| 1 | /* |
| 2 | * Copyright (c) 2001, 2019, Oracle and/or its affiliates. All rights reserved. |
| 3 | * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
| 4 | * |
| 5 | * This code is free software; you can redistribute it and/or modify it |
| 6 | * under the terms of the GNU General Public License version 2 only, as |
| 7 | * published by the Free Software Foundation. |
| 8 | * |
| 9 | * This code is distributed in the hope that it will be useful, but WITHOUT |
| 10 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| 11 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| 12 | * version 2 for more details (a copy is included in the LICENSE file that |
| 13 | * accompanied this code). |
| 14 | * |
| 15 | * You should have received a copy of the GNU General Public License version |
| 16 | * 2 along with this work; if not, write to the Free Software Foundation, |
| 17 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
| 18 | * |
| 19 | * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
| 20 | * or visit www.oracle.com if you need additional information or have any |
| 21 | * questions. |
| 22 | * |
| 23 | */ |
| 24 | |
| 25 | #include "precompiled.hpp" |
| 26 | #include "classfile/classLoaderDataGraph.hpp" |
| 27 | #include "classfile/metadataOnStackMark.hpp" |
| 28 | #include "classfile/stringTable.hpp" |
| 29 | #include "code/codeCache.hpp" |
| 30 | #include "code/icBuffer.hpp" |
| 31 | #include "gc/g1/g1Allocator.inline.hpp" |
| 32 | #include "gc/g1/g1Arguments.hpp" |
| 33 | #include "gc/g1/g1BarrierSet.hpp" |
| 34 | #include "gc/g1/g1CollectedHeap.inline.hpp" |
| 35 | #include "gc/g1/g1CollectionSet.hpp" |
| 36 | #include "gc/g1/g1CollectorState.hpp" |
| 37 | #include "gc/g1/g1ConcurrentRefine.hpp" |
| 38 | #include "gc/g1/g1ConcurrentRefineThread.hpp" |
| 39 | #include "gc/g1/g1ConcurrentMarkThread.inline.hpp" |
| 40 | #include "gc/g1/g1DirtyCardQueue.hpp" |
| 41 | #include "gc/g1/g1EvacStats.inline.hpp" |
| 42 | #include "gc/g1/g1FullCollector.hpp" |
| 43 | #include "gc/g1/g1GCPhaseTimes.hpp" |
| 44 | #include "gc/g1/g1HeapSizingPolicy.hpp" |
| 45 | #include "gc/g1/g1HeapTransition.hpp" |
| 46 | #include "gc/g1/g1HeapVerifier.hpp" |
| 47 | #include "gc/g1/g1HotCardCache.hpp" |
| 48 | #include "gc/g1/g1MemoryPool.hpp" |
| 49 | #include "gc/g1/g1OopClosures.inline.hpp" |
| 50 | #include "gc/g1/g1ParScanThreadState.inline.hpp" |
| 51 | #include "gc/g1/g1Policy.hpp" |
| 52 | #include "gc/g1/g1RegionToSpaceMapper.hpp" |
| 53 | #include "gc/g1/g1RemSet.hpp" |
| 54 | #include "gc/g1/g1RootClosures.hpp" |
| 55 | #include "gc/g1/g1RootProcessor.hpp" |
| 56 | #include "gc/g1/g1SATBMarkQueueSet.hpp" |
| 57 | #include "gc/g1/g1StringDedup.hpp" |
| 58 | #include "gc/g1/g1ThreadLocalData.hpp" |
| 59 | #include "gc/g1/g1YCTypes.hpp" |
| 60 | #include "gc/g1/g1YoungRemSetSamplingThread.hpp" |
| 61 | #include "gc/g1/g1VMOperations.hpp" |
| 62 | #include "gc/g1/heapRegion.inline.hpp" |
| 63 | #include "gc/g1/heapRegionRemSet.hpp" |
| 64 | #include "gc/g1/heapRegionSet.inline.hpp" |
| 65 | #include "gc/shared/gcBehaviours.hpp" |
| 66 | #include "gc/shared/gcHeapSummary.hpp" |
| 67 | #include "gc/shared/gcId.hpp" |
| 68 | #include "gc/shared/gcLocker.hpp" |
| 69 | #include "gc/shared/gcTimer.hpp" |
| 70 | #include "gc/shared/gcTrace.hpp" |
| 71 | #include "gc/shared/gcTraceTime.inline.hpp" |
| 72 | #include "gc/shared/generationSpec.hpp" |
| 73 | #include "gc/shared/isGCActiveMark.hpp" |
| 74 | #include "gc/shared/oopStorageParState.hpp" |
| 75 | #include "gc/shared/parallelCleaning.hpp" |
| 76 | #include "gc/shared/preservedMarks.inline.hpp" |
| 77 | #include "gc/shared/suspendibleThreadSet.hpp" |
| 78 | #include "gc/shared/referenceProcessor.inline.hpp" |
| 79 | #include "gc/shared/taskqueue.inline.hpp" |
| 80 | #include "gc/shared/weakProcessor.inline.hpp" |
| 81 | #include "gc/shared/workerPolicy.hpp" |
| 82 | #include "logging/log.hpp" |
| 83 | #include "memory/allocation.hpp" |
| 84 | #include "memory/iterator.hpp" |
| 85 | #include "memory/resourceArea.hpp" |
| 86 | #include "memory/universe.hpp" |
| 87 | #include "oops/access.inline.hpp" |
| 88 | #include "oops/compressedOops.inline.hpp" |
| 89 | #include "oops/oop.inline.hpp" |
| 90 | #include "runtime/atomic.hpp" |
| 91 | #include "runtime/flags/flagSetting.hpp" |
| 92 | #include "runtime/handles.inline.hpp" |
| 93 | #include "runtime/init.hpp" |
| 94 | #include "runtime/orderAccess.hpp" |
| 95 | #include "runtime/threadSMR.hpp" |
| 96 | #include "runtime/vmThread.hpp" |
| 97 | #include "utilities/align.hpp" |
| 98 | #include "utilities/globalDefinitions.hpp" |
| 99 | #include "utilities/stack.inline.hpp" |
| 100 | |
| 101 | size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0; |
| 102 | |
| 103 | // INVARIANTS/NOTES |
| 104 | // |
| 105 | // All allocation activity covered by the G1CollectedHeap interface is |
| 106 | // serialized by acquiring the HeapLock. This happens in mem_allocate |
| 107 | // and allocate_new_tlab, which are the "entry" points to the |
| 108 | // allocation code from the rest of the JVM. (Note that this does not |
| 109 | // apply to TLAB allocation, which is not part of this interface: it |
| 110 | // is done by clients of this interface.) |
| 111 | |
| 112 | class RedirtyLoggedCardTableEntryClosure : public G1CardTableEntryClosure { |
| 113 | private: |
| 114 | size_t _num_dirtied; |
| 115 | G1CollectedHeap* _g1h; |
| 116 | G1CardTable* _g1_ct; |
| 117 | |
| 118 | HeapRegion* region_for_card(CardValue* card_ptr) const { |
| 119 | return _g1h->heap_region_containing(_g1_ct->addr_for(card_ptr)); |
| 120 | } |
| 121 | |
| 122 | bool will_become_free(HeapRegion* hr) const { |
| 123 | // A region will be freed by free_collection_set if the region is in the |
| 124 | // collection set and has not had an evacuation failure. |
| 125 | return _g1h->is_in_cset(hr) && !hr->evacuation_failed(); |
| 126 | } |
| 127 | |
| 128 | public: |
| 129 | RedirtyLoggedCardTableEntryClosure(G1CollectedHeap* g1h) : G1CardTableEntryClosure(), |
| 130 | _num_dirtied(0), _g1h(g1h), _g1_ct(g1h->card_table()) { } |
| 131 | |
| 132 | bool do_card_ptr(CardValue* card_ptr, uint worker_i) { |
| 133 | HeapRegion* hr = region_for_card(card_ptr); |
| 134 | |
| 135 | // Should only dirty cards in regions that won't be freed. |
| 136 | if (!will_become_free(hr)) { |
| 137 | *card_ptr = G1CardTable::dirty_card_val(); |
| 138 | _num_dirtied++; |
| 139 | } |
| 140 | |
| 141 | return true; |
| 142 | } |
| 143 | |
| 144 | size_t num_dirtied() const { return _num_dirtied; } |
| 145 | }; |
| 146 | |
| 147 | |
| 148 | void G1RegionMappingChangedListener::reset_from_card_cache(uint start_idx, size_t num_regions) { |
| 149 | HeapRegionRemSet::invalidate_from_card_cache(start_idx, num_regions); |
| 150 | } |
| 151 | |
| 152 | void G1RegionMappingChangedListener::on_commit(uint start_idx, size_t num_regions, bool zero_filled) { |
| 153 | // The from card cache is not the memory that is actually committed. So we cannot |
| 154 | // take advantage of the zero_filled parameter. |
| 155 | reset_from_card_cache(start_idx, num_regions); |
| 156 | } |
| 157 | |
| 158 | Tickspan G1CollectedHeap::run_task(AbstractGangTask* task) { |
| 159 | Ticks start = Ticks::now(); |
| 160 | workers()->run_task(task, workers()->active_workers()); |
| 161 | return Ticks::now() - start; |
| 162 | } |
| 163 | |
| 164 | HeapRegion* G1CollectedHeap::new_heap_region(uint hrs_index, |
| 165 | MemRegion mr) { |
| 166 | return new HeapRegion(hrs_index, bot(), mr); |
| 167 | } |
| 168 | |
| 169 | // Private methods. |
| 170 | |
| 171 | HeapRegion* G1CollectedHeap::new_region(size_t word_size, HeapRegionType type, bool do_expand) { |
| 172 | assert(!is_humongous(word_size) || word_size <= HeapRegion::GrainWords, |
| 173 | "the only time we use this to allocate a humongous region is " |
| 174 | "when we are allocating a single humongous region" ); |
| 175 | |
| 176 | HeapRegion* res = _hrm->allocate_free_region(type); |
| 177 | |
| 178 | if (res == NULL && do_expand && _expand_heap_after_alloc_failure) { |
| 179 | // Currently, only attempts to allocate GC alloc regions set |
| 180 | // do_expand to true. So, we should only reach here during a |
| 181 | // safepoint. If this assumption changes we might have to |
| 182 | // reconsider the use of _expand_heap_after_alloc_failure. |
| 183 | assert(SafepointSynchronize::is_at_safepoint(), "invariant" ); |
| 184 | |
| 185 | log_debug(gc, ergo, heap)("Attempt heap expansion (region allocation request failed). Allocation request: " SIZE_FORMAT "B" , |
| 186 | word_size * HeapWordSize); |
| 187 | |
| 188 | if (expand(word_size * HeapWordSize)) { |
| 189 | // Given that expand() succeeded in expanding the heap, and we |
| 190 | // always expand the heap by an amount aligned to the heap |
| 191 | // region size, the free list should in theory not be empty. |
| 192 | // In either case allocate_free_region() will check for NULL. |
| 193 | res = _hrm->allocate_free_region(type); |
| 194 | } else { |
| 195 | _expand_heap_after_alloc_failure = false; |
| 196 | } |
| 197 | } |
| 198 | return res; |
| 199 | } |
| 200 | |
| 201 | HeapWord* |
| 202 | G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first, |
| 203 | uint num_regions, |
| 204 | size_t word_size) { |
| 205 | assert(first != G1_NO_HRM_INDEX, "pre-condition" ); |
| 206 | assert(is_humongous(word_size), "word_size should be humongous" ); |
| 207 | assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition" ); |
| 208 | |
| 209 | // Index of last region in the series. |
| 210 | uint last = first + num_regions - 1; |
| 211 | |
| 212 | // We need to initialize the region(s) we just discovered. This is |
| 213 | // a bit tricky given that it can happen concurrently with |
| 214 | // refinement threads refining cards on these regions and |
| 215 | // potentially wanting to refine the BOT as they are scanning |
| 216 | // those cards (this can happen shortly after a cleanup; see CR |
| 217 | // 6991377). So we have to set up the region(s) carefully and in |
| 218 | // a specific order. |
| 219 | |
| 220 | // The word size sum of all the regions we will allocate. |
| 221 | size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords; |
| 222 | assert(word_size <= word_size_sum, "sanity" ); |
| 223 | |
| 224 | // This will be the "starts humongous" region. |
| 225 | HeapRegion* first_hr = region_at(first); |
| 226 | // The header of the new object will be placed at the bottom of |
| 227 | // the first region. |
| 228 | HeapWord* new_obj = first_hr->bottom(); |
| 229 | // This will be the new top of the new object. |
| 230 | HeapWord* obj_top = new_obj + word_size; |
| 231 | |
| 232 | // First, we need to zero the header of the space that we will be |
| 233 | // allocating. When we update top further down, some refinement |
| 234 | // threads might try to scan the region. By zeroing the header we |
| 235 | // ensure that any thread that will try to scan the region will |
| 236 | // come across the zero klass word and bail out. |
| 237 | // |
| 238 | // NOTE: It would not have been correct to have used |
| 239 | // CollectedHeap::fill_with_object() and make the space look like |
| 240 | // an int array. The thread that is doing the allocation will |
| 241 | // later update the object header to a potentially different array |
| 242 | // type and, for a very short period of time, the klass and length |
| 243 | // fields will be inconsistent. This could cause a refinement |
| 244 | // thread to calculate the object size incorrectly. |
| 245 | Copy::fill_to_words(new_obj, oopDesc::header_size(), 0); |
| 246 | |
| 247 | // Next, pad out the unused tail of the last region with filler |
| 248 | // objects, for improved usage accounting. |
| 249 | // How many words we use for filler objects. |
| 250 | size_t word_fill_size = word_size_sum - word_size; |
| 251 | |
| 252 | // How many words memory we "waste" which cannot hold a filler object. |
| 253 | size_t words_not_fillable = 0; |
| 254 | |
| 255 | if (word_fill_size >= min_fill_size()) { |
| 256 | fill_with_objects(obj_top, word_fill_size); |
| 257 | } else if (word_fill_size > 0) { |
| 258 | // We have space to fill, but we cannot fit an object there. |
| 259 | words_not_fillable = word_fill_size; |
| 260 | word_fill_size = 0; |
| 261 | } |
| 262 | |
| 263 | // We will set up the first region as "starts humongous". This |
| 264 | // will also update the BOT covering all the regions to reflect |
| 265 | // that there is a single object that starts at the bottom of the |
| 266 | // first region. |
| 267 | first_hr->set_starts_humongous(obj_top, word_fill_size); |
| 268 | _policy->remset_tracker()->update_at_allocate(first_hr); |
| 269 | // Then, if there are any, we will set up the "continues |
| 270 | // humongous" regions. |
| 271 | HeapRegion* hr = NULL; |
| 272 | for (uint i = first + 1; i <= last; ++i) { |
| 273 | hr = region_at(i); |
| 274 | hr->set_continues_humongous(first_hr); |
| 275 | _policy->remset_tracker()->update_at_allocate(hr); |
| 276 | } |
| 277 | |
| 278 | // Up to this point no concurrent thread would have been able to |
| 279 | // do any scanning on any region in this series. All the top |
| 280 | // fields still point to bottom, so the intersection between |
| 281 | // [bottom,top] and [card_start,card_end] will be empty. Before we |
| 282 | // update the top fields, we'll do a storestore to make sure that |
| 283 | // no thread sees the update to top before the zeroing of the |
| 284 | // object header and the BOT initialization. |
| 285 | OrderAccess::storestore(); |
| 286 | |
| 287 | // Now, we will update the top fields of the "continues humongous" |
| 288 | // regions except the last one. |
| 289 | for (uint i = first; i < last; ++i) { |
| 290 | hr = region_at(i); |
| 291 | hr->set_top(hr->end()); |
| 292 | } |
| 293 | |
| 294 | hr = region_at(last); |
| 295 | // If we cannot fit a filler object, we must set top to the end |
| 296 | // of the humongous object, otherwise we cannot iterate the heap |
| 297 | // and the BOT will not be complete. |
| 298 | hr->set_top(hr->end() - words_not_fillable); |
| 299 | |
| 300 | assert(hr->bottom() < obj_top && obj_top <= hr->end(), |
| 301 | "obj_top should be in last region" ); |
| 302 | |
| 303 | _verifier->check_bitmaps("Humongous Region Allocation" , first_hr); |
| 304 | |
| 305 | assert(words_not_fillable == 0 || |
| 306 | first_hr->bottom() + word_size_sum - words_not_fillable == hr->top(), |
| 307 | "Miscalculation in humongous allocation" ); |
| 308 | |
| 309 | increase_used((word_size_sum - words_not_fillable) * HeapWordSize); |
| 310 | |
| 311 | for (uint i = first; i <= last; ++i) { |
| 312 | hr = region_at(i); |
| 313 | _humongous_set.add(hr); |
| 314 | _hr_printer.alloc(hr); |
| 315 | } |
| 316 | |
| 317 | return new_obj; |
| 318 | } |
| 319 | |
| 320 | size_t G1CollectedHeap::humongous_obj_size_in_regions(size_t word_size) { |
| 321 | assert(is_humongous(word_size), "Object of size " SIZE_FORMAT " must be humongous here" , word_size); |
| 322 | return align_up(word_size, HeapRegion::GrainWords) / HeapRegion::GrainWords; |
| 323 | } |
| 324 | |
| 325 | // If could fit into free regions w/o expansion, try. |
| 326 | // Otherwise, if can expand, do so. |
| 327 | // Otherwise, if using ex regions might help, try with ex given back. |
| 328 | HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size) { |
| 329 | assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */); |
| 330 | |
| 331 | _verifier->verify_region_sets_optional(); |
| 332 | |
| 333 | uint first = G1_NO_HRM_INDEX; |
| 334 | uint obj_regions = (uint) humongous_obj_size_in_regions(word_size); |
| 335 | |
| 336 | if (obj_regions == 1) { |
| 337 | // Only one region to allocate, try to use a fast path by directly allocating |
| 338 | // from the free lists. Do not try to expand here, we will potentially do that |
| 339 | // later. |
| 340 | HeapRegion* hr = new_region(word_size, HeapRegionType::Humongous, false /* do_expand */); |
| 341 | if (hr != NULL) { |
| 342 | first = hr->hrm_index(); |
| 343 | } |
| 344 | } else { |
| 345 | // Policy: Try only empty regions (i.e. already committed first). Maybe we |
| 346 | // are lucky enough to find some. |
| 347 | first = _hrm->find_contiguous_only_empty(obj_regions); |
| 348 | if (first != G1_NO_HRM_INDEX) { |
| 349 | _hrm->allocate_free_regions_starting_at(first, obj_regions); |
| 350 | } |
| 351 | } |
| 352 | |
| 353 | if (first == G1_NO_HRM_INDEX) { |
| 354 | // Policy: We could not find enough regions for the humongous object in the |
| 355 | // free list. Look through the heap to find a mix of free and uncommitted regions. |
| 356 | // If so, try expansion. |
| 357 | first = _hrm->find_contiguous_empty_or_unavailable(obj_regions); |
| 358 | if (first != G1_NO_HRM_INDEX) { |
| 359 | // We found something. Make sure these regions are committed, i.e. expand |
| 360 | // the heap. Alternatively we could do a defragmentation GC. |
| 361 | log_debug(gc, ergo, heap)("Attempt heap expansion (humongous allocation request failed). Allocation request: " SIZE_FORMAT "B" , |
| 362 | word_size * HeapWordSize); |
| 363 | |
| 364 | _hrm->expand_at(first, obj_regions, workers()); |
| 365 | policy()->record_new_heap_size(num_regions()); |
| 366 | |
| 367 | #ifdef ASSERT |
| 368 | for (uint i = first; i < first + obj_regions; ++i) { |
| 369 | HeapRegion* hr = region_at(i); |
| 370 | assert(hr->is_free(), "sanity" ); |
| 371 | assert(hr->is_empty(), "sanity" ); |
| 372 | assert(is_on_master_free_list(hr), "sanity" ); |
| 373 | } |
| 374 | #endif |
| 375 | _hrm->allocate_free_regions_starting_at(first, obj_regions); |
| 376 | } else { |
| 377 | // Policy: Potentially trigger a defragmentation GC. |
| 378 | } |
| 379 | } |
| 380 | |
| 381 | HeapWord* result = NULL; |
| 382 | if (first != G1_NO_HRM_INDEX) { |
| 383 | result = humongous_obj_allocate_initialize_regions(first, obj_regions, word_size); |
| 384 | assert(result != NULL, "it should always return a valid result" ); |
| 385 | |
| 386 | // A successful humongous object allocation changes the used space |
| 387 | // information of the old generation so we need to recalculate the |
| 388 | // sizes and update the jstat counters here. |
| 389 | g1mm()->update_sizes(); |
| 390 | } |
| 391 | |
| 392 | _verifier->verify_region_sets_optional(); |
| 393 | |
| 394 | return result; |
| 395 | } |
| 396 | |
| 397 | HeapWord* G1CollectedHeap::allocate_new_tlab(size_t min_size, |
| 398 | size_t requested_size, |
| 399 | size_t* actual_size) { |
| 400 | assert_heap_not_locked_and_not_at_safepoint(); |
| 401 | assert(!is_humongous(requested_size), "we do not allow humongous TLABs" ); |
| 402 | |
| 403 | return attempt_allocation(min_size, requested_size, actual_size); |
| 404 | } |
| 405 | |
| 406 | HeapWord* |
| 407 | G1CollectedHeap::mem_allocate(size_t word_size, |
| 408 | bool* gc_overhead_limit_was_exceeded) { |
| 409 | assert_heap_not_locked_and_not_at_safepoint(); |
| 410 | |
| 411 | if (is_humongous(word_size)) { |
| 412 | return attempt_allocation_humongous(word_size); |
| 413 | } |
| 414 | size_t dummy = 0; |
| 415 | return attempt_allocation(word_size, word_size, &dummy); |
| 416 | } |
| 417 | |
| 418 | HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size) { |
| 419 | ResourceMark rm; // For retrieving the thread names in log messages. |
| 420 | |
| 421 | // Make sure you read the note in attempt_allocation_humongous(). |
| 422 | |
| 423 | assert_heap_not_locked_and_not_at_safepoint(); |
| 424 | assert(!is_humongous(word_size), "attempt_allocation_slow() should not " |
| 425 | "be called for humongous allocation requests" ); |
| 426 | |
| 427 | // We should only get here after the first-level allocation attempt |
| 428 | // (attempt_allocation()) failed to allocate. |
| 429 | |
| 430 | // We will loop until a) we manage to successfully perform the |
| 431 | // allocation or b) we successfully schedule a collection which |
| 432 | // fails to perform the allocation. b) is the only case when we'll |
| 433 | // return NULL. |
| 434 | HeapWord* result = NULL; |
| 435 | for (uint try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) { |
| 436 | bool should_try_gc; |
| 437 | uint gc_count_before; |
| 438 | |
| 439 | { |
| 440 | MutexLocker x(Heap_lock); |
| 441 | result = _allocator->attempt_allocation_locked(word_size); |
| 442 | if (result != NULL) { |
| 443 | return result; |
| 444 | } |
| 445 | |
| 446 | // If the GCLocker is active and we are bound for a GC, try expanding young gen. |
| 447 | // This is different to when only GCLocker::needs_gc() is set: try to avoid |
| 448 | // waiting because the GCLocker is active to not wait too long. |
| 449 | if (GCLocker::is_active_and_needs_gc() && policy()->can_expand_young_list()) { |
| 450 | // No need for an ergo message here, can_expand_young_list() does this when |
| 451 | // it returns true. |
| 452 | result = _allocator->attempt_allocation_force(word_size); |
| 453 | if (result != NULL) { |
| 454 | return result; |
| 455 | } |
| 456 | } |
| 457 | // Only try a GC if the GCLocker does not signal the need for a GC. Wait until |
| 458 | // the GCLocker initiated GC has been performed and then retry. This includes |
| 459 | // the case when the GC Locker is not active but has not been performed. |
| 460 | should_try_gc = !GCLocker::needs_gc(); |
| 461 | // Read the GC count while still holding the Heap_lock. |
| 462 | gc_count_before = total_collections(); |
| 463 | } |
| 464 | |
| 465 | if (should_try_gc) { |
| 466 | bool succeeded; |
| 467 | result = do_collection_pause(word_size, gc_count_before, &succeeded, |
| 468 | GCCause::_g1_inc_collection_pause); |
| 469 | if (result != NULL) { |
| 470 | assert(succeeded, "only way to get back a non-NULL result" ); |
| 471 | log_trace(gc, alloc)("%s: Successfully scheduled collection returning " PTR_FORMAT, |
| 472 | Thread::current()->name(), p2i(result)); |
| 473 | return result; |
| 474 | } |
| 475 | |
| 476 | if (succeeded) { |
| 477 | // We successfully scheduled a collection which failed to allocate. No |
| 478 | // point in trying to allocate further. We'll just return NULL. |
| 479 | log_trace(gc, alloc)("%s: Successfully scheduled collection failing to allocate " |
| 480 | SIZE_FORMAT " words" , Thread::current()->name(), word_size); |
| 481 | return NULL; |
| 482 | } |
| 483 | log_trace(gc, alloc)("%s: Unsuccessfully scheduled collection allocating " SIZE_FORMAT " words" , |
| 484 | Thread::current()->name(), word_size); |
| 485 | } else { |
| 486 | // Failed to schedule a collection. |
| 487 | if (gclocker_retry_count > GCLockerRetryAllocationCount) { |
| 488 | log_warning(gc, alloc)("%s: Retried waiting for GCLocker too often allocating " |
| 489 | SIZE_FORMAT " words" , Thread::current()->name(), word_size); |
| 490 | return NULL; |
| 491 | } |
| 492 | log_trace(gc, alloc)("%s: Stall until clear" , Thread::current()->name()); |
| 493 | // The GCLocker is either active or the GCLocker initiated |
| 494 | // GC has not yet been performed. Stall until it is and |
| 495 | // then retry the allocation. |
| 496 | GCLocker::stall_until_clear(); |
| 497 | gclocker_retry_count += 1; |
| 498 | } |
| 499 | |
| 500 | // We can reach here if we were unsuccessful in scheduling a |
| 501 | // collection (because another thread beat us to it) or if we were |
| 502 | // stalled due to the GC locker. In either can we should retry the |
| 503 | // allocation attempt in case another thread successfully |
| 504 | // performed a collection and reclaimed enough space. We do the |
| 505 | // first attempt (without holding the Heap_lock) here and the |
| 506 | // follow-on attempt will be at the start of the next loop |
| 507 | // iteration (after taking the Heap_lock). |
| 508 | size_t dummy = 0; |
| 509 | result = _allocator->attempt_allocation(word_size, word_size, &dummy); |
| 510 | if (result != NULL) { |
| 511 | return result; |
| 512 | } |
| 513 | |
| 514 | // Give a warning if we seem to be looping forever. |
| 515 | if ((QueuedAllocationWarningCount > 0) && |
| 516 | (try_count % QueuedAllocationWarningCount == 0)) { |
| 517 | log_warning(gc, alloc)("%s: Retried allocation %u times for " SIZE_FORMAT " words" , |
| 518 | Thread::current()->name(), try_count, word_size); |
| 519 | } |
| 520 | } |
| 521 | |
| 522 | ShouldNotReachHere(); |
| 523 | return NULL; |
| 524 | } |
| 525 | |
| 526 | void G1CollectedHeap::begin_archive_alloc_range(bool open) { |
| 527 | assert_at_safepoint_on_vm_thread(); |
| 528 | if (_archive_allocator == NULL) { |
| 529 | _archive_allocator = G1ArchiveAllocator::create_allocator(this, open); |
| 530 | } |
| 531 | } |
| 532 | |
| 533 | bool G1CollectedHeap::is_archive_alloc_too_large(size_t word_size) { |
| 534 | // Allocations in archive regions cannot be of a size that would be considered |
| 535 | // humongous even for a minimum-sized region, because G1 region sizes/boundaries |
| 536 | // may be different at archive-restore time. |
| 537 | return word_size >= humongous_threshold_for(HeapRegion::min_region_size_in_words()); |
| 538 | } |
| 539 | |
| 540 | HeapWord* G1CollectedHeap::archive_mem_allocate(size_t word_size) { |
| 541 | assert_at_safepoint_on_vm_thread(); |
| 542 | assert(_archive_allocator != NULL, "_archive_allocator not initialized" ); |
| 543 | if (is_archive_alloc_too_large(word_size)) { |
| 544 | return NULL; |
| 545 | } |
| 546 | return _archive_allocator->archive_mem_allocate(word_size); |
| 547 | } |
| 548 | |
| 549 | void G1CollectedHeap::end_archive_alloc_range(GrowableArray<MemRegion>* ranges, |
| 550 | size_t end_alignment_in_bytes) { |
| 551 | assert_at_safepoint_on_vm_thread(); |
| 552 | assert(_archive_allocator != NULL, "_archive_allocator not initialized" ); |
| 553 | |
| 554 | // Call complete_archive to do the real work, filling in the MemRegion |
| 555 | // array with the archive regions. |
| 556 | _archive_allocator->complete_archive(ranges, end_alignment_in_bytes); |
| 557 | delete _archive_allocator; |
| 558 | _archive_allocator = NULL; |
| 559 | } |
| 560 | |
| 561 | bool G1CollectedHeap::check_archive_addresses(MemRegion* ranges, size_t count) { |
| 562 | assert(ranges != NULL, "MemRegion array NULL" ); |
| 563 | assert(count != 0, "No MemRegions provided" ); |
| 564 | MemRegion reserved = _hrm->reserved(); |
| 565 | for (size_t i = 0; i < count; i++) { |
| 566 | if (!reserved.contains(ranges[i].start()) || !reserved.contains(ranges[i].last())) { |
