| 1 | /* |
| 2 | * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved. |
| 3 | * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
| 4 | * |
| 5 | * This code is free software; you can redistribute it and/or modify it |
| 6 | * under the terms of the GNU General Public License version 2 only, as |
| 7 | * published by the Free Software Foundation. |
| 8 | * |
| 9 | * This code is distributed in the hope that it will be useful, but WITHOUT |
| 10 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| 11 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| 12 | * version 2 for more details (a copy is included in the LICENSE file that |
| 13 | * accompanied this code). |
| 14 | * |
| 15 | * You should have received a copy of the GNU General Public License version |
| 16 | * 2 along with this work; if not, write to the Free Software Foundation, |
| 17 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
| 18 | * |
| 19 | * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
| 20 | * or visit www.oracle.com if you need additional information or have any |
| 21 | * questions. |
| 22 | * |
| 23 | */ |
| 24 | |
| 25 | #include "precompiled.hpp" |
| 26 | #include "memory/allocation.inline.hpp" |
| 27 | #include "opto/addnode.hpp" |
| 28 | #include "opto/connode.hpp" |
| 29 | #include "opto/convertnode.hpp" |
| 30 | #include "opto/divnode.hpp" |
| 31 | #include "opto/machnode.hpp" |
| 32 | #include "opto/movenode.hpp" |
| 33 | #include "opto/matcher.hpp" |
| 34 | #include "opto/mulnode.hpp" |
| 35 | #include "opto/phaseX.hpp" |
| 36 | #include "opto/subnode.hpp" |
| 37 | |
| 38 | // Portions of code courtesy of Clifford Click |
| 39 | |
| 40 | // Optimization - Graph Style |
| 41 | |
| 42 | #include <math.h> |
| 43 | |
| 44 | //----------------------magic_int_divide_constants----------------------------- |
| 45 | // Compute magic multiplier and shift constant for converting a 32 bit divide |
| 46 | // by constant into a multiply/shift/add series. Return false if calculations |
| 47 | // fail. |
| 48 | // |
| 49 | // Borrowed almost verbatim from Hacker's Delight by Henry S. Warren, Jr. with |
| 50 | // minor type name and parameter changes. |
| 51 | static bool magic_int_divide_constants(jint d, jint &M, jint &s) { |
| 52 | int32_t p; |
| 53 | uint32_t ad, anc, delta, q1, r1, q2, r2, t; |
| 54 | const uint32_t two31 = 0x80000000L; // 2**31. |
| 55 | |
| 56 | ad = ABS(d); |
| 57 | if (d == 0 || d == 1) return false; |
| 58 | t = two31 + ((uint32_t)d >> 31); |
| 59 | anc = t - 1 - t%ad; // Absolute value of nc. |
| 60 | p = 31; // Init. p. |
| 61 | q1 = two31/anc; // Init. q1 = 2**p/|nc|. |
| 62 | r1 = two31 - q1*anc; // Init. r1 = rem(2**p, |nc|). |
| 63 | q2 = two31/ad; // Init. q2 = 2**p/|d|. |
| 64 | r2 = two31 - q2*ad; // Init. r2 = rem(2**p, |d|). |
| 65 | do { |
| 66 | p = p + 1; |
| 67 | q1 = 2*q1; // Update q1 = 2**p/|nc|. |
| 68 | r1 = 2*r1; // Update r1 = rem(2**p, |nc|). |
| 69 | if (r1 >= anc) { // (Must be an unsigned |
| 70 | q1 = q1 + 1; // comparison here). |
| 71 | r1 = r1 - anc; |
| 72 | } |
| 73 | q2 = 2*q2; // Update q2 = 2**p/|d|. |
| 74 | r2 = 2*r2; // Update r2 = rem(2**p, |d|). |
| 75 | if (r2 >= ad) { // (Must be an unsigned |
| 76 | q2 = q2 + 1; // comparison here). |
| 77 | r2 = r2 - ad; |
| 78 | } |
| 79 | delta = ad - r2; |
| 80 | } while (q1 < delta || (q1 == delta && r1 == 0)); |
| 81 | |
| 82 | M = q2 + 1; |
| 83 | if (d < 0) M = -M; // Magic number and |
| 84 | s = p - 32; // shift amount to return. |
| 85 | |
| 86 | return true; |
| 87 | } |
| 88 | |
| 89 | //--------------------------transform_int_divide------------------------------- |
| 90 | // Convert a division by constant divisor into an alternate Ideal graph. |
| 91 | // Return NULL if no transformation occurs. |
| 92 | static Node *transform_int_divide( PhaseGVN *phase, Node *dividend, jint divisor ) { |
| 93 | |
| 94 | // Check for invalid divisors |
| 95 | assert( divisor != 0 && divisor != min_jint, |
| 96 | "bad divisor for transforming to long multiply" ); |
| 97 | |
| 98 | bool d_pos = divisor >= 0; |
| 99 | jint d = d_pos ? divisor : -divisor; |
| 100 | const int N = 32; |
| 101 | |
| 102 | // Result |
| 103 | Node *q = NULL; |
| 104 | |
| 105 | if (d == 1) { |
| 106 | // division by +/- 1 |
| 107 | if (!d_pos) { |
| 108 | // Just negate the value |
| 109 | q = new SubINode(phase->intcon(0), dividend); |
| 110 | } |
| 111 | } else if ( is_power_of_2(d) ) { |
| 112 | // division by +/- a power of 2 |
| 113 | |
| 114 | // See if we can simply do a shift without rounding |
| 115 | bool needs_rounding = true; |
| 116 | const Type *dt = phase->type(dividend); |
| 117 | const TypeInt *dti = dt->isa_int(); |
| 118 | if (dti && dti->_lo >= 0) { |
| 119 | // we don't need to round a positive dividend |
| 120 | needs_rounding = false; |
| 121 | } else if( dividend->Opcode() == Op_AndI ) { |
| 122 | // An AND mask of sufficient size clears the low bits and |
| 123 | // I can avoid rounding. |
| 124 | const TypeInt *andconi_t = phase->type( dividend->in(2) )->isa_int(); |
| 125 | if( andconi_t && andconi_t->is_con() ) { |
| 126 | jint andconi = andconi_t->get_con(); |
| 127 | if( andconi < 0 && is_power_of_2(-andconi) && (-andconi) >= d ) { |
| 128 | if( (-andconi) == d ) // Remove AND if it clears bits which will be shifted |
| 129 | dividend = dividend->in(1); |
| 130 | needs_rounding = false; |
| 131 | } |
| 132 | } |
| 133 | } |
| 134 | |
| 135 | // Add rounding to the shift to handle the sign bit |
| 136 | int l = log2_jint(d-1)+1; |
| 137 | if (needs_rounding) { |
| 138 | // Divide-by-power-of-2 can be made into a shift, but you have to do |
| 139 | // more math for the rounding. You need to add 0 for positive |
| 140 | // numbers, and "i-1" for negative numbers. Example: i=4, so the |
| 141 | // shift is by 2. You need to add 3 to negative dividends and 0 to |
| 142 | // positive ones. So (-7+3)>>2 becomes -1, (-4+3)>>2 becomes -1, |
| 143 | // (-2+3)>>2 becomes 0, etc. |
| 144 | |
| 145 | // Compute 0 or -1, based on sign bit |
| 146 | Node *sign = phase->transform(new RShiftINode(dividend, phase->intcon(N - 1))); |
| 147 | // Mask sign bit to the low sign bits |
| 148 | Node *round = phase->transform(new URShiftINode(sign, phase->intcon(N - l))); |
| 149 | // Round up before shifting |
| 150 | dividend = phase->transform(new AddINode(dividend, round)); |
| 151 | } |
| 152 | |
| 153 | // Shift for division |
| 154 | q = new RShiftINode(dividend, phase->intcon(l)); |
| 155 | |
| 156 | if (!d_pos) { |
| 157 | q = new SubINode(phase->intcon(0), phase->transform(q)); |
| 158 | } |
| 159 | } else { |
| 160 | // Attempt the jint constant divide -> multiply transform found in |
| 161 | // "Division by Invariant Integers using Multiplication" |
| 162 | // by Granlund and Montgomery |
| 163 | // See also "Hacker's Delight", chapter 10 by Warren. |
| 164 | |
| 165 | jint magic_const; |
| 166 | jint shift_const; |
| 167 | if (magic_int_divide_constants(d, magic_const, shift_const)) { |
| 168 | Node *magic = phase->longcon(magic_const); |
| 169 | Node *dividend_long = phase->transform(new ConvI2LNode(dividend)); |
| 170 | |
| 171 | // Compute the high half of the dividend x magic multiplication |
