1 | /* |
2 | * Copyright (c) 2001, 2019, Oracle and/or its affiliates. All rights reserved. |
3 | * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
4 | * |
5 | * This code is free software; you can redistribute it and/or modify it |
6 | * under the terms of the GNU General Public License version 2 only, as |
7 | * published by the Free Software Foundation. |
8 | * |
9 | * This code is distributed in the hope that it will be useful, but WITHOUT |
10 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
11 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
12 | * version 2 for more details (a copy is included in the LICENSE file that |
13 | * accompanied this code). |
14 | * |
15 | * You should have received a copy of the GNU General Public License version |
16 | * 2 along with this work; if not, write to the Free Software Foundation, |
17 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
18 | * |
19 | * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
20 | * or visit www.oracle.com if you need additional information or have any |
21 | * questions. |
22 | * |
23 | */ |
24 | |
25 | #include "precompiled.hpp" |
26 | #include "classfile/classLoaderDataGraph.hpp" |
27 | #include "code/codeCache.hpp" |
28 | #include "gc/g1/g1BarrierSet.hpp" |
29 | #include "gc/g1/g1CollectedHeap.inline.hpp" |
30 | #include "gc/g1/g1CollectorState.hpp" |
31 | #include "gc/g1/g1ConcurrentMark.inline.hpp" |
32 | #include "gc/g1/g1ConcurrentMarkThread.inline.hpp" |
33 | #include "gc/g1/g1DirtyCardQueue.hpp" |
34 | #include "gc/g1/g1HeapVerifier.hpp" |
35 | #include "gc/g1/g1OopClosures.inline.hpp" |
36 | #include "gc/g1/g1Policy.hpp" |
37 | #include "gc/g1/g1RegionMarkStatsCache.inline.hpp" |
38 | #include "gc/g1/g1StringDedup.hpp" |
39 | #include "gc/g1/g1ThreadLocalData.hpp" |
40 | #include "gc/g1/heapRegion.inline.hpp" |
41 | #include "gc/g1/heapRegionRemSet.hpp" |
42 | #include "gc/g1/heapRegionSet.inline.hpp" |
43 | #include "gc/shared/gcId.hpp" |
44 | #include "gc/shared/gcTimer.hpp" |
45 | #include "gc/shared/gcTrace.hpp" |
46 | #include "gc/shared/gcTraceTime.inline.hpp" |
47 | #include "gc/shared/gcVMOperations.hpp" |
48 | #include "gc/shared/genOopClosures.inline.hpp" |
49 | #include "gc/shared/referencePolicy.hpp" |
50 | #include "gc/shared/strongRootsScope.hpp" |
51 | #include "gc/shared/suspendibleThreadSet.hpp" |
52 | #include "gc/shared/taskqueue.inline.hpp" |
53 | #include "gc/shared/weakProcessor.inline.hpp" |
54 | #include "gc/shared/workerPolicy.hpp" |
55 | #include "include/jvm.h" |
56 | #include "logging/log.hpp" |
57 | #include "memory/allocation.hpp" |
58 | #include "memory/resourceArea.hpp" |
59 | #include "memory/universe.hpp" |
60 | #include "oops/access.inline.hpp" |
61 | #include "oops/oop.inline.hpp" |
62 | #include "runtime/atomic.hpp" |
63 | #include "runtime/handles.inline.hpp" |
64 | #include "runtime/java.hpp" |
65 | #include "runtime/prefetch.inline.hpp" |
66 | #include "services/memTracker.hpp" |
67 | #include "utilities/align.hpp" |
68 | #include "utilities/growableArray.hpp" |
69 | |
70 | bool G1CMBitMapClosure::do_addr(HeapWord* const addr) { |
71 | assert(addr < _cm->finger(), "invariant" ); |
72 | assert(addr >= _task->finger(), "invariant" ); |
73 | |
74 | // We move that task's local finger along. |
75 | _task->move_finger_to(addr); |
76 | |
77 | _task->scan_task_entry(G1TaskQueueEntry::from_oop(oop(addr))); |
78 | // we only partially drain the local queue and global stack |
79 | _task->drain_local_queue(true); |
80 | _task->drain_global_stack(true); |
81 | |
82 | // if the has_aborted flag has been raised, we need to bail out of |
83 | // the iteration |
84 | return !_task->has_aborted(); |
85 | } |
86 | |
87 | G1CMMarkStack::G1CMMarkStack() : |
88 | _max_chunk_capacity(0), |
89 | _base(NULL), |
90 | _chunk_capacity(0) { |
91 | set_empty(); |
92 | } |
93 | |
94 | bool G1CMMarkStack::resize(size_t new_capacity) { |
95 | assert(is_empty(), "Only resize when stack is empty." ); |
96 | assert(new_capacity <= _max_chunk_capacity, |
97 | "Trying to resize stack to " SIZE_FORMAT " chunks when the maximum is " SIZE_FORMAT, new_capacity, _max_chunk_capacity); |
98 | |
99 | TaskQueueEntryChunk* new_base = MmapArrayAllocator<TaskQueueEntryChunk>::allocate_or_null(new_capacity, mtGC); |
100 | |
101 | if (new_base == NULL) { |
102 | log_warning(gc)("Failed to reserve memory for new overflow mark stack with " SIZE_FORMAT " chunks and size " SIZE_FORMAT "B." , new_capacity, new_capacity * sizeof(TaskQueueEntryChunk)); |
103 | return false; |
104 | } |
105 | // Release old mapping. |
106 | if (_base != NULL) { |
107 | MmapArrayAllocator<TaskQueueEntryChunk>::free(_base, _chunk_capacity); |
108 | } |
109 | |
110 | _base = new_base; |
111 | _chunk_capacity = new_capacity; |
112 | set_empty(); |
113 | |
114 | return true; |
115 | } |
116 | |
117 | size_t G1CMMarkStack::capacity_alignment() { |
118 | return (size_t)lcm(os::vm_allocation_granularity(), sizeof(TaskQueueEntryChunk)) / sizeof(G1TaskQueueEntry); |
119 | } |
120 | |
121 | bool G1CMMarkStack::initialize(size_t initial_capacity, size_t max_capacity) { |
122 | guarantee(_max_chunk_capacity == 0, "G1CMMarkStack already initialized." ); |
123 | |
124 | size_t const TaskEntryChunkSizeInVoidStar = sizeof(TaskQueueEntryChunk) / sizeof(G1TaskQueueEntry); |
125 | |
126 | _max_chunk_capacity = align_up(max_capacity, capacity_alignment()) / TaskEntryChunkSizeInVoidStar; |
127 | size_t initial_chunk_capacity = align_up(initial_capacity, capacity_alignment()) / TaskEntryChunkSizeInVoidStar; |
128 | |
129 | guarantee(initial_chunk_capacity <= _max_chunk_capacity, |
130 | "Maximum chunk capacity " SIZE_FORMAT " smaller than initial capacity " SIZE_FORMAT, |
131 | _max_chunk_capacity, |
132 | initial_chunk_capacity); |
133 | |
134 | log_debug(gc)("Initialize mark stack with " SIZE_FORMAT " chunks, maximum " SIZE_FORMAT, |
135 | initial_chunk_capacity, _max_chunk_capacity); |
136 | |
137 | return resize(initial_chunk_capacity); |
138 | } |
139 | |
140 | void G1CMMarkStack::expand() { |
141 | if (_chunk_capacity == _max_chunk_capacity) { |
142 | log_debug(gc)("Can not expand overflow mark stack further, already at maximum capacity of " SIZE_FORMAT " chunks." , _chunk_capacity); |
143 | return; |
144 | } |
145 | size_t old_capacity = _chunk_capacity; |
146 | // Double capacity if possible |
147 | size_t new_capacity = MIN2(old_capacity * 2, _max_chunk_capacity); |
148 | |
149 | if (resize(new_capacity)) { |
150 | log_debug(gc)("Expanded mark stack capacity from " SIZE_FORMAT " to " SIZE_FORMAT " chunks" , |
151 | old_capacity, new_capacity); |
152 | } else { |
153 | log_warning(gc)("Failed to expand mark stack capacity from " SIZE_FORMAT " to " SIZE_FORMAT " chunks" , |
154 | old_capacity, new_capacity); |
155 | } |
156 | } |
157 | |
158 | G1CMMarkStack::~G1CMMarkStack() { |
159 | if (_base != NULL) { |
160 | MmapArrayAllocator<TaskQueueEntryChunk>::free(_base, _chunk_capacity); |
161 | } |
162 | } |
163 | |
164 | void G1CMMarkStack::add_chunk_to_list(TaskQueueEntryChunk* volatile* list, TaskQueueEntryChunk* elem) { |
165 | elem->next = *list; |
166 | *list = elem; |
167 | } |
168 | |
169 | void G1CMMarkStack::add_chunk_to_chunk_list(TaskQueueEntryChunk* elem) { |
170 | MutexLocker x(MarkStackChunkList_lock, Mutex::_no_safepoint_check_flag); |
171 | add_chunk_to_list(&_chunk_list, elem); |
172 | _chunks_in_chunk_list++; |
173 | } |
174 | |
175 | void G1CMMarkStack::add_chunk_to_free_list(TaskQueueEntryChunk* elem) { |
176 | MutexLocker x(MarkStackFreeList_lock, Mutex::_no_safepoint_check_flag); |
177 | add_chunk_to_list(&_free_list, elem); |
178 | } |
179 | |
180 | G1CMMarkStack::TaskQueueEntryChunk* G1CMMarkStack::remove_chunk_from_list(TaskQueueEntryChunk* volatile* list) { |
181 | TaskQueueEntryChunk* result = *list; |
182 | if (result != NULL) { |
183 | *list = (*list)->next; |
184 | } |
185 | return result; |
186 | } |
187 | |
188 | G1CMMarkStack::TaskQueueEntryChunk* G1CMMarkStack::remove_chunk_from_chunk_list() { |
189 | MutexLocker x(MarkStackChunkList_lock, Mutex::_no_safepoint_check_flag); |
190 | TaskQueueEntryChunk* result = remove_chunk_from_list(&_chunk_list); |
191 | if (result != NULL) { |
192 | _chunks_in_chunk_list--; |
193 | } |
194 | return result; |
195 | } |
196 | |
197 | G1CMMarkStack::TaskQueueEntryChunk* G1CMMarkStack::remove_chunk_from_free_list() { |
198 | MutexLocker x(MarkStackFreeList_lock, Mutex::_no_safepoint_check_flag); |
199 | return remove_chunk_from_list(&_free_list); |
200 | } |
201 | |
202 | G1CMMarkStack::TaskQueueEntryChunk* G1CMMarkStack::allocate_new_chunk() { |
203 | // This dirty read of _hwm is okay because we only ever increase the _hwm in parallel code. |
204 | // Further this limits _hwm to a value of _chunk_capacity + #threads, avoiding |
205 | // wraparound of _hwm. |
206 | if (_hwm >= _chunk_capacity) { |
207 | return NULL; |
208 | } |
209 | |
210 | size_t cur_idx = Atomic::add(1u, &_hwm) - 1; |
211 | if (cur_idx >= _chunk_capacity) { |
212 | return NULL; |
213 | } |
214 | |
215 | TaskQueueEntryChunk* result = ::new (&_base[cur_idx]) TaskQueueEntryChunk; |
216 | result->next = NULL; |
217 | return result; |
218 | } |
219 | |
220 | bool G1CMMarkStack::par_push_chunk(G1TaskQueueEntry* ptr_arr) { |
221 | // Get a new chunk. |
222 | TaskQueueEntryChunk* new_chunk = remove_chunk_from_free_list(); |
223 | |
224 | if (new_chunk == NULL) { |
225 | // Did not get a chunk from the free list. Allocate from backing memory. |
226 | new_chunk = allocate_new_chunk(); |
227 | |
228 | if (new_chunk == NULL) { |
229 | return false; |
230 | } |
231 | } |
232 | |
233 | Copy::conjoint_memory_atomic(ptr_arr, new_chunk->data, EntriesPerChunk * sizeof(G1TaskQueueEntry)); |
234 | |
235 | add_chunk_to_chunk_list(new_chunk); |
236 | |
237 | return true; |
238 | } |
239 | |
240 | bool G1CMMarkStack::par_pop_chunk(G1TaskQueueEntry* ptr_arr) { |
241 | TaskQueueEntryChunk* cur = remove_chunk_from_chunk_list(); |
242 | |
243 | if (cur == NULL) { |
244 | return false; |
245 | } |
246 | |
247 | Copy::conjoint_memory_atomic(cur->data, ptr_arr, EntriesPerChunk * sizeof(G1TaskQueueEntry)); |
248 | |
249 | add_chunk_to_free_list(cur); |
250 | return true; |
251 | } |
252 | |
253 | void G1CMMarkStack::set_empty() { |
254 | _chunks_in_chunk_list = 0; |
255 | _hwm = 0; |
256 | _chunk_list = NULL; |
257 | _free_list = NULL; |
258 | } |
259 | |
260 | G1CMRootMemRegions::G1CMRootMemRegions(uint const max_regions) : |
261 | _root_regions(NULL), |
262 | _max_regions(max_regions), |
263 | _num_root_regions(0), |
264 | _claimed_root_regions(0), |
265 | _scan_in_progress(false), |
266 | _should_abort(false) { |
267 | _root_regions = new MemRegion[_max_regions]; |
268 | if (_root_regions == NULL) { |
269 | vm_exit_during_initialization("Could not allocate root MemRegion set." ); |
270 | } |
271 | } |
272 | |
273 | G1CMRootMemRegions::~G1CMRootMemRegions() { |
274 | delete[] _root_regions; |
275 | } |
276 | |
277 | void G1CMRootMemRegions::reset() { |
278 | _num_root_regions = 0; |
279 | } |
280 | |
281 | void G1CMRootMemRegions::add(HeapWord* start, HeapWord* end) { |
282 | assert_at_safepoint(); |
283 | size_t idx = Atomic::add((size_t)1, &_num_root_regions) - 1; |
284 | assert(idx < _max_regions, "Trying to add more root MemRegions than there is space " SIZE_FORMAT, _max_regions); |
285 | assert(start != NULL && end != NULL && start <= end, "Start (" PTR_FORMAT ") should be less or equal to " |
286 | "end (" PTR_FORMAT ")" , p2i(start), p2i(end)); |
287 | _root_regions[idx].set_start(start); |
288 | _root_regions[idx].set_end(end); |
289 | } |
290 | |
291 | void G1CMRootMemRegions::prepare_for_scan() { |
292 | assert(!scan_in_progress(), "pre-condition" ); |
293 | |
294 | _scan_in_progress = _num_root_regions > 0; |
295 | |
296 | _claimed_root_regions = 0; |
297 | _should_abort = false; |
298 | } |
299 | |
300 | const MemRegion* G1CMRootMemRegions::claim_next() { |
301 | if (_should_abort) { |
302 | // If someone has set the should_abort flag, we return NULL to |
303 | // force the caller to bail out of their loop. |
304 | return NULL; |
305 | } |
306 | |
307 | if (_claimed_root_regions >= _num_root_regions) { |
308 | return NULL; |
309 | } |
310 | |
311 | size_t claimed_index = Atomic::add((size_t)1, &_claimed_root_regions) - 1; |
312 | if (claimed_index < _num_root_regions) { |
313 | return &_root_regions[claimed_index]; |
314 | } |
315 | return NULL; |
316 | } |
317 | |
318 | uint G1CMRootMemRegions::num_root_regions() const { |
319 | return (uint)_num_root_regions; |
320 | } |
321 | |
322 | void G1CMRootMemRegions::notify_scan_done() { |
323 | MutexLocker x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag); |
324 | _scan_in_progress = false; |
325 | RootRegionScan_lock->notify_all(); |
326 | } |
327 | |
328 | void G1CMRootMemRegions::cancel_scan() { |
329 | notify_scan_done(); |
330 | } |
331 | |
332 | void G1CMRootMemRegions::scan_finished() { |
333 | assert(scan_in_progress(), "pre-condition" ); |
334 | |
335 | if (!_should_abort) { |
336 | assert(_claimed_root_regions >= num_root_regions(), |
337 | "we should have claimed all root regions, claimed " SIZE_FORMAT ", length = %u" , |
338 | _claimed_root_regions, num_root_regions()); |
339 | } |
340 | |
341 | notify_scan_done(); |
342 | } |
343 | |
344 | bool G1CMRootMemRegions::wait_until_scan_finished() { |
345 | if (!scan_in_progress()) { |
346 | return false; |
347 | } |
348 | |
349 | { |
350 | MonitorLocker ml(RootRegionScan_lock, Mutex::_no_safepoint_check_flag); |
351 | while (scan_in_progress()) { |
352 | ml.wait(); |
353 | } |
354 | } |
355 | return true; |
356 | } |
357 | |
358 | // Returns the maximum number of workers to be used in a concurrent |
359 | // phase based on the number of GC workers being used in a STW |
360 | // phase. |
361 | static uint scale_concurrent_worker_threads(uint num_gc_workers) { |
362 | return MAX2((num_gc_workers + 2) / 4, 1U); |
363 | } |
364 | |
365 | G1ConcurrentMark::G1ConcurrentMark(G1CollectedHeap* g1h, |
366 | G1RegionToSpaceMapper* prev_bitmap_storage, |
367 | G1RegionToSpaceMapper* next_bitmap_storage) : |
368 | // _cm_thread set inside the constructor |
369 | _g1h(g1h), |
370 | _completed_initialization(false), |
371 | |
372 | _mark_bitmap_1(), |
373 | _mark_bitmap_2(), |
374 | _prev_mark_bitmap(&_mark_bitmap_1), |
375 | _next_mark_bitmap(&_mark_bitmap_2), |
376 | |
377 | _heap(_g1h->reserved_region()), |
378 | |
379 | _root_regions(_g1h->max_regions()), |
380 | |
381 | _global_mark_stack(), |
382 | |
383 | // _finger set in set_non_marking_state |
384 | |
385 | _worker_id_offset(G1DirtyCardQueueSet::num_par_ids() + G1ConcRefinementThreads), |
386 | _max_num_tasks(ParallelGCThreads), |
387 | // _num_active_tasks set in set_non_marking_state() |
388 | // _tasks set inside the constructor |
389 | |
390 | _task_queues(new G1CMTaskQueueSet((int) _max_num_tasks)), |
391 | _terminator((int) _max_num_tasks, _task_queues), |
392 | |
393 | _first_overflow_barrier_sync(), |
394 | _second_overflow_barrier_sync(), |
395 | |
396 | _has_overflown(false), |
397 | _concurrent(false), |
398 | _has_aborted(false), |
399 | _restart_for_overflow(false), |
400 | _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()), |
401 | _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) G1OldTracer()), |
402 | |
403 | // _verbose_level set below |
404 | |
405 | _init_times(), |
406 | _remark_times(), |
407 | _remark_mark_times(), |
408 | _remark_weak_ref_times(), |
409 | _cleanup_times(), |
410 | _total_cleanup_time(0.0), |
411 | |
412 | _accum_task_vtime(NULL), |
413 | |
414 | _concurrent_workers(NULL), |
415 | _num_concurrent_workers(0), |
416 | _max_concurrent_workers(0), |
417 | |
418 | _region_mark_stats(NEW_C_HEAP_ARRAY(G1RegionMarkStats, _g1h->max_regions(), mtGC)), |
419 | _top_at_rebuild_starts(NEW_C_HEAP_ARRAY(HeapWord*, _g1h->max_regions(), mtGC)) |
420 | { |
421 | _mark_bitmap_1.initialize(g1h->reserved_region(), prev_bitmap_storage); |
422 | _mark_bitmap_2.initialize(g1h->reserved_region(), next_bitmap_storage); |
423 | |
424 | // Create & start ConcurrentMark thread. |
425 | _cm_thread = new G1ConcurrentMarkThread(this); |
426 | if (_cm_thread->osthread() == NULL) { |