| 567 | return false; |
| 568 | } |
| 569 | } |
| 570 | return true; |
| 571 | } |
| 572 | |
| 573 | bool G1CollectedHeap::alloc_archive_regions(MemRegion* ranges, |
| 574 | size_t count, |
| 575 | bool open) { |
| 576 | assert(!is_init_completed(), "Expect to be called at JVM init time" ); |
| 577 | assert(ranges != NULL, "MemRegion array NULL" ); |
| 578 | assert(count != 0, "No MemRegions provided" ); |
| 579 | MutexLocker x(Heap_lock); |
| 580 | |
| 581 | MemRegion reserved = _hrm->reserved(); |
| 582 | HeapWord* prev_last_addr = NULL; |
| 583 | HeapRegion* prev_last_region = NULL; |
| 584 | |
| 585 | // Temporarily disable pretouching of heap pages. This interface is used |
| 586 | // when mmap'ing archived heap data in, so pre-touching is wasted. |
| 587 | FlagSetting fs(AlwaysPreTouch, false); |
| 588 | |
| 589 | // Enable archive object checking used by G1MarkSweep. We have to let it know |
| 590 | // about each archive range, so that objects in those ranges aren't marked. |
| 591 | G1ArchiveAllocator::enable_archive_object_check(); |
| 592 | |
| 593 | // For each specified MemRegion range, allocate the corresponding G1 |
| 594 | // regions and mark them as archive regions. We expect the ranges |
| 595 | // in ascending starting address order, without overlap. |
| 596 | for (size_t i = 0; i < count; i++) { |
| 597 | MemRegion curr_range = ranges[i]; |
| 598 | HeapWord* start_address = curr_range.start(); |
| 599 | size_t word_size = curr_range.word_size(); |
| 600 | HeapWord* last_address = curr_range.last(); |
| 601 | size_t commits = 0; |
| 602 | |
| 603 | guarantee(reserved.contains(start_address) && reserved.contains(last_address), |
| 604 | "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]" , |
| 605 | p2i(start_address), p2i(last_address)); |
| 606 | guarantee(start_address > prev_last_addr, |
| 607 | "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT , |
| 608 | p2i(start_address), p2i(prev_last_addr)); |
| 609 | prev_last_addr = last_address; |
| 610 | |
| 611 | // Check for ranges that start in the same G1 region in which the previous |
| 612 | // range ended, and adjust the start address so we don't try to allocate |
| 613 | // the same region again. If the current range is entirely within that |
| 614 | // region, skip it, just adjusting the recorded top. |
| 615 | HeapRegion* start_region = _hrm->addr_to_region(start_address); |
| 616 | if ((prev_last_region != NULL) && (start_region == prev_last_region)) { |
| 617 | start_address = start_region->end(); |
| 618 | if (start_address > last_address) { |
| 619 | increase_used(word_size * HeapWordSize); |
| 620 | start_region->set_top(last_address + 1); |
| 621 | continue; |
| 622 | } |
| 623 | start_region->set_top(start_address); |
| 624 | curr_range = MemRegion(start_address, last_address + 1); |
| 625 | start_region = _hrm->addr_to_region(start_address); |
| 626 | } |
| 627 | |
| 628 | // Perform the actual region allocation, exiting if it fails. |
| 629 | // Then note how much new space we have allocated. |
| 630 | if (!_hrm->allocate_containing_regions(curr_range, &commits, workers())) { |
| 631 | return false; |
| 632 | } |
| 633 | increase_used(word_size * HeapWordSize); |
| 634 | if (commits != 0) { |
| 635 | log_debug(gc, ergo, heap)("Attempt heap expansion (allocate archive regions). Total size: " SIZE_FORMAT "B" , |
| 636 | HeapRegion::GrainWords * HeapWordSize * commits); |
| 637 | |
| 638 | } |
| 639 | |
| 640 | // Mark each G1 region touched by the range as archive, add it to |
| 641 | // the old set, and set top. |
| 642 | HeapRegion* curr_region = _hrm->addr_to_region(start_address); |
| 643 | HeapRegion* last_region = _hrm->addr_to_region(last_address); |
| 644 | prev_last_region = last_region; |
| 645 | |
| 646 | while (curr_region != NULL) { |
| 647 | assert(curr_region->is_empty() && !curr_region->is_pinned(), |
| 648 | "Region already in use (index %u)" , curr_region->hrm_index()); |
| 649 | if (open) { |
| 650 | curr_region->set_open_archive(); |
| 651 | } else { |
| 652 | curr_region->set_closed_archive(); |
| 653 | } |
| 654 | _hr_printer.alloc(curr_region); |
| 655 | _archive_set.add(curr_region); |
| 656 | HeapWord* top; |
| 657 | HeapRegion* next_region; |
| 658 | if (curr_region != last_region) { |
| 659 | top = curr_region->end(); |
| 660 | next_region = _hrm->next_region_in_heap(curr_region); |
| 661 | } else { |
| 662 | top = last_address + 1; |
| 663 | next_region = NULL; |
| 664 | } |
| 665 | curr_region->set_top(top); |
| 666 | curr_region->set_first_dead(top); |
| 667 | curr_region->set_end_of_live(top); |
| 668 | curr_region = next_region; |
| 669 | } |
| 670 | |
| 671 | // Notify mark-sweep of the archive |
| 672 | G1ArchiveAllocator::set_range_archive(curr_range, open); |
| 673 | } |
| 674 | return true; |
| 675 | } |
| 676 | |
| 677 | void G1CollectedHeap::fill_archive_regions(MemRegion* ranges, size_t count) { |
| 678 | assert(!is_init_completed(), "Expect to be called at JVM init time" ); |
| 679 | assert(ranges != NULL, "MemRegion array NULL" ); |
| 680 | assert(count != 0, "No MemRegions provided" ); |
| 681 | MemRegion reserved = _hrm->reserved(); |
| 682 | HeapWord *prev_last_addr = NULL; |
| 683 | HeapRegion* prev_last_region = NULL; |
| 684 | |
| 685 | // For each MemRegion, create filler objects, if needed, in the G1 regions |
| 686 | // that contain the address range. The address range actually within the |
| 687 | // MemRegion will not be modified. That is assumed to have been initialized |
| 688 | // elsewhere, probably via an mmap of archived heap data. |
| 689 | MutexLocker x(Heap_lock); |
| 690 | for (size_t i = 0; i < count; i++) { |
| 691 | HeapWord* start_address = ranges[i].start(); |
| 692 | HeapWord* last_address = ranges[i].last(); |
| 693 | |
| 694 | assert(reserved.contains(start_address) && reserved.contains(last_address), |
| 695 | "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]" , |
| 696 | p2i(start_address), p2i(last_address)); |
| 697 | assert(start_address > prev_last_addr, |
| 698 | "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT , |
| 699 | p2i(start_address), p2i(prev_last_addr)); |
| 700 | |
| 701 | HeapRegion* start_region = _hrm->addr_to_region(start_address); |
| 702 | HeapRegion* last_region = _hrm->addr_to_region(last_address); |
| 703 | HeapWord* bottom_address = start_region->bottom(); |
| 704 | |
| 705 | // Check for a range beginning in the same region in which the |
| 706 | // previous one ended. |
| 707 | if (start_region == prev_last_region) { |
| 708 | bottom_address = prev_last_addr + 1; |
| 709 | } |
| 710 | |
| 711 | // Verify that the regions were all marked as archive regions by |
| 712 | // alloc_archive_regions. |
| 713 | HeapRegion* curr_region = start_region; |
| 714 | while (curr_region != NULL) { |
| 715 | guarantee(curr_region->is_archive(), |
| 716 | "Expected archive region at index %u" , curr_region->hrm_index()); |
| 717 | if (curr_region != last_region) { |
| 718 | curr_region = _hrm->next_region_in_heap(curr_region); |
| 719 | } else { |
| 720 | curr_region = NULL; |
| 721 | } |
| 722 | } |
| 723 | |
| 724 | prev_last_addr = last_address; |
| 725 | prev_last_region = last_region; |
| 726 | |
| 727 | // Fill the memory below the allocated range with dummy object(s), |
| 728 | // if the region bottom does not match the range start, or if the previous |
| 729 | // range ended within the same G1 region, and there is a gap. |
| 730 | if (start_address != bottom_address) { |
| 731 | size_t fill_size = pointer_delta(start_address, bottom_address); |
| 732 | G1CollectedHeap::fill_with_objects(bottom_address, fill_size); |
| 733 | increase_used(fill_size * HeapWordSize); |
| 734 | } |
| 735 | } |
| 736 | } |
| 737 | |
| 738 | inline HeapWord* G1CollectedHeap::attempt_allocation(size_t min_word_size, |
| 739 | size_t desired_word_size, |
| 740 | size_t* actual_word_size) { |
| 741 | assert_heap_not_locked_and_not_at_safepoint(); |
| 742 | assert(!is_humongous(desired_word_size), "attempt_allocation() should not " |
| 743 | "be called for humongous allocation requests" ); |
| 744 | |
| 745 | HeapWord* result = _allocator->attempt_allocation(min_word_size, desired_word_size, actual_word_size); |
| 746 | |
| 747 | if (result == NULL) { |
| 748 | *actual_word_size = desired_word_size; |
| 749 | result = attempt_allocation_slow(desired_word_size); |
| 750 | } |
| 751 | |
| 752 | assert_heap_not_locked(); |
| 753 | if (result != NULL) { |
| 754 | assert(*actual_word_size != 0, "Actual size must have been set here" ); |
| 755 | dirty_young_block(result, *actual_word_size); |
| 756 | } else { |
| 757 | *actual_word_size = 0; |
| 758 | } |
| 759 | |
| 760 | return result; |
| 761 | } |
| 762 | |
| 763 | void G1CollectedHeap::dealloc_archive_regions(MemRegion* ranges, size_t count, bool is_open) { |
| 764 | assert(!is_init_completed(), "Expect to be called at JVM init time" ); |
| 765 | assert(ranges != NULL, "MemRegion array NULL" ); |
| 766 | assert(count != 0, "No MemRegions provided" ); |
| 767 | MemRegion reserved = _hrm->reserved(); |
| 768 | HeapWord* prev_last_addr = NULL; |
| 769 | HeapRegion* prev_last_region = NULL; |
| 770 | size_t size_used = 0; |
| 771 | size_t uncommitted_regions = 0; |
| 772 | |
| 773 | // For each Memregion, free the G1 regions that constitute it, and |
| 774 | // notify mark-sweep that the range is no longer to be considered 'archive.' |
| 775 | MutexLocker x(Heap_lock); |
| 776 | for (size_t i = 0; i < count; i++) { |
| 777 | HeapWord* start_address = ranges[i].start(); |
| 778 | HeapWord* last_address = ranges[i].last(); |
| 779 | |
| 780 | assert(reserved.contains(start_address) && reserved.contains(last_address), |
| 781 | "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]" , |
| 782 | p2i(start_address), p2i(last_address)); |
| 783 | assert(start_address > prev_last_addr, |
| 784 | "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT , |
| 785 | p2i(start_address), p2i(prev_last_addr)); |
| 786 | size_used += ranges[i].byte_size(); |
| 787 | prev_last_addr = last_address; |
| 788 | |
| 789 | HeapRegion* start_region = _hrm->addr_to_region(start_address); |
| 790 | HeapRegion* last_region = _hrm->addr_to_region(last_address); |
| 791 | |
| 792 | // Check for ranges that start in the same G1 region in which the previous |
| 793 | // range ended, and adjust the start address so we don't try to free |
| 794 | // the same region again. If the current range is entirely within that |
| 795 | // region, skip it. |
| 796 | if (start_region == prev_last_region) { |
| 797 | start_address = start_region->end(); |
| 798 | if (start_address > last_address) { |
| 799 | continue; |
| 800 | } |
| 801 | start_region = _hrm->addr_to_region(start_address); |
| 802 | } |
| 803 | prev_last_region = last_region; |
| 804 | |
| 805 | // After verifying that each region was marked as an archive region by |
| 806 | // alloc_archive_regions, set it free and empty and uncommit it. |
| 807 | HeapRegion* curr_region = start_region; |
| 808 | while (curr_region != NULL) { |
| 809 | guarantee(curr_region->is_archive(), |
| 810 | "Expected archive region at index %u" , curr_region->hrm_index()); |
| 811 | uint curr_index = curr_region->hrm_index(); |
| 812 | _archive_set.remove(curr_region); |
| 813 | curr_region->set_free(); |
| 814 | curr_region->set_top(curr_region->bottom()); |
| 815 | if (curr_region != last_region) { |
| 816 | curr_region = _hrm->next_region_in_heap(curr_region); |
| 817 | } else { |
| 818 | curr_region = NULL; |
| 819 | } |
| 820 | _hrm->shrink_at(curr_index, 1); |
| 821 | uncommitted_regions++; |
| 822 | } |
| 823 | |
| 824 | // Notify mark-sweep that this is no longer an archive range. |
| 825 | G1ArchiveAllocator::clear_range_archive(ranges[i], is_open); |
| 826 | } |
| 827 | |
| 828 | if (uncommitted_regions != 0) { |
| 829 | log_debug(gc, ergo, heap)("Attempt heap shrinking (uncommitted archive regions). Total size: " SIZE_FORMAT "B" , |
| 830 | HeapRegion::GrainWords * HeapWordSize * uncommitted_regions); |
| 831 | } |
| 832 | decrease_used(size_used); |
| 833 | } |
| 834 | |
| 835 | oop G1CollectedHeap::materialize_archived_object(oop obj) { |
| 836 | assert(obj != NULL, "archived obj is NULL" ); |
| 837 | assert(G1ArchiveAllocator::is_archived_object(obj), "must be archived object" ); |
| 838 | |
| 839 | // Loading an archived object makes it strongly reachable. If it is |
| 840 | // loaded during concurrent marking, it must be enqueued to the SATB |
| 841 | // queue, shading the previously white object gray. |
| 842 | G1BarrierSet::enqueue(obj); |
| 843 | |
| 844 | return obj; |
| 845 | } |
| 846 | |
| 847 | HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size) { |
| 848 | ResourceMark rm; // For retrieving the thread names in log messages. |
| 849 | |
| 850 | // The structure of this method has a lot of similarities to |
| 851 | // attempt_allocation_slow(). The reason these two were not merged |
| 852 | // into a single one is that such a method would require several "if |
| 853 | // allocation is not humongous do this, otherwise do that" |
| 854 | // conditional paths which would obscure its flow. In fact, an early |
| 855 | // version of this code did use a unified method which was harder to |
| 856 | // follow and, as a result, it had subtle bugs that were hard to |
| 857 | // track down. So keeping these two methods separate allows each to |
| 858 | // be more readable. It will be good to keep these two in sync as |
| 859 | // much as possible. |
| 860 | |
| 861 | assert_heap_not_locked_and_not_at_safepoint(); |
| 862 | assert(is_humongous(word_size), "attempt_allocation_humongous() " |
| 863 | "should only be called for humongous allocations" ); |
| 864 | |
| 865 | // Humongous objects can exhaust the heap quickly, so we should check if we |
| 866 | // need to start a marking cycle at each humongous object allocation. We do |
| 867 | // the check before we do the actual allocation. The reason for doing it |
| 868 | // before the allocation is that we avoid having to keep track of the newly |
| 869 | // allocated memory while we do a GC. |
| 870 | if (policy()->need_to_start_conc_mark("concurrent humongous allocation" , |
| 871 | word_size)) { |
| 872 | collect(GCCause::_g1_humongous_allocation); |
| 873 | } |
| 874 | |
| 875 | // We will loop until a) we manage to successfully perform the |
| 876 | // allocation or b) we successfully schedule a collection which |
| 877 | // fails to perform the allocation. b) is the only case when we'll |
| 878 | // return NULL. |
| 879 | HeapWord* result = NULL; |
| 880 | for (uint try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) { |
| 881 | bool should_try_gc; |
| 882 | uint gc_count_before; |
| 883 | |
| 884 | |
| 885 | { |
| 886 | MutexLocker x(Heap_lock); |
| 887 | |
| 888 | // Given that humongous objects are not allocated in young |
| 889 | // regions, we'll first try to do the allocation without doing a |
| 890 | // collection hoping that there's enough space in the heap. |
| 891 | result = humongous_obj_allocate(word_size); |
| 892 | if (result != NULL) { |
| 893 | size_t size_in_regions = humongous_obj_size_in_regions(word_size); |
| 894 | policy()->add_bytes_allocated_in_old_since_last_gc(size_in_regions * HeapRegion::GrainBytes); |
| 895 | return result; |
| 896 | } |
| 897 | |
| 898 | // Only try a GC if the GCLocker does not signal the need for a GC. Wait until |
| 899 | // the GCLocker initiated GC has been performed and then retry. This includes |
| 900 | // the case when the GC Locker is not active but has not been performed. |
| 901 | should_try_gc = !GCLocker::needs_gc(); |
| 902 | // Read the GC count while still holding the Heap_lock. |
| 903 | gc_count_before = total_collections(); |
| 904 | } |
| 905 | |
| 906 | if (should_try_gc) { |
| 907 | bool succeeded; |
| 908 | result = do_collection_pause(word_size, gc_count_before, &succeeded, |
| 909 | GCCause::_g1_humongous_allocation); |
| 910 | if (result != NULL) { |
| 911 | assert(succeeded, "only way to get back a non-NULL result" ); |
| 912 | log_trace(gc, alloc)("%s: Successfully scheduled collection returning " PTR_FORMAT, |
| 913 | Thread::current()->name(), p2i(result)); |
| 914 | return result; |
| 915 | } |
| 916 | |
| 917 | if (succeeded) { |
| 918 | // We successfully scheduled a collection which failed to allocate. No |
| 919 | // point in trying to allocate further. We'll just return NULL. |
| 920 | log_trace(gc, alloc)("%s: Successfully scheduled collection failing to allocate " |
| 921 | SIZE_FORMAT " words" , Thread::current()->name(), word_size); |
| 922 | return NULL; |
| 923 | } |
| 924 | log_trace(gc, alloc)("%s: Unsuccessfully scheduled collection allocating " SIZE_FORMAT "" , |
| 925 | Thread::current()->name(), word_size); |
| 926 | } else { |
| 927 | // Failed to schedule a collection. |
| 928 | if (gclocker_retry_count > GCLockerRetryAllocationCount) { |
| 929 | log_warning(gc, alloc)("%s: Retried waiting for GCLocker too often allocating " |
| 930 | SIZE_FORMAT " words" , Thread::current()->name(), word_size); |
| 931 | return NULL; |
| 932 | } |
| 933 | log_trace(gc, alloc)("%s: Stall until clear" , Thread::current()->name()); |
| 934 | // The GCLocker is either active or the GCLocker initiated |
| 935 | // GC has not yet been performed. Stall until it is and |
| 936 | // then retry the allocation. |
| 937 | GCLocker::stall_until_clear(); |
| 938 | gclocker_retry_count += 1; |
| 939 | } |
| 940 | |
| 941 | |
| 942 | // We can reach here if we were unsuccessful in scheduling a |
| 943 | // collection (because another thread beat us to it) or if we were |
| 944 | // stalled due to the GC locker. In either can we should retry the |
| 945 | // allocation attempt in case another thread successfully |
| 946 | // performed a collection and reclaimed enough space. |
| 947 | // Humongous object allocation always needs a lock, so we wait for the retry |
| 948 | // in the next iteration of the loop, unlike for the regular iteration case. |
| 949 | // Give a warning if we seem to be looping forever. |
| 950 | |
| 951 | if ((QueuedAllocationWarningCount > 0) && |
| 952 | (try_count % QueuedAllocationWarningCount == 0)) { |
| 953 | log_warning(gc, alloc)("%s: Retried allocation %u times for " SIZE_FORMAT " words" , |
| 954 | Thread::current()->name(), try_count, word_size); |
| 955 | } |
| 956 | } |
| 957 | |
| 958 | ShouldNotReachHere(); |
| 959 | return NULL; |
| 960 | } |
| 961 | |
| 962 | HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size, |
| 963 | bool expect_null_mutator_alloc_region) { |
| 964 | assert_at_safepoint_on_vm_thread(); |
| 965 | assert(!_allocator->has_mutator_alloc_region() || !expect_null_mutator_alloc_region, |
| 966 | "the current alloc region was unexpectedly found to be non-NULL" ); |
| 967 | |
| 968 | if (!is_humongous(word_size)) { |
| 969 | return _allocator->attempt_allocation_locked(word_size); |
| 970 | } else { |
| 971 | HeapWord* result = humongous_obj_allocate(word_size); |
| 972 | if (result != NULL && policy()->need_to_start_conc_mark("STW humongous allocation" )) { |
| 973 | collector_state()->set_initiate_conc_mark_if_possible(true); |
| 974 | } |
| 975 | return result; |
| 976 | } |
| 977 | |
| 978 | ShouldNotReachHere(); |
| 979 | } |
| 980 | |
| 981 | class PostCompactionPrinterClosure: public HeapRegionClosure { |
| 982 | private: |
| 983 | G1HRPrinter* _hr_printer; |
| 984 | public: |
| 985 | bool do_heap_region(HeapRegion* hr) { |
| 986 | assert(!hr->is_young(), "not expecting to find young regions" ); |
| 987 | _hr_printer->post_compaction(hr); |
| 988 | return false; |
| 989 | } |
| 990 | |
| 991 | PostCompactionPrinterClosure(G1HRPrinter* hr_printer) |
| 992 | : _hr_printer(hr_printer) { } |
| 993 | }; |
| 994 | |
| 995 | void G1CollectedHeap::print_hrm_post_compaction() { |
| 996 | if (_hr_printer.is_active()) { |
| 997 | PostCompactionPrinterClosure cl(hr_printer()); |
| 998 | heap_region_iterate(&cl); |
| 999 | } |
| 1000 | } |
| 1001 | |
| 1002 | void G1CollectedHeap::abort_concurrent_cycle() { |
| 1003 | // If we start the compaction before the CM threads finish |
| 1004 | // scanning the root regions we might trip them over as we'll |
| 1005 | // be moving objects / updating references. So let's wait until |
| 1006 | // they are done. By telling them to abort, they should complete |
| 1007 | // early. |
| 1008 | _cm->root_regions()->abort(); |
| 1009 | _cm->root_regions()->wait_until_scan_finished(); |
| 1010 | |
| 1011 | // Disable discovery and empty the discovered lists |
| 1012 | // for the CM ref processor. |
| 1013 | _ref_processor_cm->disable_discovery(); |
| 1014 | _ref_processor_cm->abandon_partial_discovery(); |
| 1015 | _ref_processor_cm->verify_no_references_recorded(); |
| 1016 | |
| 1017 | // Abandon current iterations of concurrent marking and concurrent |
| 1018 | // refinement, if any are in progress. |
| 1019 | concurrent_mark()->concurrent_cycle_abort(); |
| 1020 | } |
| 1021 | |
| 1022 | void G1CollectedHeap::prepare_heap_for_full_collection() { |
| 1023 | // Make sure we'll choose a new allocation region afterwards. |
| 1024 | _allocator->release_mutator_alloc_region(); |
| 1025 | _allocator->abandon_gc_alloc_regions(); |
| 1026 | |
| 1027 | // We may have added regions to the current incremental collection |
| 1028 | // set between the last GC or pause and now. We need to clear the |
| 1029 | // incremental collection set and then start rebuilding it afresh |
| 1030 | // after this full GC. |
| 1031 | abandon_collection_set(collection_set()); |
| 1032 | |
| 1033 | tear_down_region_sets(false /* free_list_only */); |
| 1034 | |
| 1035 | hrm()->prepare_for_full_collection_start(); |
| 1036 | } |
| 1037 | |
| 1038 | void G1CollectedHeap::verify_before_full_collection(bool explicit_gc) { |
| 1039 | assert(!GCCause::is_user_requested_gc(gc_cause()) || explicit_gc, "invariant" ); |
| 1040 | assert_used_and_recalculate_used_equal(this); |
| 1041 | _verifier->verify_region_sets_optional(); |
| 1042 | _verifier->verify_before_gc(G1HeapVerifier::G1VerifyFull); |
| 1043 | _verifier->check_bitmaps("Full GC Start" ); |
| 1044 | } |
| 1045 | |
| 1046 | void G1CollectedHeap::prepare_heap_for_mutators() { |
| 1047 | hrm()->prepare_for_full_collection_end(); |
| 1048 | |
| 1049 | // Delete metaspaces for unloaded class loaders and clean up loader_data graph |
| 1050 | ClassLoaderDataGraph::purge(); |
| 1051 | MetaspaceUtils::verify_metrics(); |
| 1052 | |
| 1053 | // Prepare heap for normal collections. |
| 1054 | assert(num_free_regions() == 0, "we should not have added any free regions" ); |
| 1055 | rebuild_region_sets(false /* free_list_only */); |
| 1056 | abort_refinement(); |
| 1057 | resize_heap_if_necessary(); |
| 1058 | |
| 1059 | // Rebuild the strong code root lists for each region |
| 1060 | rebuild_strong_code_roots(); |
| 1061 | |
| 1062 | // Purge code root memory |
| 1063 | purge_code_root_memory(); |
| 1064 | |
| 1065 | // Start a new incremental collection set for the next pause |
| 1066 | start_new_collection_set(); |
| 1067 | |
| 1068 | _allocator->init_mutator_alloc_region(); |
| 1069 | |
| 1070 | // Post collection state updates. |
| 1071 | MetaspaceGC::compute_new_size(); |
| 1072 | } |
| 1073 | |
| 1074 | void G1CollectedHeap::abort_refinement() { |
| 1075 | if (_hot_card_cache->use_cache()) { |
| 1076 | _hot_card_cache->reset_hot_cache(); |
| 1077 | } |
| 1078 | |
| 1079 | // Discard all remembered set updates. |
| 1080 | G1BarrierSet::dirty_card_queue_set().abandon_logs(); |
| 1081 | assert(dirty_card_queue_set().completed_buffers_num() == 0, "DCQS should be empty" ); |
| 1082 | } |
| 1083 | |
| 1084 | void G1CollectedHeap::verify_after_full_collection() { |
| 1085 | _hrm->verify_optional(); |
| 1086 | _verifier->verify_region_sets_optional(); |
| 1087 | _verifier->verify_after_gc(G1HeapVerifier::G1VerifyFull); |
| 1088 | // Clear the previous marking bitmap, if needed for bitmap verification. |
| 1089 | // Note we cannot do this when we clear the next marking bitmap in |
| 1090 | // G1ConcurrentMark::abort() above since VerifyDuringGC verifies the |
| 1091 | // objects marked during a full GC against the previous bitmap. |
| 1092 | // But we need to clear it before calling check_bitmaps below since |
| 1093 | // the full GC has compacted objects and updated TAMS but not updated |
| 1094 | // the prev bitmap. |
| 1095 | if (G1VerifyBitmaps) { |
| 1096 | GCTraceTime(Debug, gc) tm("Clear Prev Bitmap for Verification" ); |
| 1097 | _cm->clear_prev_bitmap(workers()); |
| 1098 | } |
| 1099 | // This call implicitly verifies that the next bitmap is clear after Full GC. |
| 1100 | _verifier->check_bitmaps("Full GC End" ); |
| 1101 | |
| 1102 | // At this point there should be no regions in the |
| 1103 | // entire heap tagged as young. |
| 1104 | assert(check_young_list_empty(), "young list should be empty at this point" ); |
| 1105 | |
| 1106 | // Note: since we've just done a full GC, concurrent |
| 1107 | // marking is no longer active. Therefore we need not |
| 1108 | // re-enable reference discovery for the CM ref processor. |
| 1109 | // That will be done at the start of the next marking cycle. |
| 1110 | // We also know that the STW processor should no longer |
| 1111 | // discover any new references. |
| 1112 | assert(!_ref_processor_stw->discovery_enabled(), "Postcondition" ); |
| 1113 | assert(!_ref_processor_cm->discovery_enabled(), "Postcondition" ); |
| 1114 | _ref_processor_stw->verify_no_references_recorded(); |
| 1115 | _ref_processor_cm->verify_no_references_recorded(); |
| 1116 | } |
| 1117 | |
| 1118 | void G1CollectedHeap::print_heap_after_full_collection(G1HeapTransition* heap_transition) { |
| 1119 | // Post collection logging. |
| 1120 | // We should do this after we potentially resize the heap so |
| 1121 | // that all the COMMIT / UNCOMMIT events are generated before |
| 1122 | // the compaction events. |
| 1123 | print_hrm_post_compaction(); |
| 1124 | heap_transition->print(); |
| 1125 | print_heap_after_gc(); |
| 1126 | print_heap_regions(); |
| 1127 | #ifdef TRACESPINNING |
| 1128 | ParallelTaskTerminator::print_termination_counts(); |
| 1129 | #endif |
| 1130 | } |
| 1131 | |
| 1132 | bool G1CollectedHeap::do_full_collection(bool explicit_gc, |
| 1133 | bool clear_all_soft_refs) { |
| 1134 | assert_at_safepoint_on_vm_thread(); |
