| 1 | /* | 
|---|
| 2 | * Copyright (c) 2005, 2019, Oracle and/or its affiliates. All rights reserved. | 
|---|
| 3 | * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. | 
|---|
| 4 | * | 
|---|
| 5 | * This code is free software; you can redistribute it and/or modify it | 
|---|
| 6 | * under the terms of the GNU General Public License version 2 only, as | 
|---|
| 7 | * published by the Free Software Foundation. | 
|---|
| 8 | * | 
|---|
| 9 | * This code is distributed in the hope that it will be useful, but WITHOUT | 
|---|
| 10 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | 
|---|
| 11 | * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License | 
|---|
| 12 | * version 2 for more details (a copy is included in the LICENSE file that | 
|---|
| 13 | * accompanied this code). | 
|---|
| 14 | * | 
|---|
| 15 | * You should have received a copy of the GNU General Public License version | 
|---|
| 16 | * 2 along with this work; if not, write to the Free Software Foundation, | 
|---|
| 17 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. | 
|---|
| 18 | * | 
|---|
| 19 | * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA | 
|---|
| 20 | * or visit www.oracle.com if you need additional information or have any | 
|---|
| 21 | * questions. | 
|---|
| 22 | * | 
|---|
| 23 | */ | 
|---|
| 24 |  | 
|---|
| 25 | #include "precompiled.hpp" | 
|---|
| 26 | #include "aot/aotLoader.hpp" | 
|---|
| 27 | #include "classfile/classLoaderDataGraph.hpp" | 
|---|
| 28 | #include "classfile/javaClasses.inline.hpp" | 
|---|
| 29 | #include "classfile/stringTable.hpp" | 
|---|
| 30 | #include "classfile/symbolTable.hpp" | 
|---|
| 31 | #include "classfile/systemDictionary.hpp" | 
|---|
| 32 | #include "code/codeCache.hpp" | 
|---|
| 33 | #include "gc/parallel/gcTaskManager.hpp" | 
|---|
| 34 | #include "gc/parallel/parallelArguments.hpp" | 
|---|
| 35 | #include "gc/parallel/parallelScavengeHeap.inline.hpp" | 
|---|
| 36 | #include "gc/parallel/parMarkBitMap.inline.hpp" | 
|---|
| 37 | #include "gc/parallel/pcTasks.hpp" | 
|---|
| 38 | #include "gc/parallel/psAdaptiveSizePolicy.hpp" | 
|---|
| 39 | #include "gc/parallel/psCompactionManager.inline.hpp" | 
|---|
| 40 | #include "gc/parallel/psOldGen.hpp" | 
|---|
| 41 | #include "gc/parallel/psParallelCompact.inline.hpp" | 
|---|
| 42 | #include "gc/parallel/psPromotionManager.inline.hpp" | 
|---|
| 43 | #include "gc/parallel/psScavenge.hpp" | 
|---|
| 44 | #include "gc/parallel/psYoungGen.hpp" | 
|---|
| 45 | #include "gc/shared/gcCause.hpp" | 
|---|
| 46 | #include "gc/shared/gcHeapSummary.hpp" | 
|---|
| 47 | #include "gc/shared/gcId.hpp" | 
|---|
| 48 | #include "gc/shared/gcLocker.hpp" | 
|---|
| 49 | #include "gc/shared/gcTimer.hpp" | 
|---|
| 50 | #include "gc/shared/gcTrace.hpp" | 
|---|
| 51 | #include "gc/shared/gcTraceTime.inline.hpp" | 
|---|
| 52 | #include "gc/shared/isGCActiveMark.hpp" | 
|---|
| 53 | #include "gc/shared/referencePolicy.hpp" | 
|---|
| 54 | #include "gc/shared/referenceProcessor.hpp" | 
|---|
| 55 | #include "gc/shared/referenceProcessorPhaseTimes.hpp" | 
|---|
| 56 | #include "gc/shared/spaceDecorator.hpp" | 
|---|
| 57 | #include "gc/shared/weakProcessor.hpp" | 
|---|
| 58 | #include "logging/log.hpp" | 
|---|
| 59 | #include "memory/iterator.inline.hpp" | 
|---|
| 60 | #include "memory/resourceArea.hpp" | 
|---|
| 61 | #include "memory/universe.hpp" | 
|---|
| 62 | #include "oops/access.inline.hpp" | 
|---|
| 63 | #include "oops/instanceClassLoaderKlass.inline.hpp" | 
|---|
| 64 | #include "oops/instanceKlass.inline.hpp" | 
|---|
| 65 | #include "oops/instanceMirrorKlass.inline.hpp" | 
|---|
| 66 | #include "oops/methodData.hpp" | 
|---|
| 67 | #include "oops/objArrayKlass.inline.hpp" | 
|---|
| 68 | #include "oops/oop.inline.hpp" | 
|---|
| 69 | #include "runtime/atomic.hpp" | 
|---|
| 70 | #include "runtime/handles.inline.hpp" | 
|---|
| 71 | #include "runtime/safepoint.hpp" | 
|---|
| 72 | #include "runtime/vmThread.hpp" | 
|---|
| 73 | #include "services/management.hpp" | 
|---|
| 74 | #include "services/memTracker.hpp" | 
|---|
| 75 | #include "services/memoryService.hpp" | 
|---|
| 76 | #include "utilities/align.hpp" | 
|---|
| 77 | #include "utilities/debug.hpp" | 
|---|
| 78 | #include "utilities/events.hpp" | 
|---|
| 79 | #include "utilities/formatBuffer.hpp" | 
|---|
| 80 | #include "utilities/macros.hpp" | 
|---|
| 81 | #include "utilities/stack.inline.hpp" | 
|---|
| 82 | #if INCLUDE_JVMCI | 
|---|
| 83 | #include "jvmci/jvmci.hpp" | 
|---|
| 84 | #endif | 
|---|
| 85 |  | 
|---|
| 86 | #include <math.h> | 
|---|
| 87 |  | 
|---|
| 88 | // All sizes are in HeapWords. | 
|---|
| 89 | const size_t ParallelCompactData::Log2RegionSize  = 16; // 64K words | 
|---|
| 90 | const size_t ParallelCompactData::RegionSize      = (size_t)1 << Log2RegionSize; | 
|---|
| 91 | const size_t ParallelCompactData::RegionSizeBytes = | 
|---|
| 92 | RegionSize << LogHeapWordSize; | 
|---|
| 93 | const size_t ParallelCompactData::RegionSizeOffsetMask = RegionSize - 1; | 
|---|
| 94 | const size_t ParallelCompactData::RegionAddrOffsetMask = RegionSizeBytes - 1; | 
|---|
| 95 | const size_t ParallelCompactData::RegionAddrMask       = ~RegionAddrOffsetMask; | 
|---|
| 96 |  | 
|---|
| 97 | const size_t ParallelCompactData::Log2BlockSize   = 7; // 128 words | 
|---|
| 98 | const size_t ParallelCompactData::BlockSize       = (size_t)1 << Log2BlockSize; | 
|---|
| 99 | const size_t ParallelCompactData::BlockSizeBytes  = | 
|---|
| 100 | BlockSize << LogHeapWordSize; | 
|---|
| 101 | const size_t ParallelCompactData::BlockSizeOffsetMask = BlockSize - 1; | 
|---|
| 102 | const size_t ParallelCompactData::BlockAddrOffsetMask = BlockSizeBytes - 1; | 
|---|
| 103 | const size_t ParallelCompactData::BlockAddrMask       = ~BlockAddrOffsetMask; | 
|---|
| 104 |  | 
|---|
| 105 | const size_t ParallelCompactData::BlocksPerRegion = RegionSize / BlockSize; | 
|---|
| 106 | const size_t ParallelCompactData::Log2BlocksPerRegion = | 
|---|
| 107 | Log2RegionSize - Log2BlockSize; | 
|---|
| 108 |  | 
|---|
| 109 | const ParallelCompactData::RegionData::region_sz_t | 
|---|
| 110 | ParallelCompactData::RegionData::dc_shift = 27; | 
|---|
| 111 |  | 
|---|
| 112 | const ParallelCompactData::RegionData::region_sz_t | 
|---|
| 113 | ParallelCompactData::RegionData::dc_mask = ~0U << dc_shift; | 
|---|
| 114 |  | 
|---|
| 115 | const ParallelCompactData::RegionData::region_sz_t | 
|---|
| 116 | ParallelCompactData::RegionData::dc_one = 0x1U << dc_shift; | 
|---|
| 117 |  | 
|---|
| 118 | const ParallelCompactData::RegionData::region_sz_t | 
|---|
| 119 | ParallelCompactData::RegionData::los_mask = ~dc_mask; | 
|---|
| 120 |  | 
|---|
| 121 | const ParallelCompactData::RegionData::region_sz_t | 
|---|
| 122 | ParallelCompactData::RegionData::dc_claimed = 0x8U << dc_shift; | 
|---|
| 123 |  | 
|---|
| 124 | const ParallelCompactData::RegionData::region_sz_t | 
|---|
| 125 | ParallelCompactData::RegionData::dc_completed = 0xcU << dc_shift; | 
|---|
| 126 |  | 
|---|
| 127 | SpaceInfo PSParallelCompact::_space_info[PSParallelCompact::last_space_id]; | 
|---|
| 128 |  | 
|---|
| 129 | SpanSubjectToDiscoveryClosure PSParallelCompact::_span_based_discoverer; | 
|---|
| 130 | ReferenceProcessor* PSParallelCompact::_ref_processor = NULL; | 
|---|
| 131 |  | 
|---|
| 132 | double PSParallelCompact::_dwl_mean; | 
|---|
| 133 | double PSParallelCompact::_dwl_std_dev; | 
|---|
| 134 | double PSParallelCompact::_dwl_first_term; | 
|---|
| 135 | double PSParallelCompact::_dwl_adjustment; | 
|---|
| 136 | #ifdef  ASSERT | 
|---|
| 137 | bool   PSParallelCompact::_dwl_initialized = false; | 
|---|
| 138 | #endif  // #ifdef ASSERT | 
|---|
| 139 |  | 
|---|
| 140 | void SplitInfo::record(size_t src_region_idx, size_t partial_obj_size, | 
|---|
| 141 | HeapWord* destination) | 
|---|
| 142 | { | 
|---|
| 143 | assert(src_region_idx != 0, "invalid src_region_idx"); | 
|---|
| 144 | assert(partial_obj_size != 0, "invalid partial_obj_size argument"); | 
|---|
| 145 | assert(destination != NULL, "invalid destination argument"); | 
|---|
| 146 |  | 
|---|
| 147 | _src_region_idx = src_region_idx; | 
|---|
| 148 | _partial_obj_size = partial_obj_size; | 
|---|
| 149 | _destination = destination; | 
|---|
| 150 |  | 
|---|
| 151 | // These fields may not be updated below, so make sure they're clear. | 
|---|
| 152 | assert(_dest_region_addr == NULL, "should have been cleared"); | 
|---|
| 153 | assert(_first_src_addr == NULL, "should have been cleared"); | 
|---|
| 154 |  | 
|---|
| 155 | // Determine the number of destination regions for the partial object. | 
|---|
| 156 | HeapWord* const last_word = destination + partial_obj_size - 1; | 
|---|
| 157 | const ParallelCompactData& sd = PSParallelCompact::summary_data(); | 
|---|
| 158 | HeapWord* const beg_region_addr = sd.region_align_down(destination); | 
|---|
| 159 | HeapWord* const end_region_addr = sd.region_align_down(last_word); | 
|---|
| 160 |  | 
|---|
| 161 | if (beg_region_addr == end_region_addr) { | 
|---|
| 162 | // One destination region. | 
|---|
| 163 | _destination_count = 1; | 
|---|
| 164 | if (end_region_addr == destination) { | 
|---|
| 165 | // The destination falls on a region boundary, thus the first word of the | 
|---|
| 166 | // partial object will be the first word copied to the destination region. | 
|---|
| 167 | _dest_region_addr = end_region_addr; | 
|---|
| 168 | _first_src_addr = sd.region_to_addr(src_region_idx); | 
|---|
| 169 | } | 
|---|
| 170 | } else { | 
|---|
| 171 | // Two destination regions.  When copied, the partial object will cross a | 
|---|
| 172 | // destination region boundary, so a word somewhere within the partial | 
|---|
| 173 | // object will be the first word copied to the second destination region. | 
|---|
| 174 | _destination_count = 2; | 
|---|
| 175 | _dest_region_addr = end_region_addr; | 
|---|
| 176 | const size_t ofs = pointer_delta(end_region_addr, destination); | 
|---|
| 177 | assert(ofs < _partial_obj_size, "sanity"); | 
|---|
| 178 | _first_src_addr = sd.region_to_addr(src_region_idx) + ofs; | 
|---|
| 179 | } | 
|---|
| 180 | } | 
|---|
| 181 |  | 
|---|
| 182 | void SplitInfo::clear() | 
|---|
| 183 | { | 
|---|
| 184 | _src_region_idx = 0; | 
|---|
| 185 | _partial_obj_size = 0; | 
|---|
| 186 | _destination = NULL; | 
|---|
| 187 | _destination_count = 0; | 
|---|
| 188 | _dest_region_addr = NULL; | 
|---|
| 189 | _first_src_addr = NULL; | 
|---|
| 190 | assert(!is_valid(), "sanity"); | 
|---|
| 191 | } | 
|---|
| 192 |  | 
|---|
| 193 | #ifdef  ASSERT | 
|---|
| 194 | void SplitInfo::verify_clear() | 
|---|
| 195 | { | 
|---|
| 196 | assert(_src_region_idx == 0, "not clear"); | 
|---|
| 197 | assert(_partial_obj_size == 0, "not clear"); | 
|---|
| 198 | assert(_destination == NULL, "not clear"); | 
|---|
| 199 | assert(_destination_count == 0, "not clear"); | 
|---|
| 200 | assert(_dest_region_addr == NULL, "not clear"); | 
|---|
| 201 | assert(_first_src_addr == NULL, "not clear"); | 
|---|
| 202 | } | 
|---|
| 203 | #endif  // #ifdef ASSERT | 
|---|
| 204 |  | 
|---|
| 205 |  | 
|---|
| 206 | void PSParallelCompact::print_on_error(outputStream* st) { | 
|---|
| 207 | _mark_bitmap.print_on_error(st); | 
|---|
| 208 | } | 
|---|
| 209 |  | 
|---|
| 210 | #ifndef PRODUCT | 
|---|
| 211 | const char* PSParallelCompact::space_names[] = { | 
|---|
| 212 | "old ", "eden", "from", "to  " | 
|---|
| 213 | }; | 
|---|
| 214 |  | 
|---|
| 215 | void PSParallelCompact::print_region_ranges() { | 
|---|
| 216 | if (!log_develop_is_enabled(Trace, gc, compaction)) { | 
|---|
| 217 | return; | 
|---|
| 218 | } | 
|---|
| 219 | Log(gc, compaction) log; | 
|---|
| 220 | ResourceMark rm; | 
|---|
| 221 | LogStream ls(log.trace()); | 
|---|
| 222 | Universe::print_on(&ls); | 
|---|
| 223 | log.trace( "space  bottom     top        end        new_top"); | 
|---|
| 224 | log.trace( "------ ---------- ---------- ---------- ----------"); | 
|---|
| 225 |  | 
|---|
| 226 | for (unsigned int id = 0; id < last_space_id; ++id) { | 
|---|
| 227 | const MutableSpace* space = _space_info[id].space(); | 
|---|
| 228 | log.trace( "%u %s " | 
|---|
| 229 | SIZE_FORMAT_W(10) " "SIZE_FORMAT_W(10) " " | 
|---|
| 230 | SIZE_FORMAT_W(10) " "SIZE_FORMAT_W(10) " ", | 
|---|
| 231 | id, space_names[id], | 
|---|
| 232 | summary_data().addr_to_region_idx(space->bottom()), | 
|---|
| 233 | summary_data().addr_to_region_idx(space->top()), | 
|---|
| 234 | summary_data().addr_to_region_idx(space->end()), | 
|---|
| 235 | summary_data().addr_to_region_idx(_space_info[id].new_top())); | 
|---|
| 236 | } | 
|---|
| 237 | } | 
|---|
| 238 |  | 
|---|
| 239 | void | 
|---|
| 240 | print_generic_summary_region(size_t i, const ParallelCompactData::RegionData* c) | 
|---|
| 241 | { | 
|---|
| 242 | #define REGION_IDX_FORMAT        SIZE_FORMAT_W(7) | 
|---|
| 243 | #define REGION_DATA_FORMAT       SIZE_FORMAT_W(5) | 
|---|
| 244 |  | 
|---|
| 245 | ParallelCompactData& sd = PSParallelCompact::summary_data(); | 
|---|
| 246 | size_t dci = c->destination() ? sd.addr_to_region_idx(c->destination()) : 0; | 
|---|
| 247 | log_develop_trace(gc, compaction)( | 
|---|
| 248 | REGION_IDX_FORMAT " "PTR_FORMAT " " | 
|---|