427 | vm_shutdown_during_initialization("Could not create ConcurrentMarkThread" ); |
428 | } |
429 | |
430 | assert(CGC_lock != NULL, "CGC_lock must be initialized" ); |
431 | |
432 | if (FLAG_IS_DEFAULT(ConcGCThreads) || ConcGCThreads == 0) { |
433 | // Calculate the number of concurrent worker threads by scaling |
434 | // the number of parallel GC threads. |
435 | uint marking_thread_num = scale_concurrent_worker_threads(ParallelGCThreads); |
436 | FLAG_SET_ERGO(ConcGCThreads, marking_thread_num); |
437 | } |
438 | |
439 | assert(ConcGCThreads > 0, "ConcGCThreads have been set." ); |
440 | if (ConcGCThreads > ParallelGCThreads) { |
441 | log_warning(gc)("More ConcGCThreads (%u) than ParallelGCThreads (%u)." , |
442 | ConcGCThreads, ParallelGCThreads); |
443 | return; |
444 | } |
445 | |
446 | log_debug(gc)("ConcGCThreads: %u offset %u" , ConcGCThreads, _worker_id_offset); |
447 | log_debug(gc)("ParallelGCThreads: %u" , ParallelGCThreads); |
448 | |
449 | _num_concurrent_workers = ConcGCThreads; |
450 | _max_concurrent_workers = _num_concurrent_workers; |
451 | |
452 | _concurrent_workers = new WorkGang("G1 Conc" , _max_concurrent_workers, false, true); |
453 | _concurrent_workers->initialize_workers(); |
454 | |
455 | if (FLAG_IS_DEFAULT(MarkStackSize)) { |
456 | size_t mark_stack_size = |
457 | MIN2(MarkStackSizeMax, |
458 | MAX2(MarkStackSize, (size_t) (_max_concurrent_workers * TASKQUEUE_SIZE))); |
459 | // Verify that the calculated value for MarkStackSize is in range. |
460 | // It would be nice to use the private utility routine from Arguments. |
461 | if (!(mark_stack_size >= 1 && mark_stack_size <= MarkStackSizeMax)) { |
462 | log_warning(gc)("Invalid value calculated for MarkStackSize (" SIZE_FORMAT "): " |
463 | "must be between 1 and " SIZE_FORMAT, |
464 | mark_stack_size, MarkStackSizeMax); |
465 | return; |
466 | } |
467 | FLAG_SET_ERGO(MarkStackSize, mark_stack_size); |
468 | } else { |
469 | // Verify MarkStackSize is in range. |
470 | if (FLAG_IS_CMDLINE(MarkStackSize)) { |
471 | if (FLAG_IS_DEFAULT(MarkStackSizeMax)) { |
472 | if (!(MarkStackSize >= 1 && MarkStackSize <= MarkStackSizeMax)) { |
473 | log_warning(gc)("Invalid value specified for MarkStackSize (" SIZE_FORMAT "): " |
474 | "must be between 1 and " SIZE_FORMAT, |
475 | MarkStackSize, MarkStackSizeMax); |
476 | return; |
477 | } |
478 | } else if (FLAG_IS_CMDLINE(MarkStackSizeMax)) { |
479 | if (!(MarkStackSize >= 1 && MarkStackSize <= MarkStackSizeMax)) { |
480 | log_warning(gc)("Invalid value specified for MarkStackSize (" SIZE_FORMAT ")" |
481 | " or for MarkStackSizeMax (" SIZE_FORMAT ")" , |
482 | MarkStackSize, MarkStackSizeMax); |
483 | return; |
484 | } |
485 | } |
486 | } |
487 | } |
488 | |
489 | if (!_global_mark_stack.initialize(MarkStackSize, MarkStackSizeMax)) { |
490 | vm_exit_during_initialization("Failed to allocate initial concurrent mark overflow mark stack." ); |
491 | } |
492 | |
493 | _tasks = NEW_C_HEAP_ARRAY(G1CMTask*, _max_num_tasks, mtGC); |
494 | _accum_task_vtime = NEW_C_HEAP_ARRAY(double, _max_num_tasks, mtGC); |
495 | |
496 | // so that the assertion in MarkingTaskQueue::task_queue doesn't fail |
497 | _num_active_tasks = _max_num_tasks; |
498 | |
499 | for (uint i = 0; i < _max_num_tasks; ++i) { |
500 | G1CMTaskQueue* task_queue = new G1CMTaskQueue(); |
501 | task_queue->initialize(); |
502 | _task_queues->register_queue(i, task_queue); |
503 | |
504 | _tasks[i] = new G1CMTask(i, this, task_queue, _region_mark_stats, _g1h->max_regions()); |
505 | |
506 | _accum_task_vtime[i] = 0.0; |
507 | } |
508 | |
509 | reset_at_marking_complete(); |
510 | _completed_initialization = true; |
511 | } |
512 | |
513 | void G1ConcurrentMark::reset() { |
514 | _has_aborted = false; |
515 | |
516 | reset_marking_for_restart(); |
517 | |
518 | // Reset all tasks, since different phases will use different number of active |
519 | // threads. So, it's easiest to have all of them ready. |
520 | for (uint i = 0; i < _max_num_tasks; ++i) { |
521 | _tasks[i]->reset(_next_mark_bitmap); |
522 | } |
523 | |
524 | uint max_regions = _g1h->max_regions(); |
525 | for (uint i = 0; i < max_regions; i++) { |
526 | _top_at_rebuild_starts[i] = NULL; |
527 | _region_mark_stats[i].clear(); |
528 | } |
529 | } |
530 | |
531 | void G1ConcurrentMark::clear_statistics_in_region(uint region_idx) { |
532 | for (uint j = 0; j < _max_num_tasks; ++j) { |
533 | _tasks[j]->clear_mark_stats_cache(region_idx); |
534 | } |
535 | _top_at_rebuild_starts[region_idx] = NULL; |
536 | _region_mark_stats[region_idx].clear(); |
537 | } |
538 | |
539 | void G1ConcurrentMark::clear_statistics(HeapRegion* r) { |
540 | uint const region_idx = r->hrm_index(); |
541 | if (r->is_humongous()) { |
542 | assert(r->is_starts_humongous(), "Got humongous continues region here" ); |
543 | uint const size_in_regions = (uint)_g1h->humongous_obj_size_in_regions(oop(r->humongous_start_region()->bottom())->size()); |
544 | for (uint j = region_idx; j < (region_idx + size_in_regions); j++) { |
545 | clear_statistics_in_region(j); |
546 | } |
547 | } else { |
548 | clear_statistics_in_region(region_idx); |
549 | } |
550 | } |
551 | |
552 | static void clear_mark_if_set(G1CMBitMap* bitmap, HeapWord* addr) { |
553 | if (bitmap->is_marked(addr)) { |
554 | bitmap->clear(addr); |
555 | } |
556 | } |
557 | |
558 | void G1ConcurrentMark::humongous_object_eagerly_reclaimed(HeapRegion* r) { |
559 | assert_at_safepoint_on_vm_thread(); |
560 | |
561 | // Need to clear all mark bits of the humongous object. |
562 | clear_mark_if_set(_prev_mark_bitmap, r->bottom()); |
563 | clear_mark_if_set(_next_mark_bitmap, r->bottom()); |
564 | |
565 | if (!_g1h->collector_state()->mark_or_rebuild_in_progress()) { |
566 | return; |
567 | } |
568 | |
569 | // Clear any statistics about the region gathered so far. |
570 | clear_statistics(r); |
571 | } |
572 | |
573 | void G1ConcurrentMark::reset_marking_for_restart() { |
574 | _global_mark_stack.set_empty(); |
575 | |
576 | // Expand the marking stack, if we have to and if we can. |
577 | if (has_overflown()) { |
578 | _global_mark_stack.expand(); |
579 | |
580 | uint max_regions = _g1h->max_regions(); |
581 | for (uint i = 0; i < max_regions; i++) { |
582 | _region_mark_stats[i].clear_during_overflow(); |
583 | } |
584 | } |
585 | |
586 | clear_has_overflown(); |
587 | _finger = _heap.start(); |
588 | |
589 | for (uint i = 0; i < _max_num_tasks; ++i) { |
590 | G1CMTaskQueue* queue = _task_queues->queue(i); |
591 | queue->set_empty(); |
592 | } |
593 | } |
594 | |
595 | void G1ConcurrentMark::set_concurrency(uint active_tasks) { |
596 | assert(active_tasks <= _max_num_tasks, "we should not have more" ); |
597 | |
598 | _num_active_tasks = active_tasks; |
599 | // Need to update the three data structures below according to the |
600 | // number of active threads for this phase. |
601 | _terminator.terminator()->reset_for_reuse((int) active_tasks); |
602 | _first_overflow_barrier_sync.set_n_workers((int) active_tasks); |
603 | _second_overflow_barrier_sync.set_n_workers((int) active_tasks); |
604 | } |
605 | |
606 | void G1ConcurrentMark::set_concurrency_and_phase(uint active_tasks, bool concurrent) { |
607 | set_concurrency(active_tasks); |
608 | |
609 | _concurrent = concurrent; |
610 | |
611 | if (!concurrent) { |
612 | // At this point we should be in a STW phase, and completed marking. |
613 | assert_at_safepoint_on_vm_thread(); |
614 | assert(out_of_regions(), |
615 | "only way to get here: _finger: " PTR_FORMAT ", _heap_end: " PTR_FORMAT, |
616 | p2i(_finger), p2i(_heap.end())); |
617 | } |
618 | } |
619 | |
620 | void G1ConcurrentMark::reset_at_marking_complete() { |
621 | // We set the global marking state to some default values when we're |
622 | // not doing marking. |
623 | reset_marking_for_restart(); |
624 | _num_active_tasks = 0; |
625 | } |
626 | |
627 | G1ConcurrentMark::~G1ConcurrentMark() { |
628 | FREE_C_HEAP_ARRAY(HeapWord*, _top_at_rebuild_starts); |
629 | FREE_C_HEAP_ARRAY(G1RegionMarkStats, _region_mark_stats); |
630 | // The G1ConcurrentMark instance is never freed. |
631 | ShouldNotReachHere(); |
632 | } |
633 | |
634 | class G1ClearBitMapTask : public AbstractGangTask { |
635 | public: |
636 | static size_t chunk_size() { return M; } |
637 | |
638 | private: |
639 | // Heap region closure used for clearing the given mark bitmap. |
640 | class G1ClearBitmapHRClosure : public HeapRegionClosure { |
641 | private: |
642 | G1CMBitMap* _bitmap; |
643 | G1ConcurrentMark* _cm; |
644 | public: |
645 | G1ClearBitmapHRClosure(G1CMBitMap* bitmap, G1ConcurrentMark* cm) : HeapRegionClosure(), _bitmap(bitmap), _cm(cm) { |
646 | } |
647 | |
648 | virtual bool do_heap_region(HeapRegion* r) { |
649 | size_t const chunk_size_in_words = G1ClearBitMapTask::chunk_size() / HeapWordSize; |
650 | |
651 | HeapWord* cur = r->bottom(); |
652 | HeapWord* const end = r->end(); |
653 | |
654 | while (cur < end) { |
655 | MemRegion mr(cur, MIN2(cur + chunk_size_in_words, end)); |
656 | _bitmap->clear_range(mr); |
657 | |
658 | cur += chunk_size_in_words; |
659 | |
660 | // Abort iteration if after yielding the marking has been aborted. |
661 | if (_cm != NULL && _cm->do_yield_check() && _cm->has_aborted()) { |
662 | return true; |
663 | } |
664 | // Repeat the asserts from before the start of the closure. We will do them |
665 | // as asserts here to minimize their overhead on the product. However, we |
666 | // will have them as guarantees at the beginning / end of the bitmap |
667 | // clearing to get some checking in the product. |
668 | assert(_cm == NULL || _cm->cm_thread()->during_cycle(), "invariant" ); |
669 | assert(_cm == NULL || !G1CollectedHeap::heap()->collector_state()->mark_or_rebuild_in_progress(), "invariant" ); |
670 | } |
671 | assert(cur == end, "Must have completed iteration over the bitmap for region %u." , r->hrm_index()); |
672 | |
673 | return false; |
674 | } |
675 | }; |
676 | |
677 | G1ClearBitmapHRClosure _cl; |
678 | HeapRegionClaimer _hr_claimer; |
679 | bool _suspendible; // If the task is suspendible, workers must join the STS. |
680 | |
681 | public: |
682 | G1ClearBitMapTask(G1CMBitMap* bitmap, G1ConcurrentMark* cm, uint n_workers, bool suspendible) : |
683 | AbstractGangTask("G1 Clear Bitmap" ), |
684 | _cl(bitmap, suspendible ? cm : NULL), |
685 | _hr_claimer(n_workers), |
686 | _suspendible(suspendible) |
687 | { } |
688 | |
689 | void work(uint worker_id) { |
690 | SuspendibleThreadSetJoiner sts_join(_suspendible); |
691 | G1CollectedHeap::heap()->heap_region_par_iterate_from_worker_offset(&_cl, &_hr_claimer, worker_id); |
692 | } |
693 | |
694 | bool is_complete() { |
695 | return _cl.is_complete(); |
696 | } |
697 | }; |
698 | |
699 | void G1ConcurrentMark::clear_bitmap(G1CMBitMap* bitmap, WorkGang* workers, bool may_yield) { |
700 | assert(may_yield || SafepointSynchronize::is_at_safepoint(), "Non-yielding bitmap clear only allowed at safepoint." ); |
701 | |
702 | size_t const num_bytes_to_clear = (HeapRegion::GrainBytes * _g1h->num_regions()) / G1CMBitMap::heap_map_factor(); |
703 | size_t const num_chunks = align_up(num_bytes_to_clear, G1ClearBitMapTask::chunk_size()) / G1ClearBitMapTask::chunk_size(); |
704 | |
705 | uint const num_workers = (uint)MIN2(num_chunks, (size_t)workers->active_workers()); |
706 | |
707 | G1ClearBitMapTask cl(bitmap, this, num_workers, may_yield); |
708 | |
709 | log_debug(gc, ergo)("Running %s with %u workers for " SIZE_FORMAT " work units." , cl.name(), num_workers, num_chunks); |
710 | workers->run_task(&cl, num_workers); |
711 | guarantee(!may_yield || cl.is_complete(), "Must have completed iteration when not yielding." ); |
712 | } |
713 | |
714 | void G1ConcurrentMark::cleanup_for_next_mark() { |
715 | // Make sure that the concurrent mark thread looks to still be in |
716 | // the current cycle. |
717 | guarantee(cm_thread()->during_cycle(), "invariant" ); |
718 | |
719 | // We are finishing up the current cycle by clearing the next |
720 | // marking bitmap and getting it ready for the next cycle. During |
721 | // this time no other cycle can start. So, let's make sure that this |
722 | // is the case. |
723 | guarantee(!_g1h->collector_state()->mark_or_rebuild_in_progress(), "invariant" ); |
724 | |
725 | clear_bitmap(_next_mark_bitmap, _concurrent_workers, true); |
726 | |
727 | // Repeat the asserts from above. |
728 | guarantee(cm_thread()->during_cycle(), "invariant" ); |
729 | guarantee(!_g1h->collector_state()->mark_or_rebuild_in_progress(), "invariant" ); |
730 | } |
731 | |
732 | void G1ConcurrentMark::clear_prev_bitmap(WorkGang* workers) { |
733 | assert_at_safepoint_on_vm_thread(); |
734 | clear_bitmap(_prev_mark_bitmap, workers, false); |
735 | } |
736 | |
737 | class NoteStartOfMarkHRClosure : public HeapRegionClosure { |
738 | public: |
739 | bool do_heap_region(HeapRegion* r) { |
740 | r->note_start_of_marking(); |
741 | return false; |
742 | } |
743 | }; |
744 | |
745 | void G1ConcurrentMark::pre_initial_mark() { |
746 | assert_at_safepoint_on_vm_thread(); |
747 | |
748 | // Reset marking state. |
749 | reset(); |
750 | |
751 | // For each region note start of marking. |
752 | NoteStartOfMarkHRClosure startcl; |
753 | _g1h->heap_region_iterate(&startcl); |
754 | |
755 | _root_regions.reset(); |
756 | } |
757 | |
758 | |
759 | void G1ConcurrentMark::post_initial_mark() { |
760 | // Start Concurrent Marking weak-reference discovery. |
761 | ReferenceProcessor* rp = _g1h->ref_processor_cm(); |
762 | // enable ("weak") refs discovery |
763 | rp->enable_discovery(); |
764 | rp->setup_policy(false); // snapshot the soft ref policy to be used in this cycle |
765 | |
766 | SATBMarkQueueSet& satb_mq_set = G1BarrierSet::satb_mark_queue_set(); |
767 | // This is the start of the marking cycle, we're expected all |
768 | // threads to have SATB queues with active set to false. |
769 | satb_mq_set.set_active_all_threads(true, /* new active value */ |
770 | false /* expected_active */); |
771 | |
772 | _root_regions.prepare_for_scan(); |
773 | |
774 | // update_g1_committed() will be called at the end of an evac pause |
775 | // when marking is on. So, it's also called at the end of the |
776 | // initial-mark pause to update the heap end, if the heap expands |
777 | // during it. No need to call it here. |
778 | } |
779 | |
780 | /* |
781 | * Notice that in the next two methods, we actually leave the STS |
782 | * during the barrier sync and join it immediately afterwards. If we |
783 | * do not do this, the following deadlock can occur: one thread could |
784 | * be in the barrier sync code, waiting for the other thread to also |
785 | * sync up, whereas another one could be trying to yield, while also |
786 | * waiting for the other threads to sync up too. |
787 | * |
788 | * Note, however, that this code is also used during remark and in |
789 | * this case we should not attempt to leave / enter the STS, otherwise |
790 | * we'll either hit an assert (debug / fastdebug) or deadlock |
791 | * (product). So we should only leave / enter the STS if we are |
792 | * operating concurrently. |
793 | * |
794 | * Because the thread that does the sync barrier has left the STS, it |
795 | * is possible to be suspended for a Full GC or an evacuation pause |
796 | * could occur. This is actually safe, since the entering the sync |
797 | * barrier is one of the last things do_marking_step() does, and it |
798 | * doesn't manipulate any data structures afterwards. |
799 | */ |
800 | |
801 | void G1ConcurrentMark::enter_first_sync_barrier(uint worker_id) { |
802 | bool barrier_aborted; |
803 | { |
804 | SuspendibleThreadSetLeaver sts_leave(concurrent()); |
805 | barrier_aborted = !_first_overflow_barrier_sync.enter(); |
806 | } |
807 | |
808 | // at this point everyone should have synced up and not be doing any |
809 | // more work |
810 | |
811 | if (barrier_aborted) { |
812 | // If the barrier aborted we ignore the overflow condition and |
813 | // just abort the whole marking phase as quickly as possible. |
814 | return; |
815 | } |
816 | } |
817 | |
818 | void G1ConcurrentMark::enter_second_sync_barrier(uint worker_id) { |
819 | SuspendibleThreadSetLeaver sts_leave(concurrent()); |
820 | _second_overflow_barrier_sync.enter(); |
821 | |
