870 | // instruction or is contained in it. We believe that memory hardware |
| 871 | // will never break up such a word write, if it is naturally aligned |
| 872 | // for the word being written. We also know that some CPUs work very |
| 873 | // hard to create atomic updates even of naturally unaligned words, |
| 874 | // but we don't want to bet the farm on this always working. |
| 875 | // |
| 876 | // Therefore, if there is any chance of a race condition, we try to |
| 877 | // patch only naturally aligned words, as single, full-word writes. |
| 878 | |
| 879 | JRT_ENTRY(void, Runtime1::patch_code(JavaThread* thread, Runtime1::StubID stub_id )) |
| 880 | NOT_PRODUCT(_patch_code_slowcase_cnt++;) |
| 881 | |
| 882 | ResourceMark rm(thread); |
| 883 | RegisterMap reg_map(thread, false); |
| 884 | frame runtime_frame = thread->last_frame(); |
| 885 | frame caller_frame = runtime_frame.sender(®_map); |
| 886 | |
| 887 | // last java frame on stack |
| 888 | vframeStream vfst(thread, true); |
| 889 | assert(!vfst.at_end(), "Java frame must exist" ); |
| 890 | |
| 891 | methodHandle caller_method(THREAD, vfst.method()); |
| 892 | // Note that caller_method->code() may not be same as caller_code because of OSR's |
| 893 | // Note also that in the presence of inlining it is not guaranteed |
| 894 | // that caller_method() == caller_code->method() |
| 895 | |
| 896 | int bci = vfst.bci(); |
| 897 | Bytecodes::Code code = caller_method()->java_code_at(bci); |
| 898 | |
| 899 | // this is used by assertions in the access_field_patching_id |
| 900 | BasicType patch_field_type = T_ILLEGAL; |
| 901 | bool deoptimize_for_volatile = false; |
| 902 | bool deoptimize_for_atomic = false; |
| 903 | int patch_field_offset = -1; |
| 904 | Klass* init_klass = NULL; // klass needed by load_klass_patching code |
| 905 | Klass* load_klass = NULL; // klass needed by load_klass_patching code |
| 906 | Handle mirror(THREAD, NULL); // oop needed by load_mirror_patching code |
| 907 | Handle appendix(THREAD, NULL); // oop needed by appendix_patching code |
| 908 | bool load_klass_or_mirror_patch_id = |
| 909 | (stub_id == Runtime1::load_klass_patching_id || stub_id == Runtime1::load_mirror_patching_id); |
| 910 | |
| 911 | if (stub_id == Runtime1::access_field_patching_id) { |
| 912 | |
| 913 | Bytecode_field field_access(caller_method, bci); |
| 914 | fieldDescriptor result; // initialize class if needed |
| 915 | Bytecodes::Code code = field_access.code(); |
| 916 | constantPoolHandle constants(THREAD, caller_method->constants()); |
| 917 | LinkResolver::resolve_field_access(result, constants, field_access.index(), caller_method, Bytecodes::java_code(code), CHECK); |
| 918 | patch_field_offset = result.offset(); |
| 919 | |
| 920 | // If we're patching a field which is volatile then at compile it |
| 921 | // must not have been know to be volatile, so the generated code |
| 922 | // isn't correct for a volatile reference. The nmethod has to be |
| 923 | // deoptimized so that the code can be regenerated correctly. |
| 924 | // This check is only needed for access_field_patching since this |
| 925 | // is the path for patching field offsets. load_klass is only |
| 926 | // used for patching references to oops which don't need special |
| 927 | // handling in the volatile case. |
| 928 | |
| 929 | deoptimize_for_volatile = result.access_flags().is_volatile(); |
| 930 | |
| 931 | // If we are patching a field which should be atomic, then |
| 932 | // the generated code is not correct either, force deoptimizing. |
| 933 | // We need to only cover T_LONG and T_DOUBLE fields, as we can |
| 934 | // break access atomicity only for them. |
| 935 | |
| 936 | // Strictly speaking, the deoptimization on 64-bit platforms |
