1/*
2 * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "compiler/compileLog.hpp"
27#include "ci/bcEscapeAnalyzer.hpp"
28#include "compiler/oopMap.hpp"
29#include "gc/shared/barrierSet.hpp"
30#include "gc/shared/c2/barrierSetC2.hpp"
31#include "interpreter/interpreter.hpp"
32#include "opto/callGenerator.hpp"
33#include "opto/callnode.hpp"
34#include "opto/castnode.hpp"
35#include "opto/convertnode.hpp"
36#include "opto/escape.hpp"
37#include "opto/locknode.hpp"
38#include "opto/machnode.hpp"
39#include "opto/matcher.hpp"
40#include "opto/parse.hpp"
41#include "opto/regalloc.hpp"
42#include "opto/regmask.hpp"
43#include "opto/rootnode.hpp"
44#include "opto/runtime.hpp"
45
46// Portions of code courtesy of Clifford Click
47
48// Optimization - Graph Style
49
50//=============================================================================
51uint StartNode::size_of() const { return sizeof(*this); }
52bool StartNode::cmp( const Node &n ) const
53{ return _domain == ((StartNode&)n)._domain; }
54const Type *StartNode::bottom_type() const { return _domain; }
55const Type* StartNode::Value(PhaseGVN* phase) const { return _domain; }
56#ifndef PRODUCT
57void StartNode::dump_spec(outputStream *st) const { st->print(" #"); _domain->dump_on(st);}
58void StartNode::dump_compact_spec(outputStream *st) const { /* empty */ }
59#endif
60
61//------------------------------Ideal------------------------------------------
62Node *StartNode::Ideal(PhaseGVN *phase, bool can_reshape){
63 return remove_dead_region(phase, can_reshape) ? this : NULL;
64}
65
66//------------------------------calling_convention-----------------------------
67void StartNode::calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const {
68 Matcher::calling_convention( sig_bt, parm_regs, argcnt, false );
69}
70
71//------------------------------Registers--------------------------------------
72const RegMask &StartNode::in_RegMask(uint) const {
73 return RegMask::Empty;
74}
75
76//------------------------------match------------------------------------------
77// Construct projections for incoming parameters, and their RegMask info
78Node *StartNode::match( const ProjNode *proj, const Matcher *match ) {
79 switch (proj->_con) {
80 case TypeFunc::Control:
81 case TypeFunc::I_O:
82 case TypeFunc::Memory:
83 return new MachProjNode(this,proj->_con,RegMask::Empty,MachProjNode::unmatched_proj);
84 case TypeFunc::FramePtr:
85 return new MachProjNode(this,proj->_con,Matcher::c_frame_ptr_mask, Op_RegP);
86 case TypeFunc::ReturnAdr:
87 return new MachProjNode(this,proj->_con,match->_return_addr_mask,Op_RegP);
88 case TypeFunc::Parms:
89 default: {
90 uint parm_num = proj->_con - TypeFunc::Parms;
91 const Type *t = _domain->field_at(proj->_con);
92 if (t->base() == Type::Half) // 2nd half of Longs and Doubles
93 return new ConNode(Type::TOP);
94 uint ideal_reg = t->ideal_reg();
95 RegMask &rm = match->_calling_convention_mask[parm_num];
96 return new MachProjNode(this,proj->_con,rm,ideal_reg);
97 }
98 }
99 return NULL;
100}
101
102//------------------------------StartOSRNode----------------------------------
103// The method start node for an on stack replacement adapter
104
105//------------------------------osr_domain-----------------------------
106const TypeTuple *StartOSRNode::osr_domain() {
107 const Type **fields = TypeTuple::fields(2);
108 fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // address of osr buffer
109
110 return TypeTuple::make(TypeFunc::Parms+1, fields);
111}
112
113//=============================================================================
114const char * const ParmNode::names[TypeFunc::Parms+1] = {
115 "Control", "I_O", "Memory", "FramePtr", "ReturnAdr", "Parms"
116};
117
118#ifndef PRODUCT
119void ParmNode::dump_spec(outputStream *st) const {
120 if( _con < TypeFunc::Parms ) {
121 st->print("%s", names[_con]);
122 } else {
123 st->print("Parm%d: ",_con-TypeFunc::Parms);
124 // Verbose and WizardMode dump bottom_type for all nodes
125 if( !Verbose && !WizardMode ) bottom_type()->dump_on(st);
126 }
127}
128
129void ParmNode::dump_compact_spec(outputStream *st) const {
130 if (_con < TypeFunc::Parms) {
131 st->print("%s", names[_con]);
132 } else {
133 st->print("%d:", _con-TypeFunc::Parms);
134 // unconditionally dump bottom_type
135 bottom_type()->dump_on(st);
136 }
137}
138
139// For a ParmNode, all immediate inputs and outputs are considered relevant
140// both in compact and standard representation.
141void ParmNode::related(GrowableArray<Node*> *in_rel, GrowableArray<Node*> *out_rel, bool compact) const {
142 this->collect_nodes(in_rel, 1, false, false);
143 this->collect_nodes(out_rel, -1, false, false);
144}
145#endif
146
147uint ParmNode::ideal_reg() const {
148 switch( _con ) {
149 case TypeFunc::Control : // fall through
150 case TypeFunc::I_O : // fall through
151 case TypeFunc::Memory : return 0;
152 case TypeFunc::FramePtr : // fall through
153 case TypeFunc::ReturnAdr: return Op_RegP;
154 default : assert( _con > TypeFunc::Parms, "" );
155 // fall through
156 case TypeFunc::Parms : {
157 // Type of argument being passed
158 const Type *t = in(0)->as_Start()->_domain->field_at(_con);
159 return t->ideal_reg();
160 }
161 }
162 ShouldNotReachHere();
163 return 0;
164}
165
166//=============================================================================
167ReturnNode::ReturnNode(uint edges, Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *retadr ) : Node(edges) {
168 init_req(TypeFunc::Control,cntrl);
169 init_req(TypeFunc::I_O,i_o);
170 init_req(TypeFunc::Memory,memory);
171 init_req(TypeFunc::FramePtr,frameptr);
172 init_req(TypeFunc::ReturnAdr,retadr);
173}
174
175Node *ReturnNode::Ideal(PhaseGVN *phase, bool can_reshape){
176 return remove_dead_region(phase, can_reshape) ? this : NULL;
177}
178
179const Type* ReturnNode::Value(PhaseGVN* phase) const {
180 return ( phase->type(in(TypeFunc::Control)) == Type::TOP)
181 ? Type::TOP
182 : Type::BOTTOM;
183}
184
185// Do we Match on this edge index or not? No edges on return nodes
186uint ReturnNode::match_edge(uint idx) const {
187 return 0;
188}
189
190
191#ifndef PRODUCT
192void ReturnNode::dump_req(outputStream *st) const {
193 // Dump the required inputs, enclosed in '(' and ')'
194 uint i; // Exit value of loop
195 for (i = 0; i < req(); i++) { // For all required inputs
196 if (i == TypeFunc::Parms) st->print("returns");
197 if (in(i)) st->print("%c%d ", Compile::current()->node_arena()->contains(in(i)) ? ' ' : 'o', in(i)->_idx);
198 else st->print("_ ");
199 }
200}
201#endif
202
203//=============================================================================
204RethrowNode::RethrowNode(
205 Node* cntrl,
206 Node* i_o,
207 Node* memory,
208 Node* frameptr,
209 Node* ret_adr,
210 Node* exception
211) : Node(TypeFunc::Parms + 1) {
212 init_req(TypeFunc::Control , cntrl );
213 init_req(TypeFunc::I_O , i_o );
214 init_req(TypeFunc::Memory , memory );
215 init_req(TypeFunc::FramePtr , frameptr );
216 init_req(TypeFunc::ReturnAdr, ret_adr);
217 init_req(TypeFunc::Parms , exception);
218}
219
220Node *RethrowNode::Ideal(PhaseGVN *phase, bool can_reshape){
221 return remove_dead_region(phase, can_reshape) ? this : NULL;
222}
223
224const Type* RethrowNode::Value(PhaseGVN* phase) const {
225 return (phase->type(in(TypeFunc::Control)) == Type::TOP)
226 ? Type::TOP
227 : Type::BOTTOM;
228}
229
230uint RethrowNode::match_edge(uint idx) const {
231 return 0;
232}
233
234#ifndef PRODUCT
235void RethrowNode::dump_req(outputStream *st) const {
236 // Dump the required inputs, enclosed in '(' and ')'
237 uint i; // Exit value of loop
238 for (i = 0; i < req(); i++) { // For all required inputs
239 if (i == TypeFunc::Parms) st->print("exception");
240 if (in(i)) st->print("%c%d ", Compile::current()->node_arena()->contains(in(i)) ? ' ' : 'o', in(i)->_idx);
241 else st->print("_ ");
242 }
243}
244#endif
245
246//=============================================================================
247// Do we Match on this edge index or not? Match only target address & method
248uint TailCallNode::match_edge(uint idx) const {
249 return TypeFunc::Parms <= idx && idx <= TypeFunc::Parms+1;
250}
251
252//=============================================================================
253// Do we Match on this edge index or not? Match only target address & oop
254uint TailJumpNode::match_edge(uint idx) const {
255 return TypeFunc::Parms <= idx && idx <= TypeFunc::Parms+1;
256}
257
258//=============================================================================
259JVMState::JVMState(ciMethod* method, JVMState* caller) :
260 _method(method) {
261 assert(method != NULL, "must be valid call site");
262 _bci = InvocationEntryBci;
263 _reexecute = Reexecute_Undefined;
264 debug_only(_bci = -99); // random garbage value
265 debug_only(_map = (SafePointNode*)-1);
266 _caller = caller;
267 _depth = 1 + (caller == NULL ? 0 : caller->depth());
268 _locoff = TypeFunc::Parms;
269 _stkoff = _locoff + _method->max_locals();
270 _monoff = _stkoff + _method->max_stack();
271 _scloff = _monoff;
272 _endoff = _monoff;
273 _sp = 0;
274}
275JVMState::JVMState(int stack_size) :
276 _method(NULL) {
277 _bci = InvocationEntryBci;
278 _reexecute = Reexecute_Undefined;
279 debug_only(_map = (SafePointNode*)-1);
280 _caller = NULL;
281 _depth = 1;
282 _locoff = TypeFunc::Parms;
283 _stkoff = _locoff;
284 _monoff = _stkoff + stack_size;
285 _scloff = _monoff;
286 _endoff = _monoff;
287 _sp = 0;
288}
289
290//--------------------------------of_depth-------------------------------------
291JVMState* JVMState::of_depth(int d) const {
292 const JVMState* jvmp = this;
293 assert(0 < d && (uint)d <= depth(), "oob");
294 for (int skip = depth() - d; skip > 0; skip--) {
295 jvmp = jvmp->caller();
296 }
297 assert(jvmp->depth() == (uint)d, "found the right one");
298 return (JVMState*)jvmp;
299}
300
301//-----------------------------same_calls_as-----------------------------------
302bool JVMState::same_calls_as(const JVMState* that) const {
303 if (this == that) return true;
304 if (this->depth() != that->depth()) return false;
305 const JVMState* p = this;
306 const JVMState* q = that;
307 for (;;) {
308 if (p->_method != q->_method) return false;
309 if (p->_method == NULL) return true; // bci is irrelevant
310 if (p->_bci != q->_bci) return false;
311 if (p->_reexecute != q->_reexecute) return false;
312 p = p->caller();
313 q = q->caller();
314 if (p == q) return true;
315 assert(p != NULL && q != NULL, "depth check ensures we don't run off end");
316 }
317}
318
319//------------------------------debug_start------------------------------------
320uint JVMState::debug_start() const {
321 debug_only(JVMState* jvmroot = of_depth(1));
322 assert(jvmroot->locoff() <= this->locoff(), "youngest JVMState must be last");
323 return of_depth(1)->locoff();
324}
325
326//-------------------------------debug_end-------------------------------------
327uint JVMState::debug_end() const {
328 debug_only(JVMState* jvmroot = of_depth(1));
329 assert(jvmroot->endoff() <= this->endoff(), "youngest JVMState must be last");
330 return endoff();
331}
332
333//------------------------------debug_depth------------------------------------
334uint JVMState::debug_depth() const {
335 uint total = 0;
336 for (const JVMState* jvmp = this; jvmp != NULL; jvmp = jvmp->caller()) {
337 total += jvmp->debug_size();
338 }
339 return total;
340}
341
342#ifndef PRODUCT
343
344//------------------------------format_helper----------------------------------
345// Given an allocation (a Chaitin object) and a Node decide if the Node carries
346// any defined value or not. If it does, print out the register or constant.
