1 | /* |
2 | * Copyright 2019 Google LLC. |
3 | * |
4 | * Use of this source code is governed by a BSD-style license that can be |
5 | * found in the LICENSE file. |
6 | */ |
7 | |
8 | #include "src/gpu/tessellate/GrStencilPathShader.h" |
9 | |
10 | #include "src/gpu/glsl/GrGLSLGeometryProcessor.h" |
11 | #include "src/gpu/glsl/GrGLSLVarying.h" |
12 | #include "src/gpu/glsl/GrGLSLVertexGeoBuilder.h" |
13 | |
14 | // Wang's formula for cubics (1985) gives us the number of evenly spaced (in the |
15 | // parametric sense) line segments that are guaranteed to be within a distance of |
16 | // "MAX_LINEARIZATION_ERROR" from the actual curve. |
17 | constexpr static char kWangsFormulaCubicFn[] = R"( |
18 | #define MAX_LINEARIZATION_ERROR 0.25 // 1/4 pixel |
19 | float wangs_formula_cubic(vec2 p0, vec2 p1, vec2 p2, vec2 p3) { |
20 | float k = (3.0 * 2.0) / (8.0 * MAX_LINEARIZATION_ERROR); |
21 | float f = sqrt(k * length(max(abs(p2 - p1*2.0 + p0), |
22 | abs(p3 - p2*2.0 + p1)))); |
23 | return max(1.0, ceil(f)); |
24 | })" ; |
25 | |
26 | // Evaluate our point of interest using numerically stable mix() operations. |
27 | constexpr static char kEvalCubicFn[] = R"( |
28 | vec2 eval_cubic(mat4x2 P, float T) { |
29 | vec2 ab = mix(P[0], P[1], T); |
30 | vec2 bc = mix(P[1], P[2], T); |
31 | vec2 cd = mix(P[2], P[3], T); |
32 | vec2 abc = mix(ab, bc, T); |
33 | vec2 bcd = mix(bc, cd, T); |
34 | return mix(abc, bcd, T); |
35 | })" ; |
36 | |
37 | class GrStencilPathShader::Impl : public GrGLSLGeometryProcessor { |
38 | protected: |
39 | void onEmitCode(EmitArgs& args, GrGPArgs* gpArgs) override { |
40 | const auto& shader = args.fGP.cast<GrStencilPathShader>(); |
41 | args.fVaryingHandler->emitAttributes(shader); |
42 | |
43 | GrShaderVar vertexPos = (*shader.vertexAttributes().begin()).asShaderVar(); |
44 | if (!shader.viewMatrix().isIdentity()) { |
45 | const char* viewMatrix; |
46 | fViewMatrixUniform = args.fUniformHandler->addUniform( |
47 | nullptr, kVertex_GrShaderFlag, kFloat3x3_GrSLType, "view_matrix" , &viewMatrix); |
48 | args.fVertBuilder->codeAppendf( |
49 | "float2 vertexpos = (%s * float3(inputPoint, 1)).xy;" , viewMatrix); |
50 | vertexPos.set(kFloat2_GrSLType, "vertexpos" ); |
51 | } |
52 | |
53 | if (!shader.willUseTessellationShaders()) { |
54 | gpArgs->fPositionVar = vertexPos; |
55 | } else { |
56 | args.fVertBuilder->declareGlobal(GrShaderVar( |
57 | "P" , kFloat2_GrSLType, GrShaderVar::TypeModifier::Out)); |
58 | args.fVertBuilder->codeAppendf("P = %s;" , vertexPos.c_str()); |
59 | } |
60 | |
61 | // No fragment shader. |
62 | } |
63 | |
64 | void setData(const GrGLSLProgramDataManager& pdman, |
65 | const GrPrimitiveProcessor& primProc) override { |
66 | const auto& shader = primProc.cast<GrStencilPathShader>(); |
67 | if (!shader.viewMatrix().isIdentity()) { |
68 | pdman.setSkMatrix(fViewMatrixUniform, shader.viewMatrix()); |
69 | } |
70 | } |
71 | |
72 | GrGLSLUniformHandler::UniformHandle fViewMatrixUniform; |
73 | }; |
74 | |
75 | GrGLSLPrimitiveProcessor* GrStencilPathShader::createGLSLInstance(const GrShaderCaps&) const { |
76 | return new Impl; |
77 | } |
78 | |
79 | SkString GrCubicTessellateShader::getTessControlShaderGLSL(const GrGLSLPrimitiveProcessor*, |
80 | const char* versionAndExtensionDecls, |
81 | const GrGLSLUniformHandler&, |
82 | const GrShaderCaps&) const { |
83 | SkString code(versionAndExtensionDecls); |
84 | code.append(kWangsFormulaCubicFn); |
85 | code.append(R"( |
86 | layout(vertices = 1) out; |
87 | |
