| 1 | /* |
| 2 | * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved. |
| 3 | * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
| 4 | * |
| 5 | * This code is free software; you can redistribute it and/or modify it |
| 6 | * under the terms of the GNU General Public License version 2 only, as |
| 7 | * published by the Free Software Foundation. |
| 8 | * |
| 9 | * This code is distributed in the hope that it will be useful, but WITHOUT |
| 10 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| 11 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| 12 | * version 2 for more details (a copy is included in the LICENSE file that |
| 13 | * accompanied this code). |
| 14 | * |
| 15 | * You should have received a copy of the GNU General Public License version |
| 16 | * 2 along with this work; if not, write to the Free Software Foundation, |
| 17 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
| 18 | * |
| 19 | * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
| 20 | * or visit www.oracle.com if you need additional information or have any |
| 21 | * questions. |
| 22 | * |
| 23 | */ |
| 24 | |
| 25 | #include "precompiled.hpp" |
| 26 | #include "memory/allocation.inline.hpp" |
| 27 | #include "opto/addnode.hpp" |
| 28 | #include "opto/connode.hpp" |
| 29 | #include "opto/convertnode.hpp" |
| 30 | #include "opto/memnode.hpp" |
| 31 | #include "opto/mulnode.hpp" |
| 32 | #include "opto/phaseX.hpp" |
| 33 | #include "opto/subnode.hpp" |
| 34 | |
| 35 | // Portions of code courtesy of Clifford Click |
| 36 | |
| 37 | |
| 38 | //============================================================================= |
| 39 | //------------------------------hash------------------------------------------- |
| 40 | // Hash function over MulNodes. Needs to be commutative; i.e., I swap |
| 41 | // (commute) inputs to MulNodes willy-nilly so the hash function must return |
| 42 | // the same value in the presence of edge swapping. |
| 43 | uint MulNode::hash() const { |
| 44 | return (uintptr_t)in(1) + (uintptr_t)in(2) + Opcode(); |
| 45 | } |
| 46 | |
| 47 | //------------------------------Identity--------------------------------------- |
| 48 | // Multiplying a one preserves the other argument |
| 49 | Node* MulNode::Identity(PhaseGVN* phase) { |
| 50 | const Type *one = mul_id(); // The multiplicative identity |
| 51 | if( phase->type( in(1) )->higher_equal( one ) ) return in(2); |
| 52 | if( phase->type( in(2) )->higher_equal( one ) ) return in(1); |
| 53 | |
| 54 | return this; |
| 55 | } |
| 56 | |
| 57 | //------------------------------Ideal------------------------------------------ |
| 58 | // We also canonicalize the Node, moving constants to the right input, |
| 59 | // and flatten expressions (so that 1+x+2 becomes x+3). |
| 60 | Node *MulNode::Ideal(PhaseGVN *phase, bool can_reshape) { |
| 61 | const Type *t1 = phase->type( in(1) ); |
| 62 | const Type *t2 = phase->type( in(2) ); |
| 63 | Node *progress = NULL; // Progress flag |
| 64 | // We are OK if right is a constant, or right is a load and |
| 65 | // left is a non-constant. |
| 66 | if( !(t2->singleton() || |
| 67 | (in(2)->is_Load() && !(t1->singleton() || in(1)->is_Load())) ) ) { |
| 68 | if( t1->singleton() || // Left input is a constant? |
| 69 | // Otherwise, sort inputs (commutativity) to help value numbering. |
| 70 | (in(1)->_idx > in(2)->_idx) ) { |
| 71 | swap_edges(1, 2); |
| 72 | const Type *t = t1; |
| 73 | t1 = t2; |
| 74 | t2 = t; |
| 75 | progress = this; // Made progress |
| 76 | } |
| 77 | } |
| 78 | |
| 79 | // If the right input is a constant, and the left input is a product of a |
| 80 | // constant, flatten the expression tree. |
| 81 | uint op = Opcode(); |
| 82 | if( t2->singleton() && // Right input is a constant? |
| 83 | op != Op_MulF && // Float & double cannot reassociate |
| 84 | op != Op_MulD ) { |
| 85 | if( t2 == Type::TOP ) return NULL; |
| 86 | Node *mul1 = in(1); |
| 87 | #ifdef ASSERT |
| 88 | // Check for dead loop |
| 89 | int op1 = mul1->Opcode(); |
| 90 | if( phase->eqv( mul1, this ) || phase->eqv( in(2), this ) || |
| 91 | ( ( op1 == mul_opcode() || op1 == add_opcode() ) && |
| 92 | ( phase->eqv( mul1->in(1), this ) || phase->eqv( mul1->in(2), this ) || |
| 93 | phase->eqv( mul1->in(1), mul1 ) || phase->eqv( mul1->in(2), mul1 ) ) ) ) |
| 94 | assert(false, "dead loop in MulNode::Ideal" ); |
| 95 | #endif |
| 96 | |
| 97 | if( mul1->Opcode() == mul_opcode() ) { // Left input is a multiply? |
| 98 | // Mul of a constant? |
| 99 | const Type *t12 = phase->type( mul1->in(2) ); |
| 100 | if( t12->singleton() && t12 != Type::TOP) { // Left input is an add of a constant? |
| 101 | // Compute new constant; check for overflow |
| 102 | const Type *tcon01 = ((MulNode*)mul1)->mul_ring(t2,t12); |
| 103 | if( tcon01->singleton() ) { |
| 104 | // The Mul of the flattened expression |
| 105 | set_req(1, mul1->in(1)); |
| 106 | set_req(2, phase->makecon( tcon01 )); |
| 107 | t2 = tcon01; |
| 108 | progress = this; // Made progress |
| 109 | } |
| 110 | } |
| 111 | } |
| 112 | // If the right input is a constant, and the left input is an add of a |
| 113 | // constant, flatten the tree: (X+con1)*con0 ==> X*con0 + con1*con0 |
| 114 | const Node *add1 = in(1); |
| 115 | if( add1->Opcode() == add_opcode() ) { // Left input is an add? |
| 116 | // Add of a constant? |
| 117 | const Type *t12 = phase->type( add1->in(2) ); |
| 118 | if( t12->singleton() && t12 != Type::TOP ) { // Left input is an add of a constant? |
| 119 | assert( add1->in(1) != add1, "dead loop in MulNode::Ideal" ); |
| 120 | // Compute new constant; check for overflow |
| 121 | const Type *tcon01 = mul_ring(t2,t12); |
| 122 | if( tcon01->singleton() ) { |
| 123 | |
| 124 | // Convert (X+con1)*con0 into X*con0 |
| 125 | Node *mul = clone(); // mul = ()*con0 |
| 126 | mul->set_req(1,add1->in(1)); // mul = X*con0 |
| 127 | mul = phase->transform(mul); |
| 128 | |
| 129 | Node *add2 = add1->clone(); |
| 130 | add2->set_req(1, mul); // X*con0 + con0*con1 |
| 131 | add2->set_req(2, phase->makecon(tcon01) ); |
| 132 | progress = add2; |
| 133 | } |
| 134 | } |
| 135 | } // End of is left input an add |
| 136 | } // End of is right input a Mul |
| 137 | |
| 138 | return progress; |
| 139 | } |
| 140 | |
| 141 | //------------------------------Value----------------------------------------- |
| 142 | const Type* MulNode::Value(PhaseGVN* phase) const { |
| 143 | const Type *t1 = phase->type( in(1) ); |
| 144 | const Type *t2 = phase->type( in(2) ); |
| 145 | // Either input is TOP ==> the result is TOP |
| 146 | if( t1 == Type::TOP ) return Type::TOP; |
| 147 | if( t2 == Type::TOP ) return Type::TOP; |
| 148 | |
| 149 | // Either input is ZERO ==> the result is ZERO. |
| 150 | // Not valid for floats or doubles since +0.0 * -0.0 --> +0.0 |
| 151 | int op = Opcode(); |
| 152 | if( op == Op_MulI || op == Op_AndI || op == Op_MulL || op == Op_AndL ) { |
| 153 | const Type *zero = add_id(); // The multiplicative zero |
| 154 | if( t1->higher_equal( zero ) ) return zero; |
| 155 | if( t2->higher_equal( zero ) ) return zero; |
| 156 | } |
| 157 | |
| 158 | // Either input is BOTTOM ==> the result is the local BOTTOM |
| 159 | if( t1 == Type::BOTTOM || t2 == Type::BOTTOM ) |
| 160 | return bottom_type(); |
| 161 | |
| 162 | #if defined(IA32) |
| 163 | // Can't trust native compilers to properly fold strict double |
| 164 | // multiplication with round-to-zero on this platform. |
| 165 | if (op == Op_MulD && phase->C->method()->is_strict()) { |
| 166 | return TypeD::DOUBLE; |
| 167 | } |
| 168 | #endif |
| 169 | |
| 170 | return mul_ring(t1,t2); // Local flavor of type multiplication |
| 171 | } |
| 172 | |
| 173 | //============================================================================= |
| 174 | //------------------------------Ideal------------------------------------------ |
| 175 | // Check for power-of-2 multiply, then try the regular MulNode::Ideal |
| 176 | Node *MulINode::Ideal(PhaseGVN *phase, bool can_reshape) { |
| 177 | // Swap constant to right |
| 178 | jint con; |