| 172 | Node *mul_hi = phase->transform(new MulLNode(dividend_long, magic)); |
| 173 | |
| 174 | if (magic_const < 0) { |
| 175 | mul_hi = phase->transform(new RShiftLNode(mul_hi, phase->intcon(N))); |
| 176 | mul_hi = phase->transform(new ConvL2INode(mul_hi)); |
| 177 | |
| 178 | // The magic multiplier is too large for a 32 bit constant. We've adjusted |
| 179 | // it down by 2^32, but have to add 1 dividend back in after the multiplication. |
| 180 | // This handles the "overflow" case described by Granlund and Montgomery. |
| 181 | mul_hi = phase->transform(new AddINode(dividend, mul_hi)); |
| 182 | |
| 183 | // Shift over the (adjusted) mulhi |
| 184 | if (shift_const != 0) { |
| 185 | mul_hi = phase->transform(new RShiftINode(mul_hi, phase->intcon(shift_const))); |
| 186 | } |
| 187 | } else { |
| 188 | // No add is required, we can merge the shifts together. |
| 189 | mul_hi = phase->transform(new RShiftLNode(mul_hi, phase->intcon(N + shift_const))); |
| 190 | mul_hi = phase->transform(new ConvL2INode(mul_hi)); |
| 191 | } |
| 192 | |
| 193 | // Get a 0 or -1 from the sign of the dividend. |
| 194 | Node *addend0 = mul_hi; |
| 195 | Node *addend1 = phase->transform(new RShiftINode(dividend, phase->intcon(N-1))); |
| 196 | |
| 197 | // If the divisor is negative, swap the order of the input addends; |
| 198 | // this has the effect of negating the quotient. |
| 199 | if (!d_pos) { |
| 200 | Node *temp = addend0; addend0 = addend1; addend1 = temp; |
| 201 | } |
| 202 | |
| 203 | // Adjust the final quotient by subtracting -1 (adding 1) |
| 204 | // from the mul_hi. |
| 205 | q = new SubINode(addend0, addend1); |
| 206 | } |
| 207 | } |
| 208 | |
| 209 | return q; |
| 210 | } |
| 211 | |
| 212 | //---------------------magic_long_divide_constants----------------------------- |
| 213 | // Compute magic multiplier and shift constant for converting a 64 bit divide |
| 214 | // by constant into a multiply/shift/add series. Return false if calculations |
| 215 | // fail. |
| 216 | // |
| 217 | // Borrowed almost verbatim from Hacker's Delight by Henry S. Warren, Jr. with |
| 218 | // minor type name and parameter changes. Adjusted to 64 bit word width. |
| 219 | static bool magic_long_divide_constants(jlong d, jlong &M, jint &s) { |
| 220 | int64_t p; |
| 221 | uint64_t ad, anc, delta, q1, r1, q2, r2, t; |
| 222 | const uint64_t two63 = UCONST64(0x8000000000000000); // 2**63. |
| 223 | |
| 224 | ad = ABS(d); |
| 225 | if (d == 0 || d == 1) return false; |
| 226 | t = two63 + ((uint64_t)d >> 63); |
| 227 | anc = t - 1 - t%ad; // Absolute value of nc. |
| 228 | p = 63; // Init. p. |
| 229 | q1 = two63/anc; // Init. q1 = 2**p/|nc|. |
| 230 | r1 = two63 - q1*anc; // Init. r1 = rem(2**p, |nc|). |
| 231 | q2 = two63/ad; // Init. q2 = 2**p/|d|. |
| 232 | r2 = two63 - q2*ad; // Init. r2 = rem(2**p, |d|). |
| 233 | do { |
| 234 | p = p + 1; |
| 235 | q1 = 2*q1; // Update q1 = 2**p/|nc|. |
| 236 | r1 = 2*r1; // Update r1 = rem(2**p, |nc|). |
| 237 | if (r1 >= anc) { // (Must be an unsigned |
| 238 | q1 = q1 + 1; // comparison here). |
| 239 | r1 = r1 - anc; |
| 240 | } |
| 241 | q2 = 2*q2; // Update q2 = 2**p/|d|. |
| 242 | r2 = 2*r2; // Update r2 = rem(2**p, |d|). |
| 243 | if (r2 >= ad) { // (Must be an unsigned |
| 244 | q2 = q2 + 1; // comparison here). |
| 245 | r2 = r2 - ad; |
| 246 | } |
| 247 | delta = ad - r2; |
| 248 | } while (q1 < delta || (q1 == delta && r1 == 0)); |
| 249 | |
| 250 | M = q2 + 1; |
| 251 | if (d < 0) M = -M; // Magic number and |
| 252 | s = p - 64; // shift amount to return. |
| 253 | |
| 254 | return true; |
| 255 | } |
| 256 | |
| 257 | //---------------------long_by_long_mulhi-------------------------------------- |
| 258 | // Generate ideal node graph for upper half of a 64 bit x 64 bit multiplication |
| 259 | static Node* long_by_long_mulhi(PhaseGVN* phase, Node* dividend, jlong magic_const) { |
| 260 | // If the architecture supports a 64x64 mulhi, there is |
| 261 | // no need to synthesize it in ideal nodes. |
| 262 | if (Matcher::has_match_rule(Op_MulHiL)) { |
| 263 | Node* v = phase->longcon(magic_const); |
| 264 | return new MulHiLNode(dividend, v); |
| 265 | } |
| 266 | |
| 267 | // Taken from Hacker's Delight, Fig. 8-2. Multiply high signed. |
| 268 | // (http://www.hackersdelight.org/HDcode/mulhs.c) |
| 269 | // |
| 270 | // int mulhs(int u, int v) { |
| 271 | // unsigned u0, v0, w0; |
| 272 | // int u1, v1, w1, w2, t; |
| 273 | // |
| 274 | // u0 = u & 0xFFFF; u1 = u >> 16; |
| 275 | // v0 = v & 0xFFFF; v1 = v >> 16; |
| 276 | // w0 = u0*v0; |
| 277 | // t = u1*v0 + (w0 >> 16); |
| 278 | // w1 = t & 0xFFFF; |
| 279 | // w2 = t >> 16; |
| 280 | // w1 = u0*v1 + w1; |
| 281 | // return u1*v1 + w2 + (w1 >> 16); |
| 282 | // } |
| 283 | // |
| 284 | // Note: The version above is for 32x32 multiplications, while the |
| 285 | // following inline comments are adapted to 64x64. |
| 286 | |
| 287 | const int N = 64; |
| 288 | |
| 289 | // Dummy node to keep intermediate nodes alive during construction |
| 290 | Node* hook = new Node(4); |
| 291 | |
| 292 | // u0 = u & 0xFFFFFFFF; u1 = u >> 32; |
| 293 | Node* u0 = phase->transform(new AndLNode(dividend, phase->longcon(0xFFFFFFFF))); |
| 294 | Node* u1 = phase->transform(new RShiftLNode(dividend, phase->intcon(N / 2))); |
| 295 | hook->init_req(0, u0); |
| 296 | hook->init_req(1, u1); |
| 297 | |
| 298 | // v0 = v & 0xFFFFFFFF; v1 = v >> 32; |
| 299 | Node* v0 = phase->longcon(magic_const & 0xFFFFFFFF); |
| 300 | Node* v1 = phase->longcon(magic_const >> (N / 2)); |
| 301 | |
| 302 | // w0 = u0*v0; |
| 303 | Node* w0 = phase->transform(new MulLNode(u0, v0)); |
| 304 | |
| 305 | // t = u1*v0 + (w0 >> 32); |
| 306 | Node* u1v0 = phase->transform(new MulLNode(u1, v0)); |
| 307 | Node* temp = phase->transform(new URShiftLNode(w0, phase->intcon(N / 2))); |
| 308 | Node* t = phase->transform(new AddLNode(u1v0, temp)); |
| 309 | hook->init_req(2, t); |
| 310 | |
| 311 | // w1 = t & 0xFFFFFFFF; |
| 312 | Node* w1 = phase->transform(new AndLNode(t, phase->longcon(0xFFFFFFFF))); |
| 313 | hook->init_req(3, w1); |
| 314 | |
| 315 | // w2 = t >> 32; |
| 316 | Node* w2 = phase->transform(new RShiftLNode(t, phase->intcon(N / 2))); |
| 317 | |
| 318 | // w1 = u0*v1 + w1; |
| 319 | Node* u0v1 = phase->transform(new MulLNode(u0, v1)); |
| 320 | w1 = phase->transform(new AddLNode(u0v1, w1)); |
| 321 | |
| 322 | // return u1*v1 + w2 + (w1 >> 32); |
| 323 | Node* u1v1 = phase->transform(new MulLNode(u1, v1)); |
| 324 | Node* temp1 = phase->transform(new AddLNode(u1v1, w2)); |
| 325 | Node* temp2 = phase->transform(new RShiftLNode(w1, phase->intcon(N / 2))); |
| 326 | |
| 327 | // Remove the bogus extra edges used to keep things alive |
| 328 | PhaseIterGVN* igvn = phase->is_IterGVN(); |
| 329 | if (igvn != NULL) { |
| 330 | igvn->remove_dead_node(hook); |
| 331 | } else { |
| 332 | for (int i = 0; i < 4; i++) { |
| 333 | hook->set_req(i, NULL); |
| 334 | } |
| 335 | } |
| 336 | |
| 337 | return new AddLNode(temp1, temp2); |
| 338 | } |
| 339 | |
| 340 | |
| 341 | //--------------------------transform_long_divide------------------------------ |
| 342 | // Convert a division by constant divisor into an alternate Ideal graph. |
| 343 | // Return NULL if no transformation occurs. |