822 | // at this point everything should be re-initialized and ready to go |
823 | } |
824 | |
825 | class G1CMConcurrentMarkingTask : public AbstractGangTask { |
826 | G1ConcurrentMark* _cm; |
827 | |
828 | public: |
829 | void work(uint worker_id) { |
830 | assert(Thread::current()->is_ConcurrentGC_thread(), "Not a concurrent GC thread" ); |
831 | ResourceMark rm; |
832 | |
833 | double start_vtime = os::elapsedVTime(); |
834 | |
835 | { |
836 | SuspendibleThreadSetJoiner sts_join; |
837 | |
838 | assert(worker_id < _cm->active_tasks(), "invariant" ); |
839 | |
840 | G1CMTask* task = _cm->task(worker_id); |
841 | task->record_start_time(); |
842 | if (!_cm->has_aborted()) { |
843 | do { |
844 | task->do_marking_step(G1ConcMarkStepDurationMillis, |
845 | true /* do_termination */, |
846 | false /* is_serial*/); |
847 | |
848 | _cm->do_yield_check(); |
849 | } while (!_cm->has_aborted() && task->has_aborted()); |
850 | } |
851 | task->record_end_time(); |
852 | guarantee(!task->has_aborted() || _cm->has_aborted(), "invariant" ); |
853 | } |
854 | |
855 | double end_vtime = os::elapsedVTime(); |
856 | _cm->update_accum_task_vtime(worker_id, end_vtime - start_vtime); |
857 | } |
858 | |
859 | G1CMConcurrentMarkingTask(G1ConcurrentMark* cm) : |
860 | AbstractGangTask("Concurrent Mark" ), _cm(cm) { } |
861 | |
862 | ~G1CMConcurrentMarkingTask() { } |
863 | }; |
864 | |
865 | uint G1ConcurrentMark::calc_active_marking_workers() { |
866 | uint result = 0; |
867 | if (!UseDynamicNumberOfGCThreads || |
868 | (!FLAG_IS_DEFAULT(ConcGCThreads) && |
869 | !ForceDynamicNumberOfGCThreads)) { |
870 | result = _max_concurrent_workers; |
871 | } else { |
872 | result = |
873 | WorkerPolicy::calc_default_active_workers(_max_concurrent_workers, |
874 | 1, /* Minimum workers */ |
875 | _num_concurrent_workers, |
876 | Threads::number_of_non_daemon_threads()); |
877 | // Don't scale the result down by scale_concurrent_workers() because |
878 | // that scaling has already gone into "_max_concurrent_workers". |
879 | } |
880 | assert(result > 0 && result <= _max_concurrent_workers, |
881 | "Calculated number of marking workers must be larger than zero and at most the maximum %u, but is %u" , |
882 | _max_concurrent_workers, result); |
883 | return result; |
884 | } |
885 | |
886 | void G1ConcurrentMark::scan_root_region(const MemRegion* region, uint worker_id) { |
887 | #ifdef ASSERT |
888 | HeapWord* last = region->last(); |
889 | HeapRegion* hr = _g1h->heap_region_containing(last); |
890 | assert(hr->is_old() || hr->next_top_at_mark_start() == hr->bottom(), |
891 | "Root regions must be old or survivor/eden but region %u is %s" , hr->hrm_index(), hr->get_type_str()); |
892 | assert(hr->next_top_at_mark_start() == region->start(), |
893 | "MemRegion start should be equal to nTAMS" ); |
894 | #endif |
895 | |
896 | G1RootRegionScanClosure cl(_g1h, this, worker_id); |
897 | |
898 | const uintx interval = PrefetchScanIntervalInBytes; |
899 | HeapWord* curr = region->start(); |
900 | const HeapWord* end = region->end(); |
901 | while (curr < end) { |
902 | Prefetch::read(curr, interval); |
903 | oop obj = oop(curr); |
904 | int size = obj->oop_iterate_size(&cl); |
905 | assert(size == obj->size(), "sanity" ); |
906 | curr += size; |
907 | } |
908 | } |
909 | |
910 | class G1CMRootRegionScanTask : public AbstractGangTask { |
911 | G1ConcurrentMark* _cm; |
912 | public: |
913 | G1CMRootRegionScanTask(G1ConcurrentMark* cm) : |
914 | AbstractGangTask("G1 Root Region Scan" ), _cm(cm) { } |
915 | |
916 | void work(uint worker_id) { |
917 | assert(Thread::current()->is_ConcurrentGC_thread(), |
918 | "this should only be done by a conc GC thread" ); |
919 | |
920 | G1CMRootMemRegions* root_regions = _cm->root_regions(); |
921 | const MemRegion* region = root_regions->claim_next(); |
922 | while (region != NULL) { |
923 | _cm->scan_root_region(region, worker_id); |
924 | region = root_regions->claim_next(); |
925 | } |
926 | } |
927 | }; |
928 | |
929 | void G1ConcurrentMark::scan_root_regions() { |
930 | // scan_in_progress() will have been set to true only if there was |
931 | // at least one root region to scan. So, if it's false, we |
932 | // should not attempt to do any further work. |
933 | if (root_regions()->scan_in_progress()) { |
934 | assert(!has_aborted(), "Aborting before root region scanning is finished not supported." ); |
935 | |
936 | _num_concurrent_workers = MIN2(calc_active_marking_workers(), |
937 | // We distribute work on a per-region basis, so starting |
938 | // more threads than that is useless. |
939 | root_regions()->num_root_regions()); |
940 | assert(_num_concurrent_workers <= _max_concurrent_workers, |
941 | "Maximum number of marking threads exceeded" ); |
942 | |
943 | G1CMRootRegionScanTask task(this); |
944 | log_debug(gc, ergo)("Running %s using %u workers for %u work units." , |
945 | task.name(), _num_concurrent_workers, root_regions()->num_root_regions()); |
946 | _concurrent_workers->run_task(&task, _num_concurrent_workers); |
947 | |
948 | // It's possible that has_aborted() is true here without actually |
949 | // aborting the survivor scan earlier. This is OK as it's |
950 | // mainly used for sanity checking. |
951 | root_regions()->scan_finished(); |
952 | } |
953 | } |
954 | |
955 | void G1ConcurrentMark::concurrent_cycle_start() { |
956 | _gc_timer_cm->register_gc_start(); |
957 | |
958 | _gc_tracer_cm->report_gc_start(GCCause::_no_gc /* first parameter is not used */, _gc_timer_cm->gc_start()); |
959 | |
960 | _g1h->trace_heap_before_gc(_gc_tracer_cm); |
961 | } |
962 | |
963 | void G1ConcurrentMark::concurrent_cycle_end() { |
964 | _g1h->collector_state()->set_clearing_next_bitmap(false); |
965 | |
966 | _g1h->trace_heap_after_gc(_gc_tracer_cm); |
967 | |
968 | if (has_aborted()) { |
969 | log_info(gc, marking)("Concurrent Mark Abort" ); |
970 | _gc_tracer_cm->report_concurrent_mode_failure(); |
971 | } |
972 | |
973 | _gc_timer_cm->register_gc_end(); |
974 | |
975 | _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions()); |
976 | } |
977 | |
978 | void G1ConcurrentMark::mark_from_roots() { |
979 | _restart_for_overflow = false; |
980 | |
981 | _num_concurrent_workers = calc_active_marking_workers(); |
982 | |
983 | uint active_workers = MAX2(1U, _num_concurrent_workers); |
984 | |
985 | // Setting active workers is not guaranteed since fewer |
986 | // worker threads may currently exist and more may not be |
987 | // available. |
988 | active_workers = _concurrent_workers->update_active_workers(active_workers); |
989 | log_info(gc, task)("Using %u workers of %u for marking" , active_workers, _concurrent_workers->total_workers()); |
990 | |
991 | // Parallel task terminator is set in "set_concurrency_and_phase()" |
992 | set_concurrency_and_phase(active_workers, true /* concurrent */); |
993 | |
994 | G1CMConcurrentMarkingTask marking_task(this); |
995 | _concurrent_workers->run_task(&marking_task); |
996 | print_stats(); |
997 | } |
998 | |
999 | void G1ConcurrentMark::verify_during_pause(G1HeapVerifier::G1VerifyType type, VerifyOption vo, const char* caller) { |
1000 | G1HeapVerifier* verifier = _g1h->verifier(); |
1001 | |
1002 | verifier->verify_region_sets_optional(); |
1003 | |
1004 | if (VerifyDuringGC) { |
1005 | GCTraceTime(Debug, gc, phases) debug(caller, _gc_timer_cm); |
1006 | |
1007 | size_t const BufLen = 512; |
1008 | char buffer[BufLen]; |
1009 | |
1010 | jio_snprintf(buffer, BufLen, "During GC (%s)" , caller); |
1011 | verifier->verify(type, vo, buffer); |
1012 | } |
1013 | |
1014 | verifier->check_bitmaps(caller); |
1015 | } |
1016 | |
1017 | class G1UpdateRemSetTrackingBeforeRebuildTask : public AbstractGangTask { |
1018 | G1CollectedHeap* _g1h; |
1019 | G1ConcurrentMark* _cm; |
1020 | HeapRegionClaimer _hrclaimer; |
1021 | uint volatile _total_selected_for_rebuild; |
1022 | |
1023 | G1PrintRegionLivenessInfoClosure _cl; |
1024 | |
1025 | class G1UpdateRemSetTrackingBeforeRebuild : public HeapRegionClosure { |
1026 | G1CollectedHeap* _g1h; |
1027 | G1ConcurrentMark* _cm; |
1028 | |
1029 | G1PrintRegionLivenessInfoClosure* _cl; |
1030 | |
1031 | uint _num_regions_selected_for_rebuild; // The number of regions actually selected for rebuild. |
1032 | |
1033 | void update_remset_before_rebuild(HeapRegion* hr) { |
1034 | G1RemSetTrackingPolicy* tracking_policy = _g1h->policy()->remset_tracker(); |
1035 | |
1036 | bool selected_for_rebuild; |
1037 | if (hr->is_humongous()) { |
1038 | bool const is_live = _cm->liveness(hr->humongous_start_region()->hrm_index()) > 0; |
1039 | selected_for_rebuild = tracking_policy->update_humongous_before_rebuild(hr, is_live); |
1040 | } else { |
1041 | size_t const live_bytes = _cm->liveness(hr->hrm_index()); |
1042 | selected_for_rebuild = tracking_policy->update_before_rebuild(hr, live_bytes); |
1043 | } |
1044 | if (selected_for_rebuild) { |
1045 | _num_regions_selected_for_rebuild++; |
1046 | } |
1047 | _cm->update_top_at_rebuild_start(hr); |
1048 | } |
1049 | |
1050 | // Distribute the given words across the humongous object starting with hr and |
1051 | // note end of marking. |
1052 | void distribute_marked_bytes(HeapRegion* hr, size_t marked_words) { |
1053 | uint const region_idx = hr->hrm_index(); |
1054 | size_t const obj_size_in_words = (size_t)oop(hr->bottom())->size(); |
1055 | uint const num_regions_in_humongous = (uint)G1CollectedHeap::humongous_obj_size_in_regions(obj_size_in_words); |
1056 | |
1057 | // "Distributing" zero words means that we only note end of marking for these |
1058 | // regions. |
1059 | assert(marked_words == 0 || obj_size_in_words == marked_words, |
1060 | "Marked words should either be 0 or the same as humongous object (" SIZE_FORMAT ") but is " SIZE_FORMAT, |
1061 | obj_size_in_words, marked_words); |
1062 | |
1063 | for (uint i = region_idx; i < (region_idx + num_regions_in_humongous); i++) { |
1064 | HeapRegion* const r = _g1h->region_at(i); |
1065 | size_t const words_to_add = MIN2(HeapRegion::GrainWords, marked_words); |
1066 | |
1067 | log_trace(gc, marking)("Adding " SIZE_FORMAT " words to humongous region %u (%s)" , |
1068 | words_to_add, i, r->get_type_str()); |
1069 | add_marked_bytes_and_note_end(r, words_to_add * HeapWordSize); |
1070 | marked_words -= words_to_add; |
1071 | } |
1072 | assert(marked_words == 0, |
1073 | SIZE_FORMAT " words left after distributing space across %u regions" , |
1074 | marked_words, num_regions_in_humongous); |
1075 | } |
1076 | |
1077 | void update_marked_bytes(HeapRegion* hr) { |
1078 | uint const region_idx = hr->hrm_index(); |
1079 | size_t const marked_words = _cm->liveness(region_idx); |
1080 | // The marking attributes the object's size completely to the humongous starts |
1081 | // region. We need to distribute this value across the entire set of regions a |
1082 | // humongous object spans. |
1083 | if (hr->is_humongous()) { |
1084 | assert(hr->is_starts_humongous() || marked_words == 0, |
1085 | "Should not have marked words " SIZE_FORMAT " in non-starts humongous region %u (%s)" , |
1086 | marked_words, region_idx, hr->get_type_str()); |
1087 | if (hr->is_starts_humongous()) { |
1088 | distribute_marked_bytes(hr, marked_words); |
1089 | } |
1090 | } else { |
1091 | log_trace(gc, marking)("Adding " SIZE_FORMAT " words to region %u (%s)" , marked_words, region_idx, hr->get_type_str()); |
1092 | add_marked_bytes_and_note_end(hr, marked_words * HeapWordSize); |
1093 | } |
1094 | } |
1095 | |
1096 | void add_marked_bytes_and_note_end(HeapRegion* hr, size_t marked_bytes) { |
1097 | hr->add_to_marked_bytes(marked_bytes); |
1098 | _cl->do_heap_region(hr); |
1099 | hr->note_end_of_marking(); |
1100 | } |
1101 | |
1102 | public: |
1103 | G1UpdateRemSetTrackingBeforeRebuild(G1CollectedHeap* g1h, G1ConcurrentMark* cm, G1PrintRegionLivenessInfoClosure* cl) : |
1104 | _g1h(g1h), _cm(cm), _cl(cl), _num_regions_selected_for_rebuild(0) { } |
1105 | |
1106 | virtual bool do_heap_region(HeapRegion* r) { |
1107 | update_remset_before_rebuild(r); |
1108 | update_marked_bytes(r); |
1109 | |
1110 | return false; |
1111 | } |
1112 | |
1113 | uint num_selected_for_rebuild() const { return _num_regions_selected_for_rebuild; } |
1114 | }; |
1115 | |
1116 | public: |
1117 | G1UpdateRemSetTrackingBeforeRebuildTask(G1CollectedHeap* g1h, G1ConcurrentMark* cm, uint num_workers) : |
1118 | AbstractGangTask("G1 Update RemSet Tracking Before Rebuild" ), |
1119 | _g1h(g1h), _cm(cm), _hrclaimer(num_workers), _total_selected_for_rebuild(0), _cl("Post-Marking" ) { } |
1120 | |
1121 | virtual void work(uint worker_id) { |
1122 | G1UpdateRemSetTrackingBeforeRebuild update_cl(_g1h, _cm, &_cl); |
1123 | _g1h->heap_region_par_iterate_from_worker_offset(&update_cl, &_hrclaimer, worker_id); |
1124 | Atomic::add(update_cl.num_selected_for_rebuild(), &_total_selected_for_rebuild); |
1125 | } |
1126 | |
1127 | uint total_selected_for_rebuild() const { return _total_selected_for_rebuild; } |
1128 | |
1129 | // Number of regions for which roughly one thread should be spawned for this work. |
1130 | static const uint RegionsPerThread = 384; |
1131 | }; |
1132 | |
1133 | class G1UpdateRemSetTrackingAfterRebuild : public HeapRegionClosure { |
1134 | G1CollectedHeap* _g1h; |
1135 | public: |
1136 | G1UpdateRemSetTrackingAfterRebuild(G1CollectedHeap* g1h) : _g1h(g1h) { } |
1137 | |
1138 | virtual bool do_heap_region(HeapRegion* r) { |
1139 | _g1h->policy()->remset_tracker()->update_after_rebuild(r); |
1140 | return false; |
1141 | } |
1142 | }; |
1143 | |
1144 | void G1ConcurrentMark::() { |
1145 | assert_at_safepoint_on_vm_thread(); |
1146 | |
1147 | // If a full collection has happened, we should not continue. However we might |
1148 | // have ended up here as the Remark VM operation has been scheduled already. |
1149 | if (has_aborted()) { |
1150 | return; |
1151 | } |
1152 | |
1153 | G1Policy* policy = _g1h->policy(); |
1154 | policy->record_concurrent_mark_remark_start(); |
1155 | |
1156 | double start = os::elapsedTime(); |
1157 | |
1158 | verify_during_pause(G1HeapVerifier::G1VerifyRemark, VerifyOption_G1UsePrevMarking, "Remark before" ); |
1159 | |
1160 | { |
1161 | GCTraceTime(Debug, gc, phases) debug("Finalize Marking" , _gc_timer_cm); |
1162 | finalize_marking(); |
1163 | } |
1164 | |
1165 | double mark_work_end = os::elapsedTime(); |
1166 | |
1167 | bool const mark_finished = !has_overflown(); |
1168 | if (mark_finished) { |
1169 | weak_refs_work(false /* clear_all_soft_refs */); |
1170 | |
1171 | SATBMarkQueueSet& satb_mq_set = G1BarrierSet::satb_mark_queue_set(); |
1172 | // We're done with marking. |
1173 | // This is the end of the marking cycle, we're expected all |
1174 | // threads to have SATB queues with active set to true. |
1175 | satb_mq_set.set_active_all_threads(false, /* new active value */ |
1176 | true /* expected_active */); |
1177 | |
1178 | { |
1179 | GCTraceTime(Debug, gc, phases) debug("Flush Task Caches" , _gc_timer_cm); |
1180 | flush_all_task_caches(); |
1181 | } |
1182 | |
1183 | // Install newly created mark bitmap as "prev". |
1184 | swap_mark_bitmaps(); |
1185 | { |
1186 | GCTraceTime(Debug, gc, phases) debug("Update Remembered Set Tracking Before Rebuild" , _gc_timer_cm); |
1187 | |
1188 | uint const workers_by_capacity = (_g1h->num_regions() + G1UpdateRemSetTrackingBeforeRebuildTask::RegionsPerThread - 1) / |
1189 | G1UpdateRemSetTrackingBeforeRebuildTask::RegionsPerThread; |
1190 | uint const num_workers = MIN2(_g1h->workers()->active_workers(), workers_by_capacity); |
1191 | |
1192 | G1UpdateRemSetTrackingBeforeRebuildTask cl(_g1h, this, num_workers); |
1193 | log_debug(gc,ergo)("Running %s using %u workers for %u regions in heap" , cl.name(), num_workers, _g1h->num_regions()); |
1194 | _g1h->workers()->run_task(&cl, num_workers); |
1195 | |
1196 | log_debug(gc, remset, tracking)("Remembered Set Tracking update regions total %u, selected %u" , |
1197 | _g1h->num_regions(), cl.total_selected_for_rebuild()); |
1198 | } |
1199 | { |
1200 | GCTraceTime(Debug, gc, phases) debug("Reclaim Empty Regions" , _gc_timer_cm); |
1201 | reclaim_empty_regions(); |
1202 | } |
1203 | |
1204 | // Clean out dead classes |
1205 | if (ClassUnloadingWithConcurrentMark) { |
1206 | GCTraceTime(Debug, gc, phases) debug("Purge Metaspace" , _gc_timer_cm); |
