1 | /**************************************************************************/ |
2 | /* line_builder.cpp */ |
3 | /**************************************************************************/ |
4 | /* This file is part of: */ |
5 | /* GODOT ENGINE */ |
6 | /* https://godotengine.org */ |
7 | /**************************************************************************/ |
8 | /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */ |
9 | /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */ |
10 | /* */ |
11 | /* Permission is hereby granted, free of charge, to any person obtaining */ |
12 | /* a copy of this software and associated documentation files (the */ |
13 | /* "Software"), to deal in the Software without restriction, including */ |
14 | /* without limitation the rights to use, copy, modify, merge, publish, */ |
15 | /* distribute, sublicense, and/or sell copies of the Software, and to */ |
16 | /* permit persons to whom the Software is furnished to do so, subject to */ |
17 | /* the following conditions: */ |
18 | /* */ |
19 | /* The above copyright notice and this permission notice shall be */ |
20 | /* included in all copies or substantial portions of the Software. */ |
21 | /* */ |
22 | /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ |
23 | /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ |
24 | /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */ |
25 | /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ |
26 | /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ |
27 | /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ |
28 | /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ |
29 | /**************************************************************************/ |
30 | |
31 | #include "line_builder.h" |
32 | |
33 | #include "core/math/geometry_2d.h" |
34 | |
35 | // Utility method. |
36 | static inline Vector2 interpolate(const Rect2 &r, const Vector2 &v) { |
37 | return Vector2( |
38 | Math::lerp(r.position.x, r.position.x + r.get_size().x, v.x), |
39 | Math::lerp(r.position.y, r.position.y + r.get_size().y, v.y)); |
40 | } |
41 | |
42 | LineBuilder::LineBuilder() { |
43 | } |
44 | |
45 | void LineBuilder::build() { |
46 | // Need at least 2 points to draw a line, so clear the output and return. |
47 | if (points.size() < 2) { |
48 | vertices.clear(); |
49 | colors.clear(); |
50 | indices.clear(); |
51 | uvs.clear(); |
52 | return; |
53 | } |
54 | |
55 | ERR_FAIL_COND(tile_aspect <= 0.f); |
56 | |
57 | const float hw = width / 2.f; |
58 | const float hw_sq = hw * hw; |
59 | const float sharp_limit_sq = sharp_limit * sharp_limit; |
60 | const int point_count = points.size(); |
61 | const bool wrap_around = closed && point_count > 2; |
62 | |
63 | _interpolate_color = gradient != nullptr; |
64 | const bool retrieve_curve = curve != nullptr; |
65 | const bool distance_required = _interpolate_color || retrieve_curve || |
66 | texture_mode == Line2D::LINE_TEXTURE_TILE || |
67 | texture_mode == Line2D::LINE_TEXTURE_STRETCH; |
68 | |
69 | // Initial values |
70 | |
71 | Vector2 pos0 = points[0]; |
72 | Vector2 pos1 = points[1]; |
73 | Vector2 f0 = (pos1 - pos0).normalized(); |
74 | Vector2 u0 = f0.orthogonal(); |
75 | Vector2 pos_up0 = pos0; |
76 | Vector2 pos_down0 = pos0; |
77 | |
78 | Color color0; |
79 | Color color1; |
80 | |
81 | float current_distance0 = 0.f; |
82 | float current_distance1 = 0.f; |
83 | float total_distance = 0.f; |
84 | |
85 | float width_factor = 1.f; |
86 | float modified_hw = hw; |
87 | if (retrieve_curve) { |
88 | width_factor = curve->sample_baked(0.f); |