| 179 | if ((con = in(1)->find_int_con(0)) != 0) { |
| 180 | swap_edges(1, 2); |
| 181 | // Finish rest of method to use info in 'con' |
| 182 | } else if ((con = in(2)->find_int_con(0)) == 0) { |
| 183 | return MulNode::Ideal(phase, can_reshape); |
| 184 | } |
| 185 | |
| 186 | // Now we have a constant Node on the right and the constant in con |
| 187 | if (con == 0) return NULL; // By zero is handled by Value call |
| 188 | if (con == 1) return NULL; // By one is handled by Identity call |
| 189 | |
| 190 | // Check for negative constant; if so negate the final result |
| 191 | bool sign_flip = false; |
| 192 | |
| 193 | unsigned int abs_con = uabs(con); |
| 194 | if (abs_con != (unsigned int)con) { |
| 195 | sign_flip = true; |
| 196 | } |
| 197 | |
| 198 | // Get low bit; check for being the only bit |
| 199 | Node *res = NULL; |
| 200 | unsigned int bit1 = abs_con & (0-abs_con); // Extract low bit |
| 201 | if (bit1 == abs_con) { // Found a power of 2? |
| 202 | res = new LShiftINode(in(1), phase->intcon(log2_uint(bit1))); |
| 203 | } else { |
| 204 | |
| 205 | // Check for constant with 2 bits set |
| 206 | unsigned int bit2 = abs_con-bit1; |
| 207 | bit2 = bit2 & (0-bit2); // Extract 2nd bit |
| 208 | if (bit2 + bit1 == abs_con) { // Found all bits in con? |
| 209 | Node *n1 = phase->transform( new LShiftINode(in(1), phase->intcon(log2_uint(bit1)))); |
| 210 | Node *n2 = phase->transform( new LShiftINode(in(1), phase->intcon(log2_uint(bit2)))); |
| 211 | res = new AddINode(n2, n1); |
| 212 | |
| 213 | } else if (is_power_of_2(abs_con+1)) { |
| 214 | // Sleezy: power-of-2 -1. Next time be generic. |
| 215 | unsigned int temp = abs_con + 1; |
| 216 | Node *n1 = phase->transform(new LShiftINode(in(1), phase->intcon(log2_uint(temp)))); |
| 217 | res = new SubINode(n1, in(1)); |
| 218 | } else { |
| 219 | return MulNode::Ideal(phase, can_reshape); |
| 220 | } |
| 221 | } |
| 222 | |
| 223 | if (sign_flip) { // Need to negate result? |
| 224 | res = phase->transform(res);// Transform, before making the zero con |
| 225 | res = new SubINode(phase->intcon(0),res); |
| 226 | } |
| 227 | |
| 228 | return res; // Return final result |
| 229 | } |
| 230 | |
| 231 | //------------------------------mul_ring--------------------------------------- |
| 232 | // Compute the product type of two integer ranges into this node. |
| 233 | const Type *MulINode::mul_ring(const Type *t0, const Type *t1) const { |
| 234 | const TypeInt *r0 = t0->is_int(); // Handy access |
| 235 | const TypeInt *r1 = t1->is_int(); |
| 236 | |
| 237 | // Fetch endpoints of all ranges |
| 238 | jint lo0 = r0->_lo; |
| 239 | double a = (double)lo0; |
| 240 | jint hi0 = r0->_hi; |
| 241 | double b = (double)hi0; |
| 242 | jint lo1 = r1->_lo; |
| 243 | double c = (double)lo1; |
| 244 | jint hi1 = r1->_hi; |
| 245 | double d = (double)hi1; |
| 246 | |
| 247 | // Compute all endpoints & check for overflow |
| 248 | int32_t A = java_multiply(lo0, lo1); |
| 249 | if( (double)A != a*c ) return TypeInt::INT; // Overflow? |
| 250 | int32_t B = java_multiply(lo0, hi1); |
| 251 | if( (double)B != a*d ) return TypeInt::INT; // Overflow? |
| 252 | int32_t C = java_multiply(hi0, lo1); |
| 253 | if( (double)C != b*c ) return TypeInt::INT; // Overflow? |
| 254 | int32_t D = java_multiply(hi0, hi1); |
| 255 | if( (double)D != b*d ) return TypeInt::INT; // Overflow? |
| 256 | |
| 257 | if( A < B ) { lo0 = A; hi0 = B; } // Sort range endpoints |
| 258 | else { lo0 = B; hi0 = A; } |
| 259 | if( C < D ) { |
| 260 | if( C < lo0 ) lo0 = C; |
| 261 | if( D > hi0 ) hi0 = D; |
| 262 | } else { |
| 263 | if( D < lo0 ) lo0 = D; |
| 264 | if( C > hi0 ) hi0 = C; |
| 265 | } |
| 266 | return TypeInt::make(lo0, hi0, MAX2(r0->_widen,r1->_widen)); |
| 267 | } |
| 268 | |
| 269 | |
| 270 | //============================================================================= |
| 271 | //------------------------------Ideal------------------------------------------ |
| 272 | // Check for power-of-2 multiply, then try the regular MulNode::Ideal |
| 273 | Node *MulLNode::Ideal(PhaseGVN *phase, bool can_reshape) { |
| 274 | // Swap constant to right |
| 275 | jlong con; |
| 276 | if ((con = in(1)->find_long_con(0)) != 0) { |
| 277 | swap_edges(1, 2); |
| 278 | // Finish rest of method to use info in 'con' |
| 279 | } else if ((con = in(2)->find_long_con(0)) == 0) { |
| 280 | return MulNode::Ideal(phase, can_reshape); |
| 281 | } |
| 282 | |
| 283 | // Now we have a constant Node on the right and the constant in con |
| 284 | if (con == CONST64(0)) return NULL; // By zero is handled by Value call |
| 285 | if (con == CONST64(1)) return NULL; // By one is handled by Identity call |
| 286 | |
| 287 | // Check for negative constant; if so negate the final result |
| 288 | bool sign_flip = false; |
| 289 | julong abs_con = uabs(con); |
| 290 | if (abs_con != (julong)con) { |
| 291 | sign_flip = true; |
| 292 | } |
| 293 | |
| 294 | // Get low bit; check for being the only bit |
| 295 | Node *res = NULL; |
| 296 | julong bit1 = abs_con & (0-abs_con); // Extract low bit |
| 297 | if (bit1 == abs_con) { // Found a power of 2? |
| 298 | res = new LShiftLNode(in(1), phase->intcon(log2_long(bit1))); |
| 299 | } else { |
| 300 | |
| 301 | // Check for constant with 2 bits set |
| 302 | julong bit2 = abs_con-bit1; |
| 303 | bit2 = bit2 & (0-bit2); // Extract 2nd bit |
| 304 | if (bit2 + bit1 == abs_con) { // Found all bits in con? |
| 305 | Node *n1 = phase->transform(new LShiftLNode(in(1), phase->intcon(log2_long(bit1)))); |
| 306 | Node *n2 = phase->transform(new LShiftLNode(in(1), phase->intcon(log2_long(bit2)))); |
| 307 | res = new AddLNode(n2, n1); |
| 308 | |
| 309 | } else if (is_power_of_2_long(abs_con+1)) { |
| 310 | // Sleezy: power-of-2 -1. Next time be generic. |
| 311 | julong temp = abs_con + 1; |
| 312 | Node *n1 = phase->transform( new LShiftLNode(in(1), phase->intcon(log2_long(temp)))); |
| 313 | res = new SubLNode(n1, in(1)); |
| 314 | } else { |
| 315 | return MulNode::Ideal(phase, can_reshape); |
| 316 | } |
| 317 | } |
| 318 | |
| 319 | if (sign_flip) { // Need to negate result? |
| 320 | res = phase->transform(res);// Transform, before making the zero con |
| 321 | res = new SubLNode(phase->longcon(0),res); |
| 322 | } |
| 323 | |
| 324 | return res; // Return final result |
| 325 | } |
| 326 | |
| 327 | //------------------------------mul_ring--------------------------------------- |
| 328 | // Compute the product type of two integer ranges into this node. |
| 329 | const Type *MulLNode::mul_ring(const Type *t0, const Type *t1) const { |
| 330 | const TypeLong *r0 = t0->is_long(); // Handy access |
| 331 | const TypeLong *r1 = t1->is_long(); |
| 332 | |
| 333 | // Fetch endpoints of all ranges |
| 334 | jlong lo0 = r0->_lo; |
| 335 | double a = (double)lo0; |
| 336 | jlong hi0 = r0->_hi; |
| 337 | double b = (double)hi0; |
| 338 | jlong lo1 = r1->_lo; |
| 339 | double c = (double)lo1; |
| 340 | jlong hi1 = r1->_hi; |
| 341 | double d = (double)hi1; |
| 342 | |
| 343 | // Compute all endpoints & check for overflow |
| 344 | jlong A = java_multiply(lo0, lo1); |
| 345 | if( (double)A != a*c ) return TypeLong::LONG; // Overflow? |
| 346 | jlong B = java_multiply(lo0, hi1); |
| 347 | if( (double)B != a*d ) return TypeLong::LONG; // Overflow? |
| 348 | jlong C = java_multiply(hi0, lo1); |
| 349 | if( (double)C != b*c ) return TypeLong::LONG; // Overflow? |
| 350 | jlong D = java_multiply(hi0, hi1); |
| 351 | if( (double)D != b*d ) return TypeLong::LONG; // Overflow? |
| 352 | |
| 353 | if( A < B ) { lo0 = A; hi0 = B; } // Sort range endpoints |
| 354 | else { lo0 = B; hi0 = A; } |
| 355 | if( C < D ) { |
| 356 | if( C < lo0 ) lo0 = C; |
| 357 | if( D > hi0 ) hi0 = D; |
| 358 | } else { |
| 359 | if( D < lo0 ) lo0 = D; |
| 360 | if( C > hi0 ) hi0 = C; |
| 361 | } |
| 362 | return TypeLong::make(lo0, hi0, MAX2(r0->_widen,r1->_widen)); |
| 363 | } |
| 364 | |
| 365 | //============================================================================= |
| 366 | //------------------------------mul_ring--------------------------------------- |