| 1135 | |
| 1136 | if (GCLocker::check_active_before_gc()) { |
| 1137 | // Full GC was not completed. |
| 1138 | return false; |
| 1139 | } |
| 1140 | |
| 1141 | const bool do_clear_all_soft_refs = clear_all_soft_refs || |
| 1142 | soft_ref_policy()->should_clear_all_soft_refs(); |
| 1143 | |
| 1144 | G1FullCollector collector(this, explicit_gc, do_clear_all_soft_refs); |
| 1145 | GCTraceTime(Info, gc) tm("Pause Full" , NULL, gc_cause(), true); |
| 1146 | |
| 1147 | collector.prepare_collection(); |
| 1148 | collector.collect(); |
| 1149 | collector.complete_collection(); |
| 1150 | |
| 1151 | // Full collection was successfully completed. |
| 1152 | return true; |
| 1153 | } |
| 1154 | |
| 1155 | void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) { |
| 1156 | // Currently, there is no facility in the do_full_collection(bool) API to notify |
| 1157 | // the caller that the collection did not succeed (e.g., because it was locked |
| 1158 | // out by the GC locker). So, right now, we'll ignore the return value. |
| 1159 | bool dummy = do_full_collection(true, /* explicit_gc */ |
| 1160 | clear_all_soft_refs); |
| 1161 | } |
| 1162 | |
| 1163 | void G1CollectedHeap::resize_heap_if_necessary() { |
| 1164 | assert_at_safepoint_on_vm_thread(); |
| 1165 | |
| 1166 | // Capacity, free and used after the GC counted as full regions to |
| 1167 | // include the waste in the following calculations. |
| 1168 | const size_t capacity_after_gc = capacity(); |
| 1169 | const size_t used_after_gc = capacity_after_gc - unused_committed_regions_in_bytes(); |
| 1170 | |
| 1171 | // This is enforced in arguments.cpp. |
| 1172 | assert(MinHeapFreeRatio <= MaxHeapFreeRatio, |
| 1173 | "otherwise the code below doesn't make sense" ); |
| 1174 | |
| 1175 | // We don't have floating point command-line arguments |
| 1176 | const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0; |
| 1177 | const double maximum_used_percentage = 1.0 - minimum_free_percentage; |
| 1178 | const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0; |
| 1179 | const double minimum_used_percentage = 1.0 - maximum_free_percentage; |
| 1180 | |
| 1181 | // We have to be careful here as these two calculations can overflow |
| 1182 | // 32-bit size_t's. |
| 1183 | double used_after_gc_d = (double) used_after_gc; |
| 1184 | double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage; |
| 1185 | double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage; |
| 1186 | |
| 1187 | // Let's make sure that they are both under the max heap size, which |
| 1188 | // by default will make them fit into a size_t. |
| 1189 | double desired_capacity_upper_bound = (double) MaxHeapSize; |
| 1190 | minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d, |
| 1191 | desired_capacity_upper_bound); |
| 1192 | maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d, |
| 1193 | desired_capacity_upper_bound); |
| 1194 | |
| 1195 | // We can now safely turn them into size_t's. |
| 1196 | size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d; |
| 1197 | size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d; |
| 1198 | |
| 1199 | // This assert only makes sense here, before we adjust them |
| 1200 | // with respect to the min and max heap size. |
| 1201 | assert(minimum_desired_capacity <= maximum_desired_capacity, |
| 1202 | "minimum_desired_capacity = " SIZE_FORMAT ", " |
| 1203 | "maximum_desired_capacity = " SIZE_FORMAT, |
| 1204 | minimum_desired_capacity, maximum_desired_capacity); |
| 1205 | |
| 1206 | // Should not be greater than the heap max size. No need to adjust |
| 1207 | // it with respect to the heap min size as it's a lower bound (i.e., |
| 1208 | // we'll try to make the capacity larger than it, not smaller). |
| 1209 | minimum_desired_capacity = MIN2(minimum_desired_capacity, MaxHeapSize); |
| 1210 | // Should not be less than the heap min size. No need to adjust it |
| 1211 | // with respect to the heap max size as it's an upper bound (i.e., |
| 1212 | // we'll try to make the capacity smaller than it, not greater). |
| 1213 | maximum_desired_capacity = MAX2(maximum_desired_capacity, MinHeapSize); |
| 1214 | |
| 1215 | if (capacity_after_gc < minimum_desired_capacity) { |
| 1216 | // Don't expand unless it's significant |
| 1217 | size_t expand_bytes = minimum_desired_capacity - capacity_after_gc; |
| 1218 | |
| 1219 | log_debug(gc, ergo, heap)("Attempt heap expansion (capacity lower than min desired capacity). " |
| 1220 | "Capacity: " SIZE_FORMAT "B occupancy: " SIZE_FORMAT "B live: " SIZE_FORMAT "B " |
| 1221 | "min_desired_capacity: " SIZE_FORMAT "B (" UINTX_FORMAT " %%)" , |
| 1222 | capacity_after_gc, used_after_gc, used(), minimum_desired_capacity, MinHeapFreeRatio); |
| 1223 | |
| 1224 | expand(expand_bytes, _workers); |
| 1225 | |
| 1226 | // No expansion, now see if we want to shrink |
| 1227 | } else if (capacity_after_gc > maximum_desired_capacity) { |
| 1228 | // Capacity too large, compute shrinking size |
| 1229 | size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity; |
| 1230 | |
| 1231 | log_debug(gc, ergo, heap)("Attempt heap shrinking (capacity higher than max desired capacity). " |
| 1232 | "Capacity: " SIZE_FORMAT "B occupancy: " SIZE_FORMAT "B live: " SIZE_FORMAT "B " |
| 1233 | "maximum_desired_capacity: " SIZE_FORMAT "B (" UINTX_FORMAT " %%)" , |
| 1234 | capacity_after_gc, used_after_gc, used(), maximum_desired_capacity, MaxHeapFreeRatio); |
| 1235 | |
| 1236 | shrink(shrink_bytes); |
| 1237 | } |
| 1238 | } |
| 1239 | |
| 1240 | HeapWord* G1CollectedHeap::satisfy_failed_allocation_helper(size_t word_size, |
| 1241 | bool do_gc, |
| 1242 | bool clear_all_soft_refs, |
| 1243 | bool expect_null_mutator_alloc_region, |
| 1244 | bool* gc_succeeded) { |
| 1245 | *gc_succeeded = true; |
| 1246 | // Let's attempt the allocation first. |
| 1247 | HeapWord* result = |
| 1248 | attempt_allocation_at_safepoint(word_size, |
| 1249 | expect_null_mutator_alloc_region); |
| 1250 | if (result != NULL) { |
| 1251 | return result; |
| 1252 | } |
| 1253 | |
| 1254 | // In a G1 heap, we're supposed to keep allocation from failing by |
| 1255 | // incremental pauses. Therefore, at least for now, we'll favor |
| 1256 | // expansion over collection. (This might change in the future if we can |
| 1257 | // do something smarter than full collection to satisfy a failed alloc.) |
| 1258 | result = expand_and_allocate(word_size); |
| 1259 | if (result != NULL) { |
| 1260 | return result; |
| 1261 | } |
| 1262 | |
| 1263 | if (do_gc) { |
| 1264 | // Expansion didn't work, we'll try to do a Full GC. |
| 1265 | *gc_succeeded = do_full_collection(false, /* explicit_gc */ |
| 1266 | clear_all_soft_refs); |
| 1267 | } |
| 1268 | |
| 1269 | return NULL; |
| 1270 | } |
| 1271 | |
| 1272 | HeapWord* G1CollectedHeap::satisfy_failed_allocation(size_t word_size, |
| 1273 | bool* succeeded) { |
| 1274 | assert_at_safepoint_on_vm_thread(); |
| 1275 | |
| 1276 | // Attempts to allocate followed by Full GC. |
| 1277 | HeapWord* result = |
| 1278 | satisfy_failed_allocation_helper(word_size, |
| 1279 | true, /* do_gc */ |
| 1280 | false, /* clear_all_soft_refs */ |
| 1281 | false, /* expect_null_mutator_alloc_region */ |
| 1282 | succeeded); |
| 1283 | |
| 1284 | if (result != NULL || !*succeeded) { |
| 1285 | return result; |
| 1286 | } |
| 1287 | |
| 1288 | // Attempts to allocate followed by Full GC that will collect all soft references. |
| 1289 | result = satisfy_failed_allocation_helper(word_size, |
| 1290 | true, /* do_gc */ |
| 1291 | true, /* clear_all_soft_refs */ |
| 1292 | true, /* expect_null_mutator_alloc_region */ |
| 1293 | succeeded); |
| 1294 | |
| 1295 | if (result != NULL || !*succeeded) { |
| 1296 | return result; |
| 1297 | } |
| 1298 | |
| 1299 | // Attempts to allocate, no GC |
| 1300 | result = satisfy_failed_allocation_helper(word_size, |
| 1301 | false, /* do_gc */ |
| 1302 | false, /* clear_all_soft_refs */ |
| 1303 | true, /* expect_null_mutator_alloc_region */ |
| 1304 | succeeded); |
| 1305 | |
| 1306 | if (result != NULL) { |
| 1307 | return result; |
| 1308 | } |
| 1309 | |
| 1310 | assert(!soft_ref_policy()->should_clear_all_soft_refs(), |
| 1311 | "Flag should have been handled and cleared prior to this point" ); |
| 1312 | |
| 1313 | // What else? We might try synchronous finalization later. If the total |
| 1314 | // space available is large enough for the allocation, then a more |
| 1315 | // complete compaction phase than we've tried so far might be |
| 1316 | // appropriate. |
| 1317 | return NULL; |
| 1318 | } |
| 1319 | |
| 1320 | // Attempting to expand the heap sufficiently |
| 1321 | // to support an allocation of the given "word_size". If |
| 1322 | // successful, perform the allocation and return the address of the |
| 1323 | // allocated block, or else "NULL". |
| 1324 | |
| 1325 | HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size) { |
| 1326 | assert_at_safepoint_on_vm_thread(); |
| 1327 | |
| 1328 | _verifier->verify_region_sets_optional(); |
| 1329 | |
| 1330 | size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes); |
| 1331 | log_debug(gc, ergo, heap)("Attempt heap expansion (allocation request failed). Allocation request: " SIZE_FORMAT "B" , |
| 1332 | word_size * HeapWordSize); |
| 1333 | |
| 1334 | |
| 1335 | if (expand(expand_bytes, _workers)) { |
| 1336 | _hrm->verify_optional(); |
| 1337 | _verifier->verify_region_sets_optional(); |
| 1338 | return attempt_allocation_at_safepoint(word_size, |
| 1339 | false /* expect_null_mutator_alloc_region */); |
| 1340 | } |
| 1341 | return NULL; |
| 1342 | } |
| 1343 | |
| 1344 | bool G1CollectedHeap::expand(size_t expand_bytes, WorkGang* pretouch_workers, double* expand_time_ms) { |
| 1345 | size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes); |
| 1346 | aligned_expand_bytes = align_up(aligned_expand_bytes, |
| 1347 | HeapRegion::GrainBytes); |
| 1348 | |
| 1349 | log_debug(gc, ergo, heap)("Expand the heap. requested expansion amount: " SIZE_FORMAT "B expansion amount: " SIZE_FORMAT "B" , |
| 1350 | expand_bytes, aligned_expand_bytes); |
| 1351 | |
| 1352 | if (is_maximal_no_gc()) { |
| 1353 | log_debug(gc, ergo, heap)("Did not expand the heap (heap already fully expanded)" ); |
| 1354 | return false; |
| 1355 | } |
| 1356 | |
| 1357 | double expand_heap_start_time_sec = os::elapsedTime(); |
| 1358 | uint regions_to_expand = (uint)(aligned_expand_bytes / HeapRegion::GrainBytes); |
| 1359 | assert(regions_to_expand > 0, "Must expand by at least one region" ); |
| 1360 | |
| 1361 | uint expanded_by = _hrm->expand_by(regions_to_expand, pretouch_workers); |
| 1362 | if (expand_time_ms != NULL) { |
| 1363 | *expand_time_ms = (os::elapsedTime() - expand_heap_start_time_sec) * MILLIUNITS; |
| 1364 | } |
| 1365 | |
| 1366 | if (expanded_by > 0) { |
| 1367 | size_t actual_expand_bytes = expanded_by * HeapRegion::GrainBytes; |
| 1368 | assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition" ); |
| 1369 | policy()->record_new_heap_size(num_regions()); |
| 1370 | } else { |
| 1371 | log_debug(gc, ergo, heap)("Did not expand the heap (heap expansion operation failed)" ); |
| 1372 | |
| 1373 | // The expansion of the virtual storage space was unsuccessful. |
| 1374 | // Let's see if it was because we ran out of swap. |
| 1375 | if (G1ExitOnExpansionFailure && |
| 1376 | _hrm->available() >= regions_to_expand) { |
| 1377 | // We had head room... |
| 1378 | vm_exit_out_of_memory(aligned_expand_bytes, OOM_MMAP_ERROR, "G1 heap expansion" ); |
| 1379 | } |
| 1380 | } |
| 1381 | return regions_to_expand > 0; |
| 1382 | } |
| 1383 | |
| 1384 | void G1CollectedHeap::shrink_helper(size_t shrink_bytes) { |
| 1385 | size_t aligned_shrink_bytes = |
| 1386 | ReservedSpace::page_align_size_down(shrink_bytes); |
| 1387 | aligned_shrink_bytes = align_down(aligned_shrink_bytes, |
| 1388 | HeapRegion::GrainBytes); |
| 1389 | uint num_regions_to_remove = (uint)(shrink_bytes / HeapRegion::GrainBytes); |
| 1390 | |
| 1391 | uint num_regions_removed = _hrm->shrink_by(num_regions_to_remove); |
| 1392 | size_t shrunk_bytes = num_regions_removed * HeapRegion::GrainBytes; |
| 1393 | |
| 1394 | |
| 1395 | log_debug(gc, ergo, heap)("Shrink the heap. requested shrinking amount: " SIZE_FORMAT "B aligned shrinking amount: " SIZE_FORMAT "B attempted shrinking amount: " SIZE_FORMAT "B" , |
| 1396 | shrink_bytes, aligned_shrink_bytes, shrunk_bytes); |
| 1397 | if (num_regions_removed > 0) { |
| 1398 | policy()->record_new_heap_size(num_regions()); |
| 1399 | } else { |
| 1400 | log_debug(gc, ergo, heap)("Did not expand the heap (heap shrinking operation failed)" ); |
| 1401 | } |
| 1402 | } |
| 1403 | |
| 1404 | void G1CollectedHeap::shrink(size_t shrink_bytes) { |
| 1405 | _verifier->verify_region_sets_optional(); |
| 1406 | |
| 1407 | // We should only reach here at the end of a Full GC or during Remark which |
| 1408 | // means we should not not be holding to any GC alloc regions. The method |
| 1409 | // below will make sure of that and do any remaining clean up. |
| 1410 | _allocator->abandon_gc_alloc_regions(); |
| 1411 | |
| 1412 | // Instead of tearing down / rebuilding the free lists here, we |
| 1413 | // could instead use the remove_all_pending() method on free_list to |
| 1414 | // remove only the ones that we need to remove. |
| 1415 | tear_down_region_sets(true /* free_list_only */); |
| 1416 | shrink_helper(shrink_bytes); |
| 1417 | rebuild_region_sets(true /* free_list_only */); |
| 1418 | |
| 1419 | _hrm->verify_optional(); |
| 1420 | _verifier->verify_region_sets_optional(); |
| 1421 | } |
| 1422 | |
| 1423 | class OldRegionSetChecker : public HeapRegionSetChecker { |
| 1424 | public: |
| 1425 | void check_mt_safety() { |
| 1426 | // Master Old Set MT safety protocol: |
| 1427 | // (a) If we're at a safepoint, operations on the master old set |
| 1428 | // should be invoked: |
| 1429 | // - by the VM thread (which will serialize them), or |
| 1430 | // - by the GC workers while holding the FreeList_lock, if we're |
| 1431 | // at a safepoint for an evacuation pause (this lock is taken |
| 1432 | // anyway when an GC alloc region is retired so that a new one |
| 1433 | // is allocated from the free list), or |
| 1434 | // - by the GC workers while holding the OldSets_lock, if we're at a |
| 1435 | // safepoint for a cleanup pause. |
| 1436 | // (b) If we're not at a safepoint, operations on the master old set |
| 1437 | // should be invoked while holding the Heap_lock. |
| 1438 | |
| 1439 | if (SafepointSynchronize::is_at_safepoint()) { |
| 1440 | guarantee(Thread::current()->is_VM_thread() || |
| 1441 | FreeList_lock->owned_by_self() || OldSets_lock->owned_by_self(), |
| 1442 | "master old set MT safety protocol at a safepoint" ); |
| 1443 | } else { |
| 1444 | guarantee(Heap_lock->owned_by_self(), "master old set MT safety protocol outside a safepoint" ); |
| 1445 | } |
| 1446 | } |
| 1447 | bool is_correct_type(HeapRegion* hr) { return hr->is_old(); } |
| 1448 | const char* get_description() { return "Old Regions" ; } |
| 1449 | }; |
| 1450 | |
| 1451 | class ArchiveRegionSetChecker : public HeapRegionSetChecker { |
| 1452 | public: |
| 1453 | void check_mt_safety() { |
| 1454 | guarantee(!Universe::is_fully_initialized() || SafepointSynchronize::is_at_safepoint(), |
| 1455 | "May only change archive regions during initialization or safepoint." ); |
| 1456 | } |
| 1457 | bool is_correct_type(HeapRegion* hr) { return hr->is_archive(); } |
| 1458 | const char* get_description() { return "Archive Regions" ; } |
| 1459 | }; |
| 1460 | |
| 1461 | class HumongousRegionSetChecker : public HeapRegionSetChecker { |
| 1462 | public: |
| 1463 | void check_mt_safety() { |
| 1464 | // Humongous Set MT safety protocol: |
| 1465 | // (a) If we're at a safepoint, operations on the master humongous |
| 1466 | // set should be invoked by either the VM thread (which will |
| 1467 | // serialize them) or by the GC workers while holding the |
| 1468 | // OldSets_lock. |
| 1469 | // (b) If we're not at a safepoint, operations on the master |
| 1470 | // humongous set should be invoked while holding the Heap_lock. |
| 1471 | |
| 1472 | if (SafepointSynchronize::is_at_safepoint()) { |
| 1473 | guarantee(Thread::current()->is_VM_thread() || |
| 1474 | OldSets_lock->owned_by_self(), |
| 1475 | "master humongous set MT safety protocol at a safepoint" ); |
| 1476 | } else { |
| 1477 | guarantee(Heap_lock->owned_by_self(), |
| 1478 | "master humongous set MT safety protocol outside a safepoint" ); |
| 1479 | } |
| 1480 | } |
| 1481 | bool is_correct_type(HeapRegion* hr) { return hr->is_humongous(); } |
| 1482 | const char* get_description() { return "Humongous Regions" ; } |
| 1483 | }; |
| 1484 | |
| 1485 | G1CollectedHeap::G1CollectedHeap() : |
| 1486 | CollectedHeap(), |
| 1487 | _young_gen_sampling_thread(NULL), |
| 1488 | _workers(NULL), |
| 1489 | _card_table(NULL), |
| 1490 | _soft_ref_policy(), |
| 1491 | _old_set("Old Region Set" , new OldRegionSetChecker()), |
| 1492 | _archive_set("Archive Region Set" , new ArchiveRegionSetChecker()), |
| 1493 | _humongous_set("Humongous Region Set" , new HumongousRegionSetChecker()), |
| 1494 | _bot(NULL), |
| 1495 | _listener(), |
| 1496 | _hrm(NULL), |
| 1497 | _allocator(NULL), |
| 1498 | _verifier(NULL), |
| 1499 | _summary_bytes_used(0), |
| 1500 | _archive_allocator(NULL), |
| 1501 | _survivor_evac_stats("Young" , YoungPLABSize, PLABWeight), |
| 1502 | _old_evac_stats("Old" , OldPLABSize, PLABWeight), |
| 1503 | _expand_heap_after_alloc_failure(true), |
| 1504 | _g1mm(NULL), |
| 1505 | _humongous_reclaim_candidates(), |
| 1506 | _has_humongous_reclaim_candidates(false), |
| 1507 | _hr_printer(), |
| 1508 | _collector_state(), |
| 1509 | _old_marking_cycles_started(0), |
| 1510 | _old_marking_cycles_completed(0), |
| 1511 | _eden(), |
| 1512 | _survivor(), |
| 1513 | _gc_timer_stw(new (ResourceObj::C_HEAP, mtGC) STWGCTimer()), |
| 1514 | _gc_tracer_stw(new (ResourceObj::C_HEAP, mtGC) G1NewTracer()), |
| 1515 | _policy(G1Policy::create_policy(_gc_timer_stw)), |
| 1516 | _heap_sizing_policy(NULL), |
| 1517 | _collection_set(this, _policy), |
| 1518 | _hot_card_cache(NULL), |
| 1519 | _rem_set(NULL), |
| 1520 | _dirty_card_queue_set(false), |
| 1521 | _cm(NULL), |
| 1522 | _cm_thread(NULL), |
| 1523 | _cr(NULL), |
| 1524 | _task_queues(NULL), |
| 1525 | _evacuation_failed(false), |
| 1526 | _evacuation_failed_info_array(NULL), |
| 1527 | _preserved_marks_set(true /* in_c_heap */), |
| 1528 | #ifndef PRODUCT |
| 1529 | _evacuation_failure_alot_for_current_gc(false), |
| 1530 | _evacuation_failure_alot_gc_number(0), |
| 1531 | _evacuation_failure_alot_count(0), |
| 1532 | #endif |
| 1533 | _ref_processor_stw(NULL), |
| 1534 | _is_alive_closure_stw(this), |
| 1535 | _is_subject_to_discovery_stw(this), |
| 1536 | _ref_processor_cm(NULL), |
| 1537 | _is_alive_closure_cm(this), |
| 1538 | _is_subject_to_discovery_cm(this), |
| 1539 | _region_attr() { |
| 1540 | |
| 1541 | _verifier = new G1HeapVerifier(this); |
| 1542 | |
| 1543 | _allocator = new G1Allocator(this); |
| 1544 | |
| 1545 | _heap_sizing_policy = G1HeapSizingPolicy::create(this, _policy->analytics()); |
| 1546 | |
| 1547 | _humongous_object_threshold_in_words = humongous_threshold_for(HeapRegion::GrainWords); |
| 1548 | |
| 1549 | // Override the default _filler_array_max_size so that no humongous filler |
| 1550 | // objects are created. |
| 1551 | _filler_array_max_size = _humongous_object_threshold_in_words; |
| 1552 | |
| 1553 | uint n_queues = ParallelGCThreads; |
| 1554 | _task_queues = new RefToScanQueueSet(n_queues); |
| 1555 | |
| 1556 | _evacuation_failed_info_array = NEW_C_HEAP_ARRAY(EvacuationFailedInfo, n_queues, mtGC); |
| 1557 | |
| 1558 | for (uint i = 0; i < n_queues; i++) { |
| 1559 | RefToScanQueue* q = new RefToScanQueue(); |
| 1560 | q->initialize(); |
| 1561 | _task_queues->register_queue(i, q); |
| 1562 | ::new (&_evacuation_failed_info_array[i]) EvacuationFailedInfo(); |
| 1563 | } |
| 1564 | |
| 1565 | // Initialize the G1EvacuationFailureALot counters and flags. |
| 1566 | NOT_PRODUCT(reset_evacuation_should_fail();) |
| 1567 | |
| 1568 | guarantee(_task_queues != NULL, "task_queues allocation failure." ); |
| 1569 | } |
| 1570 | |
| 1571 | static size_t actual_reserved_page_size(ReservedSpace rs) { |
| 1572 | size_t page_size = os::vm_page_size(); |
| 1573 | if (UseLargePages) { |
| 1574 | // There are two ways to manage large page memory. |
| 1575 | // 1. OS supports committing large page memory. |
| 1576 | // 2. OS doesn't support committing large page memory so ReservedSpace manages it. |
| 1577 | // And ReservedSpace calls it 'special'. If we failed to set 'special', |
| 1578 | // we reserved memory without large page. |
| 1579 | if (os::can_commit_large_page_memory() || rs.special()) { |
| 1580 | // An alignment at ReservedSpace comes from preferred page size or |
| 1581 | // heap alignment, and if the alignment came from heap alignment, it could be |
| 1582 | // larger than large pages size. So need to cap with the large page size. |
| 1583 | page_size = MIN2(rs.alignment(), os::large_page_size()); |
| 1584 | } |
| 1585 | } |
| 1586 | |
| 1587 | return page_size; |
| 1588 | } |
| 1589 | |
| 1590 | G1RegionToSpaceMapper* G1CollectedHeap::create_aux_memory_mapper(const char* description, |
| 1591 | size_t size, |
| 1592 | size_t translation_factor) { |
| 1593 | size_t preferred_page_size = os::page_size_for_region_unaligned(size, 1); |
| 1594 | // Allocate a new reserved space, preferring to use large pages. |
| 1595 | ReservedSpace rs(size, preferred_page_size); |
| 1596 | size_t page_size = actual_reserved_page_size(rs); |
| 1597 | G1RegionToSpaceMapper* result = |
| 1598 | G1RegionToSpaceMapper::create_mapper(rs, |
| 1599 | size, |
| 1600 | page_size, |
| 1601 | HeapRegion::GrainBytes, |
| 1602 | translation_factor, |
| 1603 | mtGC); |
| 1604 | |
| 1605 | os::trace_page_sizes_for_requested_size(description, |
| 1606 | size, |
| 1607 | preferred_page_size, |
| 1608 | page_size, |
| 1609 | rs.base(), |
| 1610 | rs.size()); |
| 1611 | |
| 1612 | return result; |
| 1613 | } |
| 1614 | |
| 1615 | jint G1CollectedHeap::initialize_concurrent_refinement() { |
| 1616 | jint ecode = JNI_OK; |
| 1617 | _cr = G1ConcurrentRefine::create(&ecode); |
| 1618 | return ecode; |
| 1619 | } |
| 1620 | |
| 1621 | jint G1CollectedHeap::initialize_young_gen_sampling_thread() { |
| 1622 | _young_gen_sampling_thread = new G1YoungRemSetSamplingThread(); |
| 1623 | if (_young_gen_sampling_thread->osthread() == NULL) { |
| 1624 | vm_shutdown_during_initialization("Could not create G1YoungRemSetSamplingThread" ); |
| 1625 | return JNI_ENOMEM; |
| 1626 | } |
| 1627 | return JNI_OK; |
| 1628 | } |
| 1629 | |
| 1630 | jint G1CollectedHeap::initialize() { |
| 1631 | os::enable_vtime(); |
| 1632 | |
| 1633 | // Necessary to satisfy locking discipline assertions. |
| 1634 | |
| 1635 | MutexLocker x(Heap_lock); |
| 1636 | |
| 1637 | // While there are no constraints in the GC code that HeapWordSize |
| 1638 | // be any particular value, there are multiple other areas in the |
| 1639 | // system which believe this to be true (e.g. oop->object_size in some |
| 1640 | // cases incorrectly returns the size in wordSize units rather than |
| 1641 | // HeapWordSize). |
| 1642 | guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize" ); |
| 1643 | |
| 1644 | size_t init_byte_size = InitialHeapSize; |
| 1645 | size_t reserved_byte_size = G1Arguments::heap_reserved_size_bytes(); |
| 1646 | |
| 1647 | // Ensure that the sizes are properly aligned. |
| 1648 | Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap" ); |
| 1649 | Universe::check_alignment(reserved_byte_size, HeapRegion::GrainBytes, "g1 heap" ); |
| 1650 | Universe::check_alignment(reserved_byte_size, HeapAlignment, "g1 heap" ); |
| 1651 | |
| 1652 | // Reserve the maximum. |
| 1653 | |
| 1654 | // When compressed oops are enabled, the preferred heap base |
| 1655 | // is calculated by subtracting the requested size from the |
| 1656 | // 32Gb boundary and using the result as the base address for |
| 1657 | // heap reservation. If the requested size is not aligned to |
| 1658 | // HeapRegion::GrainBytes (i.e. the alignment that is passed |
| 1659 | // into the ReservedHeapSpace constructor) then the actual |
| 1660 | // base of the reserved heap may end up differing from the |
| 1661 | // address that was requested (i.e. the preferred heap base). |
| 1662 | // If this happens then we could end up using a non-optimal |
| 1663 | // compressed oops mode. |
| 1664 | |
| 1665 | ReservedSpace heap_rs = Universe::reserve_heap(reserved_byte_size, |
| 1666 | HeapAlignment); |
| 1667 | |
| 1668 | initialize_reserved_region((HeapWord*)heap_rs.base(), (HeapWord*)(heap_rs.base() + heap_rs.size())); |
| 1669 | |
| 1670 | // Create the barrier set for the entire reserved region. |
| 1671 | G1CardTable* ct = new G1CardTable(reserved_region()); |
| 1672 | ct->initialize(); |
| 1673 | G1BarrierSet* bs = new G1BarrierSet(ct); |
| 1674 | bs->initialize(); |
| 1675 | assert(bs->is_a(BarrierSet::G1BarrierSet), "sanity" ); |
| 1676 | BarrierSet::set_barrier_set(bs); |
| 1677 | _card_table = ct; |
| 1678 | |
| 1679 | G1BarrierSet::satb_mark_queue_set().initialize(this, |
| 1680 | SATB_Q_CBL_mon, |
| 1681 | &bs->satb_mark_queue_buffer_allocator(), |
| 1682 | G1SATBProcessCompletedThreshold, |
| 1683 | G1SATBBufferEnqueueingThresholdPercent); |
| 1684 | |
| 1685 | // process_completed_buffers_threshold and max_completed_buffers are updated |
| 1686 | // later, based on the concurrent refinement object. |
| 1687 | G1BarrierSet::dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon, |
| 1688 | &bs->dirty_card_queue_buffer_allocator(), |
| 1689 | true); // init_free_ids |
| 1690 | |
| 1691 | dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon, |
| 1692 | &bs->dirty_card_queue_buffer_allocator()); |
| 1693 | |
| 1694 | // Create the hot card cache. |
| 1695 | _hot_card_cache = new G1HotCardCache(this); |
| 1696 | |
| 1697 | // Carve out the G1 part of the heap. |
| 1698 | ReservedSpace g1_rs = heap_rs.first_part(reserved_byte_size); |
| 1699 | size_t page_size = actual_reserved_page_size(heap_rs); |
| 1700 | G1RegionToSpaceMapper* heap_storage = |
| 1701 | G1RegionToSpaceMapper::create_heap_mapper(g1_rs, |
| 1702 | g1_rs.size(), |
| 1703 | page_size, |