| 344 | static Node *transform_long_divide( PhaseGVN *phase, Node *dividend, jlong divisor ) { |
| 345 | // Check for invalid divisors |
| 346 | assert( divisor != 0L && divisor != min_jlong, |
| 347 | "bad divisor for transforming to long multiply" ); |
| 348 | |
| 349 | bool d_pos = divisor >= 0; |
| 350 | jlong d = d_pos ? divisor : -divisor; |
| 351 | const int N = 64; |
| 352 | |
| 353 | // Result |
| 354 | Node *q = NULL; |
| 355 | |
| 356 | if (d == 1) { |
| 357 | // division by +/- 1 |
| 358 | if (!d_pos) { |
| 359 | // Just negate the value |
| 360 | q = new SubLNode(phase->longcon(0), dividend); |
| 361 | } |
| 362 | } else if ( is_power_of_2_long(d) ) { |
| 363 | |
| 364 | // division by +/- a power of 2 |
| 365 | |
| 366 | // See if we can simply do a shift without rounding |
| 367 | bool needs_rounding = true; |
| 368 | const Type *dt = phase->type(dividend); |
| 369 | const TypeLong *dtl = dt->isa_long(); |
| 370 | |
| 371 | if (dtl && dtl->_lo > 0) { |
| 372 | // we don't need to round a positive dividend |
| 373 | needs_rounding = false; |
| 374 | } else if( dividend->Opcode() == Op_AndL ) { |
| 375 | // An AND mask of sufficient size clears the low bits and |
| 376 | // I can avoid rounding. |
| 377 | const TypeLong *andconl_t = phase->type( dividend->in(2) )->isa_long(); |
| 378 | if( andconl_t && andconl_t->is_con() ) { |
| 379 | jlong andconl = andconl_t->get_con(); |
| 380 | if( andconl < 0 && is_power_of_2_long(-andconl) && (-andconl) >= d ) { |
| 381 | if( (-andconl) == d ) // Remove AND if it clears bits which will be shifted |
| 382 | dividend = dividend->in(1); |
| 383 | needs_rounding = false; |
| 384 | } |
| 385 | } |
| 386 | } |
| 387 | |
| 388 | // Add rounding to the shift to handle the sign bit |
| 389 | int l = log2_long(d-1)+1; |
| 390 | if (needs_rounding) { |
| 391 | // Divide-by-power-of-2 can be made into a shift, but you have to do |
| 392 | // more math for the rounding. You need to add 0 for positive |
| 393 | // numbers, and "i-1" for negative numbers. Example: i=4, so the |
| 394 | // shift is by 2. You need to add 3 to negative dividends and 0 to |
| 395 | // positive ones. So (-7+3)>>2 becomes -1, (-4+3)>>2 becomes -1, |
| 396 | // (-2+3)>>2 becomes 0, etc. |
| 397 | |
| 398 | // Compute 0 or -1, based on sign bit |
| 399 | Node *sign = phase->transform(new RShiftLNode(dividend, phase->intcon(N - 1))); |
| 400 | // Mask sign bit to the low sign bits |
| 401 | Node *round = phase->transform(new URShiftLNode(sign, phase->intcon(N - l))); |
| 402 | // Round up before shifting |
| 403 | dividend = phase->transform(new AddLNode(dividend, round)); |
| 404 | } |
| 405 | |
| 406 | // Shift for division |
| 407 | q = new RShiftLNode(dividend, phase->intcon(l)); |
| 408 | |
| 409 | if (!d_pos) { |
| 410 | q = new SubLNode(phase->longcon(0), phase->transform(q)); |
| 411 | } |
| 412 | } else if ( !Matcher::use_asm_for_ldiv_by_con(d) ) { // Use hardware DIV instruction when |
| 413 | // it is faster than code generated below. |
| 414 | // Attempt the jlong constant divide -> multiply transform found in |
| 415 | // "Division by Invariant Integers using Multiplication" |
| 416 | // by Granlund and Montgomery |
| 417 | // See also "Hacker's Delight", chapter 10 by Warren. |
| 418 | |
| 419 | jlong magic_const; |
| 420 | jint shift_const; |
| 421 | if (magic_long_divide_constants(d, magic_const, shift_const)) { |
| 422 | // Compute the high half of the dividend x magic multiplication |
| 423 | Node *mul_hi = phase->transform(long_by_long_mulhi(phase, dividend, magic_const)); |
| 424 | |
| 425 | // The high half of the 128-bit multiply is computed. |
| 426 | if (magic_const < 0) { |
| 427 | // The magic multiplier is too large for a 64 bit constant. We've adjusted |
| 428 | // it down by 2^64, but have to add 1 dividend back in after the multiplication. |
| 429 | // This handles the "overflow" case described by Granlund and Montgomery. |
| 430 | mul_hi = phase->transform(new AddLNode(dividend, mul_hi)); |
| 431 | } |
| 432 | |
| 433 | // Shift over the (adjusted) mulhi |
| 434 | if (shift_const != 0) { |
| 435 | mul_hi = phase->transform(new RShiftLNode(mul_hi, phase->intcon(shift_const))); |
| 436 | } |
| 437 | |
| 438 | // Get a 0 or -1 from the sign of the dividend. |
| 439 | Node *addend0 = mul_hi; |
| 440 | Node *addend1 = phase->transform(new RShiftLNode(dividend, phase->intcon(N-1))); |
| 441 | |
| 442 | // If the divisor is negative, swap the order of the input addends; |
| 443 | // this has the effect of negating the quotient. |
| 444 | if (!d_pos) { |
| 445 | Node *temp = addend0; addend0 = addend1; addend1 = temp; |
| 446 | } |
| 447 | |
| 448 | // Adjust the final quotient by subtracting -1 (adding 1) |
| 449 | // from the mul_hi. |
| 450 | q = new SubLNode(addend0, addend1); |
| 451 | } |
| 452 | } |
| 453 | |
| 454 | return q; |
| 455 | } |
| 456 | |
| 457 | //============================================================================= |
| 458 | //------------------------------Identity--------------------------------------- |
| 459 | // If the divisor is 1, we are an identity on the dividend. |
| 460 | Node* DivINode::Identity(PhaseGVN* phase) { |
| 461 | return (phase->type( in(2) )->higher_equal(TypeInt::ONE)) ? in(1) : this; |
| 462 | } |
| 463 | |
| 464 | //------------------------------Idealize--------------------------------------- |
| 465 | // Divides can be changed to multiplies and/or shifts |
| 466 | Node *DivINode::Ideal(PhaseGVN *phase, bool can_reshape) { |
| 467 | if (in(0) && remove_dead_region(phase, can_reshape)) return this; |
| 468 | // Don't bother trying to transform a dead node |
| 469 | if( in(0) && in(0)->is_top() ) return NULL; |
| 470 | |
| 471 | const Type *t = phase->type( in(2) ); |
| 472 | if( t == TypeInt::ONE ) // Identity? |
| 473 | return NULL; // Skip it |
| 474 | |
| 475 | const TypeInt *ti = t->isa_int(); |
| 476 | if( !ti ) return NULL; |
| 477 | |
| 478 | // Check for useless control input |
| 479 | // Check for excluding div-zero case |
| 480 | if (in(0) && (ti->_hi < 0 || ti->_lo > 0)) { |
| 481 | set_req(0, NULL); // Yank control input |
| 482 | return this; |
| 483 | } |
| 484 | |
| 485 | if( !ti->is_con() ) return NULL; |
| 486 | jint i = ti->get_con(); // Get divisor |
| 487 | |
| 488 | if (i == 0) return NULL; // Dividing by zero constant does not idealize |
| 489 | |
| 490 | // Dividing by MININT does not optimize as a power-of-2 shift. |
| 491 | if( i == min_jint ) return NULL; |
| 492 | |
| 493 | return transform_int_divide( phase, in(1), i ); |
| 494 | } |
| 495 | |
| 496 | //------------------------------Value------------------------------------------ |
| 497 | // A DivINode divides its inputs. The third input is a Control input, used to |
| 498 | // prevent hoisting the divide above an unsafe test. |
| 499 | const Type* DivINode::Value(PhaseGVN* phase) const { |
| 500 | // Either input is TOP ==> the result is TOP |
| 501 | const Type *t1 = phase->type( in(1) ); |
| 502 | const Type *t2 = phase->type( in(2) ); |
| 503 | if( t1 == Type::TOP ) return Type::TOP; |
| 504 | if( t2 == Type::TOP ) return Type::TOP; |
| 505 | |
| 506 | // x/x == 1 since we always generate the dynamic divisor check for 0. |
| 507 | if( phase->eqv( in(1), in(2) ) ) |