347static void format_helper( PhaseRegAlloc *regalloc, outputStream* st, Node *n, const char *msg, uint i, GrowableArray<SafePointScalarObjectNode*> *scobjs ) {
348 if (n == NULL) { st->print(" NULL"); return; }
349 if (n->is_SafePointScalarObject()) {
350 // Scalar replacement.
351 SafePointScalarObjectNode* spobj = n->as_SafePointScalarObject();
352 scobjs->append_if_missing(spobj);
353 int sco_n = scobjs->find(spobj);
354 assert(sco_n >= 0, "");
355 st->print(" %s%d]=#ScObj" INT32_FORMAT, msg, i, sco_n);
356 return;
357 }
358 if (regalloc->node_regs_max_index() > 0 &&
359 OptoReg::is_valid(regalloc->get_reg_first(n))) { // Check for undefined
360 char buf[50];
361 regalloc->dump_register(n,buf);
362 st->print(" %s%d]=%s",msg,i,buf);
363 } else { // No register, but might be constant
364 const Type *t = n->bottom_type();
365 switch (t->base()) {
366 case Type::Int:
367 st->print(" %s%d]=#" INT32_FORMAT,msg,i,t->is_int()->get_con());
368 break;
369 case Type::AnyPtr:
370 assert( t == TypePtr::NULL_PTR || n->in_dump(), "" );
371 st->print(" %s%d]=#NULL",msg,i);
372 break;
373 case Type::AryPtr:
374 case Type::InstPtr:
375 st->print(" %s%d]=#Ptr" INTPTR_FORMAT,msg,i,p2i(t->isa_oopptr()->const_oop()));
376 break;
377 case Type::KlassPtr:
378 st->print(" %s%d]=#Ptr" INTPTR_FORMAT,msg,i,p2i(t->make_ptr()->isa_klassptr()->klass()));
379 break;
380 case Type::MetadataPtr:
381 st->print(" %s%d]=#Ptr" INTPTR_FORMAT,msg,i,p2i(t->make_ptr()->isa_metadataptr()->metadata()));
382 break;
383 case Type::NarrowOop:
384 st->print(" %s%d]=#Ptr" INTPTR_FORMAT,msg,i,p2i(t->make_ptr()->isa_oopptr()->const_oop()));
385 break;
386 case Type::RawPtr:
387 st->print(" %s%d]=#Raw" INTPTR_FORMAT,msg,i,p2i(t->is_rawptr()));
388 break;
389 case Type::DoubleCon:
390 st->print(" %s%d]=#%fD",msg,i,t->is_double_constant()->_d);
391 break;
392 case Type::FloatCon:
393 st->print(" %s%d]=#%fF",msg,i,t->is_float_constant()->_f);
394 break;
395 case Type::Long:
396 st->print(" %s%d]=#" INT64_FORMAT,msg,i,(int64_t)(t->is_long()->get_con()));
397 break;
398 case Type::Half:
399 case Type::Top:
400 st->print(" %s%d]=_",msg,i);
401 break;
402 default: ShouldNotReachHere();
403 }
404 }
405}
406
407//------------------------------format-----------------------------------------
408void JVMState::format(PhaseRegAlloc *regalloc, const Node *n, outputStream* st) const {
409 st->print(" #");
410 if (_method) {
411 _method->print_short_name(st);
412 st->print(" @ bci:%d ",_bci);
413 } else {
414 st->print_cr(" runtime stub ");
415 return;
416 }
417 if (n->is_MachSafePoint()) {
418 GrowableArray<SafePointScalarObjectNode*> scobjs;
419 MachSafePointNode *mcall = n->as_MachSafePoint();
420 uint i;
421 // Print locals
422 for (i = 0; i < (uint)loc_size(); i++)
423 format_helper(regalloc, st, mcall->local(this, i), "L[", i, &scobjs);
424 // Print stack
425 for (i = 0; i < (uint)stk_size(); i++) {
426 if ((uint)(_stkoff + i) >= mcall->len())
427 st->print(" oob ");
428 else
429 format_helper(regalloc, st, mcall->stack(this, i), "STK[", i, &scobjs);
430 }
431 for (i = 0; (int)i < nof_monitors(); i++) {
432 Node *box = mcall->monitor_box(this, i);
433 Node *obj = mcall->monitor_obj(this, i);
434 if (regalloc->node_regs_max_index() > 0 &&
435 OptoReg::is_valid(regalloc->get_reg_first(box))) {
436 box = BoxLockNode::box_node(box);
437 format_helper(regalloc, st, box, "MON-BOX[", i, &scobjs);
438 } else {
439 OptoReg::Name box_reg = BoxLockNode::reg(box);
440 st->print(" MON-BOX%d=%s+%d",
441 i,
442 OptoReg::regname(OptoReg::c_frame_pointer),
443 regalloc->reg2offset(box_reg));
444 }
445 const char* obj_msg = "MON-OBJ[";
446 if (EliminateLocks) {
447 if (BoxLockNode::box_node(box)->is_eliminated())
448 obj_msg = "MON-OBJ(LOCK ELIMINATED)[";
449 }
450 format_helper(regalloc, st, obj, obj_msg, i, &scobjs);
451 }
452
453 for (i = 0; i < (uint)scobjs.length(); i++) {
454 // Scalar replaced objects.
455 st->cr();
456 st->print(" # ScObj" INT32_FORMAT " ", i);
457 SafePointScalarObjectNode* spobj = scobjs.at(i);
458 ciKlass* cik = spobj->bottom_type()->is_oopptr()->klass();
459 assert(cik->is_instance_klass() ||
460 cik->is_array_klass(), "Not supported allocation.");
461 ciInstanceKlass *iklass = NULL;
462 if (cik->is_instance_klass()) {
463 cik->print_name_on(st);
464 iklass = cik->as_instance_klass();
465 } else if (cik->is_type_array_klass()) {
466 cik->as_array_klass()->base_element_type()->print_name_on(st);
467 st->print("[%d]", spobj->n_fields());
468 } else if (cik->is_obj_array_klass()) {
469 ciKlass* cie = cik->as_obj_array_klass()->base_element_klass();
470 if (cie->is_instance_klass()) {
471 cie->print_name_on(st);
472 } else if (cie->is_type_array_klass()) {
473 cie->as_array_klass()->base_element_type()->print_name_on(st);
474 } else {
475 ShouldNotReachHere();
476 }
477 st->print("[%d]", spobj->n_fields());
478 int ndim = cik->as_array_klass()->dimension() - 1;
479 while (ndim-- > 0) {
480 st->print("[]");
481 }
482 }
483 st->print("={");
484 uint nf = spobj->n_fields();
485 if (nf > 0) {
486 uint first_ind = spobj->first_index(mcall->jvms());
487 Node* fld_node = mcall->in(first_ind);
488 ciField* cifield;
489 if (iklass != NULL) {
490 st->print(" [");
491 cifield = iklass->nonstatic_field_at(0);
492 cifield->print_name_on(st);
493 format_helper(regalloc, st, fld_node, ":", 0, &scobjs);
494 } else {
495 format_helper(regalloc, st, fld_node, "[", 0, &scobjs);
496 }
497 for (uint j = 1; j < nf; j++) {
498 fld_node = mcall->in(first_ind+j);
499 if (iklass != NULL) {
500 st->print(", [");
501 cifield = iklass->nonstatic_field_at(j);
502 cifield->print_name_on(st);
503 format_helper(regalloc, st, fld_node, ":", j, &scobjs);
504 } else {
505 format_helper(regalloc, st, fld_node, ", [", j, &scobjs);
506 }
507 }
508 }
509 st->print(" }");
510 }
511 }
512 st->cr();
513 if (caller() != NULL) caller()->format(regalloc, n, st);
514}
515
516
517void JVMState::dump_spec(outputStream *st) const {
518 if (_method != NULL) {
519 bool printed = false;
520 if (!Verbose) {
521 // The JVMS dumps make really, really long lines.
522 // Take out the most boring parts, which are the package prefixes.
