1 | /* |
2 | * Copyright 2006 The Android Open Source Project |
3 | * |
4 | * Use of this source code is governed by a BSD-style license that can be |
5 | * found in the LICENSE file. |
6 | */ |
7 | |
8 | #include "include/core/SkPath.h" |
9 | |
10 | #include "include/core/SkData.h" |
11 | #include "include/core/SkMath.h" |
12 | #include "include/core/SkRRect.h" |
13 | #include "include/private/SkMacros.h" |
14 | #include "include/private/SkPathRef.h" |
15 | #include "include/private/SkTo.h" |
16 | #include "src/core/SkBuffer.h" |
17 | #include "src/core/SkCubicClipper.h" |
18 | #include "src/core/SkGeometry.h" |
19 | #include "src/core/SkMatrixPriv.h" |
20 | #include "src/core/SkPathMakers.h" |
21 | #include "src/core/SkPathPriv.h" |
22 | #include "src/core/SkPointPriv.h" |
23 | #include "src/core/SkSafeMath.h" |
24 | #include "src/core/SkTLazy.h" |
25 | // need SkDVector |
26 | #include "src/pathops/SkPathOpsPoint.h" |
27 | |
28 | #include <cmath> |
29 | #include <utility> |
30 | |
31 | struct SkPath_Storage_Equivalent { |
32 | void* fPtr; |
33 | int32_t fIndex; |
34 | uint32_t fFlags; |
35 | }; |
36 | |
37 | static_assert(sizeof(SkPath) == sizeof(SkPath_Storage_Equivalent), |
38 | "Please keep an eye on SkPath packing." ); |
39 | |
40 | static float poly_eval(float A, float B, float C, float t) { |
41 | return (A * t + B) * t + C; |
42 | } |
43 | |
44 | static float poly_eval(float A, float B, float C, float D, float t) { |
45 | return ((A * t + B) * t + C) * t + D; |
46 | } |
47 | |
48 | //////////////////////////////////////////////////////////////////////////// |
49 | |
50 | /** |
51 | * Path.bounds is defined to be the bounds of all the control points. |
52 | * If we called bounds.join(r) we would skip r if r was empty, which breaks |
53 | * our promise. Hence we have a custom joiner that doesn't look at emptiness |
54 | */ |
55 | static void joinNoEmptyChecks(SkRect* dst, const SkRect& src) { |
56 | dst->fLeft = std::min(dst->fLeft, src.fLeft); |
57 | dst->fTop = std::min(dst->fTop, src.fTop); |
58 | dst->fRight = std::max(dst->fRight, src.fRight); |
59 | dst->fBottom = std::max(dst->fBottom, src.fBottom); |
60 | } |
61 | |
62 | static bool is_degenerate(const SkPath& path) { |
63 | return path.countVerbs() <= 1; |
64 | } |
65 | |
66 | class SkAutoDisableDirectionCheck { |
67 | public: |
68 | SkAutoDisableDirectionCheck(SkPath* path) : fPath(path) { |
69 | fSaved = static_cast<SkPathPriv::FirstDirection>(fPath->getFirstDirection()); |
70 | } |
71 | |
72 | ~SkAutoDisableDirectionCheck() { |
73 | fPath->setFirstDirection(fSaved); |
74 | } |
75 | |
76 | private: |
77 | SkPath* fPath; |
78 | SkPathPriv::FirstDirection fSaved; |
79 | }; |
80 | #define SkAutoDisableDirectionCheck(...) SK_REQUIRE_LOCAL_VAR(SkAutoDisableDirectionCheck) |
81 | |
82 | /* This guy's constructor/destructor bracket a path editing operation. It is |
83 | used when we know the bounds of the amount we are going to add to the path |
84 | (usually a new contour, but not required). |
85 | |
86 | It captures some state about the path up front (i.e. if it already has a |
87 | cached bounds), and then if it can, it updates the cache bounds explicitly, |
88 | avoiding the need to revisit all of the points in getBounds(). |
89 | |
90 | It also notes if the path was originally degenerate, and if so, sets |
91 | isConvex to true. Thus it can only be used if the contour being added is |
92 | convex. |
93 | */ |
94 | class SkAutoPathBoundsUpdate { |
95 | public: |
96 | SkAutoPathBoundsUpdate(SkPath* path, const SkRect& r) : fPath(path), fRect(r) { |
97 | // Cannot use fRect for our bounds unless we know it is sorted |
98 | fRect.sort(); |
99 | // Mark the path's bounds as dirty if (1) they are, or (2) the path |
100 | // is non-finite, and therefore its bounds are not meaningful |
101 | fHasValidBounds = path->hasComputedBounds() && path->isFinite(); |
102 | fEmpty = path->isEmpty(); |
103 | if (fHasValidBounds && !fEmpty) { |
104 | joinNoEmptyChecks(&fRect, fPath->getBounds()); |
105 | } |
106 | fDegenerate = is_degenerate(*path); |
107 | } |
108 | |
109 | ~SkAutoPathBoundsUpdate() { |
110 | fPath->setConvexityType(fDegenerate ? SkPathConvexityType::kConvex |
111 | : SkPathConvexityType::kUnknown); |
112 | if ((fEmpty || fHasValidBounds) && fRect.isFinite()) { |
113 | fPath->setBounds(fRect); |
114 | } |
115 | } |
116 | |
117 | private: |
118 | SkPath* fPath; |
119 | SkRect fRect; |
120 | bool fHasValidBounds; |
121 | bool fDegenerate; |
122 | bool fEmpty; |
123 | }; |
124 | #define SkAutoPathBoundsUpdate(...) SK_REQUIRE_LOCAL_VAR(SkAutoPathBoundsUpdate) |
125 | |
126 | //////////////////////////////////////////////////////////////////////////// |
127 | |
128 | /* |
129 | Stores the verbs and points as they are given to us, with exceptions: |
130 | - we only record "Close" if it was immediately preceeded by Move | Line | Quad | Cubic |
131 | - we insert a Move(0,0) if Line | Quad | Cubic is our first command |
132 | |
133 | The iterator does more cleanup, especially if forceClose == true |
134 | 1. If we encounter degenerate segments, remove them |
135 | 2. if we encounter Close, return a cons'd up Line() first (if the curr-pt != start-pt) |
136 | 3. if we encounter Move without a preceeding Close, and forceClose is true, goto #2 |
137 | 4. if we encounter Line | Quad | Cubic after Close, cons up a Move |
138 | */ |
139 | |
140 | //////////////////////////////////////////////////////////////////////////// |
141 | |
142 | // flag to require a moveTo if we begin with something else, like lineTo etc. |
143 | #define INITIAL_LASTMOVETOINDEX_VALUE ~0 |
144 | |
145 | SkPath::SkPath() |
146 | : fPathRef(SkPathRef::CreateEmpty()) { |
147 | this->resetFields(); |
148 | fIsVolatile = false; |
149 | } |
150 | |
151 | void SkPath::resetFields() { |
152 | //fPathRef is assumed to have been emptied by the caller. |
153 | fLastMoveToIndex = INITIAL_LASTMOVETOINDEX_VALUE; |
154 | fFillType = SkToU8(SkPathFillType::kWinding); |
155 | this->setConvexityType(SkPathConvexityType::kUnknown); |
156 | this->setFirstDirection(SkPathPriv::kUnknown_FirstDirection); |
157 | |
158 | // We don't touch Android's fSourcePath. It's used to track texture garbage collection, so we |
159 | // don't want to muck with it if it's been set to something non-nullptr. |
160 | } |
161 | |
162 | SkPath::SkPath(const SkPath& that) |
163 | : fPathRef(SkRef(that.fPathRef.get())) { |
164 | this->copyFields(that); |
165 | SkDEBUGCODE(that.validate();) |
166 | } |
167 | |
168 | SkPath::~SkPath() { |
169 | SkDEBUGCODE(this->validate();) |
170 | } |
171 | |
172 | SkPath& SkPath::operator=(const SkPath& that) { |
173 | SkDEBUGCODE(that.validate();) |
174 | |
175 | if (this != &that) { |
176 | fPathRef.reset(SkRef(that.fPathRef.get())); |
177 | this->copyFields(that); |
178 | } |
179 | SkDEBUGCODE(this->validate();) |
180 | return *this; |
181 | } |
182 | |
183 | void SkPath::copyFields(const SkPath& that) { |
184 | //fPathRef is assumed to have been set by the caller. |
185 | fLastMoveToIndex = that.fLastMoveToIndex; |
186 | fFillType = that.fFillType; |
187 | fIsVolatile = that.fIsVolatile; |
188 | |
189 | // Non-atomic assignment of atomic values. |
190 | this->setConvexityType(that.getConvexityTypeOrUnknown()); |
191 | this->setFirstDirection(that.getFirstDirection()); |
192 | } |
193 | |
194 | bool operator==(const SkPath& a, const SkPath& b) { |
195 | // note: don't need to look at isConvex or bounds, since just comparing the |
196 | // raw data is sufficient. |
197 | return &a == &b || |
198 | (a.fFillType == b.fFillType && *a.fPathRef.get() == *b.fPathRef.get()); |
199 | } |
200 | |
201 | void SkPath::swap(SkPath& that) { |
202 | if (this != &that) { |
203 | fPathRef.swap(that.fPathRef); |
204 | std::swap(fLastMoveToIndex, that.fLastMoveToIndex); |
205 | |
206 | const auto ft = fFillType; |
207 | fFillType = that.fFillType; |
208 | that.fFillType = ft; |
209 | |
210 | const auto iv = fIsVolatile; |
211 | fIsVolatile = that.fIsVolatile; |
212 | that.fIsVolatile = iv; |
213 | |
214 | // Non-atomic swaps of atomic values. |
215 | SkPathConvexityType c = this->getConvexityTypeOrUnknown(); |
216 | this->setConvexityType(that.getConvexityTypeOrUnknown()); |
217 | that.setConvexityType(c); |
218 | |
219 | uint8_t fd = this->getFirstDirection(); |
220 | this->setFirstDirection(that.getFirstDirection()); |
221 | that.setFirstDirection(fd); |
222 | } |
223 | } |
224 | |
225 | bool SkPath::isInterpolatable(const SkPath& compare) const { |
226 | // need the same structure (verbs, conicweights) and same point-count |
227 | return fPathRef->fPoints.count() == compare.fPathRef->fPoints.count() && |
228 | fPathRef->fVerbs == compare.fPathRef->fVerbs && |
229 | fPathRef->fConicWeights == compare.fPathRef->fConicWeights; |
230 | } |
231 | |
232 | bool SkPath::interpolate(const SkPath& ending, SkScalar weight, SkPath* out) const { |
233 | int pointCount = fPathRef->countPoints(); |
234 | if (pointCount != ending.fPathRef->countPoints()) { |
235 | return false; |
236 | } |
237 | if (!pointCount) { |
238 | return true; |
239 | } |
240 | out->reset(); |
241 | out->addPath(*this); |
242 | fPathRef->interpolate(*ending.fPathRef, weight, out->fPathRef.get()); |
243 | return true; |
244 | } |
245 | |
246 | static inline bool check_edge_against_rect(const SkPoint& p0, |
247 | const SkPoint& p1, |
248 | const SkRect& rect, |
249 | SkPathPriv::FirstDirection dir) { |
250 | const SkPoint* edgeBegin; |
251 | SkVector v; |
252 | if (SkPathPriv::kCW_FirstDirection == dir) { |
253 | v = p1 - p0; |
254 | edgeBegin = &p0; |
255 | } else { |
256 | v = p0 - p1; |
257 | edgeBegin = &p1; |
258 | } |
259 | if (v.fX || v.fY) { |
260 | // check the cross product of v with the vec from edgeBegin to each rect corner |
261 | SkScalar yL = v.fY * (rect.fLeft - edgeBegin->fX); |
262 | SkScalar xT = v.fX * (rect.fTop - edgeBegin->fY); |
263 | SkScalar yR = v.fY * (rect.fRight - edgeBegin->fX); |
264 | SkScalar xB = v.fX * (rect.fBottom - edgeBegin->fY); |
265 | if ((xT < yL) || (xT < yR) || (xB < yL) || (xB < yR)) { |
266 | return false; |
267 | } |
268 | } |
269 | return true; |
270 | } |
271 | |
272 | bool SkPath::conservativelyContainsRect(const SkRect& rect) const { |
273 | // This only handles non-degenerate convex paths currently. |
274 | if (!this->isConvex()) { |
275 | return false; |
276 | } |
277 | |
278 | SkPathPriv::FirstDirection direction; |
279 | if (!SkPathPriv::CheapComputeFirstDirection(*this, &direction)) { |
280 | return false; |
281 | } |
282 | |
283 | SkPoint firstPt; |
284 | SkPoint prevPt; |
285 | SkPath::Iter iter(*this, true); |
286 | SkPath::Verb verb; |
287 | SkPoint pts[4]; |
288 | int segmentCount = 0; |
289 | SkDEBUGCODE(int moveCnt = 0;) |
290 | SkDEBUGCODE(int closeCount = 0;) |
291 | |
292 | while ((verb = iter.next(pts)) != kDone_Verb) { |
293 | int nextPt = -1; |
294 | switch (verb) { |
295 | case kMove_Verb: |
296 | SkASSERT(!segmentCount && !closeCount); |
297 | SkDEBUGCODE(++moveCnt); |
298 | firstPt = prevPt = pts[0]; |
299 | break; |
300 | case kLine_Verb: |
301 | if (!SkPathPriv::AllPointsEq(pts, 2)) { |
302 | nextPt = 1; |
303 | SkASSERT(moveCnt && !closeCount); |
304 | ++segmentCount; |
305 | } |
306 | break; |
307 | case kQuad_Verb: |
308 | case kConic_Verb: |
309 | if (!SkPathPriv::AllPointsEq(pts, 3)) { |
310 | SkASSERT(moveCnt && !closeCount); |
311 | ++segmentCount; |
312 | nextPt = 2; |
313 | } |
314 | break; |
315 | case kCubic_Verb: |
316 | if (!SkPathPriv::AllPointsEq(pts, 4)) { |
317 | SkASSERT(moveCnt && !closeCount); |
318 | ++segmentCount; |
319 | nextPt = 3; |
320 | } |
321 | break; |
322 | case kClose_Verb: |
323 | SkDEBUGCODE(++closeCount;) |
324 | break; |
325 | default: |
326 | SkDEBUGFAIL("unknown verb" ); |
327 | } |
328 | if (-1 != nextPt) { |
329 | if (SkPath::kConic_Verb == verb) { |
330 | SkConic orig; |
331 | orig.set(pts, iter.conicWeight()); |
332 | SkPoint quadPts[5]; |
333 | int count = orig.chopIntoQuadsPOW2(quadPts, 1); |
334 | SkASSERT_RELEASE(2 == count); |
335 | |
336 | if (!check_edge_against_rect(quadPts[0], quadPts[2], rect, direction)) { |
337 | return false; |
338 | } |
339 | if (!check_edge_against_rect(quadPts[2], quadPts[4], rect, direction)) { |
340 | return false; |
341 | } |
342 | } else { |
343 | if (!check_edge_against_rect(prevPt, pts[nextPt], rect, direction)) { |
344 | return false; |
345 | } |
346 | } |
347 | prevPt = pts[nextPt]; |
348 | } |
349 | } |
350 | |
351 | if (segmentCount) { |
352 | return check_edge_against_rect(prevPt, firstPt, rect, direction); |
353 | } |
354 | return false; |
355 | } |
356 | |
357 | uint32_t SkPath::getGenerationID() const { |
358 | uint32_t genID = fPathRef->genID(); |
359 | #ifdef SK_BUILD_FOR_ANDROID_FRAMEWORK |
360 | SkASSERT((unsigned)fFillType < (1 << (32 - SkPathPriv::kPathRefGenIDBitCnt))); |
361 | genID |= static_cast<uint32_t>(fFillType) << SkPathPriv::kPathRefGenIDBitCnt; |
362 | #endif |
363 | return genID; |
364 | } |
365 | |
366 | SkPath& SkPath::reset() { |
367 | SkDEBUGCODE(this->validate();) |
368 | |
369 | fPathRef.reset(SkPathRef::CreateEmpty()); |
370 | this->resetFields(); |
371 | return *this; |
372 | } |
373 | |
374 | SkPath& SkPath::rewind() { |
375 | SkDEBUGCODE(this->validate();) |
376 | |
377 | SkPathRef::Rewind(&fPathRef); |
378 | this->resetFields(); |
379 | return *this; |
380 | } |
381 | |
382 | bool SkPath::isLastContourClosed() const { |
383 | int verbCount = fPathRef->countVerbs(); |
384 | if (0 == verbCount) { |
385 | return false; |
386 | } |
387 | return kClose_Verb == fPathRef->atVerb(verbCount - 1); |
388 | } |
389 | |
390 | bool SkPath::isLine(SkPoint line[2]) const { |
391 | int verbCount = fPathRef->countVerbs(); |
392 | |
393 | if (2 == verbCount) { |
394 | SkASSERT(kMove_Verb == fPathRef->atVerb(0)); |
395 | if (kLine_Verb == fPathRef->atVerb(1)) { |
396 | SkASSERT(2 == fPathRef->countPoints()); |
397 | if (line) { |
398 | const SkPoint* pts = fPathRef->points(); |
399 | line[0] = pts[0]; |
400 | line[1] = pts[1]; |
401 | } |
402 | return true; |
403 | } |
404 | } |
405 | return false; |
406 | } |
407 | |
408 | /* |
409 | Determines if path is a rect by keeping track of changes in direction |
410 | and looking for a loop either clockwise or counterclockwise. |
411 | |
412 | The direction is computed such that: |
413 | 0: vertical up |
414 | 1: horizontal left |
415 | 2: vertical down |
416 | 3: horizontal right |
417 | |
418 | A rectangle cycles up/right/down/left or up/left/down/right. |
419 | |
420 | The test fails if: |
421 | The path is closed, and followed by a line. |
422 | A second move creates a new endpoint. |
423 | A diagonal line is parsed. |
424 | There's more than four changes of direction. |
425 | There's a discontinuity on the line (e.g., a move in the middle) |
426 | The line reverses direction. |
427 | The path contains a quadratic or cubic. |
428 | The path contains fewer than four points. |
429 | *The rectangle doesn't complete a cycle. |
430 | *The final point isn't equal to the first point. |
431 | |
432 | *These last two conditions we relax if we have a 3-edge path that would |
433 | form a rectangle if it were closed (as we do when we fill a path) |
434 | |
435 | It's OK if the path has: |
436 | Several colinear line segments composing a rectangle side. |
437 | Single points on the rectangle side. |
438 | |
439 | The direction takes advantage of the corners found since opposite sides |
440 | must travel in opposite directions. |
441 | |
442 | FIXME: Allow colinear quads and cubics to be treated like lines. |
443 | FIXME: If the API passes fill-only, return true if the filled stroke |
444 | is a rectangle, though the caller failed to close the path. |
445 | |
446 | directions values: |
447 | 0x1 is set if the segment is horizontal |
448 | 0x2 is set if the segment is moving to the right or down |
449 | thus: |
450 | two directions are opposites iff (dirA ^ dirB) == 0x2 |
451 | two directions are perpendicular iff (dirA ^ dirB) == 0x1 |
452 | |
453 | */ |
454 | static int rect_make_dir(SkScalar dx, SkScalar dy) { |