1207 | ClassLoaderDataGraph::purge(); |
1208 | } |
1209 | |
1210 | _g1h->resize_heap_if_necessary(); |
1211 | |
1212 | compute_new_sizes(); |
1213 | |
1214 | verify_during_pause(G1HeapVerifier::G1VerifyRemark, VerifyOption_G1UsePrevMarking, "Remark after" ); |
1215 | |
1216 | assert(!restart_for_overflow(), "sanity" ); |
1217 | // Completely reset the marking state since marking completed |
1218 | reset_at_marking_complete(); |
1219 | } else { |
1220 | // We overflowed. Restart concurrent marking. |
1221 | _restart_for_overflow = true; |
1222 | |
1223 | verify_during_pause(G1HeapVerifier::G1VerifyRemark, VerifyOption_G1UsePrevMarking, "Remark overflow" ); |
1224 | |
1225 | // Clear the marking state because we will be restarting |
1226 | // marking due to overflowing the global mark stack. |
1227 | reset_marking_for_restart(); |
1228 | } |
1229 | |
1230 | { |
1231 | GCTraceTime(Debug, gc, phases) debug("Report Object Count" , _gc_timer_cm); |
1232 | report_object_count(mark_finished); |
1233 | } |
1234 | |
1235 | // Statistics |
1236 | double now = os::elapsedTime(); |
1237 | _remark_mark_times.add((mark_work_end - start) * 1000.0); |
1238 | _remark_weak_ref_times.add((now - mark_work_end) * 1000.0); |
1239 | _remark_times.add((now - start) * 1000.0); |
1240 | |
1241 | policy->record_concurrent_mark_remark_end(); |
1242 | } |
1243 | |
1244 | class G1ReclaimEmptyRegionsTask : public AbstractGangTask { |
1245 | // Per-region work during the Cleanup pause. |
1246 | class G1ReclaimEmptyRegionsClosure : public HeapRegionClosure { |
1247 | G1CollectedHeap* _g1h; |
1248 | size_t _freed_bytes; |
1249 | FreeRegionList* _local_cleanup_list; |
1250 | uint _old_regions_removed; |
1251 | uint _humongous_regions_removed; |
1252 | |
1253 | public: |
1254 | G1ReclaimEmptyRegionsClosure(G1CollectedHeap* g1h, |
1255 | FreeRegionList* local_cleanup_list) : |
1256 | _g1h(g1h), |
1257 | _freed_bytes(0), |
1258 | _local_cleanup_list(local_cleanup_list), |
1259 | _old_regions_removed(0), |
1260 | _humongous_regions_removed(0) { } |
1261 | |
1262 | size_t freed_bytes() { return _freed_bytes; } |
1263 | const uint old_regions_removed() { return _old_regions_removed; } |
1264 | const uint humongous_regions_removed() { return _humongous_regions_removed; } |
1265 | |
1266 | bool do_heap_region(HeapRegion *hr) { |
1267 | if (hr->used() > 0 && hr->max_live_bytes() == 0 && !hr->is_young() && !hr->is_archive()) { |
1268 | _freed_bytes += hr->used(); |
1269 | hr->set_containing_set(NULL); |
1270 | if (hr->is_humongous()) { |
1271 | _humongous_regions_removed++; |
1272 | _g1h->free_humongous_region(hr, _local_cleanup_list); |
1273 | } else { |
1274 | _old_regions_removed++; |
1275 | _g1h->free_region(hr, _local_cleanup_list, false /* skip_remset */, false /* skip_hcc */, true /* locked */); |
1276 | } |
1277 | hr->clear_cardtable(); |
1278 | _g1h->concurrent_mark()->clear_statistics_in_region(hr->hrm_index()); |
1279 | log_trace(gc)("Reclaimed empty region %u (%s) bot " PTR_FORMAT, hr->hrm_index(), hr->get_short_type_str(), p2i(hr->bottom())); |
1280 | } |
1281 | |
1282 | return false; |
1283 | } |
1284 | }; |
1285 | |
1286 | G1CollectedHeap* _g1h; |
1287 | FreeRegionList* _cleanup_list; |
1288 | HeapRegionClaimer _hrclaimer; |
1289 | |
1290 | public: |
1291 | G1ReclaimEmptyRegionsTask(G1CollectedHeap* g1h, FreeRegionList* cleanup_list, uint n_workers) : |
1292 | AbstractGangTask("G1 Cleanup" ), |
1293 | _g1h(g1h), |
1294 | _cleanup_list(cleanup_list), |
1295 | _hrclaimer(n_workers) { |
1296 | } |
1297 | |
1298 | void work(uint worker_id) { |
1299 | FreeRegionList local_cleanup_list("Local Cleanup List" ); |
1300 | G1ReclaimEmptyRegionsClosure cl(_g1h, &local_cleanup_list); |
1301 | _g1h->heap_region_par_iterate_from_worker_offset(&cl, &_hrclaimer, worker_id); |
1302 | assert(cl.is_complete(), "Shouldn't have aborted!" ); |
1303 | |
1304 | // Now update the old/humongous region sets |
1305 | _g1h->remove_from_old_sets(cl.old_regions_removed(), cl.humongous_regions_removed()); |
1306 | { |
1307 | MutexLocker x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag); |
1308 | _g1h->decrement_summary_bytes(cl.freed_bytes()); |
1309 | |
1310 | _cleanup_list->add_ordered(&local_cleanup_list); |
1311 | assert(local_cleanup_list.is_empty(), "post-condition" ); |
1312 | } |
1313 | } |
1314 | }; |
1315 | |
1316 | void G1ConcurrentMark::reclaim_empty_regions() { |
1317 | WorkGang* workers = _g1h->workers(); |
1318 | FreeRegionList empty_regions_list("Empty Regions After Mark List" ); |
1319 | |
1320 | G1ReclaimEmptyRegionsTask cl(_g1h, &empty_regions_list, workers->active_workers()); |
1321 | workers->run_task(&cl); |
1322 | |
1323 | if (!empty_regions_list.is_empty()) { |
1324 | log_debug(gc)("Reclaimed %u empty regions" , empty_regions_list.length()); |
1325 | // Now print the empty regions list. |
1326 | G1HRPrinter* hrp = _g1h->hr_printer(); |
1327 | if (hrp->is_active()) { |
1328 | FreeRegionListIterator iter(&empty_regions_list); |
1329 | while (iter.more_available()) { |
1330 | HeapRegion* hr = iter.get_next(); |
1331 | hrp->cleanup(hr); |
1332 | } |
1333 | } |
1334 | // And actually make them available. |
1335 | _g1h->prepend_to_freelist(&empty_regions_list); |
1336 | } |
1337 | } |
1338 | |
1339 | void G1ConcurrentMark::compute_new_sizes() { |
1340 | MetaspaceGC::compute_new_size(); |
1341 | |
1342 | // Cleanup will have freed any regions completely full of garbage. |
1343 | // Update the soft reference policy with the new heap occupancy. |
1344 | Universe::update_heap_info_at_gc(); |
1345 | |
1346 | // We reclaimed old regions so we should calculate the sizes to make |
1347 | // sure we update the old gen/space data. |
1348 | _g1h->g1mm()->update_sizes(); |
1349 | } |
1350 | |
1351 | void G1ConcurrentMark::cleanup() { |
1352 | assert_at_safepoint_on_vm_thread(); |
1353 | |
1354 | // If a full collection has happened, we shouldn't do this. |
1355 | if (has_aborted()) { |
1356 | return; |
1357 | } |
1358 | |
1359 | G1Policy* policy = _g1h->policy(); |
1360 | policy->record_concurrent_mark_cleanup_start(); |
1361 | |
1362 | double start = os::elapsedTime(); |
1363 | |
1364 | verify_during_pause(G1HeapVerifier::G1VerifyCleanup, VerifyOption_G1UsePrevMarking, "Cleanup before" ); |
1365 | |
1366 | { |
1367 | GCTraceTime(Debug, gc, phases) debug("Update Remembered Set Tracking After Rebuild" , _gc_timer_cm); |
1368 | G1UpdateRemSetTrackingAfterRebuild cl(_g1h); |
1369 | _g1h->heap_region_iterate(&cl); |
1370 | } |
1371 | |
1372 | if (log_is_enabled(Trace, gc, liveness)) { |
1373 | G1PrintRegionLivenessInfoClosure cl("Post-Cleanup" ); |
1374 | _g1h->heap_region_iterate(&cl); |
1375 | } |
1376 | |
1377 | verify_during_pause(G1HeapVerifier::G1VerifyCleanup, VerifyOption_G1UsePrevMarking, "Cleanup after" ); |
1378 | |
1379 | // We need to make this be a "collection" so any collection pause that |
1380 | // races with it goes around and waits for Cleanup to finish. |
1381 | _g1h->increment_total_collections(); |
1382 | |
1383 | // Local statistics |
1384 | double recent_cleanup_time = (os::elapsedTime() - start); |
1385 | _total_cleanup_time += recent_cleanup_time; |
1386 | _cleanup_times.add(recent_cleanup_time); |
1387 | |
1388 | { |
1389 | GCTraceTime(Debug, gc, phases) debug("Finalize Concurrent Mark Cleanup" , _gc_timer_cm); |
1390 | policy->record_concurrent_mark_cleanup_end(); |
1391 | } |
1392 | } |
1393 | |
1394 | // 'Keep Alive' oop closure used by both serial parallel reference processing. |
1395 | // Uses the G1CMTask associated with a worker thread (for serial reference |
1396 | // processing the G1CMTask for worker 0 is used) to preserve (mark) and |
1397 | // trace referent objects. |
1398 | // |
1399 | // Using the G1CMTask and embedded local queues avoids having the worker |
1400 | // threads operating on the global mark stack. This reduces the risk |
1401 | // of overflowing the stack - which we would rather avoid at this late |
1402 | // state. Also using the tasks' local queues removes the potential |
1403 | // of the workers interfering with each other that could occur if |
1404 | // operating on the global stack. |
1405 | |
1406 | class G1CMKeepAliveAndDrainClosure : public OopClosure { |
1407 | G1ConcurrentMark* _cm; |
1408 | G1CMTask* _task; |
1409 | uint _ref_counter_limit; |
1410 | uint _ref_counter; |
1411 | bool _is_serial; |
1412 | public: |
1413 | G1CMKeepAliveAndDrainClosure(G1ConcurrentMark* cm, G1CMTask* task, bool is_serial) : |
1414 | _cm(cm), _task(task), _ref_counter_limit(G1RefProcDrainInterval), |
1415 | _ref_counter(_ref_counter_limit), _is_serial(is_serial) { |
1416 | assert(!_is_serial || _task->worker_id() == 0, "only task 0 for serial code" ); |
1417 | } |
1418 | |
1419 | virtual void do_oop(narrowOop* p) { do_oop_work(p); } |
1420 | virtual void do_oop( oop* p) { do_oop_work(p); } |
1421 | |
1422 | template <class T> void do_oop_work(T* p) { |
1423 | if (_cm->has_overflown()) { |
1424 | return; |
1425 | } |
1426 | if (!_task->deal_with_reference(p)) { |
1427 | // We did not add anything to the mark bitmap (or mark stack), so there is |
1428 | // no point trying to drain it. |
1429 | return; |
1430 | } |
1431 | _ref_counter--; |
1432 | |
1433 | if (_ref_counter == 0) { |
1434 | // We have dealt with _ref_counter_limit references, pushing them |
1435 | // and objects reachable from them on to the local stack (and |
1436 | // possibly the global stack). Call G1CMTask::do_marking_step() to |
1437 | // process these entries. |
1438 | // |
1439 | // We call G1CMTask::do_marking_step() in a loop, which we'll exit if |
1440 | // there's nothing more to do (i.e. we're done with the entries that |
1441 | // were pushed as a result of the G1CMTask::deal_with_reference() calls |
1442 | // above) or we overflow. |
1443 | // |
1444 | // Note: G1CMTask::do_marking_step() can set the G1CMTask::has_aborted() |
1445 | // flag while there may still be some work to do. (See the comment at |
1446 | // the beginning of G1CMTask::do_marking_step() for those conditions - |
1447 | // one of which is reaching the specified time target.) It is only |
1448 | // when G1CMTask::do_marking_step() returns without setting the |
1449 | // has_aborted() flag that the marking step has completed. |
1450 | do { |
1451 | double mark_step_duration_ms = G1ConcMarkStepDurationMillis; |
1452 | _task->do_marking_step(mark_step_duration_ms, |
1453 | false /* do_termination */, |
1454 | _is_serial); |
1455 | } while (_task->has_aborted() && !_cm->has_overflown()); |
1456 | _ref_counter = _ref_counter_limit; |
1457 | } |
1458 | } |
1459 | }; |
1460 | |
1461 | // 'Drain' oop closure used by both serial and parallel reference processing. |
1462 | // Uses the G1CMTask associated with a given worker thread (for serial |
1463 | // reference processing the G1CMtask for worker 0 is used). Calls the |
1464 | // do_marking_step routine, with an unbelievably large timeout value, |
1465 | // to drain the marking data structures of the remaining entries |
1466 | // added by the 'keep alive' oop closure above. |
1467 | |
1468 | class G1CMDrainMarkingStackClosure : public VoidClosure { |
1469 | G1ConcurrentMark* _cm; |
1470 | G1CMTask* _task; |
1471 | bool _is_serial; |
1472 | public: |
1473 | G1CMDrainMarkingStackClosure(G1ConcurrentMark* cm, G1CMTask* task, bool is_serial) : |
1474 | _cm(cm), _task(task), _is_serial(is_serial) { |
1475 | assert(!_is_serial || _task->worker_id() == 0, "only task 0 for serial code" ); |
1476 | } |
1477 | |
1478 | void do_void() { |
1479 | do { |
1480 | // We call G1CMTask::do_marking_step() to completely drain the local |
1481 | // and global marking stacks of entries pushed by the 'keep alive' |
1482 | // oop closure (an instance of G1CMKeepAliveAndDrainClosure above). |
1483 | // |
1484 | // G1CMTask::do_marking_step() is called in a loop, which we'll exit |
1485 | // if there's nothing more to do (i.e. we've completely drained the |
1486 | // entries that were pushed as a a result of applying the 'keep alive' |
1487 | // closure to the entries on the discovered ref lists) or we overflow |
1488 | // the global marking stack. |
1489 | // |
1490 | // Note: G1CMTask::do_marking_step() can set the G1CMTask::has_aborted() |
1491 | // flag while there may still be some work to do. (See the comment at |
1492 | // the beginning of G1CMTask::do_marking_step() for those conditions - |
1493 | // one of which is reaching the specified time target.) It is only |
1494 | // when G1CMTask::do_marking_step() returns without setting the |
1495 | // has_aborted() flag that the marking step has completed. |
1496 | |
1497 | _task->do_marking_step(1000000000.0 /* something very large */, |
1498 | true /* do_termination */, |
1499 | _is_serial); |
1500 | } while (_task->has_aborted() && !_cm->has_overflown()); |
1501 | } |
1502 | }; |
1503 | |
1504 | // Implementation of AbstractRefProcTaskExecutor for parallel |
1505 | // reference processing at the end of G1 concurrent marking |
1506 | |
1507 | class G1CMRefProcTaskExecutor : public AbstractRefProcTaskExecutor { |
1508 | private: |
1509 | G1CollectedHeap* _g1h; |
1510 | G1ConcurrentMark* _cm; |
1511 | WorkGang* _workers; |
1512 | uint _active_workers; |
1513 | |
1514 | public: |
1515 | G1CMRefProcTaskExecutor(G1CollectedHeap* g1h, |
1516 | G1ConcurrentMark* cm, |
1517 | WorkGang* workers, |
1518 | uint n_workers) : |
1519 | _g1h(g1h), _cm(cm), |
1520 | _workers(workers), _active_workers(n_workers) { } |
1521 | |
1522 | virtual void execute(ProcessTask& task, uint ergo_workers); |
1523 | }; |
1524 | |
1525 | class G1CMRefProcTaskProxy : public AbstractGangTask { |
1526 | typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask; |
1527 | ProcessTask& _proc_task; |
1528 | G1CollectedHeap* _g1h; |
1529 | G1ConcurrentMark* _cm; |
1530 | |
1531 | public: |
1532 | G1CMRefProcTaskProxy(ProcessTask& proc_task, |
1533 | G1CollectedHeap* g1h, |
1534 | G1ConcurrentMark* cm) : |
1535 | AbstractGangTask("Process reference objects in parallel" ), |
1536 | _proc_task(proc_task), _g1h(g1h), _cm(cm) { |
1537 | ReferenceProcessor* rp = _g1h->ref_processor_cm(); |
1538 | assert(rp->processing_is_mt(), "shouldn't be here otherwise" ); |
1539 | } |
1540 | |
1541 | virtual void work(uint worker_id) { |
1542 | ResourceMark rm; |
1543 | HandleMark hm; |
1544 | G1CMTask* task = _cm->task(worker_id); |
1545 | G1CMIsAliveClosure g1_is_alive(_g1h); |
1546 | G1CMKeepAliveAndDrainClosure g1_par_keep_alive(_cm, task, false /* is_serial */); |
1547 | G1CMDrainMarkingStackClosure g1_par_drain(_cm, task, false /* is_serial */); |
1548 | |
1549 | _proc_task.work(worker_id, g1_is_alive, g1_par_keep_alive, g1_par_drain); |
1550 | } |
1551 | }; |
1552 | |
1553 | void G1CMRefProcTaskExecutor::execute(ProcessTask& proc_task, uint ergo_workers) { |
1554 | assert(_workers != NULL, "Need parallel worker threads." ); |
1555 | assert(_g1h->ref_processor_cm()->processing_is_mt(), "processing is not MT" ); |
1556 | assert(_workers->active_workers() >= ergo_workers, |
1557 | "Ergonomically chosen workers(%u) should be less than or equal to active workers(%u)" , |
1558 | ergo_workers, _workers->active_workers()); |
1559 | |
1560 | G1CMRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _cm); |
1561 | |
1562 | // We need to reset the concurrency level before each |
1563 | // proxy task execution, so that the termination protocol |
1564 | // and overflow handling in G1CMTask::do_marking_step() knows |
1565 | // how many workers to wait for. |
1566 | _cm->set_concurrency(ergo_workers); |
1567 | _workers->run_task(&proc_task_proxy, ergo_workers); |
1568 | } |
1569 | |
1570 | void G1ConcurrentMark::weak_refs_work(bool clear_all_soft_refs) { |
1571 | ResourceMark rm; |
1572 | HandleMark hm; |
1573 | |
1574 | // Is alive closure. |
1575 | G1CMIsAliveClosure g1_is_alive(_g1h); |
1576 | |
1577 | // Inner scope to exclude the cleaning of the string table |
1578 | // from the displayed time. |
1579 | { |
1580 | GCTraceTime(Debug, gc, phases) debug("Reference Processing" , _gc_timer_cm); |
1581 | |
1582 | ReferenceProcessor* rp = _g1h->ref_processor_cm(); |
1583 | |
1584 | // See the comment in G1CollectedHeap::ref_processing_init() |
1585 | // about how reference processing currently works in G1. |