| 937 | // is unnecessary, and T_LONG stores on 32-bit platforms need |
| 938 | // to be handled by special patching code when AlwaysAtomicAccesses |
| 939 | // becomes product feature. At this point, we are still going |
| 940 | // for the deoptimization for consistency against volatile |
| 941 | // accesses. |
| 942 | |
| 943 | patch_field_type = result.field_type(); |
| 944 | deoptimize_for_atomic = (AlwaysAtomicAccesses && (patch_field_type == T_DOUBLE || patch_field_type == T_LONG)); |
| 945 | |
| 946 | } else if (load_klass_or_mirror_patch_id) { |
| 947 | Klass* k = NULL; |
| 948 | switch (code) { |
| 949 | case Bytecodes::_putstatic: |
| 950 | case Bytecodes::_getstatic: |
| 951 | { Klass* klass = resolve_field_return_klass(caller_method, bci, CHECK); |
| 952 | init_klass = klass; |
| 953 | mirror = Handle(THREAD, klass->java_mirror()); |
| 954 | } |
| 955 | break; |
| 956 | case Bytecodes::_new: |
| 957 | { Bytecode_new bnew(caller_method(), caller_method->bcp_from(bci)); |
| 958 | k = caller_method->constants()->klass_at(bnew.index(), CHECK); |
| 959 | } |
| 960 | break; |
| 961 | case Bytecodes::_multianewarray: |
| 962 | { Bytecode_multianewarray mna(caller_method(), caller_method->bcp_from(bci)); |
| 963 | k = caller_method->constants()->klass_at(mna.index(), CHECK); |
| 964 | } |
| 965 | break; |
| 966 | case Bytecodes::_instanceof: |
| 967 | { Bytecode_instanceof io(caller_method(), caller_method->bcp_from(bci)); |
| 968 | k = caller_method->constants()->klass_at(io.index(), CHECK); |
| 969 | } |
| 970 | break; |
| 971 | case Bytecodes::_checkcast: |
| 972 | { Bytecode_checkcast cc(caller_method(), caller_method->bcp_from(bci)); |
| 973 | k = caller_method->constants()->klass_at(cc.index(), CHECK); |
| 974 | } |
| 975 | break; |
| 976 | case Bytecodes::_anewarray: |
| 977 | { Bytecode_anewarray anew(caller_method(), caller_method->bcp_from(bci)); |
| 978 | Klass* ek = caller_method->constants()->klass_at(anew.index(), CHECK); |
| 979 | k = ek->array_klass(CHECK); |
| 980 | } |
| 981 | break; |
| 982 | case Bytecodes::_ldc: |
| 983 | case Bytecodes::_ldc_w: |
| 984 | { |
| 985 | Bytecode_loadconstant cc(caller_method, bci); |
| 986 | oop m = cc.resolve_constant(CHECK); |
| 987 | mirror = Handle(THREAD, m); |
| 988 | } |
| 989 | break; |
| 990 | default: fatal("unexpected bytecode for load_klass_or_mirror_patch_id" ); |
| 991 | } |
| 992 | load_klass = k; |
| 993 | } else if (stub_id == load_appendix_patching_id) { |
| 994 | Bytecode_invoke bytecode(caller_method, bci); |
| 995 | Bytecodes::Code bc = bytecode.invoke_code(); |
| 996 | |
| 997 | CallInfo info; |
| 998 | constantPoolHandle pool(thread, caller_method->constants()); |
| 999 | int index = bytecode.index(); |
| 1000 | LinkResolver::resolve_invoke(info, Handle(), pool, index, bc, CHECK); |
| 1001 | switch (bc) { |
| 1002 | case Bytecodes::_invokehandle: { |
| 1003 | int cache_index = ConstantPool::decode_cpcache_index(index, true); |
| 1004 | assert(cache_index >= 0 && cache_index < pool->cache()->length(), "unexpected cache index" ); |
| 1005 | ConstantPoolCacheEntry* cpce = pool->cache()->entry_at(cache_index); |
| 1006 | cpce->set_method_handle(pool, info); |
| 1007 | appendix = Handle(THREAD, cpce->appendix_if_resolved(pool)); // just in case somebody already resolved the entry |
| 1008 | break; |
| 1009 | } |
| 1010 | case Bytecodes::_invokedynamic: { |
| 1011 | ConstantPoolCacheEntry* cpce = pool->invokedynamic_cp_cache_entry_at(index); |
| 1012 | cpce->set_dynamic_call(pool, info); |
| 1013 | appendix = Handle(THREAD, cpce->appendix_if_resolved(pool)); // just in case somebody already resolved the entry |
| 1014 | break; |
| 1015 | } |
| 1016 | default: fatal("unexpected bytecode for load_appendix_patching_id" ); |
| 1017 | } |