89 | modified_hw = hw * width_factor; |
90 | } |
91 | |
92 | if (distance_required) { |
93 | // Calculate the total distance. |
94 | for (int i = 1; i < point_count; ++i) { |
95 | total_distance += points[i].distance_to(points[i - 1]); |
96 | } |
97 | if (wrap_around) { |
98 | total_distance += points[point_count - 1].distance_to(pos0); |
99 | } else { |
100 | // Adjust the total distance. |
101 | // The line's outer length may be a little higher due to the end caps. |
102 | if (begin_cap_mode == Line2D::LINE_CAP_BOX || begin_cap_mode == Line2D::LINE_CAP_ROUND) { |
103 | total_distance += modified_hw; |
104 | } |
105 | if (end_cap_mode == Line2D::LINE_CAP_BOX || end_cap_mode == Line2D::LINE_CAP_ROUND) { |
106 | if (retrieve_curve) { |
107 | total_distance += hw * curve->sample_baked(1.f); |
108 | } else { |
109 | total_distance += hw; |
110 | } |
111 | } |
112 | } |
113 | } |
114 | |
115 | if (_interpolate_color) { |
116 | color0 = gradient->get_color(0); |
117 | } else { |
118 | colors.push_back(default_color); |
119 | } |
120 | |
121 | float uvx0 = 0.f; |
122 | float uvx1 = 0.f; |
123 | |
124 | pos_up0 += u0 * modified_hw; |
125 | pos_down0 -= u0 * modified_hw; |
126 | |
127 | // Begin cap |
128 | if (!wrap_around) { |
129 | if (begin_cap_mode == Line2D::LINE_CAP_BOX) { |
130 | // Push back first vertices a little bit. |
131 | pos_up0 -= f0 * modified_hw; |
132 | pos_down0 -= f0 * modified_hw; |
133 | |
134 | current_distance0 += modified_hw; |
135 | current_distance1 = current_distance0; |
136 | } else if (begin_cap_mode == Line2D::LINE_CAP_ROUND) { |
137 | if (texture_mode == Line2D::LINE_TEXTURE_TILE) { |
138 | uvx0 = width_factor * 0.5f / tile_aspect; |
139 | } else if (texture_mode == Line2D::LINE_TEXTURE_STRETCH) { |
140 | uvx0 = width * width_factor / total_distance; |
141 | } |
142 | new_arc(pos0, pos_up0 - pos0, -Math_PI, color0, Rect2(0.f, 0.f, uvx0 * 2, 1.f)); |
143 | current_distance0 += modified_hw; |
144 | current_distance1 = current_distance0; |
145 | } |
146 | strip_begin(pos_up0, pos_down0, color0, uvx0); |
147 | } |
148 | |
149 | /* |
150 | * pos_up0 ------------- pos_up1 -------------------- |
151 | * | | |
152 | * pos0 - - - - - - - - - pos1 - - - - - - - - - pos2 |
153 | * | | |
154 | * pos_down0 ------------ pos_down1 ------------------ |
155 | * |
156 | * i-1 i i+1 |
157 | */ |
158 | |
159 | // http://labs.hyperandroid.com/tag/opengl-lines |
160 | // (not the same implementation but visuals help a lot) |
161 | |
162 | // If the polyline wraps around, then draw two more segments with joints: |
163 | // The last one, which should normally end with an end cap, and the one that matches the end and the beginning. |
164 | int segments_count = wrap_around ? point_count : (point_count - 2); |
165 | // The wraparound case starts with a "fake walk" from the end of the polyline |
166 | // to its beginning, so that its first joint is correct, without drawing anything. |
167 | int first_point = wrap_around ? -1 : 1; |
168 | |
169 | // If the line wraps around, these variables will be used for the final segment. |
170 | Vector2 first_pos_up, first_pos_down; |
171 | bool is_first_joint_sharp = false; |
172 | |
173 | // For each additional segment |
174 | for (int i = first_point; i <= segments_count; ++i) { |
175 | pos1 = points[(i == -1) ? point_count - 1 : i % point_count]; // First point. |
176 | Vector2 pos2 = points[(i + 1) % point_count]; // Second point. |
177 | |
178 | Vector2 f1 = (pos2 - pos1).normalized(); |
179 | Vector2 u1 = f1.orthogonal(); |
180 | |