455 | return ((0 != dx) << 0) | ((dx > 0 || dy > 0) << 1); |
456 | } |
457 | |
458 | bool SkPath::isRect(SkRect* rect, bool* isClosed, SkPathDirection* direction) const { |
459 | SkDEBUGCODE(this->validate();) |
460 | int currVerb = 0; |
461 | const SkPoint* pts = fPathRef->points(); |
462 | return SkPathPriv::IsRectContour(*this, false, &currVerb, &pts, isClosed, direction, rect); |
463 | } |
464 | |
465 | bool SkPath::isOval(SkRect* bounds) const { |
466 | return SkPathPriv::IsOval(*this, bounds, nullptr, nullptr); |
467 | } |
468 | |
469 | bool SkPath::isRRect(SkRRect* rrect) const { |
470 | return SkPathPriv::IsRRect(*this, rrect, nullptr, nullptr); |
471 | } |
472 | |
473 | int SkPath::countPoints() const { |
474 | return fPathRef->countPoints(); |
475 | } |
476 | |
477 | int SkPath::getPoints(SkPoint dst[], int max) const { |
478 | SkDEBUGCODE(this->validate();) |
479 | |
480 | SkASSERT(max >= 0); |
481 | SkASSERT(!max || dst); |
482 | int count = std::min(max, fPathRef->countPoints()); |
483 | sk_careful_memcpy(dst, fPathRef->points(), count * sizeof(SkPoint)); |
484 | return fPathRef->countPoints(); |
485 | } |
486 | |
487 | SkPoint SkPath::getPoint(int index) const { |
488 | if ((unsigned)index < (unsigned)fPathRef->countPoints()) { |
489 | return fPathRef->atPoint(index); |
490 | } |
491 | return SkPoint::Make(0, 0); |
492 | } |
493 | |
494 | int SkPath::countVerbs() const { |
495 | return fPathRef->countVerbs(); |
496 | } |
497 | |
498 | int SkPath::getVerbs(uint8_t dst[], int max) const { |
499 | SkDEBUGCODE(this->validate();) |
500 | |
501 | SkASSERT(max >= 0); |
502 | SkASSERT(!max || dst); |
503 | int count = std::min(max, fPathRef->countVerbs()); |
504 | if (count) { |
505 | memcpy(dst, fPathRef->verbsBegin(), count); |
506 | } |
507 | return fPathRef->countVerbs(); |
508 | } |
509 | |
510 | size_t SkPath::approximateBytesUsed() const { |
511 | size_t size = sizeof (SkPath); |
512 | if (fPathRef != nullptr) { |
513 | size += fPathRef->countPoints() * sizeof(SkPoint) |
514 | + fPathRef->countVerbs() |
515 | + fPathRef->countWeights() * sizeof(SkScalar); |
516 | } |
517 | |
518 | return size; |
519 | } |
520 | |
521 | bool SkPath::getLastPt(SkPoint* lastPt) const { |
522 | SkDEBUGCODE(this->validate();) |
523 | |
524 | int count = fPathRef->countPoints(); |
525 | if (count > 0) { |
526 | if (lastPt) { |
527 | *lastPt = fPathRef->atPoint(count - 1); |
528 | } |
529 | return true; |
530 | } |
531 | if (lastPt) { |
532 | lastPt->set(0, 0); |
533 | } |
534 | return false; |
535 | } |
536 | |
537 | void SkPath::setPt(int index, SkScalar x, SkScalar y) { |
538 | SkDEBUGCODE(this->validate();) |
539 | |
540 | int count = fPathRef->countPoints(); |
541 | if (count <= index) { |
542 | return; |
543 | } else { |
544 | SkPathRef::Editor ed(&fPathRef); |
545 | ed.atPoint(index)->set(x, y); |
546 | } |
547 | } |
548 | |
549 | void SkPath::setLastPt(SkScalar x, SkScalar y) { |
550 | SkDEBUGCODE(this->validate();) |
551 | |
552 | int count = fPathRef->countPoints(); |
553 | if (count == 0) { |
554 | this->moveTo(x, y); |
555 | } else { |
556 | SkPathRef::Editor ed(&fPathRef); |
557 | ed.atPoint(count-1)->set(x, y); |
558 | } |
559 | } |
560 | |
561 | // This is the public-facing non-const setConvexity(). |
562 | void SkPath::setConvexityType(SkPathConvexityType c) { |
563 | fConvexity.store((uint8_t)c, std::memory_order_relaxed); |
564 | } |
565 | |
566 | // Const hooks for working with fConvexity and fFirstDirection from const methods. |
567 | void SkPath::setConvexityType(SkPathConvexityType c) const { |
568 | fConvexity.store((uint8_t)c, std::memory_order_relaxed); |
569 | } |
570 | void SkPath::setFirstDirection(uint8_t d) const { |
571 | fFirstDirection.store(d, std::memory_order_relaxed); |
572 | } |
573 | uint8_t SkPath::getFirstDirection() const { |
574 | return fFirstDirection.load(std::memory_order_relaxed); |
575 | } |
576 | |
577 | ////////////////////////////////////////////////////////////////////////////// |
578 | // Construction methods |
579 | |
580 | SkPath& SkPath::dirtyAfterEdit() { |
581 | this->setConvexityType(SkPathConvexityType::kUnknown); |
582 | this->setFirstDirection(SkPathPriv::kUnknown_FirstDirection); |
583 | return *this; |
584 | } |
585 | |
586 | void SkPath::incReserve(int inc) { |
587 | SkDEBUGCODE(this->validate();) |
588 | if (inc > 0) { |
589 | SkPathRef::Editor(&fPathRef, inc, inc); |
590 | } |
591 | SkDEBUGCODE(this->validate();) |
592 | } |
593 | |
594 | SkPath& SkPath::moveTo(SkScalar x, SkScalar y) { |
595 | SkDEBUGCODE(this->validate();) |
596 | |
597 | SkPathRef::Editor ed(&fPathRef); |
598 | |
599 | // remember our index |
600 | fLastMoveToIndex = fPathRef->countPoints(); |
601 | |
602 | ed.growForVerb(kMove_Verb)->set(x, y); |
603 | |
604 | return this->dirtyAfterEdit(); |
605 | } |
606 | |
607 | SkPath& SkPath::rMoveTo(SkScalar x, SkScalar y) { |
608 | SkPoint pt; |
609 | this->getLastPt(&pt); |
610 | return this->moveTo(pt.fX + x, pt.fY + y); |
611 | } |
612 | |
613 | void SkPath::injectMoveToIfNeeded() { |
614 | if (fLastMoveToIndex < 0) { |
615 | SkScalar x, y; |
616 | if (fPathRef->countVerbs() == 0) { |
617 | x = y = 0; |
618 | } else { |
619 | const SkPoint& pt = fPathRef->atPoint(~fLastMoveToIndex); |
620 | x = pt.fX; |
621 | y = pt.fY; |
622 | } |
623 | this->moveTo(x, y); |
624 | } |
625 | } |
626 | |
627 | SkPath& SkPath::lineTo(SkScalar x, SkScalar y) { |
628 | SkDEBUGCODE(this->validate();) |
629 | |
630 | this->injectMoveToIfNeeded(); |
631 | |
632 | SkPathRef::Editor ed(&fPathRef); |
633 | ed.growForVerb(kLine_Verb)->set(x, y); |
634 | |
635 | return this->dirtyAfterEdit(); |
636 | } |
637 | |
638 | SkPath& SkPath::rLineTo(SkScalar x, SkScalar y) { |
639 | this->injectMoveToIfNeeded(); // This can change the result of this->getLastPt(). |
640 | SkPoint pt; |
641 | this->getLastPt(&pt); |
642 | return this->lineTo(pt.fX + x, pt.fY + y); |
643 | } |
644 | |
645 | SkPath& SkPath::quadTo(SkScalar x1, SkScalar y1, SkScalar x2, SkScalar y2) { |
646 | SkDEBUGCODE(this->validate();) |
647 | |
648 | this->injectMoveToIfNeeded(); |
649 | |
650 | SkPathRef::Editor ed(&fPathRef); |
651 | SkPoint* pts = ed.growForVerb(kQuad_Verb); |
652 | pts[0].set(x1, y1); |
653 | pts[1].set(x2, y2); |
654 | |
655 | return this->dirtyAfterEdit(); |
656 | } |
657 | |
658 | SkPath& SkPath::rQuadTo(SkScalar x1, SkScalar y1, SkScalar x2, SkScalar y2) { |
659 | this->injectMoveToIfNeeded(); // This can change the result of this->getLastPt(). |
660 | SkPoint pt; |
661 | this->getLastPt(&pt); |
662 | return this->quadTo(pt.fX + x1, pt.fY + y1, pt.fX + x2, pt.fY + y2); |
663 | } |
664 | |
665 | SkPath& SkPath::conicTo(SkScalar x1, SkScalar y1, SkScalar x2, SkScalar y2, |
666 | SkScalar w) { |
667 | // check for <= 0 or NaN with this test |
668 | if (!(w > 0)) { |
669 | this->lineTo(x2, y2); |
670 | } else if (!SkScalarIsFinite(w)) { |
671 | this->lineTo(x1, y1); |
672 | this->lineTo(x2, y2); |
673 | } else if (SK_Scalar1 == w) { |
674 | this->quadTo(x1, y1, x2, y2); |
675 | } else { |
676 | SkDEBUGCODE(this->validate();) |
677 | |
678 | this->injectMoveToIfNeeded(); |
679 | |
680 | SkPathRef::Editor ed(&fPathRef); |
681 | SkPoint* pts = ed.growForVerb(kConic_Verb, w); |
682 | pts[0].set(x1, y1); |
683 | pts[1].set(x2, y2); |
684 | |
685 | (void)this->dirtyAfterEdit(); |
686 | } |
687 | return *this; |
688 | } |
689 | |
690 | SkPath& SkPath::rConicTo(SkScalar dx1, SkScalar dy1, SkScalar dx2, SkScalar dy2, |
691 | SkScalar w) { |
692 | this->injectMoveToIfNeeded(); // This can change the result of this->getLastPt(). |
693 | SkPoint pt; |
694 | this->getLastPt(&pt); |
695 | return this->conicTo(pt.fX + dx1, pt.fY + dy1, pt.fX + dx2, pt.fY + dy2, w); |
696 | } |
697 | |
698 | SkPath& SkPath::cubicTo(SkScalar x1, SkScalar y1, SkScalar x2, SkScalar y2, |
699 | SkScalar x3, SkScalar y3) { |
700 | SkDEBUGCODE(this->validate();) |
701 | |
702 | this->injectMoveToIfNeeded(); |
703 | |
704 | SkPathRef::Editor ed(&fPathRef); |
705 | SkPoint* pts = ed.growForVerb(kCubic_Verb); |
706 | pts[0].set(x1, y1); |
707 | pts[1].set(x2, y2); |
708 | pts[2].set(x3, y3); |
709 | |
710 | return this->dirtyAfterEdit(); |
711 | } |
712 | |
713 | SkPath& SkPath::rCubicTo(SkScalar x1, SkScalar y1, SkScalar x2, SkScalar y2, |
714 | SkScalar x3, SkScalar y3) { |
715 | this->injectMoveToIfNeeded(); // This can change the result of this->getLastPt(). |
716 | SkPoint pt; |
717 | this->getLastPt(&pt); |
718 | return this->cubicTo(pt.fX + x1, pt.fY + y1, pt.fX + x2, pt.fY + y2, |
719 | pt.fX + x3, pt.fY + y3); |
720 | } |
721 | |
722 | SkPath& SkPath::close() { |
723 | SkDEBUGCODE(this->validate();) |
724 | |
725 | int count = fPathRef->countVerbs(); |
726 | if (count > 0) { |
727 | switch (fPathRef->atVerb(count - 1)) { |
728 | case kLine_Verb: |
729 | case kQuad_Verb: |
730 | case kConic_Verb: |
731 | case kCubic_Verb: |
732 | case kMove_Verb: { |
733 | SkPathRef::Editor ed(&fPathRef); |
734 | ed.growForVerb(kClose_Verb); |
735 | break; |
736 | } |
737 | case kClose_Verb: |
738 | // don't add a close if it's the first verb or a repeat |
739 | break; |
740 | default: |
741 | SkDEBUGFAIL("unexpected verb" ); |
742 | break; |
743 | } |
744 | } |
745 | |
746 | // signal that we need a moveTo to follow us (unless we're done) |
747 | #if 0 |
748 | if (fLastMoveToIndex >= 0) { |
749 | fLastMoveToIndex = ~fLastMoveToIndex; |
750 | } |
751 | #else |
752 | fLastMoveToIndex ^= ~fLastMoveToIndex >> (8 * sizeof(fLastMoveToIndex) - 1); |
753 | #endif |
754 | return *this; |
755 | } |
756 | |
757 | /////////////////////////////////////////////////////////////////////////////// |
758 | |
759 | static void assert_known_direction(SkPathDirection dir) { |
760 | SkASSERT(SkPathDirection::kCW == dir || SkPathDirection::kCCW == dir); |
761 | } |
762 | |
763 | SkPath& SkPath::addRect(const SkRect& rect, SkPathDirection dir) { |
764 | return this->addRect(rect, dir, 0); |
765 | } |
766 | |
767 | SkPath& SkPath::addRect(SkScalar left, SkScalar top, SkScalar right, |
768 | SkScalar bottom, SkPathDirection dir) { |
769 | return this->addRect(SkRect::MakeLTRB(left, top, right, bottom), dir, 0); |
770 | } |
771 | |
772 | SkPath& SkPath::addRect(const SkRect &rect, SkPathDirection dir, unsigned startIndex) { |
773 | assert_known_direction(dir); |
774 | this->setFirstDirection(this->hasOnlyMoveTos() ? (SkPathPriv::FirstDirection)dir |
775 | : SkPathPriv::kUnknown_FirstDirection); |
776 | SkAutoDisableDirectionCheck addc(this); |
777 | SkAutoPathBoundsUpdate apbu(this, rect); |
778 | |
779 | SkDEBUGCODE(int initialVerbCount = this->countVerbs()); |
780 | |
781 | const int kVerbs = 5; // moveTo + 3x lineTo + close |
782 | this->incReserve(kVerbs); |
783 | |
784 | SkPath_RectPointIterator iter(rect, dir, startIndex); |
785 | |
786 | this->moveTo(iter.current()); |
787 | this->lineTo(iter.next()); |
788 | this->lineTo(iter.next()); |
789 | this->lineTo(iter.next()); |
790 | this->close(); |
791 | |
792 | SkASSERT(this->countVerbs() == initialVerbCount + kVerbs); |
793 | return *this; |
794 | } |
795 | |
796 | SkPath& SkPath::addPoly(const SkPoint pts[], int count, bool close) { |
797 | SkDEBUGCODE(this->validate();) |
798 | if (count <= 0) { |
799 | return *this; |
800 | } |
801 | |
802 | fLastMoveToIndex = fPathRef->countPoints(); |
803 | |
804 | // +close makes room for the extra kClose_Verb |
805 | SkPathRef::Editor ed(&fPathRef, count+close, count); |
806 | |
807 | ed.growForVerb(kMove_Verb)->set(pts[0].fX, pts[0].fY); |
808 | if (count > 1) { |
809 | SkPoint* p = ed.growForRepeatedVerb(kLine_Verb, count - 1); |
810 | memcpy(p, &pts[1], (count-1) * sizeof(SkPoint)); |
811 | } |
812 | |
813 | if (close) { |
814 | ed.growForVerb(kClose_Verb); |
815 | fLastMoveToIndex ^= ~fLastMoveToIndex >> (8 * sizeof(fLastMoveToIndex) - 1); |
816 | } |
817 | |
818 | (void)this->dirtyAfterEdit(); |
819 | SkDEBUGCODE(this->validate();) |
820 | return *this; |
821 | } |
822 | |
823 | #include "src/core/SkGeometry.h" |
824 | |
825 | static bool arc_is_lone_point(const SkRect& oval, SkScalar startAngle, SkScalar sweepAngle, |
826 | SkPoint* pt) { |
827 | if (0 == sweepAngle && (0 == startAngle || SkIntToScalar(360) == startAngle)) { |
828 | // Chrome uses this path to move into and out of ovals. If not |
829 | // treated as a special case the moves can distort the oval's |
830 | // bounding box (and break the circle special case). |
831 | pt->set(oval.fRight, oval.centerY()); |
832 | return true; |
833 | } else if (0 == oval.width() && 0 == oval.height()) { |
834 | // Chrome will sometimes create 0 radius round rects. Having degenerate |
835 | // quad segments in the path prevents the path from being recognized as |
836 | // a rect. |
837 | // TODO: optimizing the case where only one of width or height is zero |
838 | // should also be considered. This case, however, doesn't seem to be |
839 | // as common as the single point case. |
840 | pt->set(oval.fRight, oval.fTop); |
841 | return true; |
842 | } |
843 | return false; |
844 | } |
845 | |
846 | // Return the unit vectors pointing at the start/stop points for the given start/sweep angles |
847 | // |
848 | static void angles_to_unit_vectors(SkScalar startAngle, SkScalar sweepAngle, |
849 | SkVector* startV, SkVector* stopV, SkRotationDirection* dir) { |
850 | SkScalar startRad = SkDegreesToRadians(startAngle), |
851 | stopRad = SkDegreesToRadians(startAngle + sweepAngle); |
852 | |
853 | startV->fY = SkScalarSinSnapToZero(startRad); |
854 | startV->fX = SkScalarCosSnapToZero(startRad); |
855 | stopV->fY = SkScalarSinSnapToZero(stopRad); |
856 | stopV->fX = SkScalarCosSnapToZero(stopRad); |
857 | |
858 | /* If the sweep angle is nearly (but less than) 360, then due to precision |
859 | loss in radians-conversion and/or sin/cos, we may end up with coincident |
860 | vectors, which will fool SkBuildQuadArc into doing nothing (bad) instead |
861 | of drawing a nearly complete circle (good). |
862 | e.g. canvas.drawArc(0, 359.99, ...) |
863 | -vs- canvas.drawArc(0, 359.9, ...) |
864 | We try to detect this edge case, and tweak the stop vector |
865 | */ |
866 | if (*startV == *stopV) { |
867 | SkScalar sw = SkScalarAbs(sweepAngle); |
868 | if (sw < SkIntToScalar(360) && sw > SkIntToScalar(359)) { |
869 | // make a guess at a tiny angle (in radians) to tweak by |
870 | SkScalar deltaRad = SkScalarCopySign(SK_Scalar1/512, sweepAngle); |
871 | // not sure how much will be enough, so we use a loop |
872 | do { |
873 | stopRad -= deltaRad; |
874 | stopV->fY = SkScalarSinSnapToZero(stopRad); |
875 | stopV->fX = SkScalarCosSnapToZero(stopRad); |
876 | } while (*startV == *stopV); |
877 | } |
878 | } |
879 | *dir = sweepAngle > 0 ? kCW_SkRotationDirection : kCCW_SkRotationDirection; |
880 | } |
881 | |
882 | /** |
883 | * If this returns 0, then the caller should just line-to the singlePt, else it should |
884 | * ignore singlePt and append the specified number of conics. |
885 | */ |
886 | static int build_arc_conics(const SkRect& oval, const SkVector& start, const SkVector& stop, |
887 | SkRotationDirection dir, SkConic conics[SkConic::kMaxConicsForArc], |
888 | SkPoint* singlePt) { |
889 | SkMatrix matrix; |
890 | |
891 | matrix.setScale(SkScalarHalf(oval.width()), SkScalarHalf(oval.height())); |
892 | matrix.postTranslate(oval.centerX(), oval.centerY()); |
893 | |
894 | int count = SkConic::BuildUnitArc(start, stop, dir, &matrix, conics); |
895 | if (0 == count) { |
896 | matrix.mapXY(stop.x(), stop.y(), singlePt); |
897 | } |
898 | return count; |
899 | } |
900 | |
901 | SkPath& SkPath::addRoundRect(const SkRect& rect, const SkScalar radii[], |
902 | SkPathDirection dir) { |
903 | SkRRect rrect; |
904 | rrect.setRectRadii(rect, (const SkVector*) radii); |
905 | return this->addRRect(rrect, dir); |
906 | } |
907 | |
908 | SkPath& SkPath::addRRect(const SkRRect& rrect, SkPathDirection dir) { |
909 | // legacy start indices: 6 (CW) and 7(CCW) |
910 | return this->addRRect(rrect, dir, dir == SkPathDirection::kCW ? 6 : 7); |
911 | } |
912 | |
913 | SkPath& SkPath::addRRect(const SkRRect &rrect, SkPathDirection dir, unsigned startIndex) { |
