| 1 | /**************************************************************************/ |
| 2 | /* csg.cpp */ |
| 3 | /**************************************************************************/ |
| 4 | /* This file is part of: */ |
| 5 | /* GODOT ENGINE */ |
| 6 | /* https://godotengine.org */ |
| 7 | /**************************************************************************/ |
| 8 | /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */ |
| 9 | /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */ |
| 10 | /* */ |
| 11 | /* Permission is hereby granted, free of charge, to any person obtaining */ |
| 12 | /* a copy of this software and associated documentation files (the */ |
| 13 | /* "Software"), to deal in the Software without restriction, including */ |
| 14 | /* without limitation the rights to use, copy, modify, merge, publish, */ |
| 15 | /* distribute, sublicense, and/or sell copies of the Software, and to */ |
| 16 | /* permit persons to whom the Software is furnished to do so, subject to */ |
| 17 | /* the following conditions: */ |
| 18 | /* */ |
| 19 | /* The above copyright notice and this permission notice shall be */ |
| 20 | /* included in all copies or substantial portions of the Software. */ |
| 21 | /* */ |
| 22 | /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ |
| 23 | /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ |
| 24 | /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */ |
| 25 | /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ |
| 26 | /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ |
| 27 | /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ |
| 28 | /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ |
| 29 | /**************************************************************************/ |
| 30 | |
| 31 | #include "csg.h" |
| 32 | |
| 33 | #include "core/math/geometry_2d.h" |
| 34 | #include "core/math/math_funcs.h" |
| 35 | #include "core/templates/sort_array.h" |
| 36 | |
| 37 | // Static helper functions. |
| 38 | |
| 39 | inline static bool is_snapable(const Vector3 &p_point1, const Vector3 &p_point2, real_t p_distance) { |
| 40 | return p_point2.distance_squared_to(p_point1) < p_distance * p_distance; |
| 41 | } |
| 42 | |
| 43 | inline static Vector2 interpolate_segment_uv(const Vector2 p_segment_points[2], const Vector2 p_uvs[2], const Vector2 &p_interpolation_point) { |
| 44 | if (p_segment_points[0].is_equal_approx(p_segment_points[1])) { |
| 45 | return p_uvs[0]; |
| 46 | } |
| 47 | |
| 48 | float segment_length = p_segment_points[0].distance_to(p_segment_points[1]); |
| 49 | float distance = p_segment_points[0].distance_to(p_interpolation_point); |
| 50 | float fraction = distance / segment_length; |
| 51 | |
| 52 | return p_uvs[0].lerp(p_uvs[1], fraction); |
| 53 | } |
| 54 | |
| 55 | inline static Vector2 interpolate_triangle_uv(const Vector2 p_vertices[3], const Vector2 p_uvs[3], const Vector2 &p_interpolation_point) { |
| 56 | if (p_interpolation_point.is_equal_approx(p_vertices[0])) { |
| 57 | return p_uvs[0]; |
| 58 | } |
| 59 | if (p_interpolation_point.is_equal_approx(p_vertices[1])) { |
| 60 | return p_uvs[1]; |
| 61 | } |
| 62 | if (p_interpolation_point.is_equal_approx(p_vertices[2])) { |
| 63 | return p_uvs[2]; |
| 64 | } |
| 65 | |
| 66 | Vector2 edge1 = p_vertices[1] - p_vertices[0]; |
| 67 | Vector2 edge2 = p_vertices[2] - p_vertices[0]; |
| 68 | Vector2 interpolation = p_interpolation_point - p_vertices[0]; |
| 69 | |
| 70 | float edge1_on_edge1 = edge1.dot(edge1); |
| 71 | float edge1_on_edge2 = edge1.dot(edge2); |
| 72 | float edge2_on_edge2 = edge2.dot(edge2); |
| 73 | float inter_on_edge1 = interpolation.dot(edge1); |
| 74 | float inter_on_edge2 = interpolation.dot(edge2); |
| 75 | float scale = (edge1_on_edge1 * edge2_on_edge2 - edge1_on_edge2 * edge1_on_edge2); |
| 76 | if (scale == 0) { |
| 77 | return p_uvs[0]; |
| 78 | } |
| 79 | |
| 80 | float v = (edge2_on_edge2 * inter_on_edge1 - edge1_on_edge2 * inter_on_edge2) / scale; |
| 81 | float w = (edge1_on_edge1 * inter_on_edge2 - edge1_on_edge2 * inter_on_edge1) / scale; |
| 82 | float u = 1.0f - v - w; |
| 83 | |
| 84 | return p_uvs[0] * u + p_uvs[1] * v + p_uvs[2] * w; |
| 85 | } |
| 86 | |
| 87 | static inline bool ray_intersects_triangle(const Vector3 &p_from, const Vector3 &p_dir, const Vector3 p_vertices[3], float p_tolerance, Vector3 &r_intersection_point) { |
| 88 | Vector3 edge1 = p_vertices[1] - p_vertices[0]; |
| 89 | Vector3 edge2 = p_vertices[2] - p_vertices[0]; |
| 90 | Vector3 h = p_dir.cross(edge2); |
| 91 | real_t a = edge1.dot(h); |
| 92 | // Check if ray is parallel to triangle. |
| 93 | if (Math::is_zero_approx(a)) { |
| 94 | return false; |
| 95 | } |
| 96 | real_t f = 1.0 / a; |
| 97 | |
| 98 | Vector3 s = p_from - p_vertices[0]; |
| 99 | real_t u = f * s.dot(h); |
| 100 | if (u < 0.0 - p_tolerance || u > 1.0 + p_tolerance) { |
| 101 | return false; |
| 102 | } |
| 103 | |
| 104 | Vector3 q = s.cross(edge1); |
| 105 | real_t v = f * p_dir.dot(q); |
| 106 | if (v < 0.0 - p_tolerance || u + v > 1.0 + p_tolerance) { |
| 107 | return false; |
| 108 | } |
| 109 | |
| 110 | // Ray intersects triangle. |
| 111 | // Calculate distance. |
| 112 | real_t t = f * edge2.dot(q); |
| 113 | // Confirm triangle is in front of ray. |
| 114 | if (t >= p_tolerance) { |
| 115 | r_intersection_point = p_from + p_dir * t; |
| 116 | return true; |
| 117 | } else { |
| 118 | return false; |
| 119 | } |
| 120 | } |
| 121 | |
| 122 | inline bool is_point_in_triangle(const Vector3 &p_point, const Vector3 p_vertices[3], int p_shifted = 0) { |
| 123 | real_t det = p_vertices[0].dot(p_vertices[1].cross(p_vertices[2])); |
| 124 | |
| 125 | // If determinant is, zero try shift the triangle and the point. |
| 126 | if (Math::is_zero_approx(det)) { |
| 127 | if (p_shifted > 2) { |
| 128 | // Triangle appears degenerate, so ignore it. |
| 129 | return false; |
| 130 | } |
| 131 | Vector3 shift_by; |
| 132 | shift_by[p_shifted] = 1; |
| 133 | Vector3 shifted_point = p_point + shift_by; |
| 134 | Vector3 shifted_vertices[3] = { p_vertices[0] + shift_by, p_vertices[1] + shift_by, p_vertices[2] + shift_by }; |
| 135 | return is_point_in_triangle(shifted_point, shifted_vertices, p_shifted + 1); |
| 136 | } |
| 137 | |
| 138 | // Find the barycentric coordinates of the point with respect to the vertices. |
| 139 | real_t lambda[3]; |
| 140 | lambda[0] = p_vertices[1].cross(p_vertices[2]).dot(p_point) / det; |
| 141 | lambda[1] = p_vertices[2].cross(p_vertices[0]).dot(p_point) / det; |
| 142 | lambda[2] = p_vertices[0].cross(p_vertices[1]).dot(p_point) / det; |
| 143 | |
| 144 | // Point is in the plane if all lambdas sum to 1. |
| 145 | if (!Math::is_equal_approx(lambda[0] + lambda[1] + lambda[2], 1)) { |
| 146 | return false; |
| 147 | } |
| 148 | |
| 149 | // Point is inside the triangle if all lambdas are positive. |
| 150 | if (lambda[0] < 0 || lambda[1] < 0 || lambda[2] < 0) { |
| 151 | return false; |
| 152 | } |
| 153 | |
| 154 | return true; |
| 155 | } |
| 156 | |
| 157 | inline static bool is_triangle_degenerate(const Vector2 p_vertices[3], real_t p_vertex_snap2) { |
| 158 | real_t det = p_vertices[0].x * p_vertices[1].y - p_vertices[0].x * p_vertices[2].y + |
| 159 | p_vertices[0].y * p_vertices[2].x - p_vertices[0].y * p_vertices[1].x + |
| 160 | p_vertices[1].x * p_vertices[2].y - p_vertices[1].y * p_vertices[2].x; |
| 161 | |
| 162 | return det < p_vertex_snap2; |
| 163 | } |
| 164 | |
| 165 | inline static bool are_segments_parallel(const Vector2 p_segment1_points[2], const Vector2 p_segment2_points[2], float p_vertex_snap2) { |
| 166 | Vector2 segment1 = p_segment1_points[1] - p_segment1_points[0]; |
| 167 | Vector2 segment2 = p_segment2_points[1] - p_segment2_points[0]; |