| 249 | REGION_IDX_FORMAT " "PTR_FORMAT " " | 
|---|
| 250 | REGION_DATA_FORMAT " "REGION_DATA_FORMAT " " | 
|---|
| 251 | REGION_DATA_FORMAT " "REGION_IDX_FORMAT " %d", | 
|---|
| 252 | i, p2i(c->data_location()), dci, p2i(c->destination()), | 
|---|
| 253 | c->partial_obj_size(), c->live_obj_size(), | 
|---|
| 254 | c->data_size(), c->source_region(), c->destination_count()); | 
|---|
| 255 |  | 
|---|
| 256 | #undef  REGION_IDX_FORMAT | 
|---|
| 257 | #undef  REGION_DATA_FORMAT | 
|---|
| 258 | } | 
|---|
| 259 |  | 
|---|
| 260 | void | 
|---|
| 261 | print_generic_summary_data(ParallelCompactData& summary_data, | 
|---|
| 262 | HeapWord* const beg_addr, | 
|---|
| 263 | HeapWord* const end_addr) | 
|---|
| 264 | { | 
|---|
| 265 | size_t total_words = 0; | 
|---|
| 266 | size_t i = summary_data.addr_to_region_idx(beg_addr); | 
|---|
| 267 | const size_t last = summary_data.addr_to_region_idx(end_addr); | 
|---|
| 268 | HeapWord* pdest = 0; | 
|---|
| 269 |  | 
|---|
| 270 | while (i < last) { | 
|---|
| 271 | ParallelCompactData::RegionData* c = summary_data.region(i); | 
|---|
| 272 | if (c->data_size() != 0 || c->destination() != pdest) { | 
|---|
| 273 | print_generic_summary_region(i, c); | 
|---|
| 274 | total_words += c->data_size(); | 
|---|
| 275 | pdest = c->destination(); | 
|---|
| 276 | } | 
|---|
| 277 | ++i; | 
|---|
| 278 | } | 
|---|
| 279 |  | 
|---|
| 280 | log_develop_trace(gc, compaction)( "summary_data_bytes="SIZE_FORMAT, total_words * HeapWordSize); | 
|---|
| 281 | } | 
|---|
| 282 |  | 
|---|
| 283 | void | 
|---|
| 284 | PSParallelCompact::print_generic_summary_data(ParallelCompactData& summary_data, | 
|---|
| 285 | HeapWord* const beg_addr, | 
|---|
| 286 | HeapWord* const end_addr) { | 
|---|
| 287 | ::print_generic_summary_data(summary_data,beg_addr, end_addr); | 
|---|
| 288 | } | 
|---|
| 289 |  | 
|---|
| 290 | void | 
|---|
| 291 | print_generic_summary_data(ParallelCompactData& summary_data, | 
|---|
| 292 | SpaceInfo* space_info) | 
|---|
| 293 | { | 
|---|
| 294 | if (!log_develop_is_enabled(Trace, gc, compaction)) { | 
|---|
| 295 | return; | 
|---|
| 296 | } | 
|---|
| 297 |  | 
|---|
| 298 | for (unsigned int id = 0; id < PSParallelCompact::last_space_id; ++id) { | 
|---|
| 299 | const MutableSpace* space = space_info[id].space(); | 
|---|
| 300 | print_generic_summary_data(summary_data, space->bottom(), | 
|---|
| 301 | MAX2(space->top(), space_info[id].new_top())); | 
|---|
| 302 | } | 
|---|
| 303 | } | 
|---|
| 304 |  | 
|---|
| 305 | void | 
|---|
| 306 | print_initial_summary_data(ParallelCompactData& summary_data, | 
|---|
| 307 | const MutableSpace* space) { | 
|---|
| 308 | if (space->top() == space->bottom()) { | 
|---|
| 309 | return; | 
|---|
| 310 | } | 
|---|
| 311 |  | 
|---|
| 312 | const size_t region_size = ParallelCompactData::RegionSize; | 
|---|
| 313 | typedef ParallelCompactData::RegionData RegionData; | 
|---|
| 314 | HeapWord* const top_aligned_up = summary_data.region_align_up(space->top()); | 
|---|
| 315 | const size_t end_region = summary_data.addr_to_region_idx(top_aligned_up); | 
|---|
| 316 | const RegionData* c = summary_data.region(end_region - 1); | 
|---|
| 317 | HeapWord* end_addr = c->destination() + c->data_size(); | 
|---|
| 318 | const size_t live_in_space = pointer_delta(end_addr, space->bottom()); | 
|---|
| 319 |  | 
|---|
| 320 | // Print (and count) the full regions at the beginning of the space. | 
|---|
| 321 | size_t full_region_count = 0; | 
|---|
| 322 | size_t i = summary_data.addr_to_region_idx(space->bottom()); | 
|---|
| 323 | while (i < end_region && summary_data.region(i)->data_size() == region_size) { | 
|---|
| 324 | ParallelCompactData::RegionData* c = summary_data.region(i); | 
|---|
| 325 | log_develop_trace(gc, compaction)( | 
|---|
| 326 | SIZE_FORMAT_W(5) " "PTR_FORMAT " "SIZE_FORMAT_W(5) " "SIZE_FORMAT_W(5) " "SIZE_FORMAT_W(5) " "SIZE_FORMAT_W(5) " %d", | 
|---|
| 327 | i, p2i(c->destination()), | 
|---|
| 328 | c->partial_obj_size(), c->live_obj_size(), | 
|---|
| 329 | c->data_size(), c->source_region(), c->destination_count()); | 
|---|
| 330 | ++full_region_count; | 
|---|
| 331 | ++i; | 
|---|
| 332 | } | 
|---|
| 333 |  | 
|---|
| 334 | size_t live_to_right = live_in_space - full_region_count * region_size; | 
|---|
| 335 |  | 
|---|
| 336 | double max_reclaimed_ratio = 0.0; | 
|---|
| 337 | size_t max_reclaimed_ratio_region = 0; | 
|---|
| 338 | size_t max_dead_to_right = 0; | 
|---|
| 339 | size_t max_live_to_right = 0; | 
|---|
| 340 |  | 
|---|
| 341 | // Print the 'reclaimed ratio' for regions while there is something live in | 
|---|
| 342 | // the region or to the right of it.  The remaining regions are empty (and | 
|---|
| 343 | // uninteresting), and computing the ratio will result in division by 0. | 
|---|
| 344 | while (i < end_region && live_to_right > 0) { | 
|---|
| 345 | c = summary_data.region(i); | 
|---|
| 346 | HeapWord* const region_addr = summary_data.region_to_addr(i); | 
|---|
| 347 | const size_t used_to_right = pointer_delta(space->top(), region_addr); | 
|---|
| 348 | const size_t dead_to_right = used_to_right - live_to_right; | 
|---|
| 349 | const double reclaimed_ratio = double(dead_to_right) / live_to_right; | 
|---|
| 350 |  | 
|---|
| 351 | if (reclaimed_ratio > max_reclaimed_ratio) { | 
|---|
| 352 | max_reclaimed_ratio = reclaimed_ratio; | 
|---|
| 353 | max_reclaimed_ratio_region = i; | 
|---|
| 354 | max_dead_to_right = dead_to_right; | 
|---|
| 355 | max_live_to_right = live_to_right; | 
|---|
| 356 | } | 
|---|
| 357 |  | 
|---|
| 358 | ParallelCompactData::RegionData* c = summary_data.region(i); | 
|---|
| 359 | log_develop_trace(gc, compaction)( | 
|---|
| 360 | SIZE_FORMAT_W(5) " "PTR_FORMAT " "SIZE_FORMAT_W(5) " "SIZE_FORMAT_W(5) " "SIZE_FORMAT_W(5) " "SIZE_FORMAT_W(5) " %d" | 
|---|
| 361 | "%12.10f "SIZE_FORMAT_W(10) " "SIZE_FORMAT_W(10), | 
|---|
| 362 | i, p2i(c->destination()), | 
|---|
| 363 | c->partial_obj_size(), c->live_obj_size(), | 
|---|
| 364 | c->data_size(), c->source_region(), c->destination_count(), | 
|---|
| 365 | reclaimed_ratio, dead_to_right, live_to_right); | 
|---|
| 366 |  | 
|---|
| 367 |  | 
|---|
| 368 | live_to_right -= c->data_size(); | 
|---|
| 369 | ++i; | 
|---|
| 370 | } | 
|---|
| 371 |  | 
|---|
| 372 | // Any remaining regions are empty.  Print one more if there is one. | 
|---|
| 373 | if (i < end_region) { | 
|---|
| 374 | ParallelCompactData::RegionData* c = summary_data.region(i); | 
|---|
| 375 | log_develop_trace(gc, compaction)( | 
|---|
| 376 | SIZE_FORMAT_W(5) " "PTR_FORMAT " "SIZE_FORMAT_W(5) " "SIZE_FORMAT_W(5) " "SIZE_FORMAT_W(5) " "SIZE_FORMAT_W(5) " %d", | 
|---|
| 377 | i, p2i(c->destination()), | 
|---|
| 378 | c->partial_obj_size(), c->live_obj_size(), | 
|---|
| 379 | c->data_size(), c->source_region(), c->destination_count()); | 
|---|
| 380 | } | 
|---|
| 381 |  | 
|---|
| 382 | log_develop_trace(gc, compaction)( "max:  "SIZE_FORMAT_W(4) " d2r="SIZE_FORMAT_W(10) " l2r="SIZE_FORMAT_W(10) " max_ratio=%14.12f", | 
|---|
| 383 | max_reclaimed_ratio_region, max_dead_to_right, max_live_to_right, max_reclaimed_ratio); | 
|---|
| 384 | } | 
|---|
| 385 |  | 
|---|
| 386 | void | 
|---|
| 387 | print_initial_summary_data(ParallelCompactData& summary_data, | 
|---|
| 388 | SpaceInfo* space_info) { | 
|---|
| 389 | if (!log_develop_is_enabled(Trace, gc, compaction)) { | 
|---|
| 390 | return; | 
|---|
| 391 | } | 
|---|
| 392 |  | 
|---|
| 393 | unsigned int id = PSParallelCompact::old_space_id; | 
|---|
| 394 | const MutableSpace* space; | 
|---|
| 395 | do { | 
|---|
| 396 | space = space_info[id].space(); | 
|---|
| 397 | print_initial_summary_data(summary_data, space); | 
|---|
| 398 | } while (++id < PSParallelCompact::eden_space_id); | 
|---|
| 399 |  | 
|---|
| 400 | do { | 
|---|
| 401 | space = space_info[id].space(); | 
|---|
| 402 | print_generic_summary_data(summary_data, space->bottom(), space->top()); | 
|---|
| 403 | } while (++id < PSParallelCompact::last_space_id); | 
|---|
| 404 | } | 
|---|
| 405 | #endif  // #ifndef PRODUCT | 
|---|
| 406 |  | 
|---|
| 407 | #ifdef  ASSERT | 
|---|
| 408 | size_t add_obj_count; | 
|---|
| 409 | size_t add_obj_size; | 
|---|
| 410 | size_t mark_bitmap_count; | 
|---|
| 411 | size_t mark_bitmap_size; | 
|---|
| 412 | #endif  // #ifdef ASSERT | 
|---|
| 413 |  | 
|---|
| 414 | ParallelCompactData::ParallelCompactData() : | 
|---|
| 415 | _region_start(NULL), | 
|---|
| 416 | DEBUG_ONLY(_region_end(NULL) COMMA) | 
|---|
| 417 | _region_vspace(NULL), | 
|---|
| 418 | _reserved_byte_size(0), | 
|---|
| 419 | _region_data(NULL), | 
|---|
| 420 | _region_count(0), | 
|---|
| 421 | _block_vspace(NULL), | 
|---|
| 422 | _block_data(NULL), | 
|---|
| 423 | _block_count(0) {} | 
|---|
| 424 |  | 
|---|
| 425 | bool ParallelCompactData::initialize(MemRegion covered_region) | 
|---|
| 426 | { | 
|---|
| 427 | _region_start = covered_region.start(); | 
|---|
| 428 | const size_t region_size = covered_region.word_size(); | 
|---|
| 429 | DEBUG_ONLY(_region_end = _region_start + region_size;) | 
|---|
| 430 |  | 
|---|
| 431 | assert(region_align_down(_region_start) == _region_start, | 
|---|
| 432 | "region start not aligned"); | 
|---|
| 433 | assert((region_size & RegionSizeOffsetMask) == 0, | 
|---|
| 434 | "region size not a multiple of RegionSize"); | 
|---|
| 435 |  | 
|---|
| 436 | bool result = initialize_region_data(region_size) && initialize_block_data(); | 
|---|
| 437 | return result; | 
|---|
| 438 | } | 
|---|
| 439 |  | 
|---|
| 440 | PSVirtualSpace* | 
|---|
| 441 | ParallelCompactData::create_vspace(size_t count, size_t element_size) | 
|---|
| 442 | { | 
|---|
| 443 | const size_t raw_bytes = count * element_size; | 
|---|
| 444 | const size_t page_sz = os::page_size_for_region_aligned(raw_bytes, 10); | 
|---|
| 445 | const size_t granularity = os::vm_allocation_granularity(); | 
|---|
| 446 | _reserved_byte_size = align_up(raw_bytes, MAX2(page_sz, granularity)); | 
|---|
| 447 |  | 
|---|
| 448 | const size_t rs_align = page_sz == (size_t) os::vm_page_size() ? 0 : | 
|---|
| 449 | MAX2(page_sz, granularity); | 
|---|
| 450 | ReservedSpace rs(_reserved_byte_size, rs_align, rs_align > 0); | 
|---|
| 451 | os::trace_page_sizes( "Parallel Compact Data", raw_bytes, raw_bytes, page_sz, rs.base(), | 
|---|
| 452 | rs.size()); | 
|---|
| 453 |  | 
|---|
| 454 | MemTracker::record_virtual_memory_type((address)rs.base(), mtGC); | 
|---|
| 455 |  | 
|---|
| 456 | PSVirtualSpace* vspace = new PSVirtualSpace(rs, page_sz); | 
|---|
| 457 | if (vspace != 0) { | 
|---|
| 458 | if (vspace->expand_by(_reserved_byte_size)) { | 
|---|
| 459 | return vspace; | 
|---|
| 460 | } | 
|---|
| 461 | delete vspace; | 
|---|
| 462 | // Release memory reserved in the space. | 
|---|
| 463 | rs.release(); | 
|---|
| 464 | } | 
|---|
| 465 |  | 
|---|
| 466 | return 0; | 
|---|
| 467 | } | 
|---|
| 468 |  | 
|---|
| 469 | bool ParallelCompactData::initialize_region_data(size_t region_size) | 
|---|
| 470 | { | 
|---|
| 471 | const size_t count = (region_size + RegionSizeOffsetMask) >> Log2RegionSize; | 
|---|
| 472 | _region_vspace = create_vspace(count, sizeof(RegionData)); | 
|---|
| 473 | if (_region_vspace != 0) { | 
|---|
| 474 | _region_data = (RegionData*)_region_vspace->reserved_low_addr(); | 
|---|
| 475 | _region_count = count; | 
|---|
| 476 | return true; | 
|---|
| 477 | } | 
|---|
| 478 | return false; | 
|---|
| 479 | } | 
|---|
| 480 |  | 
|---|
| 481 | bool ParallelCompactData::initialize_block_data() | 
|---|
| 482 | { | 
|---|
| 483 | assert(_region_count != 0, "region data must be initialized first"); | 
|---|
| 484 | const size_t count = _region_count << Log2BlocksPerRegion; | 
|---|
| 485 | _block_vspace = create_vspace(count, sizeof(BlockData)); | 
|---|
| 486 | if (_block_vspace != 0) { | 
|---|
| 487 | _block_data = (BlockData*)_block_vspace->reserved_low_addr(); | 
|---|
| 488 | _block_count = count; | 
|---|
| 489 | return true; | 
|---|
| 490 | } | 
|---|
| 491 | return false; | 
|---|
| 492 | } | 
|---|
| 493 |  | 
|---|
| 494 | void ParallelCompactData::clear() | 
|---|
| 495 | { | 
|---|
| 496 | memset(_region_data, 0, _region_vspace->committed_size()); | 
|---|
| 497 | memset(_block_data, 0, _block_vspace->committed_size()); | 
|---|
| 498 | } | 
|---|
| 499 |  | 
|---|
| 500 | void ParallelCompactData::clear_range(size_t beg_region, size_t end_region) { | 
|---|
| 501 | assert(beg_region <= _region_count, "beg_region out of range"); | 
|---|
| 502 | assert(end_region <= _region_count, "end_region out of range"); | 
|---|
| 503 | assert(RegionSize % BlockSize == 0, "RegionSize not a multiple of BlockSize"); | 
|---|
| 504 |  | 
|---|
| 505 | const size_t region_cnt = end_region - beg_region; | 
|---|
| 506 | memset(_region_data + beg_region, 0, region_cnt * sizeof(RegionData)); | 
|---|
| 507 |  | 
|---|
| 508 | const size_t beg_block = beg_region * BlocksPerRegion; | 
|---|
| 509 | const size_t block_cnt = region_cnt * BlocksPerRegion; | 
|---|
| 510 | memset(_block_data + beg_block, 0, block_cnt * sizeof(BlockData)); | 
|---|
| 511 | } | 
|---|
| 512 |  | 
|---|
| 513 | HeapWord* ParallelCompactData::partial_obj_end(size_t region_idx) const | 
|---|
