| 1 | //************************************ bs::framework - Copyright 2018 Marko Pintera **************************************// |
| 2 | //*********** Licensed under the MIT license. See LICENSE.md for full terms. This notice is not to be removed. ***********// |
| 3 | #include "Utility/BsGpuSort.h" |
| 4 | #include "RenderAPI/BsGpuBuffer.h" |
| 5 | #include "Math/BsRandom.h" |
| 6 | #include "Renderer/BsRendererUtility.h" |
| 7 | |
| 8 | namespace bs { namespace ct |
| 9 | { |
| 10 | static constexpr UINT32 BIT_COUNT = 32; |
| 11 | static constexpr UINT32 RADIX_NUM_BITS = 4; |
| 12 | static constexpr UINT32 NUM_DIGITS = 1 << RADIX_NUM_BITS; |
| 13 | static constexpr UINT32 KEY_MASK = (NUM_DIGITS - 1); |
| 14 | static constexpr UINT32 NUM_PASSES = BIT_COUNT / RADIX_NUM_BITS; |
| 15 | |
| 16 | static constexpr UINT32 NUM_THREADS = 128; |
| 17 | static constexpr UINT32 KEYS_PER_LOOP = 8; |
| 18 | static constexpr UINT32 TILE_SIZE = NUM_THREADS * KEYS_PER_LOOP; |
| 19 | static constexpr UINT32 MAX_NUM_GROUPS = 64; |
| 20 | |
| 21 | RadixSortParamsDef gRadixSortParamsDef; |
| 22 | |
| 23 | /** Contains various constants required during the GpuSort algorithm. */ |
| 24 | struct GpuSortProperties |
| 25 | { |
| 26 | GpuSortProperties(UINT32 count) |
| 27 | : count(count) |
| 28 | { } |
| 29 | |
| 30 | const UINT32 count; |
| 31 | const UINT32 numTiles = count / TILE_SIZE; |
| 32 | const UINT32 numGroups = Math::clamp(numTiles, 1U, MAX_NUM_GROUPS); |
| 33 | |
| 34 | const UINT32 tilesPerGroup = numTiles / numGroups; |
| 35 | const UINT32 = numTiles % numGroups; |
| 36 | const UINT32 = count % TILE_SIZE; |
| 37 | }; |
| 38 | |
| 39 | /** Set up common defines required by all radix sort shaders. */ |
| 40 | void initCommonDefines(ShaderDefines& defines) |
| 41 | { |
| 42 | defines.set("RADIX_NUM_BITS" , RADIX_NUM_BITS); |
| 43 | defines.set("NUM_THREADS" , NUM_THREADS); |
| 44 | defines.set("KEYS_PER_LOOP" , KEYS_PER_LOOP); |
| 45 | defines.set("MAX_NUM_GROUPS" , MAX_NUM_GROUPS); |
| 46 | } |
| 47 | |
| 48 | void runSortTest(); |
| 49 | |
| 50 | /** |
| 51 | * Creates a new GPU parameter block buffer according to gRadixSortParamDef definition and writes GpuSort properties |
| 52 | * into the buffer. |
| 53 | */ |
| 54 | SPtr<GpuParamBlockBuffer> createGpuSortParams(const GpuSortProperties& props) |
| 55 | { |
| 56 | SPtr<GpuParamBlockBuffer> buffer = gRadixSortParamsDef.createBuffer(); |
| 57 | |
| 58 | gRadixSortParamsDef.gTilesPerGroup.set(buffer, props.tilesPerGroup); |
| 59 | gRadixSortParamsDef.gNumGroups.set(buffer, props.numGroups); |
| 60 | gRadixSortParamsDef.gNumExtraTiles.set(buffer, props.extraTiles); |
| 61 | gRadixSortParamsDef.gNumExtraKeys.set(buffer, props.extraKeys); |
| 62 | gRadixSortParamsDef.gBitOffset.set(buffer, 0); |
| 63 | |
| 64 | return buffer; |
| 65 | } |
| 66 | |
| 67 | /** |
| 68 | * Checks can the provided buffer be used for GPU sort operation. Returns a pointer to the error message if check failed |
| 69 | * or nullptr if check passed. |
| 70 | */ |
| 71 | const char* checkSortBuffer(GpuBuffer& buffer) |
| 72 | { |
| 73 | static constexpr const char* INVALID_GPU_WRITE_MSG = |
| 74 | "All buffers provided to GpuSort must be created with GBU_LOADSTORE flags enabled." ; |
| 75 | static constexpr const char* INVALID_TYPE_MSG = |
| 76 | "All buffers provided to GpuSort must be of GBT_STANDARD type." ; |
| 77 | static constexpr const char* INVALID_FORMAT_MSG = |
| 78 | "All buffers provided to GpuSort must use a 32-bit unsigned integer format." ; |
| 79 | |
| 80 | const GpuBufferProperties& bufferProps = buffer.getProperties(); |
| 81 | if ((bufferProps.getUsage() & GBU_LOADSTORE) != GBU_LOADSTORE) |
| 82 | return INVALID_GPU_WRITE_MSG; |
| 83 | |
| 84 | if(bufferProps.getType() != GBT_STANDARD) |
| 85 | return INVALID_TYPE_MSG; |
| 86 | |
| 87 | if(bufferProps.getFormat() != BF_32X1U) |
| 88 | return INVALID_FORMAT_MSG; |
| 89 | |
