1 | /* |
2 | * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved. |
3 | * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
4 | * |
5 | * This code is free software; you can redistribute it and/or modify it |
6 | * under the terms of the GNU General Public License version 2 only, as |
7 | * published by the Free Software Foundation. |
8 | * |
9 | * This code is distributed in the hope that it will be useful, but WITHOUT |
10 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
11 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
12 | * version 2 for more details (a copy is included in the LICENSE file that |
13 | * accompanied this code). |
14 | * |
15 | * You should have received a copy of the GNU General Public License version |
16 | * 2 along with this work; if not, write to the Free Software Foundation, |
17 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
18 | * |
19 | * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
20 | * or visit www.oracle.com if you need additional information or have any |
21 | * questions. |
22 | * |
23 | */ |
24 | |
25 | #include "precompiled.hpp" |
26 | #include "compiler/compileLog.hpp" |
27 | #include "ci/bcEscapeAnalyzer.hpp" |
28 | #include "compiler/oopMap.hpp" |
29 | #include "gc/shared/barrierSet.hpp" |
30 | #include "gc/shared/c2/barrierSetC2.hpp" |
31 | #include "interpreter/interpreter.hpp" |
32 | #include "opto/callGenerator.hpp" |
33 | #include "opto/callnode.hpp" |
34 | #include "opto/castnode.hpp" |
35 | #include "opto/convertnode.hpp" |
36 | #include "opto/escape.hpp" |
37 | #include "opto/locknode.hpp" |
38 | #include "opto/machnode.hpp" |
39 | #include "opto/matcher.hpp" |
40 | #include "opto/parse.hpp" |
41 | #include "opto/regalloc.hpp" |
42 | #include "opto/regmask.hpp" |
43 | #include "opto/rootnode.hpp" |
44 | #include "opto/runtime.hpp" |
45 | |
46 | // Portions of code courtesy of Clifford Click |
47 | |
48 | // Optimization - Graph Style |
49 | |
50 | //============================================================================= |
51 | uint StartNode::size_of() const { return sizeof(*this); } |
52 | bool StartNode::cmp( const Node &n ) const |
53 | { return _domain == ((StartNode&)n)._domain; } |
54 | const Type *StartNode::bottom_type() const { return _domain; } |
55 | const Type* StartNode::Value(PhaseGVN* phase) const { return _domain; } |
56 | #ifndef PRODUCT |
57 | void StartNode::dump_spec(outputStream *st) const { st->print(" #" ); _domain->dump_on(st);} |
58 | void StartNode::dump_compact_spec(outputStream *st) const { /* empty */ } |
59 | #endif |
60 | |
61 | //------------------------------Ideal------------------------------------------ |
62 | Node *StartNode::Ideal(PhaseGVN *phase, bool can_reshape){ |
63 | return remove_dead_region(phase, can_reshape) ? this : NULL; |
64 | } |
65 | |
66 | //------------------------------calling_convention----------------------------- |
67 | void StartNode::calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const { |
68 | Matcher::calling_convention( sig_bt, parm_regs, argcnt, false ); |
69 | } |
70 | |
71 | //------------------------------Registers-------------------------------------- |
72 | const RegMask &StartNode::in_RegMask(uint) const { |
73 | return RegMask::Empty; |
74 | } |
75 | |
76 | //------------------------------match------------------------------------------ |
77 | // Construct projections for incoming parameters, and their RegMask info |
78 | Node *StartNode::match( const ProjNode *proj, const Matcher *match ) { |
79 | switch (proj->_con) { |
80 | case TypeFunc::Control: |
81 | case TypeFunc::I_O: |
82 | case TypeFunc::Memory: |
83 | return new MachProjNode(this,proj->_con,RegMask::Empty,MachProjNode::unmatched_proj); |
84 | case TypeFunc::FramePtr: |
85 | return new MachProjNode(this,proj->_con,Matcher::c_frame_ptr_mask, Op_RegP); |
86 | case TypeFunc::ReturnAdr: |
87 | return new MachProjNode(this,proj->_con,match->_return_addr_mask,Op_RegP); |
88 | case TypeFunc::Parms: |
89 | default: { |
90 | uint parm_num = proj->_con - TypeFunc::Parms; |
91 | const Type *t = _domain->field_at(proj->_con); |
92 | if (t->base() == Type::Half) // 2nd half of Longs and Doubles |
93 | return new ConNode(Type::TOP); |
94 | uint ideal_reg = t->ideal_reg(); |
95 | RegMask &rm = match->_calling_convention_mask[parm_num]; |
96 | return new MachProjNode(this,proj->_con,rm,ideal_reg); |
97 | } |
98 | } |
99 | return NULL; |
100 | } |
101 | |
102 | //------------------------------StartOSRNode---------------------------------- |
103 | // The method start node for an on stack replacement adapter |
104 | |
105 | //------------------------------osr_domain----------------------------- |
106 | const TypeTuple *StartOSRNode::osr_domain() { |
107 | const Type **fields = TypeTuple::fields(2); |
108 | fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // address of osr buffer |
109 | |
110 | return TypeTuple::make(TypeFunc::Parms+1, fields); |
111 | } |
112 | |
113 | //============================================================================= |
114 | const char * const ParmNode::names[TypeFunc::Parms+1] = { |
115 | "Control" , "I_O" , "Memory" , "FramePtr" , "ReturnAdr" , "Parms" |
116 | }; |
117 | |
118 | #ifndef PRODUCT |
119 | void ParmNode::dump_spec(outputStream *st) const { |
120 | if( _con < TypeFunc::Parms ) { |
121 | st->print("%s" , names[_con]); |
122 | } else { |
123 | st->print("Parm%d: " ,_con-TypeFunc::Parms); |
124 | // Verbose and WizardMode dump bottom_type for all nodes |
125 | if( !Verbose && !WizardMode ) bottom_type()->dump_on(st); |
126 | } |
127 | } |
128 | |
129 | void ParmNode::dump_compact_spec(outputStream *st) const { |
130 | if (_con < TypeFunc::Parms) { |
131 | st->print("%s" , names[_con]); |
132 | } else { |
133 | st->print("%d:" , _con-TypeFunc::Parms); |
134 | // unconditionally dump bottom_type |
135 | bottom_type()->dump_on(st); |
136 | } |
137 | } |
138 | |
139 | // For a ParmNode, all immediate inputs and outputs are considered relevant |
140 | // both in compact and standard representation. |
141 | void ParmNode::related(GrowableArray<Node*> *in_rel, GrowableArray<Node*> *out_rel, bool compact) const { |
142 | this->collect_nodes(in_rel, 1, false, false); |
143 | this->collect_nodes(out_rel, -1, false, false); |
144 | } |
145 | #endif |
146 | |
147 | uint ParmNode::ideal_reg() const { |
148 | switch( _con ) { |
149 | case TypeFunc::Control : // fall through |
150 | case TypeFunc::I_O : // fall through |
151 | case TypeFunc::Memory : return 0; |
152 | case TypeFunc::FramePtr : // fall through |
153 | case TypeFunc::ReturnAdr: return Op_RegP; |
154 | default : assert( _con > TypeFunc::Parms, "" ); |
155 | // fall through |
156 | case TypeFunc::Parms : { |
157 | // Type of argument being passed |
158 | const Type *t = in(0)->as_Start()->_domain->field_at(_con); |
159 | return t->ideal_reg(); |
160 | } |
161 | } |
162 | ShouldNotReachHere(); |
163 | return 0; |
164 | } |
165 | |
166 | //============================================================================= |
167 | ReturnNode::ReturnNode(uint edges, Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *retadr ) : Node(edges) { |
168 | init_req(TypeFunc::Control,cntrl); |
169 | init_req(TypeFunc::I_O,i_o); |
170 | init_req(TypeFunc::Memory,memory); |
171 | init_req(TypeFunc::FramePtr,frameptr); |
172 | init_req(TypeFunc::ReturnAdr,retadr); |
173 | } |
174 | |
175 | Node *ReturnNode::Ideal(PhaseGVN *phase, bool can_reshape){ |
176 | return remove_dead_region(phase, can_reshape) ? this : NULL; |
177 | } |
178 | |
179 | const Type* ReturnNode::Value(PhaseGVN* phase) const { |
180 | return ( phase->type(in(TypeFunc::Control)) == Type::TOP) |
181 | ? Type::TOP |
182 | : Type::BOTTOM; |
183 | } |
184 | |
185 | // Do we Match on this edge index or not? No edges on return nodes |
186 | uint ReturnNode::match_edge(uint idx) const { |
187 | return 0; |
188 | } |
189 | |
190 | |
191 | #ifndef PRODUCT |
192 | void ReturnNode::dump_req(outputStream *st) const { |
193 | // Dump the required inputs, enclosed in '(' and ')' |
194 | uint i; // Exit value of loop |
195 | for (i = 0; i < req(); i++) { // For all required inputs |
196 | if (i == TypeFunc::Parms) st->print("returns" ); |
197 | if (in(i)) st->print("%c%d " , Compile::current()->node_arena()->contains(in(i)) ? ' ' : 'o', in(i)->_idx); |
198 | else st->print("_ " ); |
199 | } |
200 | } |
201 | #endif |
202 | |
203 | //============================================================================= |
204 | RethrowNode::RethrowNode( |
205 | Node* cntrl, |
206 | Node* i_o, |
207 | Node* memory, |
208 | Node* frameptr, |
209 | Node* ret_adr, |
210 | Node* exception |
211 | ) : Node(TypeFunc::Parms + 1) { |
212 | init_req(TypeFunc::Control , cntrl ); |
213 | init_req(TypeFunc::I_O , i_o ); |
214 | init_req(TypeFunc::Memory , memory ); |
215 | init_req(TypeFunc::FramePtr , frameptr ); |
216 | init_req(TypeFunc::ReturnAdr, ret_adr); |
217 | init_req(TypeFunc::Parms , exception); |
218 | } |
219 | |
220 | Node *RethrowNode::Ideal(PhaseGVN *phase, bool can_reshape){ |
221 | return remove_dead_region(phase, can_reshape) ? this : NULL; |
222 | } |
223 | |
224 | const Type* RethrowNode::Value(PhaseGVN* phase) const { |
225 | return (phase->type(in(TypeFunc::Control)) == Type::TOP) |
226 | ? Type::TOP |
227 | : Type::BOTTOM; |
228 | } |
229 | |
230 | uint RethrowNode::match_edge(uint idx) const { |
231 | return 0; |
232 | } |
233 | |
234 | #ifndef PRODUCT |
235 | void RethrowNode::dump_req(outputStream *st) const { |
236 | // Dump the required inputs, enclosed in '(' and ')' |
237 | uint i; // Exit value of loop |
238 | for (i = 0; i < req(); i++) { // For all required inputs |
239 | if (i == TypeFunc::Parms) st->print("exception" ); |
240 | if (in(i)) st->print("%c%d " , Compile::current()->node_arena()->contains(in(i)) ? ' ' : 'o', in(i)->_idx); |
241 | else st->print("_ " ); |
242 | } |
243 | } |
244 | #endif |
245 | |
246 | //============================================================================= |
247 | // Do we Match on this edge index or not? Match only target address & method |
248 | uint TailCallNode::match_edge(uint idx) const { |
249 | return TypeFunc::Parms <= idx && idx <= TypeFunc::Parms+1; |
250 | } |
251 | |
252 | //============================================================================= |