| 1704 | HeapRegion::GrainBytes, |
| 1705 | 1, |
| 1706 | mtJavaHeap); |
| 1707 | if(heap_storage == NULL) { |
| 1708 | vm_shutdown_during_initialization("Could not initialize G1 heap" ); |
| 1709 | return JNI_ERR; |
| 1710 | } |
| 1711 | |
| 1712 | os::trace_page_sizes("Heap" , |
| 1713 | MinHeapSize, |
| 1714 | reserved_byte_size, |
| 1715 | page_size, |
| 1716 | heap_rs.base(), |
| 1717 | heap_rs.size()); |
| 1718 | heap_storage->set_mapping_changed_listener(&_listener); |
| 1719 | |
| 1720 | // Create storage for the BOT, card table, card counts table (hot card cache) and the bitmaps. |
| 1721 | G1RegionToSpaceMapper* bot_storage = |
| 1722 | create_aux_memory_mapper("Block Offset Table" , |
| 1723 | G1BlockOffsetTable::compute_size(g1_rs.size() / HeapWordSize), |
| 1724 | G1BlockOffsetTable::heap_map_factor()); |
| 1725 | |
| 1726 | G1RegionToSpaceMapper* cardtable_storage = |
| 1727 | create_aux_memory_mapper("Card Table" , |
| 1728 | G1CardTable::compute_size(g1_rs.size() / HeapWordSize), |
| 1729 | G1CardTable::heap_map_factor()); |
| 1730 | |
| 1731 | G1RegionToSpaceMapper* card_counts_storage = |
| 1732 | create_aux_memory_mapper("Card Counts Table" , |
| 1733 | G1CardCounts::compute_size(g1_rs.size() / HeapWordSize), |
| 1734 | G1CardCounts::heap_map_factor()); |
| 1735 | |
| 1736 | size_t bitmap_size = G1CMBitMap::compute_size(g1_rs.size()); |
| 1737 | G1RegionToSpaceMapper* prev_bitmap_storage = |
| 1738 | create_aux_memory_mapper("Prev Bitmap" , bitmap_size, G1CMBitMap::heap_map_factor()); |
| 1739 | G1RegionToSpaceMapper* next_bitmap_storage = |
| 1740 | create_aux_memory_mapper("Next Bitmap" , bitmap_size, G1CMBitMap::heap_map_factor()); |
| 1741 | |
| 1742 | _hrm = HeapRegionManager::create_manager(this); |
| 1743 | |
| 1744 | _hrm->initialize(heap_storage, prev_bitmap_storage, next_bitmap_storage, bot_storage, cardtable_storage, card_counts_storage); |
| 1745 | _card_table->initialize(cardtable_storage); |
| 1746 | // Do later initialization work for concurrent refinement. |
| 1747 | _hot_card_cache->initialize(card_counts_storage); |
| 1748 | |
| 1749 | // 6843694 - ensure that the maximum region index can fit |
| 1750 | // in the remembered set structures. |
| 1751 | const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1; |
| 1752 | guarantee((max_regions() - 1) <= max_region_idx, "too many regions" ); |
| 1753 | |
| 1754 | // The G1FromCardCache reserves card with value 0 as "invalid", so the heap must not |
| 1755 | // start within the first card. |
| 1756 | guarantee(g1_rs.base() >= (char*)G1CardTable::card_size, "Java heap must not start within the first card." ); |
| 1757 | // Also create a G1 rem set. |
| 1758 | _rem_set = new G1RemSet(this, _card_table, _hot_card_cache); |
| 1759 | _rem_set->initialize(max_reserved_capacity(), max_regions()); |
| 1760 | |
| 1761 | size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1; |
| 1762 | guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized" ); |
| 1763 | guarantee(HeapRegion::CardsPerRegion < max_cards_per_region, |
| 1764 | "too many cards per region" ); |
| 1765 | |
| 1766 | FreeRegionList::set_unrealistically_long_length(max_expandable_regions() + 1); |
| 1767 | |
| 1768 | _bot = new G1BlockOffsetTable(reserved_region(), bot_storage); |
| 1769 | |
| 1770 | { |
| 1771 | HeapWord* start = _hrm->reserved().start(); |
| 1772 | HeapWord* end = _hrm->reserved().end(); |
| 1773 | size_t granularity = HeapRegion::GrainBytes; |
| 1774 | |
| 1775 | _region_attr.initialize(start, end, granularity); |
| 1776 | _humongous_reclaim_candidates.initialize(start, end, granularity); |
| 1777 | } |
| 1778 | |
| 1779 | _workers = new WorkGang("GC Thread" , ParallelGCThreads, |
| 1780 | true /* are_GC_task_threads */, |
| 1781 | false /* are_ConcurrentGC_threads */); |
| 1782 | if (_workers == NULL) { |
| 1783 | return JNI_ENOMEM; |
| 1784 | } |
| 1785 | _workers->initialize_workers(); |
| 1786 | |
| 1787 | // Create the G1ConcurrentMark data structure and thread. |
| 1788 | // (Must do this late, so that "max_regions" is defined.) |
| 1789 | _cm = new G1ConcurrentMark(this, prev_bitmap_storage, next_bitmap_storage); |
| 1790 | if (_cm == NULL || !_cm->completed_initialization()) { |
| 1791 | vm_shutdown_during_initialization("Could not create/initialize G1ConcurrentMark" ); |
| 1792 | return JNI_ENOMEM; |
| 1793 | } |
| 1794 | _cm_thread = _cm->cm_thread(); |
| 1795 | |
| 1796 | // Now expand into the initial heap size. |
| 1797 | if (!expand(init_byte_size, _workers)) { |
| 1798 | vm_shutdown_during_initialization("Failed to allocate initial heap." ); |
| 1799 | return JNI_ENOMEM; |
| 1800 | } |
| 1801 | |
| 1802 | // Perform any initialization actions delegated to the policy. |
| 1803 | policy()->init(this, &_collection_set); |
| 1804 | |
| 1805 | jint ecode = initialize_concurrent_refinement(); |
| 1806 | if (ecode != JNI_OK) { |
| 1807 | return ecode; |
| 1808 | } |
| 1809 | |
| 1810 | ecode = initialize_young_gen_sampling_thread(); |
| 1811 | if (ecode != JNI_OK) { |
| 1812 | return ecode; |
| 1813 | } |
| 1814 | |
| 1815 | { |
| 1816 | G1DirtyCardQueueSet& dcqs = G1BarrierSet::dirty_card_queue_set(); |
| 1817 | dcqs.set_process_completed_buffers_threshold(concurrent_refine()->yellow_zone()); |
| 1818 | dcqs.set_max_completed_buffers(concurrent_refine()->red_zone()); |
| 1819 | } |
| 1820 | |
| 1821 | // Here we allocate the dummy HeapRegion that is required by the |
| 1822 | // G1AllocRegion class. |
| 1823 | HeapRegion* dummy_region = _hrm->get_dummy_region(); |
| 1824 | |
| 1825 | // We'll re-use the same region whether the alloc region will |
| 1826 | // require BOT updates or not and, if it doesn't, then a non-young |
| 1827 | // region will complain that it cannot support allocations without |
| 1828 | // BOT updates. So we'll tag the dummy region as eden to avoid that. |
| 1829 | dummy_region->set_eden(); |
| 1830 | // Make sure it's full. |
| 1831 | dummy_region->set_top(dummy_region->end()); |
| 1832 | G1AllocRegion::setup(this, dummy_region); |
| 1833 | |
| 1834 | _allocator->init_mutator_alloc_region(); |
| 1835 | |
| 1836 | // Do create of the monitoring and management support so that |
| 1837 | // values in the heap have been properly initialized. |
| 1838 | _g1mm = new G1MonitoringSupport(this); |
| 1839 | |
| 1840 | G1StringDedup::initialize(); |
| 1841 | |
| 1842 | _preserved_marks_set.init(ParallelGCThreads); |
| 1843 | |
| 1844 | _collection_set.initialize(max_regions()); |
| 1845 | |
| 1846 | return JNI_OK; |
| 1847 | } |
| 1848 | |
| 1849 | void G1CollectedHeap::stop() { |
| 1850 | // Stop all concurrent threads. We do this to make sure these threads |
| 1851 | // do not continue to execute and access resources (e.g. logging) |
| 1852 | // that are destroyed during shutdown. |
| 1853 | _cr->stop(); |
| 1854 | _young_gen_sampling_thread->stop(); |
| 1855 | _cm_thread->stop(); |
| 1856 | if (G1StringDedup::is_enabled()) { |
| 1857 | G1StringDedup::stop(); |
| 1858 | } |
| 1859 | } |
| 1860 | |
| 1861 | void G1CollectedHeap::safepoint_synchronize_begin() { |
| 1862 | SuspendibleThreadSet::synchronize(); |
| 1863 | } |
| 1864 | |
| 1865 | void G1CollectedHeap::safepoint_synchronize_end() { |
| 1866 | SuspendibleThreadSet::desynchronize(); |
| 1867 | } |
| 1868 | |
| 1869 | void G1CollectedHeap::post_initialize() { |
| 1870 | CollectedHeap::post_initialize(); |
| 1871 | ref_processing_init(); |
| 1872 | } |
| 1873 | |
| 1874 | void G1CollectedHeap::ref_processing_init() { |
| 1875 | // Reference processing in G1 currently works as follows: |
| 1876 | // |
| 1877 | // * There are two reference processor instances. One is |
| 1878 | // used to record and process discovered references |
| 1879 | // during concurrent marking; the other is used to |
| 1880 | // record and process references during STW pauses |
| 1881 | // (both full and incremental). |
| 1882 | // * Both ref processors need to 'span' the entire heap as |
| 1883 | // the regions in the collection set may be dotted around. |
| 1884 | // |
| 1885 | // * For the concurrent marking ref processor: |
| 1886 | // * Reference discovery is enabled at initial marking. |
| 1887 | // * Reference discovery is disabled and the discovered |
| 1888 | // references processed etc during remarking. |
| 1889 | // * Reference discovery is MT (see below). |
| 1890 | // * Reference discovery requires a barrier (see below). |
| 1891 | // * Reference processing may or may not be MT |
| 1892 | // (depending on the value of ParallelRefProcEnabled |
| 1893 | // and ParallelGCThreads). |
| 1894 | // * A full GC disables reference discovery by the CM |
| 1895 | // ref processor and abandons any entries on it's |
| 1896 | // discovered lists. |
| 1897 | // |
| 1898 | // * For the STW processor: |
| 1899 | // * Non MT discovery is enabled at the start of a full GC. |
| 1900 | // * Processing and enqueueing during a full GC is non-MT. |
| 1901 | // * During a full GC, references are processed after marking. |
| 1902 | // |
| 1903 | // * Discovery (may or may not be MT) is enabled at the start |
| 1904 | // of an incremental evacuation pause. |
| 1905 | // * References are processed near the end of a STW evacuation pause. |
| 1906 | // * For both types of GC: |
| 1907 | // * Discovery is atomic - i.e. not concurrent. |
| 1908 | // * Reference discovery will not need a barrier. |
| 1909 | |
| 1910 | bool mt_processing = ParallelRefProcEnabled && (ParallelGCThreads > 1); |
| 1911 | |
| 1912 | // Concurrent Mark ref processor |
| 1913 | _ref_processor_cm = |
| 1914 | new ReferenceProcessor(&_is_subject_to_discovery_cm, |
| 1915 | mt_processing, // mt processing |
| 1916 | ParallelGCThreads, // degree of mt processing |
| 1917 | (ParallelGCThreads > 1) || (ConcGCThreads > 1), // mt discovery |
| 1918 | MAX2(ParallelGCThreads, ConcGCThreads), // degree of mt discovery |
| 1919 | false, // Reference discovery is not atomic |
| 1920 | &_is_alive_closure_cm, // is alive closure |
| 1921 | true); // allow changes to number of processing threads |
| 1922 | |
| 1923 | // STW ref processor |
| 1924 | _ref_processor_stw = |
| 1925 | new ReferenceProcessor(&_is_subject_to_discovery_stw, |
| 1926 | mt_processing, // mt processing |
| 1927 | ParallelGCThreads, // degree of mt processing |
| 1928 | (ParallelGCThreads > 1), // mt discovery |
| 1929 | ParallelGCThreads, // degree of mt discovery |
| 1930 | true, // Reference discovery is atomic |
| 1931 | &_is_alive_closure_stw, // is alive closure |
| 1932 | true); // allow changes to number of processing threads |
| 1933 | } |
| 1934 | |
| 1935 | SoftRefPolicy* G1CollectedHeap::soft_ref_policy() { |
| 1936 | return &_soft_ref_policy; |
| 1937 | } |
| 1938 | |
| 1939 | size_t G1CollectedHeap::capacity() const { |
| 1940 | return _hrm->length() * HeapRegion::GrainBytes; |
| 1941 | } |
| 1942 | |
| 1943 | size_t G1CollectedHeap::unused_committed_regions_in_bytes() const { |
| 1944 | return _hrm->total_free_bytes(); |
| 1945 | } |
| 1946 | |
| 1947 | void G1CollectedHeap::iterate_hcc_closure(G1CardTableEntryClosure* cl, uint worker_i) { |
| 1948 | _hot_card_cache->drain(cl, worker_i); |
| 1949 | } |
| 1950 | |
| 1951 | void G1CollectedHeap::iterate_dirty_card_closure(G1CardTableEntryClosure* cl, uint worker_i) { |
| 1952 | G1DirtyCardQueueSet& dcqs = G1BarrierSet::dirty_card_queue_set(); |
| 1953 | size_t n_completed_buffers = 0; |
| 1954 | while (dcqs.apply_closure_during_gc(cl, worker_i)) { |
| 1955 | n_completed_buffers++; |
| 1956 | } |
| 1957 | assert(dcqs.completed_buffers_num() == 0, "Completed buffers exist!" ); |
| 1958 | phase_times()->record_thread_work_item(G1GCPhaseTimes::UpdateRS, worker_i, n_completed_buffers, G1GCPhaseTimes::UpdateRSProcessedBuffers); |
| 1959 | } |
| 1960 | |
| 1961 | // Computes the sum of the storage used by the various regions. |
| 1962 | size_t G1CollectedHeap::used() const { |
| 1963 | size_t result = _summary_bytes_used + _allocator->used_in_alloc_regions(); |
| 1964 | if (_archive_allocator != NULL) { |
| 1965 | result += _archive_allocator->used(); |
| 1966 | } |
| 1967 | return result; |
| 1968 | } |
| 1969 | |
| 1970 | size_t G1CollectedHeap::used_unlocked() const { |
| 1971 | return _summary_bytes_used; |
| 1972 | } |
| 1973 | |
| 1974 | class SumUsedClosure: public HeapRegionClosure { |
| 1975 | size_t _used; |
| 1976 | public: |
| 1977 | SumUsedClosure() : _used(0) {} |
| 1978 | bool do_heap_region(HeapRegion* r) { |
| 1979 | _used += r->used(); |
| 1980 | return false; |
| 1981 | } |
| 1982 | size_t result() { return _used; } |
| 1983 | }; |
| 1984 | |
| 1985 | size_t G1CollectedHeap::recalculate_used() const { |
| 1986 | SumUsedClosure blk; |
| 1987 | heap_region_iterate(&blk); |
| 1988 | return blk.result(); |
| 1989 | } |
| 1990 | |
| 1991 | bool G1CollectedHeap::is_user_requested_concurrent_full_gc(GCCause::Cause cause) { |
| 1992 | switch (cause) { |
| 1993 | case GCCause::_java_lang_system_gc: return ExplicitGCInvokesConcurrent; |
| 1994 | case GCCause::_dcmd_gc_run: return ExplicitGCInvokesConcurrent; |
| 1995 | case GCCause::_wb_conc_mark: return true; |
| 1996 | default : return false; |
| 1997 | } |
| 1998 | } |
| 1999 | |
| 2000 | bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) { |
| 2001 | switch (cause) { |
| 2002 | case GCCause::_gc_locker: return GCLockerInvokesConcurrent; |
| 2003 | case GCCause::_g1_humongous_allocation: return true; |
| 2004 | case GCCause::_g1_periodic_collection: return G1PeriodicGCInvokesConcurrent; |
| 2005 | default: return is_user_requested_concurrent_full_gc(cause); |
| 2006 | } |
| 2007 | } |
| 2008 | |
| 2009 | bool G1CollectedHeap::should_upgrade_to_full_gc(GCCause::Cause cause) { |
| 2010 | if(policy()->force_upgrade_to_full()) { |
| 2011 | return true; |
| 2012 | } else if (should_do_concurrent_full_gc(_gc_cause)) { |
| 2013 | return false; |
| 2014 | } else if (has_regions_left_for_allocation()) { |
| 2015 | return false; |
| 2016 | } else { |
| 2017 | return true; |
| 2018 | } |
| 2019 | } |
| 2020 | |
| 2021 | #ifndef PRODUCT |
| 2022 | void G1CollectedHeap::allocate_dummy_regions() { |
| 2023 | // Let's fill up most of the region |
| 2024 | size_t word_size = HeapRegion::GrainWords - 1024; |
| 2025 | // And as a result the region we'll allocate will be humongous. |
| 2026 | guarantee(is_humongous(word_size), "sanity" ); |
| 2027 | |
| 2028 | // _filler_array_max_size is set to humongous object threshold |
| 2029 | // but temporarily change it to use CollectedHeap::fill_with_object(). |
| 2030 | SizeTFlagSetting fs(_filler_array_max_size, word_size); |
| 2031 | |
| 2032 | for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) { |
| 2033 | // Let's use the existing mechanism for the allocation |
| 2034 | HeapWord* dummy_obj = humongous_obj_allocate(word_size); |
| 2035 | if (dummy_obj != NULL) { |
| 2036 | MemRegion mr(dummy_obj, word_size); |
| 2037 | CollectedHeap::fill_with_object(mr); |
| 2038 | } else { |
| 2039 | // If we can't allocate once, we probably cannot allocate |
| 2040 | // again. Let's get out of the loop. |
| 2041 | break; |
| 2042 | } |
| 2043 | } |
| 2044 | } |
| 2045 | #endif // !PRODUCT |
| 2046 | |
| 2047 | void G1CollectedHeap::increment_old_marking_cycles_started() { |
| 2048 | assert(_old_marking_cycles_started == _old_marking_cycles_completed || |
| 2049 | _old_marking_cycles_started == _old_marking_cycles_completed + 1, |
| 2050 | "Wrong marking cycle count (started: %d, completed: %d)" , |
| 2051 | _old_marking_cycles_started, _old_marking_cycles_completed); |
| 2052 | |
| 2053 | _old_marking_cycles_started++; |
| 2054 | } |
| 2055 | |
| 2056 | void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent) { |
| 2057 | MonitorLocker x(FullGCCount_lock, Mutex::_no_safepoint_check_flag); |
| 2058 | |
| 2059 | // We assume that if concurrent == true, then the caller is a |
| 2060 | // concurrent thread that was joined the Suspendible Thread |
| 2061 | // Set. If there's ever a cheap way to check this, we should add an |
| 2062 | // assert here. |
| 2063 | |
| 2064 | // Given that this method is called at the end of a Full GC or of a |
| 2065 | // concurrent cycle, and those can be nested (i.e., a Full GC can |
| 2066 | // interrupt a concurrent cycle), the number of full collections |
| 2067 | // completed should be either one (in the case where there was no |
| 2068 | // nesting) or two (when a Full GC interrupted a concurrent cycle) |
| 2069 | // behind the number of full collections started. |
| 2070 | |
| 2071 | // This is the case for the inner caller, i.e. a Full GC. |
| 2072 | assert(concurrent || |
| 2073 | (_old_marking_cycles_started == _old_marking_cycles_completed + 1) || |
| 2074 | (_old_marking_cycles_started == _old_marking_cycles_completed + 2), |
| 2075 | "for inner caller (Full GC): _old_marking_cycles_started = %u " |
| 2076 | "is inconsistent with _old_marking_cycles_completed = %u" , |
| 2077 | _old_marking_cycles_started, _old_marking_cycles_completed); |
| 2078 | |
| 2079 | // This is the case for the outer caller, i.e. the concurrent cycle. |
| 2080 | assert(!concurrent || |
| 2081 | (_old_marking_cycles_started == _old_marking_cycles_completed + 1), |
| 2082 | "for outer caller (concurrent cycle): " |
| 2083 | "_old_marking_cycles_started = %u " |
| 2084 | "is inconsistent with _old_marking_cycles_completed = %u" , |
| 2085 | _old_marking_cycles_started, _old_marking_cycles_completed); |
| 2086 | |
| 2087 | _old_marking_cycles_completed += 1; |
| 2088 | |
| 2089 | // We need to clear the "in_progress" flag in the CM thread before |
| 2090 | // we wake up any waiters (especially when ExplicitInvokesConcurrent |
| 2091 | // is set) so that if a waiter requests another System.gc() it doesn't |
| 2092 | // incorrectly see that a marking cycle is still in progress. |
| 2093 | if (concurrent) { |
| 2094 | _cm_thread->set_idle(); |
| 2095 | } |
| 2096 | |
| 2097 | // This notify_all() will ensure that a thread that called |
| 2098 | // System.gc() with (with ExplicitGCInvokesConcurrent set or not) |
| 2099 | // and it's waiting for a full GC to finish will be woken up. It is |
| 2100 | // waiting in VM_G1CollectForAllocation::doit_epilogue(). |
| 2101 | FullGCCount_lock->notify_all(); |
| 2102 | } |
| 2103 | |
| 2104 | void G1CollectedHeap::collect(GCCause::Cause cause) { |
| 2105 | try_collect(cause, true); |
| 2106 | } |
| 2107 | |
| 2108 | bool G1CollectedHeap::try_collect(GCCause::Cause cause, bool retry_on_gc_failure) { |
| 2109 | assert_heap_not_locked(); |
| 2110 | |
| 2111 | bool gc_succeeded; |
| 2112 | bool should_retry_gc; |
| 2113 | |
| 2114 | do { |
| 2115 | should_retry_gc = false; |
| 2116 | |
| 2117 | uint gc_count_before; |
| 2118 | uint old_marking_count_before; |
| 2119 | uint full_gc_count_before; |
| 2120 | |
| 2121 | { |
| 2122 | MutexLocker ml(Heap_lock); |
| 2123 | |
| 2124 | // Read the GC count while holding the Heap_lock |
| 2125 | gc_count_before = total_collections(); |
| 2126 | full_gc_count_before = total_full_collections(); |
| 2127 | old_marking_count_before = _old_marking_cycles_started; |
| 2128 | } |
| 2129 | |
| 2130 | if (should_do_concurrent_full_gc(cause)) { |
| 2131 | // Schedule an initial-mark evacuation pause that will start a |
| 2132 | // concurrent cycle. We're setting word_size to 0 which means that |
| 2133 | // we are not requesting a post-GC allocation. |
| 2134 | VM_G1CollectForAllocation op(0, /* word_size */ |
| 2135 | gc_count_before, |
| 2136 | cause, |
| 2137 | true, /* should_initiate_conc_mark */ |
| 2138 | policy()->max_pause_time_ms()); |
| 2139 | VMThread::execute(&op); |
| 2140 | gc_succeeded = op.gc_succeeded(); |
| 2141 | if (!gc_succeeded && retry_on_gc_failure) { |
| 2142 | if (old_marking_count_before == _old_marking_cycles_started) { |
| 2143 | should_retry_gc = op.should_retry_gc(); |
| 2144 | } else { |
| 2145 | // A Full GC happened while we were trying to schedule the |
| 2146 | // concurrent cycle. No point in starting a new cycle given |
| 2147 | // that the whole heap was collected anyway. |
| 2148 | } |
| 2149 | |
| 2150 | if (should_retry_gc && GCLocker::is_active_and_needs_gc()) { |
| 2151 | GCLocker::stall_until_clear(); |
| 2152 | } |
| 2153 | } |
| 2154 | } else { |
| 2155 | if (cause == GCCause::_gc_locker || cause == GCCause::_wb_young_gc |
| 2156 | DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) { |
| 2157 | |
| 2158 | // Schedule a standard evacuation pause. We're setting word_size |
| 2159 | // to 0 which means that we are not requesting a post-GC allocation. |
| 2160 | VM_G1CollectForAllocation op(0, /* word_size */ |
| 2161 | gc_count_before, |
| 2162 | cause, |
| 2163 | false, /* should_initiate_conc_mark */ |
| 2164 | policy()->max_pause_time_ms()); |
| 2165 | VMThread::execute(&op); |
| 2166 | gc_succeeded = op.gc_succeeded(); |
| 2167 | } else { |
| 2168 | // Schedule a Full GC. |
| 2169 | VM_G1CollectFull op(gc_count_before, full_gc_count_before, cause); |
| 2170 | VMThread::execute(&op); |
| 2171 | gc_succeeded = op.gc_succeeded(); |
| 2172 | } |
| 2173 | } |
| 2174 | } while (should_retry_gc); |
| 2175 | return gc_succeeded; |
| 2176 | } |
| 2177 | |
| 2178 | bool G1CollectedHeap::is_in(const void* p) const { |
| 2179 | if (_hrm->reserved().contains(p)) { |
| 2180 | // Given that we know that p is in the reserved space, |
| 2181 | // heap_region_containing() should successfully |
| 2182 | // return the containing region. |
| 2183 | HeapRegion* hr = heap_region_containing(p); |
| 2184 | return hr->is_in(p); |
| 2185 | } else { |
| 2186 | return false; |
| 2187 | } |
| 2188 | } |
| 2189 | |
| 2190 | #ifdef ASSERT |
| 2191 | bool G1CollectedHeap::is_in_exact(const void* p) const { |
| 2192 | bool contains = reserved_region().contains(p); |
| 2193 | bool available = _hrm->is_available(addr_to_region((HeapWord*)p)); |
| 2194 | if (contains && available) { |
| 2195 | return true; |
| 2196 | } else { |
| 2197 | return false; |
| 2198 | } |
| 2199 | } |
| 2200 | #endif |
| 2201 | |
| 2202 | // Iteration functions. |
| 2203 | |
| 2204 | // Iterates an ObjectClosure over all objects within a HeapRegion. |
| 2205 | |
| 2206 | class IterateObjectClosureRegionClosure: public HeapRegionClosure { |
| 2207 | ObjectClosure* _cl; |
| 2208 | public: |
| 2209 | IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {} |
| 2210 | bool do_heap_region(HeapRegion* r) { |
| 2211 | if (!r->is_continues_humongous()) { |
| 2212 | r->object_iterate(_cl); |
| 2213 | } |
| 2214 | return false; |
| 2215 | } |
| 2216 | }; |
| 2217 | |
| 2218 | void G1CollectedHeap::object_iterate(ObjectClosure* cl) { |
| 2219 | IterateObjectClosureRegionClosure blk(cl); |
| 2220 | heap_region_iterate(&blk); |
| 2221 | } |
| 2222 | |
| 2223 | void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const { |
| 2224 | _hrm->iterate(cl); |
| 2225 | } |
| 2226 | |
| 2227 | void G1CollectedHeap::heap_region_par_iterate_from_worker_offset(HeapRegionClosure* cl, |
| 2228 | HeapRegionClaimer *hrclaimer, |
| 2229 | uint worker_id) const { |
| 2230 | _hrm->par_iterate(cl, hrclaimer, hrclaimer->offset_for_worker(worker_id)); |
| 2231 | } |
| 2232 | |
| 2233 | void G1CollectedHeap::heap_region_par_iterate_from_start(HeapRegionClosure* cl, |
| 2234 | HeapRegionClaimer *hrclaimer) const { |
| 2235 | _hrm->par_iterate(cl, hrclaimer, 0); |
| 2236 | } |
| 2237 | |
| 2238 | void G1CollectedHeap::collection_set_iterate_all(HeapRegionClosure* cl) { |
| 2239 | _collection_set.iterate(cl); |
| 2240 | } |
| 2241 | |
| 2242 | void G1CollectedHeap::collection_set_iterate_increment_from(HeapRegionClosure *cl, uint worker_id) { |
| 2243 | _collection_set.iterate_incremental_part_from(cl, worker_id, workers()->active_workers()); |
| 2244 | } |
| 2245 | |
| 2246 | HeapWord* G1CollectedHeap::block_start(const void* addr) const { |
| 2247 | HeapRegion* hr = heap_region_containing(addr); |
| 2248 | return hr->block_start(addr); |
| 2249 | } |
| 2250 | |
| 2251 | bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const { |
| 2252 | HeapRegion* hr = heap_region_containing(addr); |
| 2253 | return hr->block_is_obj(addr); |
| 2254 | } |
| 2255 | |
| 2256 | bool G1CollectedHeap::supports_tlab_allocation() const { |
| 2257 | return true; |
| 2258 | } |
| 2259 | |
| 2260 | size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const { |
| 2261 | return (_policy->young_list_target_length() - _survivor.length()) * HeapRegion::GrainBytes; |
| 2262 | } |
| 2263 | |
| 2264 | size_t G1CollectedHeap::tlab_used(Thread* ignored) const { |
| 2265 | return _eden.length() * HeapRegion::GrainBytes; |
| 2266 | } |
| 2267 | |
| 2268 | // For G1 TLABs should not contain humongous objects, so the maximum TLAB size |
| 2269 | // must be equal to the humongous object limit. |
| 2270 | size_t G1CollectedHeap::max_tlab_size() const { |
| 2271 | return align_down(_humongous_object_threshold_in_words, MinObjAlignment); |
| 2272 | } |
| 2273 | |
| 2274 | size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const { |
| 2275 | return _allocator->unsafe_max_tlab_alloc(); |
| 2276 | } |
| 2277 | |
| 2278 | size_t G1CollectedHeap::max_capacity() const { |
| 2279 | return _hrm->max_expandable_length() * HeapRegion::GrainBytes; |
| 2280 | } |
| 2281 | |
| 2282 | size_t G1CollectedHeap::max_reserved_capacity() const { |
| 2283 | return _hrm->max_length() * HeapRegion::GrainBytes; |
| 2284 | } |
| 2285 | |
| 2286 | jlong G1CollectedHeap::millis_since_last_gc() { |
| 2287 | // See the notes in GenCollectedHeap::millis_since_last_gc() |
| 2288 | // for more information about the implementation. |
| 2289 | jlong ret_val = (os::javaTimeNanos() / NANOSECS_PER_MILLISEC) - |
| 2290 | _policy->collection_pause_end_millis(); |
| 2291 | if (ret_val < 0) { |
| 2292 | log_warning(gc)("millis_since_last_gc() would return : " JLONG_FORMAT |
| 2293 | ". returning zero instead." , ret_val); |
| 2294 | return 0; |
| 2295 | } |
| 2296 | return ret_val; |
| 2297 | } |
| 2298 | |
| 2299 | void G1CollectedHeap::deduplicate_string(oop str) { |
| 2300 | assert(java_lang_String::is_instance(str), "invariant" ); |
| 2301 | |
| 2302 | if (G1StringDedup::is_enabled()) { |
| 2303 | G1StringDedup::deduplicate(str); |
| 2304 | } |
| 2305 | } |
| 2306 | |
| 2307 | void G1CollectedHeap::prepare_for_verify() { |
| 2308 | _verifier->prepare_for_verify(); |
| 2309 | } |
| 2310 | |
| 2311 | void G1CollectedHeap::verify(VerifyOption vo) { |
| 2312 | _verifier->verify(vo); |
| 2313 | } |
| 2314 | |