| 514 | { | 
|---|
| 515 | const RegionData* cur_cp = region(region_idx); | 
|---|
| 516 | const RegionData* const end_cp = region(region_count() - 1); | 
|---|
| 517 |  | 
|---|
| 518 | HeapWord* result = region_to_addr(region_idx); | 
|---|
| 519 | if (cur_cp < end_cp) { | 
|---|
| 520 | do { | 
|---|
| 521 | result += cur_cp->partial_obj_size(); | 
|---|
| 522 | } while (cur_cp->partial_obj_size() == RegionSize && ++cur_cp < end_cp); | 
|---|
| 523 | } | 
|---|
| 524 | return result; | 
|---|
| 525 | } | 
|---|
| 526 |  | 
|---|
| 527 | void ParallelCompactData::add_obj(HeapWord* addr, size_t len) | 
|---|
| 528 | { | 
|---|
| 529 | const size_t obj_ofs = pointer_delta(addr, _region_start); | 
|---|
| 530 | const size_t beg_region = obj_ofs >> Log2RegionSize; | 
|---|
| 531 | const size_t end_region = (obj_ofs + len - 1) >> Log2RegionSize; | 
|---|
| 532 |  | 
|---|
| 533 | DEBUG_ONLY(Atomic::inc(&add_obj_count);) | 
|---|
| 534 | DEBUG_ONLY(Atomic::add(len, &add_obj_size);) | 
|---|
| 535 |  | 
|---|
| 536 | if (beg_region == end_region) { | 
|---|
| 537 | // All in one region. | 
|---|
| 538 | _region_data[beg_region].add_live_obj(len); | 
|---|
| 539 | return; | 
|---|
| 540 | } | 
|---|
| 541 |  | 
|---|
| 542 | // First region. | 
|---|
| 543 | const size_t beg_ofs = region_offset(addr); | 
|---|
| 544 | _region_data[beg_region].add_live_obj(RegionSize - beg_ofs); | 
|---|
| 545 |  | 
|---|
| 546 | Klass* klass = ((oop)addr)->klass(); | 
|---|
| 547 | // Middle regions--completely spanned by this object. | 
|---|
| 548 | for (size_t region = beg_region + 1; region < end_region; ++region) { | 
|---|
| 549 | _region_data[region].set_partial_obj_size(RegionSize); | 
|---|
| 550 | _region_data[region].set_partial_obj_addr(addr); | 
|---|
| 551 | } | 
|---|
| 552 |  | 
|---|
| 553 | // Last region. | 
|---|
| 554 | const size_t end_ofs = region_offset(addr + len - 1); | 
|---|
| 555 | _region_data[end_region].set_partial_obj_size(end_ofs + 1); | 
|---|
| 556 | _region_data[end_region].set_partial_obj_addr(addr); | 
|---|
| 557 | } | 
|---|
| 558 |  | 
|---|
| 559 | void | 
|---|
| 560 | ParallelCompactData::summarize_dense_prefix(HeapWord* beg, HeapWord* end) | 
|---|
| 561 | { | 
|---|
| 562 | assert(region_offset(beg) == 0, "not RegionSize aligned"); | 
|---|
| 563 | assert(region_offset(end) == 0, "not RegionSize aligned"); | 
|---|
| 564 |  | 
|---|
| 565 | size_t cur_region = addr_to_region_idx(beg); | 
|---|
| 566 | const size_t end_region = addr_to_region_idx(end); | 
|---|
| 567 | HeapWord* addr = beg; | 
|---|
| 568 | while (cur_region < end_region) { | 
|---|
| 569 | _region_data[cur_region].set_destination(addr); | 
|---|
| 570 | _region_data[cur_region].set_destination_count(0); | 
|---|
| 571 | _region_data[cur_region].set_source_region(cur_region); | 
|---|
| 572 | _region_data[cur_region].set_data_location(addr); | 
|---|
| 573 |  | 
|---|
| 574 | // Update live_obj_size so the region appears completely full. | 
|---|
| 575 | size_t live_size = RegionSize - _region_data[cur_region].partial_obj_size(); | 
|---|
| 576 | _region_data[cur_region].set_live_obj_size(live_size); | 
|---|
| 577 |  | 
|---|
| 578 | ++cur_region; | 
|---|
| 579 | addr += RegionSize; | 
|---|
| 580 | } | 
|---|
| 581 | } | 
|---|
| 582 |  | 
|---|
| 583 | // Find the point at which a space can be split and, if necessary, record the | 
|---|
| 584 | // split point. | 
|---|
| 585 | // | 
|---|
| 586 | // If the current src region (which overflowed the destination space) doesn't | 
|---|
| 587 | // have a partial object, the split point is at the beginning of the current src | 
|---|
| 588 | // region (an "easy" split, no extra bookkeeping required). | 
|---|
| 589 | // | 
|---|
| 590 | // If the current src region has a partial object, the split point is in the | 
|---|
| 591 | // region where that partial object starts (call it the split_region).  If | 
|---|
| 592 | // split_region has a partial object, then the split point is just after that | 
|---|
| 593 | // partial object (a "hard" split where we have to record the split data and | 
|---|
| 594 | // zero the partial_obj_size field).  With a "hard" split, we know that the | 
|---|
| 595 | // partial_obj ends within split_region because the partial object that caused | 
|---|
| 596 | // the overflow starts in split_region.  If split_region doesn't have a partial | 
|---|
| 597 | // obj, then the split is at the beginning of split_region (another "easy" | 
|---|
| 598 | // split). | 
|---|
| 599 | HeapWord* | 
|---|
| 600 | ParallelCompactData::summarize_split_space(size_t src_region, | 
|---|
| 601 | SplitInfo& split_info, | 
|---|
| 602 | HeapWord* destination, | 
|---|
| 603 | HeapWord* target_end, | 
|---|
| 604 | HeapWord** target_next) | 
|---|
| 605 | { | 
|---|
| 606 | assert(destination <= target_end, "sanity"); | 
|---|
| 607 | assert(destination + _region_data[src_region].data_size() > target_end, | 
|---|
| 608 | "region should not fit into target space"); | 
|---|
| 609 | assert(is_region_aligned(target_end), "sanity"); | 
|---|
| 610 |  | 
|---|
| 611 | size_t split_region = src_region; | 
|---|
| 612 | HeapWord* split_destination = destination; | 
|---|
| 613 | size_t partial_obj_size = _region_data[src_region].partial_obj_size(); | 
|---|
| 614 |  | 
|---|
| 615 | if (destination + partial_obj_size > target_end) { | 
|---|
| 616 | // The split point is just after the partial object (if any) in the | 
|---|
| 617 | // src_region that contains the start of the object that overflowed the | 
|---|
| 618 | // destination space. | 
|---|
| 619 | // | 
|---|
| 620 | // Find the start of the "overflow" object and set split_region to the | 
|---|
| 621 | // region containing it. | 
|---|
| 622 | HeapWord* const overflow_obj = _region_data[src_region].partial_obj_addr(); | 
|---|
| 623 | split_region = addr_to_region_idx(overflow_obj); | 
|---|
| 624 |  | 
|---|
| 625 | // Clear the source_region field of all destination regions whose first word | 
|---|
| 626 | // came from data after the split point (a non-null source_region field | 
|---|
| 627 | // implies a region must be filled). | 
|---|
| 628 | // | 
|---|
| 629 | // An alternative to the simple loop below:  clear during post_compact(), | 
|---|
| 630 | // which uses memcpy instead of individual stores, and is easy to | 
|---|
| 631 | // parallelize.  (The downside is that it clears the entire RegionData | 
|---|
| 632 | // object as opposed to just one field.) | 
|---|
| 633 | // | 
|---|
| 634 | // post_compact() would have to clear the summary data up to the highest | 
|---|
| 635 | // address that was written during the summary phase, which would be | 
|---|
| 636 | // | 
|---|
| 637 | //         max(top, max(new_top, clear_top)) | 
|---|
| 638 | // | 
|---|
| 639 | // where clear_top is a new field in SpaceInfo.  Would have to set clear_top | 
|---|
| 640 | // to target_end. | 
|---|
| 641 | const RegionData* const sr = region(split_region); | 
|---|
| 642 | const size_t beg_idx = | 
|---|
| 643 | addr_to_region_idx(region_align_up(sr->destination() + | 
|---|
| 644 | sr->partial_obj_size())); | 
|---|
| 645 | const size_t end_idx = addr_to_region_idx(target_end); | 
|---|
| 646 |  | 
|---|
| 647 | log_develop_trace(gc, compaction)( "split:  clearing source_region field in ["SIZE_FORMAT ", "SIZE_FORMAT ")", beg_idx, end_idx); | 
|---|
| 648 | for (size_t idx = beg_idx; idx < end_idx; ++idx) { | 
|---|
| 649 | _region_data[idx].set_source_region(0); | 
|---|
| 650 | } | 
|---|
| 651 |  | 
|---|
| 652 | // Set split_destination and partial_obj_size to reflect the split region. | 
|---|
| 653 | split_destination = sr->destination(); | 
|---|
| 654 | partial_obj_size = sr->partial_obj_size(); | 
|---|
| 655 | } | 
|---|
| 656 |  | 
|---|
| 657 | // The split is recorded only if a partial object extends onto the region. | 
|---|
| 658 | if (partial_obj_size != 0) { | 
|---|
| 659 | _region_data[split_region].set_partial_obj_size(0); | 
|---|
| 660 | split_info.record(split_region, partial_obj_size, split_destination); | 
|---|
| 661 | } | 
|---|
| 662 |  | 
|---|
| 663 | // Setup the continuation addresses. | 
|---|
| 664 | *target_next = split_destination + partial_obj_size; | 
|---|
| 665 | HeapWord* const source_next = region_to_addr(split_region) + partial_obj_size; | 
|---|
| 666 |  | 
|---|
| 667 | if (log_develop_is_enabled(Trace, gc, compaction)) { | 
|---|
| 668 | const char * split_type = partial_obj_size == 0 ? "easy": "hard"; | 
|---|
| 669 | log_develop_trace(gc, compaction)( "%s split:  src="PTR_FORMAT " src_c="SIZE_FORMAT " pos="SIZE_FORMAT, | 
|---|
| 670 | split_type, p2i(source_next), split_region, partial_obj_size); | 
|---|
| 671 | log_develop_trace(gc, compaction)( "%s split:  dst="PTR_FORMAT " dst_c="SIZE_FORMAT " tn="PTR_FORMAT, | 
|---|
| 672 | split_type, p2i(split_destination), | 
|---|
| 673 | addr_to_region_idx(split_destination), | 
|---|
| 674 | p2i(*target_next)); | 
|---|
| 675 |  | 
|---|
| 676 | if (partial_obj_size != 0) { | 
|---|
| 677 | HeapWord* const po_beg = split_info.destination(); | 
|---|
| 678 | HeapWord* const po_end = po_beg + split_info.partial_obj_size(); | 
|---|
| 679 | log_develop_trace(gc, compaction)( "%s split:  po_beg="PTR_FORMAT " "SIZE_FORMAT " po_end="PTR_FORMAT " "SIZE_FORMAT, | 
|---|
| 680 | split_type, | 
|---|
| 681 | p2i(po_beg), addr_to_region_idx(po_beg), | 
|---|
| 682 | p2i(po_end), addr_to_region_idx(po_end)); | 
|---|
| 683 | } | 
|---|
| 684 | } | 
|---|
| 685 |  | 
|---|
| 686 | return source_next; | 
|---|
| 687 | } | 
|---|
| 688 |  | 
|---|
| 689 | bool ParallelCompactData::summarize(SplitInfo& split_info, | 
|---|
| 690 | HeapWord* source_beg, HeapWord* source_end, | 
|---|
| 691 | HeapWord** source_next, | 
|---|
| 692 | HeapWord* target_beg, HeapWord* target_end, | 
|---|
| 693 | HeapWord** target_next) | 
|---|
| 694 | { | 
|---|
| 695 | HeapWord* const source_next_val = source_next == NULL ? NULL : *source_next; | 
|---|
| 696 | log_develop_trace(gc, compaction)( | 
|---|
| 697 | "sb="PTR_FORMAT " se="PTR_FORMAT " sn="PTR_FORMAT | 
|---|
| 698 | "tb="PTR_FORMAT " te="PTR_FORMAT " tn="PTR_FORMAT, | 
|---|
| 699 | p2i(source_beg), p2i(source_end), p2i(source_next_val), | 
|---|
| 700 | p2i(target_beg), p2i(target_end), p2i(*target_next)); | 
|---|
| 701 |  | 
|---|
| 702 | size_t cur_region = addr_to_region_idx(source_beg); | 
|---|
| 703 | const size_t end_region = addr_to_region_idx(region_align_up(source_end)); | 
|---|
| 704 |  | 
|---|
| 705 | HeapWord *dest_addr = target_beg; | 
|---|
| 706 | while (cur_region < end_region) { | 
|---|
| 707 | // The destination must be set even if the region has no data. | 
|---|
| 708 | _region_data[cur_region].set_destination(dest_addr); | 
|---|
| 709 |  | 
|---|
| 710 | size_t words = _region_data[cur_region].data_size(); | 
|---|
| 711 | if (words > 0) { | 
|---|
| 712 | // If cur_region does not fit entirely into the target space, find a point | 
|---|
| 713 | // at which the source space can be 'split' so that part is copied to the | 
|---|
| 714 | // target space and the rest is copied elsewhere. | 
|---|
| 715 | if (dest_addr + words > target_end) { | 
|---|
| 716 | assert(source_next != NULL, "source_next is NULL when splitting"); | 
|---|
| 717 | *source_next = summarize_split_space(cur_region, split_info, dest_addr, | 
|---|
| 718 | target_end, target_next); | 
|---|
| 719 | return false; | 
|---|
| 720 | } | 
|---|
| 721 |  | 
|---|
| 722 | // Compute the destination_count for cur_region, and if necessary, update | 
|---|
| 723 | // source_region for a destination region.  The source_region field is | 
|---|
| 724 | // updated if cur_region is the first (left-most) region to be copied to a | 
|---|
| 725 | // destination region. | 
|---|
| 726 | // | 
|---|
| 727 | // The destination_count calculation is a bit subtle.  A region that has | 
|---|
| 728 | // data that compacts into itself does not count itself as a destination. | 
|---|
| 729 | // This maintains the invariant that a zero count means the region is | 
|---|
| 730 | // available and can be claimed and then filled. | 
|---|
| 731 | uint destination_count = 0; | 
|---|
| 732 | if (split_info.is_split(cur_region)) { | 
|---|
| 733 | // The current region has been split:  the partial object will be copied | 
|---|
| 734 | // to one destination space and the remaining data will be copied to | 
|---|
| 735 | // another destination space.  Adjust the initial destination_count and, | 
|---|
| 736 | // if necessary, set the source_region field if the partial object will | 
|---|
| 737 | // cross a destination region boundary. | 
|---|
| 738 | destination_count = split_info.destination_count(); | 
|---|
| 739 | if (destination_count == 2) { | 
|---|
| 740 | size_t dest_idx = addr_to_region_idx(split_info.dest_region_addr()); | 
|---|
| 741 | _region_data[dest_idx].set_source_region(cur_region); | 
|---|
| 742 | } | 
|---|
| 743 | } | 
|---|
| 744 |  | 
|---|
| 745 | HeapWord* const last_addr = dest_addr + words - 1; | 
|---|
| 746 | const size_t dest_region_1 = addr_to_region_idx(dest_addr); | 
|---|
| 747 | const size_t dest_region_2 = addr_to_region_idx(last_addr); | 
|---|
| 748 |  | 
|---|