253 | // Do we Match on this edge index or not? Match only target address & oop |
254 | uint TailJumpNode::match_edge(uint idx) const { |
255 | return TypeFunc::Parms <= idx && idx <= TypeFunc::Parms+1; |
256 | } |
257 | |
258 | //============================================================================= |
259 | JVMState::JVMState(ciMethod* method, JVMState* caller) : |
260 | _method(method) { |
261 | assert(method != NULL, "must be valid call site" ); |
262 | _bci = InvocationEntryBci; |
263 | _reexecute = Reexecute_Undefined; |
264 | debug_only(_bci = -99); // random garbage value |
265 | debug_only(_map = (SafePointNode*)-1); |
266 | _caller = caller; |
267 | _depth = 1 + (caller == NULL ? 0 : caller->depth()); |
268 | _locoff = TypeFunc::Parms; |
269 | _stkoff = _locoff + _method->max_locals(); |
270 | _monoff = _stkoff + _method->max_stack(); |
271 | _scloff = _monoff; |
272 | _endoff = _monoff; |
273 | _sp = 0; |
274 | } |
275 | JVMState::JVMState(int stack_size) : |
276 | _method(NULL) { |
277 | _bci = InvocationEntryBci; |
278 | _reexecute = Reexecute_Undefined; |
279 | debug_only(_map = (SafePointNode*)-1); |
280 | _caller = NULL; |
281 | _depth = 1; |
282 | _locoff = TypeFunc::Parms; |
283 | _stkoff = _locoff; |
284 | _monoff = _stkoff + stack_size; |
285 | _scloff = _monoff; |
286 | _endoff = _monoff; |
287 | _sp = 0; |
288 | } |
289 | |
290 | //--------------------------------of_depth------------------------------------- |
291 | JVMState* JVMState::of_depth(int d) const { |
292 | const JVMState* jvmp = this; |
293 | assert(0 < d && (uint)d <= depth(), "oob" ); |
294 | for (int skip = depth() - d; skip > 0; skip--) { |
295 | jvmp = jvmp->caller(); |
296 | } |
297 | assert(jvmp->depth() == (uint)d, "found the right one" ); |
298 | return (JVMState*)jvmp; |
299 | } |
300 | |
301 | //-----------------------------same_calls_as----------------------------------- |
302 | bool JVMState::same_calls_as(const JVMState* that) const { |
303 | if (this == that) return true; |
304 | if (this->depth() != that->depth()) return false; |
305 | const JVMState* p = this; |
306 | const JVMState* q = that; |
307 | for (;;) { |
308 | if (p->_method != q->_method) return false; |
309 | if (p->_method == NULL) return true; // bci is irrelevant |
310 | if (p->_bci != q->_bci) return false; |
311 | if (p->_reexecute != q->_reexecute) return false; |
312 | p = p->caller(); |
313 | q = q->caller(); |
314 | if (p == q) return true; |
315 | assert(p != NULL && q != NULL, "depth check ensures we don't run off end" ); |
316 | } |
317 | } |
318 | |
319 | //------------------------------debug_start------------------------------------ |
320 | uint JVMState::debug_start() const { |
321 | debug_only(JVMState* jvmroot = of_depth(1)); |
322 | assert(jvmroot->locoff() <= this->locoff(), "youngest JVMState must be last" ); |
323 | return of_depth(1)->locoff(); |
324 | } |
325 | |
326 | //-------------------------------debug_end------------------------------------- |
327 | uint JVMState::debug_end() const { |
328 | debug_only(JVMState* jvmroot = of_depth(1)); |
329 | assert(jvmroot->endoff() <= this->endoff(), "youngest JVMState must be last" ); |
330 | return endoff(); |
331 | } |
332 | |
333 | //------------------------------debug_depth------------------------------------ |
334 | uint JVMState::debug_depth() const { |
335 | uint total = 0; |
336 | for (const JVMState* jvmp = this; jvmp != NULL; jvmp = jvmp->caller()) { |
337 | total += jvmp->debug_size(); |
338 | } |
339 | return total; |
340 | } |
341 | |
342 | #ifndef PRODUCT |
343 | |
344 | //------------------------------format_helper---------------------------------- |
345 | // Given an allocation (a Chaitin object) and a Node decide if the Node carries |
346 | // any defined value or not. If it does, print out the register or constant. |
347 | static void format_helper( PhaseRegAlloc *regalloc, outputStream* st, Node *n, const char *msg, uint i, GrowableArray<SafePointScalarObjectNode*> *scobjs ) { |
348 | if (n == NULL) { st->print(" NULL" ); return; } |
349 | if (n->is_SafePointScalarObject()) { |
350 | // Scalar replacement. |
351 | SafePointScalarObjectNode* spobj = n->as_SafePointScalarObject(); |
352 | scobjs->append_if_missing(spobj); |
353 | int sco_n = scobjs->find(spobj); |
354 | assert(sco_n >= 0, "" ); |
355 | st->print(" %s%d]=#ScObj" INT32_FORMAT, msg, i, sco_n); |
356 | return; |
357 | } |
358 | if (regalloc->node_regs_max_index() > 0 && |
359 | OptoReg::is_valid(regalloc->get_reg_first(n))) { // Check for undefined |
360 | char buf[50]; |
361 | regalloc->dump_register(n,buf); |
362 | st->print(" %s%d]=%s" ,msg,i,buf); |
363 | } else { // No register, but might be constant |
364 | const Type *t = n->bottom_type(); |
365 | switch (t->base()) { |
366 | case Type::Int: |
367 | st->print(" %s%d]=#" INT32_FORMAT,msg,i,t->is_int()->get_con()); |
368 | break; |
369 | case Type::AnyPtr: |
370 | assert( t == TypePtr::NULL_PTR || n->in_dump(), "" ); |
371 | st->print(" %s%d]=#NULL" ,msg,i); |
372 | break; |
373 | case Type::AryPtr: |
374 | case Type::InstPtr: |
375 | st->print(" %s%d]=#Ptr" INTPTR_FORMAT,msg,i,p2i(t->isa_oopptr()->const_oop())); |
376 | break; |
377 | case Type::KlassPtr: |
378 | st->print(" %s%d]=#Ptr" INTPTR_FORMAT,msg,i,p2i(t->make_ptr()->isa_klassptr()->klass())); |
379 | break; |
380 | case Type::MetadataPtr: |
381 | st->print(" %s%d]=#Ptr" INTPTR_FORMAT,msg,i,p2i(t->make_ptr()->isa_metadataptr()->metadata())); |
382 | break; |
383 | case Type::NarrowOop: |
384 | st->print(" %s%d]=#Ptr" INTPTR_FORMAT,msg,i,p2i(t->make_ptr()->isa_oopptr()->const_oop())); |
385 | break; |
386 | case Type::RawPtr: |
387 | st->print(" %s%d]=#Raw" INTPTR_FORMAT,msg,i,p2i(t->is_rawptr())); |
388 | break; |
389 | case Type::DoubleCon: |
390 | st->print(" %s%d]=#%fD" ,msg,i,t->is_double_constant()->_d); |
391 | break; |
392 | case Type::FloatCon: |
393 | st->print(" %s%d]=#%fF" ,msg,i,t->is_float_constant()->_f); |
394 | break; |
395 | case Type::Long: |
396 | st->print(" %s%d]=#" INT64_FORMAT,msg,i,(int64_t)(t->is_long()->get_con())); |
397 | break; |
398 | case Type::Half: |
399 | case Type::Top: |
400 | st->print(" %s%d]=_" ,msg,i); |
401 | break; |
402 | default: ShouldNotReachHere(); |
403 | } |
404 | } |
405 | } |
406 | |
407 | //------------------------------format----------------------------------------- |
408 | void JVMState::format(PhaseRegAlloc *regalloc, const Node *n, outputStream* st) const { |
409 | st->print(" #" ); |
410 | if (_method) { |
411 | _method->print_short_name(st); |
412 | st->print(" @ bci:%d " ,_bci); |
413 | } else { |
414 | st->print_cr(" runtime stub " ); |
415 | return; |
416 | } |
417 | if (n->is_MachSafePoint()) { |
418 | GrowableArray<SafePointScalarObjectNode*> scobjs; |
419 | MachSafePointNode *mcall = n->as_MachSafePoint(); |
420 | uint i; |
421 | // Print locals |
422 | for (i = 0; i < (uint)loc_size(); i++) |
423 | format_helper(regalloc, st, mcall->local(this, i), "L[" , i, &scobjs); |
424 | // Print stack |
425 | for (i = 0; i < (uint)stk_size(); i++) { |
426 | if ((uint)(_stkoff + i) >= mcall->len()) |
427 | st->print(" oob " ); |
428 | else |
429 | format_helper(regalloc, st, mcall->stack(this, i), "STK[" , i, &scobjs); |
430 | } |
431 | for (i = 0; (int)i < nof_monitors(); i++) { |
432 | Node *box = mcall->monitor_box(this, i); |
433 | Node *obj = mcall->monitor_obj(this, i); |
434 | if (regalloc->node_regs_max_index() > 0 && |
435 | OptoReg::is_valid(regalloc->get_reg_first(box))) { |
436 | box = BoxLockNode::box_node(box); |
437 | format_helper(regalloc, st, box, "MON-BOX[" , i, &scobjs); |
438 | } else { |
439 | OptoReg::Name box_reg = BoxLockNode::reg(box); |
440 | st->print(" MON-BOX%d=%s+%d" , |
441 | i, |
442 | OptoReg::regname(OptoReg::c_frame_pointer), |
443 | regalloc->reg2offset(box_reg)); |
444 | } |
445 | const char* obj_msg = "MON-OBJ[" ; |
446 | if (EliminateLocks) { |
447 | if (BoxLockNode::box_node(box)->is_eliminated()) |
448 | obj_msg = "MON-OBJ(LOCK ELIMINATED)[" ; |
449 | } |
450 | format_helper(regalloc, st, obj, obj_msg, i, &scobjs); |
451 | } |
452 | |
453 | for (i = 0; i < (uint)scobjs.length(); i++) { |
454 | // Scalar replaced objects. |
455 | st->cr(); |
456 | st->print(" # ScObj" INT32_FORMAT " " , i); |
457 | SafePointScalarObjectNode* spobj = scobjs.at(i); |
458 | ciKlass* cik = spobj->bottom_type()->is_oopptr()->klass(); |
459 | assert(cik->is_instance_klass() || |
460 | cik->is_array_klass(), "Not supported allocation." ); |
461 | ciInstanceKlass *iklass = NULL; |
462 | if (cik->is_instance_klass()) { |
463 | cik->print_name_on(st); |
464 | iklass = cik->as_instance_klass(); |
465 | } else if (cik->is_type_array_klass()) { |
466 | cik->as_array_klass()->base_element_type()->print_name_on(st); |
467 | st->print("[%d]" , spobj->n_fields()); |
468 | } else if (cik->is_obj_array_klass()) { |
469 | ciKlass* cie = cik->as_obj_array_klass()->base_element_klass(); |
470 | if (cie->is_instance_klass()) { |
471 | cie->print_name_on(st); |
472 | } else if (cie->is_type_array_klass()) { |
473 | cie->as_array_klass()->base_element_type()->print_name_on(st); |
474 | } else { |
475 | ShouldNotReachHere(); |
476 | } |
477 | st->print("[%d]" , spobj->n_fields()); |
478 | int ndim = cik->as_array_klass()->dimension() - 1; |
479 | while (ndim-- > 0) { |
480 | st->print("[]" ); |
481 | } |
482 | } |
483 | st->print("={" ); |
484 | uint nf = spobj->n_fields(); |
485 | if (nf > 0) { |
486 | uint first_ind = spobj->first_index(mcall->jvms()); |
487 | Node* fld_node = mcall->in(first_ind); |
488 | ciField* cifield; |
489 | if (iklass != NULL) { |
490 | st->print(" [" ); |
491 | cifield = iklass->nonstatic_field_at(0); |
492 | cifield->print_name_on(st); |
493 | format_helper(regalloc, st, fld_node, ":" , 0, &scobjs); |
494 | } else { |
495 | format_helper(regalloc, st, fld_node, "[" , 0, &scobjs); |
496 | } |
497 | for (uint j = 1; j < nf; j++) { |
498 | fld_node = mcall->in(first_ind+j); |
499 | if (iklass != NULL) { |
500 | st->print(", [" ); |
501 | cifield = iklass->nonstatic_field_at(j); |
502 | cifield->print_name_on(st); |
503 | format_helper(regalloc, st, fld_node, ":" , j, &scobjs); |
504 | } else { |
505 | format_helper(regalloc, st, fld_node, ", [" , j, &scobjs); |
506 | } |
507 | } |
508 | } |
509 | st->print(" }" ); |
510 | } |
511 | } |
512 | st->cr(); |
513 | if (caller() != NULL) caller()->format(regalloc, n, st); |