88 | in vec2 P[]; |
89 | out vec4 X[]; |
90 | out vec4 Y[]; |
91 | |
92 | void main() { |
93 | // Chop the curve at T=1/2. |
94 | vec2 ab = mix(P[0], P[1], .5); |
95 | vec2 bc = mix(P[1], P[2], .5); |
96 | vec2 cd = mix(P[2], P[3], .5); |
97 | vec2 abc = mix(ab, bc, .5); |
98 | vec2 bcd = mix(bc, cd, .5); |
99 | vec2 abcd = mix(abc, bcd, .5); |
100 | |
101 | // Calculate how many triangles we need to linearize each half of the curve. |
102 | float l0 = wangs_formula_cubic(P[0], ab, abc, abcd); |
103 | float l1 = wangs_formula_cubic(abcd, bcd, cd, P[3]); |
104 | |
105 | gl_TessLevelOuter[0] = l1; |
106 | gl_TessLevelOuter[1] = 1.0; |
107 | gl_TessLevelOuter[2] = l0; |
108 | |
109 | // Changing the inner level to 1 when l0 == l1 == 1 collapses the entire patch to a |
110 | // single triangle. Otherwise, we need an inner level of 2 so our curve triangles |
111 | // have an interior point to originate from. |
112 | gl_TessLevelInner[0] = min(max(l0, l1), 2.0); |
113 | |
114 | X[gl_InvocationID /*== 0*/] = vec4(P[0].x, P[1].x, P[2].x, P[3].x); |
115 | Y[gl_InvocationID /*== 0*/] = vec4(P[0].y, P[1].y, P[2].y, P[3].y); |
116 | })" ); |
117 | |
118 | return code; |
119 | } |
120 | |
121 | SkString GrCubicTessellateShader::getTessEvaluationShaderGLSL( |
122 | const GrGLSLPrimitiveProcessor*, const char* versionAndExtensionDecls, |
123 | const GrGLSLUniformHandler&, const GrShaderCaps&) const { |
124 | SkString code(versionAndExtensionDecls); |
125 | code.append(kEvalCubicFn); |
126 | code.append(R"( |
127 | layout(triangles, equal_spacing, ccw) in; |
128 | |
129 | uniform vec4 sk_RTAdjust; |
130 | |
131 | in vec4 X[]; |
132 | in vec4 Y[]; |
133 | |
134 | void main() { |
135 | // Locate our parametric point of interest. T ramps from [0..1/2] on the left edge |
136 | // of the triangle, and [1/2..1] on the right. If we are the patch's interior |
137 | // vertex, then we want T=1/2. Since the barycentric coords are (1/3, 1/3, 1/3) at |
138 | // the interior vertex, the below fma() works in all 3 scenarios. |
139 | float T = fma(.5, gl_TessCoord.y, gl_TessCoord.z); |
140 | |
141 | mat4x2 P = transpose(mat2x4(X[0], Y[0])); |
142 | vec2 vertexpos = eval_cubic(P, T); |
143 | if (all(notEqual(gl_TessCoord.xz, vec2(0)))) { |
144 | // We are the interior point of the patch; center it inside [C(0), C(.5), C(1)]. |
145 | vertexpos = (P[0] + vertexpos + P[3]) / 3.0; |
146 | } |
147 | |
148 | gl_Position = vec4(vertexpos * sk_RTAdjust.xz + sk_RTAdjust.yw, 0.0, 1.0); |
149 | })" ); |
150 | |
151 | return code; |
152 | } |
153 | |
154 | SkString GrWedgeTessellateShader::getTessControlShaderGLSL(const GrGLSLPrimitiveProcessor*, |
155 | const char* versionAndExtensionDecls, |
156 | const GrGLSLUniformHandler&, |
157 | const GrShaderCaps&) const { |
158 | SkString code(versionAndExtensionDecls); |
159 | code.append(kWangsFormulaCubicFn); |
160 | code.append(R"( |
161 | layout(vertices = 1) out; |
162 | |
163 | in vec2 P[]; |
164 | out vec4 X[]; |
165 | out vec4 Y[]; |
166 | out vec2 fanpoint[]; |
167 | |
168 | void main() { |
169 | // Calculate how many triangles we need to linearize the curve. |
170 | float num_segments = wangs_formula_cubic(P[0], P[1], P[2], P[3]); |
171 | |
172 | // Tessellate the first side of the patch into num_segments triangles. |
173 | gl_TessLevelOuter[0] = num_segments; |
174 | |
175 | // Leave the other two sides of the patch as single segments. |
176 | gl_TessLevelOuter[1] = 1.0; |
177 | gl_TessLevelOuter[2] = 1.0; |
178 | |