| 508 | return TypeInt::ONE; |
| 509 | |
| 510 | // Either input is BOTTOM ==> the result is the local BOTTOM |
| 511 | const Type *bot = bottom_type(); |
| 512 | if( (t1 == bot) || (t2 == bot) || |
| 513 | (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) ) |
| 514 | return bot; |
| 515 | |
| 516 | // Divide the two numbers. We approximate. |
| 517 | // If divisor is a constant and not zero |
| 518 | const TypeInt *i1 = t1->is_int(); |
| 519 | const TypeInt *i2 = t2->is_int(); |
| 520 | int widen = MAX2(i1->_widen, i2->_widen); |
| 521 | |
| 522 | if( i2->is_con() && i2->get_con() != 0 ) { |
| 523 | int32_t d = i2->get_con(); // Divisor |
| 524 | jint lo, hi; |
| 525 | if( d >= 0 ) { |
| 526 | lo = i1->_lo/d; |
| 527 | hi = i1->_hi/d; |
| 528 | } else { |
| 529 | if( d == -1 && i1->_lo == min_jint ) { |
| 530 | // 'min_jint/-1' throws arithmetic exception during compilation |
| 531 | lo = min_jint; |
| 532 | // do not support holes, 'hi' must go to either min_jint or max_jint: |
| 533 | // [min_jint, -10]/[-1,-1] ==> [min_jint] UNION [10,max_jint] |
| 534 | hi = i1->_hi == min_jint ? min_jint : max_jint; |
| 535 | } else { |
| 536 | lo = i1->_hi/d; |
| 537 | hi = i1->_lo/d; |
| 538 | } |
| 539 | } |
| 540 | return TypeInt::make(lo, hi, widen); |
| 541 | } |
| 542 | |
| 543 | // If the dividend is a constant |
| 544 | if( i1->is_con() ) { |
| 545 | int32_t d = i1->get_con(); |
| 546 | if( d < 0 ) { |
| 547 | if( d == min_jint ) { |
| 548 | // (-min_jint) == min_jint == (min_jint / -1) |
| 549 | return TypeInt::make(min_jint, max_jint/2 + 1, widen); |
| 550 | } else { |
| 551 | return TypeInt::make(d, -d, widen); |
| 552 | } |
| 553 | } |
| 554 | return TypeInt::make(-d, d, widen); |
| 555 | } |
| 556 | |
| 557 | // Otherwise we give up all hope |
| 558 | return TypeInt::INT; |
| 559 | } |
| 560 | |
| 561 | |
| 562 | //============================================================================= |
| 563 | //------------------------------Identity--------------------------------------- |
| 564 | // If the divisor is 1, we are an identity on the dividend. |
| 565 | Node* DivLNode::Identity(PhaseGVN* phase) { |
| 566 | return (phase->type( in(2) )->higher_equal(TypeLong::ONE)) ? in(1) : this; |
| 567 | } |
| 568 | |
| 569 | //------------------------------Idealize--------------------------------------- |
| 570 | // Dividing by a power of 2 is a shift. |
| 571 | Node *DivLNode::Ideal( PhaseGVN *phase, bool can_reshape) { |
| 572 | if (in(0) && remove_dead_region(phase, can_reshape)) return this; |
| 573 | // Don't bother trying to transform a dead node |
| 574 | if( in(0) && in(0)->is_top() ) return NULL; |
| 575 | |
| 576 | const Type *t = phase->type( in(2) ); |
| 577 | if( t == TypeLong::ONE ) // Identity? |
| 578 | return NULL; // Skip it |
| 579 | |
| 580 | const TypeLong *tl = t->isa_long(); |
| 581 | if( !tl ) return NULL; |
| 582 | |
| 583 | // Check for useless control input |
| 584 | // Check for excluding div-zero case |
| 585 | if (in(0) && (tl->_hi < 0 || tl->_lo > 0)) { |
| 586 | set_req(0, NULL); // Yank control input |
| 587 | return this; |
| 588 | } |
| 589 | |
| 590 | if( !tl->is_con() ) return NULL; |
| 591 | jlong l = tl->get_con(); // Get divisor |
| 592 | |
| 593 | if (l == 0) return NULL; // Dividing by zero constant does not idealize |
| 594 | |
| 595 | // Dividing by MINLONG does not optimize as a power-of-2 shift. |
| 596 | if( l == min_jlong ) return NULL; |
| 597 | |
| 598 | return transform_long_divide( phase, in(1), l ); |
| 599 | } |
| 600 | |
| 601 | //------------------------------Value------------------------------------------ |
| 602 | // A DivLNode divides its inputs. The third input is a Control input, used to |
| 603 | // prevent hoisting the divide above an unsafe test. |
| 604 | const Type* DivLNode::Value(PhaseGVN* phase) const { |
| 605 | // Either input is TOP ==> the result is TOP |
| 606 | const Type *t1 = phase->type( in(1) ); |
| 607 | const Type *t2 = phase->type( in(2) ); |
| 608 | if( t1 == Type::TOP ) return Type::TOP; |
| 609 | if( t2 == Type::TOP ) return Type::TOP; |
| 610 | |
| 611 | // x/x == 1 since we always generate the dynamic divisor check for 0. |
| 612 | if( phase->eqv( in(1), in(2) ) ) |
| 613 | return TypeLong::ONE; |
| 614 | |
| 615 | // Either input is BOTTOM ==> the result is the local BOTTOM |
| 616 | const Type *bot = bottom_type(); |
| 617 | if( (t1 == bot) || (t2 == bot) || |
| 618 | (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) ) |
| 619 | return bot; |
| 620 | |
| 621 | // Divide the two numbers. We approximate. |
| 622 | // If divisor is a constant and not zero |
| 623 | const TypeLong *i1 = t1->is_long(); |
| 624 | const TypeLong *i2 = t2->is_long(); |
| 625 | int widen = MAX2(i1->_widen, i2->_widen); |
| 626 | |
| 627 | if( i2->is_con() && i2->get_con() != 0 ) { |
| 628 | jlong d = i2->get_con(); // Divisor |
| 629 | jlong lo, hi; |
| 630 | if( d >= 0 ) { |
| 631 | lo = i1->_lo/d; |
| 632 | hi = i1->_hi/d; |
| 633 | } else { |
| 634 | if( d == CONST64(-1) && i1->_lo == min_jlong ) { |
| 635 | // 'min_jlong/-1' throws arithmetic exception during compilation |
| 636 | lo = min_jlong; |
| 637 | // do not support holes, 'hi' must go to either min_jlong or max_jlong: |
| 638 | // [min_jlong, -10]/[-1,-1] ==> [min_jlong] UNION [10,max_jlong] |
| 639 | hi = i1->_hi == min_jlong ? min_jlong : max_jlong; |
| 640 | } else { |
| 641 | lo = i1->_hi/d; |
| 642 | hi = i1->_lo/d; |
| 643 | } |
| 644 | } |
| 645 | return TypeLong::make(lo, hi, widen); |
| 646 | } |
| 647 | |
| 648 | // If the dividend is a constant |
| 649 | if( i1->is_con() ) { |
| 650 | jlong d = i1->get_con(); |
| 651 | if( d < 0 ) { |
| 652 | if( d == min_jlong ) { |
| 653 | // (-min_jlong) == min_jlong == (min_jlong / -1) |
| 654 | return TypeLong::make(min_jlong, max_jlong/2 + 1, widen); |
| 655 | } else { |
| 656 | return TypeLong::make(d, -d, widen); |
| 657 | } |
| 658 | } |
| 659 | return TypeLong::make(-d, d, widen); |
| 660 | } |
| 661 | |
| 662 | // Otherwise we give up all hope |
| 663 | return TypeLong::LONG; |
| 664 | } |
| 665 | |
| 666 | |
| 667 | //============================================================================= |
| 668 | //------------------------------Value------------------------------------------ |
| 669 | // An DivFNode divides its inputs. The third input is a Control input, used to |
| 670 | // prevent hoisting the divide above an unsafe test. |
| 671 | const Type* DivFNode::Value(PhaseGVN* phase) const { |
| 672 | // Either input is TOP ==> the result is TOP |
| 673 | const Type *t1 = phase->type( in(1) ); |
| 674 | const Type *t2 = phase->type( in(2) ); |
| 675 | if( t1 == Type::TOP ) return Type::TOP; |
| 676 | if( t2 == Type::TOP ) return Type::TOP; |
| 677 | |
| 678 | // Either input is BOTTOM ==> the result is the local BOTTOM |
| 679 | const Type *bot = bottom_type(); |
| 680 | if( (t1 == bot) || (t2 == bot) || |
| 681 | (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) ) |
| 682 | return bot; |
| 683 | |
| 684 | // x/x == 1, we ignore 0/0. |
| 685 | // Note: if t1 and t2 are zero then result is NaN (JVMS page 213) |
| 686 | // Does not work for variables because of NaN's |
| 687 | if( phase->eqv( in(1), in(2) ) && t1->base() == Type::FloatCon) |