| 168 | real_t segment1_length2 = segment1.dot(segment1); |
| 169 | real_t segment2_length2 = segment2.dot(segment2); |
| 170 | real_t segment_onto_segment = segment2.dot(segment1); |
| 171 | |
| 172 | if (segment1_length2 < p_vertex_snap2 || segment2_length2 < p_vertex_snap2) { |
| 173 | return true; |
| 174 | } |
| 175 | |
| 176 | real_t max_separation2; |
| 177 | if (segment1_length2 > segment2_length2) { |
| 178 | max_separation2 = segment2_length2 - segment_onto_segment * segment_onto_segment / segment1_length2; |
| 179 | } else { |
| 180 | max_separation2 = segment1_length2 - segment_onto_segment * segment_onto_segment / segment2_length2; |
| 181 | } |
| 182 | |
| 183 | return max_separation2 < p_vertex_snap2; |
| 184 | } |
| 185 | |
| 186 | // CSGBrush |
| 187 | |
| 188 | void CSGBrush::_regen_face_aabbs() { |
| 189 | for (int i = 0; i < faces.size(); i++) { |
| 190 | faces.write[i].aabb = AABB(); |
| 191 | faces.write[i].aabb.position = faces[i].vertices[0]; |
| 192 | faces.write[i].aabb.expand_to(faces[i].vertices[1]); |
| 193 | faces.write[i].aabb.expand_to(faces[i].vertices[2]); |
| 194 | } |
| 195 | } |
| 196 | |
| 197 | void CSGBrush::build_from_faces(const Vector<Vector3> &p_vertices, const Vector<Vector2> &p_uvs, const Vector<bool> &p_smooth, const Vector<Ref<Material>> &p_materials, const Vector<bool> &p_flip_faces) { |
| 198 | faces.clear(); |
| 199 | |
| 200 | int vc = p_vertices.size(); |
| 201 | |
| 202 | ERR_FAIL_COND((vc % 3) != 0); |
| 203 | |
| 204 | const Vector3 *rv = p_vertices.ptr(); |
| 205 | int uvc = p_uvs.size(); |
| 206 | const Vector2 *ruv = p_uvs.ptr(); |
| 207 | int sc = p_smooth.size(); |
| 208 | const bool *rs = p_smooth.ptr(); |
| 209 | int mc = p_materials.size(); |
| 210 | const Ref<Material> *rm = p_materials.ptr(); |
| 211 | int ic = p_flip_faces.size(); |
| 212 | const bool *ri = p_flip_faces.ptr(); |
| 213 | |
| 214 | HashMap<Ref<Material>, int> material_map; |
| 215 | |
| 216 | faces.resize(p_vertices.size() / 3); |
| 217 | |
| 218 | for (int i = 0; i < faces.size(); i++) { |
| 219 | Face &f = faces.write[i]; |
| 220 | f.vertices[0] = rv[i * 3 + 0]; |
| 221 | f.vertices[1] = rv[i * 3 + 1]; |
| 222 | f.vertices[2] = rv[i * 3 + 2]; |
| 223 | |
| 224 | if (uvc == vc) { |
| 225 | f.uvs[0] = ruv[i * 3 + 0]; |
| 226 | f.uvs[1] = ruv[i * 3 + 1]; |
| 227 | f.uvs[2] = ruv[i * 3 + 2]; |
| 228 | } |
| 229 | |
| 230 | if (sc == vc / 3) { |
| 231 | f.smooth = rs[i]; |
| 232 | } else { |
| 233 | f.smooth = false; |
| 234 | } |
| 235 | |
| 236 | if (ic == vc / 3) { |
| 237 | f.invert = ri[i]; |
| 238 | } else { |
| 239 | f.invert = false; |
| 240 | } |
| 241 | |
| 242 | if (mc == vc / 3) { |
| 243 | Ref<Material> mat = rm[i]; |
| 244 | if (mat.is_valid()) { |
| 245 | HashMap<Ref<Material>, int>::ConstIterator E = material_map.find(mat); |
| 246 | |
| 247 | if (E) { |
| 248 | f.material = E->value; |
| 249 | } else { |
| 250 | f.material = material_map.size(); |
| 251 | material_map[mat] = f.material; |
| 252 | } |
| 253 | |
| 254 | } else { |
| 255 | f.material = -1; |
| 256 | } |
| 257 | } |
| 258 | } |
| 259 | |
| 260 | materials.resize(material_map.size()); |
| 261 | for (const KeyValue<Ref<Material>, int> &E : material_map) { |
| 262 | materials.write[E.value] = E.key; |
| 263 | } |
| 264 | |
| 265 | _regen_face_aabbs(); |
| 266 | } |
| 267 | |
| 268 | void CSGBrush::copy_from(const CSGBrush &p_brush, const Transform3D &p_xform) { |
| 269 | faces = p_brush.faces; |
| 270 | materials = p_brush.materials; |
| 271 | |
| 272 | for (int i = 0; i < faces.size(); i++) { |
| 273 | for (int j = 0; j < 3; j++) { |
| 274 | faces.write[i].vertices[j] = p_xform.xform(p_brush.faces[i].vertices[j]); |
| 275 | } |
| 276 | } |
| 277 | |
| 278 | _regen_face_aabbs(); |
| 279 | } |
| 280 | |
| 281 | // CSGBrushOperation |
| 282 | |
| 283 | void CSGBrushOperation::merge_brushes(Operation p_operation, const CSGBrush &p_brush_a, const CSGBrush &p_brush_b, CSGBrush &r_merged_brush, float p_vertex_snap) { |
| 284 | // Check for face collisions and add necessary faces. |
| 285 | Build2DFaceCollection build2DFaceCollection; |
| 286 | for (int i = 0; i < p_brush_a.faces.size(); i++) { |
| 287 | for (int j = 0; j < p_brush_b.faces.size(); j++) { |
| 288 | if (p_brush_a.faces[i].aabb.intersects_inclusive(p_brush_b.faces[j].aabb)) { |
| 289 | update_faces(p_brush_a, i, p_brush_b, j, build2DFaceCollection, p_vertex_snap); |
| 290 | } |
| 291 | } |
| 292 | } |
| 293 | |
| 294 | // Add faces to MeshMerge. |
| 295 | MeshMerge mesh_merge; |
| 296 | mesh_merge.vertex_snap = p_vertex_snap; |
| 297 | |
| 298 | for (int i = 0; i < p_brush_a.faces.size(); i++) { |
| 299 | Ref<Material> material; |
| 300 | if (p_brush_a.faces[i].material != -1) { |
| 301 | material = p_brush_a.materials[p_brush_a.faces[i].material]; |
| 302 | } |
| 303 | |
| 304 | if (build2DFaceCollection.build2DFacesA.has(i)) { |
| 305 | build2DFaceCollection.build2DFacesA[i].addFacesToMesh(mesh_merge, p_brush_a.faces[i].smooth, p_brush_a.faces[i].invert, material, false); |
| 306 | } else { |
| 307 | Vector3 points[3]; |
| 308 | Vector2 uvs[3]; |
| 309 | for (int j = 0; j < 3; j++) { |
| 310 | points[j] = p_brush_a.faces[i].vertices[j]; |
| 311 | uvs[j] = p_brush_a.faces[i].uvs[j]; |
| 312 | } |
| 313 | mesh_merge.add_face(points, uvs, p_brush_a.faces[i].smooth, p_brush_a.faces[i].invert, material, false); |
| 314 | } |
| 315 | } |
| 316 | |
| 317 | for (int i = 0; i < p_brush_b.faces.size(); i++) { |
| 318 | Ref<Material> material; |
| 319 | if (p_brush_b.faces[i].material != -1) { |
| 320 | material = p_brush_b.materials[p_brush_b.faces[i].material]; |
| 321 | } |
| 322 | |
| 323 | if (build2DFaceCollection.build2DFacesB.has(i)) { |
| 324 | build2DFaceCollection.build2DFacesB[i].addFacesToMesh(mesh_merge, p_brush_b.faces[i].smooth, p_brush_b.faces[i].invert, material, true); |
| 325 | } else { |
| 326 | Vector3 points[3]; |
| 327 | Vector2 uvs[3]; |
| 328 | for (int j = 0; j < 3; j++) { |
| 329 | points[j] = p_brush_b.faces[i].vertices[j]; |
| 330 | uvs[j] = p_brush_b.faces[i].uvs[j]; |
| 331 | } |
| 332 | mesh_merge.add_face(points, uvs, p_brush_b.faces[i].smooth, p_brush_b.faces[i].invert, material, true); |
| 333 | } |
| 334 | } |
| 335 | |
| 336 | // Mark faces that ended up inside the intersection. |
| 337 | mesh_merge.mark_inside_faces(); |
| 338 | |
| 339 | // Create new brush and fill with new faces. |
| 340 | r_merged_brush.faces.clear(); |
| 341 | |
| 342 | switch (p_operation) { |
| 343 | case OPERATION_UNION: { |
| 344 | int outside_count = 0; |
| 345 | |
| 346 | for (int i = 0; i < mesh_merge.faces.size(); i++) { |
| 347 | if (mesh_merge.faces[i].inside) { |
| 348 | continue; |
| 349 | } |
| 350 | outside_count++; |
| 351 | } |
| 352 | |
| 353 | r_merged_brush.faces.resize(outside_count); |
| 354 | |
| 355 | outside_count = 0; |
| 356 | |
| 357 | for (int i = 0; i < mesh_merge.faces.size(); i++) { |
| 358 | if (mesh_merge.faces[i].inside) { |
| 359 | continue; |
| 360 | } |
| 361 | |
| 362 | for (int j = 0; j < 3; j++) { |
| 363 | r_merged_brush.faces.write[outside_count].vertices[j] = mesh_merge.points[mesh_merge.faces[i].points[j]]; |
| 364 | r_merged_brush.faces.write[outside_count].uvs[j] = mesh_merge.faces[i].uvs[j]; |
| 365 | } |
| 366 | |
| 367 | r_merged_brush.faces.write[outside_count].smooth = mesh_merge.faces[i].smooth; |
| 368 | r_merged_brush.faces.write[outside_count].invert = mesh_merge.faces[i].invert; |
| 369 | r_merged_brush.faces.write[outside_count].material = mesh_merge.faces[i].material_idx; |
| 370 | outside_count++; |
| 371 | } |
| 372 | |
| 373 | r_merged_brush._regen_face_aabbs(); |
| 374 | |
| 375 | } break; |
| 376 | |
| 377 | case OPERATION_INTERSECTION: { |
| 378 | int inside_count = 0; |
| 379 | |
| 380 | for (int i = 0; i < mesh_merge.faces.size(); i++) { |