514 | } |
515 | |
516 | |
517 | void JVMState::dump_spec(outputStream *st) const { |
518 | if (_method != NULL) { |
519 | bool printed = false; |
520 | if (!Verbose) { |
521 | // The JVMS dumps make really, really long lines. |
522 | // Take out the most boring parts, which are the package prefixes. |
523 | char buf[500]; |
524 | stringStream namest(buf, sizeof(buf)); |
525 | _method->print_short_name(&namest); |
526 | if (namest.count() < sizeof(buf)) { |
527 | const char* name = namest.base(); |
528 | if (name[0] == ' ') ++name; |
529 | const char* endcn = strchr(name, ':'); // end of class name |
530 | if (endcn == NULL) endcn = strchr(name, '('); |
531 | if (endcn == NULL) endcn = name + strlen(name); |
532 | while (endcn > name && endcn[-1] != '.' && endcn[-1] != '/') |
533 | --endcn; |
534 | st->print(" %s" , endcn); |
535 | printed = true; |
536 | } |
537 | } |
538 | if (!printed) |
539 | _method->print_short_name(st); |
540 | st->print(" @ bci:%d" ,_bci); |
541 | if(_reexecute == Reexecute_True) |
542 | st->print(" reexecute" ); |
543 | } else { |
544 | st->print(" runtime stub" ); |
545 | } |
546 | if (caller() != NULL) caller()->dump_spec(st); |
547 | } |
548 | |
549 | |
550 | void JVMState::dump_on(outputStream* st) const { |
551 | bool print_map = _map && !((uintptr_t)_map & 1) && |
552 | ((caller() == NULL) || (caller()->map() != _map)); |
553 | if (print_map) { |
554 | if (_map->len() > _map->req()) { // _map->has_exceptions() |
555 | Node* ex = _map->in(_map->req()); // _map->next_exception() |
556 | // skip the first one; it's already being printed |
557 | while (ex != NULL && ex->len() > ex->req()) { |
558 | ex = ex->in(ex->req()); // ex->next_exception() |
559 | ex->dump(1); |
560 | } |
561 | } |
562 | _map->dump(Verbose ? 2 : 1); |
563 | } |
564 | if (caller() != NULL) { |
565 | caller()->dump_on(st); |
566 | } |
567 | st->print("JVMS depth=%d loc=%d stk=%d arg=%d mon=%d scalar=%d end=%d mondepth=%d sp=%d bci=%d reexecute=%s method=" , |
568 | depth(), locoff(), stkoff(), argoff(), monoff(), scloff(), endoff(), monitor_depth(), sp(), bci(), should_reexecute()?"true" :"false" ); |
569 | if (_method == NULL) { |
570 | st->print_cr("(none)" ); |
571 | } else { |
572 | _method->print_name(st); |
573 | st->cr(); |
574 | if (bci() >= 0 && bci() < _method->code_size()) { |
575 | st->print(" bc: " ); |
576 | _method->print_codes_on(bci(), bci()+1, st); |
577 | } |
578 | } |
579 | } |
580 | |
581 | // Extra way to dump a jvms from the debugger, |
582 | // to avoid a bug with C++ member function calls. |
583 | void dump_jvms(JVMState* jvms) { |
584 | jvms->dump(); |
585 | } |
586 | #endif |
587 | |
588 | //--------------------------clone_shallow-------------------------------------- |
589 | JVMState* JVMState::clone_shallow(Compile* C) const { |
590 | JVMState* n = has_method() ? new (C) JVMState(_method, _caller) : new (C) JVMState(0); |
591 | n->set_bci(_bci); |
592 | n->_reexecute = _reexecute; |
593 | n->set_locoff(_locoff); |
594 | n->set_stkoff(_stkoff); |
595 | n->set_monoff(_monoff); |
596 | n->set_scloff(_scloff); |
597 | n->set_endoff(_endoff); |
598 | n->set_sp(_sp); |
599 | n->set_map(_map); |
600 | return n; |
601 | } |
602 | |
603 | //---------------------------clone_deep---------------------------------------- |
604 | JVMState* JVMState::clone_deep(Compile* C) const { |
605 | JVMState* n = clone_shallow(C); |
606 | for (JVMState* p = n; p->_caller != NULL; p = p->_caller) { |
607 | p->_caller = p->_caller->clone_shallow(C); |
608 | } |
609 | assert(n->depth() == depth(), "sanity" ); |
610 | assert(n->debug_depth() == debug_depth(), "sanity" ); |
611 | return n; |
612 | } |
613 | |
614 | /** |
615 | * Reset map for all callers |
616 | */ |
617 | void JVMState::set_map_deep(SafePointNode* map) { |
618 | for (JVMState* p = this; p->_caller != NULL; p = p->_caller) { |
619 | p->set_map(map); |
620 | } |
621 | } |
622 | |
623 | // Adapt offsets in in-array after adding or removing an edge. |
624 | // Prerequisite is that the JVMState is used by only one node. |
625 | void JVMState::adapt_position(int delta) { |
626 | for (JVMState* jvms = this; jvms != NULL; jvms = jvms->caller()) { |
627 | jvms->set_locoff(jvms->locoff() + delta); |
628 | jvms->set_stkoff(jvms->stkoff() + delta); |
629 | jvms->set_monoff(jvms->monoff() + delta); |
630 | jvms->set_scloff(jvms->scloff() + delta); |
631 | jvms->set_endoff(jvms->endoff() + delta); |
632 | } |
633 | } |
634 | |
635 | // Mirror the stack size calculation in the deopt code |
636 | // How much stack space would we need at this point in the program in |
637 | // case of deoptimization? |
638 | int JVMState::interpreter_frame_size() const { |
639 | const JVMState* jvms = this; |
640 | int size = 0; |
641 | int callee_parameters = 0; |
642 | int callee_locals = 0; |
643 | int = method()->max_stack() - stk_size(); |
644 | |
645 | while (jvms != NULL) { |
646 | int locks = jvms->nof_monitors(); |
647 | int temps = jvms->stk_size(); |
648 | bool is_top_frame = (jvms == this); |
649 | ciMethod* method = jvms->method(); |
650 | |
651 | int frame_size = BytesPerWord * Interpreter::size_activation(method->max_stack(), |
652 | temps + callee_parameters, |
653 | extra_args, |
654 | locks, |
655 | callee_parameters, |
656 | callee_locals, |
657 | is_top_frame); |
658 | size += frame_size; |
659 | |
660 | callee_parameters = method->size_of_parameters(); |
661 | callee_locals = method->max_locals(); |
662 | extra_args = 0; |
663 | jvms = jvms->caller(); |
664 | } |
665 | return size + Deoptimization::last_frame_adjust(0, callee_locals) * BytesPerWord; |
666 | } |
667 | |
668 | //============================================================================= |
669 | bool CallNode::cmp( const Node &n ) const |
670 | { return _tf == ((CallNode&)n)._tf && _jvms == ((CallNode&)n)._jvms; } |
671 | #ifndef PRODUCT |
672 | void CallNode::dump_req(outputStream *st) const { |
673 | // Dump the required inputs, enclosed in '(' and ')' |
674 | uint i; // Exit value of loop |
675 | for (i = 0; i < req(); i++) { // For all required inputs |
676 | if (i == TypeFunc::Parms) st->print("(" ); |
677 | if (in(i)) st->print("%c%d " , Compile::current()->node_arena()->contains(in(i)) ? ' ' : 'o', in(i)->_idx); |
678 | else st->print("_ " ); |
679 | } |
680 | st->print(")" ); |
681 | } |
682 | |
683 | void CallNode::dump_spec(outputStream *st) const { |
684 | st->print(" " ); |
685 | if (tf() != NULL) tf()->dump_on(st); |
686 | if (_cnt != COUNT_UNKNOWN) st->print(" C=%f" ,_cnt); |
687 | if (jvms() != NULL) jvms()->dump_spec(st); |
688 | } |
689 | #endif |
690 | |
691 | const Type *CallNode::bottom_type() const { return tf()->range(); } |
692 | const Type* CallNode::Value(PhaseGVN* phase) const { |
693 | if (phase->type(in(0)) == Type::TOP) return Type::TOP; |
694 | return tf()->range(); |
695 | } |
696 | |
697 | //------------------------------calling_convention----------------------------- |
698 | void CallNode::calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const { |
699 | // Use the standard compiler calling convention |
700 | Matcher::calling_convention( sig_bt, parm_regs, argcnt, true ); |
701 | } |
702 | |
703 | |
704 | //------------------------------match------------------------------------------ |
705 | // Construct projections for control, I/O, memory-fields, ..., and |
706 | // return result(s) along with their RegMask info |
707 | Node *CallNode::match( const ProjNode *proj, const Matcher *match ) { |
708 | switch (proj->_con) { |
709 | case TypeFunc::Control: |
710 | case TypeFunc::I_O: |
711 | case TypeFunc::Memory: |
712 | return new MachProjNode(this,proj->_con,RegMask::Empty,MachProjNode::unmatched_proj); |
713 | |
714 | case TypeFunc::Parms+1: // For LONG & DOUBLE returns |
715 | assert(tf()->range()->field_at(TypeFunc::Parms+1) == Type::HALF, "" ); |
716 | // 2nd half of doubles and longs |
717 | return new MachProjNode(this,proj->_con, RegMask::Empty, (uint)OptoReg::Bad); |
718 | |
719 | case TypeFunc::Parms: { // Normal returns |
720 | uint ideal_reg = tf()->range()->field_at(TypeFunc::Parms)->ideal_reg(); |
721 | OptoRegPair regs = is_CallRuntime() |
722 | ? match->c_return_value(ideal_reg,true) // Calls into C runtime |
723 | : match-> return_value(ideal_reg,true); // Calls into compiled Java code |
724 | RegMask rm = RegMask(regs.first()); |
725 | if( OptoReg::is_valid(regs.second()) ) |
726 | rm.Insert( regs.second() ); |
727 | return new MachProjNode(this,proj->_con,rm,ideal_reg); |
728 | } |
729 | |
730 | case TypeFunc::ReturnAdr: |
731 | case TypeFunc::FramePtr: |
732 | default: |
733 | ShouldNotReachHere(); |
734 | } |
735 | return NULL; |
736 | } |
737 | |
738 | // Do we Match on this edge index or not? Match no edges |
739 | uint CallNode::match_edge(uint idx) const { |
740 | return 0; |
741 | } |
742 | |
743 | // |
744 | // Determine whether the call could modify the field of the specified |
745 | // instance at the specified offset. |
746 | // |
747 | bool CallNode::may_modify(const TypeOopPtr *t_oop, PhaseTransform *phase) { |
748 | assert((t_oop != NULL), "sanity" ); |
749 | if (is_call_to_arraycopystub() && strcmp(_name, "unsafe_arraycopy" ) != 0) { |
750 | const TypeTuple* args = _tf->domain(); |
751 | Node* dest = NULL; |
752 | // Stubs that can be called once an ArrayCopyNode is expanded have |
753 | // different signatures. Look for the second pointer argument, |
754 | // that is the destination of the copy. |
755 | for (uint i = TypeFunc::Parms, j = 0; i < args->cnt(); i++) { |
756 | if (args->field_at(i)->isa_ptr()) { |
757 | j++; |
758 | if (j == 2) { |
759 | dest = in(i); |
760 | break; |
761 | } |
762 | } |
763 | } |
764 | guarantee(dest != NULL, "Call had only one ptr in, broken IR!" ); |
765 | if (!dest->is_top() && may_modify_arraycopy_helper(phase->type(dest)->is_oopptr(), t_oop, phase)) { |
766 | return true; |
767 | } |
768 | return false; |
769 | } |
770 | if (t_oop->is_known_instance()) { |
771 | // The instance_id is set only for scalar-replaceable allocations which |
772 | // are not passed as arguments according to Escape Analysis. |
773 | return false; |
774 | } |
775 | if (t_oop->is_ptr_to_boxed_value()) { |
776 | ciKlass* boxing_klass = t_oop->klass(); |
777 | if (is_CallStaticJava() && as_CallStaticJava()->is_boxing_method()) { |
778 | // Skip unrelated boxing methods. |