| 749 | // Initially assume that the destination regions will be the same and | 
|---|
| 750 | // adjust the value below if necessary.  Under this assumption, if | 
|---|
| 751 | // cur_region == dest_region_2, then cur_region will be compacted | 
|---|
| 752 | // completely into itself. | 
|---|
| 753 | destination_count += cur_region == dest_region_2 ? 0 : 1; | 
|---|
| 754 | if (dest_region_1 != dest_region_2) { | 
|---|
| 755 | // Destination regions differ; adjust destination_count. | 
|---|
| 756 | destination_count += 1; | 
|---|
| 757 | // Data from cur_region will be copied to the start of dest_region_2. | 
|---|
| 758 | _region_data[dest_region_2].set_source_region(cur_region); | 
|---|
| 759 | } else if (region_offset(dest_addr) == 0) { | 
|---|
| 760 | // Data from cur_region will be copied to the start of the destination | 
|---|
| 761 | // region. | 
|---|
| 762 | _region_data[dest_region_1].set_source_region(cur_region); | 
|---|
| 763 | } | 
|---|
| 764 |  | 
|---|
| 765 | _region_data[cur_region].set_destination_count(destination_count); | 
|---|
| 766 | _region_data[cur_region].set_data_location(region_to_addr(cur_region)); | 
|---|
| 767 | dest_addr += words; | 
|---|
| 768 | } | 
|---|
| 769 |  | 
|---|
| 770 | ++cur_region; | 
|---|
| 771 | } | 
|---|
| 772 |  | 
|---|
| 773 | *target_next = dest_addr; | 
|---|
| 774 | return true; | 
|---|
| 775 | } | 
|---|
| 776 |  | 
|---|
| 777 | HeapWord* ParallelCompactData::calc_new_pointer(HeapWord* addr, ParCompactionManager* cm) { | 
|---|
| 778 | assert(addr != NULL, "Should detect NULL oop earlier"); | 
|---|
| 779 | assert(ParallelScavengeHeap::heap()->is_in(addr), "not in heap"); | 
|---|
| 780 | assert(PSParallelCompact::mark_bitmap()->is_marked(addr), "not marked"); | 
|---|
| 781 |  | 
|---|
| 782 | // Region covering the object. | 
|---|
| 783 | RegionData* const region_ptr = addr_to_region_ptr(addr); | 
|---|
| 784 | HeapWord* result = region_ptr->destination(); | 
|---|
| 785 |  | 
|---|
| 786 | // If the entire Region is live, the new location is region->destination + the | 
|---|
| 787 | // offset of the object within in the Region. | 
|---|
| 788 |  | 
|---|
| 789 | // Run some performance tests to determine if this special case pays off.  It | 
|---|
| 790 | // is worth it for pointers into the dense prefix.  If the optimization to | 
|---|
| 791 | // avoid pointer updates in regions that only point to the dense prefix is | 
|---|
| 792 | // ever implemented, this should be revisited. | 
|---|
| 793 | if (region_ptr->data_size() == RegionSize) { | 
|---|
| 794 | result += region_offset(addr); | 
|---|
| 795 | return result; | 
|---|
| 796 | } | 
|---|
| 797 |  | 
|---|
| 798 | // Otherwise, the new location is region->destination + block offset + the | 
|---|
| 799 | // number of live words in the Block that are (a) to the left of addr and (b) | 
|---|
| 800 | // due to objects that start in the Block. | 
|---|
| 801 |  | 
|---|
| 802 | // Fill in the block table if necessary.  This is unsynchronized, so multiple | 
|---|
| 803 | // threads may fill the block table for a region (harmless, since it is | 
|---|
| 804 | // idempotent). | 
|---|
| 805 | if (!region_ptr->blocks_filled()) { | 
|---|
| 806 | PSParallelCompact::fill_blocks(addr_to_region_idx(addr)); | 
|---|
| 807 | region_ptr->set_blocks_filled(); | 
|---|
| 808 | } | 
|---|
| 809 |  | 
|---|
| 810 | HeapWord* const search_start = block_align_down(addr); | 
|---|
| 811 | const size_t block_offset = addr_to_block_ptr(addr)->offset(); | 
|---|
| 812 |  | 
|---|
| 813 | const ParMarkBitMap* bitmap = PSParallelCompact::mark_bitmap(); | 
|---|
| 814 | const size_t live = bitmap->live_words_in_range(cm, search_start, oop(addr)); | 
|---|
| 815 | result += block_offset + live; | 
|---|
| 816 | DEBUG_ONLY(PSParallelCompact::check_new_location(addr, result)); | 
|---|
| 817 | return result; | 
|---|
| 818 | } | 
|---|
| 819 |  | 
|---|
| 820 | #ifdef ASSERT | 
|---|
| 821 | void ParallelCompactData::verify_clear(const PSVirtualSpace* vspace) | 
|---|
| 822 | { | 
|---|
| 823 | const size_t* const beg = (const size_t*)vspace->committed_low_addr(); | 
|---|
| 824 | const size_t* const end = (const size_t*)vspace->committed_high_addr(); | 
|---|
| 825 | for (const size_t* p = beg; p < end; ++p) { | 
|---|
| 826 | assert(*p == 0, "not zero"); | 
|---|
| 827 | } | 
|---|
| 828 | } | 
|---|
| 829 |  | 
|---|
| 830 | void ParallelCompactData::verify_clear() | 
|---|
| 831 | { | 
|---|
| 832 | verify_clear(_region_vspace); | 
|---|
| 833 | verify_clear(_block_vspace); | 
|---|
| 834 | } | 
|---|
| 835 | #endif  // #ifdef ASSERT | 
|---|
| 836 |  | 
|---|
| 837 | STWGCTimer          PSParallelCompact::_gc_timer; | 
|---|
| 838 | ParallelOldTracer   PSParallelCompact::_gc_tracer; | 
|---|
| 839 | elapsedTimer        PSParallelCompact::_accumulated_time; | 
|---|
| 840 | unsigned int        PSParallelCompact::_total_invocations = 0; | 
|---|
| 841 | unsigned int        PSParallelCompact::_maximum_compaction_gc_num = 0; | 
|---|
| 842 | jlong               PSParallelCompact::_time_of_last_gc = 0; | 
|---|
| 843 | CollectorCounters*  PSParallelCompact::_counters = NULL; | 
|---|
| 844 | ParMarkBitMap       PSParallelCompact::_mark_bitmap; | 
|---|
| 845 | ParallelCompactData PSParallelCompact::_summary_data; | 
|---|
| 846 |  | 
|---|
| 847 | PSParallelCompact::IsAliveClosure PSParallelCompact::_is_alive_closure; | 
|---|
| 848 |  | 
|---|
| 849 | bool PSParallelCompact::IsAliveClosure::do_object_b(oop p) { return mark_bitmap()->is_marked(p); } | 
|---|
| 850 |  | 
|---|
| 851 | class PCReferenceProcessor: public ReferenceProcessor { | 
|---|
| 852 | public: | 
|---|
| 853 | PCReferenceProcessor( | 
|---|
| 854 | BoolObjectClosure* is_subject_to_discovery, | 
|---|
| 855 | BoolObjectClosure* ) : | 
|---|
| 856 | ReferenceProcessor(is_subject_to_discovery, | 
|---|
| 857 | ParallelRefProcEnabled && (ParallelGCThreads > 1), // mt processing | 
|---|
| 858 | ParallelGCThreads,   // mt processing degree | 
|---|
| 859 | true,                // mt discovery | 
|---|
| 860 | ParallelGCThreads,   // mt discovery degree | 
|---|
| 861 | true,                // atomic_discovery | 
|---|
| 862 | is_alive_non_header) { | 
|---|
| 863 | } | 
|---|
| 864 |  | 
|---|
| 865 | template<typename T> bool discover(oop obj, ReferenceType type) { | 
|---|
| 866 | T* referent_addr = (T*) java_lang_ref_Reference::referent_addr_raw(obj); | 
|---|
| 867 | T heap_oop = RawAccess<>::oop_load(referent_addr); | 
|---|
| 868 | oop referent = CompressedOops::decode_not_null(heap_oop); | 
|---|
| 869 | return PSParallelCompact::mark_bitmap()->is_unmarked(referent) | 
|---|
| 870 | && ReferenceProcessor::discover_reference(obj, type); | 
|---|
| 871 | } | 
|---|
| 872 | virtual bool discover_reference(oop obj, ReferenceType type) { | 
|---|
| 873 | if (UseCompressedOops) { | 
|---|
| 874 | return discover<narrowOop>(obj, type); | 
|---|
| 875 | } else { | 
|---|
| 876 | return discover<oop>(obj, type); | 
|---|
| 877 | } | 
|---|
| 878 | } | 
|---|
| 879 | }; | 
|---|
| 880 |  | 
|---|
| 881 | void PSParallelCompact::post_initialize() { | 
|---|
| 882 | ParallelScavengeHeap* heap = ParallelScavengeHeap::heap(); | 
|---|
| 883 | _span_based_discoverer.set_span(heap->reserved_region()); | 
|---|
| 884 | _ref_processor = | 
|---|
| 885 | new PCReferenceProcessor(&_span_based_discoverer, | 
|---|
| 886 | &_is_alive_closure); // non-header is alive closure | 
|---|
| 887 |  | 
|---|
| 888 | _counters = new CollectorCounters( "Parallel full collection pauses", 1); | 
|---|
| 889 |  | 
|---|
| 890 | // Initialize static fields in ParCompactionManager. | 
|---|
| 891 | ParCompactionManager::initialize(mark_bitmap()); | 
|---|
| 892 | } | 
|---|
| 893 |  | 
|---|
| 894 | bool PSParallelCompact::initialize() { | 
|---|
| 895 | ParallelScavengeHeap* heap = ParallelScavengeHeap::heap(); | 
|---|
| 896 | MemRegion mr = heap->reserved_region(); | 
|---|
| 897 |  | 
|---|
| 898 | // Was the old gen get allocated successfully? | 
|---|
| 899 | if (!heap->old_gen()->is_allocated()) { | 
|---|
| 900 | return false; | 
|---|
| 901 | } | 
|---|
| 902 |  | 
|---|
| 903 | initialize_space_info(); | 
|---|
| 904 | initialize_dead_wood_limiter(); | 
|---|
| 905 |  | 
|---|
| 906 | if (!_mark_bitmap.initialize(mr)) { | 
|---|
| 907 | vm_shutdown_during_initialization( | 
|---|
| 908 | err_msg( "Unable to allocate "SIZE_FORMAT "KB bitmaps for parallel " | 
|---|
| 909 | "garbage collection for the requested "SIZE_FORMAT "KB heap.", | 
|---|
| 910 | _mark_bitmap.reserved_byte_size()/K, mr.byte_size()/K)); | 
|---|
| 911 | return false; | 
|---|
| 912 | } | 
|---|
| 913 |  | 
|---|
| 914 | if (!_summary_data.initialize(mr)) { | 
|---|
| 915 | vm_shutdown_during_initialization( | 
|---|
| 916 | err_msg( "Unable to allocate "SIZE_FORMAT "KB card tables for parallel " | 
|---|
| 917 | "garbage collection for the requested "SIZE_FORMAT "KB heap.", | 
|---|
| 918 | _summary_data.reserved_byte_size()/K, mr.byte_size()/K)); | 
|---|
| 919 | return false; | 
|---|
| 920 | } | 
|---|
| 921 |  | 
|---|
| 922 | return true; | 
|---|
| 923 | } | 
|---|
| 924 |  | 
|---|
| 925 | void PSParallelCompact::initialize_space_info() | 
|---|
| 926 | { | 
|---|
| 927 | memset(&_space_info, 0, sizeof(_space_info)); | 
|---|
| 928 |  | 
|---|
| 929 | ParallelScavengeHeap* heap = ParallelScavengeHeap::heap(); | 
|---|
| 930 | PSYoungGen* young_gen = heap->young_gen(); | 
|---|
| 931 |  | 
|---|
| 932 | _space_info[old_space_id].set_space(heap->old_gen()->object_space()); | 
|---|
| 933 | _space_info[eden_space_id].set_space(young_gen->eden_space()); | 
|---|
| 934 | _space_info[from_space_id].set_space(young_gen->from_space()); | 
|---|
| 935 | _space_info[to_space_id].set_space(young_gen->to_space()); | 
|---|
| 936 |  | 
|---|
| 937 | _space_info[old_space_id].set_start_array(heap->old_gen()->start_array()); | 
|---|
| 938 | } | 
|---|
| 939 |  | 
|---|
| 940 | void PSParallelCompact::initialize_dead_wood_limiter() | 
|---|
| 941 | { | 
|---|
| 942 | const size_t max = 100; | 
|---|
| 943 | _dwl_mean = double(MIN2(ParallelOldDeadWoodLimiterMean, max)) / 100.0; | 
|---|
| 944 | _dwl_std_dev = double(MIN2(ParallelOldDeadWoodLimiterStdDev, max)) / 100.0; | 
|---|
| 945 | _dwl_first_term = 1.0 / (sqrt(2.0 * M_PI) * _dwl_std_dev); | 
|---|
| 946 | DEBUG_ONLY(_dwl_initialized = true;) | 
|---|
| 947 | _dwl_adjustment = normal_distribution(1.0); | 
|---|
| 948 | } | 
|---|
| 949 |  | 
|---|
| 950 | void | 
|---|
| 951 | PSParallelCompact::clear_data_covering_space(SpaceId id) | 
|---|
| 952 | { | 
|---|
| 953 | // At this point, top is the value before GC, new_top() is the value that will | 
|---|
| 954 | // be set at the end of GC.  The marking bitmap is cleared to top; nothing | 
|---|
| 955 | // should be marked above top.  The summary data is cleared to the larger of | 
|---|
| 956 | // top & new_top. | 
|---|
| 957 | MutableSpace* const space = _space_info[id].space(); | 
|---|
| 958 | HeapWord* const bot = space->bottom(); | 
|---|
| 959 | HeapWord* const top = space->top(); | 
|---|
| 960 | HeapWord* const max_top = MAX2(top, _space_info[id].new_top()); | 
|---|
| 961 |  | 
|---|
| 962 | const idx_t beg_bit = _mark_bitmap.addr_to_bit(bot); | 
|---|
| 963 | const idx_t end_bit = BitMap::word_align_up(_mark_bitmap.addr_to_bit(top)); | 
|---|
| 964 | _mark_bitmap.clear_range(beg_bit, end_bit); | 
|---|
| 965 |  | 
|---|
| 966 | const size_t beg_region = _summary_data.addr_to_region_idx(bot); | 
|---|
| 967 | const size_t end_region = | 
|---|
| 968 | _summary_data.addr_to_region_idx(_summary_data.region_align_up(max_top)); | 
|---|
| 969 | _summary_data.clear_range(beg_region, end_region); | 
|---|
| 970 |  | 
|---|
| 971 | // Clear the data used to 'split' regions. | 
|---|
| 972 | SplitInfo& split_info = _space_info[id].split_info(); | 
|---|
| 973 | if (split_info.is_valid()) { | 
|---|
| 974 | split_info.clear(); | 
|---|
| 975 | } | 
|---|
| 976 | DEBUG_ONLY(split_info.verify_clear();) | 
|---|
| 977 | } | 
|---|
| 978 |  | 
|---|
| 979 | void PSParallelCompact::pre_compact() | 
|---|
| 980 | { | 
|---|
| 981 | // Update the from & to space pointers in space_info, since they are swapped | 
|---|
| 982 | // at each young gen gc.  Do the update unconditionally (even though a | 
|---|
| 983 | // promotion failure does not swap spaces) because an unknown number of young | 
|---|
| 984 | // collections will have swapped the spaces an unknown number of times. | 
|---|
| 985 | GCTraceTime(Debug, gc, phases) tm( "Pre Compact", &_gc_timer); | 
|---|
| 986 | ParallelScavengeHeap* heap = ParallelScavengeHeap::heap(); | 
|---|
| 987 | _space_info[from_space_id].set_space(heap->young_gen()->from_space()); | 
|---|
| 988 | _space_info[to_space_id].set_space(heap->young_gen()->to_space()); | 
|---|
| 989 |  | 
|---|
| 990 | DEBUG_ONLY(add_obj_count = add_obj_size = 0;) | 
|---|
| 991 | DEBUG_ONLY(mark_bitmap_count = mark_bitmap_size = 0;) | 
|---|
| 992 |  | 
|---|
| 993 | // Increment the invocation count | 
|---|
| 994 | heap->increment_total_collections(true); | 
|---|
| 995 |  | 
|---|
| 996 | // We need to track unique mark sweep invocations as well. | 
|---|
| 997 | _total_invocations++; | 
|---|
| 998 |  | 
|---|