1586 | |
1587 | // Set the soft reference policy |
1588 | rp->setup_policy(clear_all_soft_refs); |
1589 | assert(_global_mark_stack.is_empty(), "mark stack should be empty" ); |
1590 | |
1591 | // Instances of the 'Keep Alive' and 'Complete GC' closures used |
1592 | // in serial reference processing. Note these closures are also |
1593 | // used for serially processing (by the the current thread) the |
1594 | // JNI references during parallel reference processing. |
1595 | // |
1596 | // These closures do not need to synchronize with the worker |
1597 | // threads involved in parallel reference processing as these |
1598 | // instances are executed serially by the current thread (e.g. |
1599 | // reference processing is not multi-threaded and is thus |
1600 | // performed by the current thread instead of a gang worker). |
1601 | // |
1602 | // The gang tasks involved in parallel reference processing create |
1603 | // their own instances of these closures, which do their own |
1604 | // synchronization among themselves. |
1605 | G1CMKeepAliveAndDrainClosure g1_keep_alive(this, task(0), true /* is_serial */); |
1606 | G1CMDrainMarkingStackClosure g1_drain_mark_stack(this, task(0), true /* is_serial */); |
1607 | |
1608 | // We need at least one active thread. If reference processing |
1609 | // is not multi-threaded we use the current (VMThread) thread, |
1610 | // otherwise we use the work gang from the G1CollectedHeap and |
1611 | // we utilize all the worker threads we can. |
1612 | bool processing_is_mt = rp->processing_is_mt(); |
1613 | uint active_workers = (processing_is_mt ? _g1h->workers()->active_workers() : 1U); |
1614 | active_workers = MAX2(MIN2(active_workers, _max_num_tasks), 1U); |
1615 | |
1616 | // Parallel processing task executor. |
1617 | G1CMRefProcTaskExecutor par_task_executor(_g1h, this, |
1618 | _g1h->workers(), active_workers); |
1619 | AbstractRefProcTaskExecutor* executor = (processing_is_mt ? &par_task_executor : NULL); |
1620 | |
1621 | // Set the concurrency level. The phase was already set prior to |
1622 | // executing the remark task. |
1623 | set_concurrency(active_workers); |
1624 | |
1625 | // Set the degree of MT processing here. If the discovery was done MT, |
1626 | // the number of threads involved during discovery could differ from |
1627 | // the number of active workers. This is OK as long as the discovered |
1628 | // Reference lists are balanced (see balance_all_queues() and balance_queues()). |
1629 | rp->set_active_mt_degree(active_workers); |
1630 | |
1631 | ReferenceProcessorPhaseTimes pt(_gc_timer_cm, rp->max_num_queues()); |
1632 | |
1633 | // Process the weak references. |
1634 | const ReferenceProcessorStats& stats = |
1635 | rp->process_discovered_references(&g1_is_alive, |
1636 | &g1_keep_alive, |
1637 | &g1_drain_mark_stack, |
1638 | executor, |
1639 | &pt); |
1640 | _gc_tracer_cm->report_gc_reference_stats(stats); |
1641 | pt.print_all_references(); |
1642 | |
1643 | // The do_oop work routines of the keep_alive and drain_marking_stack |
1644 | // oop closures will set the has_overflown flag if we overflow the |
1645 | // global marking stack. |
1646 | |
1647 | assert(has_overflown() || _global_mark_stack.is_empty(), |
1648 | "Mark stack should be empty (unless it has overflown)" ); |
1649 | |
1650 | assert(rp->num_queues() == active_workers, "why not" ); |
1651 | |
1652 | rp->verify_no_references_recorded(); |
1653 | assert(!rp->discovery_enabled(), "Post condition" ); |
1654 | } |
1655 | |
1656 | if (has_overflown()) { |
1657 | // We can not trust g1_is_alive and the contents of the heap if the marking stack |
1658 | // overflowed while processing references. Exit the VM. |
1659 | fatal("Overflow during reference processing, can not continue. Please " |
1660 | "increase MarkStackSizeMax (current value: " SIZE_FORMAT ") and " |
1661 | "restart." , MarkStackSizeMax); |
1662 | return; |
1663 | } |
1664 | |
1665 | assert(_global_mark_stack.is_empty(), "Marking should have completed" ); |
1666 | |
1667 | { |
1668 | GCTraceTime(Debug, gc, phases) debug("Weak Processing" , _gc_timer_cm); |
1669 | WeakProcessor::weak_oops_do(_g1h->workers(), &g1_is_alive, &do_nothing_cl, 1); |
1670 | } |
1671 | |
1672 | // Unload Klasses, String, Code Cache, etc. |
1673 | if (ClassUnloadingWithConcurrentMark) { |
1674 | GCTraceTime(Debug, gc, phases) debug("Class Unloading" , _gc_timer_cm); |
1675 | bool purged_classes = SystemDictionary::do_unloading(_gc_timer_cm); |
1676 | _g1h->complete_cleaning(&g1_is_alive, purged_classes); |
1677 | } else if (StringDedup::is_enabled()) { |
1678 | GCTraceTime(Debug, gc, phases) debug("String Deduplication" , _gc_timer_cm); |
1679 | _g1h->string_dedup_cleaning(&g1_is_alive, NULL); |
1680 | } |
1681 | } |
1682 | |
1683 | class G1PrecleanYieldClosure : public YieldClosure { |
1684 | G1ConcurrentMark* _cm; |
1685 | |
1686 | public: |
1687 | G1PrecleanYieldClosure(G1ConcurrentMark* cm) : _cm(cm) { } |
1688 | |
1689 | virtual bool should_return() { |
1690 | return _cm->has_aborted(); |
1691 | } |
1692 | |
1693 | virtual bool should_return_fine_grain() { |
1694 | _cm->do_yield_check(); |
1695 | return _cm->has_aborted(); |
1696 | } |
1697 | }; |
1698 | |
1699 | void G1ConcurrentMark::preclean() { |
1700 | assert(G1UseReferencePrecleaning, "Precleaning must be enabled." ); |
1701 | |
1702 | SuspendibleThreadSetJoiner joiner; |
1703 | |
1704 | G1CMKeepAliveAndDrainClosure keep_alive(this, task(0), true /* is_serial */); |
1705 | G1CMDrainMarkingStackClosure drain_mark_stack(this, task(0), true /* is_serial */); |
1706 | |
1707 | set_concurrency_and_phase(1, true); |
1708 | |
1709 | G1PrecleanYieldClosure yield_cl(this); |
1710 | |
1711 | ReferenceProcessor* rp = _g1h->ref_processor_cm(); |
1712 | // Precleaning is single threaded. Temporarily disable MT discovery. |
1713 | ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(rp, false); |
1714 | rp->preclean_discovered_references(rp->is_alive_non_header(), |
1715 | &keep_alive, |
1716 | &drain_mark_stack, |
1717 | &yield_cl, |
1718 | _gc_timer_cm); |
1719 | } |
1720 | |
1721 | // When sampling object counts, we already swapped the mark bitmaps, so we need to use |
1722 | // the prev bitmap determining liveness. |
1723 | class G1ObjectCountIsAliveClosure: public BoolObjectClosure { |
1724 | G1CollectedHeap* _g1h; |
1725 | public: |
1726 | G1ObjectCountIsAliveClosure(G1CollectedHeap* g1h) : _g1h(g1h) { } |
1727 | |
1728 | bool do_object_b(oop obj) { |
1729 | HeapWord* addr = (HeapWord*)obj; |
1730 | return addr != NULL && |
1731 | (!_g1h->is_in_g1_reserved(addr) || !_g1h->is_obj_dead(obj)); |
1732 | } |
1733 | }; |
1734 | |
1735 | void G1ConcurrentMark::report_object_count(bool mark_completed) { |
1736 | // Depending on the completion of the marking liveness needs to be determined |
1737 | // using either the next or prev bitmap. |
1738 | if (mark_completed) { |
1739 | G1ObjectCountIsAliveClosure is_alive(_g1h); |
1740 | _gc_tracer_cm->report_object_count_after_gc(&is_alive); |
1741 | } else { |
1742 | G1CMIsAliveClosure is_alive(_g1h); |
1743 | _gc_tracer_cm->report_object_count_after_gc(&is_alive); |
1744 | } |
1745 | } |
1746 | |
1747 | |
1748 | void G1ConcurrentMark::swap_mark_bitmaps() { |
1749 | G1CMBitMap* temp = _prev_mark_bitmap; |
1750 | _prev_mark_bitmap = _next_mark_bitmap; |
1751 | _next_mark_bitmap = temp; |
1752 | _g1h->collector_state()->set_clearing_next_bitmap(true); |
1753 | } |
1754 | |
1755 | // Closure for marking entries in SATB buffers. |
1756 | class G1CMSATBBufferClosure : public SATBBufferClosure { |
1757 | private: |
1758 | G1CMTask* _task; |
1759 | G1CollectedHeap* _g1h; |
1760 | |
1761 | // This is very similar to G1CMTask::deal_with_reference, but with |
1762 | // more relaxed requirements for the argument, so this must be more |
1763 | // circumspect about treating the argument as an object. |
1764 | void do_entry(void* entry) const { |
1765 | _task->increment_refs_reached(); |
1766 | oop const obj = static_cast<oop>(entry); |
1767 | _task->make_reference_grey(obj); |
1768 | } |
1769 | |
1770 | public: |
1771 | G1CMSATBBufferClosure(G1CMTask* task, G1CollectedHeap* g1h) |
1772 | : _task(task), _g1h(g1h) { } |
1773 | |
1774 | virtual void do_buffer(void** buffer, size_t size) { |
1775 | for (size_t i = 0; i < size; ++i) { |
1776 | do_entry(buffer[i]); |
1777 | } |
1778 | } |
1779 | }; |
1780 | |
1781 | class : public ThreadClosure { |
1782 | G1CMSATBBufferClosure ; |
1783 | G1CMOopClosure ; |
1784 | MarkingCodeBlobClosure ; |
1785 | uintx ; |
1786 | |
1787 | public: |
1788 | (G1CollectedHeap* g1h, G1CMTask* task) : |
1789 | _cm_satb_cl(task, g1h), |
1790 | _cm_cl(g1h, task), |
1791 | _code_cl(&_cm_cl, !CodeBlobToOopClosure::FixRelocations), |
1792 | _claim_token(Threads::thread_claim_token()) {} |
1793 | |
1794 | void (Thread* thread) { |
1795 | if (thread->claim_threads_do(true, _claim_token)) { |
1796 | SATBMarkQueue& queue = G1ThreadLocalData::satb_mark_queue(thread); |
1797 | queue.apply_closure_and_empty(&_cm_satb_cl); |
1798 | if (thread->is_Java_thread()) { |
1799 | // In theory it should not be neccessary to explicitly walk the nmethods to find roots for concurrent marking |
1800 | // however the liveness of oops reachable from nmethods have very complex lifecycles: |
1801 | // * Alive if on the stack of an executing method |
1802 | // * Weakly reachable otherwise |
1803 | // Some objects reachable from nmethods, such as the class loader (or klass_holder) of the receiver should be |
1804 | // live by the SATB invariant but other oops recorded in nmethods may behave differently. |
1805 | JavaThread* jt = (JavaThread*)thread; |
1806 | jt->nmethods_do(&_code_cl); |
1807 | } |
1808 | } |
1809 | } |
1810 | }; |
1811 | |
1812 | class : public AbstractGangTask { |
1813 | G1ConcurrentMark* ; |
1814 | public: |
1815 | void (uint worker_id) { |
1816 | G1CMTask* task = _cm->task(worker_id); |
1817 | task->record_start_time(); |
1818 | { |
1819 | ResourceMark rm; |
1820 | HandleMark hm; |
1821 | |
1822 | G1RemarkThreadsClosure threads_f(G1CollectedHeap::heap(), task); |
1823 | Threads::threads_do(&threads_f); |
1824 | } |
1825 | |
1826 | do { |
1827 | task->do_marking_step(1000000000.0 /* something very large */, |
1828 | true /* do_termination */, |
1829 | false /* is_serial */); |
1830 | } while (task->has_aborted() && !_cm->has_overflown()); |
1831 | // If we overflow, then we do not want to restart. We instead |
1832 | // want to abort remark and do concurrent marking again. |
1833 | task->record_end_time(); |
1834 | } |
1835 | |
1836 | (G1ConcurrentMark* cm, uint active_workers) : |
1837 | AbstractGangTask("Par Remark" ), _cm(cm) { |
1838 | _cm->terminator()->reset_for_reuse(active_workers); |
1839 | } |
1840 | }; |
1841 | |
1842 | void G1ConcurrentMark::finalize_marking() { |
1843 | ResourceMark rm; |
1844 | HandleMark hm; |
1845 | |
1846 | _g1h->ensure_parsability(false); |
1847 | |
1848 | // this is remark, so we'll use up all active threads |
1849 | uint active_workers = _g1h->workers()->active_workers(); |
1850 | set_concurrency_and_phase(active_workers, false /* concurrent */); |
1851 | // Leave _parallel_marking_threads at it's |
1852 | // value originally calculated in the G1ConcurrentMark |
1853 | // constructor and pass values of the active workers |
1854 | // through the gang in the task. |
1855 | |
1856 | { |
1857 | StrongRootsScope srs(active_workers); |
1858 | |
1859 | G1CMRemarkTask (this, active_workers); |
1860 | // We will start all available threads, even if we decide that the |
1861 | // active_workers will be fewer. The extra ones will just bail out |
1862 | // immediately. |
1863 | _g1h->workers()->run_task(&remarkTask); |
1864 | } |
1865 | |
1866 | SATBMarkQueueSet& satb_mq_set = G1BarrierSet::satb_mark_queue_set(); |
1867 | guarantee(has_overflown() || |
1868 | satb_mq_set.completed_buffers_num() == 0, |
1869 | "Invariant: has_overflown = %s, num buffers = " SIZE_FORMAT, |
1870 | BOOL_TO_STR(has_overflown()), |
1871 | satb_mq_set.completed_buffers_num()); |
1872 | |
1873 | print_stats(); |
1874 | } |
1875 | |
1876 | void G1ConcurrentMark::flush_all_task_caches() { |
1877 | size_t hits = 0; |
1878 | size_t misses = 0; |
1879 | for (uint i = 0; i < _max_num_tasks; i++) { |
1880 | Pair<size_t, size_t> stats = _tasks[i]->flush_mark_stats_cache(); |
1881 | hits += stats.first; |
1882 | misses += stats.second; |
1883 | } |
1884 | size_t sum = hits + misses; |
1885 | log_debug(gc, stats)("Mark stats cache hits " SIZE_FORMAT " misses " SIZE_FORMAT " ratio %1.3lf" , |
1886 | hits, misses, percent_of(hits, sum)); |
1887 | } |
1888 | |
1889 | void G1ConcurrentMark::clear_range_in_prev_bitmap(MemRegion mr) { |
1890 | _prev_mark_bitmap->clear_range(mr); |
1891 | } |
1892 | |
1893 | HeapRegion* |
1894 | G1ConcurrentMark::claim_region(uint worker_id) { |
1895 | // "checkpoint" the finger |
1896 | HeapWord* finger = _finger; |
1897 | |
1898 | while (finger < _heap.end()) { |
1899 | assert(_g1h->is_in_g1_reserved(finger), "invariant" ); |
1900 | |
1901 | HeapRegion* curr_region = _g1h->heap_region_containing(finger); |
1902 | // Make sure that the reads below do not float before loading curr_region. |
1903 | OrderAccess::loadload(); |
1904 | // Above heap_region_containing may return NULL as we always scan claim |
1905 | // until the end of the heap. In this case, just jump to the next region. |
1906 | HeapWord* end = curr_region != NULL ? curr_region->end() : finger + HeapRegion::GrainWords; |
1907 | |
1908 | // Is the gap between reading the finger and doing the CAS too long? |
1909 | HeapWord* res = Atomic::cmpxchg(end, &_finger, finger); |
1910 | if (res == finger && curr_region != NULL) { |
1911 | // we succeeded |
1912 | HeapWord* bottom = curr_region->bottom(); |
1913 | HeapWord* limit = curr_region->next_top_at_mark_start(); |
1914 | |
1915 | // notice that _finger == end cannot be guaranteed here since, |
1916 | // someone else might have moved the finger even further |
1917 | assert(_finger >= end, "the finger should have moved forward" ); |
1918 | |
1919 | if (limit > bottom) { |
1920 | return curr_region; |
1921 | } else { |
1922 | assert(limit == bottom, |
1923 | "the region limit should be at bottom" ); |
1924 | // we return NULL and the caller should try calling |
1925 | // claim_region() again. |
1926 | return NULL; |
1927 | } |
1928 | } else { |
1929 | assert(_finger > finger, "the finger should have moved forward" ); |
1930 | // read it again |
1931 | finger = _finger; |
1932 | } |
1933 | } |
1934 | |
1935 | return NULL; |
1936 | } |
1937 | |
1938 | #ifndef PRODUCT |
1939 | class VerifyNoCSetOops { |
1940 | G1CollectedHeap* _g1h; |
1941 | const char* _phase; |
1942 | int _info; |
1943 | |
1944 | public: |
1945 | VerifyNoCSetOops(const char* phase, int info = -1) : |
1946 | _g1h(G1CollectedHeap::heap()), |
1947 | _phase(phase), |
1948 | _info(info) |
1949 | { } |
1950 | |
1951 | void operator()(G1TaskQueueEntry task_entry) const { |
1952 | if (task_entry.is_array_slice()) { |
1953 | guarantee(_g1h->is_in_reserved(task_entry.slice()), "Slice " PTR_FORMAT " must be in heap." , p2i(task_entry.slice())); |
1954 | return; |
1955 | } |
1956 | guarantee(oopDesc::is_oop(task_entry.obj()), |
1957 | "Non-oop " PTR_FORMAT ", phase: %s, info: %d" , |
1958 | p2i(task_entry.obj()), _phase, _info); |
1959 | HeapRegion* r = _g1h->heap_region_containing(task_entry.obj()); |
1960 | guarantee(!(r->in_collection_set() || r->has_index_in_opt_cset()), |
1961 | "obj " PTR_FORMAT " from %s (%d) in region %u in (optional) collection set" , |
1962 | p2i(task_entry.obj()), _phase, _info, r->hrm_index()); |
1963 | } |
1964 | }; |
1965 | |
1966 | void G1ConcurrentMark::verify_no_collection_set_oops() { |
1967 | assert(SafepointSynchronize::is_at_safepoint(), "should be at a safepoint" ); |
1968 | if (!_g1h->collector_state()->mark_or_rebuild_in_progress()) { |
1969 | return; |
1970 | } |
1971 | |
1972 | // Verify entries on the global mark stack |
1973 | _global_mark_stack.iterate(VerifyNoCSetOops("Stack" )); |
1974 | |
1975 | // Verify entries on the task queues |
1976 | for (uint i = 0; i < _max_num_tasks; ++i) { |
1977 | G1CMTaskQueue* queue = _task_queues->queue(i); |