| 381 | if (!mesh_merge.faces[i].inside) { |
| 382 | continue; |
| 383 | } |
| 384 | inside_count++; |
| 385 | } |
| 386 | |
| 387 | r_merged_brush.faces.resize(inside_count); |
| 388 | |
| 389 | inside_count = 0; |
| 390 | |
| 391 | for (int i = 0; i < mesh_merge.faces.size(); i++) { |
| 392 | if (!mesh_merge.faces[i].inside) { |
| 393 | continue; |
| 394 | } |
| 395 | |
| 396 | for (int j = 0; j < 3; j++) { |
| 397 | r_merged_brush.faces.write[inside_count].vertices[j] = mesh_merge.points[mesh_merge.faces[i].points[j]]; |
| 398 | r_merged_brush.faces.write[inside_count].uvs[j] = mesh_merge.faces[i].uvs[j]; |
| 399 | } |
| 400 | |
| 401 | r_merged_brush.faces.write[inside_count].smooth = mesh_merge.faces[i].smooth; |
| 402 | r_merged_brush.faces.write[inside_count].invert = mesh_merge.faces[i].invert; |
| 403 | r_merged_brush.faces.write[inside_count].material = mesh_merge.faces[i].material_idx; |
| 404 | inside_count++; |
| 405 | } |
| 406 | |
| 407 | r_merged_brush._regen_face_aabbs(); |
| 408 | |
| 409 | } break; |
| 410 | |
| 411 | case OPERATION_SUBTRACTION: { |
| 412 | int face_count = 0; |
| 413 | |
| 414 | for (int i = 0; i < mesh_merge.faces.size(); i++) { |
| 415 | if (mesh_merge.faces[i].from_b && !mesh_merge.faces[i].inside) { |
| 416 | continue; |
| 417 | } |
| 418 | if (!mesh_merge.faces[i].from_b && mesh_merge.faces[i].inside) { |
| 419 | continue; |
| 420 | } |
| 421 | face_count++; |
| 422 | } |
| 423 | |
| 424 | r_merged_brush.faces.resize(face_count); |
| 425 | |
| 426 | face_count = 0; |
| 427 | |
| 428 | for (int i = 0; i < mesh_merge.faces.size(); i++) { |
| 429 | if (mesh_merge.faces[i].from_b && !mesh_merge.faces[i].inside) { |
| 430 | continue; |
| 431 | } |
| 432 | if (!mesh_merge.faces[i].from_b && mesh_merge.faces[i].inside) { |
| 433 | continue; |
| 434 | } |
| 435 | |
| 436 | for (int j = 0; j < 3; j++) { |
| 437 | r_merged_brush.faces.write[face_count].vertices[j] = mesh_merge.points[mesh_merge.faces[i].points[j]]; |
| 438 | r_merged_brush.faces.write[face_count].uvs[j] = mesh_merge.faces[i].uvs[j]; |
| 439 | } |
| 440 | |
| 441 | if (mesh_merge.faces[i].from_b) { |
| 442 | //invert facing of insides of B |
| 443 | SWAP(r_merged_brush.faces.write[face_count].vertices[1], r_merged_brush.faces.write[face_count].vertices[2]); |
| 444 | SWAP(r_merged_brush.faces.write[face_count].uvs[1], r_merged_brush.faces.write[face_count].uvs[2]); |
| 445 | } |
| 446 | |
| 447 | r_merged_brush.faces.write[face_count].smooth = mesh_merge.faces[i].smooth; |
| 448 | r_merged_brush.faces.write[face_count].invert = mesh_merge.faces[i].invert; |
| 449 | r_merged_brush.faces.write[face_count].material = mesh_merge.faces[i].material_idx; |
| 450 | face_count++; |
| 451 | } |
| 452 | |
| 453 | r_merged_brush._regen_face_aabbs(); |
| 454 | |
| 455 | } break; |
| 456 | } |
| 457 | |
| 458 | // Update the list of materials. |
| 459 | r_merged_brush.materials.resize(mesh_merge.materials.size()); |
| 460 | for (const KeyValue<Ref<Material>, int> &E : mesh_merge.materials) { |
| 461 | r_merged_brush.materials.write[E.value] = E.key; |
| 462 | } |
| 463 | } |
| 464 | |
| 465 | // CSGBrushOperation::MeshMerge |
| 466 | |
| 467 | // Use a limit to speed up bvh and limit the depth. |
| 468 | #define BVH_LIMIT 8 |
| 469 | |
| 470 | int CSGBrushOperation::MeshMerge::_create_bvh(FaceBVH *r_facebvhptr, FaceBVH **r_facebvhptrptr, int p_from, int p_size, int p_depth, int &r_max_depth, int &r_max_alloc) { |
| 471 | if (p_depth > r_max_depth) { |
| 472 | r_max_depth = p_depth; |
| 473 | } |
| 474 | |
| 475 | if (p_size == 0) { |
| 476 | return -1; |
| 477 | } |
| 478 | |
| 479 | if (p_size <= BVH_LIMIT) { |
| 480 | for (int i = 0; i < p_size - 1; i++) { |
| 481 | r_facebvhptrptr[p_from + i]->next = r_facebvhptrptr[p_from + i + 1] - r_facebvhptr; |
| 482 | } |
| 483 | return r_facebvhptrptr[p_from] - r_facebvhptr; |
| 484 | } |
| 485 | |
| 486 | AABB aabb; |
| 487 | aabb = r_facebvhptrptr[p_from]->aabb; |
| 488 | for (int i = 1; i < p_size; i++) { |
| 489 | aabb.merge_with(r_facebvhptrptr[p_from + i]->aabb); |
| 490 | } |
| 491 | |
| 492 | int li = aabb.get_longest_axis_index(); |
| 493 | |
| 494 | switch (li) { |
| 495 | case Vector3::AXIS_X: { |
| 496 | SortArray<FaceBVH *, FaceBVHCmpX> sort_x; |
| 497 | sort_x.nth_element(0, p_size, p_size / 2, &r_facebvhptrptr[p_from]); |
| 498 | //sort_x.sort(&p_bb[p_from],p_size); |
| 499 | } break; |
| 500 | |
| 501 | case Vector3::AXIS_Y: { |
| 502 | SortArray<FaceBVH *, FaceBVHCmpY> sort_y; |
| 503 | sort_y.nth_element(0, p_size, p_size / 2, &r_facebvhptrptr[p_from]); |
| 504 | //sort_y.sort(&p_bb[p_from],p_size); |
| 505 | } break; |
| 506 | |
| 507 | case Vector3::AXIS_Z: { |
| 508 | SortArray<FaceBVH *, FaceBVHCmpZ> sort_z; |
| 509 | sort_z.nth_element(0, p_size, p_size / 2, &r_facebvhptrptr[p_from]); |
| 510 | //sort_z.sort(&p_bb[p_from],p_size); |
| 511 | } break; |
| 512 | } |
| 513 | |
| 514 | int left = _create_bvh(r_facebvhptr, r_facebvhptrptr, p_from, p_size / 2, p_depth + 1, r_max_depth, r_max_alloc); |
| 515 | int right = _create_bvh(r_facebvhptr, r_facebvhptrptr, p_from + p_size / 2, p_size - p_size / 2, p_depth + 1, r_max_depth, r_max_alloc); |
| 516 | |
| 517 | int index = r_max_alloc++; |
| 518 | FaceBVH *_new = &r_facebvhptr[index]; |
| 519 | _new->aabb = aabb; |
| 520 | _new->center = aabb.get_center(); |
| 521 | _new->face = -1; |
| 522 | _new->left = left; |
| 523 | _new->right = right; |
| 524 | _new->next = -1; |
| 525 | |
| 526 | return index; |
| 527 | } |
| 528 | |
| 529 | void CSGBrushOperation::MeshMerge::_add_distance(List<IntersectionDistance> &r_intersectionsA, List<IntersectionDistance> &r_intersectionsB, bool p_from_B, real_t p_distance_squared, bool p_is_conormal) const { |
| 530 | List<IntersectionDistance> &intersections = p_from_B ? r_intersectionsB : r_intersectionsA; |
| 531 | |
| 532 | // Check if distance exists. |
| 533 | for (const IntersectionDistance E : intersections) { |
| 534 | if (E.is_conormal == p_is_conormal && Math::is_equal_approx(E.distance_squared, p_distance_squared)) { |
| 535 | return; |
| 536 | } |
| 537 | } |
| 538 | IntersectionDistance distance; |
| 539 | distance.is_conormal = p_is_conormal; |
| 540 | distance.distance_squared = p_distance_squared; |
| 541 | intersections.push_back(distance); |
| 542 | } |
| 543 | |
| 544 | bool CSGBrushOperation::MeshMerge::_bvh_inside(FaceBVH *r_facebvhptr, int p_max_depth, int p_bvh_first, int p_face_idx) const { |
| 545 | Face face = faces[p_face_idx]; |
| 546 | Vector3 face_points[3] = { |
| 547 | points[face.points[0]], |
| 548 | points[face.points[1]], |
| 549 | points[face.points[2]] |
| 550 | }; |
| 551 | Vector3 face_center = (face_points[0] + face_points[1] + face_points[2]) / 3.0; |
| 552 | Vector3 face_normal = Plane(face_points[0], face_points[1], face_points[2]).normal; |
| 553 | |
| 554 | uint32_t *stack = (uint32_t *)alloca(sizeof(int) * p_max_depth); |
| 555 | |
| 556 | enum { |
| 557 | TEST_AABB_BIT = 0, |
| 558 | VISIT_LEFT_BIT = 1, |
| 559 | VISIT_RIGHT_BIT = 2, |
| 560 | VISIT_DONE_BIT = 3, |
| 561 | VISITED_BIT_SHIFT = 29, |
| 562 | NODE_IDX_MASK = (1 << VISITED_BIT_SHIFT) - 1, |
| 563 | VISITED_BIT_MASK = ~NODE_IDX_MASK |
| 564 | }; |
| 565 | |
| 566 | List<IntersectionDistance> intersectionsA; |
| 567 | List<IntersectionDistance> intersectionsB; |
| 568 | |
| 569 | Intersection closest_intersection; |
| 570 | closest_intersection.found = false; |
| 571 | |
| 572 | int level = 0; |
| 573 | int pos = p_bvh_first; |
| 574 | stack[0] = pos; |
| 575 | |
| 576 | while (true) { |
| 577 | uint32_t node = stack[level] & NODE_IDX_MASK; |
| 578 | const FaceBVH *current_facebvhptr = &(r_facebvhptr[node]); |
| 579 | bool done = false; |
| 580 | |
| 581 | switch (stack[level] >> VISITED_BIT_SHIFT) { |