779 | Node* proj = proj_out_or_null(TypeFunc::Parms); |
780 | if ((proj == NULL) || (phase->type(proj)->is_instptr()->klass() != boxing_klass)) { |
781 | return false; |
782 | } |
783 | } |
784 | if (is_CallJava() && as_CallJava()->method() != NULL) { |
785 | ciMethod* meth = as_CallJava()->method(); |
786 | if (meth->is_getter()) { |
787 | return false; |
788 | } |
789 | // May modify (by reflection) if an boxing object is passed |
790 | // as argument or returned. |
791 | Node* proj = returns_pointer() ? proj_out_or_null(TypeFunc::Parms) : NULL; |
792 | if (proj != NULL) { |
793 | const TypeInstPtr* inst_t = phase->type(proj)->isa_instptr(); |
794 | if ((inst_t != NULL) && (!inst_t->klass_is_exact() || |
795 | (inst_t->klass() == boxing_klass))) { |
796 | return true; |
797 | } |
798 | } |
799 | const TypeTuple* d = tf()->domain(); |
800 | for (uint i = TypeFunc::Parms; i < d->cnt(); i++) { |
801 | const TypeInstPtr* inst_t = d->field_at(i)->isa_instptr(); |
802 | if ((inst_t != NULL) && (!inst_t->klass_is_exact() || |
803 | (inst_t->klass() == boxing_klass))) { |
804 | return true; |
805 | } |
806 | } |
807 | return false; |
808 | } |
809 | } |
810 | return true; |
811 | } |
812 | |
813 | // Does this call have a direct reference to n other than debug information? |
814 | bool CallNode::has_non_debug_use(Node *n) { |
815 | const TypeTuple * d = tf()->domain(); |
816 | for (uint i = TypeFunc::Parms; i < d->cnt(); i++) { |
817 | Node *arg = in(i); |
818 | if (arg == n) { |
819 | return true; |
820 | } |
821 | } |
822 | return false; |
823 | } |
824 | |
825 | // Returns the unique CheckCastPP of a call |
826 | // or 'this' if there are several CheckCastPP or unexpected uses |
827 | // or returns NULL if there is no one. |
828 | Node *CallNode::result_cast() { |
829 | Node *cast = NULL; |
830 | |
831 | Node *p = proj_out_or_null(TypeFunc::Parms); |
832 | if (p == NULL) |
833 | return NULL; |
834 | |
835 | for (DUIterator_Fast imax, i = p->fast_outs(imax); i < imax; i++) { |
836 | Node *use = p->fast_out(i); |
837 | if (use->is_CheckCastPP()) { |
838 | if (cast != NULL) { |
839 | return this; // more than 1 CheckCastPP |
840 | } |
841 | cast = use; |
842 | } else if (!use->is_Initialize() && |
843 | !use->is_AddP() && |
844 | use->Opcode() != Op_MemBarStoreStore) { |
845 | // Expected uses are restricted to a CheckCastPP, an Initialize |
846 | // node, a MemBarStoreStore (clone) and AddP nodes. If we |
847 | // encounter any other use (a Phi node can be seen in rare |
848 | // cases) return this to prevent incorrect optimizations. |
849 | return this; |
850 | } |
851 | } |
852 | return cast; |
853 | } |
854 | |
855 | |
856 | void CallNode::(CallProjections* projs, bool separate_io_proj, bool do_asserts) { |
857 | projs->fallthrough_proj = NULL; |
858 | projs->fallthrough_catchproj = NULL; |
859 | projs->fallthrough_ioproj = NULL; |
860 | projs->catchall_ioproj = NULL; |
861 | projs->catchall_catchproj = NULL; |
862 | projs->fallthrough_memproj = NULL; |
863 | projs->catchall_memproj = NULL; |
864 | projs->resproj = NULL; |
865 | projs->exobj = NULL; |
866 | |
867 | for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) { |
868 | ProjNode *pn = fast_out(i)->as_Proj(); |
869 | if (pn->outcnt() == 0) continue; |
870 | switch (pn->_con) { |
871 | case TypeFunc::Control: |
872 | { |
873 | // For Control (fallthrough) and I_O (catch_all_index) we have CatchProj -> Catch -> Proj |
874 | projs->fallthrough_proj = pn; |
875 | DUIterator_Fast jmax, j = pn->fast_outs(jmax); |
876 | const Node *cn = pn->fast_out(j); |
877 | if (cn->is_Catch()) { |
878 | ProjNode *cpn = NULL; |
879 | for (DUIterator_Fast kmax, k = cn->fast_outs(kmax); k < kmax; k++) { |
880 | cpn = cn->fast_out(k)->as_Proj(); |
881 | assert(cpn->is_CatchProj(), "must be a CatchProjNode" ); |
882 | if (cpn->_con == CatchProjNode::fall_through_index) |
883 | projs->fallthrough_catchproj = cpn; |
884 | else { |
885 | assert(cpn->_con == CatchProjNode::catch_all_index, "must be correct index." ); |
886 | projs->catchall_catchproj = cpn; |
887 | } |
888 | } |
889 | } |
890 | break; |
891 | } |
892 | case TypeFunc::I_O: |
893 | if (pn->_is_io_use) |
894 | projs->catchall_ioproj = pn; |
895 | else |
896 | projs->fallthrough_ioproj = pn; |
897 | for (DUIterator j = pn->outs(); pn->has_out(j); j++) { |
898 | Node* e = pn->out(j); |
899 | if (e->Opcode() == Op_CreateEx && e->in(0)->is_CatchProj() && e->outcnt() > 0) { |
900 | assert(projs->exobj == NULL, "only one" ); |
901 | projs->exobj = e; |
902 | } |
903 | } |
904 | break; |
905 | case TypeFunc::Memory: |
906 | if (pn->_is_io_use) |
907 | projs->catchall_memproj = pn; |
908 | else |
909 | projs->fallthrough_memproj = pn; |
910 | break; |
911 | case TypeFunc::Parms: |
912 | projs->resproj = pn; |
913 | break; |
914 | default: |
915 | assert(false, "unexpected projection from allocation node." ); |
916 | } |
917 | } |
918 | |
919 | // The resproj may not exist because the result could be ignored |
920 | // and the exception object may not exist if an exception handler |
921 | // swallows the exception but all the other must exist and be found. |
922 | assert(projs->fallthrough_proj != NULL, "must be found" ); |
923 | do_asserts = do_asserts && !Compile::current()->inlining_incrementally(); |
924 | assert(!do_asserts || projs->fallthrough_catchproj != NULL, "must be found" ); |
925 | assert(!do_asserts || projs->fallthrough_memproj != NULL, "must be found" ); |
926 | assert(!do_asserts || projs->fallthrough_ioproj != NULL, "must be found" ); |
927 | assert(!do_asserts || projs->catchall_catchproj != NULL, "must be found" ); |
928 | if (separate_io_proj) { |
929 | assert(!do_asserts || projs->catchall_memproj != NULL, "must be found" ); |
930 | assert(!do_asserts || projs->catchall_ioproj != NULL, "must be found" ); |
931 | } |
932 | } |
933 | |
934 | Node *CallNode::Ideal(PhaseGVN *phase, bool can_reshape) { |
935 | CallGenerator* cg = generator(); |
936 | if (can_reshape && cg != NULL && cg->is_mh_late_inline() && !cg->already_attempted()) { |
937 | // Check whether this MH handle call becomes a candidate for inlining |
938 | ciMethod* callee = cg->method(); |
939 | vmIntrinsics::ID iid = callee->intrinsic_id(); |
940 | if (iid == vmIntrinsics::_invokeBasic) { |
941 | if (in(TypeFunc::Parms)->Opcode() == Op_ConP) { |
942 | phase->C->prepend_late_inline(cg); |
943 | set_generator(NULL); |
944 | } |
945 | } else { |
946 | assert(callee->has_member_arg(), "wrong type of call?" ); |
947 | if (in(TypeFunc::Parms + callee->arg_size() - 1)->Opcode() == Op_ConP) { |
948 | phase->C->prepend_late_inline(cg); |
949 | set_generator(NULL); |
950 | } |
951 | } |
952 | } |
953 | return SafePointNode::Ideal(phase, can_reshape); |
954 | } |
955 | |
956 | bool CallNode::is_call_to_arraycopystub() const { |
957 | if (_name != NULL && strstr(_name, "arraycopy" ) != 0) { |
958 | return true; |
959 | } |
960 | return false; |
961 | } |
962 | |
963 | //============================================================================= |
964 | uint CallJavaNode::size_of() const { return sizeof(*this); } |
965 | bool CallJavaNode::cmp( const Node &n ) const { |
966 | CallJavaNode &call = (CallJavaNode&)n; |
967 | return CallNode::cmp(call) && _method == call._method && |
968 | _override_symbolic_info == call._override_symbolic_info; |
969 | } |
970 | #ifdef ASSERT |
971 | bool CallJavaNode::validate_symbolic_info() const { |
972 | if (method() == NULL) { |
973 | return true; // call into runtime or uncommon trap |
974 | } |
975 | ciMethod* symbolic_info = jvms()->method()->get_method_at_bci(_bci); |
976 | ciMethod* callee = method(); |
977 | if (symbolic_info->is_method_handle_intrinsic() && !callee->is_method_handle_intrinsic()) { |
978 | assert(override_symbolic_info(), "should be set" ); |
979 | } |
980 | assert(ciMethod::is_consistent_info(symbolic_info, callee), "inconsistent info" ); |
981 | return true; |
982 | } |
983 | #endif |
984 | |
985 | #ifndef PRODUCT |
986 | void CallJavaNode::dump_spec(outputStream *st) const { |
987 | if( _method ) _method->print_short_name(st); |
988 | CallNode::dump_spec(st); |
989 | } |
990 | |
991 | void CallJavaNode::dump_compact_spec(outputStream* st) const { |
992 | if (_method) { |
993 | _method->print_short_name(st); |
994 | } else { |
995 | st->print("<?>" ); |
996 | } |
997 | } |
998 | #endif |
999 | |
1000 | //============================================================================= |
1001 | uint CallStaticJavaNode::size_of() const { return sizeof(*this); } |
1002 | bool CallStaticJavaNode::cmp( const Node &n ) const { |
1003 | CallStaticJavaNode &call = (CallStaticJavaNode&)n; |
1004 | return CallJavaNode::cmp(call); |
1005 | } |
1006 | |
1007 | //----------------------------uncommon_trap_request---------------------------- |
1008 | // If this is an uncommon trap, return the request code, else zero. |
1009 | int CallStaticJavaNode::uncommon_trap_request() const { |
1010 | if (_name != NULL && !strcmp(_name, "uncommon_trap" )) { |
1011 | return extract_uncommon_trap_request(this); |
1012 | } |
1013 | return 0; |
1014 | } |
1015 | int CallStaticJavaNode::(const Node* call) { |
1016 | #ifndef PRODUCT |
1017 | if (!(call->req() > TypeFunc::Parms && |
1018 | call->in(TypeFunc::Parms) != NULL && |
1019 | call->in(TypeFunc::Parms)->is_Con() && |
1020 | call->in(TypeFunc::Parms)->bottom_type()->isa_int())) { |
1021 | assert(in_dump() != 0, "OK if dumping" ); |
1022 | tty->print("[bad uncommon trap]" ); |
1023 | return 0; |
1024 | } |
1025 | #endif |
1026 | return call->in(TypeFunc::Parms)->bottom_type()->is_int()->get_con(); |
1027 | } |
1028 | |
1029 | #ifndef PRODUCT |
1030 | void CallStaticJavaNode::dump_spec(outputStream *st) const { |
1031 | st->print("# Static " ); |
1032 | if (_name != NULL) { |
1033 | st->print("%s" , _name); |
1034 | int trap_req = uncommon_trap_request(); |
1035 | if (trap_req != 0) { |
1036 | char buf[100]; |
1037 | st->print("(%s)" , |
1038 | Deoptimization::format_trap_request(buf, sizeof(buf), |
1039 | trap_req)); |
1040 | } |
1041 | st->print(" " ); |
1042 | } |
1043 | CallJavaNode::dump_spec(st); |
1044 | } |
1045 | |
1046 | void CallStaticJavaNode::dump_compact_spec(outputStream* st) const { |
1047 | if (_method) { |
1048 | _method->print_short_name(st); |
1049 | } else if (_name) { |
1050 | st->print("%s" , _name); |