914 | assert_known_direction(dir); |
915 | |
916 | bool isRRect = hasOnlyMoveTos(); |
917 | const SkRect& bounds = rrect.getBounds(); |
918 | |
919 | if (rrect.isRect() || rrect.isEmpty()) { |
920 | // degenerate(rect) => radii points are collapsing |
921 | this->addRect(bounds, dir, (startIndex + 1) / 2); |
922 | } else if (rrect.isOval()) { |
923 | // degenerate(oval) => line points are collapsing |
924 | this->addOval(bounds, dir, startIndex / 2); |
925 | } else { |
926 | this->setFirstDirection(this->hasOnlyMoveTos() ? (SkPathPriv::FirstDirection)dir |
927 | : SkPathPriv::kUnknown_FirstDirection); |
928 | |
929 | SkAutoPathBoundsUpdate apbu(this, bounds); |
930 | SkAutoDisableDirectionCheck addc(this); |
931 | |
932 | // we start with a conic on odd indices when moving CW vs. even indices when moving CCW |
933 | const bool startsWithConic = ((startIndex & 1) == (dir == SkPathDirection::kCW)); |
934 | const SkScalar weight = SK_ScalarRoot2Over2; |
935 | |
936 | SkDEBUGCODE(int initialVerbCount = this->countVerbs()); |
937 | const int kVerbs = startsWithConic |
938 | ? 9 // moveTo + 4x conicTo + 3x lineTo + close |
939 | : 10; // moveTo + 4x lineTo + 4x conicTo + close |
940 | this->incReserve(kVerbs); |
941 | |
942 | SkPath_RRectPointIterator rrectIter(rrect, dir, startIndex); |
943 | // Corner iterator indices follow the collapsed radii model, |
944 | // adjusted such that the start pt is "behind" the radii start pt. |
945 | const unsigned rectStartIndex = startIndex / 2 + (dir == SkPathDirection::kCW ? 0 : 1); |
946 | SkPath_RectPointIterator rectIter(bounds, dir, rectStartIndex); |
947 | |
948 | this->moveTo(rrectIter.current()); |
949 | if (startsWithConic) { |
950 | for (unsigned i = 0; i < 3; ++i) { |
951 | this->conicTo(rectIter.next(), rrectIter.next(), weight); |
952 | this->lineTo(rrectIter.next()); |
953 | } |
954 | this->conicTo(rectIter.next(), rrectIter.next(), weight); |
955 | // final lineTo handled by close(). |
956 | } else { |
957 | for (unsigned i = 0; i < 4; ++i) { |
958 | this->lineTo(rrectIter.next()); |
959 | this->conicTo(rectIter.next(), rrectIter.next(), weight); |
960 | } |
961 | } |
962 | this->close(); |
963 | |
964 | SkPathRef::Editor ed(&fPathRef); |
965 | ed.setIsRRect(isRRect, dir == SkPathDirection::kCCW, startIndex % 8); |
966 | |
967 | SkASSERT(this->countVerbs() == initialVerbCount + kVerbs); |
968 | } |
969 | |
970 | SkDEBUGCODE(fPathRef->validate();) |
971 | return *this; |
972 | } |
973 | |
974 | bool SkPath::hasOnlyMoveTos() const { |
975 | int count = fPathRef->countVerbs(); |
976 | const uint8_t* verbs = fPathRef->verbsBegin(); |
977 | for (int i = 0; i < count; ++i) { |
978 | if (*verbs == kLine_Verb || |
979 | *verbs == kQuad_Verb || |
980 | *verbs == kConic_Verb || |
981 | *verbs == kCubic_Verb) { |
982 | return false; |
983 | } |
984 | ++verbs; |
985 | } |
986 | return true; |
987 | } |
988 | |
989 | bool SkPath::isZeroLengthSincePoint(int startPtIndex) const { |
990 | int count = fPathRef->countPoints() - startPtIndex; |
991 | if (count < 2) { |
992 | return true; |
993 | } |
994 | const SkPoint* pts = fPathRef.get()->points() + startPtIndex; |
995 | const SkPoint& first = *pts; |
996 | for (int index = 1; index < count; ++index) { |
997 | if (first != pts[index]) { |
998 | return false; |
999 | } |
1000 | } |
1001 | return true; |
1002 | } |
1003 | |
1004 | SkPath& SkPath::addRoundRect(const SkRect& rect, SkScalar rx, SkScalar ry, |
1005 | SkPathDirection dir) { |
1006 | assert_known_direction(dir); |
1007 | |
1008 | if (rx < 0 || ry < 0) { |
1009 | return *this; |
1010 | } |
1011 | |
1012 | SkRRect rrect; |
1013 | rrect.setRectXY(rect, rx, ry); |
1014 | return this->addRRect(rrect, dir); |
1015 | } |
1016 | |
1017 | SkPath& SkPath::addOval(const SkRect& oval, SkPathDirection dir) { |
1018 | // legacy start index: 1 |
1019 | return this->addOval(oval, dir, 1); |
1020 | } |
1021 | |
1022 | SkPath& SkPath::addOval(const SkRect &oval, SkPathDirection dir, unsigned startPointIndex) { |
1023 | assert_known_direction(dir); |
1024 | |
1025 | /* If addOval() is called after previous moveTo(), |
1026 | this path is still marked as an oval. This is used to |
1027 | fit into WebKit's calling sequences. |
1028 | We can't simply check isEmpty() in this case, as additional |
1029 | moveTo() would mark the path non empty. |
1030 | */ |
1031 | bool isOval = hasOnlyMoveTos(); |
1032 | if (isOval) { |
1033 | this->setFirstDirection((SkPathPriv::FirstDirection)dir); |
1034 | } else { |
1035 | this->setFirstDirection(SkPathPriv::kUnknown_FirstDirection); |
1036 | } |
1037 | |
1038 | SkAutoDisableDirectionCheck addc(this); |
1039 | SkAutoPathBoundsUpdate apbu(this, oval); |
1040 | |
1041 | SkDEBUGCODE(int initialVerbCount = this->countVerbs()); |
1042 | const int kVerbs = 6; // moveTo + 4x conicTo + close |
1043 | this->incReserve(kVerbs); |
1044 | |
1045 | SkPath_OvalPointIterator ovalIter(oval, dir, startPointIndex); |
1046 | // The corner iterator pts are tracking "behind" the oval/radii pts. |
1047 | SkPath_RectPointIterator rectIter(oval, dir, startPointIndex + (dir == SkPathDirection::kCW ? 0 : 1)); |
1048 | const SkScalar weight = SK_ScalarRoot2Over2; |
1049 | |
1050 | this->moveTo(ovalIter.current()); |
1051 | for (unsigned i = 0; i < 4; ++i) { |
1052 | this->conicTo(rectIter.next(), ovalIter.next(), weight); |
1053 | } |
1054 | this->close(); |
1055 | |
1056 | SkASSERT(this->countVerbs() == initialVerbCount + kVerbs); |
1057 | |
1058 | SkPathRef::Editor ed(&fPathRef); |
1059 | |
1060 | ed.setIsOval(isOval, SkPathDirection::kCCW == dir, startPointIndex % 4); |
1061 | return *this; |
1062 | } |
1063 | |
1064 | SkPath& SkPath::addCircle(SkScalar x, SkScalar y, SkScalar r, SkPathDirection dir) { |
1065 | if (r > 0) { |
1066 | this->addOval(SkRect::MakeLTRB(x - r, y - r, x + r, y + r), dir); |
1067 | } |
1068 | return *this; |
1069 | } |
1070 | |
1071 | SkPath& SkPath::arcTo(const SkRect& oval, SkScalar startAngle, SkScalar sweepAngle, |
1072 | bool forceMoveTo) { |
1073 | if (oval.width() < 0 || oval.height() < 0) { |
1074 | return *this; |
1075 | } |
1076 | |
1077 | if (fPathRef->countVerbs() == 0) { |
1078 | forceMoveTo = true; |
1079 | } |
1080 | |
1081 | SkPoint lonePt; |
1082 | if (arc_is_lone_point(oval, startAngle, sweepAngle, &lonePt)) { |
1083 | return forceMoveTo ? this->moveTo(lonePt) : this->lineTo(lonePt); |
1084 | } |
1085 | |
1086 | SkVector startV, stopV; |
1087 | SkRotationDirection dir; |
1088 | angles_to_unit_vectors(startAngle, sweepAngle, &startV, &stopV, &dir); |
1089 | |
1090 | SkPoint singlePt; |
1091 | |
1092 | // Adds a move-to to 'pt' if forceMoveTo is true. Otherwise a lineTo unless we're sufficiently |
1093 | // close to 'pt' currently. This prevents spurious lineTos when adding a series of contiguous |
1094 | // arcs from the same oval. |
1095 | auto addPt = [&forceMoveTo, this](const SkPoint& pt) { |
1096 | SkPoint lastPt; |
1097 | if (forceMoveTo) { |
1098 | this->moveTo(pt); |
1099 | } else if (!this->getLastPt(&lastPt) || |
1100 | !SkScalarNearlyEqual(lastPt.fX, pt.fX) || |
1101 | !SkScalarNearlyEqual(lastPt.fY, pt.fY)) { |
1102 | this->lineTo(pt); |
1103 | } |
1104 | }; |
1105 | |
1106 | // At this point, we know that the arc is not a lone point, but startV == stopV |
1107 | // indicates that the sweepAngle is too small such that angles_to_unit_vectors |
1108 | // cannot handle it. |
1109 | if (startV == stopV) { |
1110 | SkScalar endAngle = SkDegreesToRadians(startAngle + sweepAngle); |
1111 | SkScalar radiusX = oval.width() / 2; |
1112 | SkScalar radiusY = oval.height() / 2; |
1113 | // We do not use SkScalar[Sin|Cos]SnapToZero here. When sin(startAngle) is 0 and sweepAngle |
1114 | // is very small and radius is huge, the expected behavior here is to draw a line. But |
1115 | // calling SkScalarSinSnapToZero will make sin(endAngle) be 0 which will then draw a dot. |
1116 | singlePt.set(oval.centerX() + radiusX * SkScalarCos(endAngle), |
1117 | oval.centerY() + radiusY * SkScalarSin(endAngle)); |
1118 | addPt(singlePt); |
1119 | return *this; |
1120 | } |
1121 | |
1122 | SkConic conics[SkConic::kMaxConicsForArc]; |
1123 | int count = build_arc_conics(oval, startV, stopV, dir, conics, &singlePt); |
1124 | if (count) { |
1125 | this->incReserve(count * 2 + 1); |
1126 | const SkPoint& pt = conics[0].fPts[0]; |
1127 | addPt(pt); |
1128 | for (int i = 0; i < count; ++i) { |
1129 | this->conicTo(conics[i].fPts[1], conics[i].fPts[2], conics[i].fW); |
1130 | } |
1131 | } else { |
1132 | addPt(singlePt); |
1133 | } |
1134 | return *this; |
1135 | } |
1136 | |
1137 | // This converts the SVG arc to conics. |
1138 | // Partly adapted from Niko's code in kdelibs/kdecore/svgicons. |
1139 | // Then transcribed from webkit/chrome's SVGPathNormalizer::decomposeArcToCubic() |
1140 | // See also SVG implementation notes: |
1141 | // http://www.w3.org/TR/SVG/implnote.html#ArcConversionEndpointToCenter |
1142 | // Note that arcSweep bool value is flipped from the original implementation. |
1143 | SkPath& SkPath::arcTo(SkScalar rx, SkScalar ry, SkScalar angle, SkPath::ArcSize arcLarge, |
1144 | SkPathDirection arcSweep, SkScalar x, SkScalar y) { |
1145 | this->injectMoveToIfNeeded(); |
1146 | SkPoint srcPts[2]; |
1147 | this->getLastPt(&srcPts[0]); |
1148 | // If rx = 0 or ry = 0 then this arc is treated as a straight line segment (a "lineto") |
1149 | // joining the endpoints. |
1150 | // http://www.w3.org/TR/SVG/implnote.html#ArcOutOfRangeParameters |
1151 | if (!rx || !ry) { |
1152 | return this->lineTo(x, y); |
1153 | } |
1154 | // If the current point and target point for the arc are identical, it should be treated as a |
1155 | // zero length path. This ensures continuity in animations. |
1156 | srcPts[1].set(x, y); |
1157 | if (srcPts[0] == srcPts[1]) { |
1158 | return this->lineTo(x, y); |
1159 | } |
1160 | rx = SkScalarAbs(rx); |
1161 | ry = SkScalarAbs(ry); |
1162 | SkVector midPointDistance = srcPts[0] - srcPts[1]; |
1163 | midPointDistance *= 0.5f; |
1164 | |
1165 | SkMatrix pointTransform; |
1166 | pointTransform.setRotate(-angle); |
1167 | |
1168 | SkPoint transformedMidPoint; |
1169 | pointTransform.mapPoints(&transformedMidPoint, &midPointDistance, 1); |
1170 | SkScalar squareRx = rx * rx; |
1171 | SkScalar squareRy = ry * ry; |
1172 | SkScalar squareX = transformedMidPoint.fX * transformedMidPoint.fX; |
1173 | SkScalar squareY = transformedMidPoint.fY * transformedMidPoint.fY; |
1174 | |
1175 | // Check if the radii are big enough to draw the arc, scale radii if not. |
1176 | // http://www.w3.org/TR/SVG/implnote.html#ArcCorrectionOutOfRangeRadii |
1177 | SkScalar radiiScale = squareX / squareRx + squareY / squareRy; |
1178 | if (radiiScale > 1) { |
1179 | radiiScale = SkScalarSqrt(radiiScale); |
1180 | rx *= radiiScale; |
1181 | ry *= radiiScale; |
1182 | } |
1183 | |
1184 | pointTransform.setScale(1 / rx, 1 / ry); |
1185 | pointTransform.preRotate(-angle); |
1186 | |
1187 | SkPoint unitPts[2]; |
1188 | pointTransform.mapPoints(unitPts, srcPts, (int) SK_ARRAY_COUNT(unitPts)); |
1189 | SkVector delta = unitPts[1] - unitPts[0]; |
1190 | |
1191 | SkScalar d = delta.fX * delta.fX + delta.fY * delta.fY; |
1192 | SkScalar scaleFactorSquared = std::max(1 / d - 0.25f, 0.f); |
1193 | |
1194 | SkScalar scaleFactor = SkScalarSqrt(scaleFactorSquared); |
1195 | if ((arcSweep == SkPathDirection::kCCW) != SkToBool(arcLarge)) { // flipped from the original implementation |
1196 | scaleFactor = -scaleFactor; |
1197 | } |
1198 | delta.scale(scaleFactor); |
1199 | SkPoint centerPoint = unitPts[0] + unitPts[1]; |
1200 | centerPoint *= 0.5f; |
1201 | centerPoint.offset(-delta.fY, delta.fX); |
1202 | unitPts[0] -= centerPoint; |
1203 | unitPts[1] -= centerPoint; |
1204 | SkScalar theta1 = SkScalarATan2(unitPts[0].fY, unitPts[0].fX); |
1205 | SkScalar theta2 = SkScalarATan2(unitPts[1].fY, unitPts[1].fX); |
1206 | SkScalar thetaArc = theta2 - theta1; |
1207 | if (thetaArc < 0 && (arcSweep == SkPathDirection::kCW)) { // arcSweep flipped from the original implementation |
1208 | thetaArc += SK_ScalarPI * 2; |
1209 | } else if (thetaArc > 0 && (arcSweep != SkPathDirection::kCW)) { // arcSweep flipped from the original implementation |
1210 | thetaArc -= SK_ScalarPI * 2; |
1211 | } |
1212 | |
1213 | // Very tiny angles cause our subsequent math to go wonky (skbug.com/9272) |
1214 | // so we do a quick check here. The precise tolerance amount is just made up. |
1215 | // PI/million happens to fix the bug in 9272, but a larger value is probably |
1216 | // ok too. |
1217 | if (SkScalarAbs(thetaArc) < (SK_ScalarPI / (1000 * 1000))) { |
1218 | return this->lineTo(x, y); |
1219 | } |
1220 | |
1221 | pointTransform.setRotate(angle); |
1222 | pointTransform.preScale(rx, ry); |
1223 | |
1224 | // the arc may be slightly bigger than 1/4 circle, so allow up to 1/3rd |
1225 | int segments = SkScalarCeilToInt(SkScalarAbs(thetaArc / (2 * SK_ScalarPI / 3))); |
1226 | SkScalar thetaWidth = thetaArc / segments; |
1227 | SkScalar t = SkScalarTan(0.5f * thetaWidth); |
1228 | if (!SkScalarIsFinite(t)) { |
1229 | return *this; |
1230 | } |
1231 | SkScalar startTheta = theta1; |
1232 | SkScalar w = SkScalarSqrt(SK_ScalarHalf + SkScalarCos(thetaWidth) * SK_ScalarHalf); |
1233 | auto scalar_is_integer = [](SkScalar scalar) -> bool { |
1234 | return scalar == SkScalarFloorToScalar(scalar); |
1235 | }; |
1236 | bool expectIntegers = SkScalarNearlyZero(SK_ScalarPI/2 - SkScalarAbs(thetaWidth)) && |
1237 | scalar_is_integer(rx) && scalar_is_integer(ry) && |
1238 | scalar_is_integer(x) && scalar_is_integer(y); |
1239 | |
1240 | for (int i = 0; i < segments; ++i) { |
1241 | SkScalar endTheta = startTheta + thetaWidth, |
1242 | sinEndTheta = SkScalarSinSnapToZero(endTheta), |
1243 | cosEndTheta = SkScalarCosSnapToZero(endTheta); |
1244 | |
1245 | unitPts[1].set(cosEndTheta, sinEndTheta); |
1246 | unitPts[1] += centerPoint; |
1247 | unitPts[0] = unitPts[1]; |
1248 | unitPts[0].offset(t * sinEndTheta, -t * cosEndTheta); |
1249 | SkPoint mapped[2]; |
1250 | pointTransform.mapPoints(mapped, unitPts, (int) SK_ARRAY_COUNT(unitPts)); |
1251 | /* |
1252 | Computing the arc width introduces rounding errors that cause arcs to start |
1253 | outside their marks. A round rect may lose convexity as a result. If the input |
1254 | values are on integers, place the conic on integers as well. |
1255 | */ |
1256 | if (expectIntegers) { |
1257 | for (SkPoint& point : mapped) { |
1258 | point.fX = SkScalarRoundToScalar(point.fX); |
1259 | point.fY = SkScalarRoundToScalar(point.fY); |
1260 | } |
1261 | } |
1262 | this->conicTo(mapped[0], mapped[1], w); |
1263 | startTheta = endTheta; |
1264 | } |
1265 | |
1266 | #ifndef SK_LEGACY_PATH_ARCTO_ENDPOINT |
1267 | // The final point should match the input point (by definition); replace it to |
1268 | // ensure that rounding errors in the above math don't cause any problems. |
1269 | this->setLastPt(x, y); |
1270 | #endif |
1271 | return *this; |
1272 | } |
1273 | |
1274 | SkPath& SkPath::rArcTo(SkScalar rx, SkScalar ry, SkScalar xAxisRotate, SkPath::ArcSize largeArc, |
1275 | SkPathDirection sweep, SkScalar dx, SkScalar dy) { |
1276 | SkPoint currentPoint; |
1277 | this->getLastPt(¤tPoint); |
1278 | return this->arcTo(rx, ry, xAxisRotate, largeArc, sweep, |
1279 | currentPoint.fX + dx, currentPoint.fY + dy); |
1280 | } |
1281 | |
1282 | SkPath& SkPath::addArc(const SkRect& oval, SkScalar startAngle, SkScalar sweepAngle) { |
1283 | if (oval.isEmpty() || 0 == sweepAngle) { |
1284 | return *this; |
1285 | } |
1286 | |
1287 | const SkScalar kFullCircleAngle = SkIntToScalar(360); |
1288 | |
1289 | if (sweepAngle >= kFullCircleAngle || sweepAngle <= -kFullCircleAngle) { |
1290 | // We can treat the arc as an oval if it begins at one of our legal starting positions. |
1291 | // See SkPath::addOval() docs. |
1292 | SkScalar startOver90 = startAngle / 90.f; |
1293 | SkScalar startOver90I = SkScalarRoundToScalar(startOver90); |
1294 | SkScalar error = startOver90 - startOver90I; |
1295 | if (SkScalarNearlyEqual(error, 0)) { |
1296 | // Index 1 is at startAngle == 0. |