179 | // Changing the inner level to 1 when num_segments == 1 collapses the entire |
180 | // patch to a single triangle. Otherwise, we need an inner level of 2 so our curve |
181 | // triangles have an interior point to originate from. |
182 | gl_TessLevelInner[0] = min(num_segments, 2.0); |
183 | |
184 | X[gl_InvocationID /*== 0*/] = vec4(P[0].x, P[1].x, P[2].x, P[3].x); |
185 | Y[gl_InvocationID /*== 0*/] = vec4(P[0].y, P[1].y, P[2].y, P[3].y); |
186 | fanpoint[gl_InvocationID /*== 0*/] = P[4]; |
187 | })" ); |
188 | |
189 | return code; |
190 | } |
191 | |
192 | SkString GrWedgeTessellateShader::getTessEvaluationShaderGLSL( |
193 | const GrGLSLPrimitiveProcessor*, const char* versionAndExtensionDecls, |
194 | const GrGLSLUniformHandler&, const GrShaderCaps&) const { |
195 | SkString code(versionAndExtensionDecls); |
196 | code.append(kEvalCubicFn); |
197 | code.append(R"( |
198 | layout(triangles, equal_spacing, ccw) in; |
199 | |
200 | uniform vec4 sk_RTAdjust; |
201 | |
202 | in vec4 X[]; |
203 | in vec4 Y[]; |
204 | in vec2 fanpoint[]; |
205 | |
206 | void main() { |
207 | // Locate our parametric point of interest. It is equal to the barycentric |
208 | // y-coordinate if we are a vertex on the tessellated edge of the triangle patch, |
209 | // 0.5 if we are the patch's interior vertex, or N/A if we are the fan point. |
210 | // NOTE: We are on the tessellated edge when the barycentric x-coordinate == 0. |
211 | float T = (gl_TessCoord.x == 0.0) ? gl_TessCoord.y : 0.5; |
212 | |
213 | mat4x2 P = transpose(mat2x4(X[0], Y[0])); |
214 | vec2 vertexpos = eval_cubic(P, T); |
215 | if (gl_TessCoord.x == 1.0) { |
216 | // We are the anchor point that fans from the center of the curve's contour. |
217 | vertexpos = fanpoint[0]; |
218 | } else if (gl_TessCoord.x != 0.0) { |
219 | // We are the interior point of the patch; center it inside [C(0), C(.5), C(1)]. |
220 | vertexpos = (P[0] + vertexpos + P[3]) / 3.0; |
221 | } |
222 | |
223 | gl_Position = vec4(vertexpos * sk_RTAdjust.xz + sk_RTAdjust.yw, 0.0, 1.0); |
224 | })" ); |
225 | |
226 | return code; |
227 | } |
228 | |
229 | constexpr static int kMaxResolveLevel = GrTessellationPathRenderer::kMaxResolveLevel; |
230 | |
231 | GR_DECLARE_STATIC_UNIQUE_KEY(gMiddleOutIndexBufferKey); |
232 | |
233 | sk_sp<const GrGpuBuffer> GrMiddleOutCubicShader::FindOrMakeMiddleOutIndexBuffer( |
234 | GrResourceProvider* resourceProvider) { |
235 | GR_DEFINE_STATIC_UNIQUE_KEY(gMiddleOutIndexBufferKey); |
236 | if (auto buffer = resourceProvider->findByUniqueKey<GrGpuBuffer>(gMiddleOutIndexBufferKey)) { |
237 | return std::move(buffer); |
238 | } |
239 | |
240 | // One explicit triangle at index 0, and one middle-out cubic with kMaxResolveLevel line |
241 | // segments beginning at index 3. |
242 | constexpr static int kIndexCount = 3 + NumVerticesAtResolveLevel(kMaxResolveLevel); |
243 | auto buffer = resourceProvider->createBuffer( |
244 | kIndexCount * sizeof(uint16_t), GrGpuBufferType::kIndex, kStatic_GrAccessPattern); |
245 | if (!buffer) { |
246 | return nullptr; |
247 | } |
248 | |
249 | // We shouldn't bin and/or cache static buffers. |
250 | SkASSERT(buffer->size() == kIndexCount * sizeof(uint16_t)); |
251 | SkASSERT(!buffer->resourcePriv().getScratchKey().isValid()); |
252 | auto indexData = static_cast<uint16_t*>(buffer->map()); |
253 | SkAutoTMalloc<uint16_t> stagingBuffer; |
254 | if (!indexData) { |
255 | SkASSERT(!buffer->isMapped()); |
256 | indexData = stagingBuffer.reset(kIndexCount); |
257 | } |