| 367 | // Compute the product type of two double ranges into this node. |
| 368 | const Type *MulFNode::mul_ring(const Type *t0, const Type *t1) const { |
| 369 | if( t0 == Type::FLOAT || t1 == Type::FLOAT ) return Type::FLOAT; |
| 370 | return TypeF::make( t0->getf() * t1->getf() ); |
| 371 | } |
| 372 | |
| 373 | //============================================================================= |
| 374 | //------------------------------mul_ring--------------------------------------- |
| 375 | // Compute the product type of two double ranges into this node. |
| 376 | const Type *MulDNode::mul_ring(const Type *t0, const Type *t1) const { |
| 377 | if( t0 == Type::DOUBLE || t1 == Type::DOUBLE ) return Type::DOUBLE; |
| 378 | // We must be multiplying 2 double constants. |
| 379 | return TypeD::make( t0->getd() * t1->getd() ); |
| 380 | } |
| 381 | |
| 382 | //============================================================================= |
| 383 | //------------------------------Value------------------------------------------ |
| 384 | const Type* MulHiLNode::Value(PhaseGVN* phase) const { |
| 385 | // Either input is TOP ==> the result is TOP |
| 386 | const Type *t1 = phase->type( in(1) ); |
| 387 | const Type *t2 = phase->type( in(2) ); |
| 388 | if( t1 == Type::TOP ) return Type::TOP; |
| 389 | if( t2 == Type::TOP ) return Type::TOP; |
| 390 | |
| 391 | // Either input is BOTTOM ==> the result is the local BOTTOM |
| 392 | const Type *bot = bottom_type(); |
| 393 | if( (t1 == bot) || (t2 == bot) || |
| 394 | (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) ) |
| 395 | return bot; |
| 396 | |
| 397 | // It is not worth trying to constant fold this stuff! |
| 398 | return TypeLong::LONG; |
| 399 | } |
| 400 | |
| 401 | //============================================================================= |
| 402 | //------------------------------mul_ring--------------------------------------- |
| 403 | // Supplied function returns the product of the inputs IN THE CURRENT RING. |
| 404 | // For the logical operations the ring's MUL is really a logical AND function. |
| 405 | // This also type-checks the inputs for sanity. Guaranteed never to |
| 406 | // be passed a TOP or BOTTOM type, these are filtered out by pre-check. |
| 407 | const Type *AndINode::mul_ring( const Type *t0, const Type *t1 ) const { |
| 408 | const TypeInt *r0 = t0->is_int(); // Handy access |
| 409 | const TypeInt *r1 = t1->is_int(); |
| 410 | int widen = MAX2(r0->_widen,r1->_widen); |
| 411 | |
| 412 | // If either input is a constant, might be able to trim cases |
| 413 | if( !r0->is_con() && !r1->is_con() ) |
| 414 | return TypeInt::INT; // No constants to be had |
| 415 | |
| 416 | // Both constants? Return bits |
| 417 | if( r0->is_con() && r1->is_con() ) |
| 418 | return TypeInt::make( r0->get_con() & r1->get_con() ); |
| 419 | |
| 420 | if( r0->is_con() && r0->get_con() > 0 ) |
| 421 | return TypeInt::make(0, r0->get_con(), widen); |
| 422 | |
| 423 | if( r1->is_con() && r1->get_con() > 0 ) |
| 424 | return TypeInt::make(0, r1->get_con(), widen); |
| 425 | |
| 426 | if( r0 == TypeInt::BOOL || r1 == TypeInt::BOOL ) { |
| 427 | return TypeInt::BOOL; |
| 428 | } |
| 429 | |
| 430 | return TypeInt::INT; // No constants to be had |
| 431 | } |
| 432 | |
| 433 | //------------------------------Identity--------------------------------------- |
| 434 | // Masking off the high bits of an unsigned load is not required |
| 435 | Node* AndINode::Identity(PhaseGVN* phase) { |
| 436 | |
| 437 | // x & x => x |
| 438 | if (phase->eqv(in(1), in(2))) return in(1); |
| 439 | |
| 440 | Node* in1 = in(1); |
| 441 | uint op = in1->Opcode(); |
| 442 | const TypeInt* t2 = phase->type(in(2))->isa_int(); |
| 443 | if (t2 && t2->is_con()) { |
| 444 | int con = t2->get_con(); |
| 445 | // Masking off high bits which are always zero is useless. |
| 446 | const TypeInt* t1 = phase->type( in(1) )->isa_int(); |
| 447 | if (t1 != NULL && t1->_lo >= 0) { |
| 448 | jint t1_support = right_n_bits(1 + log2_jint(t1->_hi)); |
| 449 | if ((t1_support & con) == t1_support) |
| 450 | return in1; |
| 451 | } |
| 452 | // Masking off the high bits of a unsigned-shift-right is not |
| 453 | // needed either. |
| 454 | if (op == Op_URShiftI) { |
| 455 | const TypeInt* t12 = phase->type(in1->in(2))->isa_int(); |
| 456 | if (t12 && t12->is_con()) { // Shift is by a constant |
| 457 | int shift = t12->get_con(); |
| 458 | shift &= BitsPerJavaInteger - 1; // semantics of Java shifts |
| 459 | int mask = max_juint >> shift; |
| 460 | if ((mask & con) == mask) // If AND is useless, skip it |
| 461 | return in1; |
| 462 | } |
| 463 | } |
| 464 | } |
| 465 | return MulNode::Identity(phase); |
| 466 | } |
| 467 | |
| 468 | //------------------------------Ideal------------------------------------------ |
| 469 | Node *AndINode::Ideal(PhaseGVN *phase, bool can_reshape) { |
| 470 | // Special case constant AND mask |
| 471 | const TypeInt *t2 = phase->type( in(2) )->isa_int(); |
| 472 | if( !t2 || !t2->is_con() ) return MulNode::Ideal(phase, can_reshape); |
| 473 | const int mask = t2->get_con(); |
| 474 | Node *load = in(1); |
| 475 | uint lop = load->Opcode(); |
| 476 | |
| 477 | // Masking bits off of a Character? Hi bits are already zero. |
| 478 | if( lop == Op_LoadUS && |
| 479 | (mask & 0xFFFF0000) ) // Can we make a smaller mask? |
| 480 | return new AndINode(load,phase->intcon(mask&0xFFFF)); |
| 481 | |
| 482 | // Masking bits off of a Short? Loading a Character does some masking |
| 483 | if (can_reshape && |
| 484 | load->outcnt() == 1 && load->unique_out() == this) { |
| 485 | if (lop == Op_LoadS && (mask & 0xFFFF0000) == 0 ) { |
| 486 | Node* ldus = load->as_Load()->convert_to_unsigned_load(*phase); |
| 487 | ldus = phase->transform(ldus); |
| 488 | return new AndINode(ldus, phase->intcon(mask & 0xFFFF)); |
| 489 | } |
| 490 | |
| 491 | // Masking sign bits off of a Byte? Do an unsigned byte load plus |
| 492 | // an and. |
| 493 | if (lop == Op_LoadB && (mask & 0xFFFFFF00) == 0) { |
| 494 | Node* ldub = load->as_Load()->convert_to_unsigned_load(*phase); |
| 495 | ldub = phase->transform(ldub); |
| 496 | return new AndINode(ldub, phase->intcon(mask)); |
| 497 | } |
| 498 | } |
| 499 | |
| 500 | // Masking off sign bits? Dont make them! |
| 501 | if( lop == Op_RShiftI ) { |
| 502 | const TypeInt *t12 = phase->type(load->in(2))->isa_int(); |
| 503 | if( t12 && t12->is_con() ) { // Shift is by a constant |
| 504 | int shift = t12->get_con(); |
| 505 | shift &= BitsPerJavaInteger-1; // semantics of Java shifts |
| 506 | const int sign_bits_mask = ~right_n_bits(BitsPerJavaInteger - shift); |
| 507 | // If the AND'ing of the 2 masks has no bits, then only original shifted |
| 508 | // bits survive. NO sign-extension bits survive the maskings. |
| 509 | if( (sign_bits_mask & mask) == 0 ) { |
| 510 | // Use zero-fill shift instead |
| 511 | Node *zshift = phase->transform(new URShiftINode(load->in(1),load->in(2))); |
| 512 | return new AndINode( zshift, in(2) ); |
| 513 | } |
| 514 | } |
| 515 | } |
| 516 | |
| 517 | // Check for 'negate/and-1', a pattern emitted when someone asks for |
| 518 | // 'mod 2'. Negate leaves the low order bit unchanged (think: complement |
| 519 | // plus 1) and the mask is of the low order bit. Skip the negate. |
| 520 | if( lop == Op_SubI && mask == 1 && load->in(1) && |
| 521 | phase->type(load->in(1)) == TypeInt::ZERO ) |
| 522 | return new AndINode( load->in(2), in(2) ); |
| 523 | |
| 524 | return MulNode::Ideal(phase, can_reshape); |
| 525 | } |
| 526 | |
| 527 | //============================================================================= |
| 528 | //------------------------------mul_ring--------------------------------------- |
| 529 | // Supplied function returns the product of the inputs IN THE CURRENT RING. |
| 530 | // For the logical operations the ring's MUL is really a logical AND function. |
| 531 | // This also type-checks the inputs for sanity. Guaranteed never to |
| 532 | // be passed a TOP or BOTTOM type, these are filtered out by pre-check. |