523 char buf[500];
524 stringStream namest(buf, sizeof(buf));
525 _method->print_short_name(&namest);
526 if (namest.count() < sizeof(buf)) {
527 const char* name = namest.base();
528 if (name[0] == ' ') ++name;
529 const char* endcn = strchr(name, ':'); // end of class name
530 if (endcn == NULL) endcn = strchr(name, '(');
531 if (endcn == NULL) endcn = name + strlen(name);
532 while (endcn > name && endcn[-1] != '.' && endcn[-1] != '/')
533 --endcn;
534 st->print(" %s", endcn);
535 printed = true;
536 }
537 }
538 if (!printed)
539 _method->print_short_name(st);
540 st->print(" @ bci:%d",_bci);
541 if(_reexecute == Reexecute_True)
542 st->print(" reexecute");
543 } else {
544 st->print(" runtime stub");
545 }
546 if (caller() != NULL) caller()->dump_spec(st);
547}
548
549
550void JVMState::dump_on(outputStream* st) const {
551 bool print_map = _map && !((uintptr_t)_map & 1) &&
552 ((caller() == NULL) || (caller()->map() != _map));
553 if (print_map) {
554 if (_map->len() > _map->req()) { // _map->has_exceptions()
555 Node* ex = _map->in(_map->req()); // _map->next_exception()
556 // skip the first one; it's already being printed
557 while (ex != NULL && ex->len() > ex->req()) {
558 ex = ex->in(ex->req()); // ex->next_exception()
559 ex->dump(1);
560 }
561 }
562 _map->dump(Verbose ? 2 : 1);
563 }
564 if (caller() != NULL) {
565 caller()->dump_on(st);
566 }
567 st->print("JVMS depth=%d loc=%d stk=%d arg=%d mon=%d scalar=%d end=%d mondepth=%d sp=%d bci=%d reexecute=%s method=",
568 depth(), locoff(), stkoff(), argoff(), monoff(), scloff(), endoff(), monitor_depth(), sp(), bci(), should_reexecute()?"true":"false");
569 if (_method == NULL) {
570 st->print_cr("(none)");
571 } else {
572 _method->print_name(st);
573 st->cr();
574 if (bci() >= 0 && bci() < _method->code_size()) {
575 st->print(" bc: ");
576 _method->print_codes_on(bci(), bci()+1, st);
577 }
578 }
579}
580
581// Extra way to dump a jvms from the debugger,
582// to avoid a bug with C++ member function calls.
583void dump_jvms(JVMState* jvms) {
584 jvms->dump();
585}
586#endif
587
588//--------------------------clone_shallow--------------------------------------
589JVMState* JVMState::clone_shallow(Compile* C) const {
590 JVMState* n = has_method() ? new (C) JVMState(_method, _caller) : new (C) JVMState(0);
591 n->set_bci(_bci);
592 n->_reexecute = _reexecute;
593 n->set_locoff(_locoff);
594 n->set_stkoff(_stkoff);
595 n->set_monoff(_monoff);
596 n->set_scloff(_scloff);
597 n->set_endoff(_endoff);
598 n->set_sp(_sp);
599 n->set_map(_map);
600 return n;
601}
602
603//---------------------------clone_deep----------------------------------------
604JVMState* JVMState::clone_deep(Compile* C) const {
605 JVMState* n = clone_shallow(C);
606 for (JVMState* p = n; p->_caller != NULL; p = p->_caller) {
607 p->_caller = p->_caller->clone_shallow(C);
608 }
609 assert(n->depth() == depth(), "sanity");
610 assert(n->debug_depth() == debug_depth(), "sanity");
611 return n;
612}
613
614/**
615 * Reset map for all callers
616 */
617void JVMState::set_map_deep(SafePointNode* map) {
618 for (JVMState* p = this; p->_caller != NULL; p = p->_caller) {
619 p->set_map(map);
620 }
621}
622
623// Adapt offsets in in-array after adding or removing an edge.
624// Prerequisite is that the JVMState is used by only one node.
625void JVMState::adapt_position(int delta) {
626 for (JVMState* jvms = this; jvms != NULL; jvms = jvms->caller()) {
627 jvms->set_locoff(jvms->locoff() + delta);
628 jvms->set_stkoff(jvms->stkoff() + delta);
629 jvms->set_monoff(jvms->monoff() + delta);
630 jvms->set_scloff(jvms->scloff() + delta);
631 jvms->set_endoff(jvms->endoff() + delta);
632 }
633}
634
635// Mirror the stack size calculation in the deopt code
636// How much stack space would we need at this point in the program in
637// case of deoptimization?
638int JVMState::interpreter_frame_size() const {
639 const JVMState* jvms = this;
640 int size = 0;
641 int callee_parameters = 0;
642 int callee_locals = 0;
643 int extra_args = method()->max_stack() - stk_size();
644
645 while (jvms != NULL) {
646 int locks = jvms->nof_monitors();
647 int temps = jvms->stk_size();
648 bool is_top_frame = (jvms == this);
649 ciMethod* method = jvms->method();
650
651 int frame_size = BytesPerWord * Interpreter::size_activation(method->max_stack(),
652 temps + callee_parameters,
653 extra_args,
654 locks,
655 callee_parameters,
656 callee_locals,
657 is_top_frame);
658 size += frame_size;
659
660 callee_parameters = method->size_of_parameters();
661 callee_locals = method->max_locals();
662 extra_args = 0;
663 jvms = jvms->caller();
664 }
665 return size + Deoptimization::last_frame_adjust(0, callee_locals) * BytesPerWord;
666}
667
668//=============================================================================
669bool CallNode::cmp( const Node &n ) const
670{ return _tf == ((CallNode&)n)._tf && _jvms == ((CallNode&)n)._jvms; }
671#ifndef PRODUCT
672void CallNode::dump_req(outputStream *st) const {
673 // Dump the required inputs, enclosed in '(' and ')'
674 uint i; // Exit value of loop
675 for (i = 0; i < req(); i++) { // For all required inputs
676 if (i == TypeFunc::Parms) st->print("(");
677 if (in(i)) st->print("%c%d ", Compile::current()->node_arena()->contains(in(i)) ? ' ' : 'o', in(i)->_idx);
678 else st->print("_ ");
679 }
680 st->print(")");
681}
682
683void CallNode::dump_spec(outputStream *st) const {
684 st->print(" ");
685 if (tf() != NULL) tf()->dump_on(st);
686 if (_cnt != COUNT_UNKNOWN) st->print(" C=%f",_cnt);
687 if (jvms() != NULL) jvms()->dump_spec(st);
688}
689#endif
690
691const Type *CallNode::bottom_type() const { return tf()->range(); }
692const Type* CallNode::Value(PhaseGVN* phase) const {
693 if (phase->type(in(0)) == Type::TOP) return Type::TOP;
694 return tf()->range();
695}
696
697//------------------------------calling_convention-----------------------------
698void CallNode::calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const {
699 // Use the standard compiler calling convention
700 Matcher::calling_convention( sig_bt, parm_regs, argcnt, true );
701}
702
703
704//------------------------------match------------------------------------------
705// Construct projections for control, I/O, memory-fields, ..., and
706// return result(s) along with their RegMask info
707Node *CallNode::match( const ProjNode *proj, const Matcher *match ) {
708 switch (proj->_con) {
709 case TypeFunc::Control:
710 case TypeFunc::I_O:
711 case TypeFunc::Memory:
712 return new MachProjNode(this,proj->_con,RegMask::Empty,MachProjNode::unmatched_proj);
713
714 case TypeFunc::Parms+1: // For LONG & DOUBLE returns
715 assert(tf()->range()->field_at(TypeFunc::Parms+1) == Type::HALF, "");
716 // 2nd half of doubles and longs
717 return new MachProjNode(this,proj->_con, RegMask::Empty, (uint)OptoReg::Bad);
718
719 case TypeFunc::Parms: { // Normal returns
720 uint ideal_reg = tf()->range()->field_at(TypeFunc::Parms)->ideal_reg();
721 OptoRegPair regs = is_CallRuntime()
722 ? match->c_return_value(ideal_reg,true) // Calls into C runtime
723 : match-> return_value(ideal_reg,true); // Calls into compiled Java code
724 RegMask rm = RegMask(regs.first());
725 if( OptoReg::is_valid(regs.second()) )
726 rm.Insert( regs.second() );
727 return new MachProjNode(this,proj->_con,rm,ideal_reg);
728 }
729
730 case TypeFunc::ReturnAdr:
731 case TypeFunc::FramePtr:
732 default:
733 ShouldNotReachHere();
734 }
735 return NULL;
736}
737
738// Do we Match on this edge index or not? Match no edges
739uint CallNode::match_edge(uint idx) const {
740 return 0;
741}
742
743//
744// Determine whether the call could modify the field of the specified
745// instance at the specified offset.
746//
747bool CallNode::may_modify(const TypeOopPtr *t_oop, PhaseTransform *phase) {
748 assert((t_oop != NULL), "sanity");
749 if (is_call_to_arraycopystub() && strcmp(_name, "unsafe_arraycopy") != 0) {
750 const TypeTuple* args = _tf->domain();
751 Node* dest = NULL;
752 // Stubs that can be called once an ArrayCopyNode is expanded have
753 // different signatures. Look for the second pointer argument,
754 // that is the destination of the copy.
755 for (uint i = TypeFunc::Parms, j = 0; i < args->cnt(); i++) {
756 if (args->field_at(i)->isa_ptr()) {
757 j++;
758 if (j == 2) {
759 dest = in(i);
760 break;
761 }
762 }
763 }
764 guarantee(dest != NULL, "Call had only one ptr in, broken IR!");
765 if (!dest->is_top() && may_modify_arraycopy_helper(phase->type(dest)->is_oopptr(), t_oop, phase)) {
766 return true;
767 }
768 return false;
769 }
770 if (t_oop->is_known_instance()) {
771 // The instance_id is set only for scalar-replaceable allocations which
772 // are not passed as arguments according to Escape Analysis.
773 return false;
774 }
775 if (t_oop->is_ptr_to_boxed_value()) {
776 ciKlass* boxing_klass = t_oop->klass();
777 if (is_CallStaticJava() && as_CallStaticJava()->is_boxing_method()) {
778 // Skip unrelated boxing methods.