| 999 | heap->print_heap_before_gc(); | 
|---|
| 1000 | heap->trace_heap_before_gc(&_gc_tracer); | 
|---|
| 1001 |  | 
|---|
| 1002 | // Fill in TLABs | 
|---|
| 1003 | heap->ensure_parsability(true);  // retire TLABs | 
|---|
| 1004 |  | 
|---|
| 1005 | if (VerifyBeforeGC && heap->total_collections() >= VerifyGCStartAt) { | 
|---|
| 1006 | HandleMark hm;  // Discard invalid handles created during verification | 
|---|
| 1007 | Universe::verify( "Before GC"); | 
|---|
| 1008 | } | 
|---|
| 1009 |  | 
|---|
| 1010 | // Verify object start arrays | 
|---|
| 1011 | if (VerifyObjectStartArray && | 
|---|
| 1012 | VerifyBeforeGC) { | 
|---|
| 1013 | heap->old_gen()->verify_object_start_array(); | 
|---|
| 1014 | } | 
|---|
| 1015 |  | 
|---|
| 1016 | DEBUG_ONLY(mark_bitmap()->verify_clear();) | 
|---|
| 1017 | DEBUG_ONLY(summary_data().verify_clear();) | 
|---|
| 1018 |  | 
|---|
| 1019 | // Have worker threads release resources the next time they run a task. | 
|---|
| 1020 | gc_task_manager()->release_all_resources(); | 
|---|
| 1021 |  | 
|---|
| 1022 | ParCompactionManager::reset_all_bitmap_query_caches(); | 
|---|
| 1023 | } | 
|---|
| 1024 |  | 
|---|
| 1025 | void PSParallelCompact::post_compact() | 
|---|
| 1026 | { | 
|---|
| 1027 | GCTraceTime(Info, gc, phases) tm( "Post Compact", &_gc_timer); | 
|---|
| 1028 |  | 
|---|
| 1029 | for (unsigned int id = old_space_id; id < last_space_id; ++id) { | 
|---|
| 1030 | // Clear the marking bitmap, summary data and split info. | 
|---|
| 1031 | clear_data_covering_space(SpaceId(id)); | 
|---|
| 1032 | // Update top().  Must be done after clearing the bitmap and summary data. | 
|---|
| 1033 | _space_info[id].publish_new_top(); | 
|---|
| 1034 | } | 
|---|
| 1035 |  | 
|---|
| 1036 | MutableSpace* const eden_space = _space_info[eden_space_id].space(); | 
|---|
| 1037 | MutableSpace* const from_space = _space_info[from_space_id].space(); | 
|---|
| 1038 | MutableSpace* const to_space   = _space_info[to_space_id].space(); | 
|---|
| 1039 |  | 
|---|
| 1040 | ParallelScavengeHeap* heap = ParallelScavengeHeap::heap(); | 
|---|
| 1041 | bool eden_empty = eden_space->is_empty(); | 
|---|
| 1042 | if (!eden_empty) { | 
|---|
| 1043 | eden_empty = absorb_live_data_from_eden(heap->size_policy(), | 
|---|
| 1044 | heap->young_gen(), heap->old_gen()); | 
|---|
| 1045 | } | 
|---|
| 1046 |  | 
|---|
| 1047 | // Update heap occupancy information which is used as input to the soft ref | 
|---|
| 1048 | // clearing policy at the next gc. | 
|---|
| 1049 | Universe::update_heap_info_at_gc(); | 
|---|
| 1050 |  | 
|---|
| 1051 | bool young_gen_empty = eden_empty && from_space->is_empty() && | 
|---|
| 1052 | to_space->is_empty(); | 
|---|
| 1053 |  | 
|---|
| 1054 | PSCardTable* ct = heap->card_table(); | 
|---|
| 1055 | MemRegion old_mr = heap->old_gen()->reserved(); | 
|---|
| 1056 | if (young_gen_empty) { | 
|---|
| 1057 | ct->clear(MemRegion(old_mr.start(), old_mr.end())); | 
|---|
| 1058 | } else { | 
|---|
| 1059 | ct->invalidate(MemRegion(old_mr.start(), old_mr.end())); | 
|---|
| 1060 | } | 
|---|
| 1061 |  | 
|---|
| 1062 | // Delete metaspaces for unloaded class loaders and clean up loader_data graph | 
|---|
| 1063 | ClassLoaderDataGraph::purge(); | 
|---|
| 1064 | MetaspaceUtils::verify_metrics(); | 
|---|
| 1065 |  | 
|---|
| 1066 | heap->prune_scavengable_nmethods(); | 
|---|
| 1067 | JvmtiExport::gc_epilogue(); | 
|---|
| 1068 |  | 
|---|
| 1069 | #if COMPILER2_OR_JVMCI | 
|---|
| 1070 | DerivedPointerTable::update_pointers(); | 
|---|
| 1071 | #endif | 
|---|
| 1072 |  | 
|---|
| 1073 | if (ZapUnusedHeapArea) { | 
|---|
| 1074 | heap->gen_mangle_unused_area(); | 
|---|
| 1075 | } | 
|---|
| 1076 |  | 
|---|
| 1077 | // Update time of last GC | 
|---|
| 1078 | reset_millis_since_last_gc(); | 
|---|
| 1079 | } | 
|---|
| 1080 |  | 
|---|
| 1081 | HeapWord* | 
|---|
| 1082 | PSParallelCompact::compute_dense_prefix_via_density(const SpaceId id, | 
|---|
| 1083 | bool maximum_compaction) | 
|---|
| 1084 | { | 
|---|
| 1085 | const size_t region_size = ParallelCompactData::RegionSize; | 
|---|
| 1086 | const ParallelCompactData& sd = summary_data(); | 
|---|
| 1087 |  | 
|---|
| 1088 | const MutableSpace* const space = _space_info[id].space(); | 
|---|
| 1089 | HeapWord* const top_aligned_up = sd.region_align_up(space->top()); | 
|---|
| 1090 | const RegionData* const beg_cp = sd.addr_to_region_ptr(space->bottom()); | 
|---|
| 1091 | const RegionData* const end_cp = sd.addr_to_region_ptr(top_aligned_up); | 
|---|
| 1092 |  | 
|---|
| 1093 | // Skip full regions at the beginning of the space--they are necessarily part | 
|---|
| 1094 | // of the dense prefix. | 
|---|
| 1095 | size_t full_count = 0; | 
|---|
| 1096 | const RegionData* cp; | 
|---|
| 1097 | for (cp = beg_cp; cp < end_cp && cp->data_size() == region_size; ++cp) { | 
|---|
| 1098 | ++full_count; | 
|---|
| 1099 | } | 
|---|
| 1100 |  | 
|---|
| 1101 | assert(total_invocations() >= _maximum_compaction_gc_num, "sanity"); | 
|---|
| 1102 | const size_t gcs_since_max = total_invocations() - _maximum_compaction_gc_num; | 
|---|
| 1103 | const bool interval_ended = gcs_since_max > HeapMaximumCompactionInterval; | 
|---|
| 1104 | if (maximum_compaction || cp == end_cp || interval_ended) { | 
|---|
| 1105 | _maximum_compaction_gc_num = total_invocations(); | 
|---|
| 1106 | return sd.region_to_addr(cp); | 
|---|
| 1107 | } | 
|---|
| 1108 |  | 
|---|
| 1109 | HeapWord* const new_top = _space_info[id].new_top(); | 
|---|
| 1110 | const size_t space_live = pointer_delta(new_top, space->bottom()); | 
|---|
| 1111 | const size_t space_used = space->used_in_words(); | 
|---|
| 1112 | const size_t space_capacity = space->capacity_in_words(); | 
|---|
| 1113 |  | 
|---|
| 1114 | const double cur_density = double(space_live) / space_capacity; | 
|---|
| 1115 | const double deadwood_density = | 
|---|
| 1116 | (1.0 - cur_density) * (1.0 - cur_density) * cur_density * cur_density; | 
|---|
| 1117 | const size_t deadwood_goal = size_t(space_capacity * deadwood_density); | 
|---|
| 1118 |  | 
|---|
| 1119 | if (TraceParallelOldGCDensePrefix) { | 
|---|
| 1120 | tty->print_cr( "cur_dens=%5.3f dw_dens=%5.3f dw_goal="SIZE_FORMAT, | 
|---|
| 1121 | cur_density, deadwood_density, deadwood_goal); | 
|---|
| 1122 | tty->print_cr( "space_live="SIZE_FORMAT " " "space_used="SIZE_FORMAT " " | 
|---|
| 1123 | "space_cap="SIZE_FORMAT, | 
|---|
| 1124 | space_live, space_used, | 
|---|
| 1125 | space_capacity); | 
|---|
| 1126 | } | 
|---|
| 1127 |  | 
|---|
| 1128 | // XXX - Use binary search? | 
|---|
| 1129 | HeapWord* dense_prefix = sd.region_to_addr(cp); | 
|---|
| 1130 | const RegionData* full_cp = cp; | 
|---|
| 1131 | const RegionData* const top_cp = sd.addr_to_region_ptr(space->top() - 1); | 
|---|
| 1132 | while (cp < end_cp) { | 
|---|
| 1133 | HeapWord* region_destination = cp->destination(); | 
|---|
| 1134 | const size_t cur_deadwood = pointer_delta(dense_prefix, region_destination); | 
|---|
| 1135 | if (TraceParallelOldGCDensePrefix && Verbose) { | 
|---|
| 1136 | tty->print_cr( "c#="SIZE_FORMAT_W(4) " dst="PTR_FORMAT " " | 
|---|
| 1137 | "dp="PTR_FORMAT " " "cdw="SIZE_FORMAT_W(8), | 
|---|
| 1138 | sd.region(cp), p2i(region_destination), | 
|---|
| 1139 | p2i(dense_prefix), cur_deadwood); | 
|---|
| 1140 | } | 
|---|
| 1141 |  | 
|---|
| 1142 | if (cur_deadwood >= deadwood_goal) { | 
|---|
| 1143 | // Found the region that has the correct amount of deadwood to the left. | 
|---|
| 1144 | // This typically occurs after crossing a fairly sparse set of regions, so | 
|---|
| 1145 | // iterate backwards over those sparse regions, looking for the region | 
|---|
| 1146 | // that has the lowest density of live objects 'to the right.' | 
|---|
| 1147 | size_t space_to_left = sd.region(cp) * region_size; | 
|---|
| 1148 | size_t live_to_left = space_to_left - cur_deadwood; | 
|---|
| 1149 | size_t space_to_right = space_capacity - space_to_left; | 
|---|
| 1150 | size_t live_to_right = space_live - live_to_left; | 
|---|
| 1151 | double density_to_right = double(live_to_right) / space_to_right; | 
|---|
| 1152 | while (cp > full_cp) { | 
|---|
| 1153 | --cp; | 
|---|
| 1154 | const size_t prev_region_live_to_right = live_to_right - | 
|---|
| 1155 | cp->data_size(); | 
|---|
| 1156 | const size_t prev_region_space_to_right = space_to_right + region_size; | 
|---|
| 1157 | double prev_region_density_to_right = | 
|---|
| 1158 | double(prev_region_live_to_right) / prev_region_space_to_right; | 
|---|
| 1159 | if (density_to_right <= prev_region_density_to_right) { | 
|---|
| 1160 | return dense_prefix; | 
|---|
| 1161 | } | 
|---|
| 1162 | if (TraceParallelOldGCDensePrefix && Verbose) { | 
|---|
| 1163 | tty->print_cr( "backing up from c="SIZE_FORMAT_W(4) " d2r=%10.8f " | 
|---|
| 1164 | "pc_d2r=%10.8f", sd.region(cp), density_to_right, | 
|---|
| 1165 | prev_region_density_to_right); | 
|---|
| 1166 | } | 
|---|
| 1167 | dense_prefix -= region_size; | 
|---|
| 1168 | live_to_right = prev_region_live_to_right; | 
|---|
| 1169 | space_to_right = prev_region_space_to_right; | 
|---|
| 1170 | density_to_right = prev_region_density_to_right; | 
|---|
| 1171 | } | 
|---|
| 1172 | return dense_prefix; | 
|---|
| 1173 | } | 
|---|
| 1174 |  | 
|---|
| 1175 | dense_prefix += region_size; | 
|---|
| 1176 | ++cp; | 
|---|
| 1177 | } | 
|---|
| 1178 |  | 
|---|
| 1179 | return dense_prefix; | 
|---|
| 1180 | } | 
|---|
| 1181 |  | 
|---|
| 1182 | #ifndef PRODUCT | 
|---|
| 1183 | void PSParallelCompact::print_dense_prefix_stats(const char* const algorithm, | 
|---|
| 1184 | const SpaceId id, | 
|---|
| 1185 | const bool maximum_compaction, | 
|---|
| 1186 | HeapWord* const addr) | 
|---|
| 1187 | { | 
|---|
| 1188 | const size_t region_idx = summary_data().addr_to_region_idx(addr); | 
|---|
| 1189 | RegionData* const cp = summary_data().region(region_idx); | 
|---|
| 1190 | const MutableSpace* const space = _space_info[id].space(); | 
|---|
| 1191 | HeapWord* const new_top = _space_info[id].new_top(); | 
|---|
| 1192 |  | 
|---|
| 1193 | const size_t space_live = pointer_delta(new_top, space->bottom()); | 
|---|
| 1194 | const size_t dead_to_left = pointer_delta(addr, cp->destination()); | 
|---|
| 1195 | const size_t space_cap = space->capacity_in_words(); | 
|---|
| 1196 | const double dead_to_left_pct = double(dead_to_left) / space_cap; | 
|---|
| 1197 | const size_t live_to_right = new_top - cp->destination(); | 
|---|
| 1198 | const size_t dead_to_right = space->top() - addr - live_to_right; | 
|---|
| 1199 |  | 
|---|
| 1200 | tty->print_cr( "%s="PTR_FORMAT " dpc="SIZE_FORMAT_W(5) " " | 
|---|
| 1201 | "spl="SIZE_FORMAT " " | 
|---|
| 1202 | "d2l="SIZE_FORMAT " d2l%%=%6.4f " | 
|---|
| 1203 | "d2r="SIZE_FORMAT " l2r="SIZE_FORMAT | 
|---|
| 1204 | " ratio=%10.8f", | 
|---|
| 1205 | algorithm, p2i(addr), region_idx, | 
|---|
| 1206 | space_live, | 
|---|
| 1207 | dead_to_left, dead_to_left_pct, | 
|---|
| 1208 | dead_to_right, live_to_right, | 
|---|
| 1209 | double(dead_to_right) / live_to_right); | 
|---|
| 1210 | } | 
|---|
| 1211 | #endif  // #ifndef PRODUCT | 
|---|
| 1212 |  | 
|---|
| 1213 | // Return a fraction indicating how much of the generation can be treated as | 
|---|
| 1214 | // "dead wood" (i.e., not reclaimed).  The function uses a normal distribution | 
|---|
| 1215 | // based on the density of live objects in the generation to determine a limit, | 
|---|
| 1216 | // which is then adjusted so the return value is min_percent when the density is | 
|---|
| 1217 | // 1. | 
|---|
| 1218 | // | 
|---|
| 1219 | // The following table shows some return values for a different values of the | 
|---|
| 1220 | // standard deviation (ParallelOldDeadWoodLimiterStdDev); the mean is 0.5 and | 
|---|
| 1221 | // min_percent is 1. | 
|---|
| 1222 | // | 
|---|
| 1223 | //                          fraction allowed as dead wood | 
|---|
| 1224 | //         ----------------------------------------------------------------- | 
|---|
| 1225 | // density std_dev=70 std_dev=75 std_dev=80 std_dev=85 std_dev=90 std_dev=95 | 
|---|
| 1226 | // ------- ---------- ---------- ---------- ---------- ---------- ---------- | 
|---|
| 1227 | // 0.00000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000 | 
|---|
| 1228 | // 0.05000 0.03193096 0.02836880 0.02550828 0.02319280 0.02130337 0.01974941 | 
|---|
| 1229 | // 0.10000 0.05247504 0.04547452 0.03988045 0.03537016 0.03170171 0.02869272 | 
|---|
| 1230 | // 0.15000 0.07135702 0.06111390 0.05296419 0.04641639 0.04110601 0.03676066 | 
|---|
| 1231 | // 0.20000 0.08831616 0.07509618 0.06461766 0.05622444 0.04943437 0.04388975 | 
|---|
| 1232 | // 0.25000 0.10311208 0.08724696 0.07471205 0.06469760 0.05661313 0.05002313 | 
|---|
| 1233 | // 0.30000 0.11553050 0.09741183 0.08313394 0.07175114 0.06257797 0.05511132 | 
|---|
| 1234 | // 0.35000 0.12538832 0.10545958 0.08978741 0.07731366 0.06727491 0.05911289 | 
|---|
| 1235 | // 0.40000 0.13253818 0.11128511 0.09459590 0.08132834 0.07066107 0.06199500 | 
|---|
| 1236 | // 0.45000 0.13687208 0.11481163 0.09750361 0.08375387 0.07270534 0.06373386 | 
|---|
| 1237 | // 0.50000 0.13832410 0.11599237 0.09847664 0.08456518 0.07338887 0.06431510 | 
|---|