| 533 | const Type *AndLNode::mul_ring( const Type *t0, const Type *t1 ) const { |
| 534 | const TypeLong *r0 = t0->is_long(); // Handy access |
| 535 | const TypeLong *r1 = t1->is_long(); |
| 536 | int widen = MAX2(r0->_widen,r1->_widen); |
| 537 | |
| 538 | // If either input is a constant, might be able to trim cases |
| 539 | if( !r0->is_con() && !r1->is_con() ) |
| 540 | return TypeLong::LONG; // No constants to be had |
| 541 | |
| 542 | // Both constants? Return bits |
| 543 | if( r0->is_con() && r1->is_con() ) |
| 544 | return TypeLong::make( r0->get_con() & r1->get_con() ); |
| 545 | |
| 546 | if( r0->is_con() && r0->get_con() > 0 ) |
| 547 | return TypeLong::make(CONST64(0), r0->get_con(), widen); |
| 548 | |
| 549 | if( r1->is_con() && r1->get_con() > 0 ) |
| 550 | return TypeLong::make(CONST64(0), r1->get_con(), widen); |
| 551 | |
| 552 | return TypeLong::LONG; // No constants to be had |
| 553 | } |
| 554 | |
| 555 | //------------------------------Identity--------------------------------------- |
| 556 | // Masking off the high bits of an unsigned load is not required |
| 557 | Node* AndLNode::Identity(PhaseGVN* phase) { |
| 558 | |
| 559 | // x & x => x |
| 560 | if (phase->eqv(in(1), in(2))) return in(1); |
| 561 | |
| 562 | Node *usr = in(1); |
| 563 | const TypeLong *t2 = phase->type( in(2) )->isa_long(); |
| 564 | if( t2 && t2->is_con() ) { |
| 565 | jlong con = t2->get_con(); |
| 566 | // Masking off high bits which are always zero is useless. |
| 567 | const TypeLong* t1 = phase->type( in(1) )->isa_long(); |
| 568 | if (t1 != NULL && t1->_lo >= 0) { |
| 569 | int bit_count = log2_long(t1->_hi) + 1; |
| 570 | jlong t1_support = jlong(max_julong >> (BitsPerJavaLong - bit_count)); |
| 571 | if ((t1_support & con) == t1_support) |
| 572 | return usr; |
| 573 | } |
| 574 | uint lop = usr->Opcode(); |
| 575 | // Masking off the high bits of a unsigned-shift-right is not |
| 576 | // needed either. |
| 577 | if( lop == Op_URShiftL ) { |
| 578 | const TypeInt *t12 = phase->type( usr->in(2) )->isa_int(); |
| 579 | if( t12 && t12->is_con() ) { // Shift is by a constant |
| 580 | int shift = t12->get_con(); |
| 581 | shift &= BitsPerJavaLong - 1; // semantics of Java shifts |
| 582 | jlong mask = max_julong >> shift; |
| 583 | if( (mask&con) == mask ) // If AND is useless, skip it |
| 584 | return usr; |
| 585 | } |
| 586 | } |
| 587 | } |
| 588 | return MulNode::Identity(phase); |
| 589 | } |
| 590 | |
| 591 | //------------------------------Ideal------------------------------------------ |
| 592 | Node *AndLNode::Ideal(PhaseGVN *phase, bool can_reshape) { |
| 593 | // Special case constant AND mask |
| 594 | const TypeLong *t2 = phase->type( in(2) )->isa_long(); |
| 595 | if( !t2 || !t2->is_con() ) return MulNode::Ideal(phase, can_reshape); |
| 596 | const jlong mask = t2->get_con(); |
| 597 | |
| 598 | Node* in1 = in(1); |
| 599 | uint op = in1->Opcode(); |
| 600 | |
| 601 | // Are we masking a long that was converted from an int with a mask |
| 602 | // that fits in 32-bits? Commute them and use an AndINode. Don't |
| 603 | // convert masks which would cause a sign extension of the integer |
| 604 | // value. This check includes UI2L masks (0x00000000FFFFFFFF) which |
| 605 | // would be optimized away later in Identity. |
| 606 | if (op == Op_ConvI2L && (mask & UCONST64(0xFFFFFFFF80000000)) == 0) { |
| 607 | Node* andi = new AndINode(in1->in(1), phase->intcon(mask)); |
| 608 | andi = phase->transform(andi); |
| 609 | return new ConvI2LNode(andi); |
| 610 | } |
| 611 | |
| 612 | // Masking off sign bits? Dont make them! |
| 613 | if (op == Op_RShiftL) { |
| 614 | const TypeInt* t12 = phase->type(in1->in(2))->isa_int(); |
| 615 | if( t12 && t12->is_con() ) { // Shift is by a constant |
| 616 | int shift = t12->get_con(); |
| 617 | shift &= BitsPerJavaLong - 1; // semantics of Java shifts |
| 618 | const jlong sign_bits_mask = ~(((jlong)CONST64(1) << (jlong)(BitsPerJavaLong - shift)) -1); |
| 619 | // If the AND'ing of the 2 masks has no bits, then only original shifted |
| 620 | // bits survive. NO sign-extension bits survive the maskings. |
| 621 | if( (sign_bits_mask & mask) == 0 ) { |
| 622 | // Use zero-fill shift instead |
| 623 | Node *zshift = phase->transform(new URShiftLNode(in1->in(1), in1->in(2))); |
| 624 | return new AndLNode(zshift, in(2)); |
| 625 | } |
| 626 | } |
| 627 | } |
| 628 | |
| 629 | return MulNode::Ideal(phase, can_reshape); |
| 630 | } |
| 631 | |
| 632 | //============================================================================= |
| 633 | |
| 634 | static int getShiftCon(PhaseGVN *phase, Node *shiftNode, int retVal) { |
| 635 | const Type *t = phase->type(shiftNode->in(2)); |
| 636 | if (t == Type::TOP) return retVal; // Right input is dead. |
| 637 | const TypeInt *t2 = t->isa_int(); |
| 638 | if (!t2 || !t2->is_con()) return retVal; // Right input is a constant. |
| 639 | |
| 640 | return t2->get_con(); |
| 641 | } |
| 642 | |
| 643 | static int maskShiftAmount(PhaseGVN *phase, Node *shiftNode, int nBits) { |
| 644 | int shift = getShiftCon(phase, shiftNode, 0); |
| 645 | int maskedShift = shift & (nBits - 1); |
| 646 | |
| 647 | if (maskedShift == 0) return 0; // Let Identity() handle 0 shift count. |
| 648 | |
| 649 | if (shift != maskedShift) { |
| 650 | shiftNode->set_req(2, phase->intcon(maskedShift)); // Replace shift count with masked value. |
| 651 | phase->igvn_rehash_node_delayed(shiftNode); |
| 652 | } |
| 653 | |
| 654 | return maskedShift; |
| 655 | } |
| 656 | |
| 657 | //------------------------------Identity--------------------------------------- |
| 658 | Node* LShiftINode::Identity(PhaseGVN* phase) { |
| 659 | return ((getShiftCon(phase, this, -1) & (BitsPerJavaInteger - 1)) == 0) ? in(1) : this; |
| 660 | } |
| 661 | |
| 662 | //------------------------------Ideal------------------------------------------ |
| 663 | // If the right input is a constant, and the left input is an add of a |
| 664 | // constant, flatten the tree: (X+con1)<<con0 ==> X<<con0 + con1<<con0 |
| 665 | Node *LShiftINode::Ideal(PhaseGVN *phase, bool can_reshape) { |
| 666 | int con = maskShiftAmount(phase, this, BitsPerJavaInteger); |
| 667 | if (con == 0) { |
| 668 | return NULL; |
| 669 | } |
| 670 | |
| 671 | // Left input is an add of a constant? |
| 672 | Node *add1 = in(1); |
| 673 | int add1_op = add1->Opcode(); |
| 674 | if( add1_op == Op_AddI ) { // Left input is an add? |
| 675 | assert( add1 != add1->in(1), "dead loop in LShiftINode::Ideal" ); |
| 676 | const TypeInt *t12 = phase->type(add1->in(2))->isa_int(); |
| 677 | if( t12 && t12->is_con() ){ // Left input is an add of a con? |
| 678 | // Transform is legal, but check for profit. Avoid breaking 'i2s' |
| 679 | // and 'i2b' patterns which typically fold into 'StoreC/StoreB'. |
| 680 | if( con < 16 ) { |
| 681 | // Compute X << con0 |
| 682 | Node *lsh = phase->transform( new LShiftINode( add1->in(1), in(2) ) ); |
| 683 | // Compute X<<con0 + (con1<<con0) |
| 684 | return new AddINode( lsh, phase->intcon(t12->get_con() << con)); |
| 685 | } |
| 686 | } |
| 687 | } |
| 688 | |
| 689 | // Check for "(x>>c0)<<c0" which just masks off low bits |
| 690 | if( (add1_op == Op_RShiftI || add1_op == Op_URShiftI ) && |
| 691 | add1->in(2) == in(2) ) |
| 692 | // Convert to "(x & -(1<<c0))" |
| 693 | return new AndINode(add1->in(1),phase->intcon( -(1<<con))); |
| 694 | |
| 695 | // Check for "((x>>c0) & Y)<<c0" which just masks off more low bits |
| 696 | if( add1_op == Op_AndI ) { |
| 697 | Node *add2 = add1->in(1); |
| 698 | int add2_op = add2->Opcode(); |
| 699 | if( (add2_op == Op_RShiftI || add2_op == Op_URShiftI ) && |
| 700 | add2->in(2) == in(2) ) { |
| 701 | // Convert to "(x & (Y<<c0))" |
| 702 | Node *y_sh = phase->transform( new LShiftINode( add1->in(2), in(2) ) ); |
| 703 | return new AndINode( add2->in(1), y_sh ); |
| 704 | } |
| 705 | } |
| 706 | |
| 707 | // Check for ((x & ((1<<(32-c0))-1)) << c0) which ANDs off high bits |
| 708 | // before shifting them away. |
| 709 | const jint bits_mask = right_n_bits(BitsPerJavaInteger-con); |