181 | // Determine joint orientation. |
182 | float dp = u0.dot(f1); |
183 | const Orientation orientation = (dp > 0.f ? UP : DOWN); |
184 | |
185 | if (distance_required && i >= 1) { |
186 | current_distance1 += pos0.distance_to(pos1); |
187 | } |
188 | if (_interpolate_color) { |
189 | color1 = gradient->get_color_at_offset(current_distance1 / total_distance); |
190 | } |
191 | if (retrieve_curve) { |
192 | width_factor = curve->sample_baked(current_distance1 / total_distance); |
193 | modified_hw = hw * width_factor; |
194 | } |
195 | |
196 | Vector2 inner_normal0 = u0 * modified_hw; |
197 | Vector2 inner_normal1 = u1 * modified_hw; |
198 | if (orientation == DOWN) { |
199 | inner_normal0 = -inner_normal0; |
200 | inner_normal1 = -inner_normal1; |
201 | } |
202 | |
203 | /* |
204 | * --------------------------- |
205 | * / |
206 | * 0 / 1 |
207 | * / / |
208 | * --------------------x------ / |
209 | * / / (here shown with orientation == DOWN) |
210 | * / / |
211 | * / / |
212 | * / / |
213 | * 2 / |
214 | * / |
215 | */ |
216 | |
217 | // Find inner intersection at the joint. |
218 | Vector2 corner_pos_in, corner_pos_out; |
219 | bool is_intersecting = Geometry2D::segment_intersects_segment( |
220 | pos0 + inner_normal0, pos1 + inner_normal0, |
221 | pos1 + inner_normal1, pos2 + inner_normal1, |
222 | &corner_pos_in); |
223 | |
224 | if (is_intersecting) { |
225 | // Inner parts of the segments intersect. |
226 | corner_pos_out = 2.f * pos1 - corner_pos_in; |
227 | } else { |
228 | // No intersection, segments are too sharp or they overlap. |
229 | corner_pos_in = pos1 + inner_normal0; |
230 | corner_pos_out = pos1 - inner_normal0; |
231 | } |
232 | |
233 | Vector2 corner_pos_up, corner_pos_down; |
234 | if (orientation == UP) { |
235 | corner_pos_up = corner_pos_in; |
236 | corner_pos_down = corner_pos_out; |
237 | } else { |
238 | corner_pos_up = corner_pos_out; |
239 | corner_pos_down = corner_pos_in; |
240 | } |
241 | |
242 | Line2D::LineJointMode current_joint_mode = joint_mode; |
243 | |
244 | Vector2 pos_up1, pos_down1; |
245 | if (is_intersecting) { |
246 | // Fallback on bevel if sharp angle is too high (because it would produce very long miters). |
247 | float width_factor_sq = width_factor * width_factor; |
248 | if (current_joint_mode == Line2D::LINE_JOINT_SHARP && corner_pos_out.distance_squared_to(pos1) / (hw_sq * width_factor_sq) > sharp_limit_sq) { |
249 | current_joint_mode = Line2D::LINE_JOINT_BEVEL; |
250 | } |
251 | if (current_joint_mode == Line2D::LINE_JOINT_SHARP) { |
252 | // In this case, we won't create joint geometry, |
253 | // The previous and next line quads will directly share an edge. |
254 | pos_up1 = corner_pos_up; |
255 | pos_down1 = corner_pos_down; |
256 | } else { |
257 | // Bevel or round |
258 | if (orientation == UP) { |
259 | pos_up1 = corner_pos_up; |
260 | pos_down1 = pos1 - u0 * modified_hw; |
261 | } else { |
262 | pos_up1 = pos1 + u0 * modified_hw; |
263 | pos_down1 = corner_pos_down; |
264 | } |
265 | } |
266 | } else { |
267 | // No intersection: fallback |
268 | if (current_joint_mode == Line2D::LINE_JOINT_SHARP) { |
269 | // There is no fallback implementation for LINE_JOINT_SHARP so switch to the LINE_JOINT_BEVEL. |
270 | current_joint_mode = Line2D::LINE_JOINT_BEVEL; |
271 | } |
272 | pos_up1 = corner_pos_up; |
273 | pos_down1 = corner_pos_down; |
274 | } |
275 | |
276 | // Triangles are clockwise. |
277 | if (texture_mode == Line2D::LINE_TEXTURE_TILE) { |
278 | uvx1 = current_distance1 / (width * tile_aspect); |