| 1238 | // 0.55000 0.13687208 0.11481163 0.09750361 0.08375387 0.07270534 0.06373386 | 
|---|
| 1239 | // 0.60000 0.13253818 0.11128511 0.09459590 0.08132834 0.07066107 0.06199500 | 
|---|
| 1240 | // 0.65000 0.12538832 0.10545958 0.08978741 0.07731366 0.06727491 0.05911289 | 
|---|
| 1241 | // 0.70000 0.11553050 0.09741183 0.08313394 0.07175114 0.06257797 0.05511132 | 
|---|
| 1242 | // 0.75000 0.10311208 0.08724696 0.07471205 0.06469760 0.05661313 0.05002313 | 
|---|
| 1243 | // 0.80000 0.08831616 0.07509618 0.06461766 0.05622444 0.04943437 0.04388975 | 
|---|
| 1244 | // 0.85000 0.07135702 0.06111390 0.05296419 0.04641639 0.04110601 0.03676066 | 
|---|
| 1245 | // 0.90000 0.05247504 0.04547452 0.03988045 0.03537016 0.03170171 0.02869272 | 
|---|
| 1246 | // 0.95000 0.03193096 0.02836880 0.02550828 0.02319280 0.02130337 0.01974941 | 
|---|
| 1247 | // 1.00000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000 | 
|---|
| 1248 |  | 
|---|
| 1249 | double PSParallelCompact::dead_wood_limiter(double density, size_t min_percent) | 
|---|
| 1250 | { | 
|---|
| 1251 | assert(_dwl_initialized, "uninitialized"); | 
|---|
| 1252 |  | 
|---|
| 1253 | // The raw limit is the value of the normal distribution at x = density. | 
|---|
| 1254 | const double raw_limit = normal_distribution(density); | 
|---|
| 1255 |  | 
|---|
| 1256 | // Adjust the raw limit so it becomes the minimum when the density is 1. | 
|---|
| 1257 | // | 
|---|
| 1258 | // First subtract the adjustment value (which is simply the precomputed value | 
|---|
| 1259 | // normal_distribution(1.0)); this yields a value of 0 when the density is 1. | 
|---|
| 1260 | // Then add the minimum value, so the minimum is returned when the density is | 
|---|
| 1261 | // 1.  Finally, prevent negative values, which occur when the mean is not 0.5. | 
|---|
| 1262 | const double min = double(min_percent) / 100.0; | 
|---|
| 1263 | const double limit = raw_limit - _dwl_adjustment + min; | 
|---|
| 1264 | return MAX2(limit, 0.0); | 
|---|
| 1265 | } | 
|---|
| 1266 |  | 
|---|
| 1267 | ParallelCompactData::RegionData* | 
|---|
| 1268 | PSParallelCompact::first_dead_space_region(const RegionData* beg, | 
|---|
| 1269 | const RegionData* end) | 
|---|
| 1270 | { | 
|---|
| 1271 | const size_t region_size = ParallelCompactData::RegionSize; | 
|---|
| 1272 | ParallelCompactData& sd = summary_data(); | 
|---|
| 1273 | size_t left = sd.region(beg); | 
|---|
| 1274 | size_t right = end > beg ? sd.region(end) - 1 : left; | 
|---|
| 1275 |  | 
|---|
| 1276 | // Binary search. | 
|---|
| 1277 | while (left < right) { | 
|---|
| 1278 | // Equivalent to (left + right) / 2, but does not overflow. | 
|---|
| 1279 | const size_t middle = left + (right - left) / 2; | 
|---|
| 1280 | RegionData* const middle_ptr = sd.region(middle); | 
|---|
| 1281 | HeapWord* const dest = middle_ptr->destination(); | 
|---|
| 1282 | HeapWord* const addr = sd.region_to_addr(middle); | 
|---|
| 1283 | assert(dest != NULL, "sanity"); | 
|---|
| 1284 | assert(dest <= addr, "must move left"); | 
|---|
| 1285 |  | 
|---|
| 1286 | if (middle > left && dest < addr) { | 
|---|
| 1287 | right = middle - 1; | 
|---|
| 1288 | } else if (middle < right && middle_ptr->data_size() == region_size) { | 
|---|
| 1289 | left = middle + 1; | 
|---|
| 1290 | } else { | 
|---|
| 1291 | return middle_ptr; | 
|---|
| 1292 | } | 
|---|
| 1293 | } | 
|---|
| 1294 | return sd.region(left); | 
|---|
| 1295 | } | 
|---|
| 1296 |  | 
|---|
| 1297 | ParallelCompactData::RegionData* | 
|---|
| 1298 | PSParallelCompact::dead_wood_limit_region(const RegionData* beg, | 
|---|
| 1299 | const RegionData* end, | 
|---|
| 1300 | size_t dead_words) | 
|---|
| 1301 | { | 
|---|
| 1302 | ParallelCompactData& sd = summary_data(); | 
|---|
| 1303 | size_t left = sd.region(beg); | 
|---|
| 1304 | size_t right = end > beg ? sd.region(end) - 1 : left; | 
|---|
| 1305 |  | 
|---|
| 1306 | // Binary search. | 
|---|
| 1307 | while (left < right) { | 
|---|
| 1308 | // Equivalent to (left + right) / 2, but does not overflow. | 
|---|
| 1309 | const size_t middle = left + (right - left) / 2; | 
|---|
| 1310 | RegionData* const middle_ptr = sd.region(middle); | 
|---|
| 1311 | HeapWord* const dest = middle_ptr->destination(); | 
|---|
| 1312 | HeapWord* const addr = sd.region_to_addr(middle); | 
|---|
| 1313 | assert(dest != NULL, "sanity"); | 
|---|
| 1314 | assert(dest <= addr, "must move left"); | 
|---|
| 1315 |  | 
|---|
| 1316 | const size_t dead_to_left = pointer_delta(addr, dest); | 
|---|
| 1317 | if (middle > left && dead_to_left > dead_words) { | 
|---|
| 1318 | right = middle - 1; | 
|---|
| 1319 | } else if (middle < right && dead_to_left < dead_words) { | 
|---|
| 1320 | left = middle + 1; | 
|---|
| 1321 | } else { | 
|---|
| 1322 | return middle_ptr; | 
|---|
| 1323 | } | 
|---|
| 1324 | } | 
|---|
| 1325 | return sd.region(left); | 
|---|
| 1326 | } | 
|---|
| 1327 |  | 
|---|
| 1328 | // The result is valid during the summary phase, after the initial summarization | 
|---|
| 1329 | // of each space into itself, and before final summarization. | 
|---|
| 1330 | inline double | 
|---|
| 1331 | PSParallelCompact::reclaimed_ratio(const RegionData* const cp, | 
|---|
| 1332 | HeapWord* const bottom, | 
|---|
| 1333 | HeapWord* const top, | 
|---|
| 1334 | HeapWord* const new_top) | 
|---|
| 1335 | { | 
|---|
| 1336 | ParallelCompactData& sd = summary_data(); | 
|---|
| 1337 |  | 
|---|
| 1338 | assert(cp != NULL, "sanity"); | 
|---|
| 1339 | assert(bottom != NULL, "sanity"); | 
|---|
| 1340 | assert(top != NULL, "sanity"); | 
|---|
| 1341 | assert(new_top != NULL, "sanity"); | 
|---|
| 1342 | assert(top >= new_top, "summary data problem?"); | 
|---|
| 1343 | assert(new_top > bottom, "space is empty; should not be here"); | 
|---|
| 1344 | assert(new_top >= cp->destination(), "sanity"); | 
|---|
| 1345 | assert(top >= sd.region_to_addr(cp), "sanity"); | 
|---|
| 1346 |  | 
|---|
| 1347 | HeapWord* const destination = cp->destination(); | 
|---|
| 1348 | const size_t dense_prefix_live  = pointer_delta(destination, bottom); | 
|---|
| 1349 | const size_t compacted_region_live = pointer_delta(new_top, destination); | 
|---|
| 1350 | const size_t compacted_region_used = pointer_delta(top, | 
|---|
| 1351 | sd.region_to_addr(cp)); | 
|---|
| 1352 | const size_t reclaimable = compacted_region_used - compacted_region_live; | 
|---|
| 1353 |  | 
|---|
| 1354 | const double divisor = dense_prefix_live + 1.25 * compacted_region_live; | 
|---|
| 1355 | return double(reclaimable) / divisor; | 
|---|
| 1356 | } | 
|---|
| 1357 |  | 
|---|
| 1358 | // Return the address of the end of the dense prefix, a.k.a. the start of the | 
|---|
| 1359 | // compacted region.  The address is always on a region boundary. | 
|---|
| 1360 | // | 
|---|
| 1361 | // Completely full regions at the left are skipped, since no compaction can | 
|---|
| 1362 | // occur in those regions.  Then the maximum amount of dead wood to allow is | 
|---|
| 1363 | // computed, based on the density (amount live / capacity) of the generation; | 
|---|
| 1364 | // the region with approximately that amount of dead space to the left is | 
|---|
| 1365 | // identified as the limit region.  Regions between the last completely full | 
|---|
| 1366 | // region and the limit region are scanned and the one that has the best | 
|---|
| 1367 | // (maximum) reclaimed_ratio() is selected. | 
|---|
| 1368 | HeapWord* | 
|---|
| 1369 | PSParallelCompact::compute_dense_prefix(const SpaceId id, | 
|---|
| 1370 | bool maximum_compaction) | 
|---|
| 1371 | { | 
|---|
| 1372 | const size_t region_size = ParallelCompactData::RegionSize; | 
|---|
| 1373 | const ParallelCompactData& sd = summary_data(); | 
|---|
| 1374 |  | 
|---|
| 1375 | const MutableSpace* const space = _space_info[id].space(); | 
|---|
| 1376 | HeapWord* const top = space->top(); | 
|---|
| 1377 | HeapWord* const top_aligned_up = sd.region_align_up(top); | 
|---|
| 1378 | HeapWord* const new_top = _space_info[id].new_top(); | 
|---|
| 1379 | HeapWord* const new_top_aligned_up = sd.region_align_up(new_top); | 
|---|
| 1380 | HeapWord* const bottom = space->bottom(); | 
|---|
| 1381 | const RegionData* const beg_cp = sd.addr_to_region_ptr(bottom); | 
|---|
| 1382 | const RegionData* const top_cp = sd.addr_to_region_ptr(top_aligned_up); | 
|---|
| 1383 | const RegionData* const new_top_cp = | 
|---|
| 1384 | sd.addr_to_region_ptr(new_top_aligned_up); | 
|---|
| 1385 |  | 
|---|
| 1386 | // Skip full regions at the beginning of the space--they are necessarily part | 
|---|
| 1387 | // of the dense prefix. | 
|---|
| 1388 | const RegionData* const full_cp = first_dead_space_region(beg_cp, new_top_cp); | 
|---|
| 1389 | assert(full_cp->destination() == sd.region_to_addr(full_cp) || | 
|---|
| 1390 | space->is_empty(), "no dead space allowed to the left"); | 
|---|
| 1391 | assert(full_cp->data_size() < region_size || full_cp == new_top_cp - 1, | 
|---|
| 1392 | "region must have dead space"); | 
|---|
| 1393 |  | 
|---|
| 1394 | // The gc number is saved whenever a maximum compaction is done, and used to | 
|---|
| 1395 | // determine when the maximum compaction interval has expired.  This avoids | 
|---|
| 1396 | // successive max compactions for different reasons. | 
|---|
| 1397 | assert(total_invocations() >= _maximum_compaction_gc_num, "sanity"); | 
|---|
| 1398 | const size_t gcs_since_max = total_invocations() - _maximum_compaction_gc_num; | 
|---|
| 1399 | const bool interval_ended = gcs_since_max > HeapMaximumCompactionInterval || | 
|---|
| 1400 | total_invocations() == HeapFirstMaximumCompactionCount; | 
|---|
| 1401 | if (maximum_compaction || full_cp == top_cp || interval_ended) { | 
|---|
| 1402 | _maximum_compaction_gc_num = total_invocations(); | 
|---|
| 1403 | return sd.region_to_addr(full_cp); | 
|---|
| 1404 | } | 
|---|
| 1405 |  | 
|---|
| 1406 | const size_t space_live = pointer_delta(new_top, bottom); | 
|---|
| 1407 | const size_t space_used = space->used_in_words(); | 
|---|
| 1408 | const size_t space_capacity = space->capacity_in_words(); | 
|---|
| 1409 |  | 
|---|
| 1410 | const double density = double(space_live) / double(space_capacity); | 
|---|
| 1411 | const size_t min_percent_free = MarkSweepDeadRatio; | 
|---|
| 1412 | const double limiter = dead_wood_limiter(density, min_percent_free); | 
|---|
| 1413 | const size_t dead_wood_max = space_used - space_live; | 
|---|
| 1414 | const size_t dead_wood_limit = MIN2(size_t(space_capacity * limiter), | 
|---|
| 1415 | dead_wood_max); | 
|---|
| 1416 |  | 
|---|
| 1417 | if (TraceParallelOldGCDensePrefix) { | 
|---|
| 1418 | tty->print_cr( "space_live="SIZE_FORMAT " " "space_used="SIZE_FORMAT " " | 
|---|
| 1419 | "space_cap="SIZE_FORMAT, | 
|---|
| 1420 | space_live, space_used, | 
|---|
| 1421 | space_capacity); | 
|---|
| 1422 | tty->print_cr( "dead_wood_limiter(%6.4f, "SIZE_FORMAT ")=%6.4f " | 
|---|
| 1423 | "dead_wood_max="SIZE_FORMAT " dead_wood_limit="SIZE_FORMAT, | 
|---|
| 1424 | density, min_percent_free, limiter, | 
|---|
| 1425 | dead_wood_max, dead_wood_limit); | 
|---|
| 1426 | } | 
|---|
| 1427 |  | 
|---|
| 1428 | // Locate the region with the desired amount of dead space to the left. | 
|---|
| 1429 | const RegionData* const limit_cp = | 
|---|
| 1430 | dead_wood_limit_region(full_cp, top_cp, dead_wood_limit); | 
|---|
| 1431 |  | 
|---|
| 1432 | // Scan from the first region with dead space to the limit region and find the | 
|---|
| 1433 | // one with the best (largest) reclaimed ratio. | 
|---|
| 1434 | double best_ratio = 0.0; | 
|---|
| 1435 | const RegionData* best_cp = full_cp; | 
|---|
| 1436 | for (const RegionData* cp = full_cp; cp < limit_cp; ++cp) { | 
|---|
| 1437 | double tmp_ratio = reclaimed_ratio(cp, bottom, top, new_top); | 
|---|
| 1438 | if (tmp_ratio > best_ratio) { | 
|---|
| 1439 | best_cp = cp; | 
|---|
| 1440 | best_ratio = tmp_ratio; | 
|---|
| 1441 | } | 
|---|
| 1442 | } | 
|---|
| 1443 |  | 
|---|
| 1444 | return sd.region_to_addr(best_cp); | 
|---|
| 1445 | } | 
|---|
| 1446 |  | 
|---|
| 1447 | void PSParallelCompact::summarize_spaces_quick() | 
|---|
| 1448 | { | 
|---|
| 1449 | for (unsigned int i = 0; i < last_space_id; ++i) { | 
|---|
| 1450 | const MutableSpace* space = _space_info[i].space(); | 
|---|
| 1451 | HeapWord** nta = _space_info[i].new_top_addr(); | 
|---|
| 1452 | bool result = _summary_data.summarize(_space_info[i].split_info(), | 
|---|
| 1453 | space->bottom(), space->top(), NULL, | 
|---|
| 1454 | space->bottom(), space->end(), nta); | 
|---|
| 1455 | assert(result, "space must fit into itself"); | 
|---|
| 1456 | _space_info[i].set_dense_prefix(space->bottom()); | 
|---|
| 1457 | } | 
|---|
| 1458 | } | 
|---|
| 1459 |  | 
|---|
| 1460 | void PSParallelCompact::fill_dense_prefix_end(SpaceId id) | 
|---|
| 1461 | { | 
|---|
| 1462 | HeapWord* const dense_prefix_end = dense_prefix(id); | 
|---|
| 1463 | const RegionData* region = _summary_data.addr_to_region_ptr(dense_prefix_end); | 
|---|
| 1464 | const idx_t dense_prefix_bit = _mark_bitmap.addr_to_bit(dense_prefix_end); | 
|---|
| 1465 | if (dead_space_crosses_boundary(region, dense_prefix_bit)) { | 
|---|
| 1466 | // Only enough dead space is filled so that any remaining dead space to the | 