| 710 | if( add1_op == Op_AndI && |
| 711 | phase->type(add1->in(2)) == TypeInt::make( bits_mask ) ) |
| 712 | return new LShiftINode( add1->in(1), in(2) ); |
| 713 | |
| 714 | return NULL; |
| 715 | } |
| 716 | |
| 717 | //------------------------------Value------------------------------------------ |
| 718 | // A LShiftINode shifts its input2 left by input1 amount. |
| 719 | const Type* LShiftINode::Value(PhaseGVN* phase) const { |
| 720 | const Type *t1 = phase->type( in(1) ); |
| 721 | const Type *t2 = phase->type( in(2) ); |
| 722 | // Either input is TOP ==> the result is TOP |
| 723 | if( t1 == Type::TOP ) return Type::TOP; |
| 724 | if( t2 == Type::TOP ) return Type::TOP; |
| 725 | |
| 726 | // Left input is ZERO ==> the result is ZERO. |
| 727 | if( t1 == TypeInt::ZERO ) return TypeInt::ZERO; |
| 728 | // Shift by zero does nothing |
| 729 | if( t2 == TypeInt::ZERO ) return t1; |
| 730 | |
| 731 | // Either input is BOTTOM ==> the result is BOTTOM |
| 732 | if( (t1 == TypeInt::INT) || (t2 == TypeInt::INT) || |
| 733 | (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) ) |
| 734 | return TypeInt::INT; |
| 735 | |
| 736 | const TypeInt *r1 = t1->is_int(); // Handy access |
| 737 | const TypeInt *r2 = t2->is_int(); // Handy access |
| 738 | |
| 739 | if (!r2->is_con()) |
| 740 | return TypeInt::INT; |
| 741 | |
| 742 | uint shift = r2->get_con(); |
| 743 | shift &= BitsPerJavaInteger-1; // semantics of Java shifts |
| 744 | // Shift by a multiple of 32 does nothing: |
| 745 | if (shift == 0) return t1; |
| 746 | |
| 747 | // If the shift is a constant, shift the bounds of the type, |
| 748 | // unless this could lead to an overflow. |
| 749 | if (!r1->is_con()) { |
| 750 | jint lo = r1->_lo, hi = r1->_hi; |
| 751 | if (((lo << shift) >> shift) == lo && |
| 752 | ((hi << shift) >> shift) == hi) { |
| 753 | // No overflow. The range shifts up cleanly. |
| 754 | return TypeInt::make((jint)lo << (jint)shift, |
| 755 | (jint)hi << (jint)shift, |
| 756 | MAX2(r1->_widen,r2->_widen)); |
| 757 | } |
| 758 | return TypeInt::INT; |
| 759 | } |
| 760 | |
| 761 | return TypeInt::make( (jint)r1->get_con() << (jint)shift ); |
| 762 | } |
| 763 | |
| 764 | //============================================================================= |
| 765 | //------------------------------Identity--------------------------------------- |
| 766 | Node* LShiftLNode::Identity(PhaseGVN* phase) { |
| 767 | return ((getShiftCon(phase, this, -1) & (BitsPerJavaLong - 1)) == 0) ? in(1) : this; |
| 768 | } |
| 769 | |
| 770 | //------------------------------Ideal------------------------------------------ |
| 771 | // If the right input is a constant, and the left input is an add of a |
| 772 | // constant, flatten the tree: (X+con1)<<con0 ==> X<<con0 + con1<<con0 |
| 773 | Node *LShiftLNode::Ideal(PhaseGVN *phase, bool can_reshape) { |
| 774 | int con = maskShiftAmount(phase, this, BitsPerJavaLong); |
| 775 | if (con == 0) { |
| 776 | return NULL; |
| 777 | } |
| 778 | |
| 779 | // Left input is an add of a constant? |
| 780 | Node *add1 = in(1); |
| 781 | int add1_op = add1->Opcode(); |
| 782 | if( add1_op == Op_AddL ) { // Left input is an add? |
| 783 | // Avoid dead data cycles from dead loops |
| 784 | assert( add1 != add1->in(1), "dead loop in LShiftLNode::Ideal" ); |
| 785 | const TypeLong *t12 = phase->type(add1->in(2))->isa_long(); |
| 786 | if( t12 && t12->is_con() ){ // Left input is an add of a con? |
| 787 | // Compute X << con0 |
| 788 | Node *lsh = phase->transform( new LShiftLNode( add1->in(1), in(2) ) ); |
| 789 | // Compute X<<con0 + (con1<<con0) |
| 790 | return new AddLNode( lsh, phase->longcon(t12->get_con() << con)); |
| 791 | } |
| 792 | } |
| 793 | |
| 794 | // Check for "(x>>c0)<<c0" which just masks off low bits |
| 795 | if( (add1_op == Op_RShiftL || add1_op == Op_URShiftL ) && |
| 796 | add1->in(2) == in(2) ) |
| 797 | // Convert to "(x & -(1<<c0))" |
| 798 | return new AndLNode(add1->in(1),phase->longcon( -(CONST64(1)<<con))); |
| 799 | |
| 800 | // Check for "((x>>c0) & Y)<<c0" which just masks off more low bits |
| 801 | if( add1_op == Op_AndL ) { |
| 802 | Node *add2 = add1->in(1); |
| 803 | int add2_op = add2->Opcode(); |
| 804 | if( (add2_op == Op_RShiftL || add2_op == Op_URShiftL ) && |
| 805 | add2->in(2) == in(2) ) { |
| 806 | // Convert to "(x & (Y<<c0))" |
| 807 | Node *y_sh = phase->transform( new LShiftLNode( add1->in(2), in(2) ) ); |
| 808 | return new AndLNode( add2->in(1), y_sh ); |
| 809 | } |
| 810 | } |
| 811 | |
| 812 | // Check for ((x & ((CONST64(1)<<(64-c0))-1)) << c0) which ANDs off high bits |
| 813 | // before shifting them away. |
| 814 | const jlong bits_mask = jlong(max_julong >> con); |
| 815 | if( add1_op == Op_AndL && |
| 816 | phase->type(add1->in(2)) == TypeLong::make( bits_mask ) ) |
| 817 | return new LShiftLNode( add1->in(1), in(2) ); |
| 818 | |
| 819 | return NULL; |
| 820 | } |
| 821 | |
| 822 | //------------------------------Value------------------------------------------ |
| 823 | // A LShiftLNode shifts its input2 left by input1 amount. |
| 824 | const Type* LShiftLNode::Value(PhaseGVN* phase) const { |
| 825 | const Type *t1 = phase->type( in(1) ); |
| 826 | const Type *t2 = phase->type( in(2) ); |
| 827 | // Either input is TOP ==> the result is TOP |
| 828 | if( t1 == Type::TOP ) return Type::TOP; |
| 829 | if( t2 == Type::TOP ) return Type::TOP; |
| 830 | |
| 831 | // Left input is ZERO ==> the result is ZERO. |
| 832 | if( t1 == TypeLong::ZERO ) return TypeLong::ZERO; |
| 833 | // Shift by zero does nothing |
| 834 | if( t2 == TypeInt::ZERO ) return t1; |
| 835 | |
| 836 | // Either input is BOTTOM ==> the result is BOTTOM |
| 837 | if( (t1 == TypeLong::LONG) || (t2 == TypeInt::INT) || |
| 838 | (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) ) |
| 839 | return TypeLong::LONG; |
| 840 | |
| 841 | const TypeLong *r1 = t1->is_long(); // Handy access |
| 842 | const TypeInt *r2 = t2->is_int(); // Handy access |
| 843 | |
| 844 | if (!r2->is_con()) |
| 845 | return TypeLong::LONG; |
| 846 | |
| 847 | uint shift = r2->get_con(); |
| 848 | shift &= BitsPerJavaLong - 1; // semantics of Java shifts |
| 849 | // Shift by a multiple of 64 does nothing: |
| 850 | if (shift == 0) return t1; |
| 851 | |
| 852 | // If the shift is a constant, shift the bounds of the type, |
| 853 | // unless this could lead to an overflow. |
| 854 | if (!r1->is_con()) { |
| 855 | jlong lo = r1->_lo, hi = r1->_hi; |
| 856 | if (((lo << shift) >> shift) == lo && |
| 857 | ((hi << shift) >> shift) == hi) { |
| 858 | // No overflow. The range shifts up cleanly. |
| 859 | return TypeLong::make((jlong)lo << (jint)shift, |
| 860 | (jlong)hi << (jint)shift, |
| 861 | MAX2(r1->_widen,r2->_widen)); |
| 862 | } |
| 863 | return TypeLong::LONG; |
| 864 | } |
| 865 | |
| 866 | return TypeLong::make( (jlong)r1->get_con() << (jint)shift ); |
| 867 | } |
| 868 | |
| 869 | //============================================================================= |
| 870 | //------------------------------Identity--------------------------------------- |
| 871 | Node* RShiftINode::Identity(PhaseGVN* phase) { |
| 872 | int shift = getShiftCon(phase, this, -1); |
| 873 | if (shift == -1) return this; |
| 874 | if ((shift & (BitsPerJavaInteger - 1)) == 0) return in(1); |
| 875 | |
| 876 | // Check for useless sign-masking |
| 877 | if (in(1)->Opcode() == Op_LShiftI && |
| 878 | in(1)->req() == 3 && |
| 879 | in(1)->in(2) == in(2)) { |
| 880 | shift &= BitsPerJavaInteger-1; // semantics of Java shifts |
| 881 | // Compute masks for which this shifting doesn't change |
| 882 | int lo = (-1 << (BitsPerJavaInteger - ((uint)shift)-1)); // FFFF8000 |
| 883 | int hi = ~lo; // 00007FFF |
| 884 | const TypeInt *t11 = phase->type(in(1)->in(1))->isa_int(); |
| 885 | if (!t11) return this; |
| 886 | // Does actual value fit inside of mask? |
| 887 | if (lo <= t11->_lo && t11->_hi <= hi) { |
| 888 | return in(1)->in(1); // Then shifting is a nop |
| 889 | } |
| 890 | } |
| 891 | |
| 892 | return this; |
| 893 | } |