| 1018 | } else { |
| 1019 | ShouldNotReachHere(); |
| 1020 | } |
| 1021 | |
| 1022 | if (deoptimize_for_volatile || deoptimize_for_atomic) { |
| 1023 | // At compile time we assumed the field wasn't volatile/atomic but after |
| 1024 | // loading it turns out it was volatile/atomic so we have to throw the |
| 1025 | // compiled code out and let it be regenerated. |
| 1026 | if (TracePatching) { |
| 1027 | if (deoptimize_for_volatile) { |
| 1028 | tty->print_cr("Deoptimizing for patching volatile field reference" ); |
| 1029 | } |
| 1030 | if (deoptimize_for_atomic) { |
| 1031 | tty->print_cr("Deoptimizing for patching atomic field reference" ); |
| 1032 | } |
| 1033 | } |
| 1034 | |
| 1035 | // It's possible the nmethod was invalidated in the last |
| 1036 | // safepoint, but if it's still alive then make it not_entrant. |
| 1037 | nmethod* nm = CodeCache::find_nmethod(caller_frame.pc()); |
| 1038 | if (nm != NULL) { |
| 1039 | nm->make_not_entrant(); |
| 1040 | } |
| 1041 | |
| 1042 | Deoptimization::deoptimize_frame(thread, caller_frame.id()); |
| 1043 | |
| 1044 | // Return to the now deoptimized frame. |
| 1045 | } |
| 1046 | |
| 1047 | // Now copy code back |
| 1048 | |
| 1049 | { |
| 1050 | MutexLocker ml_patch (Patching_lock, Mutex::_no_safepoint_check_flag); |
| 1051 | // |
| 1052 | // Deoptimization may have happened while we waited for the lock. |
| 1053 | // In that case we don't bother to do any patching we just return |
| 1054 | // and let the deopt happen |
| 1055 | if (!caller_is_deopted()) { |
| 1056 | NativeGeneralJump* jump = nativeGeneralJump_at(caller_frame.pc()); |
| 1057 | address instr_pc = jump->jump_destination(); |
| 1058 | NativeInstruction* ni = nativeInstruction_at(instr_pc); |
| 1059 | if (ni->is_jump() ) { |
| 1060 | // the jump has not been patched yet |
| 1061 | // The jump destination is slow case and therefore not part of the stubs |
| 1062 | // (stubs are only for StaticCalls) |
| 1063 | |
| 1064 | // format of buffer |
| 1065 | // .... |
| 1066 | // instr byte 0 <-- copy_buff |
| 1067 | // instr byte 1 |
| 1068 | // .. |
| 1069 | // instr byte n-1 |
| 1070 | // n |
| 1071 | // .... <-- call destination |
| 1072 | |
| 1073 | address stub_location = caller_frame.pc() + PatchingStub::patch_info_offset(); |
| 1074 | unsigned char* byte_count = (unsigned char*) (stub_location - 1); |
| 1075 | unsigned char* byte_skip = (unsigned char*) (stub_location - 2); |
| 1076 | unsigned char* being_initialized_entry_offset = (unsigned char*) (stub_location - 3); |
| 1077 | address copy_buff = stub_location - *byte_skip - *byte_count; |
| 1078 | address being_initialized_entry = stub_location - *being_initialized_entry_offset; |
| 1079 | if (TracePatching) { |
| 1080 | ttyLocker ttyl; |
| 1081 | tty->print_cr(" Patching %s at bci %d at address " INTPTR_FORMAT " (%s)" , Bytecodes::name(code), bci, |
| 1082 | p2i(instr_pc), (stub_id == Runtime1::access_field_patching_id) ? "field" : "klass" ); |
| 1083 | nmethod* caller_code = CodeCache::find_nmethod(caller_frame.pc()); |
| 1084 | assert(caller_code != NULL, "nmethod not found" ); |
| 1085 | |
| 1086 | // NOTE we use pc() not original_pc() because we already know they are |
| 1087 | // identical otherwise we'd have never entered this block of code |
| 1088 | |
| 1089 | const ImmutableOopMap* map = caller_code->oop_map_for_return_address(caller_frame.pc()); |
| 1090 | assert(map != NULL, "null check" ); |
| 1091 | map->print(); |
| 1092 | tty->cr(); |
| 1093 | |
| 1094 | Disassembler::decode(copy_buff, copy_buff + *byte_count, tty); |
| 1095 | } |
| 1096 | // depending on the code below, do_patch says whether to copy the patch body back into the nmethod |
| 1097 | bool do_patch = true; |
| 1098 | if (stub_id == Runtime1::access_field_patching_id) { |