1297 | SkScalar startIndex = std::fmod(startOver90I + 1.f, 4.f); |
1298 | startIndex = startIndex < 0 ? startIndex + 4.f : startIndex; |
1299 | return this->addOval(oval, sweepAngle > 0 ? SkPathDirection::kCW : SkPathDirection::kCCW, |
1300 | (unsigned) startIndex); |
1301 | } |
1302 | } |
1303 | return this->arcTo(oval, startAngle, sweepAngle, true); |
1304 | } |
1305 | |
1306 | /* |
1307 | Need to handle the case when the angle is sharp, and our computed end-points |
1308 | for the arc go behind pt1 and/or p2... |
1309 | */ |
1310 | SkPath& SkPath::arcTo(SkScalar x1, SkScalar y1, SkScalar x2, SkScalar y2, SkScalar radius) { |
1311 | if (radius == 0) { |
1312 | return this->lineTo(x1, y1); |
1313 | } |
1314 | |
1315 | // need to know our prev pt so we can construct tangent vectors |
1316 | SkPoint start; |
1317 | this->getLastPt(&start); |
1318 | |
1319 | // need double precision for these calcs. |
1320 | SkDVector befored, afterd; |
1321 | befored.set({x1 - start.fX, y1 - start.fY}).normalize(); |
1322 | afterd.set({x2 - x1, y2 - y1}).normalize(); |
1323 | double cosh = befored.dot(afterd); |
1324 | double sinh = befored.cross(afterd); |
1325 | |
1326 | if (!befored.isFinite() || !afterd.isFinite() || SkScalarNearlyZero(SkDoubleToScalar(sinh))) { |
1327 | return this->lineTo(x1, y1); |
1328 | } |
1329 | |
1330 | // safe to convert back to floats now |
1331 | SkVector before = befored.asSkVector(); |
1332 | SkVector after = afterd.asSkVector(); |
1333 | SkScalar dist = SkScalarAbs(SkDoubleToScalar(radius * (1 - cosh) / sinh)); |
1334 | SkScalar xx = x1 - dist * before.fX; |
1335 | SkScalar yy = y1 - dist * before.fY; |
1336 | after.setLength(dist); |
1337 | this->lineTo(xx, yy); |
1338 | SkScalar weight = SkScalarSqrt(SkDoubleToScalar(SK_ScalarHalf + cosh * 0.5)); |
1339 | return this->conicTo(x1, y1, x1 + after.fX, y1 + after.fY, weight); |
1340 | } |
1341 | |
1342 | /////////////////////////////////////////////////////////////////////////////// |
1343 | |
1344 | SkPath& SkPath::addPath(const SkPath& path, SkScalar dx, SkScalar dy, AddPathMode mode) { |
1345 | SkMatrix matrix; |
1346 | |
1347 | matrix.setTranslate(dx, dy); |
1348 | return this->addPath(path, matrix, mode); |
1349 | } |
1350 | |
1351 | SkPath& SkPath::addPath(const SkPath& srcPath, const SkMatrix& matrix, AddPathMode mode) { |
1352 | if (srcPath.isEmpty()) { |
1353 | return *this; |
1354 | } |
1355 | |
1356 | // Detect if we're trying to add ourself |
1357 | const SkPath* src = &srcPath; |
1358 | SkTLazy<SkPath> tmp; |
1359 | if (this == src) { |
1360 | src = tmp.set(srcPath); |
1361 | } |
1362 | |
1363 | if (kAppend_AddPathMode == mode && !matrix.hasPerspective()) { |
1364 | if (src->fLastMoveToIndex >= 0) { |
1365 | fLastMoveToIndex = this->countPoints() + src->fLastMoveToIndex; |
1366 | } |
1367 | SkPathRef::Editor ed(&fPathRef); |
1368 | auto [newPts, newWeights] = ed.growForVerbsInPath(*src->fPathRef); |
1369 | matrix.mapPoints(newPts, src->fPathRef->points(), src->countPoints()); |
1370 | if (int numWeights = src->fPathRef->countWeights()) { |
1371 | memcpy(newWeights, src->fPathRef->conicWeights(), numWeights * sizeof(newWeights[0])); |
1372 | } |
1373 | return this->dirtyAfterEdit(); |
1374 | } |
1375 | |
1376 | SkPathRef::Editor(&fPathRef, src->countVerbs(), src->countPoints()); |
1377 | |
1378 | RawIter iter(*src); |
1379 | SkPoint pts[4]; |
1380 | Verb verb; |
1381 | |
1382 | SkMatrixPriv::MapPtsProc proc = SkMatrixPriv::GetMapPtsProc(matrix); |
1383 | bool firstVerb = true; |
1384 | while ((verb = iter.next(pts)) != kDone_Verb) { |
1385 | switch (verb) { |
1386 | case kMove_Verb: |
1387 | proc(matrix, &pts[0], &pts[0], 1); |
1388 | if (firstVerb && !isEmpty()) { |
1389 | SkASSERT(mode == kExtend_AddPathMode); |
1390 | injectMoveToIfNeeded(); // In case last contour is closed |
1391 | SkPoint lastPt; |
1392 | // don't add lineTo if it is degenerate |
1393 | if (fLastMoveToIndex < 0 || !this->getLastPt(&lastPt) || lastPt != pts[0]) { |
1394 | this->lineTo(pts[0]); |
1395 | } |
1396 | } else { |
1397 | this->moveTo(pts[0]); |
1398 | } |
1399 | break; |
1400 | case kLine_Verb: |
1401 | proc(matrix, &pts[1], &pts[1], 1); |
1402 | this->lineTo(pts[1]); |
1403 | break; |
1404 | case kQuad_Verb: |
1405 | proc(matrix, &pts[1], &pts[1], 2); |
1406 | this->quadTo(pts[1], pts[2]); |
1407 | break; |
1408 | case kConic_Verb: |
1409 | proc(matrix, &pts[1], &pts[1], 2); |
1410 | this->conicTo(pts[1], pts[2], iter.conicWeight()); |
1411 | break; |
1412 | case kCubic_Verb: |
1413 | proc(matrix, &pts[1], &pts[1], 3); |
1414 | this->cubicTo(pts[1], pts[2], pts[3]); |
1415 | break; |
1416 | case kClose_Verb: |
1417 | this->close(); |
1418 | break; |
1419 | default: |
1420 | SkDEBUGFAIL("unknown verb" ); |
1421 | } |
1422 | firstVerb = false; |
1423 | } |
1424 | return *this; |
1425 | } |
1426 | |
1427 | /////////////////////////////////////////////////////////////////////////////// |
1428 | |
1429 | static int pts_in_verb(unsigned verb) { |
1430 | static const uint8_t gPtsInVerb[] = { |
1431 | 1, // kMove |
1432 | 1, // kLine |
1433 | 2, // kQuad |
1434 | 2, // kConic |
1435 | 3, // kCubic |
1436 | 0, // kClose |
1437 | 0 // kDone |
1438 | }; |
1439 | |
1440 | SkASSERT(verb < SK_ARRAY_COUNT(gPtsInVerb)); |
1441 | return gPtsInVerb[verb]; |
1442 | } |
1443 | |
1444 | // ignore the last point of the 1st contour |
1445 | SkPath& SkPath::reversePathTo(const SkPath& path) { |
1446 | if (path.fPathRef->fVerbs.count() == 0) { |
1447 | return *this; |
1448 | } |
1449 | |
1450 | const uint8_t* verbs = path.fPathRef->verbsEnd(); |
1451 | const uint8_t* verbsBegin = path.fPathRef->verbsBegin(); |
1452 | SkASSERT(verbsBegin[0] == kMove_Verb); |
1453 | const SkPoint* pts = path.fPathRef->pointsEnd() - 1; |
1454 | const SkScalar* conicWeights = path.fPathRef->conicWeightsEnd(); |
1455 | |
1456 | while (verbs > verbsBegin) { |
1457 | uint8_t v = *--verbs; |
1458 | pts -= pts_in_verb(v); |
1459 | switch (v) { |
1460 | case kMove_Verb: |
1461 | // if the path has multiple contours, stop after reversing the last |
1462 | return *this; |
1463 | case kLine_Verb: |
1464 | this->lineTo(pts[0]); |
1465 | break; |
1466 | case kQuad_Verb: |
1467 | this->quadTo(pts[1], pts[0]); |
1468 | break; |
1469 | case kConic_Verb: |
1470 | this->conicTo(pts[1], pts[0], *--conicWeights); |
1471 | break; |
1472 | case kCubic_Verb: |
1473 | this->cubicTo(pts[2], pts[1], pts[0]); |
1474 | break; |
1475 | case kClose_Verb: |
1476 | break; |
1477 | default: |
1478 | SkDEBUGFAIL("bad verb" ); |
1479 | break; |
1480 | } |
1481 | } |
1482 | return *this; |
1483 | } |
1484 | |
1485 | SkPath& SkPath::reverseAddPath(const SkPath& srcPath) { |
1486 | // Detect if we're trying to add ourself |
1487 | const SkPath* src = &srcPath; |
1488 | SkTLazy<SkPath> tmp; |
1489 | if (this == src) { |
1490 | src = tmp.set(srcPath); |
1491 | } |
1492 | |
1493 | SkPathRef::Editor ed(&fPathRef, src->countVerbs(), src->countPoints()); |
1494 | |
1495 | const uint8_t* verbsBegin = src->fPathRef->verbsBegin(); |
1496 | const uint8_t* verbs = src->fPathRef->verbsEnd(); |
1497 | const SkPoint* pts = src->fPathRef->pointsEnd(); |
1498 | const SkScalar* conicWeights = src->fPathRef->conicWeightsEnd(); |
1499 | |
1500 | bool needMove = true; |
1501 | bool needClose = false; |
1502 | while (verbs > verbsBegin) { |
1503 | uint8_t v = *--verbs; |
1504 | int n = pts_in_verb(v); |
1505 | |
1506 | if (needMove) { |
1507 | --pts; |
1508 | this->moveTo(pts->fX, pts->fY); |
1509 | needMove = false; |
1510 | } |
1511 | pts -= n; |
1512 | switch (v) { |
1513 | case kMove_Verb: |
1514 | if (needClose) { |
1515 | this->close(); |
1516 | needClose = false; |
1517 | } |
1518 | needMove = true; |
1519 | pts += 1; // so we see the point in "if (needMove)" above |
1520 | break; |
1521 | case kLine_Verb: |
1522 | this->lineTo(pts[0]); |
1523 | break; |
1524 | case kQuad_Verb: |
1525 | this->quadTo(pts[1], pts[0]); |
1526 | break; |
1527 | case kConic_Verb: |
1528 | this->conicTo(pts[1], pts[0], *--conicWeights); |
1529 | break; |
1530 | case kCubic_Verb: |
1531 | this->cubicTo(pts[2], pts[1], pts[0]); |
1532 | break; |
1533 | case kClose_Verb: |
1534 | needClose = true; |
1535 | break; |
1536 | default: |
1537 | SkDEBUGFAIL("unexpected verb" ); |
1538 | } |
1539 | } |
1540 | return *this; |
1541 | } |
1542 | |
1543 | /////////////////////////////////////////////////////////////////////////////// |
1544 | |
1545 | void SkPath::offset(SkScalar dx, SkScalar dy, SkPath* dst) const { |
1546 | SkMatrix matrix; |
1547 | |
1548 | matrix.setTranslate(dx, dy); |
1549 | this->transform(matrix, dst); |
1550 | } |
1551 | |
1552 | static void subdivide_cubic_to(SkPath* path, const SkPoint pts[4], |
1553 | int level = 2) { |
1554 | if (--level >= 0) { |
1555 | SkPoint tmp[7]; |
1556 | |
1557 | SkChopCubicAtHalf(pts, tmp); |
1558 | subdivide_cubic_to(path, &tmp[0], level); |
1559 | subdivide_cubic_to(path, &tmp[3], level); |
1560 | } else { |
1561 | path->cubicTo(pts[1], pts[2], pts[3]); |
1562 | } |
1563 | } |
1564 | |
1565 | void SkPath::transform(const SkMatrix& matrix, SkPath* dst, SkApplyPerspectiveClip pc) const { |
1566 | if (matrix.isIdentity()) { |
1567 | if (dst != nullptr && dst != this) { |
1568 | *dst = *this; |
1569 | } |
1570 | return; |
1571 | } |
1572 | |
1573 | SkDEBUGCODE(this->validate();) |
1574 | if (dst == nullptr) { |
1575 | dst = (SkPath*)this; |
1576 | } |
1577 | |
1578 | if (matrix.hasPerspective()) { |
1579 | SkPath tmp; |
1580 | tmp.fFillType = fFillType; |
1581 | |
1582 | SkPath clipped; |
1583 | const SkPath* src = this; |
1584 | if (pc == SkApplyPerspectiveClip::kYes && |
1585 | SkPathPriv::PerspectiveClip(*this, matrix, &clipped)) |
1586 | { |
1587 | src = &clipped; |
1588 | } |
1589 | |
1590 | SkPath::Iter iter(*src, false); |
1591 | SkPoint pts[4]; |
1592 | SkPath::Verb verb; |
1593 | |
1594 | while ((verb = iter.next(pts)) != kDone_Verb) { |
1595 | switch (verb) { |
1596 | case kMove_Verb: |
1597 | tmp.moveTo(pts[0]); |
1598 | break; |
1599 | case kLine_Verb: |
1600 | tmp.lineTo(pts[1]); |
1601 | break; |
1602 | case kQuad_Verb: |
1603 | // promote the quad to a conic |
1604 | tmp.conicTo(pts[1], pts[2], |
1605 | SkConic::TransformW(pts, SK_Scalar1, matrix)); |
1606 | break; |
1607 | case kConic_Verb: |
1608 | tmp.conicTo(pts[1], pts[2], |
1609 | SkConic::TransformW(pts, iter.conicWeight(), matrix)); |
1610 | break; |
1611 | case kCubic_Verb: |
1612 | subdivide_cubic_to(&tmp, pts); |
1613 | break; |
1614 | case kClose_Verb: |
1615 | tmp.close(); |
1616 | break; |
1617 | default: |
1618 | SkDEBUGFAIL("unknown verb" ); |
1619 | break; |
1620 | } |
1621 | } |
1622 | |
1623 | dst->swap(tmp); |
1624 | SkPathRef::Editor ed(&dst->fPathRef); |
1625 | matrix.mapPoints(ed.writablePoints(), ed.pathRef()->countPoints()); |
1626 | dst->setFirstDirection(SkPathPriv::kUnknown_FirstDirection); |
1627 | } else { |
1628 | SkPathConvexityType convexity = this->getConvexityTypeOrUnknown(); |
1629 | |
1630 | SkPathRef::CreateTransformedCopy(&dst->fPathRef, *fPathRef.get(), matrix); |
1631 | |
1632 | if (this != dst) { |
1633 | dst->fLastMoveToIndex = fLastMoveToIndex; |
1634 | dst->fFillType = fFillType; |
1635 | dst->fIsVolatile = fIsVolatile; |
1636 | } |
1637 | |
1638 | // Due to finite/fragile float numerics, we can't assume that a convex path remains |
1639 | // convex after a transformation, so mark it as unknown here. |
1640 | // However, some transformations are thought to be safe: |
1641 | // axis-aligned values under scale/translate. |
1642 | // |
1643 | // See skbug.com/8606 |
1644 | // If we can land a robust convex scan-converter, we may be able to relax/remove this |
1645 | // check, and keep convex paths marked as such after a general transform... |
1646 | // |
1647 | if (matrix.isScaleTranslate() && SkPathPriv::IsAxisAligned(*this)) { |
1648 | dst->setConvexityType(convexity); |
1649 | } else { |
1650 | dst->setConvexityType(SkPathConvexityType::kUnknown); |
1651 | } |
1652 | |
1653 | if (this->getFirstDirection() == SkPathPriv::kUnknown_FirstDirection) { |
1654 | dst->setFirstDirection(SkPathPriv::kUnknown_FirstDirection); |
1655 | } else { |
1656 | SkScalar det2x2 = |
1657 | matrix.get(SkMatrix::kMScaleX) * matrix.get(SkMatrix::kMScaleY) - |
1658 | matrix.get(SkMatrix::kMSkewX) * matrix.get(SkMatrix::kMSkewY); |
1659 | if (det2x2 < 0) { |
1660 | dst->setFirstDirection( |
1661 | SkPathPriv::OppositeFirstDirection( |
1662 | (SkPathPriv::FirstDirection)this->getFirstDirection())); |
1663 | } else if (det2x2 > 0) { |
1664 | dst->setFirstDirection(this->getFirstDirection()); |
1665 | } else { |
1666 | dst->setFirstDirection(SkPathPriv::kUnknown_FirstDirection); |
1667 | } |
1668 | } |
1669 | |
1670 | SkDEBUGCODE(dst->validate();) |
1671 | } |
1672 | } |
1673 | |
1674 | /////////////////////////////////////////////////////////////////////////////// |
1675 | /////////////////////////////////////////////////////////////////////////////// |
1676 | |
1677 | SkPath::Iter::Iter() { |
1678 | #ifdef SK_DEBUG |
1679 | fPts = nullptr; |
1680 | fConicWeights = nullptr; |
1681 | fMoveTo.fX = fMoveTo.fY = fLastPt.fX = fLastPt.fY = 0; |
1682 | fForceClose = fCloseLine = false; |
1683 | fSegmentState = kEmptyContour_SegmentState; |
1684 | #endif |
1685 | // need to init enough to make next() harmlessly return kDone_Verb |
1686 | fVerbs = nullptr; |
1687 | fVerbStop = nullptr; |
1688 | fNeedClose = false; |
1689 | } |
1690 | |
1691 | SkPath::Iter::Iter(const SkPath& path, bool forceClose) { |
1692 | this->setPath(path, forceClose); |
1693 | } |
1694 | |
1695 | void SkPath::Iter::setPath(const SkPath& path, bool forceClose) { |
1696 | fPts = path.fPathRef->points(); |
1697 | fVerbs = path.fPathRef->verbsBegin(); |
1698 | fVerbStop = path.fPathRef->verbsEnd(); |
1699 | fConicWeights = path.fPathRef->conicWeights(); |
1700 | if (fConicWeights) { |
1701 | fConicWeights -= 1; // begin one behind |
1702 | } |
1703 | fLastPt.fX = fLastPt.fY = 0; |
1704 | fMoveTo.fX = fMoveTo.fY = 0; |
1705 | fForceClose = SkToU8(forceClose); |
1706 | fNeedClose = false; |
1707 | fSegmentState = kEmptyContour_SegmentState; |
1708 | } |
1709 | |
1710 | bool SkPath::Iter::isClosedContour() const { |
1711 | if (fVerbs == nullptr || fVerbs == fVerbStop) { |
1712 | return false; |
1713 | } |
1714 | if (fForceClose) { |
1715 | return true; |
1716 | } |
1717 | |
1718 | const uint8_t* verbs = fVerbs; |
1719 | const uint8_t* stop = fVerbStop; |
1720 | |
1721 | if (kMove_Verb == *verbs) { |
1722 | verbs += 1; // skip the initial moveto |
1723 | } |
1724 | |
1725 | while (verbs < stop) { |
1726 | // verbs points one beyond the current verb, decrement first. |
1727 | unsigned v = *verbs++; |
1728 | if (kMove_Verb == v) { |
1729 | break; |
1730 | } |
1731 | if (kClose_Verb == v) { |
1732 | return true; |
1733 | } |
1734 | } |
1735 | return false; |
1736 | } |
1737 | |
1738 | SkPath::Verb SkPath::Iter::autoClose(SkPoint pts[2]) { |
1739 | SkASSERT(pts); |
1740 | if (fLastPt != fMoveTo) { |
1741 | // A special case: if both points are NaN, SkPoint::operation== returns |
1742 | // false, but the iterator expects that they are treated as the same. |
1743 | // (consider SkPoint is a 2-dimension float point). |
1744 | if (SkScalarIsNaN(fLastPt.fX) || SkScalarIsNaN(fLastPt.fY) || |
1745 | SkScalarIsNaN(fMoveTo.fX) || SkScalarIsNaN(fMoveTo.fY)) { |
1746 | return kClose_Verb; |
1747 | } |
1748 | |
1749 | pts[0] = fLastPt; |
1750 | pts[1] = fMoveTo; |
1751 | fLastPt = fMoveTo; |
1752 | fCloseLine = true; |
1753 | return kLine_Verb; |
1754 | } else { |
1755 | pts[0] = fMoveTo; |
1756 | return kClose_Verb; |
1757 | } |
1758 | } |
1759 | |
1760 | const SkPoint& SkPath::Iter::cons_moveTo() { |
1761 | if (fSegmentState == kAfterMove_SegmentState) { |
1762 | // Set the first return pt to the move pt |
1763 | fSegmentState = kAfterPrimitive_SegmentState; |
1764 | return fMoveTo; |
1765 | } |
1766 | |
1767 | SkASSERT(fSegmentState == kAfterPrimitive_SegmentState); |
1768 | // Set the first return pt to the last pt of the previous primitive. |
1769 | return fPts[-1]; |
1770 | } |
1771 | |