| 894 | |
| 895 | //------------------------------Ideal------------------------------------------ |
| 896 | Node *RShiftINode::Ideal(PhaseGVN *phase, bool can_reshape) { |
| 897 | // Inputs may be TOP if they are dead. |
| 898 | const TypeInt *t1 = phase->type(in(1))->isa_int(); |
| 899 | if (!t1) return NULL; // Left input is an integer |
| 900 | const TypeInt *t3; // type of in(1).in(2) |
| 901 | int shift = maskShiftAmount(phase, this, BitsPerJavaInteger); |
| 902 | if (shift == 0) { |
| 903 | return NULL; |
| 904 | } |
| 905 | |
| 906 | // Check for (x & 0xFF000000) >> 24, whose mask can be made smaller. |
| 907 | // Such expressions arise normally from shift chains like (byte)(x >> 24). |
| 908 | const Node *mask = in(1); |
| 909 | if( mask->Opcode() == Op_AndI && |
| 910 | (t3 = phase->type(mask->in(2))->isa_int()) && |
| 911 | t3->is_con() ) { |
| 912 | Node *x = mask->in(1); |
| 913 | jint maskbits = t3->get_con(); |
| 914 | // Convert to "(x >> shift) & (mask >> shift)" |
| 915 | Node *shr_nomask = phase->transform( new RShiftINode(mask->in(1), in(2)) ); |
| 916 | return new AndINode(shr_nomask, phase->intcon( maskbits >> shift)); |
| 917 | } |
| 918 | |
| 919 | // Check for "(short[i] <<16)>>16" which simply sign-extends |
| 920 | const Node *shl = in(1); |
| 921 | if( shl->Opcode() != Op_LShiftI ) return NULL; |
| 922 | |
| 923 | if( shift == 16 && |
| 924 | (t3 = phase->type(shl->in(2))->isa_int()) && |
| 925 | t3->is_con(16) ) { |
| 926 | Node *ld = shl->in(1); |
| 927 | if( ld->Opcode() == Op_LoadS ) { |
| 928 | // Sign extension is just useless here. Return a RShiftI of zero instead |
| 929 | // returning 'ld' directly. We cannot return an old Node directly as |
| 930 | // that is the job of 'Identity' calls and Identity calls only work on |
| 931 | // direct inputs ('ld' is an extra Node removed from 'this'). The |
| 932 | // combined optimization requires Identity only return direct inputs. |
| 933 | set_req(1, ld); |
| 934 | set_req(2, phase->intcon(0)); |
| 935 | return this; |
| 936 | } |
| 937 | else if( can_reshape && |
| 938 | ld->Opcode() == Op_LoadUS && |
| 939 | ld->outcnt() == 1 && ld->unique_out() == shl) |
| 940 | // Replace zero-extension-load with sign-extension-load |
| 941 | return ld->as_Load()->convert_to_signed_load(*phase); |
| 942 | } |
| 943 | |
| 944 | // Check for "(byte[i] <<24)>>24" which simply sign-extends |
| 945 | if( shift == 24 && |
| 946 | (t3 = phase->type(shl->in(2))->isa_int()) && |
| 947 | t3->is_con(24) ) { |
| 948 | Node *ld = shl->in(1); |
| 949 | if( ld->Opcode() == Op_LoadB ) { |
| 950 | // Sign extension is just useless here |
| 951 | set_req(1, ld); |
| 952 | set_req(2, phase->intcon(0)); |
| 953 | return this; |
| 954 | } |
| 955 | } |
| 956 | |
| 957 | return NULL; |
| 958 | } |
| 959 | |
| 960 | //------------------------------Value------------------------------------------ |
| 961 | // A RShiftINode shifts its input2 right by input1 amount. |
| 962 | const Type* RShiftINode::Value(PhaseGVN* phase) const { |
| 963 | const Type *t1 = phase->type( in(1) ); |
| 964 | const Type *t2 = phase->type( in(2) ); |
| 965 | // Either input is TOP ==> the result is TOP |
| 966 | if( t1 == Type::TOP ) return Type::TOP; |
| 967 | if( t2 == Type::TOP ) return Type::TOP; |
| 968 | |
| 969 | // Left input is ZERO ==> the result is ZERO. |
| 970 | if( t1 == TypeInt::ZERO ) return TypeInt::ZERO; |
| 971 | // Shift by zero does nothing |
| 972 | if( t2 == TypeInt::ZERO ) return t1; |
| 973 | |
| 974 | // Either input is BOTTOM ==> the result is BOTTOM |
| 975 | if (t1 == Type::BOTTOM || t2 == Type::BOTTOM) |
| 976 | return TypeInt::INT; |
| 977 | |
| 978 | if (t2 == TypeInt::INT) |
| 979 | return TypeInt::INT; |
| 980 | |
| 981 | const TypeInt *r1 = t1->is_int(); // Handy access |
| 982 | const TypeInt *r2 = t2->is_int(); // Handy access |
| 983 | |
| 984 | // If the shift is a constant, just shift the bounds of the type. |
| 985 | // For example, if the shift is 31, we just propagate sign bits. |
| 986 | if (r2->is_con()) { |
| 987 | uint shift = r2->get_con(); |
| 988 | shift &= BitsPerJavaInteger-1; // semantics of Java shifts |
| 989 | // Shift by a multiple of 32 does nothing: |
| 990 | if (shift == 0) return t1; |
| 991 | // Calculate reasonably aggressive bounds for the result. |
| 992 | // This is necessary if we are to correctly type things |
| 993 | // like (x<<24>>24) == ((byte)x). |
| 994 | jint lo = (jint)r1->_lo >> (jint)shift; |
| 995 | jint hi = (jint)r1->_hi >> (jint)shift; |
| 996 | assert(lo <= hi, "must have valid bounds" ); |
| 997 | const TypeInt* ti = TypeInt::make(lo, hi, MAX2(r1->_widen,r2->_widen)); |
| 998 | #ifdef ASSERT |
| 999 | // Make sure we get the sign-capture idiom correct. |
| 1000 | if (shift == BitsPerJavaInteger-1) { |
| 1001 | if (r1->_lo >= 0) assert(ti == TypeInt::ZERO, ">>31 of + is 0" ); |
| 1002 | if (r1->_hi < 0) assert(ti == TypeInt::MINUS_1, ">>31 of - is -1" ); |
| 1003 | } |
| 1004 | #endif |
| 1005 | return ti; |
| 1006 | } |
| 1007 | |
| 1008 | if( !r1->is_con() || !r2->is_con() ) |
| 1009 | return TypeInt::INT; |
| 1010 | |
| 1011 | // Signed shift right |
| 1012 | return TypeInt::make( r1->get_con() >> (r2->get_con()&31) ); |
| 1013 | } |
| 1014 | |
| 1015 | //============================================================================= |
| 1016 | //------------------------------Identity--------------------------------------- |
| 1017 | Node* RShiftLNode::Identity(PhaseGVN* phase) { |
| 1018 | const TypeInt *ti = phase->type(in(2))->isa_int(); // Shift count is an int. |
| 1019 | return (ti && ti->is_con() && (ti->get_con() & (BitsPerJavaLong - 1)) == 0) ? in(1) : this; |
| 1020 | } |
| 1021 | |
| 1022 | //------------------------------Value------------------------------------------ |
| 1023 | // A RShiftLNode shifts its input2 right by input1 amount. |
| 1024 | const Type* RShiftLNode::Value(PhaseGVN* phase) const { |
| 1025 | const Type *t1 = phase->type( in(1) ); |
| 1026 | const Type *t2 = phase->type( in(2) ); |
| 1027 | // Either input is TOP ==> the result is TOP |
| 1028 | if( t1 == Type::TOP ) return Type::TOP; |
| 1029 | if( t2 == Type::TOP ) return Type::TOP; |
| 1030 | |
| 1031 | // Left input is ZERO ==> the result is ZERO. |
| 1032 | if( t1 == TypeLong::ZERO ) return TypeLong::ZERO; |
| 1033 | // Shift by zero does nothing |
| 1034 | if( t2 == TypeInt::ZERO ) return t1; |
| 1035 | |
| 1036 | // Either input is BOTTOM ==> the result is BOTTOM |
| 1037 | if (t1 == Type::BOTTOM || t2 == Type::BOTTOM) |
| 1038 | return TypeLong::LONG; |
| 1039 | |
| 1040 | if (t2 == TypeInt::INT) |
| 1041 | return TypeLong::LONG; |
| 1042 | |
| 1043 | const TypeLong *r1 = t1->is_long(); // Handy access |
| 1044 | const TypeInt *r2 = t2->is_int (); // Handy access |
| 1045 | |
| 1046 | // If the shift is a constant, just shift the bounds of the type. |
| 1047 | // For example, if the shift is 63, we just propagate sign bits. |
| 1048 | if (r2->is_con()) { |
| 1049 | uint shift = r2->get_con(); |
| 1050 | shift &= (2*BitsPerJavaInteger)-1; // semantics of Java shifts |
| 1051 | // Shift by a multiple of 64 does nothing: |
| 1052 | if (shift == 0) return t1; |
| 1053 | // Calculate reasonably aggressive bounds for the result. |
| 1054 | // This is necessary if we are to correctly type things |
| 1055 | // like (x<<24>>24) == ((byte)x). |
| 1056 | jlong lo = (jlong)r1->_lo >> (jlong)shift; |
| 1057 | jlong hi = (jlong)r1->_hi >> (jlong)shift; |
| 1058 | assert(lo <= hi, "must have valid bounds" ); |
| 1059 | const TypeLong* tl = TypeLong::make(lo, hi, MAX2(r1->_widen,r2->_widen)); |
| 1060 | #ifdef ASSERT |
| 1061 | // Make sure we get the sign-capture idiom correct. |
| 1062 | if (shift == (2*BitsPerJavaInteger)-1) { |
| 1063 | if (r1->_lo >= 0) assert(tl == TypeLong::ZERO, ">>63 of + is 0" ); |
| 1064 | if (r1->_hi < 0) assert(tl == TypeLong::MINUS_1, ">>63 of - is -1" ); |
| 1065 | } |
| 1066 | #endif |
| 1067 | return tl; |
| 1068 | } |
| 1069 | |
| 1070 | return TypeLong::LONG; // Give up |
| 1071 | } |
| 1072 | |