| 1099 | // The offset may not be correct if the class was not loaded at code generation time. |
| 1100 | // Set it now. |
| 1101 | NativeMovRegMem* n_move = nativeMovRegMem_at(copy_buff); |
| 1102 | assert(n_move->offset() == 0 || (n_move->offset() == 4 && (patch_field_type == T_DOUBLE || patch_field_type == T_LONG)), "illegal offset for type" ); |
| 1103 | assert(patch_field_offset >= 0, "illegal offset" ); |
| 1104 | n_move->add_offset_in_bytes(patch_field_offset); |
| 1105 | } else if (load_klass_or_mirror_patch_id) { |
| 1106 | // If a getstatic or putstatic is referencing a klass which |
| 1107 | // isn't fully initialized, the patch body isn't copied into |
| 1108 | // place until initialization is complete. In this case the |
| 1109 | // patch site is setup so that any threads besides the |
| 1110 | // initializing thread are forced to come into the VM and |
| 1111 | // block. |
| 1112 | do_patch = (code != Bytecodes::_getstatic && code != Bytecodes::_putstatic) || |
| 1113 | InstanceKlass::cast(init_klass)->is_initialized(); |
| 1114 | NativeGeneralJump* jump = nativeGeneralJump_at(instr_pc); |
| 1115 | if (jump->jump_destination() == being_initialized_entry) { |
| 1116 | assert(do_patch == true, "initialization must be complete at this point" ); |
| 1117 | } else { |
| 1118 | // patch the instruction <move reg, klass> |
| 1119 | NativeMovConstReg* n_copy = nativeMovConstReg_at(copy_buff); |
| 1120 | |
| 1121 | assert(n_copy->data() == 0 || |
| 1122 | n_copy->data() == (intptr_t)Universe::non_oop_word(), |
| 1123 | "illegal init value" ); |
| 1124 | if (stub_id == Runtime1::load_klass_patching_id) { |
| 1125 | assert(load_klass != NULL, "klass not set" ); |
| 1126 | n_copy->set_data((intx) (load_klass)); |
| 1127 | } else { |
| 1128 | assert(mirror() != NULL, "klass not set" ); |
| 1129 | // Don't need a G1 pre-barrier here since we assert above that data isn't an oop. |
| 1130 | n_copy->set_data(cast_from_oop<intx>(mirror())); |
| 1131 | } |
| 1132 | |
| 1133 | if (TracePatching) { |
| 1134 | Disassembler::decode(copy_buff, copy_buff + *byte_count, tty); |
| 1135 | } |
| 1136 | } |
| 1137 | } else if (stub_id == Runtime1::load_appendix_patching_id) { |
| 1138 | NativeMovConstReg* n_copy = nativeMovConstReg_at(copy_buff); |
| 1139 | assert(n_copy->data() == 0 || |
| 1140 | n_copy->data() == (intptr_t)Universe::non_oop_word(), |
| 1141 | "illegal init value" ); |
| 1142 | n_copy->set_data(cast_from_oop<intx>(appendix())); |
| 1143 | |
| 1144 | if (TracePatching) { |
| 1145 | Disassembler::decode(copy_buff, copy_buff + *byte_count, tty); |
| 1146 | } |
| 1147 | } else { |
| 1148 | ShouldNotReachHere(); |
| 1149 | } |
| 1150 | |
| 1151 | #if defined(SPARC) || defined(PPC32) |
| 1152 | if (load_klass_or_mirror_patch_id || |
| 1153 | stub_id == Runtime1::load_appendix_patching_id) { |
| 1154 | // Update the location in the nmethod with the proper |
| 1155 | // metadata. When the code was generated, a NULL was stuffed |
| 1156 | // in the metadata table and that table needs to be update to |
| 1157 | // have the right value. On intel the value is kept |
| 1158 | // directly in the instruction instead of in the metadata |
| 1159 | // table, so set_data above effectively updated the value. |
| 1160 | nmethod* nm = CodeCache::find_nmethod(instr_pc); |
| 1161 | assert(nm != NULL, "invalid nmethod_pc" ); |
| 1162 | RelocIterator mds(nm, copy_buff, copy_buff + 1); |
| 1163 | bool found = false; |
| 1164 | while (mds.next() && !found) { |
| 1165 | if (mds.type() == relocInfo::oop_type) { |
| 1166 | assert(stub_id == Runtime1::load_mirror_patching_id || |
| 1167 | stub_id == Runtime1::load_appendix_patching_id, "wrong stub id" ); |
| 1168 | oop_Relocation* r = mds.oop_reloc(); |