| 90 | return nullptr; |
| 91 | } |
| 92 | |
| 93 | /** Creates a helper buffers used for storing intermediate information during GpuSort::sort. */ |
| 94 | SPtr<GpuBuffer> createHelperBuffer() |
| 95 | { |
| 96 | GPU_BUFFER_DESC desc; |
| 97 | desc.elementCount = MAX_NUM_GROUPS * NUM_DIGITS; |
| 98 | desc.format = BF_32X1U; |
| 99 | desc.usage = GBU_LOADSTORE; |
| 100 | desc.type = GBT_STANDARD; |
| 101 | |
| 102 | return GpuBuffer::create(desc); |
| 103 | } |
| 104 | |
| 105 | RadixSortClearMat::RadixSortClearMat() |
| 106 | { |
| 107 | mParams->getBufferParam(GPT_COMPUTE_PROGRAM, "gOutput" , mOutputParam); |
| 108 | } |
| 109 | |
| 110 | void RadixSortClearMat::_initDefines(ShaderDefines& defines) |
| 111 | { |
| 112 | initCommonDefines(defines); |
| 113 | } |
| 114 | |
| 115 | void RadixSortClearMat::execute(const SPtr<GpuBuffer>& outputOffsets) |
| 116 | { |
| 117 | BS_RENMAT_PROFILE_BLOCK |
| 118 | |
| 119 | mOutputParam.set(outputOffsets); |
| 120 | |
| 121 | bind(); |
| 122 | RenderAPI::instance().dispatchCompute(1); |
| 123 | } |
| 124 | |
| 125 | RadixSortCountMat::RadixSortCountMat() |
| 126 | { |
| 127 | mParams->getBufferParam(GPT_COMPUTE_PROGRAM, "gInputKeys" , mInputKeysParam); |
| 128 | mParams->getBufferParam(GPT_COMPUTE_PROGRAM, "gOutputCounts" , mOutputCountsParam); |
| 129 | } |
| 130 | |
| 131 | void RadixSortCountMat::_initDefines(ShaderDefines& defines) |
| 132 | { |
| 133 | initCommonDefines(defines); |
| 134 | } |
| 135 | |
| 136 | void RadixSortCountMat::execute(UINT32 numGroups, const SPtr<GpuParamBlockBuffer>& params, |
| 137 | const SPtr<GpuBuffer>& inputKeys, const SPtr<GpuBuffer>& outputOffsets) |
| 138 | { |
| 139 | BS_RENMAT_PROFILE_BLOCK |
| 140 | |
| 141 | mInputKeysParam.set(inputKeys); |
| 142 | mOutputCountsParam.set(outputOffsets); |
| 143 | |
| 144 | mParams->setParamBlockBuffer("Params" , params); |
| 145 | |
| 146 | bind(); |
| 147 | RenderAPI::instance().dispatchCompute(numGroups); |
| 148 | } |
| 149 | |
| 150 | RadixSortPrefixScanMat::RadixSortPrefixScanMat() |
| 151 | { |
| 152 | mParams->getBufferParam(GPT_COMPUTE_PROGRAM, "gInputCounts" , mInputCountsParam); |
| 153 | mParams->getBufferParam(GPT_COMPUTE_PROGRAM, "gOutputOffsets" , mOutputOffsetsParam); |
| 154 | } |
| 155 | |
| 156 | void RadixSortPrefixScanMat::_initDefines(ShaderDefines& defines) |
| 157 | { |
| 158 | initCommonDefines(defines); |
| 159 | } |
| 160 | |
| 161 | void RadixSortPrefixScanMat::execute(const SPtr<GpuParamBlockBuffer>& params, const SPtr<GpuBuffer>& inputCounts, |
| 162 | const SPtr<GpuBuffer>& outputOffsets) |
| 163 | { |
| 164 | BS_RENMAT_PROFILE_BLOCK |
| 165 | |
| 166 | mInputCountsParam.set(inputCounts); |
| 167 | mOutputOffsetsParam.set(outputOffsets); |
| 168 | |
| 169 | mParams->setParamBlockBuffer("Params" , params); |
| 170 | |
| 171 | bind(); |
| 172 | RenderAPI::instance().dispatchCompute(1); |
| 173 | } |
| 174 | |
| 175 | RadixSortReorderMat::RadixSortReorderMat() |
| 176 | { |
| 177 | mParams->getBufferParam(GPT_COMPUTE_PROGRAM, "gInputOffsets" , mInputOffsetsBufferParam); |
| 178 | mParams->getBufferParam(GPT_COMPUTE_PROGRAM, "gInputKeys" , mInputKeysBufferParam); |
| 179 | mParams->getBufferParam(GPT_COMPUTE_PROGRAM, "gInputValues" , mInputValuesBufferParam); |
| 180 | mParams->getBufferParam(GPT_COMPUTE_PROGRAM, "gOutputKeys" , mOutputKeysBufferParam); |
| 181 | mParams->getBufferParam(GPT_COMPUTE_PROGRAM, "gOutputValues" , mOutputValuesBufferParam); |
| 182 | } |
| 183 | |
| 184 | void RadixSortReorderMat::_initDefines(ShaderDefines& defines) |
| 185 | { |
| 186 | initCommonDefines(defines); |
| 187 | } |
| 188 | |
| 189 | void RadixSortReorderMat::execute(UINT32 numGroups, const SPtr<GpuParamBlockBuffer>& params, |
| 190 | const SPtr<GpuBuffer>& inputPrefix, const GpuSortBuffers& buffers, UINT32 inputBufferIdx) |
| 191 | { |
| 192 | BS_RENMAT_PROFILE_BLOCK |
| 193 | |
| 194 | const UINT32 outputBufferIdx = (inputBufferIdx + 1) % 2; |