258 | |
259 | // Indices 0,1,2 contain special values that emit points P0, P1, and P2 respectively. (When the |
260 | // vertex shader is fed an index value larger than (1 << kMaxResolveLevel), it emits |
261 | // P[index % 4].) |
262 | int i = 0; |
263 | indexData[i++] = (1 << kMaxResolveLevel) + 4; // % 4 == 0 |
264 | indexData[i++] = (1 << kMaxResolveLevel) + 5; // % 4 == 1 |
265 | indexData[i++] = (1 << kMaxResolveLevel) + 6; // % 4 == 2 |
266 | |
267 | // Starting at index 3, we triangulate a cubic with 2^kMaxResolveLevel line segments. Each |
268 | // index value corresponds to parametric value T=(index / 2^kMaxResolveLevel). Since the |
269 | // triangles are arranged in "middle-out" order, we will be able to conveniently control the |
270 | // resolveLevel by changing only the indexCount. |
271 | for (uint16_t advance = 1 << (kMaxResolveLevel - 1); advance; advance >>= 1) { |
272 | uint16_t T = 0; |
273 | do { |
274 | indexData[i++] = T; |
275 | indexData[i++] = (T += advance); |
276 | indexData[i++] = (T += advance); |
277 | } while (T != (1 << kMaxResolveLevel)); |
278 | } |
279 | SkASSERT(i == kIndexCount); |
280 | |
281 | if (buffer->isMapped()) { |
282 | buffer->unmap(); |
283 | } else { |
284 | buffer->updateData(stagingBuffer, kIndexCount * sizeof(uint16_t)); |
285 | } |
286 | buffer->resourcePriv().setUniqueKey(gMiddleOutIndexBufferKey); |
287 | return std::move(buffer); |
288 | } |
289 | |
290 | class GrMiddleOutCubicShader::Impl : public GrStencilPathShader::Impl { |
291 | void onEmitCode(EmitArgs& args, GrGPArgs* gpArgs) override { |
292 | const auto& shader = args.fGP.cast<GrMiddleOutCubicShader>(); |
293 | args.fVaryingHandler->emitAttributes(shader); |
294 | args.fVertBuilder->defineConstant("kMaxResolveLevel" , kMaxResolveLevel); |
295 | args.fVertBuilder->codeAppend(R"( |
296 | float4x2 P = float4x2(inputPoints_0_1, inputPoints_2_3); |
297 | float2 point; |
298 | if (sk_VertexID > (1 << kMaxResolveLevel)) { |
299 | // This is a special index value that wants us to emit a specific point. |
300 | point = P[sk_VertexID & 3]; |
301 | } else {)" ); |
302 | // Evaluate the cubic at T=(sk_VertexID / 2^kMaxResolveLevel). |
303 | if (args.fShaderCaps->fpManipulationSupport()) { |
304 | args.fVertBuilder->codeAppend(R"( |
305 | float T = ldexp(sk_VertexID, -kMaxResolveLevel);)" ); |
306 | } else { |
307 | args.fVertBuilder->codeAppend(R"( |
308 | float T = sk_VertexID / float(1 << kMaxResolveLevel);)" ); |
309 | } |
310 | args.fVertBuilder->codeAppend(R"( |
311 | float2 ab = mix(P[0], P[1], T); |
312 | float2 bc = mix(P[1], P[2], T); |
313 | float2 cd = mix(P[2], P[3], T); |
314 | float2 abc = mix(ab, bc, T); |
315 | float2 bcd = mix(bc, cd, T); |
316 | point = mix(abc, bcd, T); |
317 | })" ); |
318 | |
319 | GrShaderVar vertexPos("point" , kFloat2_GrSLType); |
320 | if (!shader.viewMatrix().isIdentity()) { |
321 | const char* viewMatrix; |
322 | fViewMatrixUniform = args.fUniformHandler->addUniform( |
323 | nullptr, kVertex_GrShaderFlag, kFloat3x3_GrSLType, "view_matrix" , &viewMatrix); |
324 | args.fVertBuilder->codeAppendf(R"( |
325 | float2 transformedPoint = (%s * float3(point, 1)).xy;)" , viewMatrix); |
326 | vertexPos.set(kFloat2_GrSLType, "transformedPoint" ); |
327 | } |
328 | gpArgs->fPositionVar = vertexPos; |
329 | // No fragment shader. |
330 | } |
331 | }; |
332 | |
333 | GrGLSLPrimitiveProcessor* GrMiddleOutCubicShader::createGLSLInstance(const GrShaderCaps&) const { |
334 | return new Impl; |
335 | } |
336 | |