| 688 | if (!g_isnan(t1->getf()) && g_isfinite(t1->getf()) && t1->getf() != 0.0) // could be negative ZERO or NaN |
| 689 | return TypeF::ONE; |
| 690 | |
| 691 | if( t2 == TypeF::ONE ) |
| 692 | return t1; |
| 693 | |
| 694 | // If divisor is a constant and not zero, divide them numbers |
| 695 | if( t1->base() == Type::FloatCon && |
| 696 | t2->base() == Type::FloatCon && |
| 697 | t2->getf() != 0.0 ) // could be negative zero |
| 698 | return TypeF::make( t1->getf()/t2->getf() ); |
| 699 | |
| 700 | // If the dividend is a constant zero |
| 701 | // Note: if t1 and t2 are zero then result is NaN (JVMS page 213) |
| 702 | // Test TypeF::ZERO is not sufficient as it could be negative zero |
| 703 | |
| 704 | if( t1 == TypeF::ZERO && !g_isnan(t2->getf()) && t2->getf() != 0.0 ) |
| 705 | return TypeF::ZERO; |
| 706 | |
| 707 | // Otherwise we give up all hope |
| 708 | return Type::FLOAT; |
| 709 | } |
| 710 | |
| 711 | //------------------------------isA_Copy--------------------------------------- |
| 712 | // Dividing by self is 1. |
| 713 | // If the divisor is 1, we are an identity on the dividend. |
| 714 | Node* DivFNode::Identity(PhaseGVN* phase) { |
| 715 | return (phase->type( in(2) ) == TypeF::ONE) ? in(1) : this; |
| 716 | } |
| 717 | |
| 718 | |
| 719 | //------------------------------Idealize--------------------------------------- |
| 720 | Node *DivFNode::Ideal(PhaseGVN *phase, bool can_reshape) { |
| 721 | if (in(0) && remove_dead_region(phase, can_reshape)) return this; |
| 722 | // Don't bother trying to transform a dead node |
| 723 | if( in(0) && in(0)->is_top() ) return NULL; |
| 724 | |
| 725 | const Type *t2 = phase->type( in(2) ); |
| 726 | if( t2 == TypeF::ONE ) // Identity? |
| 727 | return NULL; // Skip it |
| 728 | |
| 729 | const TypeF *tf = t2->isa_float_constant(); |
| 730 | if( !tf ) return NULL; |
| 731 | if( tf->base() != Type::FloatCon ) return NULL; |
| 732 | |
| 733 | // Check for out of range values |
| 734 | if( tf->is_nan() || !tf->is_finite() ) return NULL; |
| 735 | |
| 736 | // Get the value |
| 737 | float f = tf->getf(); |
| 738 | int exp; |
| 739 | |
| 740 | // Only for special case of dividing by a power of 2 |
| 741 | if( frexp((double)f, &exp) != 0.5 ) return NULL; |
| 742 | |
| 743 | // Limit the range of acceptable exponents |
| 744 | if( exp < -126 || exp > 126 ) return NULL; |
| 745 | |
| 746 | // Compute the reciprocal |
| 747 | float reciprocal = ((float)1.0) / f; |
| 748 | |
| 749 | assert( frexp((double)reciprocal, &exp) == 0.5, "reciprocal should be power of 2" ); |
| 750 | |
| 751 | // return multiplication by the reciprocal |
| 752 | return (new MulFNode(in(1), phase->makecon(TypeF::make(reciprocal)))); |
| 753 | } |
| 754 | |
| 755 | //============================================================================= |
| 756 | //------------------------------Value------------------------------------------ |
| 757 | // An DivDNode divides its inputs. The third input is a Control input, used to |
| 758 | // prevent hoisting the divide above an unsafe test. |
| 759 | const Type* DivDNode::Value(PhaseGVN* phase) const { |
| 760 | // Either input is TOP ==> the result is TOP |
| 761 | const Type *t1 = phase->type( in(1) ); |
| 762 | const Type *t2 = phase->type( in(2) ); |
| 763 | if( t1 == Type::TOP ) return Type::TOP; |
| 764 | if( t2 == Type::TOP ) return Type::TOP; |
| 765 | |
| 766 | // Either input is BOTTOM ==> the result is the local BOTTOM |
| 767 | const Type *bot = bottom_type(); |
| 768 | if( (t1 == bot) || (t2 == bot) || |
| 769 | (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) ) |
| 770 | return bot; |
| 771 | |
| 772 | // x/x == 1, we ignore 0/0. |
| 773 | // Note: if t1 and t2 are zero then result is NaN (JVMS page 213) |
| 774 | // Does not work for variables because of NaN's |
| 775 | if( phase->eqv( in(1), in(2) ) && t1->base() == Type::DoubleCon) |
| 776 | if (!g_isnan(t1->getd()) && g_isfinite(t1->getd()) && t1->getd() != 0.0) // could be negative ZERO or NaN |
| 777 | return TypeD::ONE; |
| 778 | |
| 779 | if( t2 == TypeD::ONE ) |
| 780 | return t1; |
| 781 | |
| 782 | #if defined(IA32) |
| 783 | if (!phase->C->method()->is_strict()) |
| 784 | // Can't trust native compilers to properly fold strict double |
| 785 | // division with round-to-zero on this platform. |
| 786 | #endif |
| 787 | { |
| 788 | // If divisor is a constant and not zero, divide them numbers |
| 789 | if( t1->base() == Type::DoubleCon && |
| 790 | t2->base() == Type::DoubleCon && |
| 791 | t2->getd() != 0.0 ) // could be negative zero |
| 792 | return TypeD::make( t1->getd()/t2->getd() ); |
| 793 | } |
| 794 | |
| 795 | // If the dividend is a constant zero |
| 796 | // Note: if t1 and t2 are zero then result is NaN (JVMS page 213) |
| 797 | // Test TypeF::ZERO is not sufficient as it could be negative zero |
| 798 | if( t1 == TypeD::ZERO && !g_isnan(t2->getd()) && t2->getd() != 0.0 ) |
| 799 | return TypeD::ZERO; |
| 800 | |
| 801 | // Otherwise we give up all hope |
| 802 | return Type::DOUBLE; |
| 803 | } |
| 804 | |
| 805 | |
| 806 | //------------------------------isA_Copy--------------------------------------- |
| 807 | // Dividing by self is 1. |
| 808 | // If the divisor is 1, we are an identity on the dividend. |
| 809 | Node* DivDNode::Identity(PhaseGVN* phase) { |
| 810 | return (phase->type( in(2) ) == TypeD::ONE) ? in(1) : this; |
| 811 | } |
| 812 | |
| 813 | //------------------------------Idealize--------------------------------------- |
| 814 | Node *DivDNode::Ideal(PhaseGVN *phase, bool can_reshape) { |
| 815 | if (in(0) && remove_dead_region(phase, can_reshape)) return this; |
| 816 | // Don't bother trying to transform a dead node |
| 817 | if( in(0) && in(0)->is_top() ) return NULL; |
| 818 | |
| 819 | const Type *t2 = phase->type( in(2) ); |
| 820 | if( t2 == TypeD::ONE ) // Identity? |
| 821 | return NULL; // Skip it |
| 822 | |
| 823 | const TypeD *td = t2->isa_double_constant(); |
| 824 | if( !td ) return NULL; |
| 825 | if( td->base() != Type::DoubleCon ) return NULL; |
| 826 | |
| 827 | // Check for out of range values |
| 828 | if( td->is_nan() || !td->is_finite() ) return NULL; |
| 829 | |
| 830 | // Get the value |
| 831 | double d = td->getd(); |
| 832 | int exp; |
| 833 | |
| 834 | // Only for special case of dividing by a power of 2 |
| 835 | if( frexp(d, &exp) != 0.5 ) return NULL; |
| 836 | |
| 837 | // Limit the range of acceptable exponents |
| 838 | if( exp < -1021 || exp > 1022 ) return NULL; |
| 839 | |
| 840 | // Compute the reciprocal |
| 841 | double reciprocal = 1.0 / d; |
| 842 | |
| 843 | assert( frexp(reciprocal, &exp) == 0.5, "reciprocal should be power of 2" ); |
| 844 | |
| 845 | // return multiplication by the reciprocal |
| 846 | return (new MulDNode(in(1), phase->makecon(TypeD::make(reciprocal)))); |
| 847 | } |
| 848 | |
| 849 | //============================================================================= |
| 850 | //------------------------------Idealize--------------------------------------- |
| 851 | Node *ModINode::Ideal(PhaseGVN *phase, bool can_reshape) { |
| 852 | // Check for dead control input |
| 853 | if( in(0) && remove_dead_region(phase, can_reshape) ) return this; |