779 Node* proj = proj_out_or_null(TypeFunc::Parms);
780 if ((proj == NULL) || (phase->type(proj)->is_instptr()->klass() != boxing_klass)) {
781 return false;
782 }
783 }
784 if (is_CallJava() && as_CallJava()->method() != NULL) {
785 ciMethod* meth = as_CallJava()->method();
786 if (meth->is_getter()) {
787 return false;
788 }
789 // May modify (by reflection) if an boxing object is passed
790 // as argument or returned.
791 Node* proj = returns_pointer() ? proj_out_or_null(TypeFunc::Parms) : NULL;
792 if (proj != NULL) {
793 const TypeInstPtr* inst_t = phase->type(proj)->isa_instptr();
794 if ((inst_t != NULL) && (!inst_t->klass_is_exact() ||
795 (inst_t->klass() == boxing_klass))) {
796 return true;
797 }
798 }
799 const TypeTuple* d = tf()->domain();
800 for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
801 const TypeInstPtr* inst_t = d->field_at(i)->isa_instptr();
802 if ((inst_t != NULL) && (!inst_t->klass_is_exact() ||
803 (inst_t->klass() == boxing_klass))) {
804 return true;
805 }
806 }
807 return false;
808 }
809 }
810 return true;
811}
812
813// Does this call have a direct reference to n other than debug information?
814bool CallNode::has_non_debug_use(Node *n) {
815 const TypeTuple * d = tf()->domain();
816 for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
817 Node *arg = in(i);
818 if (arg == n) {
819 return true;
820 }
821 }
822 return false;
823}
824
825// Returns the unique CheckCastPP of a call
826// or 'this' if there are several CheckCastPP or unexpected uses
827// or returns NULL if there is no one.
828Node *CallNode::result_cast() {
829 Node *cast = NULL;
830
831 Node *p = proj_out_or_null(TypeFunc::Parms);
832 if (p == NULL)
833 return NULL;
834
835 for (DUIterator_Fast imax, i = p->fast_outs(imax); i < imax; i++) {
836 Node *use = p->fast_out(i);
837 if (use->is_CheckCastPP()) {
838 if (cast != NULL) {
839 return this; // more than 1 CheckCastPP
840 }
841 cast = use;
842 } else if (!use->is_Initialize() &&
843 !use->is_AddP() &&
844 use->Opcode() != Op_MemBarStoreStore) {
845 // Expected uses are restricted to a CheckCastPP, an Initialize
846 // node, a MemBarStoreStore (clone) and AddP nodes. If we
847 // encounter any other use (a Phi node can be seen in rare
848 // cases) return this to prevent incorrect optimizations.
849 return this;
850 }
851 }
852 return cast;
853}
854
855
856void CallNode::extract_projections(CallProjections* projs, bool separate_io_proj, bool do_asserts) {
857 projs->fallthrough_proj = NULL;
858 projs->fallthrough_catchproj = NULL;
859 projs->fallthrough_ioproj = NULL;
860 projs->catchall_ioproj = NULL;
861 projs->catchall_catchproj = NULL;
862 projs->fallthrough_memproj = NULL;
863 projs->catchall_memproj = NULL;
864 projs->resproj = NULL;
865 projs->exobj = NULL;
866
867 for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
868 ProjNode *pn = fast_out(i)->as_Proj();
869 if (pn->outcnt() == 0) continue;
870 switch (pn->_con) {
871 case TypeFunc::Control:
872 {
873 // For Control (fallthrough) and I_O (catch_all_index) we have CatchProj -> Catch -> Proj
874 projs->fallthrough_proj = pn;
875 DUIterator_Fast jmax, j = pn->fast_outs(jmax);
876 const Node *cn = pn->fast_out(j);
877 if (cn->is_Catch()) {
878 ProjNode *cpn = NULL;
879 for (DUIterator_Fast kmax, k = cn->fast_outs(kmax); k < kmax; k++) {
880 cpn = cn->fast_out(k)->as_Proj();
881 assert(cpn->is_CatchProj(), "must be a CatchProjNode");
882 if (cpn->_con == CatchProjNode::fall_through_index)
883 projs->fallthrough_catchproj = cpn;
884 else {
885 assert(cpn->_con == CatchProjNode::catch_all_index, "must be correct index.");
886 projs->catchall_catchproj = cpn;
887 }
888 }
889 }
890 break;
891 }
892 case TypeFunc::I_O:
893 if (pn->_is_io_use)
894 projs->catchall_ioproj = pn;
895 else
896 projs->fallthrough_ioproj = pn;
897 for (DUIterator j = pn->outs(); pn->has_out(j); j++) {
898 Node* e = pn->out(j);
899 if (e->Opcode() == Op_CreateEx && e->in(0)->is_CatchProj() && e->outcnt() > 0) {
900 assert(projs->exobj == NULL, "only one");
901 projs->exobj = e;
902 }
903 }
904 break;
905 case TypeFunc::Memory:
906 if (pn->_is_io_use)
907 projs->catchall_memproj = pn;
908 else
909 projs->fallthrough_memproj = pn;
910 break;
911 case TypeFunc::Parms:
912 projs->resproj = pn;
913 break;
914 default:
915 assert(false, "unexpected projection from allocation node.");
916 }
917 }
918
919 // The resproj may not exist because the result could be ignored
920 // and the exception object may not exist if an exception handler
921 // swallows the exception but all the other must exist and be found.
922 assert(projs->fallthrough_proj != NULL, "must be found");
923 do_asserts = do_asserts && !Compile::current()->inlining_incrementally();
924 assert(!do_asserts || projs->fallthrough_catchproj != NULL, "must be found");
925 assert(!do_asserts || projs->fallthrough_memproj != NULL, "must be found");
926 assert(!do_asserts || projs->fallthrough_ioproj != NULL, "must be found");
927 assert(!do_asserts || projs->catchall_catchproj != NULL, "must be found");
928 if (separate_io_proj) {
929 assert(!do_asserts || projs->catchall_memproj != NULL, "must be found");
930 assert(!do_asserts || projs->catchall_ioproj != NULL, "must be found");
931 }
932}
933
934Node *CallNode::Ideal(PhaseGVN *phase, bool can_reshape) {
935 CallGenerator* cg = generator();
936 if (can_reshape && cg != NULL && cg->is_mh_late_inline() && !cg->already_attempted()) {
937 // Check whether this MH handle call becomes a candidate for inlining
938 ciMethod* callee = cg->method();
939 vmIntrinsics::ID iid = callee->intrinsic_id();
940 if (iid == vmIntrinsics::_invokeBasic) {
941 if (in(TypeFunc::Parms)->Opcode() == Op_ConP) {
942 phase->C->prepend_late_inline(cg);
943 set_generator(NULL);
944 }
945 } else {
946 assert(callee->has_member_arg(), "wrong type of call?");
947 if (in(TypeFunc::Parms + callee->arg_size() - 1)->Opcode() == Op_ConP) {
948 phase->C->prepend_late_inline(cg);
949 set_generator(NULL);
950 }
951 }
952 }
953 return SafePointNode::Ideal(phase, can_reshape);
954}
955
956bool CallNode::is_call_to_arraycopystub() const {
957 if (_name != NULL && strstr(_name, "arraycopy") != 0) {
958 return true;
959 }
960 return false;
961}
962
963//=============================================================================
964uint CallJavaNode::size_of() const { return sizeof(*this); }
965bool CallJavaNode::cmp( const Node &n ) const {
966 CallJavaNode &call = (CallJavaNode&)n;
967 return CallNode::cmp(call) && _method == call._method &&
968 _override_symbolic_info == call._override_symbolic_info;
969}
970#ifdef ASSERT
971bool CallJavaNode::validate_symbolic_info() const {
972 if (method() == NULL) {
973 return true; // call into runtime or uncommon trap
974 }
975 ciMethod* symbolic_info = jvms()->method()->get_method_at_bci(_bci);
976 ciMethod* callee = method();
977 if (symbolic_info->is_method_handle_intrinsic() && !callee->is_method_handle_intrinsic()) {
978 assert(override_symbolic_info(), "should be set");
979 }
980 assert(ciMethod::is_consistent_info(symbolic_info, callee), "inconsistent info");
981 return true;
982}
983#endif
984
985#ifndef PRODUCT
986void CallJavaNode::dump_spec(outputStream *st) const {
987 if( _method ) _method->print_short_name(st);
988 CallNode::dump_spec(st);
989}
990
991void CallJavaNode::dump_compact_spec(outputStream* st) const {
992 if (_method) {
993 _method->print_short_name(st);
994 } else {
995 st->print("<?>");
996 }
997}
998#endif
999
1000//=============================================================================
1001uint CallStaticJavaNode::size_of() const { return sizeof(*this); }
1002bool CallStaticJavaNode::cmp( const Node &n ) const {
1003 CallStaticJavaNode &call = (CallStaticJavaNode&)n;
1004 return CallJavaNode::cmp(call);
1005}
1006
1007//----------------------------uncommon_trap_request----------------------------
1008// If this is an uncommon trap, return the request code, else zero.