1772 | SkPath::Verb SkPath::Iter::next(SkPoint ptsParam[4]) { |
1773 | SkASSERT(ptsParam); |
1774 | |
1775 | if (fVerbs == fVerbStop) { |
1776 | // Close the curve if requested and if there is some curve to close |
1777 | if (fNeedClose && fSegmentState == kAfterPrimitive_SegmentState) { |
1778 | if (kLine_Verb == this->autoClose(ptsParam)) { |
1779 | return kLine_Verb; |
1780 | } |
1781 | fNeedClose = false; |
1782 | return kClose_Verb; |
1783 | } |
1784 | return kDone_Verb; |
1785 | } |
1786 | |
1787 | unsigned verb = *fVerbs++; |
1788 | const SkPoint* SK_RESTRICT srcPts = fPts; |
1789 | SkPoint* SK_RESTRICT pts = ptsParam; |
1790 | |
1791 | switch (verb) { |
1792 | case kMove_Verb: |
1793 | if (fNeedClose) { |
1794 | fVerbs--; // move back one verb |
1795 | verb = this->autoClose(pts); |
1796 | if (verb == kClose_Verb) { |
1797 | fNeedClose = false; |
1798 | } |
1799 | return (Verb)verb; |
1800 | } |
1801 | if (fVerbs == fVerbStop) { // might be a trailing moveto |
1802 | return kDone_Verb; |
1803 | } |
1804 | fMoveTo = *srcPts; |
1805 | pts[0] = *srcPts; |
1806 | srcPts += 1; |
1807 | fSegmentState = kAfterMove_SegmentState; |
1808 | fLastPt = fMoveTo; |
1809 | fNeedClose = fForceClose; |
1810 | break; |
1811 | case kLine_Verb: |
1812 | pts[0] = this->cons_moveTo(); |
1813 | pts[1] = srcPts[0]; |
1814 | fLastPt = srcPts[0]; |
1815 | fCloseLine = false; |
1816 | srcPts += 1; |
1817 | break; |
1818 | case kConic_Verb: |
1819 | fConicWeights += 1; |
1820 | // fall-through |
1821 | case kQuad_Verb: |
1822 | pts[0] = this->cons_moveTo(); |
1823 | memcpy(&pts[1], srcPts, 2 * sizeof(SkPoint)); |
1824 | fLastPt = srcPts[1]; |
1825 | srcPts += 2; |
1826 | break; |
1827 | case kCubic_Verb: |
1828 | pts[0] = this->cons_moveTo(); |
1829 | memcpy(&pts[1], srcPts, 3 * sizeof(SkPoint)); |
1830 | fLastPt = srcPts[2]; |
1831 | srcPts += 3; |
1832 | break; |
1833 | case kClose_Verb: |
1834 | verb = this->autoClose(pts); |
1835 | if (verb == kLine_Verb) { |
1836 | fVerbs--; // move back one verb |
1837 | } else { |
1838 | fNeedClose = false; |
1839 | fSegmentState = kEmptyContour_SegmentState; |
1840 | } |
1841 | fLastPt = fMoveTo; |
1842 | break; |
1843 | } |
1844 | fPts = srcPts; |
1845 | return (Verb)verb; |
1846 | } |
1847 | |
1848 | /////////////////////////////////////////////////////////////////////////////// |
1849 | |
1850 | #include "include/core/SkStream.h" |
1851 | #include "include/core/SkString.h" |
1852 | #include "src/core/SkStringUtils.h" |
1853 | |
1854 | static void append_params(SkString* str, const char label[], const SkPoint pts[], |
1855 | int count, SkScalarAsStringType strType, SkScalar conicWeight = -12345) { |
1856 | str->append(label); |
1857 | str->append("(" ); |
1858 | |
1859 | const SkScalar* values = &pts[0].fX; |
1860 | count *= 2; |
1861 | |
1862 | for (int i = 0; i < count; ++i) { |
1863 | SkAppendScalar(str, values[i], strType); |
1864 | if (i < count - 1) { |
1865 | str->append(", " ); |
1866 | } |
1867 | } |
1868 | if (conicWeight != -12345) { |
1869 | str->append(", " ); |
1870 | SkAppendScalar(str, conicWeight, strType); |
1871 | } |
1872 | str->append(");" ); |
1873 | if (kHex_SkScalarAsStringType == strType) { |
1874 | str->append(" // " ); |
1875 | for (int i = 0; i < count; ++i) { |
1876 | SkAppendScalarDec(str, values[i]); |
1877 | if (i < count - 1) { |
1878 | str->append(", " ); |
1879 | } |
1880 | } |
1881 | if (conicWeight >= 0) { |
1882 | str->append(", " ); |
1883 | SkAppendScalarDec(str, conicWeight); |
1884 | } |
1885 | } |
1886 | str->append("\n" ); |
1887 | } |
1888 | |
1889 | void SkPath::dump(SkWStream* wStream, bool forceClose, bool dumpAsHex) const { |
1890 | SkScalarAsStringType asType = dumpAsHex ? kHex_SkScalarAsStringType : kDec_SkScalarAsStringType; |
1891 | Iter iter(*this, forceClose); |
1892 | SkPoint pts[4]; |
1893 | Verb verb; |
1894 | |
1895 | SkString builder; |
1896 | char const * const gFillTypeStrs[] = { |
1897 | "Winding" , |
1898 | "EvenOdd" , |
1899 | "InverseWinding" , |
1900 | "InverseEvenOdd" , |
1901 | }; |
1902 | builder.printf("path.setFillType(SkPathFillType::k%s);\n" , |
1903 | gFillTypeStrs[(int) this->getFillType()]); |
1904 | while ((verb = iter.next(pts)) != kDone_Verb) { |
1905 | switch (verb) { |
1906 | case kMove_Verb: |
1907 | append_params(&builder, "path.moveTo" , &pts[0], 1, asType); |
1908 | break; |
1909 | case kLine_Verb: |
1910 | append_params(&builder, "path.lineTo" , &pts[1], 1, asType); |
1911 | break; |
1912 | case kQuad_Verb: |
1913 | append_params(&builder, "path.quadTo" , &pts[1], 2, asType); |
1914 | break; |
1915 | case kConic_Verb: |
1916 | append_params(&builder, "path.conicTo" , &pts[1], 2, asType, iter.conicWeight()); |
1917 | break; |
1918 | case kCubic_Verb: |
1919 | append_params(&builder, "path.cubicTo" , &pts[1], 3, asType); |
1920 | break; |
1921 | case kClose_Verb: |
1922 | builder.append("path.close();\n" ); |
1923 | break; |
1924 | default: |
1925 | SkDebugf(" path: UNKNOWN VERB %d, aborting dump...\n" , verb); |
1926 | verb = kDone_Verb; // stop the loop |
1927 | break; |
1928 | } |
1929 | if (!wStream && builder.size()) { |
1930 | SkDebugf("%s" , builder.c_str()); |
1931 | builder.reset(); |
1932 | } |
1933 | } |
1934 | if (wStream) { |
1935 | wStream->writeText(builder.c_str()); |
1936 | } |
1937 | } |
1938 | |
1939 | void SkPath::dump() const { |
1940 | this->dump(nullptr, false, false); |
1941 | } |
1942 | |
1943 | void SkPath::dumpHex() const { |
1944 | this->dump(nullptr, false, true); |
1945 | } |
1946 | |
1947 | |
1948 | bool SkPath::isValidImpl() const { |
1949 | if ((fFillType & ~3) != 0) { |
1950 | return false; |
1951 | } |
1952 | |
1953 | #ifdef SK_DEBUG_PATH |
1954 | if (!fBoundsIsDirty) { |
1955 | SkRect bounds; |
1956 | |
1957 | bool isFinite = compute_pt_bounds(&bounds, *fPathRef.get()); |
1958 | if (SkToBool(fIsFinite) != isFinite) { |
1959 | return false; |
1960 | } |
1961 | |
1962 | if (fPathRef->countPoints() <= 1) { |
1963 | // if we're empty, fBounds may be empty but translated, so we can't |
1964 | // necessarily compare to bounds directly |
1965 | // try path.addOval(2, 2, 2, 2) which is empty, but the bounds will |
1966 | // be [2, 2, 2, 2] |
1967 | if (!bounds.isEmpty() || !fBounds.isEmpty()) { |
1968 | return false; |
1969 | } |
1970 | } else { |
1971 | if (bounds.isEmpty()) { |
1972 | if (!fBounds.isEmpty()) { |
1973 | return false; |
1974 | } |
1975 | } else { |
1976 | if (!fBounds.isEmpty()) { |
1977 | if (!fBounds.contains(bounds)) { |
1978 | return false; |
1979 | } |
1980 | } |
1981 | } |
1982 | } |
1983 | } |
1984 | #endif // SK_DEBUG_PATH |
1985 | return true; |
1986 | } |
1987 | |
1988 | /////////////////////////////////////////////////////////////////////////////// |
1989 | |
1990 | static int sign(SkScalar x) { return x < 0; } |
1991 | #define kValueNeverReturnedBySign 2 |
1992 | |
1993 | enum DirChange { |
1994 | kUnknown_DirChange, |
1995 | kLeft_DirChange, |
1996 | kRight_DirChange, |
1997 | kStraight_DirChange, |
1998 | kBackwards_DirChange, // if double back, allow simple lines to be convex |
1999 | kInvalid_DirChange |
2000 | }; |
2001 | |
2002 | |
2003 | static bool almost_equal(SkScalar compA, SkScalar compB) { |
2004 | // The error epsilon was empirically derived; worse case round rects |
2005 | // with a mid point outset by 2x float epsilon in tests had an error |
2006 | // of 12. |
2007 | const int epsilon = 16; |
2008 | if (!SkScalarIsFinite(compA) || !SkScalarIsFinite(compB)) { |
2009 | return false; |
2010 | } |
2011 | // no need to check for small numbers because SkPath::Iter has removed degenerate values |
2012 | int aBits = SkFloatAs2sCompliment(compA); |
2013 | int bBits = SkFloatAs2sCompliment(compB); |
2014 | return aBits < bBits + epsilon && bBits < aBits + epsilon; |
2015 | } |
2016 | |
2017 | // only valid for a single contour |
2018 | struct Convexicator { |
2019 | |
2020 | /** The direction returned is only valid if the path is determined convex */ |
2021 | SkPathPriv::FirstDirection getFirstDirection() const { return fFirstDirection; } |
2022 | |
2023 | void setMovePt(const SkPoint& pt) { |
2024 | fPriorPt = fLastPt = fCurrPt = pt; |
2025 | } |
2026 | |
2027 | bool addPt(const SkPoint& pt) { |
2028 | if (fCurrPt == pt) { |
2029 | return true; |
2030 | } |
2031 | fCurrPt = pt; |
2032 | if (fPriorPt == fLastPt) { // should only be true for first non-zero vector |
2033 | fLastVec = fCurrPt - fLastPt; |
2034 | fFirstPt = pt; |
2035 | } else if (!this->addVec(fCurrPt - fLastPt)) { |
2036 | return false; |
2037 | } |
2038 | fPriorPt = fLastPt; |
2039 | fLastPt = fCurrPt; |
2040 | return true; |
2041 | } |
2042 | |
2043 | static SkPathConvexityType BySign(const SkPoint points[], int count) { |
2044 | const SkPoint* last = points + count; |
2045 | SkPoint currPt = *points++; |
2046 | SkPoint firstPt = currPt; |
2047 | int dxes = 0; |
2048 | int dyes = 0; |
2049 | int lastSx = kValueNeverReturnedBySign; |
2050 | int lastSy = kValueNeverReturnedBySign; |
2051 | for (int outerLoop = 0; outerLoop < 2; ++outerLoop ) { |
2052 | while (points != last) { |
2053 | SkVector vec = *points - currPt; |
2054 | if (!vec.isZero()) { |
2055 | // give up if vector construction failed |
2056 | if (!vec.isFinite()) { |
2057 | return SkPathConvexityType::kUnknown; |
2058 | } |
2059 | int sx = sign(vec.fX); |
2060 | int sy = sign(vec.fY); |
2061 | dxes += (sx != lastSx); |
2062 | dyes += (sy != lastSy); |
2063 | if (dxes > 3 || dyes > 3) { |
2064 | return SkPathConvexityType::kConcave; |
2065 | } |
2066 | lastSx = sx; |
2067 | lastSy = sy; |
2068 | } |
2069 | currPt = *points++; |
2070 | if (outerLoop) { |
2071 | break; |
2072 | } |
2073 | } |
2074 | points = &firstPt; |
2075 | } |
2076 | return SkPathConvexityType::kConvex; // that is, it may be convex, don't know yet |
2077 | } |
2078 | |
2079 | bool close() { |
2080 | return this->addPt(fFirstPt); |
2081 | } |
2082 | |
2083 | bool isFinite() const { |
2084 | return fIsFinite; |
2085 | } |
2086 | |
2087 | int reversals() const { |
2088 | return fReversals; |
2089 | } |
2090 | |
2091 | private: |
2092 | DirChange directionChange(const SkVector& curVec) { |
2093 | SkScalar cross = SkPoint::CrossProduct(fLastVec, curVec); |
2094 | if (!SkScalarIsFinite(cross)) { |
2095 | return kUnknown_DirChange; |
2096 | } |
2097 | SkScalar smallest = std::min(fCurrPt.fX, std::min(fCurrPt.fY, std::min(fLastPt.fX, fLastPt.fY))); |
2098 | SkScalar largest = std::max(fCurrPt.fX, std::max(fCurrPt.fY, std::max(fLastPt.fX, fLastPt.fY))); |
2099 | largest = std::max(largest, -smallest); |
2100 | |
2101 | if (almost_equal(largest, largest + cross)) { |
2102 | constexpr SkScalar nearlyZeroSqd = SK_ScalarNearlyZero * SK_ScalarNearlyZero; |
2103 | if (SkScalarNearlyZero(SkPointPriv::LengthSqd(fLastVec), nearlyZeroSqd) || |
2104 | SkScalarNearlyZero(SkPointPriv::LengthSqd(curVec), nearlyZeroSqd)) { |
2105 | return kUnknown_DirChange; |
2106 | } |
2107 | return fLastVec.dot(curVec) < 0 ? kBackwards_DirChange : kStraight_DirChange; |
2108 | } |
2109 | return 1 == SkScalarSignAsInt(cross) ? kRight_DirChange : kLeft_DirChange; |
2110 | } |
2111 | |
2112 | bool addVec(const SkVector& curVec) { |
2113 | DirChange dir = this->directionChange(curVec); |
2114 | switch (dir) { |
2115 | case kLeft_DirChange: // fall through |
2116 | case kRight_DirChange: |
2117 | if (kInvalid_DirChange == fExpectedDir) { |
2118 | fExpectedDir = dir; |
2119 | fFirstDirection = (kRight_DirChange == dir) ? SkPathPriv::kCW_FirstDirection |
2120 | : SkPathPriv::kCCW_FirstDirection; |
2121 | } else if (dir != fExpectedDir) { |
2122 | fFirstDirection = SkPathPriv::kUnknown_FirstDirection; |
2123 | return false; |
2124 | } |
2125 | fLastVec = curVec; |
2126 | break; |
2127 | case kStraight_DirChange: |
2128 | break; |
2129 | case kBackwards_DirChange: |
2130 | // allow path to reverse direction twice |
2131 | // Given path.moveTo(0, 0); path.lineTo(1, 1); |
2132 | // - 1st reversal: direction change formed by line (0,0 1,1), line (1,1 0,0) |
2133 | // - 2nd reversal: direction change formed by line (1,1 0,0), line (0,0 1,1) |
2134 | fLastVec = curVec; |
2135 | return ++fReversals < 3; |
2136 | case kUnknown_DirChange: |
2137 | return (fIsFinite = false); |
2138 | case kInvalid_DirChange: |
2139 | SK_ABORT("Use of invalid direction change flag" ); |
2140 | break; |
2141 | } |
2142 | return true; |
2143 | } |
2144 | |
2145 | SkPoint fFirstPt {0, 0}; |
2146 | SkPoint fPriorPt {0, 0}; |
2147 | SkPoint fLastPt {0, 0}; |
2148 | SkPoint fCurrPt {0, 0}; |
2149 | SkVector fLastVec {0, 0}; |
2150 | DirChange fExpectedDir { kInvalid_DirChange }; |
2151 | SkPathPriv::FirstDirection fFirstDirection { SkPathPriv::kUnknown_FirstDirection }; |
2152 | int fReversals { 0 }; |
2153 | bool fIsFinite { true }; |
2154 | }; |
2155 | |
2156 | SkPathConvexityType SkPath::internalGetConvexity() const { |
2157 | SkPoint pts[4]; |
2158 | SkPath::Verb verb; |
2159 | SkPath::Iter iter(*this, true); |
2160 | auto setComputedConvexity = [=](SkPathConvexityType convexity){ |
2161 | SkASSERT(SkPathConvexityType::kUnknown != convexity); |
2162 | this->setConvexityType(convexity); |
2163 | return convexity; |
2164 | }; |
2165 | |
2166 | // Check to see if path changes direction more than three times as quick concave test |
2167 | int pointCount = this->countPoints(); |
2168 | // last moveTo index may exceed point count if data comes from fuzzer (via SkImageFilter) |
2169 | if (0 < fLastMoveToIndex && fLastMoveToIndex < pointCount) { |
2170 | pointCount = fLastMoveToIndex; |
2171 | } |
2172 | if (pointCount > 3) { |
2173 | const SkPoint* points = fPathRef->points(); |
2174 | const SkPoint* last = &points[pointCount]; |
2175 | // only consider the last of the initial move tos |
2176 | while (SkPath::kMove_Verb == iter.next(pts)) { |
2177 | ++points; |
2178 | } |
2179 | --points; |
2180 | SkPathConvexityType convexity = Convexicator::BySign(points, (int) (last - points)); |
2181 | if (SkPathConvexityType::kConcave == convexity) { |
2182 | return setComputedConvexity(SkPathConvexityType::kConcave); |
2183 | } else if (SkPathConvexityType::kUnknown == convexity) { |
2184 | return SkPathConvexityType::kUnknown; |
2185 | } |
2186 | iter.setPath(*this, true); |
2187 | } else if (!this->isFinite()) { |
2188 | return SkPathConvexityType::kUnknown; |
2189 | } |
2190 | |
2191 | int contourCount = 0; |
2192 | int count; |
2193 | Convexicator state; |
2194 | auto setFail = [=](){ |
2195 | if (!state.isFinite()) { |
2196 | return SkPathConvexityType::kUnknown; |
2197 | } |
2198 | return setComputedConvexity(SkPathConvexityType::kConcave); |
2199 | }; |
2200 | |
2201 | while ((verb = iter.next(pts)) != SkPath::kDone_Verb) { |
2202 | switch (verb) { |
2203 | case kMove_Verb: |
2204 | if (++contourCount > 1) { |
2205 | return setComputedConvexity(SkPathConvexityType::kConcave); |
2206 | } |
2207 | state.setMovePt(pts[0]); |
2208 | count = 0; |
2209 | break; |
2210 | case kLine_Verb: |
2211 | count = 1; |
2212 | break; |
2213 | case kQuad_Verb: |
2214 | // fall through |
2215 | case kConic_Verb: |
2216 | count = 2; |
2217 | break; |
2218 | case kCubic_Verb: |
2219 | count = 3; |
2220 | break; |
2221 | case kClose_Verb: |
2222 | if (!state.close()) { |
2223 | return setFail(); |
2224 | } |
2225 | count = 0; |
2226 | break; |
2227 | default: |
2228 | SkDEBUGFAIL("bad verb" ); |
2229 | return setComputedConvexity(SkPathConvexityType::kConcave); |
2230 | } |
2231 | for (int i = 1; i <= count; i++) { |
2232 | if (!state.addPt(pts[i])) { |
2233 | return setFail(); |
2234 | } |
2235 | } |
2236 | } |
2237 | |
2238 | if (this->getFirstDirection() == SkPathPriv::kUnknown_FirstDirection) { |
2239 | if (state.getFirstDirection() == SkPathPriv::kUnknown_FirstDirection |
2240 | && !this->getBounds().isEmpty()) { |
2241 | return setComputedConvexity(state.reversals() < 3 ? |
2242 | SkPathConvexityType::kConvex : SkPathConvexityType::kConcave); |
2243 | } |
2244 | this->setFirstDirection(state.getFirstDirection()); |
2245 | } |
2246 | return setComputedConvexity(SkPathConvexityType::kConvex); |
2247 | } |
2248 | |