1051 | } else { |
1052 | st->print("<?>" ); |
1053 | } |
1054 | } |
1055 | #endif |
1056 | |
1057 | //============================================================================= |
1058 | uint CallDynamicJavaNode::size_of() const { return sizeof(*this); } |
1059 | bool CallDynamicJavaNode::cmp( const Node &n ) const { |
1060 | CallDynamicJavaNode &call = (CallDynamicJavaNode&)n; |
1061 | return CallJavaNode::cmp(call); |
1062 | } |
1063 | #ifndef PRODUCT |
1064 | void CallDynamicJavaNode::dump_spec(outputStream *st) const { |
1065 | st->print("# Dynamic " ); |
1066 | CallJavaNode::dump_spec(st); |
1067 | } |
1068 | #endif |
1069 | |
1070 | //============================================================================= |
1071 | uint CallRuntimeNode::size_of() const { return sizeof(*this); } |
1072 | bool CallRuntimeNode::cmp( const Node &n ) const { |
1073 | CallRuntimeNode &call = (CallRuntimeNode&)n; |
1074 | return CallNode::cmp(call) && !strcmp(_name,call._name); |
1075 | } |
1076 | #ifndef PRODUCT |
1077 | void CallRuntimeNode::dump_spec(outputStream *st) const { |
1078 | st->print("# " ); |
1079 | st->print("%s" , _name); |
1080 | CallNode::dump_spec(st); |
1081 | } |
1082 | #endif |
1083 | |
1084 | //------------------------------calling_convention----------------------------- |
1085 | void CallRuntimeNode::calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const { |
1086 | Matcher::c_calling_convention( sig_bt, parm_regs, argcnt ); |
1087 | } |
1088 | |
1089 | //============================================================================= |
1090 | //------------------------------calling_convention----------------------------- |
1091 | |
1092 | |
1093 | //============================================================================= |
1094 | #ifndef PRODUCT |
1095 | void CallLeafNode::dump_spec(outputStream *st) const { |
1096 | st->print("# " ); |
1097 | st->print("%s" , _name); |
1098 | CallNode::dump_spec(st); |
1099 | } |
1100 | #endif |
1101 | |
1102 | //============================================================================= |
1103 | |
1104 | void SafePointNode::set_local(JVMState* jvms, uint idx, Node *c) { |
1105 | assert(verify_jvms(jvms), "jvms must match" ); |
1106 | int loc = jvms->locoff() + idx; |
1107 | if (in(loc)->is_top() && idx > 0 && !c->is_top() ) { |
1108 | // If current local idx is top then local idx - 1 could |
1109 | // be a long/double that needs to be killed since top could |
1110 | // represent the 2nd half ofthe long/double. |
1111 | uint ideal = in(loc -1)->ideal_reg(); |
1112 | if (ideal == Op_RegD || ideal == Op_RegL) { |
1113 | // set other (low index) half to top |
1114 | set_req(loc - 1, in(loc)); |
1115 | } |
1116 | } |
1117 | set_req(loc, c); |
1118 | } |
1119 | |
1120 | uint SafePointNode::size_of() const { return sizeof(*this); } |
1121 | bool SafePointNode::cmp( const Node &n ) const { |
1122 | return (&n == this); // Always fail except on self |
1123 | } |
1124 | |
1125 | //-------------------------set_next_exception---------------------------------- |
1126 | void SafePointNode::set_next_exception(SafePointNode* n) { |
1127 | assert(n == NULL || n->Opcode() == Op_SafePoint, "correct value for next_exception" ); |
1128 | if (len() == req()) { |
1129 | if (n != NULL) add_prec(n); |
1130 | } else { |
1131 | set_prec(req(), n); |
1132 | } |
1133 | } |
1134 | |
1135 | |
1136 | //----------------------------next_exception----------------------------------- |
1137 | SafePointNode* SafePointNode::next_exception() const { |
1138 | if (len() == req()) { |
1139 | return NULL; |
1140 | } else { |
1141 | Node* n = in(req()); |
1142 | assert(n == NULL || n->Opcode() == Op_SafePoint, "no other uses of prec edges" ); |
1143 | return (SafePointNode*) n; |
1144 | } |
1145 | } |
1146 | |
1147 | |
1148 | //------------------------------Ideal------------------------------------------ |
1149 | // Skip over any collapsed Regions |
1150 | Node *SafePointNode::Ideal(PhaseGVN *phase, bool can_reshape) { |
1151 | return remove_dead_region(phase, can_reshape) ? this : NULL; |
1152 | } |
1153 | |
1154 | //------------------------------Identity--------------------------------------- |
1155 | // Remove obviously duplicate safepoints |
1156 | Node* SafePointNode::Identity(PhaseGVN* phase) { |
1157 | |
1158 | // If you have back to back safepoints, remove one |
1159 | if( in(TypeFunc::Control)->is_SafePoint() ) |
1160 | return in(TypeFunc::Control); |
1161 | |
1162 | if( in(0)->is_Proj() ) { |
1163 | Node *n0 = in(0)->in(0); |
1164 | // Check if he is a call projection (except Leaf Call) |
1165 | if( n0->is_Catch() ) { |
1166 | n0 = n0->in(0)->in(0); |
1167 | assert( n0->is_Call(), "expect a call here" ); |
1168 | } |
1169 | if( n0->is_Call() && n0->as_Call()->guaranteed_safepoint() ) { |
1170 | // Don't remove a safepoint belonging to an OuterStripMinedLoopEndNode. |
1171 | // If the loop dies, they will be removed together. |
1172 | if (has_out_with(Op_OuterStripMinedLoopEnd)) { |
1173 | return this; |
1174 | } |
1175 | // Useless Safepoint, so remove it |
1176 | return in(TypeFunc::Control); |
1177 | } |
1178 | } |
1179 | |
1180 | return this; |
1181 | } |
1182 | |
1183 | //------------------------------Value------------------------------------------ |
1184 | const Type* SafePointNode::Value(PhaseGVN* phase) const { |
1185 | if( phase->type(in(0)) == Type::TOP ) return Type::TOP; |
1186 | if( phase->eqv( in(0), this ) ) return Type::TOP; // Dead infinite loop |
1187 | return Type::CONTROL; |
1188 | } |
1189 | |
1190 | #ifndef PRODUCT |
1191 | void SafePointNode::dump_spec(outputStream *st) const { |
1192 | st->print(" SafePoint " ); |
1193 | _replaced_nodes.dump(st); |
1194 | } |
1195 | |
1196 | // The related nodes of a SafepointNode are all data inputs, excluding the |
1197 | // control boundary, as well as all outputs till level 2 (to include projection |
1198 | // nodes and targets). In compact mode, just include inputs till level 1 and |
1199 | // outputs as before. |
1200 | void SafePointNode::related(GrowableArray<Node*> *in_rel, GrowableArray<Node*> *out_rel, bool compact) const { |
1201 | if (compact) { |
1202 | this->collect_nodes(in_rel, 1, false, false); |
1203 | } else { |
1204 | this->collect_nodes_in_all_data(in_rel, false); |
1205 | } |
1206 | this->collect_nodes(out_rel, -2, false, false); |
1207 | } |
1208 | #endif |
1209 | |
1210 | const RegMask &SafePointNode::in_RegMask(uint idx) const { |
1211 | if( idx < TypeFunc::Parms ) return RegMask::Empty; |
1212 | // Values outside the domain represent debug info |
1213 | return *(Compile::current()->matcher()->idealreg2debugmask[in(idx)->ideal_reg()]); |
1214 | } |
1215 | const RegMask &SafePointNode::out_RegMask() const { |
1216 | return RegMask::Empty; |
1217 | } |
1218 | |
1219 | |
1220 | void SafePointNode::grow_stack(JVMState* jvms, uint grow_by) { |
1221 | assert((int)grow_by > 0, "sanity" ); |
1222 | int monoff = jvms->monoff(); |
1223 | int scloff = jvms->scloff(); |
1224 | int endoff = jvms->endoff(); |
1225 | assert(endoff == (int)req(), "no other states or debug info after me" ); |
1226 | Node* top = Compile::current()->top(); |
1227 | for (uint i = 0; i < grow_by; i++) { |
1228 | ins_req(monoff, top); |
1229 | } |
1230 | jvms->set_monoff(monoff + grow_by); |
1231 | jvms->set_scloff(scloff + grow_by); |
1232 | jvms->set_endoff(endoff + grow_by); |
1233 | } |
1234 | |
1235 | void SafePointNode::push_monitor(const FastLockNode *lock) { |
1236 | // Add a LockNode, which points to both the original BoxLockNode (the |
1237 | // stack space for the monitor) and the Object being locked. |
1238 | const int MonitorEdges = 2; |
1239 | assert(JVMState::logMonitorEdges == exact_log2(MonitorEdges), "correct MonitorEdges" ); |
1240 | assert(req() == jvms()->endoff(), "correct sizing" ); |
1241 | int nextmon = jvms()->scloff(); |
1242 | if (GenerateSynchronizationCode) { |
1243 | ins_req(nextmon, lock->box_node()); |
1244 | ins_req(nextmon+1, lock->obj_node()); |
1245 | } else { |
1246 | Node* top = Compile::current()->top(); |
1247 | ins_req(nextmon, top); |
1248 | ins_req(nextmon, top); |
1249 | } |
1250 | jvms()->set_scloff(nextmon + MonitorEdges); |
1251 | jvms()->set_endoff(req()); |
1252 | } |
1253 | |
1254 | void SafePointNode::pop_monitor() { |
1255 | // Delete last monitor from debug info |
1256 | debug_only(int num_before_pop = jvms()->nof_monitors()); |
1257 | const int MonitorEdges = 2; |
1258 | assert(JVMState::logMonitorEdges == exact_log2(MonitorEdges), "correct MonitorEdges" ); |
1259 | int scloff = jvms()->scloff(); |
1260 | int endoff = jvms()->endoff(); |
1261 | int new_scloff = scloff - MonitorEdges; |
1262 | int new_endoff = endoff - MonitorEdges; |
1263 | jvms()->set_scloff(new_scloff); |
1264 | jvms()->set_endoff(new_endoff); |
1265 | while (scloff > new_scloff) del_req_ordered(--scloff); |
1266 | assert(jvms()->nof_monitors() == num_before_pop-1, "" ); |
1267 | } |
1268 | |
1269 | Node *SafePointNode::peek_monitor_box() const { |
1270 | int mon = jvms()->nof_monitors() - 1; |
1271 | assert(mon >= 0, "must have a monitor" ); |
1272 | return monitor_box(jvms(), mon); |
1273 | } |
1274 | |
1275 | Node *SafePointNode::peek_monitor_obj() const { |
1276 | int mon = jvms()->nof_monitors() - 1; |
1277 | assert(mon >= 0, "must have a monitor" ); |
1278 | return monitor_obj(jvms(), mon); |
1279 | } |
1280 | |
1281 | // Do we Match on this edge index or not? Match no edges |
1282 | uint SafePointNode::match_edge(uint idx) const { |
1283 | if( !needs_polling_address_input() ) |
1284 | return 0; |
1285 | |
1286 | return (TypeFunc::Parms == idx); |
1287 | } |
1288 | |
1289 | void SafePointNode::disconnect_from_root(PhaseIterGVN *igvn) { |
1290 | assert(Opcode() == Op_SafePoint, "only value for safepoint in loops" ); |
1291 | int nb = igvn->C->root()->find_prec_edge(this); |
1292 | if (nb != -1) { |
1293 | igvn->C->root()->rm_prec(nb); |
1294 | } |
1295 | } |
1296 | |
1297 | //============== SafePointScalarObjectNode ============== |
1298 | |
1299 | SafePointScalarObjectNode::SafePointScalarObjectNode(const TypeOopPtr* tp, |
1300 | #ifdef ASSERT |
1301 | AllocateNode* alloc, |
1302 | #endif |
1303 | uint first_index, |
1304 | uint n_fields) : |
1305 | TypeNode(tp, 1), // 1 control input -- seems required. Get from root. |
1306 | _first_index(first_index), |
1307 | _n_fields(n_fields) |