| 1169 | oop* oop_adr = r->oop_addr(); |
| 1170 | *oop_adr = stub_id == Runtime1::load_mirror_patching_id ? mirror() : appendix(); |
| 1171 | r->fix_oop_relocation(); |
| 1172 | found = true; |
| 1173 | } else if (mds.type() == relocInfo::metadata_type) { |
| 1174 | assert(stub_id == Runtime1::load_klass_patching_id, "wrong stub id" ); |
| 1175 | metadata_Relocation* r = mds.metadata_reloc(); |
| 1176 | Metadata** metadata_adr = r->metadata_addr(); |
| 1177 | *metadata_adr = load_klass; |
| 1178 | r->fix_metadata_relocation(); |
| 1179 | found = true; |
| 1180 | } |
| 1181 | } |
| 1182 | assert(found, "the metadata must exist!" ); |
| 1183 | } |
| 1184 | #endif |
| 1185 | if (do_patch) { |
| 1186 | // replace instructions |
| 1187 | // first replace the tail, then the call |
| 1188 | #ifdef ARM |
| 1189 | if((load_klass_or_mirror_patch_id || |
| 1190 | stub_id == Runtime1::load_appendix_patching_id) && |
| 1191 | nativeMovConstReg_at(copy_buff)->is_pc_relative()) { |
| 1192 | nmethod* nm = CodeCache::find_nmethod(instr_pc); |
| 1193 | address addr = NULL; |
| 1194 | assert(nm != NULL, "invalid nmethod_pc" ); |
| 1195 | RelocIterator mds(nm, copy_buff, copy_buff + 1); |
| 1196 | while (mds.next()) { |
| 1197 | if (mds.type() == relocInfo::oop_type) { |
| 1198 | assert(stub_id == Runtime1::load_mirror_patching_id || |
| 1199 | stub_id == Runtime1::load_appendix_patching_id, "wrong stub id" ); |
| 1200 | oop_Relocation* r = mds.oop_reloc(); |
| 1201 | addr = (address)r->oop_addr(); |
| 1202 | break; |
| 1203 | } else if (mds.type() == relocInfo::metadata_type) { |
| 1204 | assert(stub_id == Runtime1::load_klass_patching_id, "wrong stub id" ); |
| 1205 | metadata_Relocation* r = mds.metadata_reloc(); |
| 1206 | addr = (address)r->metadata_addr(); |
| 1207 | break; |
| 1208 | } |
| 1209 | } |
| 1210 | assert(addr != NULL, "metadata relocation must exist" ); |
| 1211 | copy_buff -= *byte_count; |
| 1212 | NativeMovConstReg* n_copy2 = nativeMovConstReg_at(copy_buff); |
| 1213 | n_copy2->set_pc_relative_offset(addr, instr_pc); |
| 1214 | } |
| 1215 | #endif |
| 1216 | |
| 1217 | for (int i = NativeGeneralJump::instruction_size; i < *byte_count; i++) { |
| 1218 | address ptr = copy_buff + i; |
| 1219 | int a_byte = (*ptr) & 0xFF; |
| 1220 | address dst = instr_pc + i; |
| 1221 | *(unsigned char*)dst = (unsigned char) a_byte; |
| 1222 | } |
| 1223 | ICache::invalidate_range(instr_pc, *byte_count); |
| 1224 | NativeGeneralJump::replace_mt_safe(instr_pc, copy_buff); |
| 1225 | |
| 1226 | if (load_klass_or_mirror_patch_id || |
| 1227 | stub_id == Runtime1::load_appendix_patching_id) { |
| 1228 | relocInfo::relocType rtype = |
| 1229 | (stub_id == Runtime1::load_klass_patching_id) ? |
| 1230 | relocInfo::metadata_type : |
| 1231 | relocInfo::oop_type; |
| 1232 | // update relocInfo to metadata |
| 1233 | nmethod* nm = CodeCache::find_nmethod(instr_pc); |
| 1234 | assert(nm != NULL, "invalid nmethod_pc" ); |
| 1235 | |
| 1236 | // The old patch site is now a move instruction so update |
| 1237 | // the reloc info so that it will get updated during |
| 1238 | // future GCs. |
| 1239 | RelocIterator iter(nm, (address)instr_pc, (address)(instr_pc + 1)); |
| 1240 | relocInfo::change_reloc_info_for_address(&iter, (address) instr_pc, |
| 1241 | relocInfo::none, rtype); |
| 1242 | #ifdef SPARC |
| 1243 | // Sparc takes two relocations for an metadata so update the second one. |
| 1244 | address instr_pc2 = instr_pc + NativeMovConstReg::add_offset; |
| 1245 | RelocIterator iter2(nm, instr_pc2, instr_pc2 + 1); |
| 1246 | relocInfo::change_reloc_info_for_address(&iter2, (address) instr_pc2, |
| 1247 | relocInfo::none, rtype); |
| 1248 | #endif |
| 1249 | #ifdef PPC32 |
| 1250 | { address instr_pc2 = instr_pc + NativeMovConstReg::lo_offset; |