| 2315 | bool G1CollectedHeap::supports_concurrent_phase_control() const { |
| 2316 | return true; |
| 2317 | } |
| 2318 | |
| 2319 | bool G1CollectedHeap::request_concurrent_phase(const char* phase) { |
| 2320 | return _cm_thread->request_concurrent_phase(phase); |
| 2321 | } |
| 2322 | |
| 2323 | bool G1CollectedHeap::is_heterogeneous_heap() const { |
| 2324 | return G1Arguments::is_heterogeneous_heap(); |
| 2325 | } |
| 2326 | |
| 2327 | class PrintRegionClosure: public HeapRegionClosure { |
| 2328 | outputStream* _st; |
| 2329 | public: |
| 2330 | PrintRegionClosure(outputStream* st) : _st(st) {} |
| 2331 | bool do_heap_region(HeapRegion* r) { |
| 2332 | r->print_on(_st); |
| 2333 | return false; |
| 2334 | } |
| 2335 | }; |
| 2336 | |
| 2337 | bool G1CollectedHeap::is_obj_dead_cond(const oop obj, |
| 2338 | const HeapRegion* hr, |
| 2339 | const VerifyOption vo) const { |
| 2340 | switch (vo) { |
| 2341 | case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj, hr); |
| 2342 | case VerifyOption_G1UseNextMarking: return is_obj_ill(obj, hr); |
| 2343 | case VerifyOption_G1UseFullMarking: return is_obj_dead_full(obj, hr); |
| 2344 | default: ShouldNotReachHere(); |
| 2345 | } |
| 2346 | return false; // keep some compilers happy |
| 2347 | } |
| 2348 | |
| 2349 | bool G1CollectedHeap::is_obj_dead_cond(const oop obj, |
| 2350 | const VerifyOption vo) const { |
| 2351 | switch (vo) { |
| 2352 | case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj); |
| 2353 | case VerifyOption_G1UseNextMarking: return is_obj_ill(obj); |
| 2354 | case VerifyOption_G1UseFullMarking: return is_obj_dead_full(obj); |
| 2355 | default: ShouldNotReachHere(); |
| 2356 | } |
| 2357 | return false; // keep some compilers happy |
| 2358 | } |
| 2359 | |
| 2360 | void G1CollectedHeap::print_heap_regions() const { |
| 2361 | LogTarget(Trace, gc, heap, region) lt; |
| 2362 | if (lt.is_enabled()) { |
| 2363 | LogStream ls(lt); |
| 2364 | print_regions_on(&ls); |
| 2365 | } |
| 2366 | } |
| 2367 | |
| 2368 | void G1CollectedHeap::print_on(outputStream* st) const { |
| 2369 | st->print(" %-20s" , "garbage-first heap" ); |
| 2370 | st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K" , |
| 2371 | capacity()/K, used_unlocked()/K); |
| 2372 | st->print(" [" PTR_FORMAT ", " PTR_FORMAT ")" , |
| 2373 | p2i(_hrm->reserved().start()), |
| 2374 | p2i(_hrm->reserved().end())); |
| 2375 | st->cr(); |
| 2376 | st->print(" region size " SIZE_FORMAT "K, " , HeapRegion::GrainBytes / K); |
| 2377 | uint young_regions = young_regions_count(); |
| 2378 | st->print("%u young (" SIZE_FORMAT "K), " , young_regions, |
| 2379 | (size_t) young_regions * HeapRegion::GrainBytes / K); |
| 2380 | uint survivor_regions = survivor_regions_count(); |
| 2381 | st->print("%u survivors (" SIZE_FORMAT "K)" , survivor_regions, |
| 2382 | (size_t) survivor_regions * HeapRegion::GrainBytes / K); |
| 2383 | st->cr(); |
| 2384 | MetaspaceUtils::print_on(st); |
| 2385 | } |
| 2386 | |
| 2387 | void G1CollectedHeap::print_regions_on(outputStream* st) const { |
| 2388 | st->print_cr("Heap Regions: E=young(eden), S=young(survivor), O=old, " |
| 2389 | "HS=humongous(starts), HC=humongous(continues), " |
| 2390 | "CS=collection set, F=free, A=archive, " |
| 2391 | "TAMS=top-at-mark-start (previous, next)" ); |
| 2392 | PrintRegionClosure blk(st); |
| 2393 | heap_region_iterate(&blk); |
| 2394 | } |
| 2395 | |
| 2396 | void G1CollectedHeap::print_extended_on(outputStream* st) const { |
| 2397 | print_on(st); |
| 2398 | |
| 2399 | // Print the per-region information. |
| 2400 | print_regions_on(st); |
| 2401 | } |
| 2402 | |
| 2403 | void G1CollectedHeap::print_on_error(outputStream* st) const { |
| 2404 | this->CollectedHeap::print_on_error(st); |
| 2405 | |
| 2406 | if (_cm != NULL) { |
| 2407 | st->cr(); |
| 2408 | _cm->print_on_error(st); |
| 2409 | } |
| 2410 | } |
| 2411 | |
| 2412 | void G1CollectedHeap::print_gc_threads_on(outputStream* st) const { |
| 2413 | workers()->print_worker_threads_on(st); |
| 2414 | _cm_thread->print_on(st); |
| 2415 | st->cr(); |
| 2416 | _cm->print_worker_threads_on(st); |
| 2417 | _cr->print_threads_on(st); |
| 2418 | _young_gen_sampling_thread->print_on(st); |
| 2419 | if (G1StringDedup::is_enabled()) { |
| 2420 | G1StringDedup::print_worker_threads_on(st); |
| 2421 | } |
| 2422 | } |
| 2423 | |
| 2424 | void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const { |
| 2425 | workers()->threads_do(tc); |
| 2426 | tc->do_thread(_cm_thread); |
| 2427 | _cm->threads_do(tc); |
| 2428 | _cr->threads_do(tc); |
| 2429 | tc->do_thread(_young_gen_sampling_thread); |
| 2430 | if (G1StringDedup::is_enabled()) { |
| 2431 | G1StringDedup::threads_do(tc); |
| 2432 | } |
| 2433 | } |
| 2434 | |
| 2435 | void G1CollectedHeap::print_tracing_info() const { |
| 2436 | rem_set()->print_summary_info(); |
| 2437 | concurrent_mark()->print_summary_info(); |
| 2438 | } |
| 2439 | |
| 2440 | #ifndef PRODUCT |
| 2441 | // Helpful for debugging RSet issues. |
| 2442 | |
| 2443 | class PrintRSetsClosure : public HeapRegionClosure { |
| 2444 | private: |
| 2445 | const char* _msg; |
| 2446 | size_t _occupied_sum; |
| 2447 | |
| 2448 | public: |
| 2449 | bool do_heap_region(HeapRegion* r) { |
| 2450 | HeapRegionRemSet* hrrs = r->rem_set(); |
| 2451 | size_t occupied = hrrs->occupied(); |
| 2452 | _occupied_sum += occupied; |
| 2453 | |
| 2454 | tty->print_cr("Printing RSet for region " HR_FORMAT, HR_FORMAT_PARAMS(r)); |
| 2455 | if (occupied == 0) { |
| 2456 | tty->print_cr(" RSet is empty" ); |
| 2457 | } else { |
| 2458 | hrrs->print(); |
| 2459 | } |
| 2460 | tty->print_cr("----------" ); |
| 2461 | return false; |
| 2462 | } |
| 2463 | |
| 2464 | PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) { |
| 2465 | tty->cr(); |
| 2466 | tty->print_cr("========================================" ); |
| 2467 | tty->print_cr("%s" , msg); |
| 2468 | tty->cr(); |
| 2469 | } |
| 2470 | |
| 2471 | ~PrintRSetsClosure() { |
| 2472 | tty->print_cr("Occupied Sum: " SIZE_FORMAT, _occupied_sum); |
| 2473 | tty->print_cr("========================================" ); |
| 2474 | tty->cr(); |
| 2475 | } |
| 2476 | }; |
| 2477 | |
| 2478 | void G1CollectedHeap::print_cset_rsets() { |
| 2479 | PrintRSetsClosure cl("Printing CSet RSets" ); |
| 2480 | collection_set_iterate_all(&cl); |
| 2481 | } |
| 2482 | |
| 2483 | void G1CollectedHeap::print_all_rsets() { |
| 2484 | PrintRSetsClosure cl("Printing All RSets" );; |
| 2485 | heap_region_iterate(&cl); |
| 2486 | } |
| 2487 | #endif // PRODUCT |
| 2488 | |
| 2489 | G1HeapSummary G1CollectedHeap::create_g1_heap_summary() { |
| 2490 | |
| 2491 | size_t eden_used_bytes = _eden.used_bytes(); |
| 2492 | size_t survivor_used_bytes = _survivor.used_bytes(); |
| 2493 | size_t heap_used = Heap_lock->owned_by_self() ? used() : used_unlocked(); |
| 2494 | |
| 2495 | size_t eden_capacity_bytes = |
| 2496 | (policy()->young_list_target_length() * HeapRegion::GrainBytes) - survivor_used_bytes; |
| 2497 | |
| 2498 | VirtualSpaceSummary heap_summary = create_heap_space_summary(); |
| 2499 | return G1HeapSummary(heap_summary, heap_used, eden_used_bytes, |
| 2500 | eden_capacity_bytes, survivor_used_bytes, num_regions()); |
| 2501 | } |
| 2502 | |
| 2503 | G1EvacSummary G1CollectedHeap::create_g1_evac_summary(G1EvacStats* stats) { |
| 2504 | return G1EvacSummary(stats->allocated(), stats->wasted(), stats->undo_wasted(), |
| 2505 | stats->unused(), stats->used(), stats->region_end_waste(), |
| 2506 | stats->regions_filled(), stats->direct_allocated(), |
| 2507 | stats->failure_used(), stats->failure_waste()); |
| 2508 | } |
| 2509 | |
| 2510 | void G1CollectedHeap::trace_heap(GCWhen::Type when, const GCTracer* gc_tracer) { |
| 2511 | const G1HeapSummary& heap_summary = create_g1_heap_summary(); |
| 2512 | gc_tracer->report_gc_heap_summary(when, heap_summary); |
| 2513 | |
| 2514 | const MetaspaceSummary& metaspace_summary = create_metaspace_summary(); |
| 2515 | gc_tracer->report_metaspace_summary(when, metaspace_summary); |
| 2516 | } |
| 2517 | |
| 2518 | G1CollectedHeap* G1CollectedHeap::heap() { |
| 2519 | CollectedHeap* heap = Universe::heap(); |
| 2520 | assert(heap != NULL, "Uninitialized access to G1CollectedHeap::heap()" ); |
| 2521 | assert(heap->kind() == CollectedHeap::G1, "Invalid name" ); |
| 2522 | return (G1CollectedHeap*)heap; |
| 2523 | } |
| 2524 | |
| 2525 | void G1CollectedHeap::gc_prologue(bool full) { |
| 2526 | // always_do_update_barrier = false; |
| 2527 | assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer" ); |
| 2528 | |
| 2529 | // This summary needs to be printed before incrementing total collections. |
| 2530 | rem_set()->print_periodic_summary_info("Before GC RS summary" , total_collections()); |
| 2531 | |
| 2532 | // Update common counters. |
| 2533 | increment_total_collections(full /* full gc */); |
| 2534 | if (full || collector_state()->in_initial_mark_gc()) { |
| 2535 | increment_old_marking_cycles_started(); |
| 2536 | } |
| 2537 | |
| 2538 | // Fill TLAB's and such |
| 2539 | double start = os::elapsedTime(); |
| 2540 | ensure_parsability(true); |
| 2541 | phase_times()->record_prepare_tlab_time_ms((os::elapsedTime() - start) * 1000.0); |
| 2542 | } |
| 2543 | |
| 2544 | void G1CollectedHeap::gc_epilogue(bool full) { |
| 2545 | // Update common counters. |
| 2546 | if (full) { |
| 2547 | // Update the number of full collections that have been completed. |
| 2548 | increment_old_marking_cycles_completed(false /* concurrent */); |
| 2549 | } |
| 2550 | |
| 2551 | // We are at the end of the GC. Total collections has already been increased. |
| 2552 | rem_set()->print_periodic_summary_info("After GC RS summary" , total_collections() - 1); |
| 2553 | |
| 2554 | // FIXME: what is this about? |
| 2555 | // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled" |
| 2556 | // is set. |
| 2557 | #if COMPILER2_OR_JVMCI |
| 2558 | assert(DerivedPointerTable::is_empty(), "derived pointer present" ); |
| 2559 | #endif |
| 2560 | // always_do_update_barrier = true; |
| 2561 | |
| 2562 | double start = os::elapsedTime(); |
| 2563 | resize_all_tlabs(); |
| 2564 | phase_times()->record_resize_tlab_time_ms((os::elapsedTime() - start) * 1000.0); |
| 2565 | |
| 2566 | MemoryService::track_memory_usage(); |
| 2567 | // We have just completed a GC. Update the soft reference |
| 2568 | // policy with the new heap occupancy |
| 2569 | Universe::update_heap_info_at_gc(); |
| 2570 | } |
| 2571 | |
| 2572 | HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size, |
| 2573 | uint gc_count_before, |
| 2574 | bool* succeeded, |
| 2575 | GCCause::Cause gc_cause) { |
| 2576 | assert_heap_not_locked_and_not_at_safepoint(); |
| 2577 | VM_G1CollectForAllocation op(word_size, |
| 2578 | gc_count_before, |
| 2579 | gc_cause, |
| 2580 | false, /* should_initiate_conc_mark */ |
| 2581 | policy()->max_pause_time_ms()); |
| 2582 | VMThread::execute(&op); |
| 2583 | |
| 2584 | HeapWord* result = op.result(); |
| 2585 | bool ret_succeeded = op.prologue_succeeded() && op.gc_succeeded(); |
| 2586 | assert(result == NULL || ret_succeeded, |
| 2587 | "the result should be NULL if the VM did not succeed" ); |
| 2588 | *succeeded = ret_succeeded; |
| 2589 | |
| 2590 | assert_heap_not_locked(); |
| 2591 | return result; |
| 2592 | } |
| 2593 | |
| 2594 | void G1CollectedHeap::do_concurrent_mark() { |
| 2595 | MutexLocker x(CGC_lock, Mutex::_no_safepoint_check_flag); |
| 2596 | if (!_cm_thread->in_progress()) { |
| 2597 | _cm_thread->set_started(); |
| 2598 | CGC_lock->notify(); |
| 2599 | } |
| 2600 | } |
| 2601 | |
| 2602 | size_t G1CollectedHeap::pending_card_num() { |
| 2603 | struct CountCardsClosure : public ThreadClosure { |
| 2604 | size_t _cards; |
| 2605 | CountCardsClosure() : _cards(0) {} |
| 2606 | virtual void do_thread(Thread* t) { |
| 2607 | _cards += G1ThreadLocalData::dirty_card_queue(t).size(); |
| 2608 | } |
| 2609 | } count_from_threads; |
| 2610 | Threads::threads_do(&count_from_threads); |
| 2611 | |
| 2612 | G1DirtyCardQueueSet& dcqs = G1BarrierSet::dirty_card_queue_set(); |
| 2613 | size_t buffer_size = dcqs.buffer_size(); |
| 2614 | size_t buffer_num = dcqs.completed_buffers_num(); |
| 2615 | |
| 2616 | return buffer_size * buffer_num + count_from_threads._cards; |
| 2617 | } |
| 2618 | |
| 2619 | bool G1CollectedHeap::is_potential_eager_reclaim_candidate(HeapRegion* r) const { |
| 2620 | // We don't nominate objects with many remembered set entries, on |
| 2621 | // the assumption that such objects are likely still live. |
| 2622 | HeapRegionRemSet* rem_set = r->rem_set(); |
| 2623 | |
| 2624 | return G1EagerReclaimHumongousObjectsWithStaleRefs ? |
| 2625 | rem_set->occupancy_less_or_equal_than(G1RSetSparseRegionEntries) : |
| 2626 | G1EagerReclaimHumongousObjects && rem_set->is_empty(); |
| 2627 | } |
| 2628 | |
| 2629 | class RegisterRegionsWithRegionAttrTableClosure : public HeapRegionClosure { |
| 2630 | private: |
| 2631 | size_t _total_humongous; |
| 2632 | size_t _candidate_humongous; |
| 2633 | |
| 2634 | G1DirtyCardQueue _dcq; |
| 2635 | |
| 2636 | bool humongous_region_is_candidate(G1CollectedHeap* g1h, HeapRegion* region) const { |
| 2637 | assert(region->is_starts_humongous(), "Must start a humongous object" ); |
| 2638 | |
| 2639 | oop obj = oop(region->bottom()); |
| 2640 | |
| 2641 | // Dead objects cannot be eager reclaim candidates. Due to class |
| 2642 | // unloading it is unsafe to query their classes so we return early. |
| 2643 | if (g1h->is_obj_dead(obj, region)) { |
| 2644 | return false; |
| 2645 | } |
| 2646 | |
| 2647 | // If we do not have a complete remembered set for the region, then we can |
| 2648 | // not be sure that we have all references to it. |
| 2649 | if (!region->rem_set()->is_complete()) { |
| 2650 | return false; |
| 2651 | } |
| 2652 | // Candidate selection must satisfy the following constraints |
| 2653 | // while concurrent marking is in progress: |
| 2654 | // |
| 2655 | // * In order to maintain SATB invariants, an object must not be |
| 2656 | // reclaimed if it was allocated before the start of marking and |
| 2657 | // has not had its references scanned. Such an object must have |
| 2658 | // its references (including type metadata) scanned to ensure no |
| 2659 | // live objects are missed by the marking process. Objects |
| 2660 | // allocated after the start of concurrent marking don't need to |
| 2661 | // be scanned. |
| 2662 | // |
| 2663 | // * An object must not be reclaimed if it is on the concurrent |
| 2664 | // mark stack. Objects allocated after the start of concurrent |
| 2665 | // marking are never pushed on the mark stack. |
| 2666 | // |
| 2667 | // Nominating only objects allocated after the start of concurrent |
| 2668 | // marking is sufficient to meet both constraints. This may miss |
| 2669 | // some objects that satisfy the constraints, but the marking data |
| 2670 | // structures don't support efficiently performing the needed |
| 2671 | // additional tests or scrubbing of the mark stack. |
| 2672 | // |
| 2673 | // However, we presently only nominate is_typeArray() objects. |
| 2674 | // A humongous object containing references induces remembered |
| 2675 | // set entries on other regions. In order to reclaim such an |
| 2676 | // object, those remembered sets would need to be cleaned up. |
| 2677 | // |
| 2678 | // We also treat is_typeArray() objects specially, allowing them |
| 2679 | // to be reclaimed even if allocated before the start of |
| 2680 | // concurrent mark. For this we rely on mark stack insertion to |
| 2681 | // exclude is_typeArray() objects, preventing reclaiming an object |
| 2682 | // that is in the mark stack. We also rely on the metadata for |
| 2683 | // such objects to be built-in and so ensured to be kept live. |
| 2684 | // Frequent allocation and drop of large binary blobs is an |
| 2685 | // important use case for eager reclaim, and this special handling |
| 2686 | // may reduce needed headroom. |
| 2687 | |
| 2688 | return obj->is_typeArray() && |
| 2689 | g1h->is_potential_eager_reclaim_candidate(region); |
| 2690 | } |
| 2691 | |
| 2692 | public: |
| 2693 | RegisterRegionsWithRegionAttrTableClosure() |
| 2694 | : _total_humongous(0), |
| 2695 | _candidate_humongous(0), |
| 2696 | _dcq(&G1BarrierSet::dirty_card_queue_set()) { |
| 2697 | } |
| 2698 | |
| 2699 | virtual bool do_heap_region(HeapRegion* r) { |
| 2700 | G1CollectedHeap* g1h = G1CollectedHeap::heap(); |
| 2701 | |
| 2702 | if (!r->is_starts_humongous()) { |
| 2703 | g1h->register_region_with_region_attr(r); |
| 2704 | return false; |
| 2705 | } |
| 2706 | |
| 2707 | bool is_candidate = humongous_region_is_candidate(g1h, r); |
| 2708 | uint rindex = r->hrm_index(); |
| 2709 | g1h->set_humongous_reclaim_candidate(rindex, is_candidate); |
| 2710 | if (is_candidate) { |
| 2711 | _candidate_humongous++; |
| 2712 | g1h->register_humongous_region_with_region_attr(rindex); |
| 2713 | // Is_candidate already filters out humongous object with large remembered sets. |
| 2714 | // If we have a humongous object with a few remembered sets, we simply flush these |
| 2715 | // remembered set entries into the DCQS. That will result in automatic |
| 2716 | // re-evaluation of their remembered set entries during the following evacuation |
| 2717 | // phase. |
| 2718 | if (!r->rem_set()->is_empty()) { |
| 2719 | guarantee(r->rem_set()->occupancy_less_or_equal_than(G1RSetSparseRegionEntries), |
| 2720 | "Found a not-small remembered set here. This is inconsistent with previous assumptions." ); |
| 2721 | G1CardTable* ct = g1h->card_table(); |
| 2722 | HeapRegionRemSetIterator hrrs(r->rem_set()); |
| 2723 | size_t card_index; |
| 2724 | while (hrrs.has_next(card_index)) { |
| 2725 | CardTable::CardValue* card_ptr = ct->byte_for_index(card_index); |
| 2726 | // The remembered set might contain references to already freed |
| 2727 | // regions. Filter out such entries to avoid failing card table |
| 2728 | // verification. |
| 2729 | if (g1h->is_in(ct->addr_for(card_ptr))) { |
| 2730 | if (*card_ptr != G1CardTable::dirty_card_val()) { |
| 2731 | *card_ptr = G1CardTable::dirty_card_val(); |
| 2732 | _dcq.enqueue(card_ptr); |
| 2733 | } |
| 2734 | } |
| 2735 | } |
| 2736 | assert(hrrs.n_yielded() == r->rem_set()->occupied(), |
| 2737 | "Remembered set hash maps out of sync, cur: " SIZE_FORMAT " entries, next: " SIZE_FORMAT " entries" , |
| 2738 | hrrs.n_yielded(), r->rem_set()->occupied()); |
| 2739 | // We should only clear the card based remembered set here as we will not |
| 2740 | // implicitly rebuild anything else during eager reclaim. Note that at the moment |
| 2741 | // (and probably never) we do not enter this path if there are other kind of |
| 2742 | // remembered sets for this region. |
| 2743 | r->rem_set()->clear_locked(true /* only_cardset */); |
| 2744 | // Clear_locked() above sets the state to Empty. However we want to continue |
| 2745 | // collecting remembered set entries for humongous regions that were not |
| 2746 | // reclaimed. |
| 2747 | r->rem_set()->set_state_complete(); |
| 2748 | #ifdef ASSERT |
| 2749 | G1HeapRegionAttr region_attr = g1h->region_attr(oop(r->bottom())); |
| 2750 | assert(region_attr.needs_remset_update(), "must be" ); |
| 2751 | #endif |
| 2752 | } |
| 2753 | assert(r->rem_set()->is_empty(), "At this point any humongous candidate remembered set must be empty." ); |
| 2754 | } else { |
| 2755 | g1h->register_region_with_region_attr(r); |
| 2756 | } |
| 2757 | _total_humongous++; |
| 2758 | |
| 2759 | return false; |
| 2760 | } |
| 2761 | |
| 2762 | size_t total_humongous() const { return _total_humongous; } |
| 2763 | size_t candidate_humongous() const { return _candidate_humongous; } |
| 2764 | |
| 2765 | void flush_rem_set_entries() { _dcq.flush(); } |
| 2766 | }; |
| 2767 | |
| 2768 | void G1CollectedHeap::register_regions_with_region_attr() { |
| 2769 | Ticks start = Ticks::now(); |
| 2770 | |
| 2771 | RegisterRegionsWithRegionAttrTableClosure cl; |
| 2772 | heap_region_iterate(&cl); |
| 2773 | |
| 2774 | phase_times()->record_register_regions((Ticks::now() - start).seconds() * 1000.0, |
| 2775 | cl.total_humongous(), |
| 2776 | cl.candidate_humongous()); |
| 2777 | _has_humongous_reclaim_candidates = cl.candidate_humongous() > 0; |
| 2778 | |
| 2779 | // Finally flush all remembered set entries to re-check into the global DCQS. |
| 2780 | cl.flush_rem_set_entries(); |
| 2781 | } |
| 2782 | |
| 2783 | #ifndef PRODUCT |
| 2784 | void G1CollectedHeap::verify_region_attr_remset_update() { |
| 2785 | class VerifyRegionAttrRemSet : public HeapRegionClosure { |
| 2786 | public: |
| 2787 | virtual bool do_heap_region(HeapRegion* r) { |
| 2788 | G1CollectedHeap* g1h = G1CollectedHeap::heap(); |
| 2789 | bool const needs_remset_update = g1h->region_attr(r->bottom()).needs_remset_update(); |
| 2790 | assert(r->rem_set()->is_tracked() == needs_remset_update, |
| 2791 | "Region %u remset tracking status (%s) different to region attribute (%s)" , |
| 2792 | r->hrm_index(), BOOL_TO_STR(r->rem_set()->is_tracked()), BOOL_TO_STR(needs_remset_update)); |
| 2793 | return false; |
| 2794 | } |
| 2795 | } cl; |
| 2796 | heap_region_iterate(&cl); |
| 2797 | } |
| 2798 | #endif |
| 2799 | |
| 2800 | class VerifyRegionRemSetClosure : public HeapRegionClosure { |
| 2801 | public: |
| 2802 | bool do_heap_region(HeapRegion* hr) { |
| 2803 | if (!hr->is_archive() && !hr->is_continues_humongous()) { |
| 2804 | hr->verify_rem_set(); |
| 2805 | } |
| 2806 | return false; |
| 2807 | } |
| 2808 | }; |
| 2809 | |
| 2810 | uint G1CollectedHeap::num_task_queues() const { |
| 2811 | return _task_queues->size(); |
| 2812 | } |
| 2813 | |
| 2814 | #if TASKQUEUE_STATS |
| 2815 | void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) { |
| 2816 | st->print_raw_cr("GC Task Stats" ); |
| 2817 | st->print_raw("thr " ); TaskQueueStats::print_header(1, st); st->cr(); |
| 2818 | st->print_raw("--- " ); TaskQueueStats::print_header(2, st); st->cr(); |
| 2819 | } |
| 2820 | |
| 2821 | void G1CollectedHeap::print_taskqueue_stats() const { |
| 2822 | if (!log_is_enabled(Trace, gc, task, stats)) { |
| 2823 | return; |
| 2824 | } |
| 2825 | Log(gc, task, stats) log; |
| 2826 | ResourceMark rm; |
| 2827 | LogStream ls(log.trace()); |
| 2828 | outputStream* st = &ls; |
| 2829 | |
| 2830 | print_taskqueue_stats_hdr(st); |
| 2831 | |
| 2832 | TaskQueueStats totals; |
| 2833 | const uint n = num_task_queues(); |
| 2834 | for (uint i = 0; i < n; ++i) { |
| 2835 | st->print("%3u " , i); task_queue(i)->stats.print(st); st->cr(); |
| 2836 | totals += task_queue(i)->stats; |
| 2837 | } |
| 2838 | st->print_raw("tot " ); totals.print(st); st->cr(); |
| 2839 | |
| 2840 | DEBUG_ONLY(totals.verify()); |
| 2841 | } |
| 2842 | |
| 2843 | void G1CollectedHeap::reset_taskqueue_stats() { |
| 2844 | const uint n = num_task_queues(); |
| 2845 | for (uint i = 0; i < n; ++i) { |
| 2846 | task_queue(i)->stats.reset(); |
| 2847 | } |
| 2848 | } |
| 2849 | #endif // TASKQUEUE_STATS |
| 2850 | |
| 2851 | void G1CollectedHeap::wait_for_root_region_scanning() { |
| 2852 | double scan_wait_start = os::elapsedTime(); |
| 2853 | // We have to wait until the CM threads finish scanning the |
| 2854 | // root regions as it's the only way to ensure that all the |
| 2855 | // objects on them have been correctly scanned before we start |
| 2856 | // moving them during the GC. |
| 2857 | bool waited = _cm->root_regions()->wait_until_scan_finished(); |
| 2858 | double wait_time_ms = 0.0; |
| 2859 | if (waited) { |
| 2860 | double scan_wait_end = os::elapsedTime(); |
| 2861 | wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0; |
| 2862 | } |
| 2863 | phase_times()->record_root_region_scan_wait_time(wait_time_ms); |
| 2864 | } |
| 2865 | |
| 2866 | class G1PrintCollectionSetClosure : public HeapRegionClosure { |
| 2867 | private: |
| 2868 | G1HRPrinter* _hr_printer; |
| 2869 | public: |
| 2870 | G1PrintCollectionSetClosure(G1HRPrinter* hr_printer) : HeapRegionClosure(), _hr_printer(hr_printer) { } |
| 2871 | |
| 2872 | virtual bool do_heap_region(HeapRegion* r) { |
| 2873 | _hr_printer->cset(r); |
| 2874 | return false; |
| 2875 | } |
| 2876 | }; |
| 2877 | |
| 2878 | void G1CollectedHeap::start_new_collection_set() { |
| 2879 | double start = os::elapsedTime(); |
| 2880 | |
| 2881 | collection_set()->start_incremental_building(); |
| 2882 | |
| 2883 | clear_region_attr(); |
| 2884 | |
| 2885 | guarantee(_eden.length() == 0, "eden should have been cleared" ); |
| 2886 | policy()->transfer_survivors_to_cset(survivor()); |
| 2887 | |
| 2888 | // We redo the verification but now wrt to the new CSet which |
| 2889 | // has just got initialized after the previous CSet was freed. |
| 2890 | _cm->verify_no_collection_set_oops(); |
| 2891 | |
| 2892 | phase_times()->record_start_new_cset_time_ms((os::elapsedTime() - start) * 1000.0); |
| 2893 | } |
| 2894 | |
| 2895 | void G1CollectedHeap::calculate_collection_set(G1EvacuationInfo& evacuation_info, double target_pause_time_ms) { |
| 2896 | |
| 2897 | _collection_set.finalize_initial_collection_set(target_pause_time_ms, &_survivor); |
| 2898 | evacuation_info.set_collectionset_regions(collection_set()->region_length() + |
| 2899 | collection_set()->optional_region_length()); |
| 2900 | |
| 2901 | _cm->verify_no_collection_set_oops(); |
| 2902 | |
| 2903 | if (_hr_printer.is_active()) { |
| 2904 | G1PrintCollectionSetClosure cl(&_hr_printer); |
| 2905 | _collection_set.iterate(&cl); |
| 2906 | _collection_set.iterate_optional(&cl); |
| 2907 | } |
| 2908 | } |
| 2909 | |
| 2910 | G1HeapVerifier::G1VerifyType G1CollectedHeap::young_collection_verify_type() const { |
| 2911 | if (collector_state()->in_initial_mark_gc()) { |
| 2912 | return G1HeapVerifier::G1VerifyConcurrentStart; |
| 2913 | } else if (collector_state()->in_young_only_phase()) { |
| 2914 | return G1HeapVerifier::G1VerifyYoungNormal; |
| 2915 | } else { |
| 2916 | return G1HeapVerifier::G1VerifyMixed; |
| 2917 | } |
| 2918 | } |
| 2919 | |
| 2920 | void G1CollectedHeap::verify_before_young_collection(G1HeapVerifier::G1VerifyType type) { |
| 2921 | if (VerifyRememberedSets) { |
| 2922 | log_info(gc, verify)("[Verifying RemSets before GC]" ); |
| 2923 | VerifyRegionRemSetClosure v_cl; |
| 2924 | heap_region_iterate(&v_cl); |
| 2925 | } |
| 2926 | _verifier->verify_before_gc(type); |
| 2927 | _verifier->check_bitmaps("GC Start" ); |