279 | } else if (texture_mode == Line2D::LINE_TEXTURE_STRETCH) { |
280 | uvx1 = current_distance1 / total_distance; |
281 | } |
282 | |
283 | // Swap vars for use in the next line. |
284 | color0 = color1; |
285 | u0 = u1; |
286 | f0 = f1; |
287 | pos0 = pos1; |
288 | if (is_intersecting) { |
289 | if (current_joint_mode == Line2D::LINE_JOINT_SHARP) { |
290 | pos_up0 = pos_up1; |
291 | pos_down0 = pos_down1; |
292 | } else { |
293 | if (orientation == UP) { |
294 | pos_up0 = corner_pos_up; |
295 | pos_down0 = pos1 - u1 * modified_hw; |
296 | } else { |
297 | pos_up0 = pos1 + u1 * modified_hw; |
298 | pos_down0 = corner_pos_down; |
299 | } |
300 | } |
301 | } else { |
302 | pos_up0 = pos1 + u1 * modified_hw; |
303 | pos_down0 = pos1 - u1 * modified_hw; |
304 | } |
305 | |
306 | // End the "fake pass" in the closed line case before the drawing subroutine. |
307 | if (i == -1) { |
308 | continue; |
309 | } |
310 | |
311 | // For wrap-around polylines, store some kind of start positions of the first joint for the final connection. |
312 | if (wrap_around && i == 0) { |
313 | Vector2 first_pos_center = (pos_up1 + pos_down1) / 2; |
314 | float lerp_factor = 1.0 / width_factor; |
315 | first_pos_up = first_pos_center.lerp(pos_up1, lerp_factor); |
316 | first_pos_down = first_pos_center.lerp(pos_down1, lerp_factor); |
317 | is_first_joint_sharp = current_joint_mode == Line2D::LINE_JOINT_SHARP; |
318 | } |
319 | |
320 | // Add current line body quad. |
321 | if (wrap_around && retrieve_curve && !is_first_joint_sharp && i == segments_count) { |
322 | // If the width curve is not seamless, we might need to fetch the line's start points to use them for the final connection. |
323 | Vector2 first_pos_center = (first_pos_up + first_pos_down) / 2; |
324 | strip_add_quad(first_pos_center.lerp(first_pos_up, width_factor), first_pos_center.lerp(first_pos_down, width_factor), color1, uvx1); |
325 | return; |
326 | } else { |
327 | strip_add_quad(pos_up1, pos_down1, color1, uvx1); |
328 | } |
329 | |
330 | // From this point, bu0 and bd0 concern the next segment. |
331 | // Add joint geometry. |
332 | if (current_joint_mode != Line2D::LINE_JOINT_SHARP) { |
333 | /* ________________ cbegin |
334 | * / \ |
335 | * / \ |
336 | * ____________/_ _ _\ cend |
337 | * | | |
338 | * | | |
339 | * | | |
340 | */ |
341 | |
342 | Vector2 cbegin, cend; |
343 | if (orientation == UP) { |
344 | cbegin = pos_down1; |
345 | cend = pos_down0; |
346 | } else { |
347 | cbegin = pos_up1; |
348 | cend = pos_up0; |
349 | } |
350 | |
351 | if (current_joint_mode == Line2D::LINE_JOINT_BEVEL && !(wrap_around && i == segments_count)) { |
352 | strip_add_tri(cend, orientation); |
353 | } else if (current_joint_mode == Line2D::LINE_JOINT_ROUND && !(wrap_around && i == segments_count)) { |
354 | Vector2 vbegin = cbegin - pos1; |
355 | Vector2 vend = cend - pos1; |
356 | strip_add_arc(pos1, vbegin.angle_to(vend), orientation); |
357 | } |
358 | |
359 | if (!is_intersecting) { |
360 | // In this case the joint is too corrupted to be re-used, |
361 | // start again the strip with fallback points |
362 | strip_begin(pos_up0, pos_down0, color1, uvx1); |
363 | } |
364 | } |
365 | } |
366 | |
367 | // Draw the last (or only) segment, with its end cap logic. |
368 | if (!wrap_around) { |
369 | pos1 = points[point_count - 1]; |
370 | |
371 | if (distance_required) { |
372 | current_distance1 += pos0.distance_to(pos1); |
373 | } |
374 | if (_interpolate_color) { |
375 | color1 = gradient->get_color(gradient->get_point_count() - 1); |
376 | } |
377 | if (retrieve_curve) { |