| 1251 | RelocIterator iter2(nm, instr_pc2, instr_pc2 + 1); |
| 1252 | relocInfo::change_reloc_info_for_address(&iter2, (address) instr_pc2, |
| 1253 | relocInfo::none, rtype); |
| 1254 | } |
| 1255 | #endif |
| 1256 | } |
| 1257 | |
| 1258 | } else { |
| 1259 | ICache::invalidate_range(copy_buff, *byte_count); |
| 1260 | NativeGeneralJump::insert_unconditional(instr_pc, being_initialized_entry); |
| 1261 | } |
| 1262 | } |
| 1263 | } |
| 1264 | } |
| 1265 | |
| 1266 | // If we are patching in a non-perm oop, make sure the nmethod |
| 1267 | // is on the right list. |
| 1268 | { |
| 1269 | MutexLocker ml_code (CodeCache_lock, Mutex::_no_safepoint_check_flag); |
| 1270 | nmethod* nm = CodeCache::find_nmethod(caller_frame.pc()); |
| 1271 | guarantee(nm != NULL, "only nmethods can contain non-perm oops" ); |
| 1272 | |
| 1273 | // Since we've patched some oops in the nmethod, |
| 1274 | // (re)register it with the heap. |
| 1275 | Universe::heap()->register_nmethod(nm); |
| 1276 | } |
| 1277 | JRT_END |
| 1278 | |
| 1279 | #else // DEOPTIMIZE_WHEN_PATCHING |
| 1280 | |
| 1281 | JRT_ENTRY(void, Runtime1::patch_code(JavaThread* thread, Runtime1::StubID stub_id )) |
| 1282 | RegisterMap reg_map(thread, false); |
| 1283 | |
| 1284 | NOT_PRODUCT(_patch_code_slowcase_cnt++;) |
| 1285 | if (TracePatching) { |
| 1286 | tty->print_cr("Deoptimizing because patch is needed" ); |
| 1287 | } |
| 1288 | |
| 1289 | frame runtime_frame = thread->last_frame(); |
| 1290 | frame caller_frame = runtime_frame.sender(®_map); |
| 1291 | |
| 1292 | // It's possible the nmethod was invalidated in the last |
| 1293 | // safepoint, but if it's still alive then make it not_entrant. |
| 1294 | nmethod* nm = CodeCache::find_nmethod(caller_frame.pc()); |
| 1295 | if (nm != NULL) { |
| 1296 | nm->make_not_entrant(); |
| 1297 | } |
| 1298 | |
| 1299 | Deoptimization::deoptimize_frame(thread, caller_frame.id()); |
| 1300 | |
| 1301 | // Return to the now deoptimized frame. |
| 1302 | JRT_END |
| 1303 | |
| 1304 | #endif // DEOPTIMIZE_WHEN_PATCHING |
| 1305 | |
| 1306 | // |
| 1307 | // Entry point for compiled code. We want to patch a nmethod. |
| 1308 | // We don't do a normal VM transition here because we want to |
| 1309 | // know after the patching is complete and any safepoint(s) are taken |
| 1310 | // if the calling nmethod was deoptimized. We do this by calling a |
| 1311 | // helper method which does the normal VM transition and when it |
| 1312 | // completes we can check for deoptimization. This simplifies the |
| 1313 | // assembly code in the cpu directories. |
| 1314 | // |
| 1315 | int Runtime1::move_klass_patching(JavaThread* thread) { |
| 1316 | // |
| 1317 | // NOTE: we are still in Java |
| 1318 | // |
| 1319 | Thread* THREAD = thread; |
| 1320 | debug_only(NoHandleMark nhm;) |
| 1321 | { |
| 1322 | // Enter VM mode |
| 1323 | |
| 1324 | ResetNoHandleMark rnhm; |
| 1325 | patch_code(thread, load_klass_patching_id); |
| 1326 | } |
| 1327 | // Back in JAVA, use no oops DON'T safepoint |
| 1328 | |
| 1329 | // Return true if calling code is deoptimized |
| 1330 | |
| 1331 | return caller_is_deopted(); |
| 1332 | } |
| 1333 | |
| 1334 | int Runtime1::move_mirror_patching(JavaThread* thread) { |
| 1335 | // |
| 1336 | // NOTE: we are still in Java |
| 1337 | // |
| 1338 | Thread* THREAD = thread; |
| 1339 | debug_only(NoHandleMark nhm;) |
| 1340 | { |
| 1341 | // Enter VM mode |
| 1342 | |
| 1343 | ResetNoHandleMark rnhm; |
| 1344 | patch_code(thread, load_mirror_patching_id); |
| 1345 | } |
| 1346 | // Back in JAVA, use no oops DON'T safepoint |
| 1347 | |
| 1348 | // Return true if calling code is deoptimized |
| 1349 | |
| 1350 | return caller_is_deopted(); |
| 1351 | } |
| 1352 | |