1978 | queue->iterate(VerifyNoCSetOops("Queue" , i)); |
1979 | } |
1980 | |
1981 | // Verify the global finger |
1982 | HeapWord* global_finger = finger(); |
1983 | if (global_finger != NULL && global_finger < _heap.end()) { |
1984 | // Since we always iterate over all regions, we might get a NULL HeapRegion |
1985 | // here. |
1986 | HeapRegion* global_hr = _g1h->heap_region_containing(global_finger); |
1987 | guarantee(global_hr == NULL || global_finger == global_hr->bottom(), |
1988 | "global finger: " PTR_FORMAT " region: " HR_FORMAT, |
1989 | p2i(global_finger), HR_FORMAT_PARAMS(global_hr)); |
1990 | } |
1991 | |
1992 | // Verify the task fingers |
1993 | assert(_num_concurrent_workers <= _max_num_tasks, "sanity" ); |
1994 | for (uint i = 0; i < _num_concurrent_workers; ++i) { |
1995 | G1CMTask* task = _tasks[i]; |
1996 | HeapWord* task_finger = task->finger(); |
1997 | if (task_finger != NULL && task_finger < _heap.end()) { |
1998 | // See above note on the global finger verification. |
1999 | HeapRegion* r = _g1h->heap_region_containing(task_finger); |
2000 | guarantee(r == NULL || task_finger == r->bottom() || |
2001 | !r->in_collection_set() || !r->has_index_in_opt_cset(), |
2002 | "task finger: " PTR_FORMAT " region: " HR_FORMAT, |
2003 | p2i(task_finger), HR_FORMAT_PARAMS(r)); |
2004 | } |
2005 | } |
2006 | } |
2007 | #endif // PRODUCT |
2008 | |
2009 | void G1ConcurrentMark::rebuild_rem_set_concurrently() { |
2010 | _g1h->rem_set()->rebuild_rem_set(this, _concurrent_workers, _worker_id_offset); |
2011 | } |
2012 | |
2013 | void G1ConcurrentMark::print_stats() { |
2014 | if (!log_is_enabled(Debug, gc, stats)) { |
2015 | return; |
2016 | } |
2017 | log_debug(gc, stats)("---------------------------------------------------------------------" ); |
2018 | for (size_t i = 0; i < _num_active_tasks; ++i) { |
2019 | _tasks[i]->print_stats(); |
2020 | log_debug(gc, stats)("---------------------------------------------------------------------" ); |
2021 | } |
2022 | } |
2023 | |
2024 | void G1ConcurrentMark::concurrent_cycle_abort() { |
2025 | if (!cm_thread()->during_cycle() || _has_aborted) { |
2026 | // We haven't started a concurrent cycle or we have already aborted it. No need to do anything. |
2027 | return; |
2028 | } |
2029 | |
2030 | // Clear all marks in the next bitmap for the next marking cycle. This will allow us to skip the next |
2031 | // concurrent bitmap clearing. |
2032 | { |
2033 | GCTraceTime(Debug, gc) debug("Clear Next Bitmap" ); |
2034 | clear_bitmap(_next_mark_bitmap, _g1h->workers(), false); |
2035 | } |
2036 | // Note we cannot clear the previous marking bitmap here |
2037 | // since VerifyDuringGC verifies the objects marked during |
2038 | // a full GC against the previous bitmap. |
2039 | |
2040 | // Empty mark stack |
2041 | reset_marking_for_restart(); |
2042 | for (uint i = 0; i < _max_num_tasks; ++i) { |
2043 | _tasks[i]->clear_region_fields(); |
2044 | } |
2045 | _first_overflow_barrier_sync.abort(); |
2046 | _second_overflow_barrier_sync.abort(); |
2047 | _has_aborted = true; |
2048 | |
2049 | SATBMarkQueueSet& satb_mq_set = G1BarrierSet::satb_mark_queue_set(); |
2050 | satb_mq_set.abandon_partial_marking(); |
2051 | // This can be called either during or outside marking, we'll read |
2052 | // the expected_active value from the SATB queue set. |
2053 | satb_mq_set.set_active_all_threads( |
2054 | false, /* new active value */ |
2055 | satb_mq_set.is_active() /* expected_active */); |
2056 | } |
2057 | |
2058 | static void print_ms_time_info(const char* prefix, const char* name, |
2059 | NumberSeq& ns) { |
2060 | log_trace(gc, marking)("%s%5d %12s: total time = %8.2f s (avg = %8.2f ms)." , |
2061 | prefix, ns.num(), name, ns.sum()/1000.0, ns.avg()); |
2062 | if (ns.num() > 0) { |
2063 | log_trace(gc, marking)("%s [std. dev = %8.2f ms, max = %8.2f ms]" , |
2064 | prefix, ns.sd(), ns.maximum()); |
2065 | } |
2066 | } |
2067 | |
2068 | void G1ConcurrentMark::print_summary_info() { |
2069 | Log(gc, marking) log; |
2070 | if (!log.is_trace()) { |
2071 | return; |
2072 | } |
2073 | |
2074 | log.trace(" Concurrent marking:" ); |
2075 | print_ms_time_info(" " , "init marks" , _init_times); |
2076 | print_ms_time_info(" " , "remarks" , _remark_times); |
2077 | { |
2078 | print_ms_time_info(" " , "final marks" , _remark_mark_times); |
2079 | print_ms_time_info(" " , "weak refs" , _remark_weak_ref_times); |
2080 | |
2081 | } |
2082 | print_ms_time_info(" " , "cleanups" , _cleanup_times); |
2083 | log.trace(" Finalize live data total time = %8.2f s (avg = %8.2f ms)." , |
2084 | _total_cleanup_time, (_cleanup_times.num() > 0 ? _total_cleanup_time * 1000.0 / (double)_cleanup_times.num() : 0.0)); |
2085 | log.trace(" Total stop_world time = %8.2f s." , |
2086 | (_init_times.sum() + _remark_times.sum() + _cleanup_times.sum())/1000.0); |
2087 | log.trace(" Total concurrent time = %8.2f s (%8.2f s marking)." , |
2088 | cm_thread()->vtime_accum(), cm_thread()->vtime_mark_accum()); |
2089 | } |
2090 | |
2091 | void G1ConcurrentMark::print_worker_threads_on(outputStream* st) const { |
2092 | _concurrent_workers->print_worker_threads_on(st); |
2093 | } |
2094 | |
2095 | void G1ConcurrentMark::threads_do(ThreadClosure* tc) const { |
2096 | _concurrent_workers->threads_do(tc); |
2097 | } |
2098 | |
2099 | void G1ConcurrentMark::print_on_error(outputStream* st) const { |
2100 | st->print_cr("Marking Bits (Prev, Next): (CMBitMap*) " PTR_FORMAT ", (CMBitMap*) " PTR_FORMAT, |
2101 | p2i(_prev_mark_bitmap), p2i(_next_mark_bitmap)); |
2102 | _prev_mark_bitmap->print_on_error(st, " Prev Bits: " ); |
2103 | _next_mark_bitmap->print_on_error(st, " Next Bits: " ); |
2104 | } |
2105 | |
2106 | static ReferenceProcessor* get_cm_oop_closure_ref_processor(G1CollectedHeap* g1h) { |
2107 | ReferenceProcessor* result = g1h->ref_processor_cm(); |
2108 | assert(result != NULL, "CM reference processor should not be NULL" ); |
2109 | return result; |
2110 | } |
2111 | |
2112 | G1CMOopClosure::G1CMOopClosure(G1CollectedHeap* g1h, |
2113 | G1CMTask* task) |
2114 | : MetadataVisitingOopIterateClosure(get_cm_oop_closure_ref_processor(g1h)), |
2115 | _g1h(g1h), _task(task) |
2116 | { } |
2117 | |
2118 | void G1CMTask::setup_for_region(HeapRegion* hr) { |
2119 | assert(hr != NULL, |
2120 | "claim_region() should have filtered out NULL regions" ); |
2121 | _curr_region = hr; |
2122 | _finger = hr->bottom(); |
2123 | update_region_limit(); |
2124 | } |
2125 | |
2126 | void G1CMTask::update_region_limit() { |
2127 | HeapRegion* hr = _curr_region; |
2128 | HeapWord* bottom = hr->bottom(); |
2129 | HeapWord* limit = hr->next_top_at_mark_start(); |
2130 | |
2131 | if (limit == bottom) { |
2132 | // The region was collected underneath our feet. |
2133 | // We set the finger to bottom to ensure that the bitmap |
2134 | // iteration that will follow this will not do anything. |
2135 | // (this is not a condition that holds when we set the region up, |
2136 | // as the region is not supposed to be empty in the first place) |
2137 | _finger = bottom; |
2138 | } else if (limit >= _region_limit) { |
2139 | assert(limit >= _finger, "peace of mind" ); |
2140 | } else { |
2141 | assert(limit < _region_limit, "only way to get here" ); |
2142 | // This can happen under some pretty unusual circumstances. An |
2143 | // evacuation pause empties the region underneath our feet (NTAMS |
2144 | // at bottom). We then do some allocation in the region (NTAMS |
2145 | // stays at bottom), followed by the region being used as a GC |
2146 | // alloc region (NTAMS will move to top() and the objects |
2147 | // originally below it will be grayed). All objects now marked in |
2148 | // the region are explicitly grayed, if below the global finger, |
2149 | // and we do not need in fact to scan anything else. So, we simply |
2150 | // set _finger to be limit to ensure that the bitmap iteration |
2151 | // doesn't do anything. |
2152 | _finger = limit; |
2153 | } |
2154 | |
2155 | _region_limit = limit; |
2156 | } |
2157 | |
2158 | void G1CMTask::giveup_current_region() { |
2159 | assert(_curr_region != NULL, "invariant" ); |
2160 | clear_region_fields(); |
2161 | } |
2162 | |
2163 | void G1CMTask::clear_region_fields() { |
2164 | // Values for these three fields that indicate that we're not |
2165 | // holding on to a region. |
2166 | _curr_region = NULL; |
2167 | _finger = NULL; |
2168 | _region_limit = NULL; |
2169 | } |
2170 | |
2171 | void G1CMTask::set_cm_oop_closure(G1CMOopClosure* cm_oop_closure) { |
2172 | if (cm_oop_closure == NULL) { |
2173 | assert(_cm_oop_closure != NULL, "invariant" ); |
2174 | } else { |
2175 | assert(_cm_oop_closure == NULL, "invariant" ); |
2176 | } |
2177 | _cm_oop_closure = cm_oop_closure; |
2178 | } |
2179 | |
2180 | void G1CMTask::reset(G1CMBitMap* next_mark_bitmap) { |
2181 | guarantee(next_mark_bitmap != NULL, "invariant" ); |
2182 | _next_mark_bitmap = next_mark_bitmap; |
2183 | clear_region_fields(); |
2184 | |
2185 | _calls = 0; |
2186 | _elapsed_time_ms = 0.0; |
2187 | _termination_time_ms = 0.0; |
2188 | _termination_start_time_ms = 0.0; |
2189 | |
2190 | _mark_stats_cache.reset(); |
2191 | } |
2192 | |
2193 | bool G1CMTask::should_exit_termination() { |
2194 | if (!regular_clock_call()) { |
2195 | return true; |
2196 | } |
2197 | |
2198 | // This is called when we are in the termination protocol. We should |
2199 | // quit if, for some reason, this task wants to abort or the global |
2200 | // stack is not empty (this means that we can get work from it). |
2201 | return !_cm->mark_stack_empty() || has_aborted(); |
2202 | } |
2203 | |
2204 | void G1CMTask::reached_limit() { |
2205 | assert(_words_scanned >= _words_scanned_limit || |
2206 | _refs_reached >= _refs_reached_limit , |
2207 | "shouldn't have been called otherwise" ); |
2208 | abort_marking_if_regular_check_fail(); |
2209 | } |
2210 | |
2211 | bool G1CMTask::regular_clock_call() { |
2212 | if (has_aborted()) { |
2213 | return false; |
2214 | } |
2215 | |
2216 | // First, we need to recalculate the words scanned and refs reached |
2217 | // limits for the next clock call. |
2218 | recalculate_limits(); |
2219 | |
2220 | // During the regular clock call we do the following |
2221 | |
2222 | // (1) If an overflow has been flagged, then we abort. |
2223 | if (_cm->has_overflown()) { |
2224 | return false; |
2225 | } |
2226 | |
2227 | // If we are not concurrent (i.e. we're doing remark) we don't need |
2228 | // to check anything else. The other steps are only needed during |
2229 | // the concurrent marking phase. |
2230 | if (!_cm->concurrent()) { |
2231 | return true; |
2232 | } |
2233 | |
2234 | // (2) If marking has been aborted for Full GC, then we also abort. |
2235 | if (_cm->has_aborted()) { |
2236 | return false; |
2237 | } |
2238 | |
2239 | double curr_time_ms = os::elapsedVTime() * 1000.0; |
2240 | |
2241 | // (4) We check whether we should yield. If we have to, then we abort. |
2242 | if (SuspendibleThreadSet::should_yield()) { |
2243 | // We should yield. To do this we abort the task. The caller is |
2244 | // responsible for yielding. |
2245 | return false; |
2246 | } |
2247 | |
2248 | // (5) We check whether we've reached our time quota. If we have, |
2249 | // then we abort. |
2250 | double elapsed_time_ms = curr_time_ms - _start_time_ms; |
2251 | if (elapsed_time_ms > _time_target_ms) { |
2252 | _has_timed_out = true; |
2253 | return false; |
2254 | } |
2255 | |
2256 | // (6) Finally, we check whether there are enough completed STAB |
2257 | // buffers available for processing. If there are, we abort. |
2258 | SATBMarkQueueSet& satb_mq_set = G1BarrierSet::satb_mark_queue_set(); |
2259 | if (!_draining_satb_buffers && satb_mq_set.process_completed_buffers()) { |
2260 | // we do need to process SATB buffers, we'll abort and restart |
2261 | // the marking task to do so |
2262 | return false; |
2263 | } |
2264 | return true; |
2265 | } |
2266 | |
2267 | void G1CMTask::recalculate_limits() { |
2268 | _real_words_scanned_limit = _words_scanned + words_scanned_period; |
2269 | _words_scanned_limit = _real_words_scanned_limit; |
2270 | |
2271 | _real_refs_reached_limit = _refs_reached + refs_reached_period; |
2272 | _refs_reached_limit = _real_refs_reached_limit; |
2273 | } |
2274 | |
2275 | void G1CMTask::decrease_limits() { |
2276 | // This is called when we believe that we're going to do an infrequent |
2277 | // operation which will increase the per byte scanned cost (i.e. move |
2278 | // entries to/from the global stack). It basically tries to decrease the |
2279 | // scanning limit so that the clock is called earlier. |
2280 | |
2281 | _words_scanned_limit = _real_words_scanned_limit - 3 * words_scanned_period / 4; |
2282 | _refs_reached_limit = _real_refs_reached_limit - 3 * refs_reached_period / 4; |
2283 | } |
2284 | |
2285 | void G1CMTask::move_entries_to_global_stack() { |
2286 | // Local array where we'll store the entries that will be popped |
2287 | // from the local queue. |
2288 | G1TaskQueueEntry buffer[G1CMMarkStack::EntriesPerChunk]; |
2289 | |
2290 | size_t n = 0; |
2291 | G1TaskQueueEntry task_entry; |
2292 | while (n < G1CMMarkStack::EntriesPerChunk && _task_queue->pop_local(task_entry)) { |
2293 | buffer[n] = task_entry; |
2294 | ++n; |
2295 | } |
2296 | if (n < G1CMMarkStack::EntriesPerChunk) { |
2297 | buffer[n] = G1TaskQueueEntry(); |
2298 | } |
2299 | |
2300 | if (n > 0) { |
2301 | if (!_cm->mark_stack_push(buffer)) { |
2302 | set_has_aborted(); |
2303 | } |
2304 | } |
2305 | |
2306 | // This operation was quite expensive, so decrease the limits. |
2307 | decrease_limits(); |
2308 | } |
2309 | |
2310 | bool G1CMTask::get_entries_from_global_stack() { |
2311 | // Local array where we'll store the entries that will be popped |
2312 | // from the global stack. |
2313 | G1TaskQueueEntry buffer[G1CMMarkStack::EntriesPerChunk]; |
2314 | |
2315 | if (!_cm->mark_stack_pop(buffer)) { |
2316 | return false; |
2317 | } |
2318 | |
2319 | // We did actually pop at least one entry. |
2320 | for (size_t i = 0; i < G1CMMarkStack::EntriesPerChunk; ++i) { |
2321 | G1TaskQueueEntry task_entry = buffer[i]; |
2322 | if (task_entry.is_null()) { |
2323 | break; |
2324 | } |
2325 | assert(task_entry.is_array_slice() || oopDesc::is_oop(task_entry.obj()), "Element " PTR_FORMAT " must be an array slice or oop" , p2i(task_entry.obj())); |
2326 | bool success = _task_queue->push(task_entry); |
2327 | // We only call this when the local queue is empty or under a |
2328 | // given target limit. So, we do not expect this push to fail. |
2329 | assert(success, "invariant" ); |
2330 | } |
2331 | |
2332 | // This operation was quite expensive, so decrease the limits |
2333 | decrease_limits(); |
2334 | return true; |
2335 | } |
2336 | |
2337 | void G1CMTask::drain_local_queue(bool partially) { |
2338 | if (has_aborted()) { |
2339 | return; |
2340 | } |
2341 | |
2342 | // Decide what the target size is, depending whether we're going to |
2343 | // drain it partially (so that other tasks can steal if they run out |
2344 | // of things to do) or totally (at the very end). |
2345 | size_t target_size; |
2346 | if (partially) { |
2347 | target_size = MIN2((size_t)_task_queue->max_elems()/3, (size_t)GCDrainStackTargetSize); |
2348 | } else { |
2349 | target_size = 0; |
2350 | } |
2351 | |
2352 | if (_task_queue->size() > target_size) { |
2353 | G1TaskQueueEntry entry; |
2354 | bool ret = _task_queue->pop_local(entry); |
2355 | while (ret) { |
2356 | scan_task_entry(entry); |
2357 | if (_task_queue->size() <= target_size || has_aborted()) { |
2358 | ret = false; |
2359 | } else { |
2360 | ret = _task_queue->pop_local(entry); |
2361 | } |
2362 | } |
2363 | } |
2364 | } |
2365 | |
2366 | void G1CMTask::drain_global_stack(bool partially) { |
2367 | if (has_aborted()) { |
2368 | return; |
2369 | } |
2370 | |
2371 | // We have a policy to drain the local queue before we attempt to |
2372 | // drain the global stack. |
2373 | assert(partially || _task_queue->size() == 0, "invariant" ); |
2374 | |
2375 | // Decide what the target size is, depending whether we're going to |
2376 | // drain it partially (so that other tasks can steal if they run out |
2377 | // of things to do) or totally (at the very end). |