| 582 | case TEST_AABB_BIT: { |
| 583 | if (current_facebvhptr->face >= 0) { |
| 584 | while (current_facebvhptr) { |
| 585 | if (p_face_idx != current_facebvhptr->face && |
| 586 | current_facebvhptr->aabb.intersects_ray(face_center, face_normal)) { |
| 587 | const Face ¤t_face = faces[current_facebvhptr->face]; |
| 588 | Vector3 current_points[3] = { |
| 589 | points[current_face.points[0]], |
| 590 | points[current_face.points[1]], |
| 591 | points[current_face.points[2]] |
| 592 | }; |
| 593 | Vector3 current_normal = Plane(current_points[0], current_points[1], current_points[2]).normal; |
| 594 | Vector3 intersection_point; |
| 595 | // Check if faces are co-planar. |
| 596 | if (current_normal.is_equal_approx(face_normal) && |
| 597 | is_point_in_triangle(face_center, current_points)) { |
| 598 | // Only add an intersection if not a B face. |
| 599 | if (!face.from_b) { |
| 600 | _add_distance(intersectionsA, intersectionsB, current_face.from_b, 0, true); |
| 601 | } |
| 602 | } else if (ray_intersects_triangle(face_center, face_normal, current_points, CMP_EPSILON, intersection_point)) { |
| 603 | real_t distance_squared = face_center.distance_squared_to(intersection_point); |
| 604 | real_t inner = current_normal.dot(face_normal); |
| 605 | // If the faces are perpendicular, ignore this face. |
| 606 | // The triangles on the side should be intersected and result in the correct behavior. |
| 607 | if (!Math::is_zero_approx(inner)) { |
| 608 | _add_distance(intersectionsA, intersectionsB, current_face.from_b, distance_squared, inner > 0.0f); |
| 609 | } |
| 610 | } |
| 611 | |
| 612 | if (face.from_b != current_face.from_b) { |
| 613 | if (current_normal.is_equal_approx(face_normal) && |
| 614 | is_point_in_triangle(face_center, current_points)) { |
| 615 | // Only add an intersection if not a B face. |
| 616 | if (!face.from_b) { |
| 617 | closest_intersection.found = true; |
| 618 | closest_intersection.conormal = 1.0f; |
| 619 | closest_intersection.distance_squared = 0.0f; |
| 620 | closest_intersection.origin_angle = -FLT_MAX; |
| 621 | } |
| 622 | } else if (ray_intersects_triangle(face_center, face_normal, current_points, CMP_EPSILON, intersection_point)) { |
| 623 | Intersection potential_intersection; |
| 624 | potential_intersection.found = true; |
| 625 | potential_intersection.conormal = face_normal.dot(current_normal); |
| 626 | potential_intersection.distance_squared = face_center.distance_squared_to(intersection_point); |
| 627 | potential_intersection.origin_angle = Math::abs(potential_intersection.conormal); |
| 628 | real_t intersection_dist_from_face = face_normal.dot(intersection_point - face_center); |
| 629 | for (int i = 0; i < 3; i++) { |
| 630 | real_t point_dist_from_face = face_normal.dot(current_points[i] - face_center); |
| 631 | if (!Math::is_equal_approx(point_dist_from_face, intersection_dist_from_face) && |
| 632 | point_dist_from_face < intersection_dist_from_face) { |
| 633 | potential_intersection.origin_angle = -potential_intersection.origin_angle; |
| 634 | break; |
| 635 | } |
| 636 | } |
| 637 | if (potential_intersection.conormal != 0.0f) { |
| 638 | if (!closest_intersection.found) { |
| 639 | closest_intersection = potential_intersection; |
| 640 | } else if (!Math::is_equal_approx(potential_intersection.distance_squared, closest_intersection.distance_squared) && |
| 641 | potential_intersection.distance_squared < closest_intersection.distance_squared) { |
| 642 | closest_intersection = potential_intersection; |
| 643 | } else if (Math::is_equal_approx(potential_intersection.distance_squared, closest_intersection.distance_squared)) { |
| 644 | if (potential_intersection.origin_angle < closest_intersection.origin_angle) { |
| 645 | closest_intersection = potential_intersection; |
| 646 | } |
| 647 | } |
| 648 | } |
| 649 | } |
| 650 | } |
| 651 | } |
| 652 | |
| 653 | if (current_facebvhptr->next != -1) { |
| 654 | current_facebvhptr = &r_facebvhptr[current_facebvhptr->next]; |
| 655 | } else { |
| 656 | current_facebvhptr = nullptr; |
| 657 | } |
| 658 | } |
| 659 | |
| 660 | stack[level] = (VISIT_DONE_BIT << VISITED_BIT_SHIFT) | node; |
| 661 | |
| 662 | } else { |
| 663 | bool valid = current_facebvhptr->aabb.intersects_ray(face_center, face_normal); |
| 664 | |
| 665 | if (!valid) { |
| 666 | stack[level] = (VISIT_DONE_BIT << VISITED_BIT_SHIFT) | node; |
| 667 | } else { |
| 668 | stack[level] = (VISIT_LEFT_BIT << VISITED_BIT_SHIFT) | node; |
| 669 | } |
| 670 | } |
| 671 | continue; |
| 672 | } |
| 673 | |
| 674 | case VISIT_LEFT_BIT: { |
| 675 | stack[level] = (VISIT_RIGHT_BIT << VISITED_BIT_SHIFT) | node; |
| 676 | stack[level + 1] = current_facebvhptr->left | TEST_AABB_BIT; |
| 677 | level++; |
| 678 | continue; |
| 679 | } |
| 680 | |
| 681 | case VISIT_RIGHT_BIT: { |
| 682 | stack[level] = (VISIT_DONE_BIT << VISITED_BIT_SHIFT) | node; |
| 683 | stack[level + 1] = current_facebvhptr->right | TEST_AABB_BIT; |
| 684 | level++; |
| 685 | continue; |
| 686 | } |
| 687 | |
| 688 | case VISIT_DONE_BIT: { |
| 689 | if (level == 0) { |
| 690 | done = true; |
| 691 | break; |
| 692 | } else { |
| 693 | level--; |
| 694 | } |
| 695 | continue; |
| 696 | } |
| 697 | } |
| 698 | |
| 699 | if (done) { |
| 700 | break; |
| 701 | } |
| 702 | } |
| 703 | |
| 704 | if (!closest_intersection.found) { |
| 705 | return false; |
| 706 | } else { |
| 707 | return closest_intersection.conormal > 0.0f; |
| 708 | } |
| 709 | } |
| 710 | |
| 711 | void CSGBrushOperation::MeshMerge::mark_inside_faces() { |
| 712 | // Mark faces that are inside. This helps later do the boolean ops when merging. |
| 713 | // This approach is very brute force with a bunch of optimizations, |
| 714 | // such as BVH and pre AABB intersection test. |
| 715 | |
| 716 | Vector<FaceBVH> bvhvec; |
| 717 | bvhvec.resize(faces.size() * 3); // Will never be larger than this (TODO: Make better) |
| 718 | FaceBVH *facebvh = bvhvec.ptrw(); |
| 719 | |
| 720 | AABB aabb_a; |
| 721 | AABB aabb_b; |
| 722 | |
| 723 | bool first_a = true; |
| 724 | bool first_b = true; |
| 725 | |
| 726 | for (int i = 0; i < faces.size(); i++) { |
| 727 | facebvh[i].left = -1; |
| 728 | facebvh[i].right = -1; |
| 729 | facebvh[i].face = i; |
| 730 | facebvh[i].aabb.position = points[faces[i].points[0]]; |
| 731 | facebvh[i].aabb.expand_to(points[faces[i].points[1]]); |
| 732 | facebvh[i].aabb.expand_to(points[faces[i].points[2]]); |
| 733 | facebvh[i].center = facebvh[i].aabb.get_center(); |
| 734 | facebvh[i].aabb.grow_by(vertex_snap); |
| 735 | facebvh[i].next = -1; |
| 736 | |
| 737 | if (faces[i].from_b) { |
| 738 | if (first_b) { |
| 739 | aabb_b = facebvh[i].aabb; |
| 740 | first_b = false; |
| 741 | } else { |
| 742 | aabb_b.merge_with(facebvh[i].aabb); |
| 743 | } |
| 744 | } else { |
| 745 | if (first_a) { |
| 746 | aabb_a = facebvh[i].aabb; |
| 747 | first_a = false; |
| 748 | } else { |
| 749 | aabb_a.merge_with(facebvh[i].aabb); |
| 750 | } |
| 751 | } |
| 752 | } |
| 753 | |
| 754 | AABB intersection_aabb = aabb_a.intersection(aabb_b); |
| 755 | |
| 756 | // Check if shape AABBs intersect. |
| 757 | if (intersection_aabb.size == Vector3()) { |
| 758 | return; |
| 759 | } |
| 760 | |
| 761 | Vector<FaceBVH *> bvhtrvec; |
| 762 | bvhtrvec.resize(faces.size()); |
| 763 | FaceBVH **bvhptr = bvhtrvec.ptrw(); |
| 764 | for (int i = 0; i < faces.size(); i++) { |
| 765 | bvhptr[i] = &facebvh[i]; |
| 766 | } |
| 767 | |
| 768 | int max_depth = 0; |
| 769 | int max_alloc = faces.size(); |
| 770 | _create_bvh(facebvh, bvhptr, 0, faces.size(), 1, max_depth, max_alloc); |
| 771 | |
| 772 | for (int i = 0; i < faces.size(); i++) { |
| 773 | // Check if face AABB intersects the intersection AABB. |
| 774 | if (!intersection_aabb.intersects_inclusive(facebvh[i].aabb)) { |