| 195 | |
| 196 | mInputOffsetsBufferParam.set(inputPrefix); |
| 197 | mInputKeysBufferParam.set(buffers.keys[inputBufferIdx]); |
| 198 | mInputValuesBufferParam.set(buffers.values[inputBufferIdx]); |
| 199 | mOutputKeysBufferParam.set(buffers.keys[outputBufferIdx]); |
| 200 | mOutputValuesBufferParam.set(buffers.values[outputBufferIdx]); |
| 201 | |
| 202 | mParams->setParamBlockBuffer("Params" , params); |
| 203 | |
| 204 | bind(); |
| 205 | RenderAPI::instance().dispatchCompute(numGroups); |
| 206 | } |
| 207 | |
| 208 | GpuSort::GpuSort() |
| 209 | { |
| 210 | mHelperBuffers[0] = createHelperBuffer(); |
| 211 | mHelperBuffers[1] = createHelperBuffer(); |
| 212 | } |
| 213 | |
| 214 | UINT32 GpuSort::sort(const GpuSortBuffers& buffers, UINT32 numKeys, UINT32 keyMask) |
| 215 | { |
| 216 | // Nothing to do if no input or output key buffers |
| 217 | if(buffers.keys[0] == nullptr || buffers.keys[1] == nullptr) |
| 218 | return 0; |
| 219 | |
| 220 | // Check if all buffers have been created with required options |
| 221 | const char* errorMsg = nullptr; |
| 222 | for(UINT32 i = 0; i < 2; i++) |
| 223 | { |
| 224 | errorMsg = checkSortBuffer(*buffers.keys[i]); |
| 225 | if(errorMsg) break; |
| 226 | |
| 227 | if(buffers.values[i]) |
| 228 | { |
| 229 | errorMsg = checkSortBuffer(*buffers.values[i]); |
| 230 | if(errorMsg) break; |
| 231 | } |
| 232 | } |
| 233 | |
| 234 | if(errorMsg) |
| 235 | { |
| 236 | LOGERR("GpuSort failed: " + String(errorMsg)); |
| 237 | return 0; |
| 238 | } |
| 239 | |
| 240 | // Check if all buffers have the same size |
| 241 | bool validSize = buffers.keys[0]->getSize() == buffers.keys[1]->getSize(); |
| 242 | if(buffers.values[0] && buffers.values[1]) |
| 243 | { |
| 244 | validSize = buffers.keys[0]->getSize() == buffers.values[0]->getSize() && |
| 245 | buffers.keys[0]->getSize() == buffers.values[1]->getSize(); |
| 246 | |
| 247 | } |
| 248 | |
| 249 | if (!validSize) |
| 250 | { |
| 251 | LOGERR("GpuSort failed: All sort buffers must have the same size." ); |
| 252 | return 0; |
| 253 | } |
| 254 | |
| 255 | const GpuSortProperties gpuSortProps(numKeys); |
| 256 | SPtr<GpuParamBlockBuffer> params = createGpuSortParams(gpuSortProps); |
| 257 | |
| 258 | UINT32 bitOffset = 0; |
| 259 | UINT32 inputBufferIdx = 0; |
| 260 | for(UINT32 i = 0; i < NUM_PASSES; i++) |
| 261 | { |
| 262 | if(((KEY_MASK << bitOffset) & keyMask) != 0) |
| 263 | { |
| 264 | gRadixSortParamsDef.gBitOffset.set(params, bitOffset); |
| 265 | |
| 266 | RadixSortClearMat::get()->execute(mHelperBuffers[0]); |
| 267 | RadixSortCountMat::get()->execute(gpuSortProps.numGroups, params, buffers.keys[inputBufferIdx], mHelperBuffers[0]); |
| 268 | RadixSortPrefixScanMat::get()->execute(params, mHelperBuffers[0], mHelperBuffers[1]); |
| 269 | RadixSortReorderMat::get()->execute(gpuSortProps.numGroups, params, mHelperBuffers[1], buffers, inputBufferIdx); |
| 270 | |
| 271 | inputBufferIdx = (inputBufferIdx + 1) % 2; |
| 272 | } |
| 273 | |
| 274 | bitOffset += RADIX_NUM_BITS; |
| 275 | } |
| 276 | |
| 277 | return inputBufferIdx; |
| 278 | } |
| 279 | |
| 280 | GpuSortBuffers GpuSort::createSortBuffers(UINT32 numElements, bool values) |
| 281 | { |
| 282 | GpuSortBuffers output; |
| 283 | |
| 284 | GPU_BUFFER_DESC bufferDesc; |
| 285 | bufferDesc.elementCount = numElements; |
| 286 | bufferDesc.format = BF_32X1U; |
| 287 | bufferDesc.type = GBT_STANDARD; |
| 288 | bufferDesc.usage = GBU_LOADSTORE; |
| 289 | |
| 290 | output.keys[0] = GpuBuffer::create(bufferDesc); |
| 291 | output.keys[1] = GpuBuffer::create(bufferDesc); |
| 292 | |
| 293 | if(values) |
| 294 | { |
| 295 | output.values[0] = GpuBuffer::create(bufferDesc); |
| 296 | output.values[1] = GpuBuffer::create(bufferDesc); |
| 297 | } |
| 298 | |
| 299 | return output; |
| 300 | } |
| 301 | |
| 302 | // Note: This test isn't currently hooked up anywhere. It might be a good idea to set it up as a unit test, but it would |