1308 | #ifdef ASSERT |
1309 | , _alloc(alloc) |
1310 | #endif |
1311 | { |
1312 | init_class_id(Class_SafePointScalarObject); |
1313 | } |
1314 | |
1315 | // Do not allow value-numbering for SafePointScalarObject node. |
1316 | uint SafePointScalarObjectNode::hash() const { return NO_HASH; } |
1317 | bool SafePointScalarObjectNode::cmp( const Node &n ) const { |
1318 | return (&n == this); // Always fail except on self |
1319 | } |
1320 | |
1321 | uint SafePointScalarObjectNode::ideal_reg() const { |
1322 | return 0; // No matching to machine instruction |
1323 | } |
1324 | |
1325 | const RegMask &SafePointScalarObjectNode::in_RegMask(uint idx) const { |
1326 | return *(Compile::current()->matcher()->idealreg2debugmask[in(idx)->ideal_reg()]); |
1327 | } |
1328 | |
1329 | const RegMask &SafePointScalarObjectNode::out_RegMask() const { |
1330 | return RegMask::Empty; |
1331 | } |
1332 | |
1333 | uint SafePointScalarObjectNode::match_edge(uint idx) const { |
1334 | return 0; |
1335 | } |
1336 | |
1337 | SafePointScalarObjectNode* |
1338 | SafePointScalarObjectNode::clone(Dict* sosn_map) const { |
1339 | void* cached = (*sosn_map)[(void*)this]; |
1340 | if (cached != NULL) { |
1341 | return (SafePointScalarObjectNode*)cached; |
1342 | } |
1343 | SafePointScalarObjectNode* res = (SafePointScalarObjectNode*)Node::clone(); |
1344 | sosn_map->Insert((void*)this, (void*)res); |
1345 | return res; |
1346 | } |
1347 | |
1348 | |
1349 | #ifndef PRODUCT |
1350 | void SafePointScalarObjectNode::dump_spec(outputStream *st) const { |
1351 | st->print(" # fields@[%d..%d]" , first_index(), |
1352 | first_index() + n_fields() - 1); |
1353 | } |
1354 | |
1355 | #endif |
1356 | |
1357 | //============================================================================= |
1358 | uint AllocateNode::size_of() const { return sizeof(*this); } |
1359 | |
1360 | AllocateNode::AllocateNode(Compile* C, const TypeFunc *atype, |
1361 | Node *ctrl, Node *mem, Node *abio, |
1362 | Node *size, Node *klass_node, Node *initial_test) |
1363 | : CallNode(atype, NULL, TypeRawPtr::BOTTOM) |
1364 | { |
1365 | init_class_id(Class_Allocate); |
1366 | init_flags(Flag_is_macro); |
1367 | _is_scalar_replaceable = false; |
1368 | _is_non_escaping = false; |
1369 | _is_allocation_MemBar_redundant = false; |
1370 | Node *topnode = C->top(); |
1371 | |
1372 | init_req( TypeFunc::Control , ctrl ); |
1373 | init_req( TypeFunc::I_O , abio ); |
1374 | init_req( TypeFunc::Memory , mem ); |
1375 | init_req( TypeFunc::ReturnAdr, topnode ); |
1376 | init_req( TypeFunc::FramePtr , topnode ); |
1377 | init_req( AllocSize , size); |
1378 | init_req( KlassNode , klass_node); |
1379 | init_req( InitialTest , initial_test); |
1380 | init_req( ALength , topnode); |
1381 | C->add_macro_node(this); |
1382 | } |
1383 | |
1384 | void AllocateNode::compute_MemBar_redundancy(ciMethod* initializer) |
1385 | { |
1386 | assert(initializer != NULL && |
1387 | initializer->is_initializer() && |
1388 | !initializer->is_static(), |
1389 | "unexpected initializer method" ); |
1390 | BCEscapeAnalyzer* analyzer = initializer->get_bcea(); |
1391 | if (analyzer == NULL) { |
1392 | return; |
1393 | } |
1394 | |
1395 | // Allocation node is first parameter in its initializer |
1396 | if (analyzer->is_arg_stack(0) || analyzer->is_arg_local(0)) { |
1397 | _is_allocation_MemBar_redundant = true; |
1398 | } |
1399 | } |
1400 | |
1401 | //============================================================================= |
1402 | Node* AllocateArrayNode::Ideal(PhaseGVN *phase, bool can_reshape) { |
1403 | if (remove_dead_region(phase, can_reshape)) return this; |
1404 | // Don't bother trying to transform a dead node |
1405 | if (in(0) && in(0)->is_top()) return NULL; |
1406 | |
1407 | const Type* type = phase->type(Ideal_length()); |
1408 | if (type->isa_int() && type->is_int()->_hi < 0) { |
1409 | if (can_reshape) { |
1410 | PhaseIterGVN *igvn = phase->is_IterGVN(); |
1411 | // Unreachable fall through path (negative array length), |
1412 | // the allocation can only throw so disconnect it. |
1413 | Node* proj = proj_out_or_null(TypeFunc::Control); |
1414 | Node* catchproj = NULL; |
1415 | if (proj != NULL) { |
1416 | for (DUIterator_Fast imax, i = proj->fast_outs(imax); i < imax; i++) { |
1417 | Node *cn = proj->fast_out(i); |
1418 | if (cn->is_Catch()) { |
1419 | catchproj = cn->as_Multi()->proj_out_or_null(CatchProjNode::fall_through_index); |
1420 | break; |
1421 | } |
1422 | } |
1423 | } |
1424 | if (catchproj != NULL && catchproj->outcnt() > 0 && |
1425 | (catchproj->outcnt() > 1 || |
1426 | catchproj->unique_out()->Opcode() != Op_Halt)) { |
1427 | assert(catchproj->is_CatchProj(), "must be a CatchProjNode" ); |
1428 | Node* nproj = catchproj->clone(); |
1429 | igvn->register_new_node_with_optimizer(nproj); |
1430 | |
1431 | Node *frame = new ParmNode( phase->C->start(), TypeFunc::FramePtr ); |
1432 | frame = phase->transform(frame); |
1433 | // Halt & Catch Fire |
1434 | Node *halt = new HaltNode( nproj, frame ); |
1435 | phase->C->root()->add_req(halt); |
1436 | phase->transform(halt); |
1437 | |
1438 | igvn->replace_node(catchproj, phase->C->top()); |
1439 | return this; |
1440 | } |
1441 | } else { |
1442 | // Can't correct it during regular GVN so register for IGVN |
1443 | phase->C->record_for_igvn(this); |
1444 | } |
1445 | } |
1446 | return NULL; |
1447 | } |
1448 | |
1449 | // Retrieve the length from the AllocateArrayNode. Narrow the type with a |
1450 | // CastII, if appropriate. If we are not allowed to create new nodes, and |
1451 | // a CastII is appropriate, return NULL. |
1452 | Node *AllocateArrayNode::make_ideal_length(const TypeOopPtr* oop_type, PhaseTransform *phase, bool allow_new_nodes) { |
1453 | Node *length = in(AllocateNode::ALength); |
1454 | assert(length != NULL, "length is not null" ); |
1455 | |
1456 | const TypeInt* length_type = phase->find_int_type(length); |
1457 | const TypeAryPtr* ary_type = oop_type->isa_aryptr(); |
1458 | |
1459 | if (ary_type != NULL && length_type != NULL) { |
1460 | const TypeInt* narrow_length_type = ary_type->narrow_size_type(length_type); |
1461 | if (narrow_length_type != length_type) { |
1462 | // Assert one of: |
1463 | // - the narrow_length is 0 |
1464 | // - the narrow_length is not wider than length |
1465 | assert(narrow_length_type == TypeInt::ZERO || |
1466 | length_type->is_con() && narrow_length_type->is_con() && |
1467 | (narrow_length_type->_hi <= length_type->_lo) || |
1468 | (narrow_length_type->_hi <= length_type->_hi && |
1469 | narrow_length_type->_lo >= length_type->_lo), |
1470 | "narrow type must be narrower than length type" ); |
1471 | |
1472 | // Return NULL if new nodes are not allowed |
1473 | if (!allow_new_nodes) return NULL; |
1474 | // Create a cast which is control dependent on the initialization to |
1475 | // propagate the fact that the array length must be positive. |
1476 | InitializeNode* init = initialization(); |
1477 | assert(init != NULL, "initialization not found" ); |
1478 | length = new CastIINode(length, narrow_length_type); |
1479 | length->set_req(0, init->proj_out_or_null(0)); |
1480 | } |
1481 | } |
1482 | |
1483 | return length; |
1484 | } |
1485 | |
1486 | //============================================================================= |
1487 | uint LockNode::size_of() const { return sizeof(*this); } |
1488 | |
1489 | // Redundant lock elimination |
1490 | // |
1491 | // There are various patterns of locking where we release and |
1492 | // immediately reacquire a lock in a piece of code where no operations |
1493 | // occur in between that would be observable. In those cases we can |
1494 | // skip releasing and reacquiring the lock without violating any |
1495 | // fairness requirements. Doing this around a loop could cause a lock |
1496 | // to be held for a very long time so we concentrate on non-looping |
1497 | // control flow. We also require that the operations are fully |
1498 | // redundant meaning that we don't introduce new lock operations on |
1499 | // some paths so to be able to eliminate it on others ala PRE. This |
1500 | // would probably require some more extensive graph manipulation to |
1501 | // guarantee that the memory edges were all handled correctly. |
1502 | // |
1503 | // Assuming p is a simple predicate which can't trap in any way and s |
1504 | // is a synchronized method consider this code: |
1505 | // |
1506 | // s(); |
1507 | // if (p) |
1508 | // s(); |
1509 | // else |
1510 | // s(); |
1511 | // s(); |
1512 | // |
1513 | // 1. The unlocks of the first call to s can be eliminated if the |
1514 | // locks inside the then and else branches are eliminated. |
1515 | // |
1516 | // 2. The unlocks of the then and else branches can be eliminated if |
1517 | // the lock of the final call to s is eliminated. |
1518 | // |
1519 | // Either of these cases subsumes the simple case of sequential control flow |
1520 | // |
1521 | // Addtionally we can eliminate versions without the else case: |
1522 | // |
1523 | // s(); |
1524 | // if (p) |
1525 | // s(); |
1526 | // s(); |
1527 | // |
1528 | // 3. In this case we eliminate the unlock of the first s, the lock |
1529 | // and unlock in the then case and the lock in the final s. |
1530 | // |
1531 | // Note also that in all these cases the then/else pieces don't have |
1532 | // to be trivial as long as they begin and end with synchronization |
1533 | // operations. |
1534 | // |
1535 | // s(); |
1536 | // if (p) |
1537 | // s(); |
1538 | // f(); |
1539 | // s(); |
1540 | // s(); |
1541 | // |
1542 | // The code will work properly for this case, leaving in the unlock |
1543 | // before the call to f and the relock after it. |
1544 | // |
1545 | // A potentially interesting case which isn't handled here is when the |
1546 | // locking is partially redundant. |
1547 | // |
1548 | // s(); |
1549 | // if (p) |
1550 | // s(); |
1551 | // |
1552 | // This could be eliminated putting unlocking on the else case and |
1553 | // eliminating the first unlock and the lock in the then side. |
1554 | // Alternatively the unlock could be moved out of the then side so it |
1555 | // was after the merge and the first unlock and second lock |
1556 | // eliminated. This might require less manipulation of the memory |
1557 | // state to get correct. |
1558 | // |