| 1073 | //============================================================================= |
| 1074 | //------------------------------Identity--------------------------------------- |
| 1075 | Node* URShiftINode::Identity(PhaseGVN* phase) { |
| 1076 | int shift = getShiftCon(phase, this, -1); |
| 1077 | if ((shift & (BitsPerJavaInteger - 1)) == 0) return in(1); |
| 1078 | |
| 1079 | // Check for "((x << LogBytesPerWord) + (wordSize-1)) >> LogBytesPerWord" which is just "x". |
| 1080 | // Happens during new-array length computation. |
| 1081 | // Safe if 'x' is in the range [0..(max_int>>LogBytesPerWord)] |
| 1082 | Node *add = in(1); |
| 1083 | if (add->Opcode() == Op_AddI) { |
| 1084 | const TypeInt *t2 = phase->type(add->in(2))->isa_int(); |
| 1085 | if (t2 && t2->is_con(wordSize - 1) && |
| 1086 | add->in(1)->Opcode() == Op_LShiftI) { |
| 1087 | // Check that shift_counts are LogBytesPerWord. |
| 1088 | Node *lshift_count = add->in(1)->in(2); |
| 1089 | const TypeInt *t_lshift_count = phase->type(lshift_count)->isa_int(); |
| 1090 | if (t_lshift_count && t_lshift_count->is_con(LogBytesPerWord) && |
| 1091 | t_lshift_count == phase->type(in(2))) { |
| 1092 | Node *x = add->in(1)->in(1); |
| 1093 | const TypeInt *t_x = phase->type(x)->isa_int(); |
| 1094 | if (t_x != NULL && 0 <= t_x->_lo && t_x->_hi <= (max_jint>>LogBytesPerWord)) { |
| 1095 | return x; |
| 1096 | } |
| 1097 | } |
| 1098 | } |
| 1099 | } |
| 1100 | |
| 1101 | return (phase->type(in(2))->higher_equal(TypeInt::ZERO)) ? in(1) : this; |
| 1102 | } |
| 1103 | |
| 1104 | //------------------------------Ideal------------------------------------------ |
| 1105 | Node *URShiftINode::Ideal(PhaseGVN *phase, bool can_reshape) { |
| 1106 | int con = maskShiftAmount(phase, this, BitsPerJavaInteger); |
| 1107 | if (con == 0) { |
| 1108 | return NULL; |
| 1109 | } |
| 1110 | |
| 1111 | // We'll be wanting the right-shift amount as a mask of that many bits |
| 1112 | const int mask = right_n_bits(BitsPerJavaInteger - con); |
| 1113 | |
| 1114 | int in1_op = in(1)->Opcode(); |
| 1115 | |
| 1116 | // Check for ((x>>>a)>>>b) and replace with (x>>>(a+b)) when a+b < 32 |
| 1117 | if( in1_op == Op_URShiftI ) { |
| 1118 | const TypeInt *t12 = phase->type( in(1)->in(2) )->isa_int(); |
| 1119 | if( t12 && t12->is_con() ) { // Right input is a constant |
| 1120 | assert( in(1) != in(1)->in(1), "dead loop in URShiftINode::Ideal" ); |
| 1121 | const int con2 = t12->get_con() & 31; // Shift count is always masked |
| 1122 | const int con3 = con+con2; |
| 1123 | if( con3 < 32 ) // Only merge shifts if total is < 32 |
| 1124 | return new URShiftINode( in(1)->in(1), phase->intcon(con3) ); |
| 1125 | } |
| 1126 | } |
| 1127 | |
| 1128 | // Check for ((x << z) + Y) >>> z. Replace with x + con>>>z |
| 1129 | // The idiom for rounding to a power of 2 is "(Q+(2^z-1)) >>> z". |
| 1130 | // If Q is "X << z" the rounding is useless. Look for patterns like |
| 1131 | // ((X<<Z) + Y) >>> Z and replace with (X + Y>>>Z) & Z-mask. |
| 1132 | Node *add = in(1); |
| 1133 | const TypeInt *t2 = phase->type(in(2))->isa_int(); |
| 1134 | if (in1_op == Op_AddI) { |
| 1135 | Node *lshl = add->in(1); |
| 1136 | if( lshl->Opcode() == Op_LShiftI && |
| 1137 | phase->type(lshl->in(2)) == t2 ) { |
| 1138 | Node *y_z = phase->transform( new URShiftINode(add->in(2),in(2)) ); |
| 1139 | Node *sum = phase->transform( new AddINode( lshl->in(1), y_z ) ); |
| 1140 | return new AndINode( sum, phase->intcon(mask) ); |
| 1141 | } |
| 1142 | } |
| 1143 | |
| 1144 | // Check for (x & mask) >>> z. Replace with (x >>> z) & (mask >>> z) |
| 1145 | // This shortens the mask. Also, if we are extracting a high byte and |
| 1146 | // storing it to a buffer, the mask will be removed completely. |
| 1147 | Node *andi = in(1); |
| 1148 | if( in1_op == Op_AndI ) { |
| 1149 | const TypeInt *t3 = phase->type( andi->in(2) )->isa_int(); |
| 1150 | if( t3 && t3->is_con() ) { // Right input is a constant |
| 1151 | jint mask2 = t3->get_con(); |
| 1152 | mask2 >>= con; // *signed* shift downward (high-order zeroes do not help) |
| 1153 | Node *newshr = phase->transform( new URShiftINode(andi->in(1), in(2)) ); |
| 1154 | return new AndINode(newshr, phase->intcon(mask2)); |
| 1155 | // The negative values are easier to materialize than positive ones. |
| 1156 | // A typical case from address arithmetic is ((x & ~15) >> 4). |
| 1157 | // It's better to change that to ((x >> 4) & ~0) versus |
| 1158 | // ((x >> 4) & 0x0FFFFFFF). The difference is greatest in LP64. |
| 1159 | } |
| 1160 | } |
| 1161 | |
| 1162 | // Check for "(X << z ) >>> z" which simply zero-extends |
| 1163 | Node *shl = in(1); |
| 1164 | if( in1_op == Op_LShiftI && |
| 1165 | phase->type(shl->in(2)) == t2 ) |
| 1166 | return new AndINode( shl->in(1), phase->intcon(mask) ); |
| 1167 | |
| 1168 | return NULL; |
| 1169 | } |
| 1170 | |
| 1171 | //------------------------------Value------------------------------------------ |
| 1172 | // A URShiftINode shifts its input2 right by input1 amount. |
| 1173 | const Type* URShiftINode::Value(PhaseGVN* phase) const { |
| 1174 | // (This is a near clone of RShiftINode::Value.) |
| 1175 | const Type *t1 = phase->type( in(1) ); |
| 1176 | const Type *t2 = phase->type( in(2) ); |
| 1177 | // Either input is TOP ==> the result is TOP |
| 1178 | if( t1 == Type::TOP ) return Type::TOP; |
| 1179 | if( t2 == Type::TOP ) return Type::TOP; |
| 1180 | |
| 1181 | // Left input is ZERO ==> the result is ZERO. |
| 1182 | if( t1 == TypeInt::ZERO ) return TypeInt::ZERO; |
| 1183 | // Shift by zero does nothing |
| 1184 | if( t2 == TypeInt::ZERO ) return t1; |
| 1185 | |
| 1186 | // Either input is BOTTOM ==> the result is BOTTOM |
| 1187 | if (t1 == Type::BOTTOM || t2 == Type::BOTTOM) |
| 1188 | return TypeInt::INT; |
| 1189 | |
| 1190 | if (t2 == TypeInt::INT) |
| 1191 | return TypeInt::INT; |
| 1192 | |
| 1193 | const TypeInt *r1 = t1->is_int(); // Handy access |
| 1194 | const TypeInt *r2 = t2->is_int(); // Handy access |
| 1195 | |
| 1196 | if (r2->is_con()) { |
| 1197 | uint shift = r2->get_con(); |
| 1198 | shift &= BitsPerJavaInteger-1; // semantics of Java shifts |
| 1199 | // Shift by a multiple of 32 does nothing: |
| 1200 | if (shift == 0) return t1; |
| 1201 | // Calculate reasonably aggressive bounds for the result. |
| 1202 | jint lo = (juint)r1->_lo >> (juint)shift; |
| 1203 | jint hi = (juint)r1->_hi >> (juint)shift; |
| 1204 | if (r1->_hi >= 0 && r1->_lo < 0) { |
| 1205 | // If the type has both negative and positive values, |
| 1206 | // there are two separate sub-domains to worry about: |
| 1207 | // The positive half and the negative half. |
| 1208 | jint neg_lo = lo; |
| 1209 | jint neg_hi = (juint)-1 >> (juint)shift; |
| 1210 | jint pos_lo = (juint) 0 >> (juint)shift; |
| 1211 | jint pos_hi = hi; |
| 1212 | lo = MIN2(neg_lo, pos_lo); // == 0 |
| 1213 | hi = MAX2(neg_hi, pos_hi); // == -1 >>> shift; |
| 1214 | } |
| 1215 | assert(lo <= hi, "must have valid bounds" ); |
| 1216 | const TypeInt* ti = TypeInt::make(lo, hi, MAX2(r1->_widen,r2->_widen)); |
| 1217 | #ifdef ASSERT |
| 1218 | // Make sure we get the sign-capture idiom correct. |
| 1219 | if (shift == BitsPerJavaInteger-1) { |
| 1220 | if (r1->_lo >= 0) assert(ti == TypeInt::ZERO, ">>>31 of + is 0" ); |
| 1221 | if (r1->_hi < 0) assert(ti == TypeInt::ONE, ">>>31 of - is +1" ); |
| 1222 | } |
| 1223 | #endif |
| 1224 | return ti; |
| 1225 | } |
| 1226 | |
| 1227 | // |
| 1228 | // Do not support shifted oops in info for GC |
| 1229 | // |
| 1230 | // else if( t1->base() == Type::InstPtr ) { |
| 1231 | // |
| 1232 | // const TypeInstPtr *o = t1->is_instptr(); |
| 1233 | // if( t1->singleton() ) |
| 1234 | // return TypeInt::make( ((uint32_t)o->const_oop() + o->_offset) >> shift ); |
| 1235 | // } |
| 1236 | // else if( t1->base() == Type::KlassPtr ) { |
| 1237 | // const TypeKlassPtr *o = t1->is_klassptr(); |
| 1238 | // if( t1->singleton() ) |
| 1239 | // return TypeInt::make( ((uint32_t)o->const_oop() + o->_offset) >> shift ); |
| 1240 | // } |
| 1241 | |
| 1242 | return TypeInt::INT; |
| 1243 | } |