2378 | // Notice that when draining the global mark stack partially, due to the racyness |
2379 | // of the mark stack size update we might in fact drop below the target. But, |
2380 | // this is not a problem. |
2381 | // In case of total draining, we simply process until the global mark stack is |
2382 | // totally empty, disregarding the size counter. |
2383 | if (partially) { |
2384 | size_t const target_size = _cm->partial_mark_stack_size_target(); |
2385 | while (!has_aborted() && _cm->mark_stack_size() > target_size) { |
2386 | if (get_entries_from_global_stack()) { |
2387 | drain_local_queue(partially); |
2388 | } |
2389 | } |
2390 | } else { |
2391 | while (!has_aborted() && get_entries_from_global_stack()) { |
2392 | drain_local_queue(partially); |
2393 | } |
2394 | } |
2395 | } |
2396 | |
2397 | // SATB Queue has several assumptions on whether to call the par or |
2398 | // non-par versions of the methods. this is why some of the code is |
2399 | // replicated. We should really get rid of the single-threaded version |
2400 | // of the code to simplify things. |
2401 | void G1CMTask::drain_satb_buffers() { |
2402 | if (has_aborted()) { |
2403 | return; |
2404 | } |
2405 | |
2406 | // We set this so that the regular clock knows that we're in the |
2407 | // middle of draining buffers and doesn't set the abort flag when it |
2408 | // notices that SATB buffers are available for draining. It'd be |
2409 | // very counter productive if it did that. :-) |
2410 | _draining_satb_buffers = true; |
2411 | |
2412 | G1CMSATBBufferClosure satb_cl(this, _g1h); |
2413 | SATBMarkQueueSet& satb_mq_set = G1BarrierSet::satb_mark_queue_set(); |
2414 | |
2415 | // This keeps claiming and applying the closure to completed buffers |
2416 | // until we run out of buffers or we need to abort. |
2417 | while (!has_aborted() && |
2418 | satb_mq_set.apply_closure_to_completed_buffer(&satb_cl)) { |
2419 | abort_marking_if_regular_check_fail(); |
2420 | } |
2421 | |
2422 | _draining_satb_buffers = false; |
2423 | |
2424 | assert(has_aborted() || |
2425 | _cm->concurrent() || |
2426 | satb_mq_set.completed_buffers_num() == 0, "invariant" ); |
2427 | |
2428 | // again, this was a potentially expensive operation, decrease the |
2429 | // limits to get the regular clock call early |
2430 | decrease_limits(); |
2431 | } |
2432 | |
2433 | void G1CMTask::clear_mark_stats_cache(uint region_idx) { |
2434 | _mark_stats_cache.reset(region_idx); |
2435 | } |
2436 | |
2437 | Pair<size_t, size_t> G1CMTask::flush_mark_stats_cache() { |
2438 | return _mark_stats_cache.evict_all(); |
2439 | } |
2440 | |
2441 | void G1CMTask::print_stats() { |
2442 | log_debug(gc, stats)("Marking Stats, task = %u, calls = %u" , _worker_id, _calls); |
2443 | log_debug(gc, stats)(" Elapsed time = %1.2lfms, Termination time = %1.2lfms" , |
2444 | _elapsed_time_ms, _termination_time_ms); |
2445 | log_debug(gc, stats)(" Step Times (cum): num = %d, avg = %1.2lfms, sd = %1.2lfms max = %1.2lfms, total = %1.2lfms" , |
2446 | _step_times_ms.num(), |
2447 | _step_times_ms.avg(), |
2448 | _step_times_ms.sd(), |
2449 | _step_times_ms.maximum(), |
2450 | _step_times_ms.sum()); |
2451 | size_t const hits = _mark_stats_cache.hits(); |
2452 | size_t const misses = _mark_stats_cache.misses(); |
2453 | log_debug(gc, stats)(" Mark Stats Cache: hits " SIZE_FORMAT " misses " SIZE_FORMAT " ratio %.3f" , |
2454 | hits, misses, percent_of(hits, hits + misses)); |
2455 | } |
2456 | |
2457 | bool G1ConcurrentMark::try_stealing(uint worker_id, G1TaskQueueEntry& task_entry) { |
2458 | return _task_queues->steal(worker_id, task_entry); |
2459 | } |
2460 | |
2461 | /***************************************************************************** |
2462 | |
2463 | The do_marking_step(time_target_ms, ...) method is the building |
2464 | block of the parallel marking framework. It can be called in parallel |
2465 | with other invocations of do_marking_step() on different tasks |
2466 | (but only one per task, obviously) and concurrently with the |
2467 | mutator threads, or during remark, hence it eliminates the need |
2468 | for two versions of the code. When called during remark, it will |
2469 | pick up from where the task left off during the concurrent marking |
2470 | phase. Interestingly, tasks are also claimable during evacuation |
2471 | pauses too, since do_marking_step() ensures that it aborts before |
2472 | it needs to yield. |
2473 | |
2474 | The data structures that it uses to do marking work are the |
2475 | following: |
2476 | |
2477 | (1) Marking Bitmap. If there are gray objects that appear only |
2478 | on the bitmap (this happens either when dealing with an overflow |
2479 | or when the initial marking phase has simply marked the roots |
2480 | and didn't push them on the stack), then tasks claim heap |
2481 | regions whose bitmap they then scan to find gray objects. A |
2482 | global finger indicates where the end of the last claimed region |
2483 | is. A local finger indicates how far into the region a task has |
2484 | scanned. The two fingers are used to determine how to gray an |
2485 | object (i.e. whether simply marking it is OK, as it will be |
2486 | visited by a task in the future, or whether it needs to be also |
2487 | pushed on a stack). |
2488 | |
2489 | (2) Local Queue. The local queue of the task which is accessed |
2490 | reasonably efficiently by the task. Other tasks can steal from |
2491 | it when they run out of work. Throughout the marking phase, a |
2492 | task attempts to keep its local queue short but not totally |
2493 | empty, so that entries are available for stealing by other |
2494 | tasks. Only when there is no more work, a task will totally |
2495 | drain its local queue. |
2496 | |
2497 | (3) Global Mark Stack. This handles local queue overflow. During |
2498 | marking only sets of entries are moved between it and the local |
2499 | queues, as access to it requires a mutex and more fine-grain |
2500 | interaction with it which might cause contention. If it |
2501 | overflows, then the marking phase should restart and iterate |
2502 | over the bitmap to identify gray objects. Throughout the marking |
2503 | phase, tasks attempt to keep the global mark stack at a small |
2504 | length but not totally empty, so that entries are available for |
2505 | popping by other tasks. Only when there is no more work, tasks |
2506 | will totally drain the global mark stack. |
2507 | |
2508 | (4) SATB Buffer Queue. This is where completed SATB buffers are |
2509 | made available. Buffers are regularly removed from this queue |
2510 | and scanned for roots, so that the queue doesn't get too |
2511 | long. During remark, all completed buffers are processed, as |
2512 | well as the filled in parts of any uncompleted buffers. |
2513 | |
2514 | The do_marking_step() method tries to abort when the time target |
2515 | has been reached. There are a few other cases when the |
2516 | do_marking_step() method also aborts: |
2517 | |
2518 | (1) When the marking phase has been aborted (after a Full GC). |
2519 | |
2520 | (2) When a global overflow (on the global stack) has been |
2521 | triggered. Before the task aborts, it will actually sync up with |
2522 | the other tasks to ensure that all the marking data structures |
2523 | (local queues, stacks, fingers etc.) are re-initialized so that |
2524 | when do_marking_step() completes, the marking phase can |
2525 | immediately restart. |
2526 | |
2527 | (3) When enough completed SATB buffers are available. The |
2528 | do_marking_step() method only tries to drain SATB buffers right |
2529 | at the beginning. So, if enough buffers are available, the |
2530 | marking step aborts and the SATB buffers are processed at |
2531 | the beginning of the next invocation. |
2532 | |
2533 | (4) To yield. when we have to yield then we abort and yield |
2534 | right at the end of do_marking_step(). This saves us from a lot |
2535 | of hassle as, by yielding we might allow a Full GC. If this |
2536 | happens then objects will be compacted underneath our feet, the |
2537 | heap might shrink, etc. We save checking for this by just |
2538 | aborting and doing the yield right at the end. |
2539 | |
2540 | From the above it follows that the do_marking_step() method should |
2541 | be called in a loop (or, otherwise, regularly) until it completes. |
2542 | |
2543 | If a marking step completes without its has_aborted() flag being |
2544 | true, it means it has completed the current marking phase (and |
2545 | also all other marking tasks have done so and have all synced up). |
2546 | |
2547 | A method called regular_clock_call() is invoked "regularly" (in |
2548 | sub ms intervals) throughout marking. It is this clock method that |
2549 | checks all the abort conditions which were mentioned above and |
2550 | decides when the task should abort. A work-based scheme is used to |
2551 | trigger this clock method: when the number of object words the |
2552 | marking phase has scanned or the number of references the marking |
2553 | phase has visited reach a given limit. Additional invocations to |
2554 | the method clock have been planted in a few other strategic places |
2555 | too. The initial reason for the clock method was to avoid calling |
2556 | vtime too regularly, as it is quite expensive. So, once it was in |
2557 | place, it was natural to piggy-back all the other conditions on it |
2558 | too and not constantly check them throughout the code. |
2559 | |
2560 | If do_termination is true then do_marking_step will enter its |
2561 | termination protocol. |
2562 | |
2563 | The value of is_serial must be true when do_marking_step is being |
2564 | called serially (i.e. by the VMThread) and do_marking_step should |
2565 | skip any synchronization in the termination and overflow code. |
2566 | Examples include the serial remark code and the serial reference |
2567 | processing closures. |
2568 | |
2569 | The value of is_serial must be false when do_marking_step is |
2570 | being called by any of the worker threads in a work gang. |
2571 | Examples include the concurrent marking code (CMMarkingTask), |
2572 | the MT remark code, and the MT reference processing closures. |
2573 | |
2574 | *****************************************************************************/ |
2575 | |
2576 | void G1CMTask::do_marking_step(double time_target_ms, |
2577 | bool do_termination, |
2578 | bool is_serial) { |
2579 | assert(time_target_ms >= 1.0, "minimum granularity is 1ms" ); |
2580 | |
2581 | _start_time_ms = os::elapsedVTime() * 1000.0; |
2582 | |
2583 | // If do_stealing is true then do_marking_step will attempt to |
2584 | // steal work from the other G1CMTasks. It only makes sense to |
2585 | // enable stealing when the termination protocol is enabled |
2586 | // and do_marking_step() is not being called serially. |
2587 | bool do_stealing = do_termination && !is_serial; |
2588 | |
2589 | double diff_prediction_ms = _g1h->policy()->predictor().get_new_prediction(&_marking_step_diffs_ms); |
2590 | _time_target_ms = time_target_ms - diff_prediction_ms; |
2591 | |
2592 | // set up the variables that are used in the work-based scheme to |
2593 | // call the regular clock method |
2594 | _words_scanned = 0; |
2595 | _refs_reached = 0; |
2596 | recalculate_limits(); |
2597 | |
2598 | // clear all flags |
2599 | clear_has_aborted(); |
2600 | _has_timed_out = false; |
2601 | _draining_satb_buffers = false; |
2602 | |
2603 | ++_calls; |
2604 | |
2605 | // Set up the bitmap and oop closures. Anything that uses them is |
2606 | // eventually called from this method, so it is OK to allocate these |
2607 | // statically. |
2608 | G1CMBitMapClosure bitmap_closure(this, _cm); |
2609 | G1CMOopClosure cm_oop_closure(_g1h, this); |
2610 | set_cm_oop_closure(&cm_oop_closure); |
2611 | |
2612 | if (_cm->has_overflown()) { |
2613 | // This can happen if the mark stack overflows during a GC pause |
2614 | // and this task, after a yield point, restarts. We have to abort |
2615 | // as we need to get into the overflow protocol which happens |
2616 | // right at the end of this task. |
2617 | set_has_aborted(); |
2618 | } |
2619 | |
2620 | // First drain any available SATB buffers. After this, we will not |
2621 | // look at SATB buffers before the next invocation of this method. |
2622 | // If enough completed SATB buffers are queued up, the regular clock |
2623 | // will abort this task so that it restarts. |
2624 | drain_satb_buffers(); |
2625 | // ...then partially drain the local queue and the global stack |
2626 | drain_local_queue(true); |
2627 | drain_global_stack(true); |
2628 | |
2629 | do { |
2630 | if (!has_aborted() && _curr_region != NULL) { |
2631 | // This means that we're already holding on to a region. |
2632 | assert(_finger != NULL, "if region is not NULL, then the finger " |
2633 | "should not be NULL either" ); |
2634 | |
2635 | // We might have restarted this task after an evacuation pause |
2636 | // which might have evacuated the region we're holding on to |
2637 | // underneath our feet. Let's read its limit again to make sure |
2638 | // that we do not iterate over a region of the heap that |
2639 | // contains garbage (update_region_limit() will also move |
2640 | // _finger to the start of the region if it is found empty). |
2641 | update_region_limit(); |
2642 | // We will start from _finger not from the start of the region, |
2643 | // as we might be restarting this task after aborting half-way |
2644 | // through scanning this region. In this case, _finger points to |
2645 | // the address where we last found a marked object. If this is a |
2646 | // fresh region, _finger points to start(). |
2647 | MemRegion mr = MemRegion(_finger, _region_limit); |
2648 | |
2649 | assert(!_curr_region->is_humongous() || mr.start() == _curr_region->bottom(), |
2650 | "humongous regions should go around loop once only" ); |
2651 | |
2652 | // Some special cases: |
2653 | // If the memory region is empty, we can just give up the region. |
2654 | // If the current region is humongous then we only need to check |
2655 | // the bitmap for the bit associated with the start of the object, |
2656 | // scan the object if it's live, and give up the region. |
2657 | // Otherwise, let's iterate over the bitmap of the part of the region |
2658 | // that is left. |
2659 | // If the iteration is successful, give up the region. |
2660 | if (mr.is_empty()) { |
2661 | giveup_current_region(); |
2662 | abort_marking_if_regular_check_fail(); |
2663 | } else if (_curr_region->is_humongous() && mr.start() == _curr_region->bottom()) { |
2664 | if (_next_mark_bitmap->is_marked(mr.start())) { |
2665 | // The object is marked - apply the closure |
2666 | bitmap_closure.do_addr(mr.start()); |
2667 | } |
2668 | // Even if this task aborted while scanning the humongous object |
2669 | // we can (and should) give up the current region. |
2670 | giveup_current_region(); |
2671 | abort_marking_if_regular_check_fail(); |
2672 | } else if (_next_mark_bitmap->iterate(&bitmap_closure, mr)) { |
2673 | giveup_current_region(); |
2674 | abort_marking_if_regular_check_fail(); |
2675 | } else { |
2676 | assert(has_aborted(), "currently the only way to do so" ); |
2677 | // The only way to abort the bitmap iteration is to return |
2678 | // false from the do_bit() method. However, inside the |
2679 | // do_bit() method we move the _finger to point to the |
2680 | // object currently being looked at. So, if we bail out, we |
2681 | // have definitely set _finger to something non-null. |
2682 | assert(_finger != NULL, "invariant" ); |
2683 | |
2684 | // Region iteration was actually aborted. So now _finger |
2685 | // points to the address of the object we last scanned. If we |
2686 | // leave it there, when we restart this task, we will rescan |
2687 | // the object. It is easy to avoid this. We move the finger by |
2688 | // enough to point to the next possible object header. |
2689 | assert(_finger < _region_limit, "invariant" ); |
2690 | HeapWord* const new_finger = _finger + ((oop)_finger)->size(); |
2691 | // Check if bitmap iteration was aborted while scanning the last object |
2692 | if (new_finger >= _region_limit) { |
2693 | giveup_current_region(); |