1559 | // Additionally we might allow work between a unlock and lock before |
1560 | // giving up eliminating the locks. The current code disallows any |
1561 | // conditional control flow between these operations. A formulation |
1562 | // similar to partial redundancy elimination computing the |
1563 | // availability of unlocking and the anticipatability of locking at a |
1564 | // program point would allow detection of fully redundant locking with |
1565 | // some amount of work in between. I'm not sure how often I really |
1566 | // think that would occur though. Most of the cases I've seen |
1567 | // indicate it's likely non-trivial work would occur in between. |
1568 | // There may be other more complicated constructs where we could |
1569 | // eliminate locking but I haven't seen any others appear as hot or |
1570 | // interesting. |
1571 | // |
1572 | // Locking and unlocking have a canonical form in ideal that looks |
1573 | // roughly like this: |
1574 | // |
1575 | // <obj> |
1576 | // | \\------+ |
1577 | // | \ \ |
1578 | // | BoxLock \ |
1579 | // | | | \ |
1580 | // | | \ \ |
1581 | // | | FastLock |
1582 | // | | / |
1583 | // | | / |
1584 | // | | | |
1585 | // |
1586 | // Lock |
1587 | // | |
1588 | // Proj #0 |
1589 | // | |
1590 | // MembarAcquire |
1591 | // | |
1592 | // Proj #0 |
1593 | // |
1594 | // MembarRelease |
1595 | // | |
1596 | // Proj #0 |
1597 | // | |
1598 | // Unlock |
1599 | // | |
1600 | // Proj #0 |
1601 | // |
1602 | // |
1603 | // This code proceeds by processing Lock nodes during PhaseIterGVN |
1604 | // and searching back through its control for the proper code |
1605 | // patterns. Once it finds a set of lock and unlock operations to |
1606 | // eliminate they are marked as eliminatable which causes the |
1607 | // expansion of the Lock and Unlock macro nodes to make the operation a NOP |
1608 | // |
1609 | //============================================================================= |
1610 | |
1611 | // |
1612 | // Utility function to skip over uninteresting control nodes. Nodes skipped are: |
1613 | // - copy regions. (These may not have been optimized away yet.) |
1614 | // - eliminated locking nodes |
1615 | // |
1616 | static Node *next_control(Node *ctrl) { |
1617 | if (ctrl == NULL) |
1618 | return NULL; |
1619 | while (1) { |
1620 | if (ctrl->is_Region()) { |
1621 | RegionNode *r = ctrl->as_Region(); |
1622 | Node *n = r->is_copy(); |
1623 | if (n == NULL) |
1624 | break; // hit a region, return it |
1625 | else |
1626 | ctrl = n; |
1627 | } else if (ctrl->is_Proj()) { |
1628 | Node *in0 = ctrl->in(0); |
1629 | if (in0->is_AbstractLock() && in0->as_AbstractLock()->is_eliminated()) { |
1630 | ctrl = in0->in(0); |
1631 | } else { |
1632 | break; |
1633 | } |
1634 | } else { |
1635 | break; // found an interesting control |
1636 | } |
1637 | } |
1638 | return ctrl; |
1639 | } |
1640 | // |
1641 | // Given a control, see if it's the control projection of an Unlock which |
1642 | // operating on the same object as lock. |
1643 | // |
1644 | bool AbstractLockNode::find_matching_unlock(const Node* ctrl, LockNode* lock, |
1645 | GrowableArray<AbstractLockNode*> &lock_ops) { |
1646 | ProjNode *ctrl_proj = (ctrl->is_Proj()) ? ctrl->as_Proj() : NULL; |
1647 | if (ctrl_proj != NULL && ctrl_proj->_con == TypeFunc::Control) { |
1648 | Node *n = ctrl_proj->in(0); |
1649 | if (n != NULL && n->is_Unlock()) { |
1650 | UnlockNode *unlock = n->as_Unlock(); |
1651 | BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); |
1652 | Node* lock_obj = bs->step_over_gc_barrier(lock->obj_node()); |
1653 | Node* unlock_obj = bs->step_over_gc_barrier(unlock->obj_node()); |
1654 | if (lock_obj->eqv_uncast(unlock_obj) && |
1655 | BoxLockNode::same_slot(lock->box_node(), unlock->box_node()) && |
1656 | !unlock->is_eliminated()) { |
1657 | lock_ops.append(unlock); |
1658 | return true; |
1659 | } |
1660 | } |
1661 | } |
1662 | return false; |
1663 | } |
1664 | |
1665 | // |
1666 | // Find the lock matching an unlock. Returns null if a safepoint |
1667 | // or complicated control is encountered first. |
1668 | LockNode *AbstractLockNode::find_matching_lock(UnlockNode* unlock) { |
1669 | LockNode *lock_result = NULL; |
1670 | // find the matching lock, or an intervening safepoint |
1671 | Node *ctrl = next_control(unlock->in(0)); |
1672 | while (1) { |
1673 | assert(ctrl != NULL, "invalid control graph" ); |
1674 | assert(!ctrl->is_Start(), "missing lock for unlock" ); |
1675 | if (ctrl->is_top()) break; // dead control path |
1676 | if (ctrl->is_Proj()) ctrl = ctrl->in(0); |
1677 | if (ctrl->is_SafePoint()) { |
1678 | break; // found a safepoint (may be the lock we are searching for) |
1679 | } else if (ctrl->is_Region()) { |
1680 | // Check for a simple diamond pattern. Punt on anything more complicated |
1681 | if (ctrl->req() == 3 && ctrl->in(1) != NULL && ctrl->in(2) != NULL) { |
1682 | Node *in1 = next_control(ctrl->in(1)); |
1683 | Node *in2 = next_control(ctrl->in(2)); |
1684 | if (((in1->is_IfTrue() && in2->is_IfFalse()) || |
1685 | (in2->is_IfTrue() && in1->is_IfFalse())) && (in1->in(0) == in2->in(0))) { |
1686 | ctrl = next_control(in1->in(0)->in(0)); |
1687 | } else { |
1688 | break; |
1689 | } |
1690 | } else { |
1691 | break; |
1692 | } |
1693 | } else { |
1694 | ctrl = next_control(ctrl->in(0)); // keep searching |
1695 | } |
1696 | } |
1697 | if (ctrl->is_Lock()) { |
1698 | LockNode *lock = ctrl->as_Lock(); |
1699 | BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); |
1700 | Node* lock_obj = bs->step_over_gc_barrier(lock->obj_node()); |
1701 | Node* unlock_obj = bs->step_over_gc_barrier(unlock->obj_node()); |
1702 | if (lock_obj->eqv_uncast(unlock_obj) && |
1703 | BoxLockNode::same_slot(lock->box_node(), unlock->box_node())) { |
1704 | lock_result = lock; |
1705 | } |
1706 | } |
1707 | return lock_result; |
1708 | } |
1709 | |
1710 | // This code corresponds to case 3 above. |
1711 | |
1712 | bool AbstractLockNode::find_lock_and_unlock_through_if(Node* node, LockNode* lock, |
1713 | GrowableArray<AbstractLockNode*> &lock_ops) { |
1714 | Node* if_node = node->in(0); |
1715 | bool if_true = node->is_IfTrue(); |
1716 | |
1717 | if (if_node->is_If() && if_node->outcnt() == 2 && (if_true || node->is_IfFalse())) { |
1718 | Node *lock_ctrl = next_control(if_node->in(0)); |
1719 | if (find_matching_unlock(lock_ctrl, lock, lock_ops)) { |
1720 | Node* lock1_node = NULL; |
1721 | ProjNode* proj = if_node->as_If()->proj_out(!if_true); |
1722 | if (if_true) { |
1723 | if (proj->is_IfFalse() && proj->outcnt() == 1) { |
1724 | lock1_node = proj->unique_out(); |
1725 | } |
1726 | } else { |
1727 | if (proj->is_IfTrue() && proj->outcnt() == 1) { |
1728 | lock1_node = proj->unique_out(); |
1729 | } |
1730 | } |
1731 | if (lock1_node != NULL && lock1_node->is_Lock()) { |
1732 | LockNode *lock1 = lock1_node->as_Lock(); |
1733 | BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); |
1734 | Node* lock_obj = bs->step_over_gc_barrier(lock->obj_node()); |
1735 | Node* lock1_obj = bs->step_over_gc_barrier(lock1->obj_node()); |
1736 | if (lock_obj->eqv_uncast(lock1_obj) && |
1737 | BoxLockNode::same_slot(lock->box_node(), lock1->box_node()) && |
1738 | !lock1->is_eliminated()) { |
1739 | lock_ops.append(lock1); |
1740 | return true; |
1741 | } |
1742 | } |
1743 | } |
1744 | } |
1745 | |
1746 | lock_ops.trunc_to(0); |
1747 | return false; |
1748 | } |
1749 | |
1750 | bool AbstractLockNode::find_unlocks_for_region(const RegionNode* region, LockNode* lock, |
1751 | GrowableArray<AbstractLockNode*> &lock_ops) { |
1752 | // check each control merging at this point for a matching unlock. |
1753 | // in(0) should be self edge so skip it. |
1754 | for (int i = 1; i < (int)region->req(); i++) { |
1755 | Node *in_node = next_control(region->in(i)); |
1756 | if (in_node != NULL) { |
1757 | if (find_matching_unlock(in_node, lock, lock_ops)) { |
1758 | // found a match so keep on checking. |
1759 | continue; |
1760 | } else if (find_lock_and_unlock_through_if(in_node, lock, lock_ops)) { |
1761 | continue; |
1762 | } |
1763 | |
1764 | // If we fall through to here then it was some kind of node we |
1765 | // don't understand or there wasn't a matching unlock, so give |
1766 | // up trying to merge locks. |
1767 | lock_ops.trunc_to(0); |
1768 | return false; |
1769 | } |
1770 | } |
1771 | return true; |
1772 | |
1773 | } |
1774 | |
1775 | #ifndef PRODUCT |
1776 | // |
1777 | // Create a counter which counts the number of times this lock is acquired |
1778 | // |
1779 | void AbstractLockNode::create_lock_counter(JVMState* state) { |
1780 | _counter = OptoRuntime::new_named_counter(state, NamedCounter::LockCounter); |
1781 | } |
1782 | |
1783 | void AbstractLockNode::set_eliminated_lock_counter() { |
1784 | if (_counter) { |
1785 | // Update the counter to indicate that this lock was eliminated. |
1786 | // The counter update code will stay around even though the |
1787 | // optimizer will eliminate the lock operation itself. |
1788 | _counter->set_tag(NamedCounter::EliminatedLockCounter); |
1789 | } |
1790 | } |
1791 | |
1792 | const char* AbstractLockNode::_kind_names[] = {"Regular" , "NonEscObj" , "Coarsened" , "Nested" }; |
1793 | |
1794 | void AbstractLockNode::dump_spec(outputStream* st) const { |
1795 | st->print("%s " , _kind_names[_kind]); |
1796 | CallNode::dump_spec(st); |
1797 | } |
1798 | |
1799 | void AbstractLockNode::dump_compact_spec(outputStream* st) const { |
1800 | st->print("%s" , _kind_names[_kind]); |
1801 | } |
1802 | |
1803 | // The related set of lock nodes includes the control boundary. |
1804 | void AbstractLockNode::related(GrowableArray<Node*> *in_rel, GrowableArray<Node*> *out_rel, bool compact) const { |
1805 | if (compact) { |
1806 | this->collect_nodes(in_rel, 1, false, false); |
1807 | } else { |
1808 | this->collect_nodes_in_all_data(in_rel, true); |
1809 | } |
1810 | this->collect_nodes(out_rel, -2, false, false); |
1811 | } |
1812 | #endif |
1813 | |
1814 | //============================================================================= |
1815 | Node *LockNode::Ideal(PhaseGVN *phase, bool can_reshape) { |
1816 | |
1817 | // perform any generic optimizations first (returns 'this' or NULL) |
1818 | Node *result = SafePointNode::Ideal(phase, can_reshape); |
1819 | if (result != NULL) return result; |
1820 | // Don't bother trying to transform a dead node |