| 303 | // require exposing parts of GpuSort to the public, which I don't feel like it's worth doing just for a test. So instead |
| 304 | // just make sure to run the test below if you modify any of the GpuSort code. |
| 305 | void runSortTest() |
| 306 | { |
| 307 | // Generate test keys |
| 308 | static constexpr UINT32 NUM_INPUT_KEYS = 10000; |
| 309 | Vector<UINT32> inputKeys; |
| 310 | inputKeys.reserve(NUM_INPUT_KEYS); |
| 311 | |
| 312 | Random random; |
| 313 | for(UINT32 i = 0; i < NUM_INPUT_KEYS; i++) |
| 314 | inputKeys.push_back(random.getRange(0, 15) << 4 | std::min(NUM_DIGITS - 1, (i / (NUM_INPUT_KEYS / 16)))); |
| 315 | |
| 316 | const auto count = (UINT32)inputKeys.size(); |
| 317 | UINT32 bitOffset = 4; |
| 318 | UINT32 bitMask = (1 << RADIX_NUM_BITS) - 1; |
| 319 | |
| 320 | // Prepare buffers |
| 321 | const GpuSortProperties gpuSortProps(count); |
| 322 | SPtr<GpuParamBlockBuffer> params = createGpuSortParams(gpuSortProps); |
| 323 | |
| 324 | gRadixSortParamsDef.gBitOffset.set(params, bitOffset); |
| 325 | |
| 326 | GpuSortBuffers sortBuffers = GpuSort::createSortBuffers(count); |
| 327 | sortBuffers.keys[0]->writeData(0, sortBuffers.keys[0]->getSize(), inputKeys.data(), BWT_DISCARD); |
| 328 | |
| 329 | SPtr<GpuBuffer> helperBuffers[2]; |
| 330 | helperBuffers[0] = createHelperBuffer(); |
| 331 | helperBuffers[1] = createHelperBuffer(); |
| 332 | |
| 333 | //////////////////////////////////////////////////////////////////////////////////////////////////////////////////// |
| 334 | //////////////////////////////////////////// Count keys per group ////////////////////////////////////////////////// |
| 335 | //////////////////////////////////////////////////////////////////////////////////////////////////////////////////// |
| 336 | |
| 337 | // SERIAL: |
| 338 | Vector<UINT32> counts(gpuSortProps.numGroups * NUM_DIGITS); |
| 339 | for(UINT32 groupIdx = 0; groupIdx < gpuSortProps.numGroups; groupIdx++) |
| 340 | { |
| 341 | // Count keys per thread |
| 342 | UINT32 localCounts[NUM_THREADS * NUM_DIGITS] = { 0 }; |
| 343 | |
| 344 | UINT32 tileIdx; |
| 345 | UINT32 numTiles; |
| 346 | if(groupIdx < gpuSortProps.extraTiles) |
| 347 | { |
| 348 | numTiles = gpuSortProps.tilesPerGroup + 1; |
| 349 | tileIdx = groupIdx * numTiles; |
| 350 | } |
| 351 | else |
| 352 | { |
| 353 | numTiles = gpuSortProps.tilesPerGroup; |
| 354 | tileIdx = groupIdx * numTiles + gpuSortProps.extraTiles; |
| 355 | } |
| 356 | |
| 357 | UINT32 keyBegin = tileIdx * TILE_SIZE; |
| 358 | UINT32 keyEnd = keyBegin + numTiles * TILE_SIZE; |
| 359 | |
| 360 | while(keyBegin < keyEnd) |
| 361 | { |
| 362 | for(UINT32 threadIdx = 0; threadIdx < NUM_THREADS; threadIdx++) |
| 363 | { |
| 364 | UINT32 key = inputKeys[keyBegin + threadIdx]; |
| 365 | UINT32 digit = (key >> bitOffset) & bitMask; |
| 366 | |
| 367 | localCounts[threadIdx * NUM_DIGITS + digit] += 1; |
| 368 | } |
| 369 | |
| 370 | keyBegin += NUM_THREADS; |
| 371 | } |
| 372 | |
| 373 | if(groupIdx == (gpuSortProps.numGroups - 1)) |
| 374 | { |
| 375 | keyBegin = keyEnd; |
| 376 | keyEnd = keyBegin + gpuSortProps.extraKeys; |
| 377 | |
| 378 | while(keyBegin < keyEnd) |
| 379 | { |
| 380 | for (UINT32 threadIdx = 0; threadIdx < NUM_THREADS; threadIdx++) |
| 381 | { |
| 382 | if((keyBegin + threadIdx) < keyEnd) |
| 383 | { |
| 384 | UINT32 key = inputKeys[keyBegin + threadIdx]; |
| 385 | UINT32 digit = (key >> bitOffset) & bitMask; |
| 386 | |
| 387 | localCounts[threadIdx * NUM_DIGITS + digit] += 1; |
| 388 | } |
| 389 | } |
| 390 | |
| 391 | keyBegin += NUM_THREADS; |
| 392 | } |
| 393 | } |
| 394 | |
| 395 | // Sum up all key counts in a group |
| 396 | static constexpr UINT32 NUM_REDUCE_THREADS = 64; |
| 397 | static constexpr UINT32 NUM_REDUCE_THREADS_PER_DIGIT = NUM_REDUCE_THREADS / NUM_DIGITS; |
| 398 | static constexpr UINT32 NUM_REDUCE_ELEMS_PER_THREAD_PER_DIGIT = NUM_THREADS / NUM_REDUCE_THREADS_PER_DIGIT; |