| 2928 | } |
| 2929 | |
| 2930 | void G1CollectedHeap::verify_after_young_collection(G1HeapVerifier::G1VerifyType type) { |
| 2931 | if (VerifyRememberedSets) { |
| 2932 | log_info(gc, verify)("[Verifying RemSets after GC]" ); |
| 2933 | VerifyRegionRemSetClosure v_cl; |
| 2934 | heap_region_iterate(&v_cl); |
| 2935 | } |
| 2936 | _verifier->verify_after_gc(type); |
| 2937 | _verifier->check_bitmaps("GC End" ); |
| 2938 | } |
| 2939 | |
| 2940 | void G1CollectedHeap::expand_heap_after_young_collection(){ |
| 2941 | size_t expand_bytes = _heap_sizing_policy->expansion_amount(); |
| 2942 | if (expand_bytes > 0) { |
| 2943 | // No need for an ergo logging here, |
| 2944 | // expansion_amount() does this when it returns a value > 0. |
| 2945 | double expand_ms; |
| 2946 | if (!expand(expand_bytes, _workers, &expand_ms)) { |
| 2947 | // We failed to expand the heap. Cannot do anything about it. |
| 2948 | } |
| 2949 | phase_times()->record_expand_heap_time(expand_ms); |
| 2950 | } |
| 2951 | } |
| 2952 | |
| 2953 | const char* G1CollectedHeap::young_gc_name() const { |
| 2954 | if (collector_state()->in_initial_mark_gc()) { |
| 2955 | return "Pause Young (Concurrent Start)" ; |
| 2956 | } else if (collector_state()->in_young_only_phase()) { |
| 2957 | if (collector_state()->in_young_gc_before_mixed()) { |
| 2958 | return "Pause Young (Prepare Mixed)" ; |
| 2959 | } else { |
| 2960 | return "Pause Young (Normal)" ; |
| 2961 | } |
| 2962 | } else { |
| 2963 | return "Pause Young (Mixed)" ; |
| 2964 | } |
| 2965 | } |
| 2966 | |
| 2967 | bool G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) { |
| 2968 | assert_at_safepoint_on_vm_thread(); |
| 2969 | guarantee(!is_gc_active(), "collection is not reentrant" ); |
| 2970 | |
| 2971 | if (GCLocker::check_active_before_gc()) { |
| 2972 | return false; |
| 2973 | } |
| 2974 | |
| 2975 | GCIdMark gc_id_mark; |
| 2976 | |
| 2977 | SvcGCMarker sgcm(SvcGCMarker::MINOR); |
| 2978 | ResourceMark rm; |
| 2979 | |
| 2980 | policy()->note_gc_start(); |
| 2981 | |
| 2982 | _gc_timer_stw->register_gc_start(); |
| 2983 | _gc_tracer_stw->report_gc_start(gc_cause(), _gc_timer_stw->gc_start()); |
| 2984 | |
| 2985 | wait_for_root_region_scanning(); |
| 2986 | |
| 2987 | print_heap_before_gc(); |
| 2988 | print_heap_regions(); |
| 2989 | trace_heap_before_gc(_gc_tracer_stw); |
| 2990 | |
| 2991 | _verifier->verify_region_sets_optional(); |
| 2992 | _verifier->verify_dirty_young_regions(); |
| 2993 | |
| 2994 | // We should not be doing initial mark unless the conc mark thread is running |
| 2995 | if (!_cm_thread->should_terminate()) { |
| 2996 | // This call will decide whether this pause is an initial-mark |
| 2997 | // pause. If it is, in_initial_mark_gc() will return true |
| 2998 | // for the duration of this pause. |
| 2999 | policy()->decide_on_conc_mark_initiation(); |
| 3000 | } |
| 3001 | |
| 3002 | // We do not allow initial-mark to be piggy-backed on a mixed GC. |
| 3003 | assert(!collector_state()->in_initial_mark_gc() || |
| 3004 | collector_state()->in_young_only_phase(), "sanity" ); |
| 3005 | // We also do not allow mixed GCs during marking. |
| 3006 | assert(!collector_state()->mark_or_rebuild_in_progress() || collector_state()->in_young_only_phase(), "sanity" ); |
| 3007 | |
| 3008 | // Record whether this pause is an initial mark. When the current |
| 3009 | // thread has completed its logging output and it's safe to signal |
| 3010 | // the CM thread, the flag's value in the policy has been reset. |
| 3011 | bool should_start_conc_mark = collector_state()->in_initial_mark_gc(); |
| 3012 | if (should_start_conc_mark) { |
| 3013 | _cm->gc_tracer_cm()->set_gc_cause(gc_cause()); |
| 3014 | } |
| 3015 | |
| 3016 | // Inner scope for scope based logging, timers, and stats collection |
| 3017 | { |
| 3018 | G1EvacuationInfo evacuation_info; |
| 3019 | |
| 3020 | _gc_tracer_stw->report_yc_type(collector_state()->yc_type()); |
| 3021 | |
| 3022 | GCTraceCPUTime tcpu; |
| 3023 | |
| 3024 | GCTraceTime(Info, gc) tm(young_gc_name(), NULL, gc_cause(), true); |
| 3025 | |
| 3026 | uint active_workers = WorkerPolicy::calc_active_workers(workers()->total_workers(), |
| 3027 | workers()->active_workers(), |
| 3028 | Threads::number_of_non_daemon_threads()); |
| 3029 | active_workers = workers()->update_active_workers(active_workers); |
| 3030 | log_info(gc,task)("Using %u workers of %u for evacuation" , active_workers, workers()->total_workers()); |
| 3031 | |
| 3032 | G1MonitoringScope ms(g1mm(), |
| 3033 | false /* full_gc */, |
| 3034 | collector_state()->yc_type() == Mixed /* all_memory_pools_affected */); |
| 3035 | |
| 3036 | G1HeapTransition heap_transition(this); |
| 3037 | size_t heap_used_bytes_before_gc = used(); |
| 3038 | |
| 3039 | { |
| 3040 | IsGCActiveMark x; |
| 3041 | |
| 3042 | gc_prologue(false); |
| 3043 | |
| 3044 | G1HeapVerifier::G1VerifyType verify_type = young_collection_verify_type(); |
| 3045 | verify_before_young_collection(verify_type); |
| 3046 | |
| 3047 | { |
| 3048 | // The elapsed time induced by the start time below deliberately elides |
| 3049 | // the possible verification above. |
| 3050 | double sample_start_time_sec = os::elapsedTime(); |
| 3051 | |
| 3052 | // Please see comment in g1CollectedHeap.hpp and |
| 3053 | // G1CollectedHeap::ref_processing_init() to see how |
| 3054 | // reference processing currently works in G1. |
| 3055 | _ref_processor_stw->enable_discovery(); |
| 3056 | |
| 3057 | // We want to temporarily turn off discovery by the |
| 3058 | // CM ref processor, if necessary, and turn it back on |
| 3059 | // on again later if we do. Using a scoped |
| 3060 | // NoRefDiscovery object will do this. |
| 3061 | NoRefDiscovery no_cm_discovery(_ref_processor_cm); |
| 3062 | |
| 3063 | policy()->record_collection_pause_start(sample_start_time_sec); |
| 3064 | |
| 3065 | // Forget the current allocation region (we might even choose it to be part |
| 3066 | // of the collection set!). |
| 3067 | _allocator->release_mutator_alloc_region(); |
| 3068 | |
| 3069 | calculate_collection_set(evacuation_info, target_pause_time_ms); |
| 3070 | |
| 3071 | G1ParScanThreadStateSet per_thread_states(this, |
| 3072 | workers()->active_workers(), |
| 3073 | collection_set()->young_region_length(), |
| 3074 | collection_set()->optional_region_length()); |
| 3075 | pre_evacuate_collection_set(evacuation_info); |
| 3076 | |
| 3077 | // Actually do the work... |
| 3078 | evacuate_initial_collection_set(&per_thread_states); |
| 3079 | |
| 3080 | if (_collection_set.optional_region_length() != 0) { |
| 3081 | evacuate_optional_collection_set(&per_thread_states); |
| 3082 | } |
| 3083 | post_evacuate_collection_set(evacuation_info, &per_thread_states); |
| 3084 | |
| 3085 | start_new_collection_set(); |
| 3086 | |
| 3087 | _survivor_evac_stats.adjust_desired_plab_sz(); |
| 3088 | _old_evac_stats.adjust_desired_plab_sz(); |
| 3089 | |
| 3090 | if (should_start_conc_mark) { |
| 3091 | // We have to do this before we notify the CM threads that |
| 3092 | // they can start working to make sure that all the |
| 3093 | // appropriate initialization is done on the CM object. |
| 3094 | concurrent_mark()->post_initial_mark(); |
| 3095 | // Note that we don't actually trigger the CM thread at |
| 3096 | // this point. We do that later when we're sure that |
| 3097 | // the current thread has completed its logging output. |
| 3098 | } |
| 3099 | |
| 3100 | allocate_dummy_regions(); |
| 3101 | |
| 3102 | _allocator->init_mutator_alloc_region(); |
| 3103 | |
| 3104 | expand_heap_after_young_collection(); |
| 3105 | |
| 3106 | double sample_end_time_sec = os::elapsedTime(); |
| 3107 | double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS; |
| 3108 | size_t total_cards_scanned = phase_times()->sum_thread_work_items(G1GCPhaseTimes::ScanRS, G1GCPhaseTimes::ScanRSScannedCards) + |
| 3109 | phase_times()->sum_thread_work_items(G1GCPhaseTimes::OptScanRS, G1GCPhaseTimes::ScanRSScannedCards); |
| 3110 | policy()->record_collection_pause_end(pause_time_ms, total_cards_scanned, heap_used_bytes_before_gc); |
| 3111 | } |
| 3112 | |
| 3113 | verify_after_young_collection(verify_type); |
| 3114 | |
| 3115 | #ifdef TRACESPINNING |
| 3116 | ParallelTaskTerminator::print_termination_counts(); |
| 3117 | #endif |
| 3118 | |
| 3119 | gc_epilogue(false); |
| 3120 | } |
| 3121 | |
| 3122 | // Print the remainder of the GC log output. |
| 3123 | if (evacuation_failed()) { |
| 3124 | log_info(gc)("To-space exhausted" ); |
| 3125 | } |
| 3126 | |
| 3127 | policy()->print_phases(); |
| 3128 | heap_transition.print(); |
| 3129 | |
| 3130 | _hrm->verify_optional(); |
| 3131 | _verifier->verify_region_sets_optional(); |
| 3132 | |
| 3133 | TASKQUEUE_STATS_ONLY(print_taskqueue_stats()); |
| 3134 | TASKQUEUE_STATS_ONLY(reset_taskqueue_stats()); |
| 3135 | |
| 3136 | print_heap_after_gc(); |
| 3137 | print_heap_regions(); |
| 3138 | trace_heap_after_gc(_gc_tracer_stw); |
| 3139 | |
| 3140 | // We must call G1MonitoringSupport::update_sizes() in the same scoping level |
| 3141 | // as an active TraceMemoryManagerStats object (i.e. before the destructor for the |
| 3142 | // TraceMemoryManagerStats is called) so that the G1 memory pools are updated |
| 3143 | // before any GC notifications are raised. |
| 3144 | g1mm()->update_sizes(); |
| 3145 | |
| 3146 | _gc_tracer_stw->report_evacuation_info(&evacuation_info); |
| 3147 | _gc_tracer_stw->report_tenuring_threshold(_policy->tenuring_threshold()); |
| 3148 | _gc_timer_stw->register_gc_end(); |
| 3149 | _gc_tracer_stw->report_gc_end(_gc_timer_stw->gc_end(), _gc_timer_stw->time_partitions()); |
| 3150 | } |
| 3151 | // It should now be safe to tell the concurrent mark thread to start |
| 3152 | // without its logging output interfering with the logging output |
| 3153 | // that came from the pause. |
| 3154 | |
| 3155 | if (should_start_conc_mark) { |
| 3156 | // CAUTION: after the doConcurrentMark() call below, the concurrent marking |
| 3157 | // thread(s) could be running concurrently with us. Make sure that anything |
| 3158 | // after this point does not assume that we are the only GC thread running. |
| 3159 | // Note: of course, the actual marking work will not start until the safepoint |
| 3160 | // itself is released in SuspendibleThreadSet::desynchronize(). |
| 3161 | do_concurrent_mark(); |
| 3162 | } |
| 3163 | |
| 3164 | return true; |
| 3165 | } |
| 3166 | |
| 3167 | void G1CollectedHeap::remove_self_forwarding_pointers() { |
| 3168 | G1ParRemoveSelfForwardPtrsTask rsfp_task; |
| 3169 | workers()->run_task(&rsfp_task); |
| 3170 | } |
| 3171 | |
| 3172 | void G1CollectedHeap::restore_after_evac_failure() { |
| 3173 | double remove_self_forwards_start = os::elapsedTime(); |
| 3174 | |
| 3175 | remove_self_forwarding_pointers(); |
| 3176 | SharedRestorePreservedMarksTaskExecutor task_executor(workers()); |
| 3177 | _preserved_marks_set.restore(&task_executor); |
| 3178 | |
| 3179 | phase_times()->record_evac_fail_remove_self_forwards((os::elapsedTime() - remove_self_forwards_start) * 1000.0); |
| 3180 | } |
| 3181 | |
| 3182 | void G1CollectedHeap::preserve_mark_during_evac_failure(uint worker_id, oop obj, markOop m) { |
| 3183 | if (!_evacuation_failed) { |
| 3184 | _evacuation_failed = true; |
| 3185 | } |
| 3186 | |
| 3187 | _evacuation_failed_info_array[worker_id].register_copy_failure(obj->size()); |
| 3188 | _preserved_marks_set.get(worker_id)->push_if_necessary(obj, m); |
| 3189 | } |
| 3190 | |
| 3191 | bool G1ParEvacuateFollowersClosure::offer_termination() { |
| 3192 | EventGCPhaseParallel event; |
| 3193 | G1ParScanThreadState* const pss = par_scan_state(); |
| 3194 | start_term_time(); |
| 3195 | const bool res = terminator()->offer_termination(); |
| 3196 | end_term_time(); |
| 3197 | event.commit(GCId::current(), pss->worker_id(), G1GCPhaseTimes::phase_name(G1GCPhaseTimes::Termination)); |
| 3198 | return res; |
| 3199 | } |
| 3200 | |
| 3201 | void G1ParEvacuateFollowersClosure::do_void() { |
| 3202 | EventGCPhaseParallel event; |
| 3203 | G1ParScanThreadState* const pss = par_scan_state(); |
| 3204 | pss->trim_queue(); |
| 3205 | event.commit(GCId::current(), pss->worker_id(), G1GCPhaseTimes::phase_name(_phase)); |
| 3206 | do { |
| 3207 | EventGCPhaseParallel event; |
| 3208 | pss->steal_and_trim_queue(queues()); |
| 3209 | event.commit(GCId::current(), pss->worker_id(), G1GCPhaseTimes::phase_name(_phase)); |
| 3210 | } while (!offer_termination()); |
| 3211 | } |
| 3212 | |
| 3213 | void G1CollectedHeap::complete_cleaning(BoolObjectClosure* is_alive, |
| 3214 | bool class_unloading_occurred) { |
| 3215 | uint num_workers = workers()->active_workers(); |
| 3216 | ParallelCleaningTask unlink_task(is_alive, num_workers, class_unloading_occurred, false); |
| 3217 | workers()->run_task(&unlink_task); |
| 3218 | } |
| 3219 | |
| 3220 | // Clean string dedup data structures. |
| 3221 | // Ideally we would prefer to use a StringDedupCleaningTask here, but we want to |
| 3222 | // record the durations of the phases. Hence the almost-copy. |
| 3223 | class G1StringDedupCleaningTask : public AbstractGangTask { |
| 3224 | BoolObjectClosure* _is_alive; |
| 3225 | OopClosure* _keep_alive; |
| 3226 | G1GCPhaseTimes* _phase_times; |
| 3227 | |
| 3228 | public: |
| 3229 | G1StringDedupCleaningTask(BoolObjectClosure* is_alive, |
| 3230 | OopClosure* keep_alive, |
| 3231 | G1GCPhaseTimes* phase_times) : |
| 3232 | AbstractGangTask("Partial Cleaning Task" ), |
| 3233 | _is_alive(is_alive), |
| 3234 | _keep_alive(keep_alive), |
| 3235 | _phase_times(phase_times) |
| 3236 | { |
| 3237 | assert(G1StringDedup::is_enabled(), "String deduplication disabled." ); |
| 3238 | StringDedup::gc_prologue(true); |
| 3239 | } |
| 3240 | |
| 3241 | ~G1StringDedupCleaningTask() { |
| 3242 | StringDedup::gc_epilogue(); |
| 3243 | } |
| 3244 | |
| 3245 | void work(uint worker_id) { |
| 3246 | StringDedupUnlinkOrOopsDoClosure cl(_is_alive, _keep_alive); |
| 3247 | { |
| 3248 | G1GCParPhaseTimesTracker x(_phase_times, G1GCPhaseTimes::StringDedupQueueFixup, worker_id); |
| 3249 | StringDedupQueue::unlink_or_oops_do(&cl); |
| 3250 | } |
| 3251 | { |
| 3252 | G1GCParPhaseTimesTracker x(_phase_times, G1GCPhaseTimes::StringDedupTableFixup, worker_id); |
| 3253 | StringDedupTable::unlink_or_oops_do(&cl, worker_id); |
| 3254 | } |
| 3255 | } |
| 3256 | }; |
| 3257 | |
| 3258 | void G1CollectedHeap::string_dedup_cleaning(BoolObjectClosure* is_alive, |
| 3259 | OopClosure* keep_alive, |
| 3260 | G1GCPhaseTimes* phase_times) { |
| 3261 | G1StringDedupCleaningTask cl(is_alive, keep_alive, phase_times); |
| 3262 | workers()->run_task(&cl); |
| 3263 | } |
| 3264 | |
| 3265 | class G1RedirtyLoggedCardsTask : public AbstractGangTask { |
| 3266 | private: |
| 3267 | G1DirtyCardQueueSet* _queue; |
| 3268 | G1CollectedHeap* _g1h; |
| 3269 | public: |
| 3270 | G1RedirtyLoggedCardsTask(G1DirtyCardQueueSet* queue, G1CollectedHeap* g1h) : AbstractGangTask("Redirty Cards" ), |
| 3271 | _queue(queue), _g1h(g1h) { } |
| 3272 | |
| 3273 | virtual void work(uint worker_id) { |
| 3274 | G1GCPhaseTimes* p = _g1h->phase_times(); |
| 3275 | G1GCParPhaseTimesTracker x(p, G1GCPhaseTimes::RedirtyCards, worker_id); |
| 3276 | |
| 3277 | RedirtyLoggedCardTableEntryClosure cl(_g1h); |
| 3278 | _queue->par_apply_closure_to_all_completed_buffers(&cl); |
| 3279 | |
| 3280 | p->record_thread_work_item(G1GCPhaseTimes::RedirtyCards, worker_id, cl.num_dirtied()); |
| 3281 | } |
| 3282 | }; |
| 3283 | |
| 3284 | void G1CollectedHeap::redirty_logged_cards() { |
| 3285 | double redirty_logged_cards_start = os::elapsedTime(); |
| 3286 | |
| 3287 | G1RedirtyLoggedCardsTask redirty_task(&dirty_card_queue_set(), this); |
| 3288 | dirty_card_queue_set().reset_for_par_iteration(); |
| 3289 | workers()->run_task(&redirty_task); |
| 3290 | |
| 3291 | G1DirtyCardQueueSet& dcq = G1BarrierSet::dirty_card_queue_set(); |
| 3292 | dcq.merge_bufferlists(&dirty_card_queue_set()); |
| 3293 | assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed" ); |
| 3294 | |
| 3295 | phase_times()->record_redirty_logged_cards_time_ms((os::elapsedTime() - redirty_logged_cards_start) * 1000.0); |
| 3296 | } |
| 3297 | |
| 3298 | // Weak Reference Processing support |
| 3299 | |
| 3300 | bool G1STWIsAliveClosure::do_object_b(oop p) { |
| 3301 | // An object is reachable if it is outside the collection set, |
| 3302 | // or is inside and copied. |
| 3303 | return !_g1h->is_in_cset(p) || p->is_forwarded(); |
| 3304 | } |
| 3305 | |
| 3306 | bool G1STWSubjectToDiscoveryClosure::do_object_b(oop obj) { |
| 3307 | assert(obj != NULL, "must not be NULL" ); |
| 3308 | assert(_g1h->is_in_reserved(obj), "Trying to discover obj " PTR_FORMAT " not in heap" , p2i(obj)); |
| 3309 | // The areas the CM and STW ref processor manage must be disjoint. The is_in_cset() below |
| 3310 | // may falsely indicate that this is not the case here: however the collection set only |
| 3311 | // contains old regions when concurrent mark is not running. |
| 3312 | return _g1h->is_in_cset(obj) || _g1h->heap_region_containing(obj)->is_survivor(); |
| 3313 | } |
| 3314 | |
| 3315 | // Non Copying Keep Alive closure |
| 3316 | class G1KeepAliveClosure: public OopClosure { |
| 3317 | G1CollectedHeap*_g1h; |
| 3318 | public: |
| 3319 | G1KeepAliveClosure(G1CollectedHeap* g1h) :_g1h(g1h) {} |
| 3320 | void do_oop(narrowOop* p) { guarantee(false, "Not needed" ); } |
| 3321 | void do_oop(oop* p) { |
| 3322 | oop obj = *p; |
| 3323 | assert(obj != NULL, "the caller should have filtered out NULL values" ); |
| 3324 | |
| 3325 | const G1HeapRegionAttr region_attr =_g1h->region_attr(obj); |
| 3326 | if (!region_attr.is_in_cset_or_humongous()) { |
| 3327 | return; |
| 3328 | } |
| 3329 | if (region_attr.is_in_cset()) { |
| 3330 | assert( obj->is_forwarded(), "invariant" ); |
| 3331 | *p = obj->forwardee(); |
| 3332 | } else { |
| 3333 | assert(!obj->is_forwarded(), "invariant" ); |
| 3334 | assert(region_attr.is_humongous(), |
| 3335 | "Only allowed G1HeapRegionAttr state is IsHumongous, but is %d" , region_attr.type()); |
| 3336 | _g1h->set_humongous_is_live(obj); |
| 3337 | } |
| 3338 | } |
| 3339 | }; |
| 3340 | |
| 3341 | // Copying Keep Alive closure - can be called from both |
| 3342 | // serial and parallel code as long as different worker |
| 3343 | // threads utilize different G1ParScanThreadState instances |
| 3344 | // and different queues. |
| 3345 | |
| 3346 | class G1CopyingKeepAliveClosure: public OopClosure { |
| 3347 | G1CollectedHeap* _g1h; |
| 3348 | G1ParScanThreadState* _par_scan_state; |
| 3349 | |
| 3350 | public: |
| 3351 | G1CopyingKeepAliveClosure(G1CollectedHeap* g1h, |
| 3352 | G1ParScanThreadState* pss): |
| 3353 | _g1h(g1h), |
| 3354 | _par_scan_state(pss) |
| 3355 | {} |
| 3356 | |
| 3357 | virtual void do_oop(narrowOop* p) { do_oop_work(p); } |
| 3358 | virtual void do_oop( oop* p) { do_oop_work(p); } |
| 3359 | |
| 3360 | template <class T> void do_oop_work(T* p) { |
| 3361 | oop obj = RawAccess<>::oop_load(p); |
| 3362 | |
| 3363 | if (_g1h->is_in_cset_or_humongous(obj)) { |
| 3364 | // If the referent object has been forwarded (either copied |
| 3365 | // to a new location or to itself in the event of an |
| 3366 | // evacuation failure) then we need to update the reference |
| 3367 | // field and, if both reference and referent are in the G1 |
| 3368 | // heap, update the RSet for the referent. |
| 3369 | // |
| 3370 | // If the referent has not been forwarded then we have to keep |
| 3371 | // it alive by policy. Therefore we have copy the referent. |
| 3372 | // |
| 3373 | // When the queue is drained (after each phase of reference processing) |
| 3374 | // the object and it's followers will be copied, the reference field set |
| 3375 | // to point to the new location, and the RSet updated. |
| 3376 | _par_scan_state->push_on_queue(p); |
| 3377 | } |
| 3378 | } |
| 3379 | }; |
| 3380 | |
| 3381 | // Serial drain queue closure. Called as the 'complete_gc' |
| 3382 | // closure for each discovered list in some of the |
| 3383 | // reference processing phases. |
| 3384 | |
| 3385 | class G1STWDrainQueueClosure: public VoidClosure { |
| 3386 | protected: |
| 3387 | G1CollectedHeap* _g1h; |
| 3388 | G1ParScanThreadState* _par_scan_state; |
| 3389 | |
| 3390 | G1ParScanThreadState* par_scan_state() { return _par_scan_state; } |
| 3391 | |
| 3392 | public: |
| 3393 | G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) : |
| 3394 | _g1h(g1h), |
| 3395 | _par_scan_state(pss) |
| 3396 | { } |
| 3397 | |
| 3398 | void do_void() { |
| 3399 | G1ParScanThreadState* const pss = par_scan_state(); |
| 3400 | pss->trim_queue(); |
| 3401 | } |
| 3402 | }; |
| 3403 | |
| 3404 | // Parallel Reference Processing closures |
| 3405 | |
| 3406 | // Implementation of AbstractRefProcTaskExecutor for parallel reference |
| 3407 | // processing during G1 evacuation pauses. |
| 3408 | |
| 3409 | class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor { |
| 3410 | private: |
| 3411 | G1CollectedHeap* _g1h; |
| 3412 | G1ParScanThreadStateSet* _pss; |
| 3413 | RefToScanQueueSet* _queues; |
| 3414 | WorkGang* _workers; |
| 3415 | |
| 3416 | public: |
| 3417 | G1STWRefProcTaskExecutor(G1CollectedHeap* g1h, |
| 3418 | G1ParScanThreadStateSet* per_thread_states, |
| 3419 | WorkGang* workers, |
| 3420 | RefToScanQueueSet *task_queues) : |
| 3421 | _g1h(g1h), |
| 3422 | _pss(per_thread_states), |
| 3423 | _queues(task_queues), |
| 3424 | _workers(workers) |
| 3425 | { |
| 3426 | g1h->ref_processor_stw()->set_active_mt_degree(workers->active_workers()); |
| 3427 | } |
| 3428 | |
| 3429 | // Executes the given task using concurrent marking worker threads. |
| 3430 | virtual void execute(ProcessTask& task, uint ergo_workers); |
| 3431 | }; |
| 3432 | |
| 3433 | // Gang task for possibly parallel reference processing |
| 3434 | |
| 3435 | class G1STWRefProcTaskProxy: public AbstractGangTask { |
| 3436 | typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask; |
| 3437 | ProcessTask& _proc_task; |
| 3438 | G1CollectedHeap* _g1h; |
| 3439 | G1ParScanThreadStateSet* _pss; |
| 3440 | RefToScanQueueSet* _task_queues; |
| 3441 | ParallelTaskTerminator* _terminator; |
| 3442 | |
| 3443 | public: |
| 3444 | G1STWRefProcTaskProxy(ProcessTask& proc_task, |
| 3445 | G1CollectedHeap* g1h, |
| 3446 | G1ParScanThreadStateSet* per_thread_states, |
| 3447 | RefToScanQueueSet *task_queues, |
| 3448 | ParallelTaskTerminator* terminator) : |
| 3449 | AbstractGangTask("Process reference objects in parallel" ), |
| 3450 | _proc_task(proc_task), |
| 3451 | _g1h(g1h), |
| 3452 | _pss(per_thread_states), |
| 3453 | _task_queues(task_queues), |
| 3454 | _terminator(terminator) |
| 3455 | {} |
| 3456 | |
| 3457 | virtual void work(uint worker_id) { |
| 3458 | // The reference processing task executed by a single worker. |
| 3459 | ResourceMark rm; |
| 3460 | HandleMark hm; |
| 3461 | |
| 3462 | G1STWIsAliveClosure is_alive(_g1h); |
| 3463 | |
| 3464 | G1ParScanThreadState* pss = _pss->state_for_worker(worker_id); |
| 3465 | pss->set_ref_discoverer(NULL); |
| 3466 | |
| 3467 | // Keep alive closure. |
| 3468 | G1CopyingKeepAliveClosure keep_alive(_g1h, pss); |
| 3469 | |
| 3470 | // Complete GC closure |
| 3471 | G1ParEvacuateFollowersClosure drain_queue(_g1h, pss, _task_queues, _terminator, G1GCPhaseTimes::ObjCopy); |
| 3472 | |
| 3473 | // Call the reference processing task's work routine. |
| 3474 | _proc_task.work(worker_id, is_alive, keep_alive, drain_queue); |
| 3475 | |
| 3476 | // Note we cannot assert that the refs array is empty here as not all |
| 3477 | // of the processing tasks (specifically phase2 - pp2_work) execute |
| 3478 | // the complete_gc closure (which ordinarily would drain the queue) so |
| 3479 | // the queue may not be empty. |
| 3480 | } |
| 3481 | }; |
| 3482 | |
| 3483 | // Driver routine for parallel reference processing. |
| 3484 | // Creates an instance of the ref processing gang |
| 3485 | // task and has the worker threads execute it. |
| 3486 | void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task, uint ergo_workers) { |
| 3487 | assert(_workers != NULL, "Need parallel worker threads." ); |
| 3488 | |
| 3489 | assert(_workers->active_workers() >= ergo_workers, |
| 3490 | "Ergonomically chosen workers (%u) should be less than or equal to active workers (%u)" , |
| 3491 | ergo_workers, _workers->active_workers()); |
| 3492 | TaskTerminator terminator(ergo_workers, _queues); |
| 3493 | G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _pss, _queues, terminator.terminator()); |
| 3494 | |
| 3495 | _workers->run_task(&proc_task_proxy, ergo_workers); |
| 3496 | } |
| 3497 | |
| 3498 | // End of weak reference support closures |
| 3499 | |
| 3500 | void G1CollectedHeap::process_discovered_references(G1ParScanThreadStateSet* per_thread_states) { |
| 3501 | double ref_proc_start = os::elapsedTime(); |
| 3502 | |
| 3503 | ReferenceProcessor* rp = _ref_processor_stw; |
| 3504 | assert(rp->discovery_enabled(), "should have been enabled" ); |
| 3505 | |
| 3506 | // Closure to test whether a referent is alive. |
| 3507 | G1STWIsAliveClosure is_alive(this); |
| 3508 | |
| 3509 | // Even when parallel reference processing is enabled, the processing |
| 3510 | // of JNI refs is serial and performed serially by the current thread |
| 3511 | // rather than by a worker. The following PSS will be used for processing |
| 3512 | // JNI refs. |
| 3513 | |
| 3514 | // Use only a single queue for this PSS. |
| 3515 | G1ParScanThreadState* pss = per_thread_states->state_for_worker(0); |
| 3516 | pss->set_ref_discoverer(NULL); |
| 3517 | assert(pss->queue_is_empty(), "pre-condition" ); |
| 3518 | |
| 3519 | // Keep alive closure. |
| 3520 | G1CopyingKeepAliveClosure keep_alive(this, pss); |
| 3521 | |
| 3522 | // Serial Complete GC closure |
| 3523 | G1STWDrainQueueClosure drain_queue(this, pss); |
| 3524 | |
| 3525 | // Setup the soft refs policy... |
| 3526 | rp->setup_policy(false); |
| 3527 | |
| 3528 | ReferenceProcessorPhaseTimes* pt = phase_times()->ref_phase_times(); |
| 3529 | |
| 3530 | ReferenceProcessorStats stats; |
| 3531 | if (!rp->processing_is_mt()) { |
| 3532 | // Serial reference processing... |
| 3533 | stats = rp->process_discovered_references(&is_alive, |
| 3534 | &keep_alive, |
| 3535 | &drain_queue, |
| 3536 | NULL, |
| 3537 | pt); |
| 3538 | } else { |