| 1244 | |
| 1245 | //============================================================================= |
| 1246 | //------------------------------Identity--------------------------------------- |
| 1247 | Node* URShiftLNode::Identity(PhaseGVN* phase) { |
| 1248 | return ((getShiftCon(phase, this, -1) & (BitsPerJavaLong - 1)) == 0) ? in(1) : this; |
| 1249 | } |
| 1250 | |
| 1251 | //------------------------------Ideal------------------------------------------ |
| 1252 | Node *URShiftLNode::Ideal(PhaseGVN *phase, bool can_reshape) { |
| 1253 | int con = maskShiftAmount(phase, this, BitsPerJavaLong); |
| 1254 | if (con == 0) { |
| 1255 | return NULL; |
| 1256 | } |
| 1257 | |
| 1258 | // We'll be wanting the right-shift amount as a mask of that many bits |
| 1259 | const jlong mask = jlong(max_julong >> con); |
| 1260 | |
| 1261 | // Check for ((x << z) + Y) >>> z. Replace with x + con>>>z |
| 1262 | // The idiom for rounding to a power of 2 is "(Q+(2^z-1)) >>> z". |
| 1263 | // If Q is "X << z" the rounding is useless. Look for patterns like |
| 1264 | // ((X<<Z) + Y) >>> Z and replace with (X + Y>>>Z) & Z-mask. |
| 1265 | Node *add = in(1); |
| 1266 | const TypeInt *t2 = phase->type(in(2))->isa_int(); |
| 1267 | if (add->Opcode() == Op_AddL) { |
| 1268 | Node *lshl = add->in(1); |
| 1269 | if( lshl->Opcode() == Op_LShiftL && |
| 1270 | phase->type(lshl->in(2)) == t2 ) { |
| 1271 | Node *y_z = phase->transform( new URShiftLNode(add->in(2),in(2)) ); |
| 1272 | Node *sum = phase->transform( new AddLNode( lshl->in(1), y_z ) ); |
| 1273 | return new AndLNode( sum, phase->longcon(mask) ); |
| 1274 | } |
| 1275 | } |
| 1276 | |
| 1277 | // Check for (x & mask) >>> z. Replace with (x >>> z) & (mask >>> z) |
| 1278 | // This shortens the mask. Also, if we are extracting a high byte and |
| 1279 | // storing it to a buffer, the mask will be removed completely. |
| 1280 | Node *andi = in(1); |
| 1281 | if( andi->Opcode() == Op_AndL ) { |
| 1282 | const TypeLong *t3 = phase->type( andi->in(2) )->isa_long(); |
| 1283 | if( t3 && t3->is_con() ) { // Right input is a constant |
| 1284 | jlong mask2 = t3->get_con(); |
| 1285 | mask2 >>= con; // *signed* shift downward (high-order zeroes do not help) |
| 1286 | Node *newshr = phase->transform( new URShiftLNode(andi->in(1), in(2)) ); |
| 1287 | return new AndLNode(newshr, phase->longcon(mask2)); |
| 1288 | } |
| 1289 | } |
| 1290 | |
| 1291 | // Check for "(X << z ) >>> z" which simply zero-extends |
| 1292 | Node *shl = in(1); |
| 1293 | if( shl->Opcode() == Op_LShiftL && |
| 1294 | phase->type(shl->in(2)) == t2 ) |
| 1295 | return new AndLNode( shl->in(1), phase->longcon(mask) ); |
| 1296 | |
| 1297 | return NULL; |
| 1298 | } |
| 1299 | |
| 1300 | //------------------------------Value------------------------------------------ |
| 1301 | // A URShiftINode shifts its input2 right by input1 amount. |
| 1302 | const Type* URShiftLNode::Value(PhaseGVN* phase) const { |
| 1303 | // (This is a near clone of RShiftLNode::Value.) |
| 1304 | const Type *t1 = phase->type( in(1) ); |
| 1305 | const Type *t2 = phase->type( in(2) ); |
| 1306 | // Either input is TOP ==> the result is TOP |
| 1307 | if( t1 == Type::TOP ) return Type::TOP; |
| 1308 | if( t2 == Type::TOP ) return Type::TOP; |
| 1309 | |
| 1310 | // Left input is ZERO ==> the result is ZERO. |
| 1311 | if( t1 == TypeLong::ZERO ) return TypeLong::ZERO; |
| 1312 | // Shift by zero does nothing |
| 1313 | if( t2 == TypeInt::ZERO ) return t1; |
| 1314 | |
| 1315 | // Either input is BOTTOM ==> the result is BOTTOM |
| 1316 | if (t1 == Type::BOTTOM || t2 == Type::BOTTOM) |
| 1317 | return TypeLong::LONG; |
| 1318 | |
| 1319 | if (t2 == TypeInt::INT) |
| 1320 | return TypeLong::LONG; |
| 1321 | |
| 1322 | const TypeLong *r1 = t1->is_long(); // Handy access |
| 1323 | const TypeInt *r2 = t2->is_int (); // Handy access |
| 1324 | |
| 1325 | if (r2->is_con()) { |
| 1326 | uint shift = r2->get_con(); |
| 1327 | shift &= BitsPerJavaLong - 1; // semantics of Java shifts |
| 1328 | // Shift by a multiple of 64 does nothing: |
| 1329 | if (shift == 0) return t1; |
| 1330 | // Calculate reasonably aggressive bounds for the result. |
| 1331 | jlong lo = (julong)r1->_lo >> (juint)shift; |
| 1332 | jlong hi = (julong)r1->_hi >> (juint)shift; |
| 1333 | if (r1->_hi >= 0 && r1->_lo < 0) { |
| 1334 | // If the type has both negative and positive values, |
| 1335 | // there are two separate sub-domains to worry about: |
| 1336 | // The positive half and the negative half. |
| 1337 | jlong neg_lo = lo; |
| 1338 | jlong neg_hi = (julong)-1 >> (juint)shift; |
| 1339 | jlong pos_lo = (julong) 0 >> (juint)shift; |
| 1340 | jlong pos_hi = hi; |
| 1341 | //lo = MIN2(neg_lo, pos_lo); // == 0 |
| 1342 | lo = neg_lo < pos_lo ? neg_lo : pos_lo; |
| 1343 | //hi = MAX2(neg_hi, pos_hi); // == -1 >>> shift; |
| 1344 | hi = neg_hi > pos_hi ? neg_hi : pos_hi; |
| 1345 | } |
| 1346 | assert(lo <= hi, "must have valid bounds" ); |
| 1347 | const TypeLong* tl = TypeLong::make(lo, hi, MAX2(r1->_widen,r2->_widen)); |
| 1348 | #ifdef ASSERT |
| 1349 | // Make sure we get the sign-capture idiom correct. |
| 1350 | if (shift == BitsPerJavaLong - 1) { |
| 1351 | if (r1->_lo >= 0) assert(tl == TypeLong::ZERO, ">>>63 of + is 0" ); |
| 1352 | if (r1->_hi < 0) assert(tl == TypeLong::ONE, ">>>63 of - is +1" ); |
| 1353 | } |
| 1354 | #endif |
| 1355 | return tl; |
| 1356 | } |
| 1357 | |
| 1358 | return TypeLong::LONG; // Give up |
| 1359 | } |
| 1360 | |
| 1361 | //============================================================================= |
| 1362 | //------------------------------Value------------------------------------------ |
| 1363 | const Type* FmaDNode::Value(PhaseGVN* phase) const { |
| 1364 | const Type *t1 = phase->type(in(1)); |
| 1365 | if (t1 == Type::TOP) return Type::TOP; |
| 1366 | if (t1->base() != Type::DoubleCon) return Type::DOUBLE; |
| 1367 | const Type *t2 = phase->type(in(2)); |
| 1368 | if (t2 == Type::TOP) return Type::TOP; |
| 1369 | if (t2->base() != Type::DoubleCon) return Type::DOUBLE; |
| 1370 | const Type *t3 = phase->type(in(3)); |
| 1371 | if (t3 == Type::TOP) return Type::TOP; |
| 1372 | if (t3->base() != Type::DoubleCon) return Type::DOUBLE; |
| 1373 | #ifndef __STDC_IEC_559__ |
| 1374 | return Type::DOUBLE; |
| 1375 | #else |
| 1376 | double d1 = t1->getd(); |
| 1377 | double d2 = t2->getd(); |
| 1378 | double d3 = t3->getd(); |
| 1379 | return TypeD::make(fma(d1, d2, d3)); |
| 1380 | #endif |
| 1381 | } |
| 1382 | |
| 1383 | //============================================================================= |
| 1384 | //------------------------------Value------------------------------------------ |
| 1385 | const Type* FmaFNode::Value(PhaseGVN* phase) const { |
| 1386 | const Type *t1 = phase->type(in(1)); |
| 1387 | if (t1 == Type::TOP) return Type::TOP; |
| 1388 | if (t1->base() != Type::FloatCon) return Type::FLOAT; |
| 1389 | const Type *t2 = phase->type(in(2)); |
| 1390 | if (t2 == Type::TOP) return Type::TOP; |
| 1391 | if (t2->base() != Type::FloatCon) return Type::FLOAT; |
| 1392 | const Type *t3 = phase->type(in(3)); |
| 1393 | if (t3 == Type::TOP) return Type::TOP; |
| 1394 | if (t3->base() != Type::FloatCon) return Type::FLOAT; |
| 1395 | #ifndef __STDC_IEC_559__ |
| 1396 | return Type::FLOAT; |
| 1397 | #else |
| 1398 | float f1 = t1->getf(); |
| 1399 | float f2 = t2->getf(); |
| 1400 | float f3 = t3->getf(); |
| 1401 | return TypeF::make(fma(f1, f2, f3)); |
| 1402 | #endif |
| 1403 | } |
| 1404 | |
| 1405 | //============================================================================= |
| 1406 | //------------------------------hash------------------------------------------- |
| 1407 | // Hash function for MulAddS2INode. Operation is commutative with commutative pairs. |
| 1408 | // The hash function must return the same value when edge swapping is performed. |
| 1409 | uint MulAddS2INode::hash() const { |
| 1410 | return (uintptr_t)in(1) + (uintptr_t)in(2) + (uintptr_t)in(3) + (uintptr_t)in(4) + Opcode(); |
| 1411 | } |
| 1412 | |
| 1413 | |