| 399 | |
| 400 | UINT32 reduceCounters[NUM_REDUCE_THREADS] = { 0 }; |
| 401 | UINT32 reduceTotals[NUM_REDUCE_THREADS] = { 0 }; |
| 402 | for (UINT32 threadId = 0; threadId < NUM_THREADS; threadId++) |
| 403 | { |
| 404 | if(threadId < NUM_REDUCE_THREADS) |
| 405 | { |
| 406 | UINT32 digitIdx = threadId / NUM_REDUCE_THREADS_PER_DIGIT; |
| 407 | UINT32 setIdx = threadId & (NUM_REDUCE_THREADS_PER_DIGIT - 1); |
| 408 | |
| 409 | UINT32 total = 0; |
| 410 | for(UINT32 i = 0; i < NUM_REDUCE_ELEMS_PER_THREAD_PER_DIGIT; i++) |
| 411 | { |
| 412 | UINT32 threadIdx = (setIdx * NUM_REDUCE_ELEMS_PER_THREAD_PER_DIGIT + i) * NUM_DIGITS; |
| 413 | total += localCounts[threadIdx + digitIdx]; |
| 414 | } |
| 415 | |
| 416 | reduceCounters[digitIdx * NUM_REDUCE_THREADS_PER_DIGIT + setIdx] = total; |
| 417 | reduceTotals[threadId] = total; |
| 418 | |
| 419 | } |
| 420 | } |
| 421 | |
| 422 | // And do parallel reduction on the result of serial additions |
| 423 | for (UINT32 i = 1; i < NUM_REDUCE_THREADS_PER_DIGIT; i <<= 1) |
| 424 | { |
| 425 | for (UINT32 threadId = 0; threadId < NUM_THREADS; threadId++) |
| 426 | { |
| 427 | if (threadId < NUM_REDUCE_THREADS) |
| 428 | { |
| 429 | UINT32 digitIdx = threadId / NUM_REDUCE_THREADS_PER_DIGIT; |
| 430 | UINT32 setIdx = threadId & (NUM_REDUCE_THREADS_PER_DIGIT - 1); |
| 431 | |
| 432 | reduceTotals[threadId] += reduceCounters[digitIdx * NUM_REDUCE_THREADS_PER_DIGIT + setIdx + i]; |
| 433 | } |
| 434 | } |
| 435 | |
| 436 | for (UINT32 threadId = 0; threadId < NUM_THREADS; threadId++) |
| 437 | { |
| 438 | if (threadId < NUM_REDUCE_THREADS) |
| 439 | { |
| 440 | UINT32 digitIdx = threadId / NUM_REDUCE_THREADS_PER_DIGIT; |
| 441 | UINT32 setIdx = threadId & (NUM_REDUCE_THREADS_PER_DIGIT - 1); |
| 442 | |
| 443 | reduceCounters[digitIdx * NUM_REDUCE_THREADS_PER_DIGIT + setIdx] = reduceTotals[threadId]; |
| 444 | } |
| 445 | } |
| 446 | } |
| 447 | |
| 448 | for (UINT32 threadId = 0; threadId < NUM_THREADS; threadId++) |
| 449 | { |
| 450 | if(threadId < NUM_DIGITS) |
| 451 | counts[groupIdx * NUM_DIGITS + threadId] = reduceCounters[threadId * NUM_REDUCE_THREADS_PER_DIGIT]; |
| 452 | } |
| 453 | } |
| 454 | |
| 455 | // PARALLEL: |
| 456 | RadixSortClearMat::get()->execute(helperBuffers[0]); |
| 457 | RadixSortCountMat::get()->execute(gpuSortProps.numGroups, params, sortBuffers.keys[0], helperBuffers[0]); |
| 458 | RenderAPI::instance().submitCommandBuffer(nullptr); |
| 459 | |
| 460 | // Compare with GPU count |
| 461 | const UINT32 helperBufferLength = helperBuffers[0]->getProperties().getElementCount(); |
| 462 | Vector<UINT32> bufferCounts(helperBufferLength); |
| 463 | helperBuffers[0]->readData(0, helperBufferLength * sizeof(UINT32), bufferCounts.data()); |
| 464 | |
| 465 | for(UINT32 i = 0; i < (UINT32)counts.size(); i++) |
| 466 | assert(bufferCounts[i] == counts[i]); |
| 467 | |
| 468 | //////////////////////////////////////////////////////////////////////////////////////////////////////////////////// |
| 469 | /////////////////////////////////////////////// Calculate offsets ////////////////////////////////////////////////// |
| 470 | //////////////////////////////////////////////////////////////////////////////////////////////////////////////////// |
| 471 | |
| 472 | // SERIAL: |
| 473 | // Prefix sum over per-digit counts over all groups |
| 474 | Vector<UINT32> perDigitPrefixSum(NUM_DIGITS * MAX_NUM_GROUPS); |
| 475 | for(UINT32 groupIdx = 0; groupIdx < gpuSortProps.numGroups; groupIdx++) |
| 476 | { |
| 477 | for (UINT32 j = 0; j < NUM_DIGITS; j++) |
| 478 | perDigitPrefixSum[groupIdx * NUM_DIGITS + j] = counts[groupIdx * NUM_DIGITS + j]; |
| 479 | } |
| 480 | |
| 481 | // Prefix sum over per-digit counts over all groups |
| 482 | //// Upsweep |
| 483 | UINT32 offset = 1; |
| 484 | for (UINT32 i = MAX_NUM_GROUPS >> 1; i > 0; i >>= 1) |
| 485 | { |