| 775 | continue; |
| 776 | } |
| 777 | |
| 778 | if (_bvh_inside(facebvh, max_depth, max_alloc - 1, i)) { |
| 779 | faces.write[i].inside = true; |
| 780 | } |
| 781 | } |
| 782 | } |
| 783 | |
| 784 | void CSGBrushOperation::MeshMerge::add_face(const Vector3 p_points[3], const Vector2 p_uvs[3], bool p_smooth, bool p_invert, const Ref<Material> &p_material, bool p_from_b) { |
| 785 | int indices[3]; |
| 786 | for (int i = 0; i < 3; i++) { |
| 787 | VertexKey vk; |
| 788 | vk.x = int((double(p_points[i].x) + double(vertex_snap) * 0.31234) / double(vertex_snap)); |
| 789 | vk.y = int((double(p_points[i].y) + double(vertex_snap) * 0.31234) / double(vertex_snap)); |
| 790 | vk.z = int((double(p_points[i].z) + double(vertex_snap) * 0.31234) / double(vertex_snap)); |
| 791 | |
| 792 | int res; |
| 793 | if (snap_cache.lookup(vk, res)) { |
| 794 | indices[i] = res; |
| 795 | } else { |
| 796 | indices[i] = points.size(); |
| 797 | points.push_back(p_points[i]); |
| 798 | snap_cache.set(vk, indices[i]); |
| 799 | } |
| 800 | } |
| 801 | |
| 802 | // Don't add degenerate faces. |
| 803 | if (indices[0] == indices[2] || indices[0] == indices[1] || indices[1] == indices[2]) { |
| 804 | return; |
| 805 | } |
| 806 | |
| 807 | MeshMerge::Face face; |
| 808 | face.from_b = p_from_b; |
| 809 | face.inside = false; |
| 810 | face.smooth = p_smooth; |
| 811 | face.invert = p_invert; |
| 812 | |
| 813 | if (p_material.is_valid()) { |
| 814 | if (!materials.has(p_material)) { |
| 815 | face.material_idx = materials.size(); |
| 816 | materials[p_material] = face.material_idx; |
| 817 | } else { |
| 818 | face.material_idx = materials[p_material]; |
| 819 | } |
| 820 | } else { |
| 821 | face.material_idx = -1; |
| 822 | } |
| 823 | |
| 824 | for (int k = 0; k < 3; k++) { |
| 825 | face.points[k] = indices[k]; |
| 826 | face.uvs[k] = p_uvs[k]; |
| 827 | } |
| 828 | |
| 829 | faces.push_back(face); |
| 830 | } |
| 831 | |
| 832 | // CSGBrushOperation::Build2DFaces |
| 833 | |
| 834 | int CSGBrushOperation::Build2DFaces::_get_point_idx(const Vector2 &p_point) { |
| 835 | for (int vertex_idx = 0; vertex_idx < vertices.size(); ++vertex_idx) { |
| 836 | if (vertices[vertex_idx].point.distance_squared_to(p_point) < vertex_snap2) { |
| 837 | return vertex_idx; |
| 838 | } |
| 839 | } |
| 840 | return -1; |
| 841 | } |
| 842 | |
| 843 | int CSGBrushOperation::Build2DFaces::_add_vertex(const Vertex2D &p_vertex) { |
| 844 | // Check if vertex exists. |
| 845 | int vertex_id = _get_point_idx(p_vertex.point); |
| 846 | if (vertex_id != -1) { |
| 847 | return vertex_id; |
| 848 | } |
| 849 | |
| 850 | vertices.push_back(p_vertex); |
| 851 | return vertices.size() - 1; |
| 852 | } |
| 853 | |
| 854 | void CSGBrushOperation::Build2DFaces::_add_vertex_idx_sorted(Vector<int> &r_vertex_indices, int p_new_vertex_index) { |
| 855 | if (p_new_vertex_index >= 0 && r_vertex_indices.find(p_new_vertex_index) == -1) { |
| 856 | ERR_FAIL_COND_MSG(p_new_vertex_index >= vertices.size(), "Invalid vertex index." ); |
| 857 | |
| 858 | // The first vertex. |
| 859 | if (r_vertex_indices.size() == 0) { |
| 860 | // Simply add it. |
| 861 | r_vertex_indices.push_back(p_new_vertex_index); |
| 862 | return; |
| 863 | } |
| 864 | |
| 865 | // The second vertex. |
| 866 | if (r_vertex_indices.size() == 1) { |
| 867 | Vector2 first_point = vertices[r_vertex_indices[0]].point; |
| 868 | Vector2 new_point = vertices[p_new_vertex_index].point; |
| 869 | |
| 870 | // Sort along the axis with the greatest difference. |
| 871 | int axis = 0; |
| 872 | if (Math::abs(new_point.x - first_point.x) < Math::abs(new_point.y - first_point.y)) { |
| 873 | axis = 1; |
| 874 | } |
| 875 | |
| 876 | // Add it to the beginning or the end appropriately. |
| 877 | if (new_point[axis] < first_point[axis]) { |
| 878 | r_vertex_indices.insert(0, p_new_vertex_index); |
| 879 | } else { |
| 880 | r_vertex_indices.push_back(p_new_vertex_index); |
| 881 | } |
| 882 | |
| 883 | return; |
| 884 | } |
| 885 | |
| 886 | // Third or later vertices. |
| 887 | Vector2 first_point = vertices[r_vertex_indices[0]].point; |
| 888 | Vector2 last_point = vertices[r_vertex_indices[r_vertex_indices.size() - 1]].point; |
| 889 | Vector2 new_point = vertices[p_new_vertex_index].point; |
| 890 | |
| 891 | // Determine axis being sorted against i.e. the axis with the greatest difference. |
| 892 | int axis = 0; |
| 893 | if (Math::abs(last_point.x - first_point.x) < Math::abs(last_point.y - first_point.y)) { |
| 894 | axis = 1; |
| 895 | } |
| 896 | |
| 897 | // Insert the point at the appropriate index. |
| 898 | for (int insert_idx = 0; insert_idx < r_vertex_indices.size(); ++insert_idx) { |
| 899 | Vector2 insert_point = vertices[r_vertex_indices[insert_idx]].point; |
| 900 | if (new_point[axis] < insert_point[axis]) { |
| 901 | r_vertex_indices.insert(insert_idx, p_new_vertex_index); |
| 902 | return; |
| 903 | } |
| 904 | } |
| 905 | |
| 906 | // New largest, add it to the end. |
| 907 | r_vertex_indices.push_back(p_new_vertex_index); |
| 908 | } |
| 909 | } |
| 910 | |
| 911 | void CSGBrushOperation::Build2DFaces::_merge_faces(const Vector<int> &p_segment_indices) { |
| 912 | int segments = p_segment_indices.size() - 1; |
| 913 | if (segments < 2) { |
| 914 | return; |
| 915 | } |
| 916 | |
| 917 | // Faces around an inner vertex are merged by moving the inner vertex to the first vertex. |
| 918 | for (int sorted_idx = 1; sorted_idx < segments; ++sorted_idx) { |
| 919 | int closest_idx = 0; |
| 920 | int inner_idx = p_segment_indices[sorted_idx]; |
| 921 | |
| 922 | if (sorted_idx > segments / 2) { |
| 923 | // Merge to other segment end. |
| 924 | closest_idx = segments; |
| 925 | // Reverse the merge order. |
| 926 | inner_idx = p_segment_indices[segments + segments / 2 - sorted_idx]; |
| 927 | } |
| 928 | |
| 929 | // Find the mergeable faces. |
| 930 | Vector<int> merge_faces_idx; |
| 931 | Vector<Face2D> merge_faces; |
| 932 | Vector<int> merge_faces_inner_vertex_idx; |
| 933 | for (int face_idx = 0; face_idx < faces.size(); ++face_idx) { |
| 934 | for (int face_vertex_idx = 0; face_vertex_idx < 3; ++face_vertex_idx) { |
| 935 | if (faces[face_idx].vertex_idx[face_vertex_idx] == inner_idx) { |
| 936 | merge_faces_idx.push_back(face_idx); |
| 937 | merge_faces.push_back(faces[face_idx]); |
| 938 | merge_faces_inner_vertex_idx.push_back(face_vertex_idx); |
| 939 | } |
| 940 | } |
| 941 | } |
| 942 | |
| 943 | Vector<int> degenerate_points; |
| 944 | |
| 945 | // Create the new faces. |
| 946 | for (int merge_idx = 0; merge_idx < merge_faces.size(); ++merge_idx) { |
| 947 | int outer_edge_idx[2]; |
| 948 | outer_edge_idx[0] = merge_faces[merge_idx].vertex_idx[(merge_faces_inner_vertex_idx[merge_idx] + 1) % 3]; |
| 949 | outer_edge_idx[1] = merge_faces[merge_idx].vertex_idx[(merge_faces_inner_vertex_idx[merge_idx] + 2) % 3]; |
| 950 | |
| 951 | // Skip flattened faces. |
| 952 | if (outer_edge_idx[0] == p_segment_indices[closest_idx] || |
| 953 | outer_edge_idx[1] == p_segment_indices[closest_idx]) { |
| 954 | continue; |
| 955 | } |
| 956 | |
| 957 | //Don't create degenerate triangles. |
| 958 | Vector2 edge1[2] = { |
| 959 | vertices[outer_edge_idx[0]].point, |
| 960 | vertices[p_segment_indices[closest_idx]].point |
| 961 | }; |
| 962 | Vector2 edge2[2] = { |
| 963 | vertices[outer_edge_idx[1]].point, |
| 964 | vertices[p_segment_indices[closest_idx]].point |
| 965 | }; |
| 966 | if (are_segments_parallel(edge1, edge2, vertex_snap2)) { |
| 967 | if (!degenerate_points.find(outer_edge_idx[0])) { |
| 968 | degenerate_points.push_back(outer_edge_idx[0]); |
| 969 | } |
| 970 | if (!degenerate_points.find(outer_edge_idx[1])) { |
| 971 | degenerate_points.push_back(outer_edge_idx[1]); |
| 972 | } |
| 973 | continue; |