| 3539 | uint no_of_gc_workers = workers()->active_workers(); |
| 3540 | |
| 3541 | // Parallel reference processing |
| 3542 | assert(no_of_gc_workers <= rp->max_num_queues(), |
| 3543 | "Mismatch between the number of GC workers %u and the maximum number of Reference process queues %u" , |
| 3544 | no_of_gc_workers, rp->max_num_queues()); |
| 3545 | |
| 3546 | G1STWRefProcTaskExecutor par_task_executor(this, per_thread_states, workers(), _task_queues); |
| 3547 | stats = rp->process_discovered_references(&is_alive, |
| 3548 | &keep_alive, |
| 3549 | &drain_queue, |
| 3550 | &par_task_executor, |
| 3551 | pt); |
| 3552 | } |
| 3553 | |
| 3554 | _gc_tracer_stw->report_gc_reference_stats(stats); |
| 3555 | |
| 3556 | // We have completed copying any necessary live referent objects. |
| 3557 | assert(pss->queue_is_empty(), "both queue and overflow should be empty" ); |
| 3558 | |
| 3559 | make_pending_list_reachable(); |
| 3560 | |
| 3561 | assert(!rp->discovery_enabled(), "Postcondition" ); |
| 3562 | rp->verify_no_references_recorded(); |
| 3563 | |
| 3564 | double ref_proc_time = os::elapsedTime() - ref_proc_start; |
| 3565 | phase_times()->record_ref_proc_time(ref_proc_time * 1000.0); |
| 3566 | } |
| 3567 | |
| 3568 | void G1CollectedHeap::make_pending_list_reachable() { |
| 3569 | if (collector_state()->in_initial_mark_gc()) { |
| 3570 | oop pll_head = Universe::reference_pending_list(); |
| 3571 | if (pll_head != NULL) { |
| 3572 | // Any valid worker id is fine here as we are in the VM thread and single-threaded. |
| 3573 | _cm->mark_in_next_bitmap(0 /* worker_id */, pll_head); |
| 3574 | } |
| 3575 | } |
| 3576 | } |
| 3577 | |
| 3578 | void G1CollectedHeap::merge_per_thread_state_info(G1ParScanThreadStateSet* per_thread_states) { |
| 3579 | double merge_pss_time_start = os::elapsedTime(); |
| 3580 | per_thread_states->flush(); |
| 3581 | phase_times()->record_merge_pss_time_ms((os::elapsedTime() - merge_pss_time_start) * 1000.0); |
| 3582 | } |
| 3583 | |
| 3584 | void G1CollectedHeap::pre_evacuate_collection_set(G1EvacuationInfo& evacuation_info) { |
| 3585 | _expand_heap_after_alloc_failure = true; |
| 3586 | _evacuation_failed = false; |
| 3587 | |
| 3588 | // Disable the hot card cache. |
| 3589 | _hot_card_cache->reset_hot_cache_claimed_index(); |
| 3590 | _hot_card_cache->set_use_cache(false); |
| 3591 | |
| 3592 | // Initialize the GC alloc regions. |
| 3593 | _allocator->init_gc_alloc_regions(evacuation_info); |
| 3594 | |
| 3595 | register_regions_with_region_attr(); |
| 3596 | assert(_verifier->check_region_attr_table(), "Inconsistency in the region attributes table." ); |
| 3597 | |
| 3598 | rem_set()->prepare_for_scan_rem_set(); |
| 3599 | _preserved_marks_set.assert_empty(); |
| 3600 | |
| 3601 | #if COMPILER2_OR_JVMCI |
| 3602 | DerivedPointerTable::clear(); |
| 3603 | #endif |
| 3604 | |
| 3605 | // InitialMark needs claim bits to keep track of the marked-through CLDs. |
| 3606 | if (collector_state()->in_initial_mark_gc()) { |
| 3607 | concurrent_mark()->pre_initial_mark(); |
| 3608 | |
| 3609 | double start_clear_claimed_marks = os::elapsedTime(); |
| 3610 | |
| 3611 | ClassLoaderDataGraph::clear_claimed_marks(); |
| 3612 | |
| 3613 | double recorded_clear_claimed_marks_time_ms = (os::elapsedTime() - start_clear_claimed_marks) * 1000.0; |
| 3614 | phase_times()->record_clear_claimed_marks_time_ms(recorded_clear_claimed_marks_time_ms); |
| 3615 | } |
| 3616 | |
| 3617 | // Should G1EvacuationFailureALot be in effect for this GC? |
| 3618 | NOT_PRODUCT(set_evacuation_failure_alot_for_current_gc();) |
| 3619 | |
| 3620 | assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty" ); |
| 3621 | } |
| 3622 | |
| 3623 | class G1EvacuateRegionsBaseTask : public AbstractGangTask { |
| 3624 | protected: |
| 3625 | G1CollectedHeap* _g1h; |
| 3626 | G1ParScanThreadStateSet* _per_thread_states; |
| 3627 | RefToScanQueueSet* _task_queues; |
| 3628 | TaskTerminator _terminator; |
| 3629 | uint _num_workers; |
| 3630 | |
| 3631 | void evacuate_live_objects(G1ParScanThreadState* pss, |
| 3632 | uint worker_id, |
| 3633 | G1GCPhaseTimes::GCParPhases objcopy_phase, |
| 3634 | G1GCPhaseTimes::GCParPhases termination_phase) { |
| 3635 | G1GCPhaseTimes* p = _g1h->phase_times(); |
| 3636 | |
| 3637 | Ticks start = Ticks::now(); |
| 3638 | G1ParEvacuateFollowersClosure cl(_g1h, pss, _task_queues, _terminator.terminator(), objcopy_phase); |
| 3639 | cl.do_void(); |
| 3640 | |
| 3641 | assert(pss->queue_is_empty(), "should be empty" ); |
| 3642 | |
| 3643 | Tickspan evac_time = (Ticks::now() - start); |
| 3644 | p->record_or_add_time_secs(objcopy_phase, worker_id, evac_time.seconds() - cl.term_time()); |
| 3645 | |
| 3646 | p->record_or_add_thread_work_item(objcopy_phase, worker_id, pss->lab_waste_words() * HeapWordSize, G1GCPhaseTimes::ObjCopyLABWaste); |
| 3647 | p->record_or_add_thread_work_item(objcopy_phase, worker_id, pss->lab_undo_waste_words() * HeapWordSize, G1GCPhaseTimes::ObjCopyLABUndoWaste); |
| 3648 | |
| 3649 | if (termination_phase == G1GCPhaseTimes::Termination) { |
| 3650 | p->record_time_secs(termination_phase, worker_id, cl.term_time()); |
| 3651 | p->record_thread_work_item(termination_phase, worker_id, cl.term_attempts()); |
| 3652 | } else { |
| 3653 | p->record_or_add_time_secs(termination_phase, worker_id, cl.term_time()); |
| 3654 | p->record_or_add_thread_work_item(termination_phase, worker_id, cl.term_attempts()); |
| 3655 | } |
| 3656 | assert(pss->trim_ticks().seconds() == 0.0, "Unexpected partial trimming during evacuation" ); |
| 3657 | } |
| 3658 | |
| 3659 | virtual void start_work(uint worker_id) { } |
| 3660 | |
| 3661 | virtual void end_work(uint worker_id) { } |
| 3662 | |
| 3663 | virtual void scan_roots(G1ParScanThreadState* pss, uint worker_id) = 0; |
| 3664 | |
| 3665 | virtual void evacuate_live_objects(G1ParScanThreadState* pss, uint worker_id) = 0; |
| 3666 | |
| 3667 | public: |
| 3668 | G1EvacuateRegionsBaseTask(const char* name, G1ParScanThreadStateSet* per_thread_states, RefToScanQueueSet* task_queues, uint num_workers) : |
| 3669 | AbstractGangTask(name), |
| 3670 | _g1h(G1CollectedHeap::heap()), |
| 3671 | _per_thread_states(per_thread_states), |
| 3672 | _task_queues(task_queues), |
| 3673 | _terminator(num_workers, _task_queues), |
| 3674 | _num_workers(num_workers) |
| 3675 | { } |
| 3676 | |
| 3677 | void work(uint worker_id) { |
| 3678 | start_work(worker_id); |
| 3679 | |
| 3680 | { |
| 3681 | ResourceMark rm; |
| 3682 | HandleMark hm; |
| 3683 | |
| 3684 | G1ParScanThreadState* pss = _per_thread_states->state_for_worker(worker_id); |
| 3685 | pss->set_ref_discoverer(_g1h->ref_processor_stw()); |
| 3686 | |
| 3687 | scan_roots(pss, worker_id); |
| 3688 | evacuate_live_objects(pss, worker_id); |
| 3689 | } |
| 3690 | |
| 3691 | end_work(worker_id); |
| 3692 | } |
| 3693 | }; |
| 3694 | |
| 3695 | class G1EvacuateRegionsTask : public G1EvacuateRegionsBaseTask { |
| 3696 | G1RootProcessor* _root_processor; |
| 3697 | |
| 3698 | void scan_roots(G1ParScanThreadState* pss, uint worker_id) { |
| 3699 | _root_processor->evacuate_roots(pss, worker_id); |
| 3700 | _g1h->rem_set()->update_rem_set(pss, worker_id); |
| 3701 | _g1h->rem_set()->scan_rem_set(pss, worker_id, G1GCPhaseTimes::ScanRS, G1GCPhaseTimes::ObjCopy, G1GCPhaseTimes::CodeRoots); |
| 3702 | } |
| 3703 | |
| 3704 | void evacuate_live_objects(G1ParScanThreadState* pss, uint worker_id) { |
| 3705 | G1EvacuateRegionsBaseTask::evacuate_live_objects(pss, worker_id, G1GCPhaseTimes::ObjCopy, G1GCPhaseTimes::Termination); |
| 3706 | } |
| 3707 | |
| 3708 | void start_work(uint worker_id) { |
| 3709 | _g1h->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerStart, worker_id, Ticks::now().seconds()); |
| 3710 | } |
| 3711 | |
| 3712 | void end_work(uint worker_id) { |
| 3713 | _g1h->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerEnd, worker_id, Ticks::now().seconds()); |
| 3714 | } |
| 3715 | |
| 3716 | public: |
| 3717 | G1EvacuateRegionsTask(G1CollectedHeap* g1h, |
| 3718 | G1ParScanThreadStateSet* per_thread_states, |
| 3719 | RefToScanQueueSet* task_queues, |
| 3720 | G1RootProcessor* root_processor, |
| 3721 | uint num_workers) : |
| 3722 | G1EvacuateRegionsBaseTask("G1 Evacuate Regions" , per_thread_states, task_queues, num_workers), |
| 3723 | _root_processor(root_processor) |
| 3724 | { } |
| 3725 | }; |
| 3726 | |
| 3727 | void G1CollectedHeap::evacuate_initial_collection_set(G1ParScanThreadStateSet* per_thread_states) { |
| 3728 | Tickspan task_time; |
| 3729 | const uint num_workers = workers()->active_workers(); |
| 3730 | |
| 3731 | Ticks start_processing = Ticks::now(); |
| 3732 | { |
| 3733 | G1RootProcessor root_processor(this, num_workers); |
| 3734 | G1EvacuateRegionsTask g1_par_task(this, per_thread_states, _task_queues, &root_processor, num_workers); |
| 3735 | task_time = run_task(&g1_par_task); |
| 3736 | // Closing the inner scope will execute the destructor for the G1RootProcessor object. |
| 3737 | // To extract its code root fixup time we measure total time of this scope and |
| 3738 | // subtract from the time the WorkGang task took. |
| 3739 | } |
| 3740 | Tickspan total_processing = Ticks::now() - start_processing; |
| 3741 | |
| 3742 | G1GCPhaseTimes* p = phase_times(); |
| 3743 | p->record_initial_evac_time(task_time.seconds() * 1000.0); |
| 3744 | p->record_or_add_code_root_fixup_time((total_processing - task_time).seconds() * 1000.0); |
| 3745 | } |
| 3746 | |
| 3747 | class G1EvacuateOptionalRegionsTask : public G1EvacuateRegionsBaseTask { |
| 3748 | |
| 3749 | void scan_roots(G1ParScanThreadState* pss, uint worker_id) { |
| 3750 | _g1h->rem_set()->scan_rem_set(pss, worker_id, G1GCPhaseTimes::OptScanRS, G1GCPhaseTimes::OptObjCopy, G1GCPhaseTimes::OptCodeRoots); |
| 3751 | } |
| 3752 | |
| 3753 | void evacuate_live_objects(G1ParScanThreadState* pss, uint worker_id) { |
| 3754 | G1EvacuateRegionsBaseTask::evacuate_live_objects(pss, worker_id, G1GCPhaseTimes::OptObjCopy, G1GCPhaseTimes::OptTermination); |
| 3755 | } |
| 3756 | |
| 3757 | public: |
| 3758 | G1EvacuateOptionalRegionsTask(G1ParScanThreadStateSet* per_thread_states, |
| 3759 | RefToScanQueueSet* queues, |
| 3760 | uint num_workers) : |
| 3761 | G1EvacuateRegionsBaseTask("G1 Evacuate Optional Regions" , per_thread_states, queues, num_workers) { |
| 3762 | } |
| 3763 | }; |
| 3764 | |
| 3765 | void G1CollectedHeap::evacuate_next_optional_regions(G1ParScanThreadStateSet* per_thread_states) { |
| 3766 | class G1MarkScope : public MarkScope { }; |
| 3767 | |
| 3768 | Tickspan task_time; |
| 3769 | |
| 3770 | Ticks start_processing = Ticks::now(); |
| 3771 | { |
| 3772 | G1MarkScope code_mark_scope; |
| 3773 | G1EvacuateOptionalRegionsTask task(per_thread_states, _task_queues, workers()->active_workers()); |
| 3774 | task_time = run_task(&task); |
| 3775 | // See comment in evacuate_collection_set() for the reason of the scope. |
| 3776 | } |
| 3777 | Tickspan total_processing = Ticks::now() - start_processing; |
| 3778 | |
| 3779 | G1GCPhaseTimes* p = phase_times(); |
| 3780 | p->record_or_add_code_root_fixup_time((total_processing - task_time).seconds() * 1000.0); |
| 3781 | } |
| 3782 | |
| 3783 | void G1CollectedHeap::evacuate_optional_collection_set(G1ParScanThreadStateSet* per_thread_states) { |
| 3784 | const double gc_start_time_ms = phase_times()->cur_collection_start_sec() * 1000.0; |
| 3785 | |
| 3786 | Ticks start = Ticks::now(); |
| 3787 | |
| 3788 | while (!evacuation_failed() && _collection_set.optional_region_length() > 0) { |
| 3789 | |
| 3790 | double time_used_ms = os::elapsedTime() * 1000.0 - gc_start_time_ms; |
| 3791 | double time_left_ms = MaxGCPauseMillis - time_used_ms; |
| 3792 | |
| 3793 | if (time_left_ms < 0 || |
| 3794 | !_collection_set.finalize_optional_for_evacuation(time_left_ms * policy()->optional_evacuation_fraction())) { |
| 3795 | log_trace(gc, ergo, cset)("Skipping evacuation of %u optional regions, no more regions can be evacuated in %.3fms" , |
| 3796 | _collection_set.optional_region_length(), time_left_ms); |
| 3797 | break; |
| 3798 | } |
| 3799 | |
| 3800 | evacuate_next_optional_regions(per_thread_states); |
| 3801 | } |
| 3802 | |
| 3803 | _collection_set.abandon_optional_collection_set(per_thread_states); |
| 3804 | |
| 3805 | phase_times()->record_or_add_optional_evac_time((Ticks::now() - start).seconds() * 1000.0); |
| 3806 | } |
| 3807 | |
| 3808 | void G1CollectedHeap::post_evacuate_collection_set(G1EvacuationInfo& evacuation_info, G1ParScanThreadStateSet* per_thread_states) { |
| 3809 | // Also cleans the card table from temporary duplicate detection information used |
| 3810 | // during UpdateRS/ScanRS. |
| 3811 | rem_set()->cleanup_after_scan_rem_set(); |
| 3812 | |
| 3813 | // Process any discovered reference objects - we have |
| 3814 | // to do this _before_ we retire the GC alloc regions |
| 3815 | // as we may have to copy some 'reachable' referent |
| 3816 | // objects (and their reachable sub-graphs) that were |
| 3817 | // not copied during the pause. |
| 3818 | process_discovered_references(per_thread_states); |
| 3819 | |
| 3820 | G1STWIsAliveClosure is_alive(this); |
| 3821 | G1KeepAliveClosure keep_alive(this); |
| 3822 | |
| 3823 | WeakProcessor::weak_oops_do(workers(), &is_alive, &keep_alive, |
| 3824 | phase_times()->weak_phase_times()); |
| 3825 | |
| 3826 | if (G1StringDedup::is_enabled()) { |
| 3827 | double string_dedup_time_ms = os::elapsedTime(); |
| 3828 | |
| 3829 | string_dedup_cleaning(&is_alive, &keep_alive, phase_times()); |
| 3830 | |
| 3831 | double string_cleanup_time_ms = (os::elapsedTime() - string_dedup_time_ms) * 1000.0; |
| 3832 | phase_times()->record_string_deduplication_time(string_cleanup_time_ms); |
| 3833 | } |
| 3834 | |
| 3835 | _allocator->release_gc_alloc_regions(evacuation_info); |
| 3836 | |
| 3837 | if (evacuation_failed()) { |
| 3838 | restore_after_evac_failure(); |
| 3839 | |
| 3840 | // Reset the G1EvacuationFailureALot counters and flags |
| 3841 | NOT_PRODUCT(reset_evacuation_should_fail();) |
| 3842 | |
| 3843 | double recalculate_used_start = os::elapsedTime(); |
| 3844 | set_used(recalculate_used()); |
| 3845 | phase_times()->record_evac_fail_recalc_used_time((os::elapsedTime() - recalculate_used_start) * 1000.0); |
| 3846 | |
| 3847 | if (_archive_allocator != NULL) { |
| 3848 | _archive_allocator->clear_used(); |
| 3849 | } |
| 3850 | for (uint i = 0; i < ParallelGCThreads; i++) { |
| 3851 | if (_evacuation_failed_info_array[i].has_failed()) { |
| 3852 | _gc_tracer_stw->report_evacuation_failed(_evacuation_failed_info_array[i]); |
| 3853 | } |
| 3854 | } |
| 3855 | } else { |
| 3856 | // The "used" of the the collection set have already been subtracted |
| 3857 | // when they were freed. Add in the bytes evacuated. |
| 3858 | increase_used(policy()->bytes_copied_during_gc()); |
| 3859 | } |
| 3860 | |
| 3861 | _preserved_marks_set.assert_empty(); |
| 3862 | |
| 3863 | merge_per_thread_state_info(per_thread_states); |
| 3864 | |
| 3865 | // Reset and re-enable the hot card cache. |
| 3866 | // Note the counts for the cards in the regions in the |
| 3867 | // collection set are reset when the collection set is freed. |
| 3868 | _hot_card_cache->reset_hot_cache(); |
| 3869 | _hot_card_cache->set_use_cache(true); |
| 3870 | |
| 3871 | purge_code_root_memory(); |
| 3872 | |
| 3873 | redirty_logged_cards(); |
| 3874 | |
| 3875 | free_collection_set(&_collection_set, evacuation_info, per_thread_states->surviving_young_words()); |
| 3876 | |
| 3877 | eagerly_reclaim_humongous_regions(); |
| 3878 | |
| 3879 | record_obj_copy_mem_stats(); |
| 3880 | |
| 3881 | evacuation_info.set_collectionset_used_before(collection_set()->bytes_used_before()); |
| 3882 | evacuation_info.set_bytes_copied(policy()->bytes_copied_during_gc()); |
| 3883 | |
| 3884 | #if COMPILER2_OR_JVMCI |
| 3885 | double start = os::elapsedTime(); |
| 3886 | DerivedPointerTable::update_pointers(); |
| 3887 | phase_times()->record_derived_pointer_table_update_time((os::elapsedTime() - start) * 1000.0); |
| 3888 | #endif |
| 3889 | policy()->print_age_table(); |
| 3890 | } |
| 3891 | |
| 3892 | void G1CollectedHeap::record_obj_copy_mem_stats() { |
| 3893 | policy()->add_bytes_allocated_in_old_since_last_gc(_old_evac_stats.allocated() * HeapWordSize); |
| 3894 | |
| 3895 | _gc_tracer_stw->report_evacuation_statistics(create_g1_evac_summary(&_survivor_evac_stats), |
| 3896 | create_g1_evac_summary(&_old_evac_stats)); |
| 3897 | } |
| 3898 | |
| 3899 | void G1CollectedHeap::free_region(HeapRegion* hr, |
| 3900 | FreeRegionList* free_list, |
| 3901 | bool skip_remset, |
| 3902 | bool skip_hot_card_cache, |
| 3903 | bool locked) { |
| 3904 | assert(!hr->is_free(), "the region should not be free" ); |
| 3905 | assert(!hr->is_empty(), "the region should not be empty" ); |
| 3906 | assert(_hrm->is_available(hr->hrm_index()), "region should be committed" ); |
| 3907 | assert(free_list != NULL, "pre-condition" ); |
| 3908 | |
| 3909 | if (G1VerifyBitmaps) { |
| 3910 | MemRegion mr(hr->bottom(), hr->end()); |
| 3911 | concurrent_mark()->clear_range_in_prev_bitmap(mr); |
| 3912 | } |
| 3913 | |
| 3914 | // Clear the card counts for this region. |
| 3915 | // Note: we only need to do this if the region is not young |
| 3916 | // (since we don't refine cards in young regions). |
| 3917 | if (!skip_hot_card_cache && !hr->is_young()) { |
| 3918 | _hot_card_cache->reset_card_counts(hr); |
| 3919 | } |
| 3920 | hr->hr_clear(skip_remset, true /* clear_space */, locked /* locked */); |
| 3921 | _policy->remset_tracker()->update_at_free(hr); |
| 3922 | free_list->add_ordered(hr); |
| 3923 | } |
| 3924 | |
| 3925 | void G1CollectedHeap::free_humongous_region(HeapRegion* hr, |
| 3926 | FreeRegionList* free_list) { |
| 3927 | assert(hr->is_humongous(), "this is only for humongous regions" ); |
| 3928 | assert(free_list != NULL, "pre-condition" ); |
| 3929 | hr->clear_humongous(); |
| 3930 | free_region(hr, free_list, false /* skip_remset */, false /* skip_hcc */, true /* locked */); |
| 3931 | } |
| 3932 | |
| 3933 | void G1CollectedHeap::remove_from_old_sets(const uint old_regions_removed, |
| 3934 | const uint humongous_regions_removed) { |
| 3935 | if (old_regions_removed > 0 || humongous_regions_removed > 0) { |
| 3936 | MutexLocker x(OldSets_lock, Mutex::_no_safepoint_check_flag); |
| 3937 | _old_set.bulk_remove(old_regions_removed); |
| 3938 | _humongous_set.bulk_remove(humongous_regions_removed); |
| 3939 | } |
| 3940 | |
| 3941 | } |
| 3942 | |
| 3943 | void G1CollectedHeap::prepend_to_freelist(FreeRegionList* list) { |
| 3944 | assert(list != NULL, "list can't be null" ); |
| 3945 | if (!list->is_empty()) { |
| 3946 | MutexLocker x(FreeList_lock, Mutex::_no_safepoint_check_flag); |
| 3947 | _hrm->insert_list_into_free_list(list); |
| 3948 | } |
| 3949 | } |
| 3950 | |
| 3951 | void G1CollectedHeap::decrement_summary_bytes(size_t bytes) { |
| 3952 | decrease_used(bytes); |
| 3953 | } |
| 3954 | |
| 3955 | class G1FreeCollectionSetTask : public AbstractGangTask { |
| 3956 | private: |
| 3957 | |
| 3958 | // Closure applied to all regions in the collection set to do work that needs to |
| 3959 | // be done serially in a single thread. |
| 3960 | class G1SerialFreeCollectionSetClosure : public HeapRegionClosure { |
| 3961 | private: |
| 3962 | G1EvacuationInfo* _evacuation_info; |
| 3963 | const size_t* _surviving_young_words; |
| 3964 | |
| 3965 | // Bytes used in successfully evacuated regions before the evacuation. |
| 3966 | size_t _before_used_bytes; |
| 3967 | // Bytes used in unsucessfully evacuated regions before the evacuation |
| 3968 | size_t _after_used_bytes; |
| 3969 | |
| 3970 | size_t _bytes_allocated_in_old_since_last_gc; |
| 3971 | |
| 3972 | size_t _failure_used_words; |
| 3973 | size_t _failure_waste_words; |
| 3974 | |
| 3975 | FreeRegionList _local_free_list; |
| 3976 | public: |
| 3977 | G1SerialFreeCollectionSetClosure(G1EvacuationInfo* evacuation_info, const size_t* surviving_young_words) : |
| 3978 | HeapRegionClosure(), |
| 3979 | _evacuation_info(evacuation_info), |
| 3980 | _surviving_young_words(surviving_young_words), |
| 3981 | _before_used_bytes(0), |
| 3982 | _after_used_bytes(0), |
| 3983 | _bytes_allocated_in_old_since_last_gc(0), |
| 3984 | _failure_used_words(0), |
| 3985 | _failure_waste_words(0), |
| 3986 | _local_free_list("Local Region List for CSet Freeing" ) { |
| 3987 | } |
| 3988 | |
| 3989 | virtual bool do_heap_region(HeapRegion* r) { |
| 3990 | G1CollectedHeap* g1h = G1CollectedHeap::heap(); |
| 3991 | |
| 3992 | assert(r->in_collection_set(), "Region %u should be in collection set." , r->hrm_index()); |
| 3993 | g1h->clear_region_attr(r); |
| 3994 | |
| 3995 | if (r->is_young()) { |
| 3996 | assert(r->young_index_in_cset() != -1 && (uint)r->young_index_in_cset() < g1h->collection_set()->young_region_length(), |
| 3997 | "Young index %d is wrong for region %u of type %s with %u young regions" , |
| 3998 | r->young_index_in_cset(), |
| 3999 | r->hrm_index(), |
| 4000 | r->get_type_str(), |
| 4001 | g1h->collection_set()->young_region_length()); |
| 4002 | size_t words_survived = _surviving_young_words[r->young_index_in_cset()]; |
| 4003 | r->record_surv_words_in_group(words_survived); |
| 4004 | } |
| 4005 | |
| 4006 | if (!r->evacuation_failed()) { |
| 4007 | assert(r->not_empty(), "Region %u is an empty region in the collection set." , r->hrm_index()); |
| 4008 | _before_used_bytes += r->used(); |
| 4009 | g1h->free_region(r, |
| 4010 | &_local_free_list, |
| 4011 | true, /* skip_remset */ |
| 4012 | true, /* skip_hot_card_cache */ |
| 4013 | true /* locked */); |
| 4014 | } else { |
| 4015 | r->uninstall_surv_rate_group(); |
| 4016 | r->set_young_index_in_cset(-1); |
| 4017 | r->set_evacuation_failed(false); |
| 4018 | // When moving a young gen region to old gen, we "allocate" that whole region |
| 4019 | // there. This is in addition to any already evacuated objects. Notify the |
| 4020 | // policy about that. |
| 4021 | // Old gen regions do not cause an additional allocation: both the objects |
| 4022 | // still in the region and the ones already moved are accounted for elsewhere. |
| 4023 | if (r->is_young()) { |
| 4024 | _bytes_allocated_in_old_since_last_gc += HeapRegion::GrainBytes; |
| 4025 | } |
| 4026 | // The region is now considered to be old. |
| 4027 | r->set_old(); |
| 4028 | // Do some allocation statistics accounting. Regions that failed evacuation |
| 4029 | // are always made old, so there is no need to update anything in the young |
| 4030 | // gen statistics, but we need to update old gen statistics. |
| 4031 | size_t used_words = r->marked_bytes() / HeapWordSize; |
| 4032 | |
| 4033 | _failure_used_words += used_words; |
| 4034 | _failure_waste_words += HeapRegion::GrainWords - used_words; |
| 4035 | |
| 4036 | g1h->old_set_add(r); |
| 4037 | _after_used_bytes += r->used(); |
| 4038 | } |
| 4039 | return false; |
| 4040 | } |
| 4041 | |
| 4042 | void complete_work() { |
| 4043 | G1CollectedHeap* g1h = G1CollectedHeap::heap(); |
| 4044 | |
| 4045 | _evacuation_info->set_regions_freed(_local_free_list.length()); |
| 4046 | _evacuation_info->increment_collectionset_used_after(_after_used_bytes); |
| 4047 | |
| 4048 | g1h->prepend_to_freelist(&_local_free_list); |
| 4049 | g1h->decrement_summary_bytes(_before_used_bytes); |
| 4050 | |
| 4051 | G1Policy* policy = g1h->policy(); |
| 4052 | policy->add_bytes_allocated_in_old_since_last_gc(_bytes_allocated_in_old_since_last_gc); |
| 4053 | |
| 4054 | g1h->alloc_buffer_stats(G1HeapRegionAttr::Old)->add_failure_used_and_waste(_failure_used_words, _failure_waste_words); |
| 4055 | } |
| 4056 | }; |
| 4057 | |
| 4058 | G1CollectionSet* _collection_set; |
| 4059 | G1SerialFreeCollectionSetClosure _cl; |
| 4060 | const size_t* _surviving_young_words; |
| 4061 | |
| 4062 | size_t _rs_lengths; |
| 4063 | |
| 4064 | volatile jint _serial_work_claim; |
| 4065 | |
| 4066 | struct WorkItem { |
| 4067 | uint region_idx; |
| 4068 | bool is_young; |
| 4069 | bool evacuation_failed; |
| 4070 | |
| 4071 | WorkItem(HeapRegion* r) { |
| 4072 | region_idx = r->hrm_index(); |
| 4073 | is_young = r->is_young(); |
| 4074 | evacuation_failed = r->evacuation_failed(); |
| 4075 | } |
| 4076 | }; |
| 4077 | |
| 4078 | volatile size_t _parallel_work_claim; |
| 4079 | size_t _num_work_items; |
| 4080 | WorkItem* _work_items; |
| 4081 | |
| 4082 | void do_serial_work() { |
| 4083 | // Need to grab the lock to be allowed to modify the old region list. |
| 4084 | MutexLocker x(OldSets_lock, Mutex::_no_safepoint_check_flag); |
| 4085 | _collection_set->iterate(&_cl); |
| 4086 | } |
| 4087 | |
| 4088 | void do_parallel_work_for_region(uint region_idx, bool is_young, bool evacuation_failed) { |
| 4089 | G1CollectedHeap* g1h = G1CollectedHeap::heap(); |
| 4090 | |
| 4091 | HeapRegion* r = g1h->region_at(region_idx); |
| 4092 | assert(!g1h->is_on_master_free_list(r), "sanity" ); |
| 4093 | |
| 4094 | Atomic::add(r->rem_set()->occupied_locked(), &_rs_lengths); |
| 4095 | |
| 4096 | if (!is_young) { |
| 4097 | g1h->_hot_card_cache->reset_card_counts(r); |
| 4098 | } |
| 4099 | |
| 4100 | if (!evacuation_failed) { |
| 4101 | r->rem_set()->clear_locked(); |
| 4102 | } |
| 4103 | } |
| 4104 | |
| 4105 | class G1PrepareFreeCollectionSetClosure : public HeapRegionClosure { |
| 4106 | private: |
| 4107 | size_t _cur_idx; |
| 4108 | WorkItem* _work_items; |
| 4109 | public: |
| 4110 | G1PrepareFreeCollectionSetClosure(WorkItem* work_items) : HeapRegionClosure(), _cur_idx(0), _work_items(work_items) { } |
| 4111 | |
| 4112 | virtual bool do_heap_region(HeapRegion* r) { |
| 4113 | _work_items[_cur_idx++] = WorkItem(r); |
| 4114 | return false; |
| 4115 | } |
| 4116 | }; |
| 4117 | |
| 4118 | void prepare_work() { |
| 4119 | G1PrepareFreeCollectionSetClosure cl(_work_items); |
| 4120 | _collection_set->iterate(&cl); |
| 4121 | } |
| 4122 | |
| 4123 | void complete_work() { |
| 4124 | _cl.complete_work(); |
| 4125 | |
| 4126 | G1Policy* policy = G1CollectedHeap::heap()->policy(); |
| 4127 | policy->record_max_rs_lengths(_rs_lengths); |
| 4128 | policy->cset_regions_freed(); |
| 4129 | } |
| 4130 | public: |
| 4131 | G1FreeCollectionSetTask(G1CollectionSet* collection_set, G1EvacuationInfo* evacuation_info, const size_t* surviving_young_words) : |
| 4132 | AbstractGangTask("G1 Free Collection Set" ), |
| 4133 | _collection_set(collection_set), |