| 486 | for (UINT32 groupIdx = 0; groupIdx < MAX_NUM_GROUPS; groupIdx++) |
| 487 | { |
| 488 | if (groupIdx < i) |
| 489 | { |
| 490 | for (UINT32 j = 0; j < NUM_DIGITS; j++) |
| 491 | { |
| 492 | UINT32 idx0 = (offset * (2 * groupIdx + 1) - 1) * NUM_DIGITS + j; |
| 493 | UINT32 idx1 = (offset * (2 * groupIdx + 2) - 1) * NUM_DIGITS + j; |
| 494 | |
| 495 | perDigitPrefixSum[idx1] += perDigitPrefixSum[idx0]; |
| 496 | } |
| 497 | } |
| 498 | } |
| 499 | |
| 500 | offset <<= 1; |
| 501 | } |
| 502 | |
| 503 | //// Downsweep |
| 504 | UINT32 totalsPrefixSum[NUM_DIGITS] = { 0 }; |
| 505 | for(UINT32 groupIdx = 0; groupIdx < NUM_DIGITS; groupIdx++) |
| 506 | { |
| 507 | if (groupIdx < NUM_DIGITS) |
| 508 | { |
| 509 | UINT32 idx = (MAX_NUM_GROUPS - 1) * NUM_DIGITS + groupIdx; |
| 510 | totalsPrefixSum[groupIdx] = perDigitPrefixSum[idx]; |
| 511 | perDigitPrefixSum[idx] = 0; |
| 512 | } |
| 513 | } |
| 514 | |
| 515 | for (UINT32 i = 1; i < MAX_NUM_GROUPS; i <<= 1) |
| 516 | { |
| 517 | offset >>= 1; |
| 518 | |
| 519 | for (UINT32 groupIdx = 0; groupIdx < MAX_NUM_GROUPS; groupIdx++) |
| 520 | { |
| 521 | if (groupIdx < i) |
| 522 | { |
| 523 | for (UINT32 j = 0; j < NUM_DIGITS; j++) |
| 524 | { |
| 525 | UINT32 idx0 = (offset * (2 * groupIdx + 1) - 1) * NUM_DIGITS + j; |
| 526 | UINT32 idx1 = (offset * (2 * groupIdx + 2) - 1) * NUM_DIGITS + j; |
| 527 | |
| 528 | UINT32 temp = perDigitPrefixSum[idx0]; |
| 529 | perDigitPrefixSum[idx0] = perDigitPrefixSum[idx1]; |
| 530 | perDigitPrefixSum[idx1] += temp; |
| 531 | } |
| 532 | } |
| 533 | } |
| 534 | } |
| 535 | |
| 536 | // Prefix sum over the total count |
| 537 | for(UINT32 i = 1; i < NUM_DIGITS; i++) |
| 538 | totalsPrefixSum[i] += totalsPrefixSum[i - 1]; |
| 539 | |
| 540 | // Make it exclusive by shifting |
| 541 | for(UINT32 i = NUM_DIGITS - 1; i > 0; i--) |
| 542 | totalsPrefixSum[i] = totalsPrefixSum[i - 1]; |
| 543 | |
| 544 | totalsPrefixSum[0] = 0; |
| 545 | |
| 546 | Vector<UINT32> offsets(gpuSortProps.numGroups * NUM_DIGITS); |
| 547 | for (UINT32 groupIdx = 0; groupIdx < gpuSortProps.numGroups; groupIdx++) |
| 548 | { |
| 549 | for (UINT32 i = 0; i < NUM_DIGITS; i++) |
| 550 | offsets[groupIdx * NUM_DIGITS + i] = totalsPrefixSum[i] + perDigitPrefixSum[groupIdx * NUM_DIGITS + i]; |
| 551 | } |
| 552 | |
| 553 | // PARALLEL: |
| 554 | RadixSortPrefixScanMat::get()->execute(params, helperBuffers[0], helperBuffers[1]); |
| 555 | RenderAPI::instance().submitCommandBuffer(nullptr); |
| 556 | |
| 557 | // Compare with GPU offsets |
| 558 | Vector<UINT32> bufferOffsets(helperBufferLength); |
| 559 | helperBuffers[1]->readData(0, helperBufferLength * sizeof(UINT32), bufferOffsets.data()); |
| 560 | |
| 561 | for(UINT32 i = 0; i < (UINT32)offsets.size(); i++) |
| 562 | assert(bufferOffsets[i] == offsets[i]); |
| 563 | |
| 564 | //////////////////////////////////////////////////////////////////////////////////////////////////////////////////// |
| 565 | /////////////////////////////////////////////////// Reorder //////////////////////////////////////////////////////// |
| 566 | //////////////////////////////////////////////////////////////////////////////////////////////////////////////////// |
| 567 | |
| 568 | // SERIAL: |
| 569 | // Reorder within each tile |
| 570 | Vector<UINT32> sortedKeys(inputKeys.size()); |
| 571 | UINT32 sGroupOffsets[NUM_DIGITS]; |
| 572 | UINT32 sLocalScratch[NUM_DIGITS * NUM_THREADS]; |
| 573 | UINT32 sTileTotals[NUM_DIGITS]; |
| 574 | UINT32 sCurrentTileTotal[NUM_DIGITS]; |
| 575 | |
| 576 | for(UINT32 groupIdx = 0; groupIdx < gpuSortProps.numGroups; groupIdx++) |
| 577 | { |
| 578 | for(UINT32 i = 0; i < NUM_DIGITS; i++) |
| 579 | { |
| 580 | // Load offsets for this group to local memory |
| 581 | sGroupOffsets[i] = offsets[groupIdx * NUM_DIGITS + i]; |
| 582 | |
| 583 | // Clear tile totals |
| 584 | sTileTotals[i] = 0; |
| 585 | } |
| 586 | |
| 587 | // Handle case when number of tiles isn't exactly divisible by number of groups, in |