1821 | if (in(0) && in(0)->is_top()) return NULL; |
1822 | |
1823 | // Now see if we can optimize away this lock. We don't actually |
1824 | // remove the locking here, we simply set the _eliminate flag which |
1825 | // prevents macro expansion from expanding the lock. Since we don't |
1826 | // modify the graph, the value returned from this function is the |
1827 | // one computed above. |
1828 | if (can_reshape && EliminateLocks && !is_non_esc_obj()) { |
1829 | // |
1830 | // If we are locking an unescaped object, the lock/unlock is unnecessary |
1831 | // |
1832 | ConnectionGraph *cgr = phase->C->congraph(); |
1833 | if (cgr != NULL && cgr->not_global_escape(obj_node())) { |
1834 | assert(!is_eliminated() || is_coarsened(), "sanity" ); |
1835 | // The lock could be marked eliminated by lock coarsening |
1836 | // code during first IGVN before EA. Replace coarsened flag |
1837 | // to eliminate all associated locks/unlocks. |
1838 | #ifdef ASSERT |
1839 | this->log_lock_optimization(phase->C,"eliminate_lock_set_non_esc1" ); |
1840 | #endif |
1841 | this->set_non_esc_obj(); |
1842 | return result; |
1843 | } |
1844 | |
1845 | // |
1846 | // Try lock coarsening |
1847 | // |
1848 | PhaseIterGVN* iter = phase->is_IterGVN(); |
1849 | if (iter != NULL && !is_eliminated()) { |
1850 | |
1851 | GrowableArray<AbstractLockNode*> lock_ops; |
1852 | |
1853 | Node *ctrl = next_control(in(0)); |
1854 | |
1855 | // now search back for a matching Unlock |
1856 | if (find_matching_unlock(ctrl, this, lock_ops)) { |
1857 | // found an unlock directly preceding this lock. This is the |
1858 | // case of single unlock directly control dependent on a |
1859 | // single lock which is the trivial version of case 1 or 2. |
1860 | } else if (ctrl->is_Region() ) { |
1861 | if (find_unlocks_for_region(ctrl->as_Region(), this, lock_ops)) { |
1862 | // found lock preceded by multiple unlocks along all paths |
1863 | // joining at this point which is case 3 in description above. |
1864 | } |
1865 | } else { |
1866 | // see if this lock comes from either half of an if and the |
1867 | // predecessors merges unlocks and the other half of the if |
1868 | // performs a lock. |
1869 | if (find_lock_and_unlock_through_if(ctrl, this, lock_ops)) { |
1870 | // found unlock splitting to an if with locks on both branches. |
1871 | } |
1872 | } |
1873 | |
1874 | if (lock_ops.length() > 0) { |
1875 | // add ourselves to the list of locks to be eliminated. |
1876 | lock_ops.append(this); |
1877 | |
1878 | #ifndef PRODUCT |
1879 | if (PrintEliminateLocks) { |
1880 | int locks = 0; |
1881 | int unlocks = 0; |
1882 | for (int i = 0; i < lock_ops.length(); i++) { |
1883 | AbstractLockNode* lock = lock_ops.at(i); |
1884 | if (lock->Opcode() == Op_Lock) |
1885 | locks++; |
1886 | else |
1887 | unlocks++; |
1888 | if (Verbose) { |
1889 | lock->dump(1); |
1890 | } |
1891 | } |
1892 | tty->print_cr("***Eliminated %d unlocks and %d locks" , unlocks, locks); |
1893 | } |
1894 | #endif |
1895 | |
1896 | // for each of the identified locks, mark them |
1897 | // as eliminatable |
1898 | for (int i = 0; i < lock_ops.length(); i++) { |
1899 | AbstractLockNode* lock = lock_ops.at(i); |
1900 | |
1901 | // Mark it eliminated by coarsening and update any counters |
1902 | #ifdef ASSERT |
1903 | lock->log_lock_optimization(phase->C, "eliminate_lock_set_coarsened" ); |
1904 | #endif |
1905 | lock->set_coarsened(); |
1906 | } |
1907 | } else if (ctrl->is_Region() && |
1908 | iter->_worklist.member(ctrl)) { |
1909 | // We weren't able to find any opportunities but the region this |
1910 | // lock is control dependent on hasn't been processed yet so put |
1911 | // this lock back on the worklist so we can check again once any |
1912 | // region simplification has occurred. |
1913 | iter->_worklist.push(this); |
1914 | } |
1915 | } |
1916 | } |
1917 | |
1918 | return result; |
1919 | } |
1920 | |
1921 | //============================================================================= |
1922 | bool LockNode::is_nested_lock_region() { |
1923 | return is_nested_lock_region(NULL); |
1924 | } |
1925 | |
1926 | // p is used for access to compilation log; no logging if NULL |
1927 | bool LockNode::is_nested_lock_region(Compile * c) { |
1928 | BoxLockNode* box = box_node()->as_BoxLock(); |
1929 | int stk_slot = box->stack_slot(); |
1930 | if (stk_slot <= 0) { |
1931 | #ifdef ASSERT |
1932 | this->log_lock_optimization(c, "eliminate_lock_INLR_1" ); |
1933 | #endif |
1934 | return false; // External lock or it is not Box (Phi node). |
1935 | } |
1936 | |
1937 | // Ignore complex cases: merged locks or multiple locks. |
1938 | Node* obj = obj_node(); |
1939 | LockNode* unique_lock = NULL; |
1940 | if (!box->is_simple_lock_region(&unique_lock, obj)) { |
1941 | #ifdef ASSERT |
1942 | this->log_lock_optimization(c, "eliminate_lock_INLR_2a" ); |
1943 | #endif |
1944 | return false; |
1945 | } |
1946 | if (unique_lock != this) { |
1947 | #ifdef ASSERT |
1948 | this->log_lock_optimization(c, "eliminate_lock_INLR_2b" ); |
1949 | #endif |
1950 | return false; |
1951 | } |
1952 | |
1953 | BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); |
1954 | obj = bs->step_over_gc_barrier(obj); |
1955 | // Look for external lock for the same object. |
1956 | SafePointNode* sfn = this->as_SafePoint(); |
1957 | JVMState* youngest_jvms = sfn->jvms(); |
1958 | int max_depth = youngest_jvms->depth(); |
1959 | for (int depth = 1; depth <= max_depth; depth++) { |
1960 | JVMState* jvms = youngest_jvms->of_depth(depth); |
1961 | int num_mon = jvms->nof_monitors(); |
1962 | // Loop over monitors |
1963 | for (int idx = 0; idx < num_mon; idx++) { |
1964 | Node* obj_node = sfn->monitor_obj(jvms, idx); |
1965 | obj_node = bs->step_over_gc_barrier(obj_node); |
1966 | BoxLockNode* box_node = sfn->monitor_box(jvms, idx)->as_BoxLock(); |
1967 | if ((box_node->stack_slot() < stk_slot) && obj_node->eqv_uncast(obj)) { |
1968 | return true; |
1969 | } |
1970 | } |
1971 | } |
1972 | #ifdef ASSERT |
1973 | this->log_lock_optimization(c, "eliminate_lock_INLR_3" ); |
1974 | #endif |
1975 | return false; |
1976 | } |
1977 | |
1978 | //============================================================================= |
1979 | uint UnlockNode::size_of() const { return sizeof(*this); } |
1980 | |
1981 | //============================================================================= |
1982 | Node *UnlockNode::Ideal(PhaseGVN *phase, bool can_reshape) { |
1983 | |
1984 | // perform any generic optimizations first (returns 'this' or NULL) |
1985 | Node *result = SafePointNode::Ideal(phase, can_reshape); |
1986 | if (result != NULL) return result; |
1987 | // Don't bother trying to transform a dead node |
1988 | if (in(0) && in(0)->is_top()) return NULL; |
1989 | |
1990 | // Now see if we can optimize away this unlock. We don't actually |
1991 | // remove the unlocking here, we simply set the _eliminate flag which |
1992 | // prevents macro expansion from expanding the unlock. Since we don't |
1993 | // modify the graph, the value returned from this function is the |
1994 | // one computed above. |
1995 | // Escape state is defined after Parse phase. |
1996 | if (can_reshape && EliminateLocks && !is_non_esc_obj()) { |
1997 | // |
1998 | // If we are unlocking an unescaped object, the lock/unlock is unnecessary. |
1999 | // |
2000 | ConnectionGraph *cgr = phase->C->congraph(); |
2001 | if (cgr != NULL && cgr->not_global_escape(obj_node())) { |
2002 | assert(!is_eliminated() || is_coarsened(), "sanity" ); |
2003 | // The lock could be marked eliminated by lock coarsening |
2004 | // code during first IGVN before EA. Replace coarsened flag |
2005 | // to eliminate all associated locks/unlocks. |
2006 | #ifdef ASSERT |
2007 | this->log_lock_optimization(phase->C, "eliminate_lock_set_non_esc2" ); |
2008 | #endif |
2009 | this->set_non_esc_obj(); |
2010 | } |
2011 | } |
2012 | return result; |
2013 | } |
2014 | |
2015 | const char * AbstractLockNode::kind_as_string() const { |
2016 | return is_coarsened() ? "coarsened" : |
2017 | is_nested() ? "nested" : |
2018 | is_non_esc_obj() ? "non_escaping" : |
2019 | "?" ; |
2020 | } |
2021 | |
2022 | void AbstractLockNode::log_lock_optimization(Compile *C, const char * tag) const { |
2023 | if (C == NULL) { |
2024 | return; |
2025 | } |
2026 | CompileLog* log = C->log(); |
2027 | if (log != NULL) { |
2028 | log->begin_head("%s lock='%d' compile_id='%d' class_id='%s' kind='%s'" , |
2029 | tag, is_Lock(), C->compile_id(), |
2030 | is_Unlock() ? "unlock" : is_Lock() ? "lock" : "?" , |
2031 | kind_as_string()); |
2032 | log->stamp(); |
2033 | log->end_head(); |
2034 | JVMState* p = is_Unlock() ? (as_Unlock()->dbg_jvms()) : jvms(); |
2035 | while (p != NULL) { |
2036 | log->elem("jvms bci='%d' method='%d'" , p->bci(), log->identify(p->method())); |
2037 | p = p->caller(); |
2038 | } |
2039 | log->tail(tag); |
2040 | } |
2041 | } |
2042 | |
2043 | bool CallNode::may_modify_arraycopy_helper(const TypeOopPtr* dest_t, const TypeOopPtr *t_oop, PhaseTransform *phase) { |
2044 | if (dest_t->is_known_instance() && t_oop->is_known_instance()) { |
2045 | return dest_t->instance_id() == t_oop->instance_id(); |
2046 | } |
2047 | |
2048 | if (dest_t->isa_instptr() && !dest_t->klass()->equals(phase->C->env()->Object_klass())) { |
2049 | // clone |
2050 | if (t_oop->isa_aryptr()) { |
2051 | return false; |
2052 | } |
2053 | if (!t_oop->isa_instptr()) { |
2054 | return true; |
2055 | } |
2056 | if (dest_t->klass()->is_subtype_of(t_oop->klass()) || t_oop->klass()->is_subtype_of(dest_t->klass())) { |
2057 | return true; |
2058 | } |
2059 | // unrelated |
2060 | return false; |
2061 | } |
2062 | |
2063 | if (dest_t->isa_aryptr()) { |
2064 | // arraycopy or array clone |
2065 | if (t_oop->isa_instptr()) { |
2066 | return false; |
2067 | } |
2068 | if (!t_oop->isa_aryptr()) { |
2069 | return true; |
2070 | } |
2071 | |
2072 | const Type* elem = dest_t->is_aryptr()->elem(); |
2073 | if (elem == Type::BOTTOM) { |
2074 | // An array but we don't know what elements are |
2075 | return true; |
2076 | } |
2077 | |
2078 | dest_t = dest_t->add_offset(Type::OffsetBot)->is_oopptr(); |
2079 | uint dest_alias = phase->C->get_alias_index(dest_t); |
2080 | uint t_oop_alias = phase->C->get_alias_index(t_oop); |
2081 | |
2082 | return dest_alias == t_oop_alias; |
2083 | } |
2084 | |
2085 | return true; |
2086 | } |
2087 | |