| 974 | } |
| 975 | |
| 976 | // Create new faces. |
| 977 | Face2D new_face; |
| 978 | new_face.vertex_idx[0] = p_segment_indices[closest_idx]; |
| 979 | new_face.vertex_idx[1] = outer_edge_idx[0]; |
| 980 | new_face.vertex_idx[2] = outer_edge_idx[1]; |
| 981 | faces.push_back(new_face); |
| 982 | } |
| 983 | |
| 984 | // Delete the old faces in reverse index order. |
| 985 | merge_faces_idx.sort(); |
| 986 | merge_faces_idx.reverse(); |
| 987 | for (int i = 0; i < merge_faces_idx.size(); ++i) { |
| 988 | faces.remove_at(merge_faces_idx[i]); |
| 989 | } |
| 990 | |
| 991 | if (degenerate_points.size() == 0) { |
| 992 | continue; |
| 993 | } |
| 994 | |
| 995 | // Split faces using degenerate points. |
| 996 | for (int face_idx = 0; face_idx < faces.size(); ++face_idx) { |
| 997 | Face2D face = faces[face_idx]; |
| 998 | Vertex2D face_vertices[3] = { |
| 999 | vertices[face.vertex_idx[0]], |
| 1000 | vertices[face.vertex_idx[1]], |
| 1001 | vertices[face.vertex_idx[2]] |
| 1002 | }; |
| 1003 | Vector2 face_points[3] = { |
| 1004 | face_vertices[0].point, |
| 1005 | face_vertices[1].point, |
| 1006 | face_vertices[2].point |
| 1007 | }; |
| 1008 | |
| 1009 | for (int point_idx = 0; point_idx < degenerate_points.size(); ++point_idx) { |
| 1010 | int degenerate_idx = degenerate_points[point_idx]; |
| 1011 | Vector2 point_2D = vertices[degenerate_idx].point; |
| 1012 | |
| 1013 | // Check if point is existing face vertex. |
| 1014 | bool existing = false; |
| 1015 | for (int i = 0; i < 3; ++i) { |
| 1016 | if (face_vertices[i].point.distance_squared_to(point_2D) < vertex_snap2) { |
| 1017 | existing = true; |
| 1018 | break; |
| 1019 | } |
| 1020 | } |
| 1021 | if (existing) { |
| 1022 | continue; |
| 1023 | } |
| 1024 | |
| 1025 | // Check if point is on each edge. |
| 1026 | for (int face_edge_idx = 0; face_edge_idx < 3; ++face_edge_idx) { |
| 1027 | Vector2 edge_points[2] = { |
| 1028 | face_points[face_edge_idx], |
| 1029 | face_points[(face_edge_idx + 1) % 3] |
| 1030 | }; |
| 1031 | Vector2 closest_point = Geometry2D::get_closest_point_to_segment(point_2D, edge_points); |
| 1032 | |
| 1033 | if (point_2D.distance_squared_to(closest_point) < vertex_snap2) { |
| 1034 | int opposite_vertex_idx = face.vertex_idx[(face_edge_idx + 2) % 3]; |
| 1035 | |
| 1036 | // If new vertex snaps to degenerate vertex, just delete this face. |
| 1037 | if (degenerate_idx == opposite_vertex_idx) { |
| 1038 | faces.remove_at(face_idx); |
| 1039 | // Update index. |
| 1040 | --face_idx; |
| 1041 | break; |
| 1042 | } |
| 1043 | |
| 1044 | // Create two new faces around the new edge and remove this face. |
| 1045 | // The new edge is the last edge. |
| 1046 | Face2D left_face; |
| 1047 | left_face.vertex_idx[0] = degenerate_idx; |
| 1048 | left_face.vertex_idx[1] = face.vertex_idx[(face_edge_idx + 1) % 3]; |
| 1049 | left_face.vertex_idx[2] = opposite_vertex_idx; |
| 1050 | Face2D right_face; |
| 1051 | right_face.vertex_idx[0] = opposite_vertex_idx; |
| 1052 | right_face.vertex_idx[1] = face.vertex_idx[face_edge_idx]; |
| 1053 | right_face.vertex_idx[2] = degenerate_idx; |
| 1054 | faces.remove_at(face_idx); |
| 1055 | faces.insert(face_idx, right_face); |
| 1056 | faces.insert(face_idx, left_face); |
| 1057 | |
| 1058 | // Don't check against the new faces. |
| 1059 | ++face_idx; |
| 1060 | |
| 1061 | // No need to check other edges. |
| 1062 | break; |
| 1063 | } |
| 1064 | } |
| 1065 | } |
| 1066 | } |
| 1067 | } |
| 1068 | } |
| 1069 | |
| 1070 | void CSGBrushOperation::Build2DFaces::_find_edge_intersections(const Vector2 p_segment_points[2], Vector<int> &r_segment_indices) { |
| 1071 | LocalVector<Vector<Vector2>> processed_edges; |
| 1072 | |
| 1073 | // For each face. |
| 1074 | for (int face_idx = 0; face_idx < faces.size(); ++face_idx) { |
| 1075 | Face2D face = faces[face_idx]; |
| 1076 | Vertex2D face_vertices[3] = { |
| 1077 | vertices[face.vertex_idx[0]], |
| 1078 | vertices[face.vertex_idx[1]], |
| 1079 | vertices[face.vertex_idx[2]] |
| 1080 | }; |
| 1081 | |
| 1082 | // Check each edge. |
| 1083 | for (int face_edge_idx = 0; face_edge_idx < 3; ++face_edge_idx) { |
| 1084 | Vector<Vector2> edge_points_and_uvs = { |
| 1085 | face_vertices[face_edge_idx].point, |
| 1086 | face_vertices[(face_edge_idx + 1) % 3].point, |
| 1087 | face_vertices[face_edge_idx].uv, |
| 1088 | face_vertices[(face_edge_idx + 1) % 3].uv |
| 1089 | }; |
| 1090 | |
| 1091 | Vector2 edge_points[2] = { |
| 1092 | edge_points_and_uvs[0], |
| 1093 | edge_points_and_uvs[1], |
| 1094 | }; |
| 1095 | Vector2 edge_uvs[2] = { |
| 1096 | edge_points_and_uvs[2], |
| 1097 | edge_points_and_uvs[3], |
| 1098 | }; |
| 1099 | |
| 1100 | // Check if edge has already been processed. |
| 1101 | if (processed_edges.find(edge_points_and_uvs) != -1) { |
| 1102 | continue; |
| 1103 | } |
| 1104 | |
| 1105 | processed_edges.push_back(edge_points_and_uvs); |
| 1106 | |
| 1107 | // First check if the ends of the segment are on the edge. |
| 1108 | Vector2 intersection_point; |
| 1109 | |
| 1110 | bool on_edge = false; |
| 1111 | for (int edge_point_idx = 0; edge_point_idx < 2; ++edge_point_idx) { |
| 1112 | intersection_point = Geometry2D::get_closest_point_to_segment(p_segment_points[edge_point_idx], edge_points); |
| 1113 | if (p_segment_points[edge_point_idx].distance_squared_to(intersection_point) < vertex_snap2) { |
| 1114 | on_edge = true; |
| 1115 | break; |
| 1116 | } |
| 1117 | } |
| 1118 | |
| 1119 | // Else check if the segment intersects the edge. |
| 1120 | if (on_edge || Geometry2D::segment_intersects_segment(p_segment_points[0], p_segment_points[1], edge_points[0], edge_points[1], &intersection_point)) { |
| 1121 | // Check if intersection point is an edge point. |
| 1122 | if ((edge_points[0].distance_squared_to(intersection_point) < vertex_snap2) || |
| 1123 | (edge_points[1].distance_squared_to(intersection_point) < vertex_snap2)) { |
| 1124 | continue; |
| 1125 | } |
| 1126 | |
| 1127 | // Check if edge exists, by checking if the intersecting segment is parallel to the edge. |
| 1128 | if (are_segments_parallel(p_segment_points, edge_points, vertex_snap2)) { |
| 1129 | continue; |
| 1130 | } |
| 1131 | |
| 1132 | // Add the intersection point as a new vertex. |
| 1133 | Vertex2D new_vertex; |
| 1134 | new_vertex.point = intersection_point; |
| 1135 | new_vertex.uv = interpolate_segment_uv(edge_points, edge_uvs, intersection_point); |
| 1136 | int new_vertex_idx = _add_vertex(new_vertex); |
| 1137 | int opposite_vertex_idx = face.vertex_idx[(face_edge_idx + 2) % 3]; |
| 1138 | _add_vertex_idx_sorted(r_segment_indices, new_vertex_idx); |
| 1139 | |
| 1140 | // If new vertex snaps to opposite vertex, just delete this face. |
| 1141 | if (new_vertex_idx == opposite_vertex_idx) { |
| 1142 | faces.remove_at(face_idx); |
| 1143 | // Update index. |
| 1144 | --face_idx; |
| 1145 | break; |
| 1146 | } |
| 1147 | |
| 1148 | // If opposite point is on the segment, add its index to segment indices too. |
| 1149 | Vector2 closest_point = Geometry2D::get_closest_point_to_segment(vertices[opposite_vertex_idx].point, p_segment_points); |
| 1150 | if (vertices[opposite_vertex_idx].point.distance_squared_to(closest_point) < vertex_snap2) { |
| 1151 | _add_vertex_idx_sorted(r_segment_indices, opposite_vertex_idx); |
| 1152 | } |
| 1153 | |
| 1154 | // Create two new faces around the new edge and remove this face. |
| 1155 | // The new edge is the last edge. |
| 1156 | Face2D left_face; |
| 1157 | left_face.vertex_idx[0] = new_vertex_idx; |
| 1158 | left_face.vertex_idx[1] = face.vertex_idx[(face_edge_idx + 1) % 3]; |
| 1159 | left_face.vertex_idx[2] = opposite_vertex_idx; |
| 1160 | Face2D right_face; |
| 1161 | right_face.vertex_idx[0] = opposite_vertex_idx; |