1009int CallStaticJavaNode::uncommon_trap_request() const {
1010 if (_name != NULL && !strcmp(_name, "uncommon_trap")) {
1011 return extract_uncommon_trap_request(this);
1012 }
1013 return 0;
1014}
1015int CallStaticJavaNode::extract_uncommon_trap_request(const Node* call) {
1016#ifndef PRODUCT
1017 if (!(call->req() > TypeFunc::Parms &&
1018 call->in(TypeFunc::Parms) != NULL &&
1019 call->in(TypeFunc::Parms)->is_Con() &&
1020 call->in(TypeFunc::Parms)->bottom_type()->isa_int())) {
1021 assert(in_dump() != 0, "OK if dumping");
1022 tty->print("[bad uncommon trap]");
1023 return 0;
1024 }
1025#endif
1026 return call->in(TypeFunc::Parms)->bottom_type()->is_int()->get_con();
1027}
1028
1029#ifndef PRODUCT
1030void CallStaticJavaNode::dump_spec(outputStream *st) const {
1031 st->print("# Static ");
1032 if (_name != NULL) {
1033 st->print("%s", _name);
1034 int trap_req = uncommon_trap_request();
1035 if (trap_req != 0) {
1036 char buf[100];
1037 st->print("(%s)",
1038 Deoptimization::format_trap_request(buf, sizeof(buf),
1039 trap_req));
1040 }
1041 st->print(" ");
1042 }
1043 CallJavaNode::dump_spec(st);
1044}
1045
1046void CallStaticJavaNode::dump_compact_spec(outputStream* st) const {
1047 if (_method) {
1048 _method->print_short_name(st);
1049 } else if (_name) {
1050 st->print("%s", _name);
1051 } else {
1052 st->print("<?>");
1053 }
1054}
1055#endif
1056
1057//=============================================================================
1058uint CallDynamicJavaNode::size_of() const { return sizeof(*this); }
1059bool CallDynamicJavaNode::cmp( const Node &n ) const {
1060 CallDynamicJavaNode &call = (CallDynamicJavaNode&)n;
1061 return CallJavaNode::cmp(call);
1062}
1063#ifndef PRODUCT
1064void CallDynamicJavaNode::dump_spec(outputStream *st) const {
1065 st->print("# Dynamic ");
1066 CallJavaNode::dump_spec(st);
1067}
1068#endif
1069
1070//=============================================================================
1071uint CallRuntimeNode::size_of() const { return sizeof(*this); }
1072bool CallRuntimeNode::cmp( const Node &n ) const {
1073 CallRuntimeNode &call = (CallRuntimeNode&)n;
1074 return CallNode::cmp(call) && !strcmp(_name,call._name);
1075}
1076#ifndef PRODUCT
1077void CallRuntimeNode::dump_spec(outputStream *st) const {
1078 st->print("# ");
1079 st->print("%s", _name);
1080 CallNode::dump_spec(st);
1081}
1082#endif
1083
1084//------------------------------calling_convention-----------------------------
1085void CallRuntimeNode::calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const {
1086 Matcher::c_calling_convention( sig_bt, parm_regs, argcnt );
1087}
1088
1089//=============================================================================
1090//------------------------------calling_convention-----------------------------
1091
1092
1093//=============================================================================
1094#ifndef PRODUCT
1095void CallLeafNode::dump_spec(outputStream *st) const {
1096 st->print("# ");
1097 st->print("%s", _name);
1098 CallNode::dump_spec(st);
1099}
1100#endif
1101
1102//=============================================================================
1103
1104void SafePointNode::set_local(JVMState* jvms, uint idx, Node *c) {
1105 assert(verify_jvms(jvms), "jvms must match");
1106 int loc = jvms->locoff() + idx;
1107 if (in(loc)->is_top() && idx > 0 && !c->is_top() ) {
1108 // If current local idx is top then local idx - 1 could
1109 // be a long/double that needs to be killed since top could
1110 // represent the 2nd half ofthe long/double.
1111 uint ideal = in(loc -1)->ideal_reg();
1112 if (ideal == Op_RegD || ideal == Op_RegL) {
1113 // set other (low index) half to top
1114 set_req(loc - 1, in(loc));
1115 }
1116 }
1117 set_req(loc, c);
1118}
1119
1120uint SafePointNode::size_of() const { return sizeof(*this); }
1121bool SafePointNode::cmp( const Node &n ) const {
1122 return (&n == this); // Always fail except on self
1123}
1124
1125//-------------------------set_next_exception----------------------------------
1126void SafePointNode::set_next_exception(SafePointNode* n) {
1127 assert(n == NULL || n->Opcode() == Op_SafePoint, "correct value for next_exception");
1128 if (len() == req()) {
1129 if (n != NULL) add_prec(n);
1130 } else {
1131 set_prec(req(), n);
1132 }
1133}
1134
1135
1136//----------------------------next_exception-----------------------------------
1137SafePointNode* SafePointNode::next_exception() const {
1138 if (len() == req()) {
1139 return NULL;
1140 } else {
1141 Node* n = in(req());
1142 assert(n == NULL || n->Opcode() == Op_SafePoint, "no other uses of prec edges");
1143 return (SafePointNode*) n;
1144 }
1145}
1146
1147
1148//------------------------------Ideal------------------------------------------
1149// Skip over any collapsed Regions
1150Node *SafePointNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1151 return remove_dead_region(phase, can_reshape) ? this : NULL;
1152}
1153
1154//------------------------------Identity---------------------------------------
1155// Remove obviously duplicate safepoints
1156Node* SafePointNode::Identity(PhaseGVN* phase) {
1157
1158 // If you have back to back safepoints, remove one
1159 if( in(TypeFunc::Control)->is_SafePoint() )
1160 return in(TypeFunc::Control);
1161
1162 if( in(0)->is_Proj() ) {
1163 Node *n0 = in(0)->in(0);
1164 // Check if he is a call projection (except Leaf Call)
1165 if( n0->is_Catch() ) {
1166 n0 = n0->in(0)->in(0);
1167 assert( n0->is_Call(), "expect a call here" );
1168 }
1169 if( n0->is_Call() && n0->as_Call()->guaranteed_safepoint() ) {
1170 // Don't remove a safepoint belonging to an OuterStripMinedLoopEndNode.
1171 // If the loop dies, they will be removed together.
1172 if (has_out_with(Op_OuterStripMinedLoopEnd)) {
1173 return this;
1174 }
1175 // Useless Safepoint, so remove it
1176 return in(TypeFunc::Control);
1177 }
1178 }
1179
1180 return this;
1181}
1182
1183//------------------------------Value------------------------------------------
1184const Type* SafePointNode::Value(PhaseGVN* phase) const {
1185 if( phase->type(in(0)) == Type::TOP ) return Type::TOP;
1186 if( phase->eqv( in(0), this ) ) return Type::TOP; // Dead infinite loop
1187 return Type::CONTROL;
1188}
1189
1190#ifndef PRODUCT
1191void SafePointNode::dump_spec(outputStream *st) const {
1192 st->print(" SafePoint ");
1193 _replaced_nodes.dump(st);
1194}
1195
1196// The related nodes of a SafepointNode are all data inputs, excluding the
1197// control boundary, as well as all outputs till level 2 (to include projection
1198// nodes and targets). In compact mode, just include inputs till level 1 and
1199// outputs as before.
1200void SafePointNode::related(GrowableArray<Node*> *in_rel, GrowableArray<Node*> *out_rel, bool compact) const {
1201 if (compact) {
1202 this->collect_nodes(in_rel, 1, false, false);
1203 } else {
1204 this->collect_nodes_in_all_data(in_rel, false);
1205 }
1206 this->collect_nodes(out_rel, -2, false, false);
1207}
1208#endif
1209
1210const RegMask &SafePointNode::in_RegMask(uint idx) const {
1211 if( idx < TypeFunc::Parms ) return RegMask::Empty;
1212 // Values outside the domain represent debug info
1213 return *(Compile::current()->matcher()->idealreg2debugmask[in(idx)->ideal_reg()]);
1214}
1215const RegMask &SafePointNode::out_RegMask() const {
1216 return RegMask::Empty;
1217}
1218
1219
1220void SafePointNode::grow_stack(JVMState* jvms, uint grow_by) {
1221 assert((int)grow_by > 0, "sanity");
1222 int monoff = jvms->monoff();
1223 int scloff = jvms->scloff();
1224 int endoff = jvms->endoff();
1225 assert(endoff == (int)req(), "no other states or debug info after me");
1226 Node* top = Compile::current()->top();
1227 for (uint i = 0; i < grow_by; i++) {
1228 ins_req(monoff, top);
1229 }
1230 jvms->set_monoff(monoff + grow_by);
1231 jvms->set_scloff(scloff + grow_by);
1232 jvms->set_endoff(endoff + grow_by);
1233}
1234
1235void SafePointNode::push_monitor(const FastLockNode *lock) {
1236 // Add a LockNode, which points to both the original BoxLockNode (the
1237 // stack space for the monitor) and the Object being locked.
1238 const int MonitorEdges = 2;
1239 assert(JVMState::logMonitorEdges == exact_log2(MonitorEdges), "correct MonitorEdges");
1240 assert(req() == jvms()->endoff(), "correct sizing");
1241 int nextmon = jvms()->scloff();
1242 if (GenerateSynchronizationCode) {
1243 ins_req(nextmon, lock->box_node());
1244 ins_req(nextmon+1, lock->obj_node());
1245 } else {
1246 Node* top = Compile::current()->top();
1247 ins_req(nextmon, top);
1248 ins_req(nextmon, top);
1249 }
1250 jvms()->set_scloff(nextmon + MonitorEdges);
1251 jvms()->set_endoff(req());
1252}
1253
1254void SafePointNode::pop_monitor() {
1255 // Delete last monitor from debug info
1256 debug_only(int num_before_pop = jvms()->nof_monitors());
1257 const int MonitorEdges = 2;
1258 assert(JVMState::logMonitorEdges == exact_log2(MonitorEdges), "correct MonitorEdges");
1259 int scloff = jvms()->scloff();
1260 int endoff = jvms()->endoff();
1261 int new_scloff = scloff - MonitorEdges;
1262 int new_endoff = endoff - MonitorEdges;
1263 jvms()->set_scloff(new_scloff);
1264 jvms()->set_endoff(new_endoff);
1265 while (scloff > new_scloff) del_req_ordered(--scloff);
1266 assert(jvms()->nof_monitors() == num_before_pop-1, "");
1267}
1268
1269Node *SafePointNode::peek_monitor_box() const {
1270 int mon = jvms()->nof_monitors() - 1;
1271 assert(mon >= 0, "must have a monitor");
1272 return monitor_box(jvms(), mon);
1273}
1274
1275Node *SafePointNode::peek_monitor_obj() const {
1276 int mon = jvms()->nof_monitors() - 1;
1277 assert(mon >= 0, "must have a monitor");
1278 return monitor_obj(jvms(), mon);
1279}
1280
1281// Do we Match on this edge index or not? Match no edges
1282uint SafePointNode::match_edge(uint idx) const {
1283 if( !needs_polling_address_input() )
1284 return 0;
1285
1286 return (TypeFunc::Parms == idx);
1287}
1288
1289void SafePointNode::disconnect_from_root(PhaseIterGVN *igvn) {
1290 assert(Opcode() == Op_SafePoint, "only value for safepoint in loops");
1291 int nb = igvn->C->root()->find_prec_edge(this);
1292 if (nb != -1) {
1293 igvn->C->root()->rm_prec(nb);
1294 }
1295}
1296
1297//============== SafePointScalarObjectNode ==============
1298
1299SafePointScalarObjectNode::SafePointScalarObjectNode(const TypeOopPtr* tp,
1300#ifdef ASSERT
1301 AllocateNode* alloc,
1302#endif
1303 uint first_index,
1304 uint n_fields) :
1305 TypeNode(tp, 1), // 1 control input -- seems required. Get from root.
1306 _first_index(first_index),
1307 _n_fields(n_fields)
1308#ifdef ASSERT
1309 , _alloc(alloc)
1310#endif
1311{
1312 init_class_id(Class_SafePointScalarObject);
1313}
1314
1315// Do not allow value-numbering for SafePointScalarObject node.