| 854 | // Don't bother trying to transform a dead node |
| 855 | if( in(0) && in(0)->is_top() ) return NULL; |
| 856 | |
| 857 | // Get the modulus |
| 858 | const Type *t = phase->type( in(2) ); |
| 859 | if( t == Type::TOP ) return NULL; |
| 860 | const TypeInt *ti = t->is_int(); |
| 861 | |
| 862 | // Check for useless control input |
| 863 | // Check for excluding mod-zero case |
| 864 | if (in(0) && (ti->_hi < 0 || ti->_lo > 0)) { |
| 865 | set_req(0, NULL); // Yank control input |
| 866 | return this; |
| 867 | } |
| 868 | |
| 869 | // See if we are MOD'ing by 2^k or 2^k-1. |
| 870 | if( !ti->is_con() ) return NULL; |
| 871 | jint con = ti->get_con(); |
| 872 | |
| 873 | Node *hook = new Node(1); |
| 874 | |
| 875 | // First, special check for modulo 2^k-1 |
| 876 | if( con >= 0 && con < max_jint && is_power_of_2(con+1) ) { |
| 877 | uint k = exact_log2(con+1); // Extract k |
| 878 | |
| 879 | // Basic algorithm by David Detlefs. See fastmod_int.java for gory details. |
| 880 | static int unroll_factor[] = { 999, 999, 29, 14, 9, 7, 5, 4, 4, 3, 3, 2, 2, 2, 2, 2, 1 /*past here we assume 1 forever*/}; |
| 881 | int trip_count = 1; |
| 882 | if( k < ARRAY_SIZE(unroll_factor)) trip_count = unroll_factor[k]; |
| 883 | |
| 884 | // If the unroll factor is not too large, and if conditional moves are |
| 885 | // ok, then use this case |
| 886 | if( trip_count <= 5 && ConditionalMoveLimit != 0 ) { |
| 887 | Node *x = in(1); // Value being mod'd |
| 888 | Node *divisor = in(2); // Also is mask |
| 889 | |
| 890 | hook->init_req(0, x); // Add a use to x to prevent him from dying |
| 891 | // Generate code to reduce X rapidly to nearly 2^k-1. |
| 892 | for( int i = 0; i < trip_count; i++ ) { |
| 893 | Node *xl = phase->transform( new AndINode(x,divisor) ); |
| 894 | Node *xh = phase->transform( new RShiftINode(x,phase->intcon(k)) ); // Must be signed |
| 895 | x = phase->transform( new AddINode(xh,xl) ); |
| 896 | hook->set_req(0, x); |
| 897 | } |
| 898 | |
| 899 | // Generate sign-fixup code. Was original value positive? |
| 900 | // int hack_res = (i >= 0) ? divisor : 1; |
| 901 | Node *cmp1 = phase->transform( new CmpINode( in(1), phase->intcon(0) ) ); |
| 902 | Node *bol1 = phase->transform( new BoolNode( cmp1, BoolTest::ge ) ); |
| 903 | Node *cmov1= phase->transform( new CMoveINode(bol1, phase->intcon(1), divisor, TypeInt::POS) ); |
| 904 | // if( x >= hack_res ) x -= divisor; |
| 905 | Node *sub = phase->transform( new SubINode( x, divisor ) ); |
| 906 | Node *cmp2 = phase->transform( new CmpINode( x, cmov1 ) ); |
| 907 | Node *bol2 = phase->transform( new BoolNode( cmp2, BoolTest::ge ) ); |
| 908 | // Convention is to not transform the return value of an Ideal |
| 909 | // since Ideal is expected to return a modified 'this' or a new node. |
| 910 | Node *cmov2= new CMoveINode(bol2, x, sub, TypeInt::INT); |
| 911 | // cmov2 is now the mod |
| 912 | |
| 913 | // Now remove the bogus extra edges used to keep things alive |
| 914 | if (can_reshape) { |
| 915 | phase->is_IterGVN()->remove_dead_node(hook); |
| 916 | } else { |
| 917 | hook->set_req(0, NULL); // Just yank bogus edge during Parse phase |
| 918 | } |
| 919 | return cmov2; |
| 920 | } |
| 921 | } |
| 922 | |
| 923 | // Fell thru, the unroll case is not appropriate. Transform the modulo |
| 924 | // into a long multiply/int multiply/subtract case |
| 925 | |
| 926 | // Cannot handle mod 0, and min_jint isn't handled by the transform |
| 927 | if( con == 0 || con == min_jint ) return NULL; |
| 928 | |
| 929 | // Get the absolute value of the constant; at this point, we can use this |
| 930 | jint pos_con = (con >= 0) ? con : -con; |
| 931 | |
| 932 | // integer Mod 1 is always 0 |
| 933 | if( pos_con == 1 ) return new ConINode(TypeInt::ZERO); |
| 934 | |
| 935 | int log2_con = -1; |
| 936 | |
| 937 | // If this is a power of two, they maybe we can mask it |
| 938 | if( is_power_of_2(pos_con) ) { |
| 939 | log2_con = log2_intptr((intptr_t)pos_con); |
| 940 | |
| 941 | const Type *dt = phase->type(in(1)); |
| 942 | const TypeInt *dti = dt->isa_int(); |
| 943 | |
| 944 | // See if this can be masked, if the dividend is non-negative |
| 945 | if( dti && dti->_lo >= 0 ) |
| 946 | return ( new AndINode( in(1), phase->intcon( pos_con-1 ) ) ); |
| 947 | } |
| 948 | |
| 949 | // Save in(1) so that it cannot be changed or deleted |
| 950 | hook->init_req(0, in(1)); |
| 951 | |
| 952 | // Divide using the transform from DivI to MulL |
| 953 | Node *result = transform_int_divide( phase, in(1), pos_con ); |
| 954 | if (result != NULL) { |
| 955 | Node *divide = phase->transform(result); |
| 956 | |
| 957 | // Re-multiply, using a shift if this is a power of two |
| 958 | Node *mult = NULL; |
| 959 | |
| 960 | if( log2_con >= 0 ) |
| 961 | mult = phase->transform( new LShiftINode( divide, phase->intcon( log2_con ) ) ); |
| 962 | else |
| 963 | mult = phase->transform( new MulINode( divide, phase->intcon( pos_con ) ) ); |
| 964 | |
| 965 | // Finally, subtract the multiplied divided value from the original |
| 966 | result = new SubINode( in(1), mult ); |
| 967 | } |
| 968 | |
| 969 | // Now remove the bogus extra edges used to keep things alive |
| 970 | if (can_reshape) { |
| 971 | phase->is_IterGVN()->remove_dead_node(hook); |
| 972 | } else { |
| 973 | hook->set_req(0, NULL); // Just yank bogus edge during Parse phase |
| 974 | } |
| 975 | |
| 976 | // return the value |
| 977 | return result; |
| 978 | } |
| 979 | |
| 980 | //------------------------------Value------------------------------------------ |
| 981 | const Type* ModINode::Value(PhaseGVN* phase) const { |
| 982 | // Either input is TOP ==> the result is TOP |
| 983 | const Type *t1 = phase->type( in(1) ); |
| 984 | const Type *t2 = phase->type( in(2) ); |
| 985 | if( t1 == Type::TOP ) return Type::TOP; |
| 986 | if( t2 == Type::TOP ) return Type::TOP; |
| 987 | |
| 988 | // We always generate the dynamic check for 0. |
| 989 | // 0 MOD X is 0 |
| 990 | if( t1 == TypeInt::ZERO ) return TypeInt::ZERO; |
| 991 | // X MOD X is 0 |
| 992 | if( phase->eqv( in(1), in(2) ) ) return TypeInt::ZERO; |
| 993 | |
| 994 | // Either input is BOTTOM ==> the result is the local BOTTOM |
| 995 | const Type *bot = bottom_type(); |
| 996 | if( (t1 == bot) || (t2 == bot) || |
| 997 | (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) ) |
| 998 | return bot; |
| 999 | |
| 1000 | const TypeInt *i1 = t1->is_int(); |
| 1001 | const TypeInt *i2 = t2->is_int(); |
| 1002 | if( !i1->is_con() || !i2->is_con() ) { |
| 1003 | if( i1->_lo >= 0 && i2->_lo >= 0 ) |
| 1004 | return TypeInt::POS; |
| 1005 | // If both numbers are not constants, we know little. |
| 1006 | return TypeInt::INT; |
| 1007 | } |
| 1008 | // Mod by zero? Throw exception at runtime! |
| 1009 | if( !i2->get_con() ) return TypeInt::POS; |
| 1010 | |
| 1011 | // We must be modulo'ing 2 float constants. |
| 1012 | // Check for min_jint % '-1', result is defined to be '0'. |
| 1013 | if( i1->get_con() == min_jint && i2->get_con() == -1 ) |
| 1014 | return TypeInt::ZERO; |
| 1015 | |
| 1016 | return TypeInt::make( i1->get_con() % i2->get_con() ); |
| 1017 | } |
| 1018 | |
| 1019 | |
| 1020 | //============================================================================= |