| 1162 | right_face.vertex_idx[1] = face.vertex_idx[face_edge_idx]; |
| 1163 | right_face.vertex_idx[2] = new_vertex_idx; |
| 1164 | faces.remove_at(face_idx); |
| 1165 | faces.insert(face_idx, right_face); |
| 1166 | faces.insert(face_idx, left_face); |
| 1167 | |
| 1168 | // Check against the new faces. |
| 1169 | --face_idx; |
| 1170 | break; |
| 1171 | } |
| 1172 | } |
| 1173 | } |
| 1174 | } |
| 1175 | |
| 1176 | int CSGBrushOperation::Build2DFaces::_insert_point(const Vector2 &p_point) { |
| 1177 | int new_vertex_idx = -1; |
| 1178 | |
| 1179 | for (int face_idx = 0; face_idx < faces.size(); ++face_idx) { |
| 1180 | Face2D face = faces[face_idx]; |
| 1181 | Vertex2D face_vertices[3] = { |
| 1182 | vertices[face.vertex_idx[0]], |
| 1183 | vertices[face.vertex_idx[1]], |
| 1184 | vertices[face.vertex_idx[2]] |
| 1185 | }; |
| 1186 | Vector2 points[3] = { |
| 1187 | face_vertices[0].point, |
| 1188 | face_vertices[1].point, |
| 1189 | face_vertices[2].point |
| 1190 | }; |
| 1191 | Vector2 uvs[3] = { |
| 1192 | face_vertices[0].uv, |
| 1193 | face_vertices[1].uv, |
| 1194 | face_vertices[2].uv |
| 1195 | }; |
| 1196 | |
| 1197 | // Skip degenerate triangles. |
| 1198 | if (is_triangle_degenerate(points, vertex_snap2)) { |
| 1199 | continue; |
| 1200 | } |
| 1201 | |
| 1202 | // Check if point is existing face vertex. |
| 1203 | for (int i = 0; i < 3; ++i) { |
| 1204 | if (face_vertices[i].point.distance_squared_to(p_point) < vertex_snap2) { |
| 1205 | return face.vertex_idx[i]; |
| 1206 | } |
| 1207 | } |
| 1208 | |
| 1209 | // Check if point is on each edge. |
| 1210 | bool on_edge = false; |
| 1211 | for (int face_edge_idx = 0; face_edge_idx < 3; ++face_edge_idx) { |
| 1212 | Vector2 edge_points[2] = { |
| 1213 | points[face_edge_idx], |
| 1214 | points[(face_edge_idx + 1) % 3] |
| 1215 | }; |
| 1216 | Vector2 edge_uvs[2] = { |
| 1217 | uvs[face_edge_idx], |
| 1218 | uvs[(face_edge_idx + 1) % 3] |
| 1219 | }; |
| 1220 | |
| 1221 | Vector2 closest_point = Geometry2D::get_closest_point_to_segment(p_point, edge_points); |
| 1222 | if (p_point.distance_squared_to(closest_point) < vertex_snap2) { |
| 1223 | on_edge = true; |
| 1224 | |
| 1225 | // Add the point as a new vertex. |
| 1226 | Vertex2D new_vertex; |
| 1227 | new_vertex.point = p_point; |
| 1228 | new_vertex.uv = interpolate_segment_uv(edge_points, edge_uvs, p_point); |
| 1229 | new_vertex_idx = _add_vertex(new_vertex); |
| 1230 | int opposite_vertex_idx = face.vertex_idx[(face_edge_idx + 2) % 3]; |
| 1231 | |
| 1232 | // If new vertex snaps to opposite vertex, just delete this face. |
| 1233 | if (new_vertex_idx == opposite_vertex_idx) { |
| 1234 | faces.remove_at(face_idx); |
| 1235 | // Update index. |
| 1236 | --face_idx; |
| 1237 | break; |
| 1238 | } |
| 1239 | |
| 1240 | // Don't create degenerate triangles. |
| 1241 | Vector2 split_edge1[2] = { vertices[new_vertex_idx].point, edge_points[0] }; |
| 1242 | Vector2 split_edge2[2] = { vertices[new_vertex_idx].point, edge_points[1] }; |
| 1243 | Vector2 new_edge[2] = { vertices[new_vertex_idx].point, vertices[opposite_vertex_idx].point }; |
| 1244 | if (are_segments_parallel(split_edge1, new_edge, vertex_snap2) && |
| 1245 | are_segments_parallel(split_edge2, new_edge, vertex_snap2)) { |
| 1246 | break; |
| 1247 | } |
| 1248 | |
| 1249 | // Create two new faces around the new edge and remove this face. |
| 1250 | // The new edge is the last edge. |
| 1251 | Face2D left_face; |
| 1252 | left_face.vertex_idx[0] = new_vertex_idx; |
| 1253 | left_face.vertex_idx[1] = face.vertex_idx[(face_edge_idx + 1) % 3]; |
| 1254 | left_face.vertex_idx[2] = opposite_vertex_idx; |
| 1255 | Face2D right_face; |
| 1256 | right_face.vertex_idx[0] = opposite_vertex_idx; |
| 1257 | right_face.vertex_idx[1] = face.vertex_idx[face_edge_idx]; |
| 1258 | right_face.vertex_idx[2] = new_vertex_idx; |
| 1259 | faces.remove_at(face_idx); |
| 1260 | faces.insert(face_idx, right_face); |
| 1261 | faces.insert(face_idx, left_face); |
| 1262 | |
| 1263 | // Don't check against the new faces. |
| 1264 | ++face_idx; |
| 1265 | |
| 1266 | // No need to check other edges. |
| 1267 | break; |
| 1268 | } |
| 1269 | } |
| 1270 | |
| 1271 | // If not on an edge, check if the point is inside the face. |
| 1272 | if (!on_edge && Geometry2D::is_point_in_triangle(p_point, face_vertices[0].point, face_vertices[1].point, face_vertices[2].point)) { |
| 1273 | // Add the point as a new vertex. |
| 1274 | Vertex2D new_vertex; |
| 1275 | new_vertex.point = p_point; |
| 1276 | new_vertex.uv = interpolate_triangle_uv(points, uvs, p_point); |
| 1277 | new_vertex_idx = _add_vertex(new_vertex); |
| 1278 | |
| 1279 | // Create three new faces around this point and remove this face. |
| 1280 | // The new vertex is the last vertex. |
| 1281 | for (int i = 0; i < 3; ++i) { |
| 1282 | // Don't create degenerate triangles. |
| 1283 | Vector2 new_points[3] = { points[i], points[(i + 1) % 3], vertices[new_vertex_idx].point }; |
| 1284 | if (is_triangle_degenerate(new_points, vertex_snap2)) { |
| 1285 | continue; |
| 1286 | } |
| 1287 | |
| 1288 | Face2D new_face; |
| 1289 | new_face.vertex_idx[0] = face.vertex_idx[i]; |
| 1290 | new_face.vertex_idx[1] = face.vertex_idx[(i + 1) % 3]; |
| 1291 | new_face.vertex_idx[2] = new_vertex_idx; |
| 1292 | faces.push_back(new_face); |
| 1293 | } |
| 1294 | faces.remove_at(face_idx); |
| 1295 | |
| 1296 | // No need to check other faces. |
| 1297 | break; |
| 1298 | } |
| 1299 | } |
| 1300 | |
| 1301 | return new_vertex_idx; |
| 1302 | } |
| 1303 | |
| 1304 | void CSGBrushOperation::Build2DFaces::insert(const CSGBrush &p_brush, int p_face_idx) { |
| 1305 | // Find edge points that cross the plane and face points that are in the plane. |
| 1306 | // Map those points to 2D. |
| 1307 | // Create new faces from those points. |
| 1308 | |
| 1309 | Vector2 points_2D[3]; |
| 1310 | int points_count = 0; |
| 1311 | |
| 1312 | for (int i = 0; i < 3; i++) { |
| 1313 | Vector3 point_3D = p_brush.faces[p_face_idx].vertices[i]; |
| 1314 | |
| 1315 | if (plane.has_point(point_3D)) { |
| 1316 | // Point is in the plane, add it. |
| 1317 | Vector3 point_2D = plane.project(point_3D); |
| 1318 | point_2D = to_2D.xform(point_2D); |
| 1319 | points_2D[points_count++] = Vector2(point_2D.x, point_2D.y); |
| 1320 | |
| 1321 | } else { |
| 1322 | Vector3 next_point_3D = p_brush.faces[p_face_idx].vertices[(i + 1) % 3]; |
| 1323 | |
| 1324 | if (plane.has_point(next_point_3D)) { |
| 1325 | continue; // Next point is in plane, it will be added separately. |
| 1326 | } |
| 1327 | if (plane.is_point_over(point_3D) == plane.is_point_over(next_point_3D)) { |
| 1328 | continue; // Both points on the same side of the plane, ignore. |
| 1329 | } |
| 1330 | |
| 1331 | // Edge crosses the plane, find and add the intersection point. |
| 1332 | Vector3 point_2D; |
| 1333 | if (plane.intersects_segment(point_3D, next_point_3D, &point_2D)) { |
| 1334 | point_2D = to_2D.xform(point_2D); |
| 1335 | points_2D[points_count++] = Vector2(point_2D.x, point_2D.y); |
| 1336 | } |
| 1337 | } |
| 1338 | } |
| 1339 | |
| 1340 | Vector<int> segment_indices; |
| 1341 | Vector2 segment[2]; |
| 1342 | int inserted_index[3] = { -1, -1, -1 }; |
| 1343 | |
| 1344 | // Insert points. |
| 1345 | for (int i = 0; i < points_count; ++i) { |
| 1346 | inserted_index[i] = _insert_point(points_2D[i]); |
| 1347 | } |
| 1348 | |
| 1349 | if (points_count == 2) { |
| 1350 | // Insert a single segment. |
| 1351 | segment[0] = points_2D[0]; |
| 1352 | segment[1] = points_2D[1]; |
| 1353 | _find_edge_intersections(segment, segment_indices); |
| 1354 | for (int i = 0; i < 2; ++i) { |
| 1355 | _add_vertex_idx_sorted(segment_indices, inserted_index[i]); |
| 1356 | } |
| 1357 | _merge_faces(segment_indices); |
| 1358 | } |
| 1359 | |
| 1360 | if (points_count == 3) { |