| 4134 | _cl(evacuation_info, surviving_young_words), |
| 4135 | _surviving_young_words(surviving_young_words), |
| 4136 | _rs_lengths(0), |
| 4137 | _serial_work_claim(0), |
| 4138 | _parallel_work_claim(0), |
| 4139 | _num_work_items(collection_set->region_length()), |
| 4140 | _work_items(NEW_C_HEAP_ARRAY(WorkItem, _num_work_items, mtGC)) { |
| 4141 | prepare_work(); |
| 4142 | } |
| 4143 | |
| 4144 | ~G1FreeCollectionSetTask() { |
| 4145 | complete_work(); |
| 4146 | FREE_C_HEAP_ARRAY(WorkItem, _work_items); |
| 4147 | } |
| 4148 | |
| 4149 | // Chunk size for work distribution. The chosen value has been determined experimentally |
| 4150 | // to be a good tradeoff between overhead and achievable parallelism. |
| 4151 | static uint chunk_size() { return 32; } |
| 4152 | |
| 4153 | virtual void work(uint worker_id) { |
| 4154 | G1GCPhaseTimes* timer = G1CollectedHeap::heap()->phase_times(); |
| 4155 | |
| 4156 | // Claim serial work. |
| 4157 | if (_serial_work_claim == 0) { |
| 4158 | jint value = Atomic::add(1, &_serial_work_claim) - 1; |
| 4159 | if (value == 0) { |
| 4160 | double serial_time = os::elapsedTime(); |
| 4161 | do_serial_work(); |
| 4162 | timer->record_serial_free_cset_time_ms((os::elapsedTime() - serial_time) * 1000.0); |
| 4163 | } |
| 4164 | } |
| 4165 | |
| 4166 | // Start parallel work. |
| 4167 | double young_time = 0.0; |
| 4168 | bool has_young_time = false; |
| 4169 | double non_young_time = 0.0; |
| 4170 | bool has_non_young_time = false; |
| 4171 | |
| 4172 | while (true) { |
| 4173 | size_t end = Atomic::add(chunk_size(), &_parallel_work_claim); |
| 4174 | size_t cur = end - chunk_size(); |
| 4175 | |
| 4176 | if (cur >= _num_work_items) { |
| 4177 | break; |
| 4178 | } |
| 4179 | |
| 4180 | EventGCPhaseParallel event; |
| 4181 | double start_time = os::elapsedTime(); |
| 4182 | |
| 4183 | end = MIN2(end, _num_work_items); |
| 4184 | |
| 4185 | for (; cur < end; cur++) { |
| 4186 | bool is_young = _work_items[cur].is_young; |
| 4187 | |
| 4188 | do_parallel_work_for_region(_work_items[cur].region_idx, is_young, _work_items[cur].evacuation_failed); |
| 4189 | |
| 4190 | double end_time = os::elapsedTime(); |
| 4191 | double time_taken = end_time - start_time; |
| 4192 | if (is_young) { |
| 4193 | young_time += time_taken; |
| 4194 | has_young_time = true; |
| 4195 | event.commit(GCId::current(), worker_id, G1GCPhaseTimes::phase_name(G1GCPhaseTimes::YoungFreeCSet)); |
| 4196 | } else { |
| 4197 | non_young_time += time_taken; |
| 4198 | has_non_young_time = true; |
| 4199 | event.commit(GCId::current(), worker_id, G1GCPhaseTimes::phase_name(G1GCPhaseTimes::NonYoungFreeCSet)); |
| 4200 | } |
| 4201 | start_time = end_time; |
| 4202 | } |
| 4203 | } |
| 4204 | |
| 4205 | if (has_young_time) { |
| 4206 | timer->record_time_secs(G1GCPhaseTimes::YoungFreeCSet, worker_id, young_time); |
| 4207 | } |
| 4208 | if (has_non_young_time) { |
| 4209 | timer->record_time_secs(G1GCPhaseTimes::NonYoungFreeCSet, worker_id, non_young_time); |
| 4210 | } |
| 4211 | } |
| 4212 | }; |
| 4213 | |
| 4214 | void G1CollectedHeap::free_collection_set(G1CollectionSet* collection_set, G1EvacuationInfo& evacuation_info, const size_t* surviving_young_words) { |
| 4215 | _eden.clear(); |
| 4216 | |
| 4217 | double free_cset_start_time = os::elapsedTime(); |
| 4218 | |
| 4219 | { |
| 4220 | uint const num_regions = _collection_set.region_length(); |
| 4221 | uint const num_chunks = MAX2(num_regions / G1FreeCollectionSetTask::chunk_size(), 1U); |
| 4222 | uint const num_workers = MIN2(workers()->active_workers(), num_chunks); |
| 4223 | |
| 4224 | G1FreeCollectionSetTask cl(collection_set, &evacuation_info, surviving_young_words); |
| 4225 | |
| 4226 | log_debug(gc, ergo)("Running %s using %u workers for collection set length %u" , |
| 4227 | cl.name(), num_workers, num_regions); |
| 4228 | workers()->run_task(&cl, num_workers); |
| 4229 | } |
| 4230 | phase_times()->record_total_free_cset_time_ms((os::elapsedTime() - free_cset_start_time) * 1000.0); |
| 4231 | |
| 4232 | collection_set->clear(); |
| 4233 | } |
| 4234 | |
| 4235 | class G1FreeHumongousRegionClosure : public HeapRegionClosure { |
| 4236 | private: |
| 4237 | FreeRegionList* _free_region_list; |
| 4238 | HeapRegionSet* _proxy_set; |
| 4239 | uint _humongous_objects_reclaimed; |
| 4240 | uint _humongous_regions_reclaimed; |
| 4241 | size_t _freed_bytes; |
| 4242 | public: |
| 4243 | |
| 4244 | G1FreeHumongousRegionClosure(FreeRegionList* free_region_list) : |
| 4245 | _free_region_list(free_region_list), _proxy_set(NULL), _humongous_objects_reclaimed(0), _humongous_regions_reclaimed(0), _freed_bytes(0) { |
| 4246 | } |
| 4247 | |
| 4248 | virtual bool do_heap_region(HeapRegion* r) { |
| 4249 | if (!r->is_starts_humongous()) { |
| 4250 | return false; |
| 4251 | } |
| 4252 | |
| 4253 | G1CollectedHeap* g1h = G1CollectedHeap::heap(); |
| 4254 | |
| 4255 | oop obj = (oop)r->bottom(); |
| 4256 | G1CMBitMap* next_bitmap = g1h->concurrent_mark()->next_mark_bitmap(); |
| 4257 | |
| 4258 | // The following checks whether the humongous object is live are sufficient. |
| 4259 | // The main additional check (in addition to having a reference from the roots |
| 4260 | // or the young gen) is whether the humongous object has a remembered set entry. |
| 4261 | // |
| 4262 | // A humongous object cannot be live if there is no remembered set for it |
| 4263 | // because: |
| 4264 | // - there can be no references from within humongous starts regions referencing |
| 4265 | // the object because we never allocate other objects into them. |
| 4266 | // (I.e. there are no intra-region references that may be missed by the |
| 4267 | // remembered set) |
| 4268 | // - as soon there is a remembered set entry to the humongous starts region |
| 4269 | // (i.e. it has "escaped" to an old object) this remembered set entry will stay |
| 4270 | // until the end of a concurrent mark. |
| 4271 | // |
| 4272 | // It is not required to check whether the object has been found dead by marking |
| 4273 | // or not, in fact it would prevent reclamation within a concurrent cycle, as |
| 4274 | // all objects allocated during that time are considered live. |
| 4275 | // SATB marking is even more conservative than the remembered set. |
| 4276 | // So if at this point in the collection there is no remembered set entry, |
| 4277 | // nobody has a reference to it. |
| 4278 | // At the start of collection we flush all refinement logs, and remembered sets |
| 4279 | // are completely up-to-date wrt to references to the humongous object. |
| 4280 | // |
| 4281 | // Other implementation considerations: |
| 4282 | // - never consider object arrays at this time because they would pose |
| 4283 | // considerable effort for cleaning up the the remembered sets. This is |
| 4284 | // required because stale remembered sets might reference locations that |
| 4285 | // are currently allocated into. |
| 4286 | uint region_idx = r->hrm_index(); |
| 4287 | if (!g1h->is_humongous_reclaim_candidate(region_idx) || |
| 4288 | !r->rem_set()->is_empty()) { |
| 4289 | log_debug(gc, humongous)("Live humongous region %u object size " SIZE_FORMAT " start " PTR_FORMAT " with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d" , |
| 4290 | region_idx, |
| 4291 | (size_t)obj->size() * HeapWordSize, |
| 4292 | p2i(r->bottom()), |
| 4293 | r->rem_set()->occupied(), |
| 4294 | r->rem_set()->strong_code_roots_list_length(), |
| 4295 | next_bitmap->is_marked(r->bottom()), |
| 4296 | g1h->is_humongous_reclaim_candidate(region_idx), |
| 4297 | obj->is_typeArray() |
| 4298 | ); |
| 4299 | return false; |
| 4300 | } |
| 4301 | |
| 4302 | guarantee(obj->is_typeArray(), |
| 4303 | "Only eagerly reclaiming type arrays is supported, but the object " |
| 4304 | PTR_FORMAT " is not." , p2i(r->bottom())); |
| 4305 | |
| 4306 | log_debug(gc, humongous)("Dead humongous region %u object size " SIZE_FORMAT " start " PTR_FORMAT " with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d" , |
| 4307 | region_idx, |
| 4308 | (size_t)obj->size() * HeapWordSize, |
| 4309 | p2i(r->bottom()), |
| 4310 | r->rem_set()->occupied(), |
| 4311 | r->rem_set()->strong_code_roots_list_length(), |
| 4312 | next_bitmap->is_marked(r->bottom()), |
| 4313 | g1h->is_humongous_reclaim_candidate(region_idx), |
| 4314 | obj->is_typeArray() |
| 4315 | ); |
| 4316 | |
| 4317 | G1ConcurrentMark* const cm = g1h->concurrent_mark(); |
| 4318 | cm->humongous_object_eagerly_reclaimed(r); |
| 4319 | assert(!cm->is_marked_in_prev_bitmap(obj) && !cm->is_marked_in_next_bitmap(obj), |
| 4320 | "Eagerly reclaimed humongous region %u should not be marked at all but is in prev %s next %s" , |
| 4321 | region_idx, |
| 4322 | BOOL_TO_STR(cm->is_marked_in_prev_bitmap(obj)), |
| 4323 | BOOL_TO_STR(cm->is_marked_in_next_bitmap(obj))); |
| 4324 | _humongous_objects_reclaimed++; |
| 4325 | do { |
| 4326 | HeapRegion* next = g1h->next_region_in_humongous(r); |
| 4327 | _freed_bytes += r->used(); |
| 4328 | r->set_containing_set(NULL); |
| 4329 | _humongous_regions_reclaimed++; |
| 4330 | g1h->free_humongous_region(r, _free_region_list); |
| 4331 | r = next; |
| 4332 | } while (r != NULL); |
| 4333 | |
| 4334 | return false; |
| 4335 | } |
| 4336 | |
| 4337 | uint humongous_objects_reclaimed() { |
| 4338 | return _humongous_objects_reclaimed; |
| 4339 | } |
| 4340 | |
| 4341 | uint humongous_regions_reclaimed() { |
| 4342 | return _humongous_regions_reclaimed; |
| 4343 | } |
| 4344 | |
| 4345 | size_t bytes_freed() const { |
| 4346 | return _freed_bytes; |
| 4347 | } |
| 4348 | }; |
| 4349 | |
| 4350 | void G1CollectedHeap::eagerly_reclaim_humongous_regions() { |
| 4351 | assert_at_safepoint_on_vm_thread(); |
| 4352 | |
| 4353 | if (!G1EagerReclaimHumongousObjects || |
| 4354 | (!_has_humongous_reclaim_candidates && !log_is_enabled(Debug, gc, humongous))) { |
| 4355 | phase_times()->record_fast_reclaim_humongous_time_ms(0.0, 0); |
| 4356 | return; |
| 4357 | } |
| 4358 | |
| 4359 | double start_time = os::elapsedTime(); |
| 4360 | |
| 4361 | FreeRegionList local_cleanup_list("Local Humongous Cleanup List" ); |
| 4362 | |
| 4363 | G1FreeHumongousRegionClosure cl(&local_cleanup_list); |
| 4364 | heap_region_iterate(&cl); |
| 4365 | |
| 4366 | remove_from_old_sets(0, cl.humongous_regions_reclaimed()); |
| 4367 | |
| 4368 | G1HRPrinter* hrp = hr_printer(); |
| 4369 | if (hrp->is_active()) { |
| 4370 | FreeRegionListIterator iter(&local_cleanup_list); |
| 4371 | while (iter.more_available()) { |
| 4372 | HeapRegion* hr = iter.get_next(); |
| 4373 | hrp->cleanup(hr); |
| 4374 | } |
| 4375 | } |
| 4376 | |
| 4377 | prepend_to_freelist(&local_cleanup_list); |
| 4378 | decrement_summary_bytes(cl.bytes_freed()); |
| 4379 | |
| 4380 | phase_times()->record_fast_reclaim_humongous_time_ms((os::elapsedTime() - start_time) * 1000.0, |
| 4381 | cl.humongous_objects_reclaimed()); |
| 4382 | } |
| 4383 | |
| 4384 | class G1AbandonCollectionSetClosure : public HeapRegionClosure { |
| 4385 | public: |
| 4386 | virtual bool do_heap_region(HeapRegion* r) { |
| 4387 | assert(r->in_collection_set(), "Region %u must have been in collection set" , r->hrm_index()); |
| 4388 | G1CollectedHeap::heap()->clear_region_attr(r); |
| 4389 | r->set_young_index_in_cset(-1); |
| 4390 | return false; |
| 4391 | } |
| 4392 | }; |
| 4393 | |
| 4394 | void G1CollectedHeap::abandon_collection_set(G1CollectionSet* collection_set) { |
| 4395 | G1AbandonCollectionSetClosure cl; |
| 4396 | collection_set_iterate_all(&cl); |
| 4397 | |
| 4398 | collection_set->clear(); |
| 4399 | collection_set->stop_incremental_building(); |
| 4400 | } |
| 4401 | |
| 4402 | bool G1CollectedHeap::is_old_gc_alloc_region(HeapRegion* hr) { |
| 4403 | return _allocator->is_retained_old_region(hr); |
| 4404 | } |
| 4405 | |
| 4406 | void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) { |
| 4407 | _eden.add(hr); |
| 4408 | _policy->set_region_eden(hr); |
| 4409 | } |
| 4410 | |
| 4411 | #ifdef ASSERT |
| 4412 | |
| 4413 | class NoYoungRegionsClosure: public HeapRegionClosure { |
| 4414 | private: |
| 4415 | bool _success; |
| 4416 | public: |
| 4417 | NoYoungRegionsClosure() : _success(true) { } |
| 4418 | bool do_heap_region(HeapRegion* r) { |
| 4419 | if (r->is_young()) { |
| 4420 | log_error(gc, verify)("Region [" PTR_FORMAT ", " PTR_FORMAT ") tagged as young" , |
| 4421 | p2i(r->bottom()), p2i(r->end())); |
| 4422 | _success = false; |
| 4423 | } |
| 4424 | return false; |
| 4425 | } |
| 4426 | bool success() { return _success; } |
| 4427 | }; |
| 4428 | |
| 4429 | bool G1CollectedHeap::check_young_list_empty() { |
| 4430 | bool ret = (young_regions_count() == 0); |
| 4431 | |
| 4432 | NoYoungRegionsClosure closure; |
| 4433 | heap_region_iterate(&closure); |
| 4434 | ret = ret && closure.success(); |
| 4435 | |
| 4436 | return ret; |
| 4437 | } |
| 4438 | |
| 4439 | #endif // ASSERT |
| 4440 | |
| 4441 | class TearDownRegionSetsClosure : public HeapRegionClosure { |
| 4442 | HeapRegionSet *_old_set; |
| 4443 | |
| 4444 | public: |
| 4445 | TearDownRegionSetsClosure(HeapRegionSet* old_set) : _old_set(old_set) { } |
| 4446 | |
| 4447 | bool do_heap_region(HeapRegion* r) { |
| 4448 | if (r->is_old()) { |
| 4449 | _old_set->remove(r); |
| 4450 | } else if(r->is_young()) { |
| 4451 | r->uninstall_surv_rate_group(); |
| 4452 | } else { |
| 4453 | // We ignore free regions, we'll empty the free list afterwards. |
| 4454 | // We ignore humongous and archive regions, we're not tearing down these |
| 4455 | // sets. |
| 4456 | assert(r->is_archive() || r->is_free() || r->is_humongous(), |
| 4457 | "it cannot be another type" ); |
| 4458 | } |
| 4459 | return false; |
| 4460 | } |
| 4461 | |
| 4462 | ~TearDownRegionSetsClosure() { |
| 4463 | assert(_old_set->is_empty(), "post-condition" ); |
| 4464 | } |
| 4465 | }; |
| 4466 | |
| 4467 | void G1CollectedHeap::tear_down_region_sets(bool free_list_only) { |
| 4468 | assert_at_safepoint_on_vm_thread(); |
| 4469 | |
| 4470 | if (!free_list_only) { |
| 4471 | TearDownRegionSetsClosure cl(&_old_set); |
| 4472 | heap_region_iterate(&cl); |
| 4473 | |
| 4474 | // Note that emptying the _young_list is postponed and instead done as |
| 4475 | // the first step when rebuilding the regions sets again. The reason for |
| 4476 | // this is that during a full GC string deduplication needs to know if |
| 4477 | // a collected region was young or old when the full GC was initiated. |
| 4478 | } |
| 4479 | _hrm->remove_all_free_regions(); |
| 4480 | } |
| 4481 | |
| 4482 | void G1CollectedHeap::increase_used(size_t bytes) { |
| 4483 | _summary_bytes_used += bytes; |
| 4484 | } |
| 4485 | |
| 4486 | void G1CollectedHeap::decrease_used(size_t bytes) { |
| 4487 | assert(_summary_bytes_used >= bytes, |
| 4488 | "invariant: _summary_bytes_used: " SIZE_FORMAT " should be >= bytes: " SIZE_FORMAT, |
| 4489 | _summary_bytes_used, bytes); |
| 4490 | _summary_bytes_used -= bytes; |
| 4491 | } |
| 4492 | |
| 4493 | void G1CollectedHeap::set_used(size_t bytes) { |
| 4494 | _summary_bytes_used = bytes; |
| 4495 | } |
| 4496 | |
| 4497 | class RebuildRegionSetsClosure : public HeapRegionClosure { |
| 4498 | private: |
| 4499 | bool _free_list_only; |
| 4500 | |
| 4501 | HeapRegionSet* _old_set; |
| 4502 | HeapRegionManager* _hrm; |
| 4503 | |
| 4504 | size_t _total_used; |
| 4505 | |
| 4506 | public: |
| 4507 | RebuildRegionSetsClosure(bool free_list_only, |
| 4508 | HeapRegionSet* old_set, |
| 4509 | HeapRegionManager* hrm) : |
| 4510 | _free_list_only(free_list_only), |
| 4511 | _old_set(old_set), _hrm(hrm), _total_used(0) { |
| 4512 | assert(_hrm->num_free_regions() == 0, "pre-condition" ); |
| 4513 | if (!free_list_only) { |
| 4514 | assert(_old_set->is_empty(), "pre-condition" ); |
| 4515 | } |
| 4516 | } |
| 4517 | |
| 4518 | bool do_heap_region(HeapRegion* r) { |
| 4519 | if (r->is_empty()) { |
| 4520 | assert(r->rem_set()->is_empty(), "Empty regions should have empty remembered sets." ); |
| 4521 | // Add free regions to the free list |
| 4522 | r->set_free(); |
| 4523 | _hrm->insert_into_free_list(r); |
| 4524 | } else if (!_free_list_only) { |
| 4525 | assert(r->rem_set()->is_empty(), "At this point remembered sets must have been cleared." ); |
| 4526 | |
| 4527 | if (r->is_archive() || r->is_humongous()) { |
| 4528 | // We ignore archive and humongous regions. We left these sets unchanged. |
| 4529 | } else { |
| 4530 | assert(r->is_young() || r->is_free() || r->is_old(), "invariant" ); |
| 4531 | // We now move all (non-humongous, non-old, non-archive) regions to old gen, and register them as such. |
| 4532 | r->move_to_old(); |
| 4533 | _old_set->add(r); |
| 4534 | } |
| 4535 | _total_used += r->used(); |
| 4536 | } |
| 4537 | |
| 4538 | return false; |
| 4539 | } |
| 4540 | |
| 4541 | size_t total_used() { |
| 4542 | return _total_used; |
| 4543 | } |
| 4544 | }; |
| 4545 | |
| 4546 | void G1CollectedHeap::rebuild_region_sets(bool free_list_only) { |
| 4547 | assert_at_safepoint_on_vm_thread(); |
| 4548 | |
| 4549 | if (!free_list_only) { |
| 4550 | _eden.clear(); |
| 4551 | _survivor.clear(); |
| 4552 | } |
| 4553 | |
| 4554 | RebuildRegionSetsClosure cl(free_list_only, &_old_set, _hrm); |
| 4555 | heap_region_iterate(&cl); |
| 4556 | |
| 4557 | if (!free_list_only) { |
| 4558 | set_used(cl.total_used()); |
| 4559 | if (_archive_allocator != NULL) { |
| 4560 | _archive_allocator->clear_used(); |
| 4561 | } |
| 4562 | } |
| 4563 | assert_used_and_recalculate_used_equal(this); |
| 4564 | } |
| 4565 | |
| 4566 | // Methods for the mutator alloc region |
| 4567 | |
| 4568 | HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size, |
| 4569 | bool force) { |
| 4570 | assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */); |
| 4571 | bool should_allocate = policy()->should_allocate_mutator_region(); |
| 4572 | if (force || should_allocate) { |
| 4573 | HeapRegion* new_alloc_region = new_region(word_size, |
| 4574 | HeapRegionType::Eden, |
| 4575 | false /* do_expand */); |
| 4576 | if (new_alloc_region != NULL) { |
| 4577 | set_region_short_lived_locked(new_alloc_region); |
| 4578 | _hr_printer.alloc(new_alloc_region, !should_allocate); |
| 4579 | _verifier->check_bitmaps("Mutator Region Allocation" , new_alloc_region); |
| 4580 | _policy->remset_tracker()->update_at_allocate(new_alloc_region); |
| 4581 | return new_alloc_region; |
| 4582 | } |
| 4583 | } |
| 4584 | return NULL; |
| 4585 | } |
| 4586 | |
| 4587 | void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region, |
| 4588 | size_t allocated_bytes) { |
| 4589 | assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */); |
| 4590 | assert(alloc_region->is_eden(), "all mutator alloc regions should be eden" ); |
| 4591 | |
| 4592 | collection_set()->add_eden_region(alloc_region); |
| 4593 | increase_used(allocated_bytes); |
| 4594 | _eden.add_used_bytes(allocated_bytes); |
| 4595 | _hr_printer.retire(alloc_region); |
| 4596 | |
| 4597 | // We update the eden sizes here, when the region is retired, |
| 4598 | // instead of when it's allocated, since this is the point that its |
| 4599 | // used space has been recorded in _summary_bytes_used. |
| 4600 | g1mm()->update_eden_size(); |
| 4601 | } |
| 4602 | |
| 4603 | // Methods for the GC alloc regions |
| 4604 | |
| 4605 | bool G1CollectedHeap::has_more_regions(G1HeapRegionAttr dest) { |
| 4606 | if (dest.is_old()) { |
| 4607 | return true; |
| 4608 | } else { |
| 4609 | return survivor_regions_count() < policy()->max_survivor_regions(); |
| 4610 | } |
| 4611 | } |
| 4612 | |
| 4613 | HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size, G1HeapRegionAttr dest) { |
| 4614 | assert(FreeList_lock->owned_by_self(), "pre-condition" ); |
| 4615 | |
| 4616 | if (!has_more_regions(dest)) { |
| 4617 | return NULL; |
| 4618 | } |
| 4619 | |
| 4620 | HeapRegionType type; |
| 4621 | if (dest.is_young()) { |
| 4622 | type = HeapRegionType::Survivor; |
| 4623 | } else { |
| 4624 | type = HeapRegionType::Old; |
| 4625 | } |
| 4626 | |
| 4627 | HeapRegion* new_alloc_region = new_region(word_size, |
| 4628 | type, |
| 4629 | true /* do_expand */); |
| 4630 | |
| 4631 | if (new_alloc_region != NULL) { |
| 4632 | if (type.is_survivor()) { |
| 4633 | new_alloc_region->set_survivor(); |
| 4634 | _survivor.add(new_alloc_region); |
| 4635 | _verifier->check_bitmaps("Survivor Region Allocation" , new_alloc_region); |
| 4636 | } else { |
| 4637 | new_alloc_region->set_old(); |
| 4638 | _verifier->check_bitmaps("Old Region Allocation" , new_alloc_region); |
| 4639 | } |
| 4640 | _policy->remset_tracker()->update_at_allocate(new_alloc_region); |
| 4641 | register_region_with_region_attr(new_alloc_region); |
| 4642 | _hr_printer.alloc(new_alloc_region); |
| 4643 | return new_alloc_region; |
| 4644 | } |
| 4645 | return NULL; |
| 4646 | } |
| 4647 | |
| 4648 | void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region, |
| 4649 | size_t allocated_bytes, |
| 4650 | G1HeapRegionAttr dest) { |
| 4651 | policy()->record_bytes_copied_during_gc(allocated_bytes); |
| 4652 | if (dest.is_old()) { |
| 4653 | old_set_add(alloc_region); |
| 4654 | } else { |
| 4655 | assert(dest.is_young(), "Retiring alloc region should be young (%d)" , dest.type()); |
| 4656 | _survivor.add_used_bytes(allocated_bytes); |
| 4657 | } |
| 4658 | |
| 4659 | bool const during_im = collector_state()->in_initial_mark_gc(); |
| 4660 | if (during_im && allocated_bytes > 0) { |
| 4661 | _cm->root_regions()->add(alloc_region->next_top_at_mark_start(), alloc_region->top()); |
| 4662 | } |
| 4663 | _hr_printer.retire(alloc_region); |
| 4664 | } |
| 4665 | |
| 4666 | HeapRegion* G1CollectedHeap::alloc_highest_free_region() { |
| 4667 | bool expanded = false; |
| 4668 | uint index = _hrm->find_highest_free(&expanded); |
| 4669 | |
| 4670 | if (index != G1_NO_HRM_INDEX) { |
| 4671 | if (expanded) { |
| 4672 | log_debug(gc, ergo, heap)("Attempt heap expansion (requested address range outside heap bounds). region size: " SIZE_FORMAT "B" , |
| 4673 | HeapRegion::GrainWords * HeapWordSize); |
| 4674 | } |
| 4675 | _hrm->allocate_free_regions_starting_at(index, 1); |
| 4676 | return region_at(index); |
| 4677 | } |
| 4678 | return NULL; |
| 4679 | } |
| 4680 | |
| 4681 | // Optimized nmethod scanning |
| 4682 | |
| 4683 | class RegisterNMethodOopClosure: public OopClosure { |
| 4684 | G1CollectedHeap* _g1h; |
| 4685 | nmethod* _nm; |
| 4686 | |
| 4687 | template <class T> void do_oop_work(T* p) { |
| 4688 | T heap_oop = RawAccess<>::oop_load(p); |
| 4689 | if (!CompressedOops::is_null(heap_oop)) { |
| 4690 | oop obj = CompressedOops::decode_not_null(heap_oop); |
| 4691 | HeapRegion* hr = _g1h->heap_region_containing(obj); |
| 4692 | assert(!hr->is_continues_humongous(), |
| 4693 | "trying to add code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT |
| 4694 | " starting at " HR_FORMAT, |
| 4695 | p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region())); |
| 4696 | |
| 4697 | // HeapRegion::add_strong_code_root_locked() avoids adding duplicate entries. |
| 4698 | hr->add_strong_code_root_locked(_nm); |
| 4699 | } |
| 4700 | } |
| 4701 | |
| 4702 | public: |
| 4703 | RegisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) : |
| 4704 | _g1h(g1h), _nm(nm) {} |
| 4705 | |
| 4706 | void do_oop(oop* p) { do_oop_work(p); } |
| 4707 | void do_oop(narrowOop* p) { do_oop_work(p); } |
| 4708 | }; |
| 4709 | |
| 4710 | class UnregisterNMethodOopClosure: public OopClosure { |
| 4711 | G1CollectedHeap* _g1h; |
| 4712 | nmethod* _nm; |
| 4713 | |
| 4714 | template <class T> void do_oop_work(T* p) { |
| 4715 | T heap_oop = RawAccess<>::oop_load(p); |
| 4716 | if (!CompressedOops::is_null(heap_oop)) { |
| 4717 | oop obj = CompressedOops::decode_not_null(heap_oop); |
| 4718 | HeapRegion* hr = _g1h->heap_region_containing(obj); |
| 4719 | assert(!hr->is_continues_humongous(), |
| 4720 | "trying to remove code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT |
| 4721 | " starting at " HR_FORMAT, |
| 4722 | p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region())); |
| 4723 | |
| 4724 | hr->remove_strong_code_root(_nm); |
| 4725 | } |
| 4726 | } |
| 4727 | |
| 4728 | public: |
| 4729 | UnregisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) : |
| 4730 | _g1h(g1h), _nm(nm) {} |
| 4731 | |
| 4732 | void do_oop(oop* p) { do_oop_work(p); } |
| 4733 | void do_oop(narrowOop* p) { do_oop_work(p); } |
| 4734 | }; |
| 4735 | |
| 4736 | void G1CollectedHeap::register_nmethod(nmethod* nm) { |
| 4737 | guarantee(nm != NULL, "sanity" ); |
| 4738 | RegisterNMethodOopClosure reg_cl(this, nm); |
| 4739 | nm->oops_do(®_cl); |
| 4740 | } |
| 4741 | |
| 4742 | void G1CollectedHeap::unregister_nmethod(nmethod* nm) { |
| 4743 | guarantee(nm != NULL, "sanity" ); |
| 4744 | UnregisterNMethodOopClosure reg_cl(this, nm); |
| 4745 | nm->oops_do(®_cl, true); |
| 4746 | } |
| 4747 | |
| 4748 | void G1CollectedHeap::purge_code_root_memory() { |
| 4749 | double purge_start = os::elapsedTime(); |
| 4750 | G1CodeRootSet::purge(); |
| 4751 | double purge_time_ms = (os::elapsedTime() - purge_start) * 1000.0; |
| 4752 | phase_times()->record_strong_code_root_purge_time(purge_time_ms); |
| 4753 | } |
| 4754 | |
| 4755 | class RebuildStrongCodeRootClosure: public CodeBlobClosure { |
| 4756 | G1CollectedHeap* _g1h; |
| 4757 | |
| 4758 | public: |
| 4759 | RebuildStrongCodeRootClosure(G1CollectedHeap* g1h) : |
| 4760 | _g1h(g1h) {} |
| 4761 | |
| 4762 | void do_code_blob(CodeBlob* cb) { |
| 4763 | nmethod* nm = (cb != NULL) ? cb->as_nmethod_or_null() : NULL; |
| 4764 | if (nm == NULL) { |
| 4765 | return; |
| 4766 | } |
| 4767 | |
| 4768 | _g1h->register_nmethod(nm); |
| 4769 | } |
| 4770 | }; |
| 4771 | |
| 4772 | void G1CollectedHeap::rebuild_strong_code_roots() { |
| 4773 | RebuildStrongCodeRootClosure blob_cl(this); |
| 4774 | CodeCache::blobs_do(&blob_cl); |
| 4775 | } |
| 4776 | |
| 4777 | void G1CollectedHeap::initialize_serviceability() { |
| 4778 | _g1mm->initialize_serviceability(); |
| 4779 | } |
| 4780 | |
| 4781 | MemoryUsage G1CollectedHeap::memory_usage() { |
| 4782 | return _g1mm->memory_usage(); |
| 4783 | } |
| 4784 | |
| 4785 | GrowableArray<GCMemoryManager*> G1CollectedHeap::memory_managers() { |
| 4786 | return _g1mm->memory_managers(); |
| 4787 | } |
| 4788 | |
| 4789 | GrowableArray<MemoryPool*> G1CollectedHeap::memory_pools() { |
| 4790 | return _g1mm->memory_pools(); |
| 4791 | } |
| 4792 | |