2249 | bool SkPathPriv::IsConvex(const SkPoint points[], int count) { |
2250 | SkPathConvexityType convexity = Convexicator::BySign(points, count); |
2251 | if (SkPathConvexityType::kConvex != convexity) { |
2252 | return false; |
2253 | } |
2254 | Convexicator state; |
2255 | state.setMovePt(points[0]); |
2256 | for (int i = 1; i < count; i++) { |
2257 | if (!state.addPt(points[i])) { |
2258 | return false; |
2259 | } |
2260 | } |
2261 | if (!state.addPt(points[0])) { |
2262 | return false; |
2263 | } |
2264 | if (!state.close()) { |
2265 | return false; |
2266 | } |
2267 | return state.getFirstDirection() != SkPathPriv::kUnknown_FirstDirection |
2268 | || state.reversals() < 3; |
2269 | } |
2270 | |
2271 | /////////////////////////////////////////////////////////////////////////////// |
2272 | |
2273 | class ContourIter { |
2274 | public: |
2275 | ContourIter(const SkPathRef& pathRef); |
2276 | |
2277 | bool done() const { return fDone; } |
2278 | // if !done() then these may be called |
2279 | int count() const { return fCurrPtCount; } |
2280 | const SkPoint* pts() const { return fCurrPt; } |
2281 | void next(); |
2282 | |
2283 | private: |
2284 | int fCurrPtCount; |
2285 | const SkPoint* fCurrPt; |
2286 | const uint8_t* fCurrVerb; |
2287 | const uint8_t* fStopVerbs; |
2288 | const SkScalar* fCurrConicWeight; |
2289 | bool fDone; |
2290 | SkDEBUGCODE(int fContourCounter;) |
2291 | }; |
2292 | |
2293 | ContourIter::ContourIter(const SkPathRef& pathRef) { |
2294 | fStopVerbs = pathRef.verbsEnd(); |
2295 | fDone = false; |
2296 | fCurrPt = pathRef.points(); |
2297 | fCurrVerb = pathRef.verbsBegin(); |
2298 | fCurrConicWeight = pathRef.conicWeights(); |
2299 | fCurrPtCount = 0; |
2300 | SkDEBUGCODE(fContourCounter = 0;) |
2301 | this->next(); |
2302 | } |
2303 | |
2304 | void ContourIter::next() { |
2305 | if (fCurrVerb >= fStopVerbs) { |
2306 | fDone = true; |
2307 | } |
2308 | if (fDone) { |
2309 | return; |
2310 | } |
2311 | |
2312 | // skip pts of prev contour |
2313 | fCurrPt += fCurrPtCount; |
2314 | |
2315 | SkASSERT(SkPath::kMove_Verb == fCurrVerb[0]); |
2316 | int ptCount = 1; // moveTo |
2317 | const uint8_t* verbs = fCurrVerb; |
2318 | |
2319 | for (verbs++; verbs < fStopVerbs; verbs++) { |
2320 | switch (*verbs) { |
2321 | case SkPath::kMove_Verb: |
2322 | goto CONTOUR_END; |
2323 | case SkPath::kLine_Verb: |
2324 | ptCount += 1; |
2325 | break; |
2326 | case SkPath::kConic_Verb: |
2327 | fCurrConicWeight += 1; |
2328 | // fall-through |
2329 | case SkPath::kQuad_Verb: |
2330 | ptCount += 2; |
2331 | break; |
2332 | case SkPath::kCubic_Verb: |
2333 | ptCount += 3; |
2334 | break; |
2335 | case SkPath::kClose_Verb: |
2336 | break; |
2337 | default: |
2338 | SkDEBUGFAIL("unexpected verb" ); |
2339 | break; |
2340 | } |
2341 | } |
2342 | CONTOUR_END: |
2343 | fCurrPtCount = ptCount; |
2344 | fCurrVerb = verbs; |
2345 | SkDEBUGCODE(++fContourCounter;) |
2346 | } |
2347 | |
2348 | // returns cross product of (p1 - p0) and (p2 - p0) |
2349 | static SkScalar cross_prod(const SkPoint& p0, const SkPoint& p1, const SkPoint& p2) { |
2350 | SkScalar cross = SkPoint::CrossProduct(p1 - p0, p2 - p0); |
2351 | // We may get 0 when the above subtracts underflow. We expect this to be |
2352 | // very rare and lazily promote to double. |
2353 | if (0 == cross) { |
2354 | double p0x = SkScalarToDouble(p0.fX); |
2355 | double p0y = SkScalarToDouble(p0.fY); |
2356 | |
2357 | double p1x = SkScalarToDouble(p1.fX); |
2358 | double p1y = SkScalarToDouble(p1.fY); |
2359 | |
2360 | double p2x = SkScalarToDouble(p2.fX); |
2361 | double p2y = SkScalarToDouble(p2.fY); |
2362 | |
2363 | cross = SkDoubleToScalar((p1x - p0x) * (p2y - p0y) - |
2364 | (p1y - p0y) * (p2x - p0x)); |
2365 | |
2366 | } |
2367 | return cross; |
2368 | } |
2369 | |
2370 | // Returns the first pt with the maximum Y coordinate |
2371 | static int find_max_y(const SkPoint pts[], int count) { |
2372 | SkASSERT(count > 0); |
2373 | SkScalar max = pts[0].fY; |
2374 | int firstIndex = 0; |
2375 | for (int i = 1; i < count; ++i) { |
2376 | SkScalar y = pts[i].fY; |
2377 | if (y > max) { |
2378 | max = y; |
2379 | firstIndex = i; |
2380 | } |
2381 | } |
2382 | return firstIndex; |
2383 | } |
2384 | |
2385 | static int find_diff_pt(const SkPoint pts[], int index, int n, int inc) { |
2386 | int i = index; |
2387 | for (;;) { |
2388 | i = (i + inc) % n; |
2389 | if (i == index) { // we wrapped around, so abort |
2390 | break; |
2391 | } |
2392 | if (pts[index] != pts[i]) { // found a different point, success! |
2393 | break; |
2394 | } |
2395 | } |
2396 | return i; |
2397 | } |
2398 | |
2399 | /** |
2400 | * Starting at index, and moving forward (incrementing), find the xmin and |
2401 | * xmax of the contiguous points that have the same Y. |
2402 | */ |
2403 | static int find_min_max_x_at_y(const SkPoint pts[], int index, int n, |
2404 | int* maxIndexPtr) { |
2405 | const SkScalar y = pts[index].fY; |
2406 | SkScalar min = pts[index].fX; |
2407 | SkScalar max = min; |
2408 | int minIndex = index; |
2409 | int maxIndex = index; |
2410 | for (int i = index + 1; i < n; ++i) { |
2411 | if (pts[i].fY != y) { |
2412 | break; |
2413 | } |
2414 | SkScalar x = pts[i].fX; |
2415 | if (x < min) { |
2416 | min = x; |
2417 | minIndex = i; |
2418 | } else if (x > max) { |
2419 | max = x; |
2420 | maxIndex = i; |
2421 | } |
2422 | } |
2423 | *maxIndexPtr = maxIndex; |
2424 | return minIndex; |
2425 | } |
2426 | |
2427 | static void crossToDir(SkScalar cross, SkPathPriv::FirstDirection* dir) { |
2428 | *dir = cross > 0 ? SkPathPriv::kCW_FirstDirection : SkPathPriv::kCCW_FirstDirection; |
2429 | } |
2430 | |
2431 | /* |
2432 | * We loop through all contours, and keep the computed cross-product of the |
2433 | * contour that contained the global y-max. If we just look at the first |
2434 | * contour, we may find one that is wound the opposite way (correctly) since |
2435 | * it is the interior of a hole (e.g. 'o'). Thus we must find the contour |
2436 | * that is outer most (or at least has the global y-max) before we can consider |
2437 | * its cross product. |
2438 | */ |
2439 | bool SkPathPriv::CheapComputeFirstDirection(const SkPath& path, FirstDirection* dir) { |
2440 | auto d = path.getFirstDirection(); |
2441 | if (d != kUnknown_FirstDirection) { |
2442 | *dir = static_cast<FirstDirection>(d); |
2443 | return true; |
2444 | } |
2445 | |
2446 | // We don't want to pay the cost for computing convexity if it is unknown, |
2447 | // so we call getConvexityOrUnknown() instead of isConvex(). |
2448 | if (path.getConvexityTypeOrUnknown() == SkPathConvexityType::kConvex) { |
2449 | SkASSERT(path.getFirstDirection() == kUnknown_FirstDirection); |
2450 | *dir = static_cast<FirstDirection>(path.getFirstDirection()); |
2451 | return false; |
2452 | } |
2453 | |
2454 | ContourIter iter(*path.fPathRef.get()); |
2455 | |
2456 | // initialize with our logical y-min |
2457 | SkScalar ymax = path.getBounds().fTop; |
2458 | SkScalar ymaxCross = 0; |
2459 | |
2460 | for (; !iter.done(); iter.next()) { |
2461 | int n = iter.count(); |
2462 | if (n < 3) { |
2463 | continue; |
2464 | } |
2465 | |
2466 | const SkPoint* pts = iter.pts(); |
2467 | SkScalar cross = 0; |
2468 | int index = find_max_y(pts, n); |
2469 | if (pts[index].fY < ymax) { |
2470 | continue; |
2471 | } |
2472 | |
2473 | // If there is more than 1 distinct point at the y-max, we take the |
2474 | // x-min and x-max of them and just subtract to compute the dir. |
2475 | if (pts[(index + 1) % n].fY == pts[index].fY) { |
2476 | int maxIndex; |
2477 | int minIndex = find_min_max_x_at_y(pts, index, n, &maxIndex); |
2478 | if (minIndex == maxIndex) { |
2479 | goto TRY_CROSSPROD; |
2480 | } |
2481 | SkASSERT(pts[minIndex].fY == pts[index].fY); |
2482 | SkASSERT(pts[maxIndex].fY == pts[index].fY); |
2483 | SkASSERT(pts[minIndex].fX <= pts[maxIndex].fX); |
2484 | // we just subtract the indices, and let that auto-convert to |
2485 | // SkScalar, since we just want - or + to signal the direction. |
2486 | cross = minIndex - maxIndex; |
2487 | } else { |
2488 | TRY_CROSSPROD: |
2489 | // Find a next and prev index to use for the cross-product test, |
2490 | // but we try to find pts that form non-zero vectors from pts[index] |
2491 | // |
2492 | // Its possible that we can't find two non-degenerate vectors, so |
2493 | // we have to guard our search (e.g. all the pts could be in the |
2494 | // same place). |
2495 | |
2496 | // we pass n - 1 instead of -1 so we don't foul up % operator by |
2497 | // passing it a negative LH argument. |
2498 | int prev = find_diff_pt(pts, index, n, n - 1); |
2499 | if (prev == index) { |
2500 | // completely degenerate, skip to next contour |
2501 | continue; |
2502 | } |
2503 | int next = find_diff_pt(pts, index, n, 1); |
2504 | SkASSERT(next != index); |
2505 | cross = cross_prod(pts[prev], pts[index], pts[next]); |
2506 | // if we get a zero and the points are horizontal, then we look at the spread in |
2507 | // x-direction. We really should continue to walk away from the degeneracy until |
2508 | // there is a divergence. |
2509 | if (0 == cross && pts[prev].fY == pts[index].fY && pts[next].fY == pts[index].fY) { |
2510 | // construct the subtract so we get the correct Direction below |
2511 | cross = pts[index].fX - pts[next].fX; |
2512 | } |
2513 | } |
2514 | |
2515 | if (cross) { |
2516 | // record our best guess so far |
2517 | ymax = pts[index].fY; |
2518 | ymaxCross = cross; |
2519 | } |
2520 | } |
2521 | if (ymaxCross) { |
2522 | crossToDir(ymaxCross, dir); |
2523 | path.setFirstDirection(*dir); |
2524 | return true; |
2525 | } else { |
2526 | return false; |
2527 | } |
2528 | } |
2529 | |
2530 | /////////////////////////////////////////////////////////////////////////////// |
2531 | |
2532 | static bool between(SkScalar a, SkScalar b, SkScalar c) { |
2533 | SkASSERT(((a <= b && b <= c) || (a >= b && b >= c)) == ((a - b) * (c - b) <= 0) |
2534 | || (SkScalarNearlyZero(a) && SkScalarNearlyZero(b) && SkScalarNearlyZero(c))); |
2535 | return (a - b) * (c - b) <= 0; |
2536 | } |
2537 | |
2538 | static SkScalar eval_cubic_pts(SkScalar c0, SkScalar c1, SkScalar c2, SkScalar c3, |
2539 | SkScalar t) { |
2540 | SkScalar A = c3 + 3*(c1 - c2) - c0; |
2541 | SkScalar B = 3*(c2 - c1 - c1 + c0); |
2542 | SkScalar C = 3*(c1 - c0); |
2543 | SkScalar D = c0; |
2544 | return poly_eval(A, B, C, D, t); |
2545 | } |
2546 | |
2547 | template <size_t N> static void find_minmax(const SkPoint pts[], |
2548 | SkScalar* minPtr, SkScalar* maxPtr) { |
2549 | SkScalar min, max; |
2550 | min = max = pts[0].fX; |
2551 | for (size_t i = 1; i < N; ++i) { |
2552 | min = std::min(min, pts[i].fX); |
2553 | max = std::max(max, pts[i].fX); |
2554 | } |
2555 | *minPtr = min; |
2556 | *maxPtr = max; |
2557 | } |
2558 | |
2559 | static bool checkOnCurve(SkScalar x, SkScalar y, const SkPoint& start, const SkPoint& end) { |
2560 | if (start.fY == end.fY) { |
2561 | return between(start.fX, x, end.fX) && x != end.fX; |
2562 | } else { |
2563 | return x == start.fX && y == start.fY; |
2564 | } |
2565 | } |
2566 | |
2567 | static int winding_mono_cubic(const SkPoint pts[], SkScalar x, SkScalar y, int* onCurveCount) { |
2568 | SkScalar y0 = pts[0].fY; |
2569 | SkScalar y3 = pts[3].fY; |
2570 | |
2571 | int dir = 1; |
2572 | if (y0 > y3) { |
2573 | using std::swap; |
2574 | swap(y0, y3); |
2575 | dir = -1; |
2576 | } |
2577 | if (y < y0 || y > y3) { |
2578 | return 0; |
2579 | } |
2580 | if (checkOnCurve(x, y, pts[0], pts[3])) { |
2581 | *onCurveCount += 1; |
2582 | return 0; |
2583 | } |
2584 | if (y == y3) { |
2585 | return 0; |
2586 | } |
2587 | |
2588 | // quickreject or quickaccept |
2589 | SkScalar min, max; |
2590 | find_minmax<4>(pts, &min, &max); |
2591 | if (x < min) { |
2592 | return 0; |
2593 | } |
2594 | if (x > max) { |
2595 | return dir; |
2596 | } |
2597 | |
2598 | // compute the actual x(t) value |
2599 | SkScalar t; |
2600 | if (!SkCubicClipper::ChopMonoAtY(pts, y, &t)) { |
2601 | return 0; |
2602 | } |
2603 | SkScalar xt = eval_cubic_pts(pts[0].fX, pts[1].fX, pts[2].fX, pts[3].fX, t); |
2604 | if (SkScalarNearlyEqual(xt, x)) { |
2605 | if (x != pts[3].fX || y != pts[3].fY) { // don't test end points; they're start points |
2606 | *onCurveCount += 1; |
2607 | return 0; |
2608 | } |
2609 | } |
2610 | return xt < x ? dir : 0; |
2611 | } |
2612 | |
2613 | static int winding_cubic(const SkPoint pts[], SkScalar x, SkScalar y, int* onCurveCount) { |
2614 | SkPoint dst[10]; |
2615 | int n = SkChopCubicAtYExtrema(pts, dst); |
2616 | int w = 0; |
2617 | for (int i = 0; i <= n; ++i) { |
2618 | w += winding_mono_cubic(&dst[i * 3], x, y, onCurveCount); |
2619 | } |
2620 | return w; |
2621 | } |
2622 | |
2623 | static double conic_eval_numerator(const SkScalar src[], SkScalar w, SkScalar t) { |
2624 | SkASSERT(src); |
2625 | SkASSERT(t >= 0 && t <= 1); |
2626 | SkScalar src2w = src[2] * w; |
2627 | SkScalar C = src[0]; |
2628 | SkScalar A = src[4] - 2 * src2w + C; |
2629 | SkScalar B = 2 * (src2w - C); |
2630 | return poly_eval(A, B, C, t); |
2631 | } |
2632 | |
2633 | |
2634 | static double conic_eval_denominator(SkScalar w, SkScalar t) { |
2635 | SkScalar B = 2 * (w - 1); |
2636 | SkScalar C = 1; |
2637 | SkScalar A = -B; |
2638 | return poly_eval(A, B, C, t); |
2639 | } |
2640 | |
2641 | static int winding_mono_conic(const SkConic& conic, SkScalar x, SkScalar y, int* onCurveCount) { |
2642 | const SkPoint* pts = conic.fPts; |
2643 | SkScalar y0 = pts[0].fY; |
2644 | SkScalar y2 = pts[2].fY; |
2645 | |
2646 | int dir = 1; |
2647 | if (y0 > y2) { |
2648 | using std::swap; |
2649 | swap(y0, y2); |
2650 | dir = -1; |
2651 | } |
2652 | if (y < y0 || y > y2) { |
2653 | return 0; |
2654 | } |
2655 | if (checkOnCurve(x, y, pts[0], pts[2])) { |
2656 | *onCurveCount += 1; |
2657 | return 0; |
2658 | } |
2659 | if (y == y2) { |
2660 | return 0; |
2661 | } |
2662 | |
2663 | SkScalar roots[2]; |
2664 | SkScalar A = pts[2].fY; |
2665 | SkScalar B = pts[1].fY * conic.fW - y * conic.fW + y; |
2666 | SkScalar C = pts[0].fY; |
2667 | A += C - 2 * B; // A = a + c - 2*(b*w - yCept*w + yCept) |
2668 | B -= C; // B = b*w - w * yCept + yCept - a |
2669 | C -= y; |
2670 | int n = SkFindUnitQuadRoots(A, 2 * B, C, roots); |
2671 | SkASSERT(n <= 1); |
2672 | SkScalar xt; |
2673 | if (0 == n) { |
2674 | // zero roots are returned only when y0 == y |
2675 | // Need [0] if dir == 1 |
2676 | // and [2] if dir == -1 |
2677 | xt = pts[1 - dir].fX; |
2678 | } else { |
2679 | SkScalar t = roots[0]; |
2680 | xt = conic_eval_numerator(&pts[0].fX, conic.fW, t) / conic_eval_denominator(conic.fW, t); |
2681 | } |
2682 | if (SkScalarNearlyEqual(xt, x)) { |
2683 | if (x != pts[2].fX || y != pts[2].fY) { // don't test end points; they're start points |
2684 | *onCurveCount += 1; |
2685 | return 0; |
2686 | } |
2687 | } |
2688 | return xt < x ? dir : 0; |
2689 | } |
2690 | |
2691 | static bool is_mono_quad(SkScalar y0, SkScalar y1, SkScalar y2) { |
2692 | // return SkScalarSignAsInt(y0 - y1) + SkScalarSignAsInt(y1 - y2) != 0; |
2693 | if (y0 == y1) { |
2694 | return true; |
2695 | } |
2696 | if (y0 < y1) { |
2697 | return y1 <= y2; |
2698 | } else { |
2699 | return y1 >= y2; |
2700 | } |
2701 | } |
2702 | |
2703 | static int winding_conic(const SkPoint pts[], SkScalar x, SkScalar y, SkScalar weight, |
2704 | int* onCurveCount) { |
2705 | SkConic conic(pts, weight); |
2706 | SkConic chopped[2]; |
2707 | // If the data points are very large, the conic may not be monotonic but may also |
2708 | // fail to chop. Then, the chopper does not split the original conic in two. |
2709 | bool isMono = is_mono_quad(pts[0].fY, pts[1].fY, pts[2].fY) || !conic.chopAtYExtrema(chopped); |
2710 | int w = winding_mono_conic(isMono ? conic : chopped[0], x, y, onCurveCount); |
2711 | if (!isMono) { |
2712 | w += winding_mono_conic(chopped[1], x, y, onCurveCount); |
2713 | } |
2714 | return w; |
2715 | } |
2716 | |
2717 | static int winding_mono_quad(const SkPoint pts[], SkScalar x, SkScalar y, int* onCurveCount) { |
2718 | SkScalar y0 = pts[0].fY; |
2719 | SkScalar y2 = pts[2].fY; |
2720 | |
2721 | int dir = 1; |