| 588 | // which case first N groups handle those extra tiles |
| 589 | UINT32 tileIdx; |
| 590 | UINT32 numTiles; |
| 591 | if(groupIdx < gpuSortProps.extraTiles) |
| 592 | { |
| 593 | numTiles = gpuSortProps.tilesPerGroup + 1; |
| 594 | tileIdx = groupIdx * numTiles; |
| 595 | } |
| 596 | else |
| 597 | { |
| 598 | numTiles = gpuSortProps.tilesPerGroup; |
| 599 | tileIdx = groupIdx * numTiles + gpuSortProps.extraTiles; |
| 600 | } |
| 601 | |
| 602 | // We need to generate per-thread offsets (prefix sum) of where to store the keys at |
| 603 | // (This is equivalent to what was done in count & prefix sum shaders, except that was done per-group) |
| 604 | |
| 605 | //// First, count all digits |
| 606 | UINT32 keyBegin[NUM_THREADS]; |
| 607 | for(UINT32 threadId = 0; threadId < NUM_THREADS; threadId++) |
| 608 | keyBegin[threadId] = tileIdx * TILE_SIZE; |
| 609 | |
| 610 | auto prefixSum = [&sLocalScratch, &sCurrentTileTotal]() |
| 611 | { |
| 612 | // Upsweep to generate partial sums |
| 613 | UINT32 offsets[NUM_THREADS]; |
| 614 | for (UINT32 threadId = 0; threadId < NUM_THREADS; threadId++) |
| 615 | offsets[threadId] = 1; |
| 616 | |
| 617 | for (UINT32 i = NUM_THREADS >> 1; i > 0; i >>= 1) |
| 618 | { |
| 619 | for (UINT32 threadId = 0; threadId < NUM_THREADS; threadId++) |
| 620 | { |
| 621 | if (threadId < i) |
| 622 | { |
| 623 | // Note: If I run more than NUM_THREADS threads I wouldn't have to |
| 624 | // iterate over all digits in a single thread |
| 625 | // Note: Perhaps run part of this step serially for better performance |
| 626 | for (UINT32 j = 0; j < NUM_DIGITS; j++) |
| 627 | { |
| 628 | UINT32 idx0 = (offsets[threadId] * (2 * threadId + 1) - 1) * NUM_DIGITS + j; |
| 629 | UINT32 idx1 = (offsets[threadId] * (2 * threadId + 2) - 1) * NUM_DIGITS + j; |
| 630 | |
| 631 | // Note: Check and remove bank conflicts |
| 632 | sLocalScratch[idx1] += sLocalScratch[idx0]; |
| 633 | } |
| 634 | } |
| 635 | |
| 636 | offsets[threadId] <<= 1; |
| 637 | } |
| 638 | } |
| 639 | |
| 640 | // Set tree roots to zero (prepare for downsweep) |
| 641 | for (UINT32 threadId = 0; threadId < NUM_THREADS; threadId++) |
| 642 | { |
| 643 | if (threadId < NUM_DIGITS) |
| 644 | { |
| 645 | UINT32 idx = (NUM_THREADS - 1) * NUM_DIGITS + threadId; |
| 646 | sCurrentTileTotal[threadId] = sLocalScratch[idx]; |
| 647 | |
| 648 | sLocalScratch[idx] = 0; |
| 649 | } |
| 650 | } |
| 651 | |
| 652 | // Downsweep to calculate the prefix sum from partial sums that were generated |
| 653 | // during upsweep |
| 654 | for (UINT32 i = 1; i < NUM_THREADS; i <<= 1) |
| 655 | { |
| 656 | for (UINT32 threadId = 0; threadId < NUM_THREADS; threadId++) |
| 657 | { |
| 658 | offsets[threadId] >>= 1; |
| 659 | |
| 660 | if (threadId < i) |
| 661 | { |
| 662 | for (UINT32 j = 0; j < NUM_DIGITS; j++) |
| 663 | { |
| 664 | UINT32 idx0 = (offsets[threadId] * (2 * threadId + 1) - 1) * NUM_DIGITS + j; |
| 665 | UINT32 idx1 = (offsets[threadId] * (2 * threadId + 2) - 1) * NUM_DIGITS + j; |
| 666 | |
| 667 | // Note: Check and resolve bank conflicts |
| 668 | UINT32 temp = sLocalScratch[idx0]; |
| 669 | sLocalScratch[idx0] = sLocalScratch[idx1]; |
| 670 | sLocalScratch[idx1] += temp; |
| 671 | } |
| 672 | } |
| 673 | } |
| 674 | } |
| 675 | }; |
| 676 | |
| 677 | for(UINT32 tileIdx = 0; tileIdx < numTiles; tileIdx++) |
| 678 | { |
| 679 | // Zero out local counter |
| 680 | for (UINT32 threadId = 0; threadId < NUM_THREADS; threadId++) |
| 681 | for (UINT32 i = 0; i < NUM_DIGITS; i++) |
| 682 | sLocalScratch[i * NUM_THREADS + threadId] = 0; |
| 683 | |
| 684 | for (UINT32 threadId = 0; threadId < NUM_THREADS; threadId++) |
| 685 | { |
| 686 | for (UINT32 i = 0; i < KEYS_PER_LOOP; i++) |
| 687 | { |
| 688 | UINT32 idx = keyBegin[threadId] + threadId * KEYS_PER_LOOP + i; |
| 689 | UINT32 key = inputKeys[idx]; |
| 690 | UINT32 digit = (key >> bitOffset) & KEY_MASK; |