| 1361 | // Insert three segments. |
| 1362 | for (int edge_idx = 0; edge_idx < 3; ++edge_idx) { |
| 1363 | segment[0] = points_2D[edge_idx]; |
| 1364 | segment[1] = points_2D[(edge_idx + 1) % 3]; |
| 1365 | _find_edge_intersections(segment, segment_indices); |
| 1366 | for (int i = 0; i < 2; ++i) { |
| 1367 | _add_vertex_idx_sorted(segment_indices, inserted_index[(edge_idx + i) % 3]); |
| 1368 | } |
| 1369 | _merge_faces(segment_indices); |
| 1370 | segment_indices.clear(); |
| 1371 | } |
| 1372 | } |
| 1373 | } |
| 1374 | |
| 1375 | void CSGBrushOperation::Build2DFaces::addFacesToMesh(MeshMerge &r_mesh_merge, bool p_smooth, bool p_invert, const Ref<Material> &p_material, bool p_from_b) { |
| 1376 | for (int face_idx = 0; face_idx < faces.size(); ++face_idx) { |
| 1377 | Face2D face = faces[face_idx]; |
| 1378 | Vertex2D fv[3] = { |
| 1379 | vertices[face.vertex_idx[0]], |
| 1380 | vertices[face.vertex_idx[1]], |
| 1381 | vertices[face.vertex_idx[2]] |
| 1382 | }; |
| 1383 | |
| 1384 | // Convert 2D vertex points to 3D. |
| 1385 | Vector3 points_3D[3]; |
| 1386 | Vector2 uvs[3]; |
| 1387 | for (int i = 0; i < 3; ++i) { |
| 1388 | Vector3 point_2D(fv[i].point.x, fv[i].point.y, 0); |
| 1389 | points_3D[i] = to_3D.xform(point_2D); |
| 1390 | uvs[i] = fv[i].uv; |
| 1391 | } |
| 1392 | |
| 1393 | r_mesh_merge.add_face(points_3D, uvs, p_smooth, p_invert, p_material, p_from_b); |
| 1394 | } |
| 1395 | } |
| 1396 | |
| 1397 | CSGBrushOperation::Build2DFaces::Build2DFaces(const CSGBrush &p_brush, int p_face_idx, float p_vertex_snap2) : |
| 1398 | vertex_snap2(p_vertex_snap2 * p_vertex_snap2) { |
| 1399 | // Convert 3D vertex points to 2D. |
| 1400 | Vector3 points_3D[3] = { |
| 1401 | p_brush.faces[p_face_idx].vertices[0], |
| 1402 | p_brush.faces[p_face_idx].vertices[1], |
| 1403 | p_brush.faces[p_face_idx].vertices[2], |
| 1404 | }; |
| 1405 | |
| 1406 | plane = Plane(points_3D[0], points_3D[1], points_3D[2]); |
| 1407 | to_3D.origin = points_3D[0]; |
| 1408 | to_3D.basis.set_column(2, plane.normal); |
| 1409 | to_3D.basis.set_column(0, (points_3D[1] - points_3D[2]).normalized()); |
| 1410 | to_3D.basis.set_column(1, to_3D.basis.get_column(0).cross(to_3D.basis.get_column(2)).normalized()); |
| 1411 | to_2D = to_3D.affine_inverse(); |
| 1412 | |
| 1413 | Face2D face; |
| 1414 | for (int i = 0; i < 3; i++) { |
| 1415 | Vertex2D vertex; |
| 1416 | Vector3 point_2D = to_2D.xform(points_3D[i]); |
| 1417 | vertex.point.x = point_2D.x; |
| 1418 | vertex.point.y = point_2D.y; |
| 1419 | vertex.uv = p_brush.faces[p_face_idx].uvs[i]; |
| 1420 | vertices.push_back(vertex); |
| 1421 | face.vertex_idx[i] = i; |
| 1422 | } |
| 1423 | faces.push_back(face); |
| 1424 | } |
| 1425 | |
| 1426 | void CSGBrushOperation::update_faces(const CSGBrush &p_brush_a, const int p_face_idx_a, const CSGBrush &p_brush_b, const int p_face_idx_b, Build2DFaceCollection &p_collection, float p_vertex_snap) { |
| 1427 | Vector3 vertices_a[3] = { |
| 1428 | p_brush_a.faces[p_face_idx_a].vertices[0], |
| 1429 | p_brush_a.faces[p_face_idx_a].vertices[1], |
| 1430 | p_brush_a.faces[p_face_idx_a].vertices[2], |
| 1431 | }; |
| 1432 | |
| 1433 | Vector3 vertices_b[3] = { |
| 1434 | p_brush_b.faces[p_face_idx_b].vertices[0], |
| 1435 | p_brush_b.faces[p_face_idx_b].vertices[1], |
| 1436 | p_brush_b.faces[p_face_idx_b].vertices[2], |
| 1437 | }; |
| 1438 | |
| 1439 | // Don't use degenerate faces. |
| 1440 | bool has_degenerate = false; |
| 1441 | if (is_snapable(vertices_a[0], vertices_a[1], p_vertex_snap) || |
| 1442 | is_snapable(vertices_a[0], vertices_a[2], p_vertex_snap) || |
| 1443 | is_snapable(vertices_a[1], vertices_a[2], p_vertex_snap)) { |
| 1444 | p_collection.build2DFacesA[p_face_idx_a] = Build2DFaces(); |
| 1445 | has_degenerate = true; |
| 1446 | } |
| 1447 | |
| 1448 | if (is_snapable(vertices_b[0], vertices_b[1], p_vertex_snap) || |
| 1449 | is_snapable(vertices_b[0], vertices_b[2], p_vertex_snap) || |
| 1450 | is_snapable(vertices_b[1], vertices_b[2], p_vertex_snap)) { |
| 1451 | p_collection.build2DFacesB[p_face_idx_b] = Build2DFaces(); |
| 1452 | has_degenerate = true; |
| 1453 | } |
| 1454 | if (has_degenerate) { |
| 1455 | return; |
| 1456 | } |
| 1457 | |
| 1458 | // Ensure B has points either side of or in the plane of A. |
| 1459 | int over_count = 0, under_count = 0; |
| 1460 | Plane plane_a(vertices_a[0], vertices_a[1], vertices_a[2]); |
| 1461 | ERR_FAIL_COND_MSG(plane_a.normal == Vector3(), "Couldn't form plane from Brush A face." ); |
| 1462 | |
| 1463 | for (int i = 0; i < 3; i++) { |
| 1464 | if (plane_a.has_point(vertices_b[i])) { |
| 1465 | // In plane. |
| 1466 | } else if (plane_a.is_point_over(vertices_b[i])) { |
| 1467 | over_count++; |
| 1468 | } else { |
| 1469 | under_count++; |
| 1470 | } |
| 1471 | } |
| 1472 | // If all points under or over the plane, there is no intersection. |
| 1473 | if (over_count == 3 || under_count == 3) { |
| 1474 | return; |
| 1475 | } |
| 1476 | |
| 1477 | // Ensure A has points either side of or in the plane of B. |
| 1478 | over_count = 0; |
| 1479 | under_count = 0; |
| 1480 | Plane plane_b(vertices_b[0], vertices_b[1], vertices_b[2]); |
| 1481 | ERR_FAIL_COND_MSG(plane_b.normal == Vector3(), "Couldn't form plane from Brush B face." ); |
| 1482 | |
| 1483 | for (int i = 0; i < 3; i++) { |
| 1484 | if (plane_b.has_point(vertices_a[i])) { |
| 1485 | // In plane. |
| 1486 | } else if (plane_b.is_point_over(vertices_a[i])) { |
| 1487 | over_count++; |
| 1488 | } else { |
| 1489 | under_count++; |
| 1490 | } |
| 1491 | } |
| 1492 | // If all points under or over the plane, there is no intersection. |
| 1493 | if (over_count == 3 || under_count == 3) { |
| 1494 | return; |
| 1495 | } |
| 1496 | |
| 1497 | // Check for intersection using the SAT theorem. |
| 1498 | { |
| 1499 | // Edge pair cross product combinations. |
| 1500 | for (int i = 0; i < 3; i++) { |
| 1501 | Vector3 axis_a = (vertices_a[i] - vertices_a[(i + 1) % 3]).normalized(); |
| 1502 | |
| 1503 | for (int j = 0; j < 3; j++) { |
| 1504 | Vector3 axis_b = (vertices_b[j] - vertices_b[(j + 1) % 3]).normalized(); |
| 1505 | |
| 1506 | Vector3 sep_axis = axis_a.cross(axis_b); |
| 1507 | if (sep_axis == Vector3()) { |
| 1508 | continue; //colineal |
| 1509 | } |
| 1510 | sep_axis.normalize(); |
| 1511 | |
| 1512 | real_t min_a = 1e20, max_a = -1e20; |
| 1513 | real_t min_b = 1e20, max_b = -1e20; |
| 1514 | |
| 1515 | for (int k = 0; k < 3; k++) { |
| 1516 | real_t d = sep_axis.dot(vertices_a[k]); |
| 1517 | min_a = MIN(min_a, d); |
| 1518 | max_a = MAX(max_a, d); |
| 1519 | d = sep_axis.dot(vertices_b[k]); |
| 1520 | min_b = MIN(min_b, d); |
| 1521 | max_b = MAX(max_b, d); |
| 1522 | } |
| 1523 | |
| 1524 | min_b -= (max_a - min_a) * 0.5; |
| 1525 | max_b += (max_a - min_a) * 0.5; |
| 1526 | |
| 1527 | real_t dmin = min_b - (min_a + max_a) * 0.5; |
| 1528 | real_t dmax = max_b - (min_a + max_a) * 0.5; |
| 1529 | |
| 1530 | if (dmin > CMP_EPSILON || dmax < -CMP_EPSILON) { |
| 1531 | return; // Does not contain zero, so they don't overlap. |
| 1532 | } |
| 1533 | } |
| 1534 | } |
| 1535 | } |
| 1536 | |
| 1537 | // If we're still here, the faces probably intersect, so add new faces. |
| 1538 | if (!p_collection.build2DFacesA.has(p_face_idx_a)) { |
| 1539 | p_collection.build2DFacesA[p_face_idx_a] = Build2DFaces(p_brush_a, p_face_idx_a, p_vertex_snap); |
| 1540 | } |
| 1541 | p_collection.build2DFacesA[p_face_idx_a].insert(p_brush_b, p_face_idx_b); |
| 1542 | |
| 1543 | if (!p_collection.build2DFacesB.has(p_face_idx_b)) { |
| 1544 | p_collection.build2DFacesB[p_face_idx_b] = Build2DFaces(p_brush_b, p_face_idx_b, p_vertex_snap); |
| 1545 | } |
| 1546 | p_collection.build2DFacesB[p_face_idx_b].insert(p_brush_a, p_face_idx_a); |
| 1547 | } |
| 1548 | |