| 1021 | //------------------------------Idealize--------------------------------------- |
| 1022 | Node *ModLNode::Ideal(PhaseGVN *phase, bool can_reshape) { |
| 1023 | // Check for dead control input |
| 1024 | if( in(0) && remove_dead_region(phase, can_reshape) ) return this; |
| 1025 | // Don't bother trying to transform a dead node |
| 1026 | if( in(0) && in(0)->is_top() ) return NULL; |
| 1027 | |
| 1028 | // Get the modulus |
| 1029 | const Type *t = phase->type( in(2) ); |
| 1030 | if( t == Type::TOP ) return NULL; |
| 1031 | const TypeLong *tl = t->is_long(); |
| 1032 | |
| 1033 | // Check for useless control input |
| 1034 | // Check for excluding mod-zero case |
| 1035 | if (in(0) && (tl->_hi < 0 || tl->_lo > 0)) { |
| 1036 | set_req(0, NULL); // Yank control input |
| 1037 | return this; |
| 1038 | } |
| 1039 | |
| 1040 | // See if we are MOD'ing by 2^k or 2^k-1. |
| 1041 | if( !tl->is_con() ) return NULL; |
| 1042 | jlong con = tl->get_con(); |
| 1043 | |
| 1044 | Node *hook = new Node(1); |
| 1045 | |
| 1046 | // Expand mod |
| 1047 | if( con >= 0 && con < max_jlong && is_power_of_2_long(con+1) ) { |
| 1048 | uint k = exact_log2_long(con+1); // Extract k |
| 1049 | |
| 1050 | // Basic algorithm by David Detlefs. See fastmod_long.java for gory details. |
| 1051 | // Used to help a popular random number generator which does a long-mod |
| 1052 | // of 2^31-1 and shows up in SpecJBB and SciMark. |
| 1053 | static int unroll_factor[] = { 999, 999, 61, 30, 20, 15, 12, 10, 8, 7, 6, 6, 5, 5, 4, 4, 4, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1 /*past here we assume 1 forever*/}; |
| 1054 | int trip_count = 1; |
| 1055 | if( k < ARRAY_SIZE(unroll_factor)) trip_count = unroll_factor[k]; |
| 1056 | |
| 1057 | // If the unroll factor is not too large, and if conditional moves are |
| 1058 | // ok, then use this case |
| 1059 | if( trip_count <= 5 && ConditionalMoveLimit != 0 ) { |
| 1060 | Node *x = in(1); // Value being mod'd |
| 1061 | Node *divisor = in(2); // Also is mask |
| 1062 | |
| 1063 | hook->init_req(0, x); // Add a use to x to prevent him from dying |
| 1064 | // Generate code to reduce X rapidly to nearly 2^k-1. |
| 1065 | for( int i = 0; i < trip_count; i++ ) { |
| 1066 | Node *xl = phase->transform( new AndLNode(x,divisor) ); |
| 1067 | Node *xh = phase->transform( new RShiftLNode(x,phase->intcon(k)) ); // Must be signed |
| 1068 | x = phase->transform( new AddLNode(xh,xl) ); |
| 1069 | hook->set_req(0, x); // Add a use to x to prevent him from dying |
| 1070 | } |
| 1071 | |
| 1072 | // Generate sign-fixup code. Was original value positive? |
| 1073 | // long hack_res = (i >= 0) ? divisor : CONST64(1); |
| 1074 | Node *cmp1 = phase->transform( new CmpLNode( in(1), phase->longcon(0) ) ); |
| 1075 | Node *bol1 = phase->transform( new BoolNode( cmp1, BoolTest::ge ) ); |
| 1076 | Node *cmov1= phase->transform( new CMoveLNode(bol1, phase->longcon(1), divisor, TypeLong::LONG) ); |
| 1077 | // if( x >= hack_res ) x -= divisor; |
| 1078 | Node *sub = phase->transform( new SubLNode( x, divisor ) ); |
| 1079 | Node *cmp2 = phase->transform( new CmpLNode( x, cmov1 ) ); |
| 1080 | Node *bol2 = phase->transform( new BoolNode( cmp2, BoolTest::ge ) ); |
| 1081 | // Convention is to not transform the return value of an Ideal |
| 1082 | // since Ideal is expected to return a modified 'this' or a new node. |
| 1083 | Node *cmov2= new CMoveLNode(bol2, x, sub, TypeLong::LONG); |
| 1084 | // cmov2 is now the mod |
| 1085 | |
| 1086 | // Now remove the bogus extra edges used to keep things alive |
| 1087 | if (can_reshape) { |
| 1088 | phase->is_IterGVN()->remove_dead_node(hook); |
| 1089 | } else { |
| 1090 | hook->set_req(0, NULL); // Just yank bogus edge during Parse phase |
| 1091 | } |
| 1092 | return cmov2; |
| 1093 | } |
| 1094 | } |
| 1095 | |
| 1096 | // Fell thru, the unroll case is not appropriate. Transform the modulo |
| 1097 | // into a long multiply/int multiply/subtract case |
| 1098 | |
| 1099 | // Cannot handle mod 0, and min_jlong isn't handled by the transform |
| 1100 | if( con == 0 || con == min_jlong ) return NULL; |
| 1101 | |
| 1102 | // Get the absolute value of the constant; at this point, we can use this |
| 1103 | jlong pos_con = (con >= 0) ? con : -con; |
| 1104 | |
| 1105 | // integer Mod 1 is always 0 |
| 1106 | if( pos_con == 1 ) return new ConLNode(TypeLong::ZERO); |
| 1107 | |
| 1108 | int log2_con = -1; |
| 1109 | |
| 1110 | // If this is a power of two, then maybe we can mask it |
| 1111 | if( is_power_of_2_long(pos_con) ) { |
| 1112 | log2_con = exact_log2_long(pos_con); |
| 1113 | |
| 1114 | const Type *dt = phase->type(in(1)); |
| 1115 | const TypeLong *dtl = dt->isa_long(); |
| 1116 | |
| 1117 | // See if this can be masked, if the dividend is non-negative |
| 1118 | if( dtl && dtl->_lo >= 0 ) |
| 1119 | return ( new AndLNode( in(1), phase->longcon( pos_con-1 ) ) ); |
| 1120 | } |
| 1121 | |
| 1122 | // Save in(1) so that it cannot be changed or deleted |
| 1123 | hook->init_req(0, in(1)); |
| 1124 | |
| 1125 | // Divide using the transform from DivL to MulL |
| 1126 | Node *result = transform_long_divide( phase, in(1), pos_con ); |
| 1127 | if (result != NULL) { |
| 1128 | Node *divide = phase->transform(result); |
| 1129 | |
| 1130 | // Re-multiply, using a shift if this is a power of two |
| 1131 | Node *mult = NULL; |
| 1132 | |
| 1133 | if( log2_con >= 0 ) |
| 1134 | mult = phase->transform( new LShiftLNode( divide, phase->intcon( log2_con ) ) ); |
| 1135 | else |
| 1136 | mult = phase->transform( new MulLNode( divide, phase->longcon( pos_con ) ) ); |
| 1137 | |
| 1138 | // Finally, subtract the multiplied divided value from the original |
| 1139 | result = new SubLNode( in(1), mult ); |
| 1140 | } |
| 1141 | |
| 1142 | // Now remove the bogus extra edges used to keep things alive |
| 1143 | if (can_reshape) { |
| 1144 | phase->is_IterGVN()->remove_dead_node(hook); |
| 1145 | } else { |
| 1146 | hook->set_req(0, NULL); // Just yank bogus edge during Parse phase |
| 1147 | } |
| 1148 | |
| 1149 | // return the value |
| 1150 | return result; |
| 1151 | } |
| 1152 | |
| 1153 | //------------------------------Value------------------------------------------ |
| 1154 | const Type* ModLNode::Value(PhaseGVN* phase) const { |
| 1155 | // Either input is TOP ==> the result is TOP |
| 1156 | const Type *t1 = phase->type( in(1) ); |
| 1157 | const Type *t2 = phase->type( in(2) ); |
| 1158 | if( t1 == Type::TOP ) return Type::TOP; |
| 1159 | if( t2 == Type::TOP ) return Type::TOP; |
| 1160 | |
| 1161 | // We always generate the dynamic check for 0. |
| 1162 | // 0 MOD X is 0 |
| 1163 | if( t1 == TypeLong::ZERO ) return TypeLong::ZERO; |
| 1164 | // X MOD X is 0 |
| 1165 | if( phase->eqv( in(1), in(2) ) ) return TypeLong::ZERO; |
| 1166 | |
| 1167 | // Either input is BOTTOM ==> the result is the local BOTTOM |
| 1168 | const Type *bot = bottom_type(); |
| 1169 | if( (t1 == bot) || (t2 == bot) || |
| 1170 | (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) ) |
| 1171 | return bot; |
| 1172 | |
| 1173 | const TypeLong *i1 = t1->is_long(); |
| 1174 | const TypeLong *i2 = t2->is_long(); |
| 1175 | if( !i1->is_con() || !i2->is_con() ) { |