2722 | if (y0 > y2) { |
2723 | using std::swap; |
2724 | swap(y0, y2); |
2725 | dir = -1; |
2726 | } |
2727 | if (y < y0 || y > y2) { |
2728 | return 0; |
2729 | } |
2730 | if (checkOnCurve(x, y, pts[0], pts[2])) { |
2731 | *onCurveCount += 1; |
2732 | return 0; |
2733 | } |
2734 | if (y == y2) { |
2735 | return 0; |
2736 | } |
2737 | // bounds check on X (not required. is it faster?) |
2738 | #if 0 |
2739 | if (pts[0].fX > x && pts[1].fX > x && pts[2].fX > x) { |
2740 | return 0; |
2741 | } |
2742 | #endif |
2743 | |
2744 | SkScalar roots[2]; |
2745 | int n = SkFindUnitQuadRoots(pts[0].fY - 2 * pts[1].fY + pts[2].fY, |
2746 | 2 * (pts[1].fY - pts[0].fY), |
2747 | pts[0].fY - y, |
2748 | roots); |
2749 | SkASSERT(n <= 1); |
2750 | SkScalar xt; |
2751 | if (0 == n) { |
2752 | // zero roots are returned only when y0 == y |
2753 | // Need [0] if dir == 1 |
2754 | // and [2] if dir == -1 |
2755 | xt = pts[1 - dir].fX; |
2756 | } else { |
2757 | SkScalar t = roots[0]; |
2758 | SkScalar C = pts[0].fX; |
2759 | SkScalar A = pts[2].fX - 2 * pts[1].fX + C; |
2760 | SkScalar B = 2 * (pts[1].fX - C); |
2761 | xt = poly_eval(A, B, C, t); |
2762 | } |
2763 | if (SkScalarNearlyEqual(xt, x)) { |
2764 | if (x != pts[2].fX || y != pts[2].fY) { // don't test end points; they're start points |
2765 | *onCurveCount += 1; |
2766 | return 0; |
2767 | } |
2768 | } |
2769 | return xt < x ? dir : 0; |
2770 | } |
2771 | |
2772 | static int winding_quad(const SkPoint pts[], SkScalar x, SkScalar y, int* onCurveCount) { |
2773 | SkPoint dst[5]; |
2774 | int n = 0; |
2775 | |
2776 | if (!is_mono_quad(pts[0].fY, pts[1].fY, pts[2].fY)) { |
2777 | n = SkChopQuadAtYExtrema(pts, dst); |
2778 | pts = dst; |
2779 | } |
2780 | int w = winding_mono_quad(pts, x, y, onCurveCount); |
2781 | if (n > 0) { |
2782 | w += winding_mono_quad(&pts[2], x, y, onCurveCount); |
2783 | } |
2784 | return w; |
2785 | } |
2786 | |
2787 | static int winding_line(const SkPoint pts[], SkScalar x, SkScalar y, int* onCurveCount) { |
2788 | SkScalar x0 = pts[0].fX; |
2789 | SkScalar y0 = pts[0].fY; |
2790 | SkScalar x1 = pts[1].fX; |
2791 | SkScalar y1 = pts[1].fY; |
2792 | |
2793 | SkScalar dy = y1 - y0; |
2794 | |
2795 | int dir = 1; |
2796 | if (y0 > y1) { |
2797 | using std::swap; |
2798 | swap(y0, y1); |
2799 | dir = -1; |
2800 | } |
2801 | if (y < y0 || y > y1) { |
2802 | return 0; |
2803 | } |
2804 | if (checkOnCurve(x, y, pts[0], pts[1])) { |
2805 | *onCurveCount += 1; |
2806 | return 0; |
2807 | } |
2808 | if (y == y1) { |
2809 | return 0; |
2810 | } |
2811 | SkScalar cross = (x1 - x0) * (y - pts[0].fY) - dy * (x - x0); |
2812 | |
2813 | if (!cross) { |
2814 | // zero cross means the point is on the line, and since the case where |
2815 | // y of the query point is at the end point is handled above, we can be |
2816 | // sure that we're on the line (excluding the end point) here |
2817 | if (x != x1 || y != pts[1].fY) { |
2818 | *onCurveCount += 1; |
2819 | } |
2820 | dir = 0; |
2821 | } else if (SkScalarSignAsInt(cross) == dir) { |
2822 | dir = 0; |
2823 | } |
2824 | return dir; |
2825 | } |
2826 | |
2827 | static void tangent_cubic(const SkPoint pts[], SkScalar x, SkScalar y, |
2828 | SkTDArray<SkVector>* tangents) { |
2829 | if (!between(pts[0].fY, y, pts[1].fY) && !between(pts[1].fY, y, pts[2].fY) |
2830 | && !between(pts[2].fY, y, pts[3].fY)) { |
2831 | return; |
2832 | } |
2833 | if (!between(pts[0].fX, x, pts[1].fX) && !between(pts[1].fX, x, pts[2].fX) |
2834 | && !between(pts[2].fX, x, pts[3].fX)) { |
2835 | return; |
2836 | } |
2837 | SkPoint dst[10]; |
2838 | int n = SkChopCubicAtYExtrema(pts, dst); |
2839 | for (int i = 0; i <= n; ++i) { |
2840 | SkPoint* c = &dst[i * 3]; |
2841 | SkScalar t; |
2842 | if (!SkCubicClipper::ChopMonoAtY(c, y, &t)) { |
2843 | continue; |
2844 | } |
2845 | SkScalar xt = eval_cubic_pts(c[0].fX, c[1].fX, c[2].fX, c[3].fX, t); |
2846 | if (!SkScalarNearlyEqual(x, xt)) { |
2847 | continue; |
2848 | } |
2849 | SkVector tangent; |
2850 | SkEvalCubicAt(c, t, nullptr, &tangent, nullptr); |
2851 | tangents->push_back(tangent); |
2852 | } |
2853 | } |
2854 | |
2855 | static void tangent_conic(const SkPoint pts[], SkScalar x, SkScalar y, SkScalar w, |
2856 | SkTDArray<SkVector>* tangents) { |
2857 | if (!between(pts[0].fY, y, pts[1].fY) && !between(pts[1].fY, y, pts[2].fY)) { |
2858 | return; |
2859 | } |
2860 | if (!between(pts[0].fX, x, pts[1].fX) && !between(pts[1].fX, x, pts[2].fX)) { |
2861 | return; |
2862 | } |
2863 | SkScalar roots[2]; |
2864 | SkScalar A = pts[2].fY; |
2865 | SkScalar B = pts[1].fY * w - y * w + y; |
2866 | SkScalar C = pts[0].fY; |
2867 | A += C - 2 * B; // A = a + c - 2*(b*w - yCept*w + yCept) |
2868 | B -= C; // B = b*w - w * yCept + yCept - a |
2869 | C -= y; |
2870 | int n = SkFindUnitQuadRoots(A, 2 * B, C, roots); |
2871 | for (int index = 0; index < n; ++index) { |
2872 | SkScalar t = roots[index]; |
2873 | SkScalar xt = conic_eval_numerator(&pts[0].fX, w, t) / conic_eval_denominator(w, t); |
2874 | if (!SkScalarNearlyEqual(x, xt)) { |
2875 | continue; |
2876 | } |
2877 | SkConic conic(pts, w); |
2878 | tangents->push_back(conic.evalTangentAt(t)); |
2879 | } |
2880 | } |
2881 | |
2882 | static void tangent_quad(const SkPoint pts[], SkScalar x, SkScalar y, |
2883 | SkTDArray<SkVector>* tangents) { |
2884 | if (!between(pts[0].fY, y, pts[1].fY) && !between(pts[1].fY, y, pts[2].fY)) { |
2885 | return; |
2886 | } |
2887 | if (!between(pts[0].fX, x, pts[1].fX) && !between(pts[1].fX, x, pts[2].fX)) { |
2888 | return; |
2889 | } |
2890 | SkScalar roots[2]; |
2891 | int n = SkFindUnitQuadRoots(pts[0].fY - 2 * pts[1].fY + pts[2].fY, |
2892 | 2 * (pts[1].fY - pts[0].fY), |
2893 | pts[0].fY - y, |
2894 | roots); |
2895 | for (int index = 0; index < n; ++index) { |
2896 | SkScalar t = roots[index]; |
2897 | SkScalar C = pts[0].fX; |
2898 | SkScalar A = pts[2].fX - 2 * pts[1].fX + C; |
2899 | SkScalar B = 2 * (pts[1].fX - C); |
2900 | SkScalar xt = poly_eval(A, B, C, t); |
2901 | if (!SkScalarNearlyEqual(x, xt)) { |
2902 | continue; |
2903 | } |
2904 | tangents->push_back(SkEvalQuadTangentAt(pts, t)); |
2905 | } |
2906 | } |
2907 | |
2908 | static void tangent_line(const SkPoint pts[], SkScalar x, SkScalar y, |
2909 | SkTDArray<SkVector>* tangents) { |
2910 | SkScalar y0 = pts[0].fY; |
2911 | SkScalar y1 = pts[1].fY; |
2912 | if (!between(y0, y, y1)) { |
2913 | return; |
2914 | } |
2915 | SkScalar x0 = pts[0].fX; |
2916 | SkScalar x1 = pts[1].fX; |
2917 | if (!between(x0, x, x1)) { |
2918 | return; |
2919 | } |
2920 | SkScalar dx = x1 - x0; |
2921 | SkScalar dy = y1 - y0; |
2922 | if (!SkScalarNearlyEqual((x - x0) * dy, dx * (y - y0))) { |
2923 | return; |
2924 | } |
2925 | SkVector v; |
2926 | v.set(dx, dy); |
2927 | tangents->push_back(v); |
2928 | } |
2929 | |
2930 | static bool contains_inclusive(const SkRect& r, SkScalar x, SkScalar y) { |
2931 | return r.fLeft <= x && x <= r.fRight && r.fTop <= y && y <= r.fBottom; |
2932 | } |
2933 | |
2934 | bool SkPath::contains(SkScalar x, SkScalar y) const { |
2935 | bool isInverse = this->isInverseFillType(); |
2936 | if (this->isEmpty()) { |
2937 | return isInverse; |
2938 | } |
2939 | |
2940 | if (!contains_inclusive(this->getBounds(), x, y)) { |
2941 | return isInverse; |
2942 | } |
2943 | |
2944 | SkPath::Iter iter(*this, true); |
2945 | bool done = false; |
2946 | int w = 0; |
2947 | int onCurveCount = 0; |
2948 | do { |
2949 | SkPoint pts[4]; |
2950 | switch (iter.next(pts)) { |
2951 | case SkPath::kMove_Verb: |
2952 | case SkPath::kClose_Verb: |
2953 | break; |
2954 | case SkPath::kLine_Verb: |
2955 | w += winding_line(pts, x, y, &onCurveCount); |
2956 | break; |
2957 | case SkPath::kQuad_Verb: |
2958 | w += winding_quad(pts, x, y, &onCurveCount); |
2959 | break; |
2960 | case SkPath::kConic_Verb: |
2961 | w += winding_conic(pts, x, y, iter.conicWeight(), &onCurveCount); |
2962 | break; |
2963 | case SkPath::kCubic_Verb: |
2964 | w += winding_cubic(pts, x, y, &onCurveCount); |
2965 | break; |
2966 | case SkPath::kDone_Verb: |
2967 | done = true; |
2968 | break; |
2969 | } |
2970 | } while (!done); |
2971 | bool evenOddFill = SkPathFillType::kEvenOdd == this->getFillType() |
2972 | || SkPathFillType::kInverseEvenOdd == this->getFillType(); |
2973 | if (evenOddFill) { |
2974 | w &= 1; |
2975 | } |
2976 | if (w) { |
2977 | return !isInverse; |
2978 | } |
2979 | if (onCurveCount <= 1) { |
2980 | return SkToBool(onCurveCount) ^ isInverse; |
2981 | } |
2982 | if ((onCurveCount & 1) || evenOddFill) { |
2983 | return SkToBool(onCurveCount & 1) ^ isInverse; |
2984 | } |
2985 | // If the point touches an even number of curves, and the fill is winding, check for |
2986 | // coincidence. Count coincidence as places where the on curve points have identical tangents. |
2987 | iter.setPath(*this, true); |
2988 | done = false; |
2989 | SkTDArray<SkVector> tangents; |
2990 | do { |
2991 | SkPoint pts[4]; |
2992 | int oldCount = tangents.count(); |
2993 | switch (iter.next(pts)) { |
2994 | case SkPath::kMove_Verb: |
2995 | case SkPath::kClose_Verb: |
2996 | break; |
2997 | case SkPath::kLine_Verb: |
2998 | tangent_line(pts, x, y, &tangents); |
2999 | break; |
3000 | case SkPath::kQuad_Verb: |
3001 | tangent_quad(pts, x, y, &tangents); |
3002 | break; |
3003 | case SkPath::kConic_Verb: |
3004 | tangent_conic(pts, x, y, iter.conicWeight(), &tangents); |
3005 | break; |
3006 | case SkPath::kCubic_Verb: |
3007 | tangent_cubic(pts, x, y, &tangents); |
3008 | break; |
3009 | case SkPath::kDone_Verb: |
3010 | done = true; |
3011 | break; |
3012 | } |
3013 | if (tangents.count() > oldCount) { |
3014 | int last = tangents.count() - 1; |
3015 | const SkVector& tangent = tangents[last]; |
3016 | if (SkScalarNearlyZero(SkPointPriv::LengthSqd(tangent))) { |
3017 | tangents.remove(last); |
3018 | } else { |
3019 | for (int index = 0; index < last; ++index) { |
3020 | const SkVector& test = tangents[index]; |
3021 | if (SkScalarNearlyZero(test.cross(tangent)) |
3022 | && SkScalarSignAsInt(tangent.fX * test.fX) <= 0 |
3023 | && SkScalarSignAsInt(tangent.fY * test.fY) <= 0) { |
3024 | tangents.remove(last); |
3025 | tangents.removeShuffle(index); |
3026 | break; |
3027 | } |
3028 | } |
3029 | } |
3030 | } |
3031 | } while (!done); |
3032 | return SkToBool(tangents.count()) ^ isInverse; |
3033 | } |
3034 | |
3035 | int SkPath::ConvertConicToQuads(const SkPoint& p0, const SkPoint& p1, const SkPoint& p2, |
3036 | SkScalar w, SkPoint pts[], int pow2) { |
3037 | const SkConic conic(p0, p1, p2, w); |
3038 | return conic.chopIntoQuadsPOW2(pts, pow2); |
3039 | } |
3040 | |
3041 | bool SkPathPriv::IsSimpleClosedRect(const SkPath& path, SkRect* rect, SkPathDirection* direction, |
3042 | unsigned* start) { |
3043 | if (path.getSegmentMasks() != SkPath::kLine_SegmentMask) { |
3044 | return false; |
3045 | } |
3046 | SkPath::RawIter iter(path); |
3047 | SkPoint verbPts[4]; |
3048 | SkPath::Verb v; |
3049 | SkPoint rectPts[5]; |
3050 | int rectPtCnt = 0; |
3051 | while ((v = iter.next(verbPts)) != SkPath::kDone_Verb) { |
3052 | switch (v) { |
3053 | case SkPath::kMove_Verb: |
3054 | if (0 != rectPtCnt) { |
3055 | return false; |
3056 | } |
3057 | rectPts[0] = verbPts[0]; |
3058 | ++rectPtCnt; |
3059 | break; |
3060 | case SkPath::kLine_Verb: |
3061 | if (5 == rectPtCnt) { |
3062 | return false; |
3063 | } |
3064 | rectPts[rectPtCnt] = verbPts[1]; |
3065 | ++rectPtCnt; |
3066 | break; |
3067 | case SkPath::kClose_Verb: |
3068 | if (4 == rectPtCnt) { |
3069 | rectPts[4] = rectPts[0]; |
3070 | rectPtCnt = 5; |
3071 | } |
3072 | break; |
3073 | default: |
3074 | return false; |
3075 | } |
3076 | } |
3077 | if (rectPtCnt < 5) { |
3078 | return false; |
3079 | } |
3080 | if (rectPts[0] != rectPts[4]) { |
3081 | return false; |
3082 | } |
3083 | // Check for two cases of rectangles: pts 0 and 3 form a vertical edge or a horizontal edge ( |
3084 | // and pts 1 and 2 the opposite vertical or horizontal edge). |
3085 | bool vec03IsVertical; |
3086 | if (rectPts[0].fX == rectPts[3].fX && rectPts[1].fX == rectPts[2].fX && |
3087 | rectPts[0].fY == rectPts[1].fY && rectPts[3].fY == rectPts[2].fY) { |
3088 | // Make sure it has non-zero width and height |
3089 | if (rectPts[0].fX == rectPts[1].fX || rectPts[0].fY == rectPts[3].fY) { |
3090 | return false; |
3091 | } |
3092 | vec03IsVertical = true; |
3093 | } else if (rectPts[0].fY == rectPts[3].fY && rectPts[1].fY == rectPts[2].fY && |
3094 | rectPts[0].fX == rectPts[1].fX && rectPts[3].fX == rectPts[2].fX) { |
3095 | // Make sure it has non-zero width and height |
3096 | if (rectPts[0].fY == rectPts[1].fY || rectPts[0].fX == rectPts[3].fX) { |
3097 | return false; |
3098 | } |
3099 | vec03IsVertical = false; |
3100 | } else { |
3101 | return false; |
3102 | } |
3103 | // Set sortFlags so that it has the low bit set if pt index 0 is on right edge and second bit |
3104 | // set if it is on the bottom edge. |
3105 | unsigned sortFlags = |
3106 | ((rectPts[0].fX < rectPts[2].fX) ? 0b00 : 0b01) | |
3107 | ((rectPts[0].fY < rectPts[2].fY) ? 0b00 : 0b10); |
3108 | switch (sortFlags) { |
3109 | case 0b00: |
3110 | rect->setLTRB(rectPts[0].fX, rectPts[0].fY, rectPts[2].fX, rectPts[2].fY); |
3111 | *direction = vec03IsVertical ? SkPathDirection::kCW : SkPathDirection::kCCW; |
3112 | *start = 0; |
3113 | break; |
3114 | case 0b01: |
3115 | rect->setLTRB(rectPts[2].fX, rectPts[0].fY, rectPts[0].fX, rectPts[2].fY); |
3116 | *direction = vec03IsVertical ? SkPathDirection::kCCW : SkPathDirection::kCW; |
3117 | *start = 1; |
3118 | break; |
3119 | case 0b10: |
3120 | rect->setLTRB(rectPts[0].fX, rectPts[2].fY, rectPts[2].fX, rectPts[0].fY); |
3121 | *direction = vec03IsVertical ? SkPathDirection::kCCW : SkPathDirection::kCW; |
3122 | *start = 3; |
3123 | break; |
3124 | case 0b11: |
3125 | rect->setLTRB(rectPts[2].fX, rectPts[2].fY, rectPts[0].fX, rectPts[0].fY); |
3126 | *direction = vec03IsVertical ? SkPathDirection::kCW : SkPathDirection::kCCW; |
3127 | *start = 2; |
3128 | break; |
3129 | } |
3130 | return true; |
3131 | } |
3132 | |
3133 | bool SkPathPriv::DrawArcIsConvex(SkScalar sweepAngle, bool useCenter, bool isFillNoPathEffect) { |
3134 | if (isFillNoPathEffect && SkScalarAbs(sweepAngle) >= 360.f) { |
3135 | // This gets converted to an oval. |
3136 | return true; |
3137 | } |
3138 | if (useCenter) { |
3139 | // This is a pie wedge. It's convex if the angle is <= 180. |
3140 | return SkScalarAbs(sweepAngle) <= 180.f; |
3141 | } |
3142 | // When the angle exceeds 360 this wraps back on top of itself. Otherwise it is a circle clipped |
3143 | // to a secant, i.e. convex. |
3144 | return SkScalarAbs(sweepAngle) <= 360.f; |
3145 | } |
3146 | |
3147 | void SkPathPriv::CreateDrawArcPath(SkPath* path, const SkRect& oval, SkScalar startAngle, |
3148 | SkScalar sweepAngle, bool useCenter, bool isFillNoPathEffect) { |
3149 | SkASSERT(!oval.isEmpty()); |
3150 | SkASSERT(sweepAngle); |
3151 | |
3152 | path->reset(); |
3153 | path->setIsVolatile(true); |
3154 | path->setFillType(SkPathFillType::kWinding); |
3155 | if (isFillNoPathEffect && SkScalarAbs(sweepAngle) >= 360.f) { |
3156 | path->addOval(oval); |
3157 | SkASSERT(path->isConvex() && DrawArcIsConvex(sweepAngle, false, isFillNoPathEffect)); |
3158 | return; |
3159 | } |
3160 | if (useCenter) { |
3161 | path->moveTo(oval.centerX(), oval.centerY()); |
3162 | } |
3163 | auto firstDir = |
3164 | sweepAngle > 0 ? SkPathPriv::kCW_FirstDirection : SkPathPriv::kCCW_FirstDirection; |
3165 | bool convex = DrawArcIsConvex(sweepAngle, useCenter, isFillNoPathEffect); |
3166 | // Arc to mods at 360 and drawArc is not supposed to. |
3167 | bool forceMoveTo = !useCenter; |
3168 | while (sweepAngle <= -360.f) { |
3169 | path->arcTo(oval, startAngle, -180.f, forceMoveTo); |
3170 | startAngle -= 180.f; |
3171 | path->arcTo(oval, startAngle, -180.f, false); |
3172 | startAngle -= 180.f; |
3173 | forceMoveTo = false; |
3174 | sweepAngle += 360.f; |
3175 | } |
3176 | while (sweepAngle >= 360.f) { |
3177 | path->arcTo(oval, startAngle, 180.f, forceMoveTo); |
3178 | startAngle += 180.f; |
3179 | path->arcTo(oval, startAngle, 180.f, false); |