1316uint SafePointScalarObjectNode::hash() const { return NO_HASH; }
1317bool SafePointScalarObjectNode::cmp( const Node &n ) const {
1318 return (&n == this); // Always fail except on self
1319}
1320
1321uint SafePointScalarObjectNode::ideal_reg() const {
1322 return 0; // No matching to machine instruction
1323}
1324
1325const RegMask &SafePointScalarObjectNode::in_RegMask(uint idx) const {
1326 return *(Compile::current()->matcher()->idealreg2debugmask[in(idx)->ideal_reg()]);
1327}
1328
1329const RegMask &SafePointScalarObjectNode::out_RegMask() const {
1330 return RegMask::Empty;
1331}
1332
1333uint SafePointScalarObjectNode::match_edge(uint idx) const {
1334 return 0;
1335}
1336
1337SafePointScalarObjectNode*
1338SafePointScalarObjectNode::clone(Dict* sosn_map) const {
1339 void* cached = (*sosn_map)[(void*)this];
1340 if (cached != NULL) {
1341 return (SafePointScalarObjectNode*)cached;
1342 }
1343 SafePointScalarObjectNode* res = (SafePointScalarObjectNode*)Node::clone();
1344 sosn_map->Insert((void*)this, (void*)res);
1345 return res;
1346}
1347
1348
1349#ifndef PRODUCT
1350void SafePointScalarObjectNode::dump_spec(outputStream *st) const {
1351 st->print(" # fields@[%d..%d]", first_index(),
1352 first_index() + n_fields() - 1);
1353}
1354
1355#endif
1356
1357//=============================================================================
1358uint AllocateNode::size_of() const { return sizeof(*this); }
1359
1360AllocateNode::AllocateNode(Compile* C, const TypeFunc *atype,
1361 Node *ctrl, Node *mem, Node *abio,
1362 Node *size, Node *klass_node, Node *initial_test)
1363 : CallNode(atype, NULL, TypeRawPtr::BOTTOM)
1364{
1365 init_class_id(Class_Allocate);
1366 init_flags(Flag_is_macro);
1367 _is_scalar_replaceable = false;
1368 _is_non_escaping = false;
1369 _is_allocation_MemBar_redundant = false;
1370 Node *topnode = C->top();
1371
1372 init_req( TypeFunc::Control , ctrl );
1373 init_req( TypeFunc::I_O , abio );
1374 init_req( TypeFunc::Memory , mem );
1375 init_req( TypeFunc::ReturnAdr, topnode );
1376 init_req( TypeFunc::FramePtr , topnode );
1377 init_req( AllocSize , size);
1378 init_req( KlassNode , klass_node);
1379 init_req( InitialTest , initial_test);
1380 init_req( ALength , topnode);
1381 C->add_macro_node(this);
1382}
1383
1384void AllocateNode::compute_MemBar_redundancy(ciMethod* initializer)
1385{
1386 assert(initializer != NULL &&
1387 initializer->is_initializer() &&
1388 !initializer->is_static(),
1389 "unexpected initializer method");
1390 BCEscapeAnalyzer* analyzer = initializer->get_bcea();
1391 if (analyzer == NULL) {
1392 return;
1393 }
1394
1395 // Allocation node is first parameter in its initializer
1396 if (analyzer->is_arg_stack(0) || analyzer->is_arg_local(0)) {
1397 _is_allocation_MemBar_redundant = true;
1398 }
1399}
1400
1401//=============================================================================
1402Node* AllocateArrayNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1403 if (remove_dead_region(phase, can_reshape)) return this;
1404 // Don't bother trying to transform a dead node
1405 if (in(0) && in(0)->is_top()) return NULL;
1406
1407 const Type* type = phase->type(Ideal_length());
1408 if (type->isa_int() && type->is_int()->_hi < 0) {
1409 if (can_reshape) {
1410 PhaseIterGVN *igvn = phase->is_IterGVN();
1411 // Unreachable fall through path (negative array length),
1412 // the allocation can only throw so disconnect it.
1413 Node* proj = proj_out_or_null(TypeFunc::Control);
1414 Node* catchproj = NULL;
1415 if (proj != NULL) {
1416 for (DUIterator_Fast imax, i = proj->fast_outs(imax); i < imax; i++) {
1417 Node *cn = proj->fast_out(i);
1418 if (cn->is_Catch()) {
1419 catchproj = cn->as_Multi()->proj_out_or_null(CatchProjNode::fall_through_index);
1420 break;
1421 }
1422 }
1423 }
1424 if (catchproj != NULL && catchproj->outcnt() > 0 &&
1425 (catchproj->outcnt() > 1 ||
1426 catchproj->unique_out()->Opcode() != Op_Halt)) {
1427 assert(catchproj->is_CatchProj(), "must be a CatchProjNode");
1428 Node* nproj = catchproj->clone();
1429 igvn->register_new_node_with_optimizer(nproj);
1430
1431 Node *frame = new ParmNode( phase->C->start(), TypeFunc::FramePtr );
1432 frame = phase->transform(frame);
1433 // Halt & Catch Fire
1434 Node *halt = new HaltNode( nproj, frame );
1435 phase->C->root()->add_req(halt);
1436 phase->transform(halt);
1437
1438 igvn->replace_node(catchproj, phase->C->top());
1439 return this;
1440 }
1441 } else {
1442 // Can't correct it during regular GVN so register for IGVN
1443 phase->C->record_for_igvn(this);
1444 }
1445 }
1446 return NULL;
1447}
1448
1449// Retrieve the length from the AllocateArrayNode. Narrow the type with a
1450// CastII, if appropriate. If we are not allowed to create new nodes, and
1451// a CastII is appropriate, return NULL.
1452Node *AllocateArrayNode::make_ideal_length(const TypeOopPtr* oop_type, PhaseTransform *phase, bool allow_new_nodes) {
1453 Node *length = in(AllocateNode::ALength);
1454 assert(length != NULL, "length is not null");
1455
1456 const TypeInt* length_type = phase->find_int_type(length);
1457 const TypeAryPtr* ary_type = oop_type->isa_aryptr();
1458
1459 if (ary_type != NULL && length_type != NULL) {
1460 const TypeInt* narrow_length_type = ary_type->narrow_size_type(length_type);
1461 if (narrow_length_type != length_type) {
1462 // Assert one of:
1463 // - the narrow_length is 0
1464 // - the narrow_length is not wider than length
1465 assert(narrow_length_type == TypeInt::ZERO ||
1466 length_type->is_con() && narrow_length_type->is_con() &&
1467 (narrow_length_type->_hi <= length_type->_lo) ||
1468 (narrow_length_type->_hi <= length_type->_hi &&
1469 narrow_length_type->_lo >= length_type->_lo),
1470 "narrow type must be narrower than length type");
1471
1472 // Return NULL if new nodes are not allowed
1473 if (!allow_new_nodes) return NULL;
1474 // Create a cast which is control dependent on the initialization to
1475 // propagate the fact that the array length must be positive.
1476 InitializeNode* init = initialization();
1477 assert(init != NULL, "initialization not found");
1478 length = new CastIINode(length, narrow_length_type);
1479 length->set_req(0, init->proj_out_or_null(0));
1480 }
1481 }
1482
1483 return length;
1484}
1485
1486//=============================================================================
1487uint LockNode::size_of() const { return sizeof(*this); }
1488
1489// Redundant lock elimination
1490//
1491// There are various patterns of locking where we release and
1492// immediately reacquire a lock in a piece of code where no operations
1493// occur in between that would be observable. In those cases we can
1494// skip releasing and reacquiring the lock without violating any
1495// fairness requirements. Doing this around a loop could cause a lock
1496// to be held for a very long time so we concentrate on non-looping
1497// control flow. We also require that the operations are fully
1498// redundant meaning that we don't introduce new lock operations on
1499// some paths so to be able to eliminate it on others ala PRE. This
1500// would probably require some more extensive graph manipulation to
1501// guarantee that the memory edges were all handled correctly.
1502//
1503// Assuming p is a simple predicate which can't trap in any way and s
1504// is a synchronized method consider this code:
1505//
1506// s();
1507// if (p)
1508// s();
1509// else
1510// s();
1511// s();
1512//
1513// 1. The unlocks of the first call to s can be eliminated if the
1514// locks inside the then and else branches are eliminated.
1515//
1516// 2. The unlocks of the then and else branches can be eliminated if
1517// the lock of the final call to s is eliminated.
1518//
1519// Either of these cases subsumes the simple case of sequential control flow
1520//
1521// Addtionally we can eliminate versions without the else case:
1522//
1523// s();
1524// if (p)
1525// s();
1526// s();
1527//
1528// 3. In this case we eliminate the unlock of the first s, the lock
1529// and unlock in the then case and the lock in the final s.
1530//
1531// Note also that in all these cases the then/else pieces don't have
1532// to be trivial as long as they begin and end with synchronization
1533// operations.
1534//
1535// s();
1536// if (p)
1537// s();
1538// f();
1539// s();
1540// s();
1541//
1542// The code will work properly for this case, leaving in the unlock
1543// before the call to f and the relock after it.
1544//
1545// A potentially interesting case which isn't handled here is when the
1546// locking is partially redundant.
1547//
1548// s();
1549// if (p)
1550// s();
1551//
1552// This could be eliminated putting unlocking on the else case and
1553// eliminating the first unlock and the lock in the then side.
1554// Alternatively the unlock could be moved out of the then side so it
1555// was after the merge and the first unlock and second lock
1556// eliminated. This might require less manipulation of the memory
1557// state to get correct.
1558//
1559// Additionally we might allow work between a unlock and lock before
1560// giving up eliminating the locks. The current code disallows any
1561// conditional control flow between these operations. A formulation
1562// similar to partial redundancy elimination computing the
1563// availability of unlocking and the anticipatability of locking at a
1564// program point would allow detection of fully redundant locking with
1565// some amount of work in between. I'm not sure how often I really
1566// think that would occur though. Most of the cases I've seen
1567// indicate it's likely non-trivial work would occur in between.