| 1176 | if( i1->_lo >= CONST64(0) && i2->_lo >= CONST64(0) ) |
| 1177 | return TypeLong::POS; |
| 1178 | // If both numbers are not constants, we know little. |
| 1179 | return TypeLong::LONG; |
| 1180 | } |
| 1181 | // Mod by zero? Throw exception at runtime! |
| 1182 | if( !i2->get_con() ) return TypeLong::POS; |
| 1183 | |
| 1184 | // We must be modulo'ing 2 float constants. |
| 1185 | // Check for min_jint % '-1', result is defined to be '0'. |
| 1186 | if( i1->get_con() == min_jlong && i2->get_con() == -1 ) |
| 1187 | return TypeLong::ZERO; |
| 1188 | |
| 1189 | return TypeLong::make( i1->get_con() % i2->get_con() ); |
| 1190 | } |
| 1191 | |
| 1192 | |
| 1193 | //============================================================================= |
| 1194 | //------------------------------Value------------------------------------------ |
| 1195 | const Type* ModFNode::Value(PhaseGVN* phase) const { |
| 1196 | // Either input is TOP ==> the result is TOP |
| 1197 | const Type *t1 = phase->type( in(1) ); |
| 1198 | const Type *t2 = phase->type( in(2) ); |
| 1199 | if( t1 == Type::TOP ) return Type::TOP; |
| 1200 | if( t2 == Type::TOP ) return Type::TOP; |
| 1201 | |
| 1202 | // Either input is BOTTOM ==> the result is the local BOTTOM |
| 1203 | const Type *bot = bottom_type(); |
| 1204 | if( (t1 == bot) || (t2 == bot) || |
| 1205 | (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) ) |
| 1206 | return bot; |
| 1207 | |
| 1208 | // If either number is not a constant, we know nothing. |
| 1209 | if ((t1->base() != Type::FloatCon) || (t2->base() != Type::FloatCon)) { |
| 1210 | return Type::FLOAT; // note: x%x can be either NaN or 0 |
| 1211 | } |
| 1212 | |
| 1213 | float f1 = t1->getf(); |
| 1214 | float f2 = t2->getf(); |
| 1215 | jint x1 = jint_cast(f1); // note: *(int*)&f1, not just (int)f1 |
| 1216 | jint x2 = jint_cast(f2); |
| 1217 | |
| 1218 | // If either is a NaN, return an input NaN |
| 1219 | if (g_isnan(f1)) return t1; |
| 1220 | if (g_isnan(f2)) return t2; |
| 1221 | |
| 1222 | // If an operand is infinity or the divisor is +/- zero, punt. |
| 1223 | if (!g_isfinite(f1) || !g_isfinite(f2) || x2 == 0 || x2 == min_jint) |
| 1224 | return Type::FLOAT; |
| 1225 | |
| 1226 | // We must be modulo'ing 2 float constants. |
| 1227 | // Make sure that the sign of the fmod is equal to the sign of the dividend |
| 1228 | jint xr = jint_cast(fmod(f1, f2)); |
| 1229 | if ((x1 ^ xr) < 0) { |
| 1230 | xr ^= min_jint; |
| 1231 | } |
| 1232 | |
| 1233 | return TypeF::make(jfloat_cast(xr)); |
| 1234 | } |
| 1235 | |
| 1236 | |
| 1237 | //============================================================================= |
| 1238 | //------------------------------Value------------------------------------------ |
| 1239 | const Type* ModDNode::Value(PhaseGVN* phase) const { |
| 1240 | // Either input is TOP ==> the result is TOP |
| 1241 | const Type *t1 = phase->type( in(1) ); |
| 1242 | const Type *t2 = phase->type( in(2) ); |
| 1243 | if( t1 == Type::TOP ) return Type::TOP; |
| 1244 | if( t2 == Type::TOP ) return Type::TOP; |
| 1245 | |
| 1246 | // Either input is BOTTOM ==> the result is the local BOTTOM |
| 1247 | const Type *bot = bottom_type(); |
| 1248 | if( (t1 == bot) || (t2 == bot) || |
| 1249 | (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) ) |
| 1250 | return bot; |
| 1251 | |
| 1252 | // If either number is not a constant, we know nothing. |
| 1253 | if ((t1->base() != Type::DoubleCon) || (t2->base() != Type::DoubleCon)) { |
| 1254 | return Type::DOUBLE; // note: x%x can be either NaN or 0 |
| 1255 | } |
| 1256 | |
| 1257 | double f1 = t1->getd(); |
| 1258 | double f2 = t2->getd(); |
| 1259 | jlong x1 = jlong_cast(f1); // note: *(long*)&f1, not just (long)f1 |
| 1260 | jlong x2 = jlong_cast(f2); |
| 1261 | |
| 1262 | // If either is a NaN, return an input NaN |
| 1263 | if (g_isnan(f1)) return t1; |
| 1264 | if (g_isnan(f2)) return t2; |
| 1265 | |
| 1266 | // If an operand is infinity or the divisor is +/- zero, punt. |
| 1267 | if (!g_isfinite(f1) || !g_isfinite(f2) || x2 == 0 || x2 == min_jlong) |
| 1268 | return Type::DOUBLE; |
| 1269 | |
| 1270 | // We must be modulo'ing 2 double constants. |
| 1271 | // Make sure that the sign of the fmod is equal to the sign of the dividend |
| 1272 | jlong xr = jlong_cast(fmod(f1, f2)); |
| 1273 | if ((x1 ^ xr) < 0) { |
| 1274 | xr ^= min_jlong; |
| 1275 | } |
| 1276 | |
| 1277 | return TypeD::make(jdouble_cast(xr)); |
| 1278 | } |
| 1279 | |
| 1280 | //============================================================================= |
| 1281 | |
| 1282 | DivModNode::DivModNode( Node *c, Node *dividend, Node *divisor ) : MultiNode(3) { |
| 1283 | init_req(0, c); |
| 1284 | init_req(1, dividend); |
| 1285 | init_req(2, divisor); |
| 1286 | } |
| 1287 | |
| 1288 | //------------------------------make------------------------------------------ |
| 1289 | DivModINode* DivModINode::make(Node* div_or_mod) { |
| 1290 | Node* n = div_or_mod; |
| 1291 | assert(n->Opcode() == Op_DivI || n->Opcode() == Op_ModI, |
| 1292 | "only div or mod input pattern accepted" ); |
| 1293 | |
| 1294 | DivModINode* divmod = new DivModINode(n->in(0), n->in(1), n->in(2)); |
| 1295 | Node* dproj = new ProjNode(divmod, DivModNode::div_proj_num); |
| 1296 | Node* mproj = new ProjNode(divmod, DivModNode::mod_proj_num); |
| 1297 | return divmod; |
| 1298 | } |
| 1299 | |
| 1300 | //------------------------------make------------------------------------------ |
| 1301 | DivModLNode* DivModLNode::make(Node* div_or_mod) { |
| 1302 | Node* n = div_or_mod; |
| 1303 | assert(n->Opcode() == Op_DivL || n->Opcode() == Op_ModL, |
| 1304 | "only div or mod input pattern accepted" ); |
| 1305 | |
| 1306 | DivModLNode* divmod = new DivModLNode(n->in(0), n->in(1), n->in(2)); |
| 1307 | Node* dproj = new ProjNode(divmod, DivModNode::div_proj_num); |
| 1308 | Node* mproj = new ProjNode(divmod, DivModNode::mod_proj_num); |
| 1309 | return divmod; |
| 1310 | } |
| 1311 | |
| 1312 | //------------------------------match------------------------------------------ |
| 1313 | // return result(s) along with their RegMask info |
| 1314 | Node *DivModINode::match( const ProjNode *proj, const Matcher *match ) { |
| 1315 | uint ideal_reg = proj->ideal_reg(); |
| 1316 | RegMask rm; |
| 1317 | if (proj->_con == div_proj_num) { |
| 1318 | rm = match->divI_proj_mask(); |
| 1319 | } else { |
| 1320 | assert(proj->_con == mod_proj_num, "must be div or mod projection" ); |
| 1321 | rm = match->modI_proj_mask(); |
| 1322 | } |
| 1323 | return new MachProjNode(this, proj->_con, rm, ideal_reg); |
| 1324 | } |
| 1325 | |
| 1326 | |
| 1327 | //------------------------------match------------------------------------------ |
| 1328 | // return result(s) along with their RegMask info |
| 1329 | Node *DivModLNode::match( const ProjNode *proj, const Matcher *match ) { |
| 1330 | uint ideal_reg = proj->ideal_reg(); |
| 1331 | RegMask rm; |
| 1332 | if (proj->_con == div_proj_num) { |
| 1333 | rm = match->divL_proj_mask(); |
| 1334 | } else { |
| 1335 | assert(proj->_con == mod_proj_num, "must be div or mod projection" ); |
| 1336 | rm = match->modL_proj_mask(); |
| 1337 | } |
| 1338 | return new MachProjNode(this, proj->_con, rm, ideal_reg); |
| 1339 | } |
| 1340 | |