| 1353 | int Runtime1::move_appendix_patching(JavaThread* thread) { |
| 1354 | // |
| 1355 | // NOTE: we are still in Java |
| 1356 | // |
| 1357 | Thread* THREAD = thread; |
| 1358 | debug_only(NoHandleMark nhm;) |
| 1359 | { |
| 1360 | // Enter VM mode |
| 1361 | |
| 1362 | ResetNoHandleMark rnhm; |
| 1363 | patch_code(thread, load_appendix_patching_id); |
| 1364 | } |
| 1365 | // Back in JAVA, use no oops DON'T safepoint |
| 1366 | |
| 1367 | // Return true if calling code is deoptimized |
| 1368 | |
| 1369 | return caller_is_deopted(); |
| 1370 | } |
| 1371 | // |
| 1372 | // Entry point for compiled code. We want to patch a nmethod. |
| 1373 | // We don't do a normal VM transition here because we want to |
| 1374 | // know after the patching is complete and any safepoint(s) are taken |
| 1375 | // if the calling nmethod was deoptimized. We do this by calling a |
| 1376 | // helper method which does the normal VM transition and when it |
| 1377 | // completes we can check for deoptimization. This simplifies the |
| 1378 | // assembly code in the cpu directories. |
| 1379 | // |
| 1380 | |
| 1381 | int Runtime1::access_field_patching(JavaThread* thread) { |
| 1382 | // |
| 1383 | // NOTE: we are still in Java |
| 1384 | // |
| 1385 | Thread* THREAD = thread; |
| 1386 | debug_only(NoHandleMark nhm;) |
| 1387 | { |
| 1388 | // Enter VM mode |
| 1389 | |
| 1390 | ResetNoHandleMark rnhm; |
| 1391 | patch_code(thread, access_field_patching_id); |
| 1392 | } |
| 1393 | // Back in JAVA, use no oops DON'T safepoint |
| 1394 | |
| 1395 | // Return true if calling code is deoptimized |
| 1396 | |
| 1397 | return caller_is_deopted(); |
| 1398 | JRT_END |
| 1399 | |
| 1400 | |
| 1401 | JRT_LEAF(void, Runtime1::trace_block_entry(jint block_id)) |
| 1402 | // for now we just print out the block id |
| 1403 | tty->print("%d " , block_id); |
| 1404 | JRT_END |
| 1405 | |
| 1406 | |
| 1407 | JRT_LEAF(int, Runtime1::is_instance_of(oopDesc* mirror, oopDesc* obj)) |
| 1408 | // had to return int instead of bool, otherwise there may be a mismatch |
| 1409 | // between the C calling convention and the Java one. |
| 1410 | // e.g., on x86, GCC may clear only %al when returning a bool false, but |
| 1411 | // JVM takes the whole %eax as the return value, which may misinterpret |
| 1412 | // the return value as a boolean true. |
| 1413 | |
| 1414 | assert(mirror != NULL, "should null-check on mirror before calling" ); |
| 1415 | Klass* k = java_lang_Class::as_Klass(mirror); |
| 1416 | return (k != NULL && obj != NULL && obj->is_a(k)) ? 1 : 0; |
| 1417 | JRT_END |
| 1418 | |
| 1419 | JRT_ENTRY(void, Runtime1::predicate_failed_trap(JavaThread* thread)) |
| 1420 | ResourceMark rm; |
| 1421 | |
| 1422 | assert(!TieredCompilation, "incompatible with tiered compilation" ); |
| 1423 | |
| 1424 | RegisterMap reg_map(thread, false); |
| 1425 | frame runtime_frame = thread->last_frame(); |
| 1426 | frame caller_frame = runtime_frame.sender(®_map); |
| 1427 | |
| 1428 | nmethod* nm = CodeCache::find_nmethod(caller_frame.pc()); |
| 1429 | assert (nm != NULL, "no more nmethod?" ); |
| 1430 | nm->make_not_entrant(); |
| 1431 | |
| 1432 | methodHandle m(nm->method()); |
| 1433 | MethodData* mdo = m->method_data(); |
| 1434 | |
| 1435 | if (mdo == NULL && !HAS_PENDING_EXCEPTION) { |
| 1436 | // Build an MDO. Ignore errors like OutOfMemory; |
| 1437 | // that simply means we won't have an MDO to update. |
| 1438 | Method::build_interpreter_method_data(m, THREAD); |
| 1439 | if (HAS_PENDING_EXCEPTION) { |
| 1440 | assert((PENDING_EXCEPTION->is_a(SystemDictionary::OutOfMemoryError_klass())), "we expect only an OOM error here" ); |
| 1441 | CLEAR_PENDING_EXCEPTION; |
| 1442 | } |
| 1443 | mdo = m->method_data(); |
| 1444 | } |
| 1445 | |