1568// There may be other more complicated constructs where we could
1569// eliminate locking but I haven't seen any others appear as hot or
1570// interesting.
1571//
1572// Locking and unlocking have a canonical form in ideal that looks
1573// roughly like this:
1574//
1575// <obj>
1576// | \\------+
1577// | \ \
1578// | BoxLock \
1579// | | | \
1580// | | \ \
1581// | | FastLock
1582// | | /
1583// | | /
1584// | | |
1585//
1586// Lock
1587// |
1588// Proj #0
1589// |
1590// MembarAcquire
1591// |
1592// Proj #0
1593//
1594// MembarRelease
1595// |
1596// Proj #0
1597// |
1598// Unlock
1599// |
1600// Proj #0
1601//
1602//
1603// This code proceeds by processing Lock nodes during PhaseIterGVN
1604// and searching back through its control for the proper code
1605// patterns. Once it finds a set of lock and unlock operations to
1606// eliminate they are marked as eliminatable which causes the
1607// expansion of the Lock and Unlock macro nodes to make the operation a NOP
1608//
1609//=============================================================================
1610
1611//
1612// Utility function to skip over uninteresting control nodes. Nodes skipped are:
1613// - copy regions. (These may not have been optimized away yet.)
1614// - eliminated locking nodes
1615//
1616static Node *next_control(Node *ctrl) {
1617 if (ctrl == NULL)
1618 return NULL;
1619 while (1) {
1620 if (ctrl->is_Region()) {
1621 RegionNode *r = ctrl->as_Region();
1622 Node *n = r->is_copy();
1623 if (n == NULL)
1624 break; // hit a region, return it
1625 else
1626 ctrl = n;
1627 } else if (ctrl->is_Proj()) {
1628 Node *in0 = ctrl->in(0);
1629 if (in0->is_AbstractLock() && in0->as_AbstractLock()->is_eliminated()) {
1630 ctrl = in0->in(0);
1631 } else {
1632 break;
1633 }
1634 } else {
1635 break; // found an interesting control
1636 }
1637 }
1638 return ctrl;
1639}
1640//
1641// Given a control, see if it's the control projection of an Unlock which
1642// operating on the same object as lock.
1643//
1644bool AbstractLockNode::find_matching_unlock(const Node* ctrl, LockNode* lock,
1645 GrowableArray<AbstractLockNode*> &lock_ops) {
1646 ProjNode *ctrl_proj = (ctrl->is_Proj()) ? ctrl->as_Proj() : NULL;
1647 if (ctrl_proj != NULL && ctrl_proj->_con == TypeFunc::Control) {
1648 Node *n = ctrl_proj->in(0);
1649 if (n != NULL && n->is_Unlock()) {
1650 UnlockNode *unlock = n->as_Unlock();
1651 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
1652 Node* lock_obj = bs->step_over_gc_barrier(lock->obj_node());
1653 Node* unlock_obj = bs->step_over_gc_barrier(unlock->obj_node());
1654 if (lock_obj->eqv_uncast(unlock_obj) &&
1655 BoxLockNode::same_slot(lock->box_node(), unlock->box_node()) &&
1656 !unlock->is_eliminated()) {
1657 lock_ops.append(unlock);
1658 return true;
1659 }
1660 }
1661 }
1662 return false;
1663}
1664
1665//
1666// Find the lock matching an unlock. Returns null if a safepoint
1667// or complicated control is encountered first.
1668LockNode *AbstractLockNode::find_matching_lock(UnlockNode* unlock) {
1669 LockNode *lock_result = NULL;
1670 // find the matching lock, or an intervening safepoint
1671 Node *ctrl = next_control(unlock->in(0));
1672 while (1) {
1673 assert(ctrl != NULL, "invalid control graph");
1674 assert(!ctrl->is_Start(), "missing lock for unlock");
1675 if (ctrl->is_top()) break; // dead control path
1676 if (ctrl->is_Proj()) ctrl = ctrl->in(0);
1677 if (ctrl->is_SafePoint()) {
1678 break; // found a safepoint (may be the lock we are searching for)
1679 } else if (ctrl->is_Region()) {
1680 // Check for a simple diamond pattern. Punt on anything more complicated
1681 if (ctrl->req() == 3 && ctrl->in(1) != NULL && ctrl->in(2) != NULL) {
1682 Node *in1 = next_control(ctrl->in(1));
1683 Node *in2 = next_control(ctrl->in(2));
1684 if (((in1->is_IfTrue() && in2->is_IfFalse()) ||
1685 (in2->is_IfTrue() && in1->is_IfFalse())) && (in1->in(0) == in2->in(0))) {
1686 ctrl = next_control(in1->in(0)->in(0));
1687 } else {
1688 break;
1689 }
1690 } else {
1691 break;
1692 }
1693 } else {
1694 ctrl = next_control(ctrl->in(0)); // keep searching
1695 }
1696 }
1697 if (ctrl->is_Lock()) {
1698 LockNode *lock = ctrl->as_Lock();
1699 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
1700 Node* lock_obj = bs->step_over_gc_barrier(lock->obj_node());
1701 Node* unlock_obj = bs->step_over_gc_barrier(unlock->obj_node());
1702 if (lock_obj->eqv_uncast(unlock_obj) &&
1703 BoxLockNode::same_slot(lock->box_node(), unlock->box_node())) {
1704 lock_result = lock;
1705 }
1706 }
1707 return lock_result;
1708}
1709
1710// This code corresponds to case 3 above.
1711
1712bool AbstractLockNode::find_lock_and_unlock_through_if(Node* node, LockNode* lock,
1713 GrowableArray<AbstractLockNode*> &lock_ops) {
1714 Node* if_node = node->in(0);
1715 bool if_true = node->is_IfTrue();
1716
1717 if (if_node->is_If() && if_node->outcnt() == 2 && (if_true || node->is_IfFalse())) {
1718 Node *lock_ctrl = next_control(if_node->in(0));
1719 if (find_matching_unlock(lock_ctrl, lock, lock_ops)) {
1720 Node* lock1_node = NULL;
1721 ProjNode* proj = if_node->as_If()->proj_out(!if_true);
1722 if (if_true) {
1723 if (proj->is_IfFalse() && proj->outcnt() == 1) {
1724 lock1_node = proj->unique_out();
1725 }
1726 } else {
1727 if (proj->is_IfTrue() && proj->outcnt() == 1) {
1728 lock1_node = proj->unique_out();
1729 }
1730 }
1731 if (lock1_node != NULL && lock1_node->is_Lock()) {
1732 LockNode *lock1 = lock1_node->as_Lock();
1733 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
1734 Node* lock_obj = bs->step_over_gc_barrier(lock->obj_node());
1735 Node* lock1_obj = bs->step_over_gc_barrier(lock1->obj_node());
1736 if (lock_obj->eqv_uncast(lock1_obj) &&
1737 BoxLockNode::same_slot(lock->box_node(), lock1->box_node()) &&
1738 !lock1->is_eliminated()) {
1739 lock_ops.append(lock1);
1740 return true;
1741 }
1742 }
1743 }
1744 }
1745
1746 lock_ops.trunc_to(0);
1747 return false;
1748}
1749
1750bool AbstractLockNode::find_unlocks_for_region(const RegionNode* region, LockNode* lock,
1751 GrowableArray<AbstractLockNode*> &lock_ops) {
1752 // check each control merging at this point for a matching unlock.
1753 // in(0) should be self edge so skip it.
1754 for (int i = 1; i < (int)region->req(); i++) {
1755 Node *in_node = next_control(region->in(i));
1756 if (in_node != NULL) {
1757 if (find_matching_unlock(in_node, lock, lock_ops)) {
1758 // found a match so keep on checking.
1759 continue;
1760 } else if (find_lock_and_unlock_through_if(in_node, lock, lock_ops)) {
1761 continue;
1762 }
1763
1764 // If we fall through to here then it was some kind of node we
1765 // don't understand or there wasn't a matching unlock, so give
1766 // up trying to merge locks.
1767 lock_ops.trunc_to(0);
1768 return false;
1769 }
1770 }
1771 return true;
1772
1773}
1774
1775#ifndef PRODUCT
1776//
1777// Create a counter which counts the number of times this lock is acquired
1778//
1779void AbstractLockNode::create_lock_counter(JVMState* state) {
1780 _counter = OptoRuntime::new_named_counter(state, NamedCounter::LockCounter);
1781}
1782
1783void AbstractLockNode::set_eliminated_lock_counter() {
1784 if (_counter) {
1785 // Update the counter to indicate that this lock was eliminated.
1786 // The counter update code will stay around even though the
1787 // optimizer will eliminate the lock operation itself.
1788 _counter->set_tag(NamedCounter::EliminatedLockCounter);
1789 }
1790}
1791
1792const char* AbstractLockNode::_kind_names[] = {"Regular", "NonEscObj", "Coarsened", "Nested"};
1793
1794void AbstractLockNode::dump_spec(outputStream* st) const {
1795 st->print("%s ", _kind_names[_kind]);
1796 CallNode::dump_spec(st);
1797}
1798
1799void AbstractLockNode::dump_compact_spec(outputStream* st) const {
1800 st->print("%s", _kind_names[_kind]);
1801}
1802
1803// The related set of lock nodes includes the control boundary.
1804void AbstractLockNode::related(GrowableArray<Node*> *in_rel, GrowableArray<Node*> *out_rel, bool compact) const {
1805 if (compact) {
1806 this->collect_nodes(in_rel, 1, false, false);
1807 } else {
1808 this->collect_nodes_in_all_data(in_rel, true);
1809 }
1810 this->collect_nodes(out_rel, -2, false, false);
1811}
1812#endif
1813
1814//=============================================================================
1815Node *LockNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1816
1817 // perform any generic optimizations first (returns 'this' or NULL)
1818 Node *result = SafePointNode::Ideal(phase, can_reshape);
1819 if (result != NULL) return result;
1820 // Don't bother trying to transform a dead node
1821 if (in(0) && in(0)->is_top()) return NULL;
1822
1823 // Now see if we can optimize away this lock. We don't actually
1824 // remove the locking here, we simply set the _eliminate flag which
1825 // prevents macro expansion from expanding the lock. Since we don't
1826 // modify the graph, the value returned from this function is the
1827 // one computed above.