| 691 | |
| 692 | sLocalScratch[threadId * NUM_DIGITS + digit] += 1; |
| 693 | } |
| 694 | } |
| 695 | |
| 696 | prefixSum(); |
| 697 | |
| 698 | // Actually re-order the keys |
| 699 | for (UINT32 threadId = 0; threadId < NUM_THREADS; threadId++) |
| 700 | { |
| 701 | UINT32 localOffsets[NUM_DIGITS]; |
| 702 | for (UINT32 i = 0; i < NUM_DIGITS; i++) |
| 703 | localOffsets[i] = 0; |
| 704 | |
| 705 | for (UINT32 i = 0; i < KEYS_PER_LOOP; i++) |
| 706 | { |
| 707 | UINT32 idx = keyBegin[threadId] + threadId * KEYS_PER_LOOP + i; |
| 708 | UINT32 key = inputKeys[idx]; |
| 709 | UINT32 digit = (key >> bitOffset) & KEY_MASK; |
| 710 | |
| 711 | UINT32 offset = sGroupOffsets[digit] + sTileTotals[digit] + sLocalScratch[threadId * NUM_DIGITS + digit] + localOffsets[digit]; |
| 712 | localOffsets[digit]++; |
| 713 | |
| 714 | // Note: First write to local memory then attempt to coalesce when writing to global? |
| 715 | sortedKeys[offset] = key; |
| 716 | } |
| 717 | } |
| 718 | |
| 719 | // Update tile totals |
| 720 | for (UINT32 threadId = 0; threadId < NUM_THREADS; threadId++) |
| 721 | { |
| 722 | if (threadId < NUM_DIGITS) |
| 723 | sTileTotals[threadId] += sCurrentTileTotal[threadId]; |
| 724 | } |
| 725 | |
| 726 | for (UINT32 threadId = 0; threadId < NUM_THREADS; threadId++) |
| 727 | keyBegin[threadId] += TILE_SIZE; |
| 728 | } |
| 729 | |
| 730 | if (groupIdx == (gpuSortProps.numGroups - 1) && gpuSortProps.extraKeys > 0) |
| 731 | { |
| 732 | // Zero out local counter |
| 733 | for (UINT32 threadId = 0; threadId < NUM_THREADS; threadId++) |
| 734 | for (UINT32 i = 0; i < NUM_DIGITS; i++) |
| 735 | sLocalScratch[i * NUM_THREADS + threadId] = 0; |
| 736 | |
| 737 | for (UINT32 threadId = 0; threadId < NUM_THREADS; threadId++) |
| 738 | { |
| 739 | for (UINT32 i = 0; i < KEYS_PER_LOOP; i++) |
| 740 | { |
| 741 | UINT32 localIdx = threadId * KEYS_PER_LOOP + i; |
| 742 | |
| 743 | if (localIdx >= gpuSortProps.extraKeys) |
| 744 | continue; |
| 745 | |
| 746 | UINT32 idx = keyBegin[threadId] + localIdx; |
| 747 | UINT32 key = inputKeys[idx]; |
| 748 | UINT32 digit = (key >> bitOffset) & KEY_MASK; |
| 749 | |
| 750 | sLocalScratch[threadId * NUM_DIGITS + digit] += 1; |
| 751 | } |
| 752 | } |
| 753 | |
| 754 | prefixSum(); |
| 755 | |
| 756 | // Actually re-order the keys |
| 757 | for (UINT32 threadId = 0; threadId < NUM_THREADS; threadId++) |
| 758 | { |
| 759 | UINT32 localOffsets[NUM_DIGITS]; |
| 760 | for (UINT32 i = 0; i < NUM_DIGITS; i++) |
| 761 | localOffsets[i] = 0; |
| 762 | |
| 763 | for (UINT32 i = 0; i < KEYS_PER_LOOP; i++) |
| 764 | { |
| 765 | UINT32 localIdx = threadId * KEYS_PER_LOOP + i; |
| 766 | |
| 767 | if (localIdx >= gpuSortProps.extraKeys) |
| 768 | continue; |
| 769 | |
| 770 | UINT32 idx = keyBegin[threadId] + localIdx; |
| 771 | UINT32 key = inputKeys[idx]; |
| 772 | UINT32 digit = (key >> bitOffset) & KEY_MASK; |
| 773 | |
| 774 | UINT32 offset = sGroupOffsets[digit] + sTileTotals[digit] + sLocalScratch[threadId * NUM_DIGITS + digit] + localOffsets[digit]; |
| 775 | localOffsets[digit]++; |
| 776 | |
| 777 | // Note: First write to local memory then attempt to coalesce when writing to global? |
| 778 | sortedKeys[offset] = key; |
| 779 | } |
| 780 | } |
| 781 | } |
| 782 | } |
| 783 | |
| 784 | // PARALLEL: |
| 785 | RadixSortReorderMat::get()->execute(gpuSortProps.numGroups, params, helperBuffers[1], sortBuffers, 0); |
| 786 | RenderAPI::instance().submitCommandBuffer(nullptr); |
| 787 | |
| 788 | // Compare with GPU keys |
| 789 | Vector<UINT32> bufferSortedKeys(count); |
| 790 | sortBuffers.keys[1]->readData(0, count * sizeof(UINT32), bufferSortedKeys.data()); |
| 791 | |
| 792 | for(UINT32 i = 0; i < count; i++) |
| 793 | assert(bufferSortedKeys[i] == sortedKeys[i]); |
| 794 | |
| 795 | // Ensure everything is actually sorted |
| 796 | assert(std::is_sorted(sortedKeys.begin(), sortedKeys.end())); |
| 797 | } |
| 798 | }} |
| 799 | |