|---|
| 1467 | // left is larger than the minimum filler object.  (The remainder is filled | 
|---|
| 1468 | // during the copy/update phase.) | 
|---|
| 1469 | // | 
|---|
| 1470 | // The size of the dead space to the right of the boundary is not a | 
|---|
| 1471 | // concern, since compaction will be able to use whatever space is | 
|---|
| 1472 | // available. | 
|---|
| 1473 | // | 
|---|
| 1474 | // Here '||' is the boundary, 'x' represents a don't care bit and a box | 
|---|
| 1475 | // surrounds the space to be filled with an object. | 
|---|
| 1476 | // | 
|---|
| 1477 | // In the 32-bit VM, each bit represents two 32-bit words: | 
|---|
| 1478 | //                              +---+ | 
|---|
| 1479 | // a) beg_bits:  ...  x   x   x | 0 | ||   0   x  x  ... | 
|---|
| 1480 | //    end_bits:  ...  x   x   x | 0 | ||   0   x  x  ... | 
|---|
| 1481 | //                              +---+ | 
|---|
| 1482 | // | 
|---|
| 1483 | // In the 64-bit VM, each bit represents one 64-bit word: | 
|---|
| 1484 | //                              +------------+ | 
|---|
| 1485 | // b) beg_bits:  ...  x   x   x | 0   ||   0 | x  x  ... | 
|---|
| 1486 | //    end_bits:  ...  x   x   1 | 0   ||   0 | x  x  ... | 
|---|
| 1487 | //                              +------------+ | 
|---|
| 1488 | //                          +-------+ | 
|---|
| 1489 | // c) beg_bits:  ...  x   x | 0   0 | ||   0   x  x  ... | 
|---|
| 1490 | //    end_bits:  ...  x   1 | 0   0 | ||   0   x  x  ... | 
|---|
| 1491 | //                          +-------+ | 
|---|
| 1492 | //                      +-----------+ | 
|---|
| 1493 | // d) beg_bits:  ...  x | 0   0   0 | ||   0   x  x  ... | 
|---|
| 1494 | //    end_bits:  ...  1 | 0   0   0 | ||   0   x  x  ... | 
|---|
| 1495 | //                      +-----------+ | 
|---|
| 1496 | //                          +-------+ | 
|---|
| 1497 | // e) beg_bits:  ...  0   0 | 0   0 | ||   0   x  x  ... | 
|---|
| 1498 | //    end_bits:  ...  0   0 | 0   0 | ||   0   x  x  ... | 
|---|
| 1499 | //                          +-------+ | 
|---|
| 1500 |  | 
|---|
| 1501 | // Initially assume case a, c or e will apply. | 
|---|
| 1502 | size_t obj_len = CollectedHeap::min_fill_size(); | 
|---|
| 1503 | HeapWord* obj_beg = dense_prefix_end - obj_len; | 
|---|
| 1504 |  | 
|---|
| 1505 | #ifdef  _LP64 | 
|---|
| 1506 | if (MinObjAlignment > 1) { // object alignment > heap word size | 
|---|
| 1507 | // Cases a, c or e. | 
|---|
| 1508 | } else if (_mark_bitmap.is_obj_end(dense_prefix_bit - 2)) { | 
|---|
| 1509 | // Case b above. | 
|---|
| 1510 | obj_beg = dense_prefix_end - 1; | 
|---|
| 1511 | } else if (!_mark_bitmap.is_obj_end(dense_prefix_bit - 3) && | 
|---|
| 1512 | _mark_bitmap.is_obj_end(dense_prefix_bit - 4)) { | 
|---|
| 1513 | // Case d above. | 
|---|
| 1514 | obj_beg = dense_prefix_end - 3; | 
|---|
| 1515 | obj_len = 3; | 
|---|
| 1516 | } | 
|---|
| 1517 | #endif  // #ifdef _LP64 | 
|---|
| 1518 |  | 
|---|
| 1519 | CollectedHeap::fill_with_object(obj_beg, obj_len); | 
|---|
| 1520 | _mark_bitmap.mark_obj(obj_beg, obj_len); | 
|---|
| 1521 | _summary_data.add_obj(obj_beg, obj_len); | 
|---|
| 1522 | assert(start_array(id) != NULL, "sanity"); | 
|---|
| 1523 | start_array(id)->allocate_block(obj_beg); | 
|---|
| 1524 | } | 
|---|
| 1525 | } | 
|---|
| 1526 |  | 
|---|
| 1527 | void | 
|---|
| 1528 | PSParallelCompact::summarize_space(SpaceId id, bool maximum_compaction) | 
|---|
| 1529 | { | 
|---|
| 1530 | assert(id < last_space_id, "id out of range"); | 
|---|
| 1531 | assert(_space_info[id].dense_prefix() == _space_info[id].space()->bottom(), | 
|---|
| 1532 | "should have been reset in summarize_spaces_quick()"); | 
|---|
| 1533 |  | 
|---|
| 1534 | const MutableSpace* space = _space_info[id].space(); | 
|---|
| 1535 | if (_space_info[id].new_top() != space->bottom()) { | 
|---|
| 1536 | HeapWord* dense_prefix_end = compute_dense_prefix(id, maximum_compaction); | 
|---|
| 1537 | _space_info[id].set_dense_prefix(dense_prefix_end); | 
|---|
| 1538 |  | 
|---|
| 1539 | #ifndef PRODUCT | 
|---|
| 1540 | if (TraceParallelOldGCDensePrefix) { | 
|---|
| 1541 | print_dense_prefix_stats( "ratio", id, maximum_compaction, | 
|---|
| 1542 | dense_prefix_end); | 
|---|
| 1543 | HeapWord* addr = compute_dense_prefix_via_density(id, maximum_compaction); | 
|---|
| 1544 | print_dense_prefix_stats( "density", id, maximum_compaction, addr); | 
|---|
| 1545 | } | 
|---|
| 1546 | #endif  // #ifndef PRODUCT | 
|---|
| 1547 |  | 
|---|
| 1548 | // Recompute the summary data, taking into account the dense prefix.  If | 
|---|
| 1549 | // every last byte will be reclaimed, then the existing summary data which | 
|---|
| 1550 | // compacts everything can be left in place. | 
|---|
| 1551 | if (!maximum_compaction && dense_prefix_end != space->bottom()) { | 
|---|
| 1552 | // If dead space crosses the dense prefix boundary, it is (at least | 
|---|
| 1553 | // partially) filled with a dummy object, marked live and added to the | 
|---|
| 1554 | // summary data.  This simplifies the copy/update phase and must be done | 
|---|
| 1555 | // before the final locations of objects are determined, to prevent | 
|---|
| 1556 | // leaving a fragment of dead space that is too small to fill. | 
|---|
| 1557 | fill_dense_prefix_end(id); | 
|---|
| 1558 |  | 
|---|
| 1559 | // Compute the destination of each Region, and thus each object. | 
|---|
| 1560 | _summary_data.summarize_dense_prefix(space->bottom(), dense_prefix_end); | 
|---|
| 1561 | _summary_data.summarize(_space_info[id].split_info(), | 
|---|
| 1562 | dense_prefix_end, space->top(), NULL, | 
|---|
| 1563 | dense_prefix_end, space->end(), | 
|---|
| 1564 | _space_info[id].new_top_addr()); | 
|---|
| 1565 | } | 
|---|
| 1566 | } | 
|---|
| 1567 |  | 
|---|
| 1568 | if (log_develop_is_enabled(Trace, gc, compaction)) { | 
|---|
| 1569 | const size_t region_size = ParallelCompactData::RegionSize; | 
|---|
| 1570 | HeapWord* const dense_prefix_end = _space_info[id].dense_prefix(); | 
|---|
| 1571 | const size_t dp_region = _summary_data.addr_to_region_idx(dense_prefix_end); | 
|---|
| 1572 | const size_t dp_words = pointer_delta(dense_prefix_end, space->bottom()); | 
|---|
| 1573 | HeapWord* const new_top = _space_info[id].new_top(); | 
|---|
| 1574 | const HeapWord* nt_aligned_up = _summary_data.region_align_up(new_top); | 
|---|
| 1575 | const size_t cr_words = pointer_delta(nt_aligned_up, dense_prefix_end); | 
|---|
| 1576 | log_develop_trace(gc, compaction)( | 
|---|
| 1577 | "id=%d cap="SIZE_FORMAT " dp="PTR_FORMAT " " | 
|---|
| 1578 | "dp_region="SIZE_FORMAT " " "dp_count="SIZE_FORMAT " " | 
|---|
| 1579 | "cr_count="SIZE_FORMAT " " "nt="PTR_FORMAT, | 
|---|
| 1580 | id, space->capacity_in_words(), p2i(dense_prefix_end), | 
|---|
| 1581 | dp_region, dp_words / region_size, | 
|---|
| 1582 | cr_words / region_size, p2i(new_top)); | 
|---|
| 1583 | } | 
|---|
| 1584 | } | 
|---|
| 1585 |  | 
|---|
| 1586 | #ifndef PRODUCT | 
|---|
| 1587 | void PSParallelCompact::summary_phase_msg(SpaceId dst_space_id, | 
|---|
| 1588 | HeapWord* dst_beg, HeapWord* dst_end, | 
|---|
| 1589 | SpaceId src_space_id, | 
|---|
| 1590 | HeapWord* src_beg, HeapWord* src_end) | 
|---|
| 1591 | { | 
|---|
| 1592 | log_develop_trace(gc, compaction)( | 
|---|
| 1593 | "Summarizing %d [%s] into %d [%s]:  " | 
|---|
| 1594 | "src="PTR_FORMAT "-"PTR_FORMAT " " | 
|---|
| 1595 | SIZE_FORMAT "-"SIZE_FORMAT " " | 
|---|
| 1596 | "dst="PTR_FORMAT "-"PTR_FORMAT " " | 
|---|
| 1597 | SIZE_FORMAT "-"SIZE_FORMAT, | 
|---|
| 1598 | src_space_id, space_names[src_space_id], | 
|---|
| 1599 | dst_space_id, space_names[dst_space_id], | 
|---|
| 1600 | p2i(src_beg), p2i(src_end), | 
|---|
| 1601 | _summary_data.addr_to_region_idx(src_beg), | 
|---|
| 1602 | _summary_data.addr_to_region_idx(src_end), | 
|---|
| 1603 | p2i(dst_beg), p2i(dst_end), | 
|---|
| 1604 | _summary_data.addr_to_region_idx(dst_beg), | 
|---|
| 1605 | _summary_data.addr_to_region_idx(dst_end)); | 
|---|
| 1606 | } | 
|---|
| 1607 | #endif  // #ifndef PRODUCT | 
|---|
| 1608 |  | 
|---|
| 1609 | void PSParallelCompact::summary_phase(ParCompactionManager* cm, | 
|---|
| 1610 | bool maximum_compaction) | 
|---|
| 1611 | { | 
|---|
| 1612 | GCTraceTime(Info, gc, phases) tm( "Summary Phase", &_gc_timer); | 
|---|
| 1613 |  | 
|---|
| 1614 | #ifdef  ASSERT | 
|---|
| 1615 | if (TraceParallelOldGCMarkingPhase) { | 
|---|
| 1616 | tty->print_cr( "add_obj_count="SIZE_FORMAT " " | 
|---|
| 1617 | "add_obj_bytes="SIZE_FORMAT, | 
|---|
| 1618 | add_obj_count, add_obj_size * HeapWordSize); | 
|---|
| 1619 | tty->print_cr( "mark_bitmap_count="SIZE_FORMAT " " | 
|---|
| 1620 | "mark_bitmap_bytes="SIZE_FORMAT, | 
|---|
| 1621 | mark_bitmap_count, mark_bitmap_size * HeapWordSize); | 
|---|
| 1622 | } | 
|---|
| 1623 | #endif  // #ifdef ASSERT | 
|---|
| 1624 |  | 
|---|
| 1625 | // Quick summarization of each space into itself, to see how much is live. | 
|---|
| 1626 | summarize_spaces_quick(); | 
|---|
| 1627 |  | 
|---|
| 1628 | log_develop_trace(gc, compaction)( "summary phase:  after summarizing each space to self"); | 
|---|
| 1629 | NOT_PRODUCT(print_region_ranges()); | 
|---|
| 1630 | NOT_PRODUCT(print_initial_summary_data(_summary_data, _space_info)); | 
|---|
| 1631 |  | 
|---|
| 1632 | // The amount of live data that will end up in old space (assuming it fits). | 
|---|
| 1633 | size_t old_space_total_live = 0; | 
|---|
| 1634 | for (unsigned int id = old_space_id; id < last_space_id; ++id) { | 
|---|
| 1635 | old_space_total_live += pointer_delta(_space_info[id].new_top(), | 
|---|
| 1636 | _space_info[id].space()->bottom()); | 
|---|
| 1637 | } | 
|---|
| 1638 |  | 
|---|
| 1639 | MutableSpace* const old_space = _space_info[old_space_id].space(); | 
|---|
| 1640 | const size_t old_capacity = old_space->capacity_in_words(); | 
|---|
| 1641 | if (old_space_total_live > old_capacity) { | 
|---|
| 1642 | // XXX - should also try to expand | 
|---|
| 1643 | maximum_compaction = true; | 
|---|
| 1644 | } | 
|---|
| 1645 |  | 
|---|
| 1646 | // Old generations. | 
|---|
| 1647 | summarize_space(old_space_id, maximum_compaction); | 
|---|
| 1648 |  | 
|---|
| 1649 | // Summarize the remaining spaces in the young gen.  The initial target space | 
|---|
| 1650 | // is the old gen.  If a space does not fit entirely into the target, then the | 
|---|
| 1651 | // remainder is compacted into the space itself and that space becomes the new | 
|---|
| 1652 | // target. | 
|---|
| 1653 | SpaceId dst_space_id = old_space_id; | 
|---|
| 1654 | HeapWord* dst_space_end = old_space->end(); | 
|---|
| 1655 | HeapWord** new_top_addr = _space_info[dst_space_id].new_top_addr(); | 
|---|
| 1656 | for (unsigned int id = eden_space_id; id < last_space_id; ++id) { | 
|---|
| 1657 | const MutableSpace* space = _space_info[id].space(); | 
|---|
| 1658 | const size_t live = pointer_delta(_space_info[id].new_top(), | 
|---|
| 1659 | space->bottom()); | 
|---|
| 1660 | const size_t available = pointer_delta(dst_space_end, *new_top_addr); | 
|---|
| 1661 |  | 
|---|
| 1662 | NOT_PRODUCT(summary_phase_msg(dst_space_id, *new_top_addr, dst_space_end, | 
|---|
| 1663 | SpaceId(id), space->bottom(), space->top());) | 
|---|
| 1664 | if (live > 0 && live <= available) { | 
|---|
| 1665 | // All the live data will fit. | 
|---|
| 1666 | bool done = _summary_data.summarize(_space_info[id].split_info(), | 
|---|
| 1667 | space->bottom(), space->top(), | 
|---|
| 1668 | NULL, | 
|---|
| 1669 | *new_top_addr, dst_space_end, | 
|---|
| 1670 | new_top_addr); | 
|---|
| 1671 | assert(done, "space must fit into old gen"); | 
|---|
| 1672 |  | 
|---|
| 1673 | // Reset the new_top value for the space. | 
|---|
| 1674 | _space_info[id].set_new_top(space->bottom()); | 
|---|
| 1675 | } else if (live > 0) { | 
|---|
| 1676 | // Attempt to fit part of the source space into the target space. | 
|---|
| 1677 | HeapWord* next_src_addr = NULL; | 
|---|
| 1678 | bool done = _summary_data.summarize(_space_info[id].split_info(), | 
|---|
| 1679 | space->bottom(), space->top(), | 
|---|
| 1680 | &next_src_addr, | 
|---|
| 1681 | *new_top_addr, dst_space_end, | 
|---|
| 1682 | new_top_addr); | 
|---|
| 1683 | assert(!done, "space should not fit into old gen"); | 
|---|
| 1684 | assert(next_src_addr != NULL, "sanity"); | 
|---|
| 1685 |  | 
|---|
| 1686 | // The source space becomes the new target, so the remainder is compacted | 
|---|
| 1687 | // within the space itself. | 
|---|
| 1688 | dst_space_id = SpaceId(id); | 
|---|
| 1689 | dst_space_end = space->end(); | 
|---|
| 1690 | new_top_addr = _space_info[id].new_top_addr(); | 
|---|
| 1691 | NOT_PRODUCT(summary_phase_msg(dst_space_id, | 
|---|
| 1692 | space->bottom(), dst_space_end, | 
|---|
| 1693 | SpaceId(id), next_src_addr, space->top());) | 
|---|
| 1694 | done = _summary_data.summarize(_space_info[id].split_info(), | 
|---|
| 1695 | next_src_addr, space->top(), | 
|---|
| 1696 | NULL, | 
|---|
| 1697 | space->bottom(), dst_space_end, | 
|---|
| 1698 | new_top_addr); | 
|---|
| 1699 | assert(done, "space must fit when compacted into itself"); | 
|---|
| 1700 | assert(*new_top_addr <= space->top(), "usage should not grow"); | 
|---|