3180 | startAngle += 180.f; |
3181 | forceMoveTo = false; |
3182 | sweepAngle -= 360.f; |
3183 | } |
3184 | path->arcTo(oval, startAngle, sweepAngle, forceMoveTo); |
3185 | if (useCenter) { |
3186 | path->close(); |
3187 | } |
3188 | path->setConvexityType(convex ? SkPathConvexityType::kConvex : SkPathConvexityType::kConcave); |
3189 | path->setFirstDirection(firstDir); |
3190 | } |
3191 | |
3192 | /////////////////////////////////////////////////////////////////////////////////////////////////// |
3193 | #include "include/private/SkNx.h" |
3194 | |
3195 | static int compute_quad_extremas(const SkPoint src[3], SkPoint extremas[3]) { |
3196 | SkScalar ts[2]; |
3197 | int n = SkFindQuadExtrema(src[0].fX, src[1].fX, src[2].fX, ts); |
3198 | n += SkFindQuadExtrema(src[0].fY, src[1].fY, src[2].fY, &ts[n]); |
3199 | SkASSERT(n >= 0 && n <= 2); |
3200 | for (int i = 0; i < n; ++i) { |
3201 | extremas[i] = SkEvalQuadAt(src, ts[i]); |
3202 | } |
3203 | extremas[n] = src[2]; |
3204 | return n + 1; |
3205 | } |
3206 | |
3207 | static int compute_conic_extremas(const SkPoint src[3], SkScalar w, SkPoint extremas[3]) { |
3208 | SkConic conic(src[0], src[1], src[2], w); |
3209 | SkScalar ts[2]; |
3210 | int n = conic.findXExtrema(ts); |
3211 | n += conic.findYExtrema(&ts[n]); |
3212 | SkASSERT(n >= 0 && n <= 2); |
3213 | for (int i = 0; i < n; ++i) { |
3214 | extremas[i] = conic.evalAt(ts[i]); |
3215 | } |
3216 | extremas[n] = src[2]; |
3217 | return n + 1; |
3218 | } |
3219 | |
3220 | static int compute_cubic_extremas(const SkPoint src[4], SkPoint extremas[5]) { |
3221 | SkScalar ts[4]; |
3222 | int n = SkFindCubicExtrema(src[0].fX, src[1].fX, src[2].fX, src[3].fX, ts); |
3223 | n += SkFindCubicExtrema(src[0].fY, src[1].fY, src[2].fY, src[3].fY, &ts[n]); |
3224 | SkASSERT(n >= 0 && n <= 4); |
3225 | for (int i = 0; i < n; ++i) { |
3226 | SkEvalCubicAt(src, ts[i], &extremas[i], nullptr, nullptr); |
3227 | } |
3228 | extremas[n] = src[3]; |
3229 | return n + 1; |
3230 | } |
3231 | |
3232 | SkRect SkPath::computeTightBounds() const { |
3233 | if (0 == this->countVerbs()) { |
3234 | return SkRect::MakeEmpty(); |
3235 | } |
3236 | |
3237 | if (this->getSegmentMasks() == SkPath::kLine_SegmentMask) { |
3238 | return this->getBounds(); |
3239 | } |
3240 | |
3241 | SkPoint extremas[5]; // big enough to hold worst-case curve type (cubic) extremas + 1 |
3242 | SkPoint pts[4]; |
3243 | SkPath::RawIter iter(*this); |
3244 | |
3245 | // initial with the first MoveTo, so we don't have to check inside the switch |
3246 | Sk2s min, max; |
3247 | min = max = from_point(this->getPoint(0)); |
3248 | for (;;) { |
3249 | int count = 0; |
3250 | switch (iter.next(pts)) { |
3251 | case SkPath::kMove_Verb: |
3252 | extremas[0] = pts[0]; |
3253 | count = 1; |
3254 | break; |
3255 | case SkPath::kLine_Verb: |
3256 | extremas[0] = pts[1]; |
3257 | count = 1; |
3258 | break; |
3259 | case SkPath::kQuad_Verb: |
3260 | count = compute_quad_extremas(pts, extremas); |
3261 | break; |
3262 | case SkPath::kConic_Verb: |
3263 | count = compute_conic_extremas(pts, iter.conicWeight(), extremas); |
3264 | break; |
3265 | case SkPath::kCubic_Verb: |
3266 | count = compute_cubic_extremas(pts, extremas); |
3267 | break; |
3268 | case SkPath::kClose_Verb: |
3269 | break; |
3270 | case SkPath::kDone_Verb: |
3271 | goto DONE; |
3272 | } |
3273 | for (int i = 0; i < count; ++i) { |
3274 | Sk2s tmp = from_point(extremas[i]); |
3275 | min = Sk2s::Min(min, tmp); |
3276 | max = Sk2s::Max(max, tmp); |
3277 | } |
3278 | } |
3279 | DONE: |
3280 | SkRect bounds; |
3281 | min.store((SkPoint*)&bounds.fLeft); |
3282 | max.store((SkPoint*)&bounds.fRight); |
3283 | return bounds; |
3284 | } |
3285 | |
3286 | bool SkPath::IsLineDegenerate(const SkPoint& p1, const SkPoint& p2, bool exact) { |
3287 | return exact ? p1 == p2 : SkPointPriv::EqualsWithinTolerance(p1, p2); |
3288 | } |
3289 | |
3290 | bool SkPath::IsQuadDegenerate(const SkPoint& p1, const SkPoint& p2, |
3291 | const SkPoint& p3, bool exact) { |
3292 | return exact ? p1 == p2 && p2 == p3 : SkPointPriv::EqualsWithinTolerance(p1, p2) && |
3293 | SkPointPriv::EqualsWithinTolerance(p2, p3); |
3294 | } |
3295 | |
3296 | bool SkPath::IsCubicDegenerate(const SkPoint& p1, const SkPoint& p2, |
3297 | const SkPoint& p3, const SkPoint& p4, bool exact) { |
3298 | return exact ? p1 == p2 && p2 == p3 && p3 == p4 : |
3299 | SkPointPriv::EqualsWithinTolerance(p1, p2) && |
3300 | SkPointPriv::EqualsWithinTolerance(p2, p3) && |
3301 | SkPointPriv::EqualsWithinTolerance(p3, p4); |
3302 | } |
3303 | |
3304 | ////////////////////////////////////////////////////////////////////////////////////////////////// |
3305 | |
3306 | bool SkPathPriv::IsRectContour(const SkPath& path, bool allowPartial, int* currVerb, |
3307 | const SkPoint** ptsPtr, bool* isClosed, SkPathDirection* direction, |
3308 | SkRect* rect) { |
3309 | int corners = 0; |
3310 | SkPoint closeXY; // used to determine if final line falls on a diagonal |
3311 | SkPoint lineStart; // used to construct line from previous point |
3312 | const SkPoint* firstPt = nullptr; // first point in the rect (last of first moves) |
3313 | const SkPoint* lastPt = nullptr; // last point in the rect (last of lines or first if closed) |
3314 | SkPoint firstCorner; |
3315 | SkPoint thirdCorner; |
3316 | const SkPoint* pts = *ptsPtr; |
3317 | const SkPoint* savePts = nullptr; // used to allow caller to iterate through a pair of rects |
3318 | lineStart.set(0, 0); |
3319 | signed char directions[] = {-1, -1, -1, -1, -1}; // -1 to 3; -1 is uninitialized |
3320 | bool closedOrMoved = false; |
3321 | bool autoClose = false; |
3322 | bool insertClose = false; |
3323 | int verbCnt = path.fPathRef->countVerbs(); |
3324 | while (*currVerb < verbCnt && (!allowPartial || !autoClose)) { |
3325 | uint8_t verb = insertClose ? (uint8_t) SkPath::kClose_Verb : path.fPathRef->atVerb(*currVerb); |
3326 | switch (verb) { |
3327 | case SkPath::kClose_Verb: |
3328 | savePts = pts; |
3329 | autoClose = true; |
3330 | insertClose = false; |
3331 | case SkPath::kLine_Verb: { |
3332 | if (SkPath::kClose_Verb != verb) { |
3333 | lastPt = pts; |
3334 | } |
3335 | SkPoint lineEnd = SkPath::kClose_Verb == verb ? *firstPt : *pts++; |
3336 | SkVector lineDelta = lineEnd - lineStart; |
3337 | if (lineDelta.fX && lineDelta.fY) { |
3338 | return false; // diagonal |
3339 | } |
3340 | if (!lineDelta.isFinite()) { |
3341 | return false; // path contains infinity or NaN |
3342 | } |
3343 | if (lineStart == lineEnd) { |
3344 | break; // single point on side OK |
3345 | } |
3346 | int nextDirection = rect_make_dir(lineDelta.fX, lineDelta.fY); // 0 to 3 |
3347 | if (0 == corners) { |
3348 | directions[0] = nextDirection; |
3349 | corners = 1; |
3350 | closedOrMoved = false; |
3351 | lineStart = lineEnd; |
3352 | break; |
3353 | } |
3354 | if (closedOrMoved) { |
3355 | return false; // closed followed by a line |
3356 | } |
3357 | if (autoClose && nextDirection == directions[0]) { |
3358 | break; // colinear with first |
3359 | } |
3360 | closedOrMoved = autoClose; |
3361 | if (directions[corners - 1] == nextDirection) { |
3362 | if (3 == corners && SkPath::kLine_Verb == verb) { |
3363 | thirdCorner = lineEnd; |
3364 | } |
3365 | lineStart = lineEnd; |
3366 | break; // colinear segment |
3367 | } |
3368 | directions[corners++] = nextDirection; |
3369 | // opposite lines must point in opposite directions; xoring them should equal 2 |
3370 | switch (corners) { |
3371 | case 2: |
3372 | firstCorner = lineStart; |
3373 | break; |
3374 | case 3: |
3375 | if ((directions[0] ^ directions[2]) != 2) { |
3376 | return false; |
3377 | } |
3378 | thirdCorner = lineEnd; |
3379 | break; |
3380 | case 4: |
3381 | if ((directions[1] ^ directions[3]) != 2) { |
3382 | return false; |
3383 | } |
3384 | break; |
3385 | default: |
3386 | return false; // too many direction changes |
3387 | } |
3388 | lineStart = lineEnd; |
3389 | break; |
3390 | } |
3391 | case SkPath::kQuad_Verb: |
3392 | case SkPath::kConic_Verb: |
3393 | case SkPath::kCubic_Verb: |
3394 | return false; // quadratic, cubic not allowed |
3395 | case SkPath::kMove_Verb: |
3396 | if (allowPartial && !autoClose && directions[0] >= 0) { |
3397 | insertClose = true; |
3398 | *currVerb -= 1; // try move again afterwards |
3399 | goto addMissingClose; |
3400 | } |
3401 | if (!corners) { |
3402 | firstPt = pts; |
3403 | } else { |
3404 | closeXY = *firstPt - *lastPt; |
3405 | if (closeXY.fX && closeXY.fY) { |
3406 | return false; // we're diagonal, abort |
3407 | } |
3408 | } |
3409 | lineStart = *pts++; |
3410 | closedOrMoved = true; |
3411 | break; |
3412 | default: |
3413 | SkDEBUGFAIL("unexpected verb" ); |
3414 | break; |
3415 | } |
3416 | *currVerb += 1; |
3417 | addMissingClose: |
3418 | ; |
3419 | } |
3420 | // Success if 4 corners and first point equals last |
3421 | if (corners < 3 || corners > 4) { |
3422 | return false; |
3423 | } |
3424 | if (savePts) { |
3425 | *ptsPtr = savePts; |
3426 | } |
3427 | // check if close generates diagonal |
3428 | closeXY = *firstPt - *lastPt; |
3429 | if (closeXY.fX && closeXY.fY) { |
3430 | return false; |
3431 | } |
3432 | if (rect) { |
3433 | rect->set(firstCorner, thirdCorner); |
3434 | } |
3435 | if (isClosed) { |
3436 | *isClosed = autoClose; |
3437 | } |
3438 | if (direction) { |
3439 | *direction = directions[0] == ((directions[1] + 1) & 3) ? |
3440 | SkPathDirection::kCW : SkPathDirection::kCCW; |
3441 | } |
3442 | return true; |
3443 | } |
3444 | |
3445 | |
3446 | bool SkPathPriv::IsNestedFillRects(const SkPath& path, SkRect rects[2], SkPathDirection dirs[2]) { |
3447 | SkDEBUGCODE(path.validate();) |
3448 | int currVerb = 0; |
3449 | const SkPoint* pts = path.fPathRef->points(); |
3450 | SkPathDirection testDirs[2]; |
3451 | SkRect testRects[2]; |
3452 | if (!IsRectContour(path, true, &currVerb, &pts, nullptr, &testDirs[0], &testRects[0])) { |
3453 | return false; |
3454 | } |
3455 | if (IsRectContour(path, false, &currVerb, &pts, nullptr, &testDirs[1], &testRects[1])) { |
3456 | if (testRects[0].contains(testRects[1])) { |
3457 | if (rects) { |
3458 | rects[0] = testRects[0]; |
3459 | rects[1] = testRects[1]; |
3460 | } |
3461 | if (dirs) { |
3462 | dirs[0] = testDirs[0]; |
3463 | dirs[1] = testDirs[1]; |
3464 | } |
3465 | return true; |
3466 | } |
3467 | if (testRects[1].contains(testRects[0])) { |
3468 | if (rects) { |
3469 | rects[0] = testRects[1]; |
3470 | rects[1] = testRects[0]; |
3471 | } |
3472 | if (dirs) { |
3473 | dirs[0] = testDirs[1]; |
3474 | dirs[1] = testDirs[0]; |
3475 | } |
3476 | return true; |
3477 | } |
3478 | } |
3479 | return false; |
3480 | } |
3481 | |
3482 | /////////////////////////////////////////////////////////////////////////////////////////////////// |
3483 | |
3484 | #include "src/core/SkEdgeClipper.h" |
3485 | |
3486 | struct SkHalfPlane { |
3487 | SkScalar fA, fB, fC; |
3488 | |
3489 | SkScalar eval(SkScalar x, SkScalar y) const { |
3490 | return fA * x + fB * y + fC; |
3491 | } |
3492 | SkScalar operator()(SkScalar x, SkScalar y) const { return this->eval(x, y); } |
3493 | |
3494 | bool normalize() { |
3495 | double a = fA; |
3496 | double b = fB; |
3497 | double c = fC; |
3498 | double dmag = sqrt(a * a + b * b); |
3499 | // length of initial plane normal is zero |
3500 | if (dmag == 0) { |
3501 | fA = fB = 0; |
3502 | fC = SK_Scalar1; |
3503 | return true; |
3504 | } |
3505 | double dscale = sk_ieee_double_divide(1.0, dmag); |
3506 | a *= dscale; |
3507 | b *= dscale; |
3508 | c *= dscale; |
3509 | // check if we're not finite, or normal is zero-length |
3510 | if (!sk_float_isfinite(a) || !sk_float_isfinite(b) || !sk_float_isfinite(c) || |
3511 | (a == 0 && b == 0)) { |
3512 | fA = fB = 0; |
3513 | fC = SK_Scalar1; |
3514 | return false; |
3515 | } |
3516 | fA = a; |
3517 | fB = b; |
3518 | fC = c; |
3519 | return true; |
3520 | } |
3521 | |
3522 | enum Result { |
3523 | kAllNegative, |
3524 | kAllPositive, |
3525 | kMixed |
3526 | }; |
3527 | Result test(const SkRect& bounds) const { |
3528 | // check whether the diagonal aligned with the normal crosses the plane |
3529 | SkPoint diagMin, diagMax; |
3530 | if (fA >= 0) { |
3531 | diagMin.fX = bounds.fLeft; |
3532 | diagMax.fX = bounds.fRight; |
3533 | } else { |
3534 | diagMin.fX = bounds.fRight; |
3535 | diagMax.fX = bounds.fLeft; |
3536 | } |
3537 | if (fB >= 0) { |
3538 | diagMin.fY = bounds.fTop; |
3539 | diagMax.fY = bounds.fBottom; |
3540 | } else { |
3541 | diagMin.fY = bounds.fBottom; |
3542 | diagMax.fY = bounds.fTop; |
3543 | } |
3544 | SkScalar test = this->eval(diagMin.fX, diagMin.fY); |
3545 | SkScalar sign = test*this->eval(diagMax.fX, diagMax.fY); |
3546 | if (sign > 0) { |
3547 | // the path is either all on one side of the half-plane or the other |
3548 | if (test < 0) { |
3549 | return kAllNegative; |
3550 | } else { |
3551 | return kAllPositive; |
3552 | } |
3553 | } |
3554 | return kMixed; |
3555 | } |
3556 | }; |
3557 | |
3558 | // assumes plane is pre-normalized |
3559 | // If we fail in our calculations, we return the empty path |
3560 | static void clip(const SkPath& path, const SkHalfPlane& plane, SkPath* clippedPath) { |
3561 | SkMatrix mx, inv; |
3562 | SkPoint p0 = { -plane.fA*plane.fC, -plane.fB*plane.fC }; |
3563 | mx.setAll( plane.fB, plane.fA, p0.fX, |
3564 | -plane.fA, plane.fB, p0.fY, |
3565 | 0, 0, 1); |
3566 | if (!mx.invert(&inv)) { |
3567 | clippedPath->reset(); |
3568 | return; |
3569 | } |
3570 | |
3571 | SkPath rotated; |
3572 | path.transform(inv, &rotated); |
3573 | if (!rotated.isFinite()) { |
3574 | clippedPath->reset(); |
3575 | return; |
3576 | } |
3577 | |
3578 | SkScalar big = SK_ScalarMax; |
3579 | SkRect clip = {-big, 0, big, big }; |
3580 | |
3581 | struct Rec { |
3582 | SkPath* fResult; |
3583 | SkPoint fPrev; |
3584 | } rec = { clippedPath, {0, 0} }; |
3585 | |
3586 | SkEdgeClipper::ClipPath(rotated, clip, false, |
3587 | [](SkEdgeClipper* clipper, bool newCtr, void* ctx) { |
3588 | Rec* rec = (Rec*)ctx; |
3589 | |
3590 | bool addLineTo = false; |
3591 | SkPoint pts[4]; |
3592 | SkPath::Verb verb; |
3593 | while ((verb = clipper->next(pts)) != SkPath::kDone_Verb) { |
3594 | if (newCtr) { |
3595 | rec->fResult->moveTo(pts[0]); |
3596 | rec->fPrev = pts[0]; |
3597 | newCtr = false; |
3598 | } |
3599 | |
3600 | if (addLineTo || pts[0] != rec->fPrev) { |
3601 | rec->fResult->lineTo(pts[0]); |
3602 | } |
3603 | |
3604 | switch (verb) { |
3605 | case SkPath::kLine_Verb: |
3606 | rec->fResult->lineTo(pts[1]); |
3607 | rec->fPrev = pts[1]; |
3608 | break; |
3609 | case SkPath::kQuad_Verb: |
3610 | rec->fResult->quadTo(pts[1], pts[2]); |
3611 | rec->fPrev = pts[2]; |
3612 | break; |
3613 | case SkPath::kCubic_Verb: |
3614 | rec->fResult->cubicTo(pts[1], pts[2], pts[3]); |
3615 | rec->fPrev = pts[3]; |
3616 | break; |
3617 | default: break; |
3618 | } |
3619 | addLineTo = true; |
3620 | } |
3621 | }, &rec); |
3622 | |
3623 | clippedPath->setFillType(path.getFillType()); |
3624 | clippedPath->transform(mx); |
3625 | if (!path.isFinite()) { |
3626 | clippedPath->reset(); |
3627 | } |
3628 | } |
3629 | |
3630 | // true means we have written to clippedPath |
3631 | bool SkPathPriv::PerspectiveClip(const SkPath& path, const SkMatrix& matrix, SkPath* clippedPath) { |
3632 | if (!matrix.hasPerspective()) { |
3633 | return false; |
3634 | } |
3635 | |
3636 | SkHalfPlane plane { |
3637 | matrix[SkMatrix::kMPersp0], |
3638 | matrix[SkMatrix::kMPersp1], |
3639 | matrix[SkMatrix::kMPersp2] - kW0PlaneDistance |
3640 | }; |
3641 | if (plane.normalize()) { |
3642 | switch (plane.test(path.getBounds())) { |
3643 | case SkHalfPlane::kAllPositive: |
3644 | return false; |
3645 | case SkHalfPlane::kMixed: { |
3646 | clip(path, plane, clippedPath); |
3647 | return true; |
3648 | } break; |
3649 | default: break; // handled outside of the switch |
3650 | } |
3651 | } |
3652 | // clipped out (or failed) |
3653 | clippedPath->reset(); |
3654 | return true; |
3655 | } |
3656 | |
3657 | int SkPathPriv::GenIDChangeListenersCount(const SkPath& path) { |
3658 | return path.fPathRef->genIDChangeListenerCount(); |
3659 | } |
3660 | |