| 1446 | if (mdo != NULL) { |
| 1447 | mdo->inc_trap_count(Deoptimization::Reason_none); |
| 1448 | } |
| 1449 | |
| 1450 | if (TracePredicateFailedTraps) { |
| 1451 | stringStream ss1, ss2; |
| 1452 | vframeStream vfst(thread); |
| 1453 | methodHandle inlinee = methodHandle(vfst.method()); |
| 1454 | inlinee->print_short_name(&ss1); |
| 1455 | m->print_short_name(&ss2); |
| 1456 | tty->print_cr("Predicate failed trap in method %s at bci %d inlined in %s at pc " INTPTR_FORMAT, ss1.as_string(), vfst.bci(), ss2.as_string(), p2i(caller_frame.pc())); |
| 1457 | } |
| 1458 | |
| 1459 | |
| 1460 | Deoptimization::deoptimize_frame(thread, caller_frame.id()); |
| 1461 | |
| 1462 | JRT_END |
| 1463 | |
| 1464 | #ifndef PRODUCT |
| 1465 | void Runtime1::print_statistics() { |
| 1466 | tty->print_cr("C1 Runtime statistics:" ); |
| 1467 | tty->print_cr(" _resolve_invoke_virtual_cnt: %d" , SharedRuntime::_resolve_virtual_ctr); |
| 1468 | tty->print_cr(" _resolve_invoke_opt_virtual_cnt: %d" , SharedRuntime::_resolve_opt_virtual_ctr); |
| 1469 | tty->print_cr(" _resolve_invoke_static_cnt: %d" , SharedRuntime::_resolve_static_ctr); |
| 1470 | tty->print_cr(" _handle_wrong_method_cnt: %d" , SharedRuntime::_wrong_method_ctr); |
| 1471 | tty->print_cr(" _ic_miss_cnt: %d" , SharedRuntime::_ic_miss_ctr); |
| 1472 | tty->print_cr(" _generic_arraycopy_cnt: %d" , _generic_arraycopy_cnt); |
| 1473 | tty->print_cr(" _generic_arraycopystub_cnt: %d" , _generic_arraycopystub_cnt); |
| 1474 | tty->print_cr(" _byte_arraycopy_cnt: %d" , _byte_arraycopy_stub_cnt); |
| 1475 | tty->print_cr(" _short_arraycopy_cnt: %d" , _short_arraycopy_stub_cnt); |
| 1476 | tty->print_cr(" _int_arraycopy_cnt: %d" , _int_arraycopy_stub_cnt); |
| 1477 | tty->print_cr(" _long_arraycopy_cnt: %d" , _long_arraycopy_stub_cnt); |
| 1478 | tty->print_cr(" _oop_arraycopy_cnt: %d" , _oop_arraycopy_stub_cnt); |
| 1479 | tty->print_cr(" _arraycopy_slowcase_cnt: %d" , _arraycopy_slowcase_cnt); |
| 1480 | tty->print_cr(" _arraycopy_checkcast_cnt: %d" , _arraycopy_checkcast_cnt); |
| 1481 | tty->print_cr(" _arraycopy_checkcast_attempt_cnt:%d" , _arraycopy_checkcast_attempt_cnt); |
| 1482 | |
| 1483 | tty->print_cr(" _new_type_array_slowcase_cnt: %d" , _new_type_array_slowcase_cnt); |
| 1484 | tty->print_cr(" _new_object_array_slowcase_cnt: %d" , _new_object_array_slowcase_cnt); |
| 1485 | tty->print_cr(" _new_instance_slowcase_cnt: %d" , _new_instance_slowcase_cnt); |
| 1486 | tty->print_cr(" _new_multi_array_slowcase_cnt: %d" , _new_multi_array_slowcase_cnt); |
| 1487 | tty->print_cr(" _monitorenter_slowcase_cnt: %d" , _monitorenter_slowcase_cnt); |
| 1488 | tty->print_cr(" _monitorexit_slowcase_cnt: %d" , _monitorexit_slowcase_cnt); |
| 1489 | tty->print_cr(" _patch_code_slowcase_cnt: %d" , _patch_code_slowcase_cnt); |
| 1490 | |
| 1491 | tty->print_cr(" _throw_range_check_exception_count: %d:" , _throw_range_check_exception_count); |
| 1492 | tty->print_cr(" _throw_index_exception_count: %d:" , _throw_index_exception_count); |
| 1493 | tty->print_cr(" _throw_div0_exception_count: %d:" , _throw_div0_exception_count); |
| 1494 | tty->print_cr(" _throw_null_pointer_exception_count: %d:" , _throw_null_pointer_exception_count); |
| 1495 | tty->print_cr(" _throw_class_cast_exception_count: %d:" , _throw_class_cast_exception_count); |
| 1496 | tty->print_cr(" _throw_incompatible_class_change_error_count: %d:" , _throw_incompatible_class_change_error_count); |
| 1497 | tty->print_cr(" _throw_array_store_exception_count: %d:" , _throw_array_store_exception_count); |
| 1498 | tty->print_cr(" _throw_count: %d:" , _throw_count); |
| 1499 | |
| 1500 | SharedRuntime::print_ic_miss_histogram(); |
| 1501 | tty->cr(); |
| 1502 | } |
| 1503 | #endif // PRODUCT |
| 1504 | |