2694 | } else { |
2695 | move_finger_to(new_finger); |
2696 | } |
2697 | } |
2698 | } |
2699 | // At this point we have either completed iterating over the |
2700 | // region we were holding on to, or we have aborted. |
2701 | |
2702 | // We then partially drain the local queue and the global stack. |
2703 | // (Do we really need this?) |
2704 | drain_local_queue(true); |
2705 | drain_global_stack(true); |
2706 | |
2707 | // Read the note on the claim_region() method on why it might |
2708 | // return NULL with potentially more regions available for |
2709 | // claiming and why we have to check out_of_regions() to determine |
2710 | // whether we're done or not. |
2711 | while (!has_aborted() && _curr_region == NULL && !_cm->out_of_regions()) { |
2712 | // We are going to try to claim a new region. We should have |
2713 | // given up on the previous one. |
2714 | // Separated the asserts so that we know which one fires. |
2715 | assert(_curr_region == NULL, "invariant" ); |
2716 | assert(_finger == NULL, "invariant" ); |
2717 | assert(_region_limit == NULL, "invariant" ); |
2718 | HeapRegion* claimed_region = _cm->claim_region(_worker_id); |
2719 | if (claimed_region != NULL) { |
2720 | // Yes, we managed to claim one |
2721 | setup_for_region(claimed_region); |
2722 | assert(_curr_region == claimed_region, "invariant" ); |
2723 | } |
2724 | // It is important to call the regular clock here. It might take |
2725 | // a while to claim a region if, for example, we hit a large |
2726 | // block of empty regions. So we need to call the regular clock |
2727 | // method once round the loop to make sure it's called |
2728 | // frequently enough. |
2729 | abort_marking_if_regular_check_fail(); |
2730 | } |
2731 | |
2732 | if (!has_aborted() && _curr_region == NULL) { |
2733 | assert(_cm->out_of_regions(), |
2734 | "at this point we should be out of regions" ); |
2735 | } |
2736 | } while ( _curr_region != NULL && !has_aborted()); |
2737 | |
2738 | if (!has_aborted()) { |
2739 | // We cannot check whether the global stack is empty, since other |
2740 | // tasks might be pushing objects to it concurrently. |
2741 | assert(_cm->out_of_regions(), |
2742 | "at this point we should be out of regions" ); |
2743 | // Try to reduce the number of available SATB buffers so that |
2744 | // remark has less work to do. |
2745 | drain_satb_buffers(); |
2746 | } |
2747 | |
2748 | // Since we've done everything else, we can now totally drain the |
2749 | // local queue and global stack. |
2750 | drain_local_queue(false); |
2751 | drain_global_stack(false); |
2752 | |
2753 | // Attempt at work stealing from other task's queues. |
2754 | if (do_stealing && !has_aborted()) { |
2755 | // We have not aborted. This means that we have finished all that |
2756 | // we could. Let's try to do some stealing... |
2757 | |
2758 | // We cannot check whether the global stack is empty, since other |
2759 | // tasks might be pushing objects to it concurrently. |
2760 | assert(_cm->out_of_regions() && _task_queue->size() == 0, |
2761 | "only way to reach here" ); |
2762 | while (!has_aborted()) { |
2763 | G1TaskQueueEntry entry; |
2764 | if (_cm->try_stealing(_worker_id, entry)) { |
2765 | scan_task_entry(entry); |
2766 | |
2767 | // And since we're towards the end, let's totally drain the |
2768 | // local queue and global stack. |
2769 | drain_local_queue(false); |
2770 | drain_global_stack(false); |
2771 | } else { |
2772 | break; |
2773 | } |
2774 | } |
2775 | } |
2776 | |
2777 | // We still haven't aborted. Now, let's try to get into the |
2778 | // termination protocol. |
2779 | if (do_termination && !has_aborted()) { |
2780 | // We cannot check whether the global stack is empty, since other |
2781 | // tasks might be concurrently pushing objects on it. |
2782 | // Separated the asserts so that we know which one fires. |
2783 | assert(_cm->out_of_regions(), "only way to reach here" ); |
2784 | assert(_task_queue->size() == 0, "only way to reach here" ); |
2785 | _termination_start_time_ms = os::elapsedVTime() * 1000.0; |
2786 | |
2787 | // The G1CMTask class also extends the TerminatorTerminator class, |
2788 | // hence its should_exit_termination() method will also decide |
2789 | // whether to exit the termination protocol or not. |
2790 | bool finished = (is_serial || |
2791 | _cm->terminator()->offer_termination(this)); |
2792 | double termination_end_time_ms = os::elapsedVTime() * 1000.0; |
2793 | _termination_time_ms += |
2794 | termination_end_time_ms - _termination_start_time_ms; |
2795 | |
2796 | if (finished) { |
2797 | // We're all done. |
2798 | |
2799 | // We can now guarantee that the global stack is empty, since |
2800 | // all other tasks have finished. We separated the guarantees so |
2801 | // that, if a condition is false, we can immediately find out |
2802 | // which one. |
2803 | guarantee(_cm->out_of_regions(), "only way to reach here" ); |
2804 | guarantee(_cm->mark_stack_empty(), "only way to reach here" ); |
2805 | guarantee(_task_queue->size() == 0, "only way to reach here" ); |
2806 | guarantee(!_cm->has_overflown(), "only way to reach here" ); |
2807 | guarantee(!has_aborted(), "should never happen if termination has completed" ); |
2808 | } else { |
2809 | // Apparently there's more work to do. Let's abort this task. It |
2810 | // will restart it and we can hopefully find more things to do. |
2811 | set_has_aborted(); |
2812 | } |
2813 | } |
2814 | |
2815 | // Mainly for debugging purposes to make sure that a pointer to the |
2816 | // closure which was statically allocated in this frame doesn't |
2817 | // escape it by accident. |
2818 | set_cm_oop_closure(NULL); |
2819 | double end_time_ms = os::elapsedVTime() * 1000.0; |
2820 | double elapsed_time_ms = end_time_ms - _start_time_ms; |
2821 | // Update the step history. |
2822 | _step_times_ms.add(elapsed_time_ms); |
2823 | |
2824 | if (has_aborted()) { |
2825 | // The task was aborted for some reason. |
2826 | if (_has_timed_out) { |
2827 | double diff_ms = elapsed_time_ms - _time_target_ms; |
2828 | // Keep statistics of how well we did with respect to hitting |
2829 | // our target only if we actually timed out (if we aborted for |
2830 | // other reasons, then the results might get skewed). |
2831 | _marking_step_diffs_ms.add(diff_ms); |
2832 | } |
2833 | |
2834 | if (_cm->has_overflown()) { |
2835 | // This is the interesting one. We aborted because a global |
2836 | // overflow was raised. This means we have to restart the |
2837 | // marking phase and start iterating over regions. However, in |
2838 | // order to do this we have to make sure that all tasks stop |
2839 | // what they are doing and re-initialize in a safe manner. We |
2840 | // will achieve this with the use of two barrier sync points. |
2841 | |
2842 | if (!is_serial) { |
2843 | // We only need to enter the sync barrier if being called |
2844 | // from a parallel context |
2845 | _cm->enter_first_sync_barrier(_worker_id); |
2846 | |
2847 | // When we exit this sync barrier we know that all tasks have |
2848 | // stopped doing marking work. So, it's now safe to |
2849 | // re-initialize our data structures. |
2850 | } |
2851 | |
2852 | clear_region_fields(); |
2853 | flush_mark_stats_cache(); |
2854 | |
2855 | if (!is_serial) { |
2856 | // If we're executing the concurrent phase of marking, reset the marking |
2857 | // state; otherwise the marking state is reset after reference processing, |
2858 | // during the remark pause. |
2859 | // If we reset here as a result of an overflow during the remark we will |
2860 | // see assertion failures from any subsequent set_concurrency_and_phase() |
2861 | // calls. |
2862 | if (_cm->concurrent() && _worker_id == 0) { |
2863 | // Worker 0 is responsible for clearing the global data structures because |
2864 | // of an overflow. During STW we should not clear the overflow flag (in |
2865 | // G1ConcurrentMark::reset_marking_state()) since we rely on it being true when we exit |
2866 | // method to abort the pause and restart concurrent marking. |
2867 | _cm->reset_marking_for_restart(); |
2868 | |
2869 | log_info(gc, marking)("Concurrent Mark reset for overflow" ); |
2870 | } |
2871 | |
2872 | // ...and enter the second barrier. |
2873 | _cm->enter_second_sync_barrier(_worker_id); |
2874 | } |
2875 | // At this point, if we're during the concurrent phase of |
2876 | // marking, everything has been re-initialized and we're |
2877 | // ready to restart. |
2878 | } |
2879 | } |
2880 | } |
2881 | |
2882 | G1CMTask::G1CMTask(uint worker_id, |
2883 | G1ConcurrentMark* cm, |
2884 | G1CMTaskQueue* task_queue, |
2885 | G1RegionMarkStats* mark_stats, |
2886 | uint max_regions) : |
2887 | _objArray_processor(this), |
2888 | _worker_id(worker_id), |
2889 | _g1h(G1CollectedHeap::heap()), |
2890 | _cm(cm), |
2891 | _next_mark_bitmap(NULL), |
2892 | _task_queue(task_queue), |
2893 | _mark_stats_cache(mark_stats, max_regions, RegionMarkStatsCacheSize), |
2894 | _calls(0), |
2895 | _time_target_ms(0.0), |
2896 | _start_time_ms(0.0), |
2897 | _cm_oop_closure(NULL), |
2898 | _curr_region(NULL), |
2899 | _finger(NULL), |
2900 | _region_limit(NULL), |
2901 | _words_scanned(0), |
2902 | _words_scanned_limit(0), |
2903 | _real_words_scanned_limit(0), |
2904 | _refs_reached(0), |
2905 | _refs_reached_limit(0), |
2906 | _real_refs_reached_limit(0), |
2907 | _has_aborted(false), |
2908 | _has_timed_out(false), |
2909 | _draining_satb_buffers(false), |
2910 | _step_times_ms(), |
2911 | _elapsed_time_ms(0.0), |
2912 | _termination_time_ms(0.0), |
2913 | _termination_start_time_ms(0.0), |
2914 | _marking_step_diffs_ms() |
2915 | { |
2916 | guarantee(task_queue != NULL, "invariant" ); |
2917 | |
2918 | _marking_step_diffs_ms.add(0.5); |
2919 | } |
2920 | |
2921 | // These are formatting macros that are used below to ensure |
2922 | // consistent formatting. The *_H_* versions are used to format the |
2923 | // header for a particular value and they should be kept consistent |
2924 | // with the corresponding macro. Also note that most of the macros add |
2925 | // the necessary white space (as a prefix) which makes them a bit |
2926 | // easier to compose. |
2927 | |
2928 | // All the output lines are prefixed with this string to be able to |
2929 | // identify them easily in a large log file. |
2930 | #define G1PPRL_LINE_PREFIX "###" |
2931 | |
2932 | #define G1PPRL_ADDR_BASE_FORMAT " " PTR_FORMAT "-" PTR_FORMAT |
2933 | #ifdef _LP64 |
2934 | #define G1PPRL_ADDR_BASE_H_FORMAT " %37s" |
2935 | #else // _LP64 |
2936 | #define G1PPRL_ADDR_BASE_H_FORMAT " %21s" |
2937 | #endif // _LP64 |
2938 | |
2939 | // For per-region info |
2940 | #define G1PPRL_TYPE_FORMAT " %-4s" |
2941 | #define G1PPRL_TYPE_H_FORMAT " %4s" |
2942 | #define G1PPRL_STATE_FORMAT " %-5s" |
2943 | #define G1PPRL_STATE_H_FORMAT " %5s" |
2944 | #define G1PPRL_BYTE_FORMAT " " SIZE_FORMAT_W(9) |
2945 | #define G1PPRL_BYTE_H_FORMAT " %9s" |
2946 | #define G1PPRL_DOUBLE_FORMAT " %14.1f" |
2947 | #define G1PPRL_DOUBLE_H_FORMAT " %14s" |
2948 | |
2949 | // For summary info |
2950 | #define G1PPRL_SUM_ADDR_FORMAT(tag) " " tag ":" G1PPRL_ADDR_BASE_FORMAT |
2951 | #define G1PPRL_SUM_BYTE_FORMAT(tag) " " tag ": " SIZE_FORMAT |
2952 | #define G1PPRL_SUM_MB_FORMAT(tag) " " tag ": %1.2f MB" |
2953 | #define G1PPRL_SUM_MB_PERC_FORMAT(tag) G1PPRL_SUM_MB_FORMAT(tag) " / %1.2f %%" |
2954 | |
2955 | G1PrintRegionLivenessInfoClosure::G1PrintRegionLivenessInfoClosure(const char* phase_name) : |
2956 | _total_used_bytes(0), _total_capacity_bytes(0), |
2957 | _total_prev_live_bytes(0), _total_next_live_bytes(0), |
2958 | _total_remset_bytes(0), _total_strong_code_roots_bytes(0) |
2959 | { |
2960 | if (!log_is_enabled(Trace, gc, liveness)) { |
2961 | return; |
2962 | } |
2963 | |
2964 | G1CollectedHeap* g1h = G1CollectedHeap::heap(); |
2965 | MemRegion g1_reserved = g1h->g1_reserved(); |
2966 | double now = os::elapsedTime(); |
2967 | |
2968 | // Print the header of the output. |
2969 | log_trace(gc, liveness)(G1PPRL_LINE_PREFIX" PHASE %s @ %1.3f" , phase_name, now); |
2970 | log_trace(gc, liveness)(G1PPRL_LINE_PREFIX" HEAP" |
2971 | G1PPRL_SUM_ADDR_FORMAT("reserved" ) |
2972 | G1PPRL_SUM_BYTE_FORMAT("region-size" ), |
2973 | p2i(g1_reserved.start()), p2i(g1_reserved.end()), |
2974 | HeapRegion::GrainBytes); |
2975 | log_trace(gc, liveness)(G1PPRL_LINE_PREFIX); |
2976 | log_trace(gc, liveness)(G1PPRL_LINE_PREFIX |
2977 | G1PPRL_TYPE_H_FORMAT |
2978 | G1PPRL_ADDR_BASE_H_FORMAT |
2979 | G1PPRL_BYTE_H_FORMAT |
2980 | G1PPRL_BYTE_H_FORMAT |
2981 | G1PPRL_BYTE_H_FORMAT |
2982 | G1PPRL_DOUBLE_H_FORMAT |
2983 | G1PPRL_BYTE_H_FORMAT |
2984 | G1PPRL_STATE_H_FORMAT |
2985 | G1PPRL_BYTE_H_FORMAT, |
2986 | "type" , "address-range" , |
2987 | "used" , "prev-live" , "next-live" , "gc-eff" , |
2988 | "remset" , "state" , "code-roots" ); |
2989 | log_trace(gc, liveness)(G1PPRL_LINE_PREFIX |
2990 | G1PPRL_TYPE_H_FORMAT |
2991 | G1PPRL_ADDR_BASE_H_FORMAT |
2992 | G1PPRL_BYTE_H_FORMAT |
2993 | G1PPRL_BYTE_H_FORMAT |
2994 | G1PPRL_BYTE_H_FORMAT |
2995 | G1PPRL_DOUBLE_H_FORMAT |
2996 | G1PPRL_BYTE_H_FORMAT |
2997 | G1PPRL_STATE_H_FORMAT |
2998 | G1PPRL_BYTE_H_FORMAT, |
2999 | "" , "" , |
3000 | "(bytes)" , "(bytes)" , "(bytes)" , "(bytes/ms)" , |
3001 | "(bytes)" , "" , "(bytes)" ); |
3002 | } |
3003 | |
3004 | bool G1PrintRegionLivenessInfoClosure::do_heap_region(HeapRegion* r) { |
3005 | if (!log_is_enabled(Trace, gc, liveness)) { |
3006 | return false; |
3007 | } |
3008 | |
3009 | const char* type = r->get_type_str(); |
3010 | HeapWord* bottom = r->bottom(); |
3011 | HeapWord* end = r->end(); |
3012 | size_t capacity_bytes = r->capacity(); |
3013 | size_t used_bytes = r->used(); |
3014 | size_t prev_live_bytes = r->live_bytes(); |
3015 | size_t next_live_bytes = r->next_live_bytes(); |
3016 | double gc_eff = r->gc_efficiency(); |
3017 | size_t remset_bytes = r->rem_set()->mem_size(); |
3018 | size_t strong_code_roots_bytes = r->rem_set()->strong_code_roots_mem_size(); |
3019 | const char* remset_type = r->rem_set()->get_short_state_str(); |
3020 | |
3021 | _total_used_bytes += used_bytes; |
3022 | _total_capacity_bytes += capacity_bytes; |
3023 | _total_prev_live_bytes += prev_live_bytes; |
3024 | _total_next_live_bytes += next_live_bytes; |
3025 | _total_remset_bytes += remset_bytes; |
3026 | _total_strong_code_roots_bytes += strong_code_roots_bytes; |
3027 | |
3028 | // Print a line for this particular region. |
3029 | log_trace(gc, liveness)(G1PPRL_LINE_PREFIX |
3030 | G1PPRL_TYPE_FORMAT |
3031 | G1PPRL_ADDR_BASE_FORMAT |
3032 | G1PPRL_BYTE_FORMAT |
3033 | G1PPRL_BYTE_FORMAT |
3034 | G1PPRL_BYTE_FORMAT |
3035 | G1PPRL_DOUBLE_FORMAT |
3036 | G1PPRL_BYTE_FORMAT |
3037 | G1PPRL_STATE_FORMAT |
3038 | G1PPRL_BYTE_FORMAT, |
3039 | type, p2i(bottom), p2i(end), |
3040 | used_bytes, prev_live_bytes, next_live_bytes, gc_eff, |
3041 | remset_bytes, remset_type, strong_code_roots_bytes); |
3042 | |
3043 | return false; |
3044 | } |
3045 | |
3046 | G1PrintRegionLivenessInfoClosure::~G1PrintRegionLivenessInfoClosure() { |
3047 | if (!log_is_enabled(Trace, gc, liveness)) { |
3048 | return; |
3049 | } |
3050 | |
3051 | // add static memory usages to remembered set sizes |
3052 | _total_remset_bytes += HeapRegionRemSet::fl_mem_size() + HeapRegionRemSet::static_mem_size(); |
3053 | // Print the footer of the output. |
3054 | log_trace(gc, liveness)(G1PPRL_LINE_PREFIX); |
3055 | log_trace(gc, liveness)(G1PPRL_LINE_PREFIX |
3056 | " SUMMARY" |
3057 | G1PPRL_SUM_MB_FORMAT("capacity" ) |
3058 | G1PPRL_SUM_MB_PERC_FORMAT("used" ) |
3059 | G1PPRL_SUM_MB_PERC_FORMAT("prev-live" ) |
3060 | G1PPRL_SUM_MB_PERC_FORMAT("next-live" ) |
3061 | G1PPRL_SUM_MB_FORMAT("remset" ) |
3062 | G1PPRL_SUM_MB_FORMAT("code-roots" ), |
3063 | bytes_to_mb(_total_capacity_bytes), |
3064 | bytes_to_mb(_total_used_bytes), |
3065 | percent_of(_total_used_bytes, _total_capacity_bytes), |
3066 | bytes_to_mb(_total_prev_live_bytes), |
3067 | percent_of(_total_prev_live_bytes, _total_capacity_bytes), |
3068 | bytes_to_mb(_total_next_live_bytes), |
3069 | percent_of(_total_next_live_bytes, _total_capacity_bytes), |
3070 | bytes_to_mb(_total_remset_bytes), |
3071 | bytes_to_mb(_total_strong_code_roots_bytes)); |
3072 | } |
3073 | |