378 | width_factor = curve->sample_baked(1.f); |
379 | modified_hw = hw * width_factor; |
380 | } |
381 | |
382 | Vector2 pos_up1 = pos1 + u0 * modified_hw; |
383 | Vector2 pos_down1 = pos1 - u0 * modified_hw; |
384 | |
385 | // Add extra distance for a box end cap. |
386 | if (end_cap_mode == Line2D::LINE_CAP_BOX) { |
387 | pos_up1 += f0 * modified_hw; |
388 | pos_down1 += f0 * modified_hw; |
389 | |
390 | current_distance1 += modified_hw; |
391 | } |
392 | |
393 | if (texture_mode == Line2D::LINE_TEXTURE_TILE) { |
394 | uvx1 = current_distance1 / (width * tile_aspect); |
395 | } else if (texture_mode == Line2D::LINE_TEXTURE_STRETCH) { |
396 | uvx1 = current_distance1 / total_distance; |
397 | } |
398 | |
399 | strip_add_quad(pos_up1, pos_down1, color1, uvx1); |
400 | |
401 | // Custom drawing for a round end cap. |
402 | if (end_cap_mode == Line2D::LINE_CAP_ROUND) { |
403 | // Note: color is not used in case we don't interpolate. |
404 | Color color = _interpolate_color ? gradient->get_color(gradient->get_point_count() - 1) : Color(0, 0, 0); |
405 | float dist = 0; |
406 | if (texture_mode == Line2D::LINE_TEXTURE_TILE) { |
407 | dist = width_factor / tile_aspect; |
408 | } else if (texture_mode == Line2D::LINE_TEXTURE_STRETCH) { |
409 | dist = width * width_factor / total_distance; |
410 | } |
411 | new_arc(pos1, pos_up1 - pos1, Math_PI, color, Rect2(uvx1 - 0.5f * dist, 0.f, dist, 1.f)); |
412 | } |
413 | } |
414 | } |
415 | |
416 | void LineBuilder::strip_begin(Vector2 up, Vector2 down, Color color, float uvx) { |
417 | int vi = vertices.size(); |
418 | |
419 | vertices.push_back(up); |
420 | vertices.push_back(down); |
421 | |
422 | if (_interpolate_color) { |
423 | colors.push_back(color); |
424 | colors.push_back(color); |
425 | } |
426 | |
427 | if (texture_mode != Line2D::LINE_TEXTURE_NONE) { |
428 | uvs.push_back(Vector2(uvx, 0.f)); |
429 | uvs.push_back(Vector2(uvx, 1.f)); |
430 | } |
431 | |
432 | _last_index[UP] = vi; |
433 | _last_index[DOWN] = vi + 1; |
434 | } |
435 | |
436 | void LineBuilder::strip_add_quad(Vector2 up, Vector2 down, Color color, float uvx) { |
437 | int vi = vertices.size(); |
438 | |
439 | vertices.push_back(up); |
440 | vertices.push_back(down); |
441 | |
442 | if (_interpolate_color) { |
443 | colors.push_back(color); |
444 | colors.push_back(color); |
445 | } |
446 | |
447 | if (texture_mode != Line2D::LINE_TEXTURE_NONE) { |
448 | uvs.push_back(Vector2(uvx, 0.f)); |
449 | uvs.push_back(Vector2(uvx, 1.f)); |
450 | } |
451 | |
452 | indices.push_back(_last_index[UP]); |
453 | indices.push_back(vi + 1); |
454 | indices.push_back(_last_index[DOWN]); |
455 | indices.push_back(_last_index[UP]); |
456 | indices.push_back(vi); |
457 | indices.push_back(vi + 1); |
458 | |
459 | _last_index[UP] = vi; |
460 | _last_index[DOWN] = vi + 1; |
461 | } |
462 | |
463 | void LineBuilder::strip_add_tri(Vector2 up, Orientation orientation) { |
464 | int vi = vertices.size(); |
465 | |
466 | vertices.push_back(up); |
467 | |
468 | if (_interpolate_color) { |
469 | colors.push_back(colors[colors.size() - 1]); |
470 | } |
471 | |
472 | Orientation opposite_orientation = orientation == UP ? DOWN : UP; |
473 | |
474 | if (texture_mode != Line2D::LINE_TEXTURE_NONE) { |
475 | // UVs are just one slice of the texture all along |
476 | // (otherwise we can't share the bottom vertex) |
477 | uvs.push_back(uvs[_last_index[opposite_orientation]]); |
478 | } |
479 | |
480 | indices.push_back(_last_index[opposite_orientation]); |
481 | indices.push_back(vi); |
482 | indices.push_back(_last_index[orientation]); |