1828 if (can_reshape && EliminateLocks && !is_non_esc_obj()) {
1829 //
1830 // If we are locking an unescaped object, the lock/unlock is unnecessary
1831 //
1832 ConnectionGraph *cgr = phase->C->congraph();
1833 if (cgr != NULL && cgr->not_global_escape(obj_node())) {
1834 assert(!is_eliminated() || is_coarsened(), "sanity");
1835 // The lock could be marked eliminated by lock coarsening
1836 // code during first IGVN before EA. Replace coarsened flag
1837 // to eliminate all associated locks/unlocks.
1838#ifdef ASSERT
1839 this->log_lock_optimization(phase->C,"eliminate_lock_set_non_esc1");
1840#endif
1841 this->set_non_esc_obj();
1842 return result;
1843 }
1844
1845 //
1846 // Try lock coarsening
1847 //
1848 PhaseIterGVN* iter = phase->is_IterGVN();
1849 if (iter != NULL && !is_eliminated()) {
1850
1851 GrowableArray<AbstractLockNode*> lock_ops;
1852
1853 Node *ctrl = next_control(in(0));
1854
1855 // now search back for a matching Unlock
1856 if (find_matching_unlock(ctrl, this, lock_ops)) {
1857 // found an unlock directly preceding this lock. This is the
1858 // case of single unlock directly control dependent on a
1859 // single lock which is the trivial version of case 1 or 2.
1860 } else if (ctrl->is_Region() ) {
1861 if (find_unlocks_for_region(ctrl->as_Region(), this, lock_ops)) {
1862 // found lock preceded by multiple unlocks along all paths
1863 // joining at this point which is case 3 in description above.
1864 }
1865 } else {
1866 // see if this lock comes from either half of an if and the
1867 // predecessors merges unlocks and the other half of the if
1868 // performs a lock.
1869 if (find_lock_and_unlock_through_if(ctrl, this, lock_ops)) {
1870 // found unlock splitting to an if with locks on both branches.
1871 }
1872 }
1873
1874 if (lock_ops.length() > 0) {
1875 // add ourselves to the list of locks to be eliminated.
1876 lock_ops.append(this);
1877
1878 #ifndef PRODUCT
1879 if (PrintEliminateLocks) {
1880 int locks = 0;
1881 int unlocks = 0;
1882 for (int i = 0; i < lock_ops.length(); i++) {
1883 AbstractLockNode* lock = lock_ops.at(i);
1884 if (lock->Opcode() == Op_Lock)
1885 locks++;
1886 else
1887 unlocks++;
1888 if (Verbose) {
1889 lock->dump(1);
1890 }
1891 }
1892 tty->print_cr("***Eliminated %d unlocks and %d locks", unlocks, locks);
1893 }
1894 #endif
1895
1896 // for each of the identified locks, mark them
1897 // as eliminatable
1898 for (int i = 0; i < lock_ops.length(); i++) {
1899 AbstractLockNode* lock = lock_ops.at(i);
1900
1901 // Mark it eliminated by coarsening and update any counters
1902#ifdef ASSERT
1903 lock->log_lock_optimization(phase->C, "eliminate_lock_set_coarsened");
1904#endif
1905 lock->set_coarsened();
1906 }
1907 } else if (ctrl->is_Region() &&
1908 iter->_worklist.member(ctrl)) {
1909 // We weren't able to find any opportunities but the region this
1910 // lock is control dependent on hasn't been processed yet so put
1911 // this lock back on the worklist so we can check again once any
1912 // region simplification has occurred.
1913 iter->_worklist.push(this);
1914 }
1915 }
1916 }
1917
1918 return result;
1919}
1920
1921//=============================================================================
1922bool LockNode::is_nested_lock_region() {
1923 return is_nested_lock_region(NULL);
1924}
1925
1926// p is used for access to compilation log; no logging if NULL
1927bool LockNode::is_nested_lock_region(Compile * c) {
1928 BoxLockNode* box = box_node()->as_BoxLock();
1929 int stk_slot = box->stack_slot();
1930 if (stk_slot <= 0) {
1931#ifdef ASSERT
1932 this->log_lock_optimization(c, "eliminate_lock_INLR_1");
1933#endif
1934 return false; // External lock or it is not Box (Phi node).
1935 }
1936
1937 // Ignore complex cases: merged locks or multiple locks.
1938 Node* obj = obj_node();
1939 LockNode* unique_lock = NULL;
1940 if (!box->is_simple_lock_region(&unique_lock, obj)) {
1941#ifdef ASSERT
1942 this->log_lock_optimization(c, "eliminate_lock_INLR_2a");
1943#endif
1944 return false;
1945 }
1946 if (unique_lock != this) {
1947#ifdef ASSERT
1948 this->log_lock_optimization(c, "eliminate_lock_INLR_2b");
1949#endif
1950 return false;
1951 }
1952
1953 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
1954 obj = bs->step_over_gc_barrier(obj);
1955 // Look for external lock for the same object.
1956 SafePointNode* sfn = this->as_SafePoint();
1957 JVMState* youngest_jvms = sfn->jvms();
1958 int max_depth = youngest_jvms->depth();
1959 for (int depth = 1; depth <= max_depth; depth++) {
1960 JVMState* jvms = youngest_jvms->of_depth(depth);
1961 int num_mon = jvms->nof_monitors();
1962 // Loop over monitors
1963 for (int idx = 0; idx < num_mon; idx++) {
1964 Node* obj_node = sfn->monitor_obj(jvms, idx);
1965 obj_node = bs->step_over_gc_barrier(obj_node);
1966 BoxLockNode* box_node = sfn->monitor_box(jvms, idx)->as_BoxLock();
1967 if ((box_node->stack_slot() < stk_slot) && obj_node->eqv_uncast(obj)) {
1968 return true;
1969 }
1970 }
1971 }
1972#ifdef ASSERT
1973 this->log_lock_optimization(c, "eliminate_lock_INLR_3");
1974#endif
1975 return false;
1976}
1977
1978//=============================================================================
1979uint UnlockNode::size_of() const { return sizeof(*this); }
1980
1981//=============================================================================
1982Node *UnlockNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1983
1984 // perform any generic optimizations first (returns 'this' or NULL)
1985 Node *result = SafePointNode::Ideal(phase, can_reshape);
1986 if (result != NULL) return result;
1987 // Don't bother trying to transform a dead node
1988 if (in(0) && in(0)->is_top()) return NULL;
1989
1990 // Now see if we can optimize away this unlock. We don't actually
1991 // remove the unlocking here, we simply set the _eliminate flag which
1992 // prevents macro expansion from expanding the unlock. Since we don't
1993 // modify the graph, the value returned from this function is the
1994 // one computed above.
1995 // Escape state is defined after Parse phase.
1996 if (can_reshape && EliminateLocks && !is_non_esc_obj()) {
1997 //
1998 // If we are unlocking an unescaped object, the lock/unlock is unnecessary.
1999 //
2000 ConnectionGraph *cgr = phase->C->congraph();
2001 if (cgr != NULL && cgr->not_global_escape(obj_node())) {
2002 assert(!is_eliminated() || is_coarsened(), "sanity");
2003 // The lock could be marked eliminated by lock coarsening
2004 // code during first IGVN before EA. Replace coarsened flag
2005 // to eliminate all associated locks/unlocks.
2006#ifdef ASSERT
2007 this->log_lock_optimization(phase->C, "eliminate_lock_set_non_esc2");
2008#endif
2009 this->set_non_esc_obj();
2010 }
2011 }
2012 return result;
2013}
2014
2015const char * AbstractLockNode::kind_as_string() const {
2016 return is_coarsened() ? "coarsened" :
2017 is_nested() ? "nested" :
2018 is_non_esc_obj() ? "non_escaping" :
2019 "?";
2020}
2021
2022void AbstractLockNode::log_lock_optimization(Compile *C, const char * tag) const {
2023 if (C == NULL) {
2024 return;
2025 }
2026 CompileLog* log = C->log();
2027 if (log != NULL) {
2028 log->begin_head("%s lock='%d' compile_id='%d' class_id='%s' kind='%s'",
2029 tag, is_Lock(), C->compile_id(),
2030 is_Unlock() ? "unlock" : is_Lock() ? "lock" : "?",
2031 kind_as_string());
2032 log->stamp();
2033 log->end_head();
2034 JVMState* p = is_Unlock() ? (as_Unlock()->dbg_jvms()) : jvms();
2035 while (p != NULL) {
2036 log->elem("jvms bci='%d' method='%d'", p->bci(), log->identify(p->method()));
2037 p = p->caller();
2038 }
2039 log->tail(tag);
2040 }
2041}
2042
2043bool CallNode::may_modify_arraycopy_helper(const TypeOopPtr* dest_t, const TypeOopPtr *t_oop, PhaseTransform *phase) {
2044 if (dest_t->is_known_instance() && t_oop->is_known_instance()) {
2045 return dest_t->instance_id() == t_oop->instance_id();
2046 }
2047
2048 if (dest_t->isa_instptr() && !dest_t->klass()->equals(phase->C->env()->Object_klass())) {
2049 // clone
2050 if (t_oop->isa_aryptr()) {
2051 return false;
2052 }
2053 if (!t_oop->isa_instptr()) {
2054 return true;
2055 }
2056 if (dest_t->klass()->is_subtype_of(t_oop->klass()) || t_oop->klass()->is_subtype_of(dest_t->klass())) {
2057 return true;
2058 }
2059 // unrelated
2060 return false;
2061 }
2062
2063 if (dest_t->isa_aryptr()) {
2064 // arraycopy or array clone
2065 if (t_oop->isa_instptr()) {
2066 return false;
2067 }
2068 if (!t_oop->isa_aryptr()) {
2069 return true;
2070 }
2071
2072 const Type* elem = dest_t->is_aryptr()->elem();
2073 if (elem == Type::BOTTOM) {
2074 // An array but we don't know what elements are
2075 return true;
2076 }
2077
2078 dest_t = dest_t->add_offset(Type::OffsetBot)->is_oopptr();
2079 uint dest_alias = phase->C->get_alias_index(dest_t);
2080 uint t_oop_alias = phase->C->get_alias_index(t_oop);
2081
2082 return dest_alias == t_oop_alias;
2083 }
2084
2085 return true;
2086}
2087