483 | |
484 | _last_index[opposite_orientation] = vi; |
485 | } |
486 | |
487 | void LineBuilder::strip_add_arc(Vector2 center, float angle_delta, Orientation orientation) { |
488 | // Take the two last vertices and extrude an arc made of triangles |
489 | // that all share one of the initial vertices |
490 | |
491 | Orientation opposite_orientation = orientation == UP ? DOWN : UP; |
492 | Vector2 vbegin = vertices[_last_index[opposite_orientation]] - center; |
493 | float radius = vbegin.length(); |
494 | float angle_step = Math_PI / static_cast<float>(round_precision); |
495 | float steps = Math::abs(angle_delta) / angle_step; |
496 | |
497 | if (angle_delta < 0.f) { |
498 | angle_step = -angle_step; |
499 | } |
500 | |
501 | float t = Vector2(1, 0).angle_to(vbegin); |
502 | float end_angle = t + angle_delta; |
503 | Vector2 rpos(0, 0); |
504 | |
505 | // Arc vertices |
506 | for (int ti = 0; ti < steps; ++ti, t += angle_step) { |
507 | rpos = center + Vector2(Math::cos(t), Math::sin(t)) * radius; |
508 | strip_add_tri(rpos, orientation); |
509 | } |
510 | |
511 | // Last arc vertex |
512 | rpos = center + Vector2(Math::cos(end_angle), Math::sin(end_angle)) * radius; |
513 | strip_add_tri(rpos, orientation); |
514 | } |
515 | |
516 | void LineBuilder::new_arc(Vector2 center, Vector2 vbegin, float angle_delta, Color color, Rect2 uv_rect) { |
517 | // Make a standalone arc that doesn't use existing vertices, |
518 | // with undistorted UVs from within a square section |
519 | |
520 | float radius = vbegin.length(); |
521 | float angle_step = Math_PI / static_cast<float>(round_precision); |
522 | float steps = Math::abs(angle_delta) / angle_step; |
523 | |
524 | if (angle_delta < 0.f) { |
525 | angle_step = -angle_step; |
526 | } |
527 | |
528 | float t = Vector2(1, 0).angle_to(vbegin); |
529 | float end_angle = t + angle_delta; |
530 | Vector2 rpos(0, 0); |
531 | float tt_begin = -Math_PI / 2.0f; |
532 | float tt = tt_begin; |
533 | |
534 | // Center vertice |
535 | int vi = vertices.size(); |
536 | vertices.push_back(center); |
537 | if (_interpolate_color) { |
538 | colors.push_back(color); |
539 | } |
540 | if (texture_mode != Line2D::LINE_TEXTURE_NONE) { |
541 | uvs.push_back(interpolate(uv_rect, Vector2(0.5f, 0.5f))); |
542 | } |
543 | |
544 | // Arc vertices |
545 | for (int ti = 0; ti < steps; ++ti, t += angle_step) { |
546 | Vector2 sc = Vector2(Math::cos(t), Math::sin(t)); |
547 | rpos = center + sc * radius; |
548 | |
549 | vertices.push_back(rpos); |
550 | if (_interpolate_color) { |
551 | colors.push_back(color); |
552 | } |
553 | if (texture_mode != Line2D::LINE_TEXTURE_NONE) { |
554 | Vector2 tsc = Vector2(Math::cos(tt), Math::sin(tt)); |
555 | uvs.push_back(interpolate(uv_rect, 0.5f * (tsc + Vector2(1.f, 1.f)))); |
556 | tt += angle_step; |
557 | } |
558 | } |
559 | |
560 | // Last arc vertex |
561 | Vector2 sc = Vector2(Math::cos(end_angle), Math::sin(end_angle)); |
562 | rpos = center + sc * radius; |
563 | vertices.push_back(rpos); |
564 | if (_interpolate_color) { |
565 | colors.push_back(color); |
566 | } |
567 | if (texture_mode != Line2D::LINE_TEXTURE_NONE) { |
568 | tt = tt_begin + angle_delta; |
569 | Vector2 tsc = Vector2(Math::cos(tt), Math::sin(tt)); |
570 | uvs.push_back(interpolate(uv_rect, 0.5f * (tsc + Vector2(1.f, 1.f)))); |
571 | } |
572 | |
573 | // Make up triangles |
574 | int vi0 = vi; |
575 | for (int ti = 0; ti < steps; ++ti) { |
576 | indices.push_back(vi0); |
577 | indices.push_back(++vi); |
578 | indices.push_back(vi + 1); |
579 | } |
580 | } |
581 | |