| 1701 | } | 
|---|
| 1702 | } | 
|---|
| 1703 |  | 
|---|
| 1704 | log_develop_trace(gc, compaction)( "Summary_phase:  after final summarization"); | 
|---|
| 1705 | NOT_PRODUCT(print_region_ranges()); | 
|---|
| 1706 | NOT_PRODUCT(print_initial_summary_data(_summary_data, _space_info)); | 
|---|
| 1707 | } | 
|---|
| 1708 |  | 
|---|
| 1709 | // This method should contain all heap-specific policy for invoking a full | 
|---|
| 1710 | // collection.  invoke_no_policy() will only attempt to compact the heap; it | 
|---|
| 1711 | // will do nothing further.  If we need to bail out for policy reasons, scavenge | 
|---|
| 1712 | // before full gc, or any other specialized behavior, it needs to be added here. | 
|---|
| 1713 | // | 
|---|
| 1714 | // Note that this method should only be called from the vm_thread while at a | 
|---|
| 1715 | // safepoint. | 
|---|
| 1716 | // | 
|---|
| 1717 | // Note that the all_soft_refs_clear flag in the soft ref policy | 
|---|
| 1718 | // may be true because this method can be called without intervening | 
|---|
| 1719 | // activity.  For example when the heap space is tight and full measure | 
|---|
| 1720 | // are being taken to free space. | 
|---|
| 1721 | void PSParallelCompact::invoke(bool maximum_heap_compaction) { | 
|---|
| 1722 | assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint"); | 
|---|
| 1723 | assert(Thread::current() == (Thread*)VMThread::vm_thread(), | 
|---|
| 1724 | "should be in vm thread"); | 
|---|
| 1725 |  | 
|---|
| 1726 | ParallelScavengeHeap* heap = ParallelScavengeHeap::heap(); | 
|---|
| 1727 | GCCause::Cause gc_cause = heap->gc_cause(); | 
|---|
| 1728 | assert(!heap->is_gc_active(), "not reentrant"); | 
|---|
| 1729 |  | 
|---|
| 1730 | PSAdaptiveSizePolicy* policy = heap->size_policy(); | 
|---|
| 1731 | IsGCActiveMark mark; | 
|---|
| 1732 |  | 
|---|
| 1733 | if (ScavengeBeforeFullGC) { | 
|---|
| 1734 | PSScavenge::invoke_no_policy(); | 
|---|
| 1735 | } | 
|---|
| 1736 |  | 
|---|
| 1737 | const bool clear_all_soft_refs = | 
|---|
| 1738 | heap->soft_ref_policy()->should_clear_all_soft_refs(); | 
|---|
| 1739 |  | 
|---|
| 1740 | PSParallelCompact::invoke_no_policy(clear_all_soft_refs || | 
|---|
| 1741 | maximum_heap_compaction); | 
|---|
| 1742 | } | 
|---|
| 1743 |  | 
|---|
| 1744 | // This method contains no policy. You should probably | 
|---|
| 1745 | // be calling invoke() instead. | 
|---|
| 1746 | bool PSParallelCompact::invoke_no_policy(bool maximum_heap_compaction) { | 
|---|
| 1747 | assert(SafepointSynchronize::is_at_safepoint(), "must be at a safepoint"); | 
|---|
| 1748 | assert(ref_processor() != NULL, "Sanity"); | 
|---|
| 1749 |  | 
|---|
| 1750 | if (GCLocker::check_active_before_gc()) { | 
|---|
| 1751 | return false; | 
|---|
| 1752 | } | 
|---|
| 1753 |  | 
|---|
| 1754 | ParallelScavengeHeap* heap = ParallelScavengeHeap::heap(); | 
|---|
| 1755 |  | 
|---|
| 1756 | GCIdMark gc_id_mark; | 
|---|
| 1757 | _gc_timer.register_gc_start(); | 
|---|
| 1758 | _gc_tracer.report_gc_start(heap->gc_cause(), _gc_timer.gc_start()); | 
|---|
| 1759 |  | 
|---|
| 1760 | TimeStamp marking_start; | 
|---|
| 1761 | TimeStamp compaction_start; | 
|---|
| 1762 | TimeStamp collection_exit; | 
|---|
| 1763 |  | 
|---|
| 1764 | GCCause::Cause gc_cause = heap->gc_cause(); | 
|---|
| 1765 | PSYoungGen* young_gen = heap->young_gen(); | 
|---|
| 1766 | PSOldGen* old_gen = heap->old_gen(); | 
|---|
| 1767 | PSAdaptiveSizePolicy* size_policy = heap->size_policy(); | 
|---|
| 1768 |  | 
|---|
| 1769 | // The scope of casr should end after code that can change | 
|---|
| 1770 | // SoftRefPolicy::_should_clear_all_soft_refs. | 
|---|
| 1771 | ClearedAllSoftRefs casr(maximum_heap_compaction, | 
|---|
| 1772 | heap->soft_ref_policy()); | 
|---|
| 1773 |  | 
|---|
| 1774 | if (ZapUnusedHeapArea) { | 
|---|
| 1775 | // Save information needed to minimize mangling | 
|---|
| 1776 | heap->record_gen_tops_before_GC(); | 
|---|
| 1777 | } | 
|---|
| 1778 |  | 
|---|
| 1779 | // Make sure data structures are sane, make the heap parsable, and do other | 
|---|
| 1780 | // miscellaneous bookkeeping. | 
|---|
| 1781 | pre_compact(); | 
|---|
| 1782 |  | 
|---|
| 1783 | PreGCValues pre_gc_values(heap); | 
|---|
| 1784 |  | 
|---|
| 1785 | // Get the compaction manager reserved for the VM thread. | 
|---|
| 1786 | ParCompactionManager* const vmthread_cm = | 
|---|
| 1787 | ParCompactionManager::manager_array(gc_task_manager()->workers()); | 
|---|
| 1788 |  | 
|---|
| 1789 | { | 
|---|
| 1790 | ResourceMark rm; | 
|---|
| 1791 | HandleMark hm; | 
|---|
| 1792 |  | 
|---|
| 1793 | // Set the number of GC threads to be used in this collection | 
|---|
| 1794 | gc_task_manager()->set_active_gang(); | 
|---|
| 1795 | gc_task_manager()->task_idle_workers(); | 
|---|
| 1796 |  | 
|---|
| 1797 | GCTraceCPUTime tcpu; | 
|---|
| 1798 | GCTraceTime(Info, gc) tm( "Pause Full", NULL, gc_cause, true); | 
|---|
| 1799 |  | 
|---|
| 1800 | heap->pre_full_gc_dump(&_gc_timer); | 
|---|
| 1801 |  | 
|---|
| 1802 | TraceCollectorStats tcs(counters()); | 
|---|
| 1803 | TraceMemoryManagerStats tms(heap->old_gc_manager(), gc_cause); | 
|---|
| 1804 |  | 
|---|
| 1805 | if (log_is_enabled(Debug, gc, heap, exit)) { | 
|---|
| 1806 | accumulated_time()->start(); | 
|---|
| 1807 | } | 
|---|
| 1808 |  | 
|---|
| 1809 | // Let the size policy know we're starting | 
|---|
| 1810 | size_policy->major_collection_begin(); | 
|---|
| 1811 |  | 
|---|
| 1812 | #if COMPILER2_OR_JVMCI | 
|---|
| 1813 | DerivedPointerTable::clear(); | 
|---|
| 1814 | #endif | 
|---|
| 1815 |  | 
|---|
| 1816 | ref_processor()->enable_discovery(); | 
|---|
| 1817 | ref_processor()->setup_policy(maximum_heap_compaction); | 
|---|
| 1818 |  | 
|---|
| 1819 | bool marked_for_unloading = false; | 
|---|
| 1820 |  | 
|---|
| 1821 | marking_start.update(); | 
|---|
| 1822 | marking_phase(vmthread_cm, maximum_heap_compaction, &_gc_tracer); | 
|---|
| 1823 |  | 
|---|
| 1824 | bool max_on_system_gc = UseMaximumCompactionOnSystemGC | 
|---|
| 1825 | && GCCause::is_user_requested_gc(gc_cause); | 
|---|
| 1826 | summary_phase(vmthread_cm, maximum_heap_compaction || max_on_system_gc); | 
|---|
| 1827 |  | 
|---|
| 1828 | #if COMPILER2_OR_JVMCI | 
|---|
| 1829 | assert(DerivedPointerTable::is_active(), "Sanity"); | 
|---|
| 1830 | DerivedPointerTable::set_active(false); | 
|---|
| 1831 | #endif | 
|---|
| 1832 |  | 
|---|
| 1833 | // adjust_roots() updates Universe::_intArrayKlassObj which is | 
|---|
| 1834 | // needed by the compaction for filling holes in the dense prefix. | 
|---|
| 1835 | adjust_roots(vmthread_cm); | 
|---|
| 1836 |  | 
|---|
| 1837 | compaction_start.update(); | 
|---|
| 1838 | compact(); | 
|---|
| 1839 |  | 
|---|
| 1840 | // Reset the mark bitmap, summary data, and do other bookkeeping.  Must be | 
|---|
| 1841 | // done before resizing. | 
|---|
| 1842 | post_compact(); | 
|---|
| 1843 |  | 
|---|
| 1844 | // Let the size policy know we're done | 
|---|
| 1845 | size_policy->major_collection_end(old_gen->used_in_bytes(), gc_cause); | 
|---|
| 1846 |  | 
|---|
| 1847 | if (UseAdaptiveSizePolicy) { | 
|---|
| 1848 | log_debug(gc, ergo)( "AdaptiveSizeStart: collection: %d ", heap->total_collections()); | 
|---|
| 1849 | log_trace(gc, ergo)( "old_gen_capacity: "SIZE_FORMAT " young_gen_capacity: "SIZE_FORMAT, | 
|---|
| 1850 | old_gen->capacity_in_bytes(), young_gen->capacity_in_bytes()); | 
|---|
| 1851 |  | 
|---|
| 1852 | // Don't check if the size_policy is ready here.  Let | 
|---|
| 1853 | // the size_policy check that internally. | 
|---|
| 1854 | if (UseAdaptiveGenerationSizePolicyAtMajorCollection && | 
|---|
| 1855 | AdaptiveSizePolicy::should_update_promo_stats(gc_cause)) { | 
|---|
| 1856 | // Swap the survivor spaces if from_space is empty. The | 
|---|
| 1857 | // resize_young_gen() called below is normally used after | 
|---|
| 1858 | // a successful young GC and swapping of survivor spaces; | 
|---|
| 1859 | // otherwise, it will fail to resize the young gen with | 
|---|
| 1860 | // the current implementation. | 
|---|
| 1861 | if (young_gen->from_space()->is_empty()) { | 
|---|
| 1862 | young_gen->from_space()->clear(SpaceDecorator::Mangle); | 
|---|
| 1863 | young_gen->swap_spaces(); | 
|---|
| 1864 | } | 
|---|
| 1865 |  | 
|---|
| 1866 | // Calculate optimal free space amounts | 
|---|
| 1867 | assert(young_gen->max_size() > | 
|---|
| 1868 | young_gen->from_space()->capacity_in_bytes() + | 
|---|
| 1869 | young_gen->to_space()->capacity_in_bytes(), | 
|---|
| 1870 | "Sizes of space in young gen are out-of-bounds"); | 
|---|
| 1871 |  | 
|---|
| 1872 | size_t young_live = young_gen->used_in_bytes(); | 
|---|
| 1873 | size_t eden_live = young_gen->eden_space()->used_in_bytes(); | 
|---|
| 1874 | size_t old_live = old_gen->used_in_bytes(); | 
|---|
| 1875 | size_t cur_eden = young_gen->eden_space()->capacity_in_bytes(); | 
|---|
| 1876 | size_t max_old_gen_size = old_gen->max_gen_size(); | 
|---|
| 1877 | size_t max_eden_size = young_gen->max_size() - | 
|---|
| 1878 | young_gen->from_space()->capacity_in_bytes() - | 
|---|
| 1879 | young_gen->to_space()->capacity_in_bytes(); | 
|---|
| 1880 |  | 
|---|
| 1881 | // Used for diagnostics | 
|---|
| 1882 | size_policy->clear_generation_free_space_flags(); | 
|---|
| 1883 |  | 
|---|
| 1884 | size_policy->compute_generations_free_space(young_live, | 
|---|
| 1885 | eden_live, | 
|---|
| 1886 | old_live, | 
|---|
| 1887 | cur_eden, | 
|---|
| 1888 | max_old_gen_size, | 
|---|
| 1889 | max_eden_size, | 
|---|
| 1890 | true /* full gc*/); | 
|---|
| 1891 |  | 
|---|
| 1892 | size_policy->check_gc_overhead_limit(eden_live, | 
|---|
| 1893 | max_old_gen_size, | 
|---|
| 1894 | max_eden_size, | 
|---|
| 1895 | true /* full gc*/, | 
|---|
| 1896 | gc_cause, | 
|---|
| 1897 | heap->soft_ref_policy()); | 
|---|
| 1898 |  | 
|---|
| 1899 | size_policy->decay_supplemental_growth(true /* full gc*/); | 
|---|
| 1900 |  | 
|---|
| 1901 | heap->resize_old_gen( | 
|---|
| 1902 | size_policy->calculated_old_free_size_in_bytes()); | 
|---|
| 1903 |  | 
|---|
| 1904 | heap->resize_young_gen(size_policy->calculated_eden_size_in_bytes(), | 
|---|
| 1905 | size_policy->calculated_survivor_size_in_bytes()); | 
|---|
| 1906 | } | 
|---|
| 1907 |  | 
|---|
| 1908 | log_debug(gc, ergo)( "AdaptiveSizeStop: collection: %d ", heap->total_collections()); | 
|---|
| 1909 | } | 
|---|
| 1910 |  | 
|---|
| 1911 | if (UsePerfData) { | 
|---|
| 1912 | PSGCAdaptivePolicyCounters* const counters = heap->gc_policy_counters(); | 
|---|
| 1913 | counters->update_counters(); | 
|---|
| 1914 | counters->update_old_capacity(old_gen->capacity_in_bytes()); | 
|---|
| 1915 | counters->update_young_capacity(young_gen->capacity_in_bytes()); | 
|---|
| 1916 | } | 
|---|
| 1917 |  | 
|---|
| 1918 | heap->resize_all_tlabs(); | 
|---|
| 1919 |  | 
|---|
| 1920 | // Resize the metaspace capacity after a collection | 
|---|
| 1921 | MetaspaceGC::compute_new_size(); | 
|---|
| 1922 |  | 
|---|
| 1923 | if (log_is_enabled(Debug, gc, heap, exit)) { | 
|---|
| 1924 | accumulated_time()->stop(); | 
|---|
| 1925 | } | 
|---|
| 1926 |  | 
|---|
| 1927 | young_gen->print_used_change(pre_gc_values.young_gen_used()); | 
|---|
| 1928 | old_gen->print_used_change(pre_gc_values.old_gen_used()); | 
|---|
| 1929 | MetaspaceUtils::print_metaspace_change(pre_gc_values.metadata_used()); | 
|---|
| 1930 |  | 
|---|
| 1931 | // Track memory usage and detect low memory | 
|---|
| 1932 | MemoryService::track_memory_usage(); | 
|---|
| 1933 | heap->update_counters(); | 
|---|
| 1934 | gc_task_manager()->release_idle_workers(); | 
|---|
| 1935 |  | 
|---|
| 1936 | heap->post_full_gc_dump(&_gc_timer); | 
|---|
| 1937 | } | 
|---|
| 1938 |  | 
|---|
| 1939 | #ifdef ASSERT | 
|---|
| 1940 | for (size_t i = 0; i < ParallelGCThreads + 1; ++i) { | 
|---|
| 1941 | ParCompactionManager* const cm = | 
|---|
| 1942 | ParCompactionManager::manager_array(int(i)); | 
|---|
| 1943 | assert(cm->marking_stack()->is_empty(), "should be empty"); | 
|---|
| 1944 | assert(cm->region_stack()->is_empty(), "Region stack "SIZE_FORMAT " is not empty", i); | 
|---|
| 1945 | } | 
|---|
| 1946 | #endif // ASSERT | 
|---|
| 1947 |  | 
|---|
| 1948 | if (VerifyAfterGC && heap->total_collections() >= VerifyGCStartAt) { | 
|---|
| 1949 | HandleMark hm;  // Discard invalid handles created during verification | 
|---|
| 1950 | Universe::verify( "After GC"); | 
|---|
| 1951 | } | 
|---|
| 1952 |  | 
|---|
| 1953 | // Re-verify object start arrays | 
|---|
| 1954 | if (VerifyObjectStartArray && | 
|---|
| 1955 | VerifyAfterGC) { | 
|---|
| 1956 | old_gen->verify_object_start_array(); | 
|---|
| 1957 | } | 
|---|
| 1958 |  | 
|---|
| 1959 | if (ZapUnusedHeapArea) { | 
|---|
| 1960 | old_gen->object_space()->check_mangled_unused_area_complete(); | 
|---|
| 1961 | } | 
|---|
| 1962 |  | 
|---|
| 1963 | NOT_PRODUCT(ref_processor()->verify_no_references_recorded()); | 
|---|
| 1964 |  | 
|---|
| 1965 | collection_exit.update(); | 
|---|
| 1966 |  | 
|---|
| 1967 | heap->print_heap_after_gc(); | 
|---|
| 1968 | heap->trace_heap_after_gc(&_gc_tracer); | 
|---|
| 1969 |  | 
|---|
| 1970 | log_debug(gc, task, time)( "VM-Thread "JLONG_FORMAT " "JLONG_FORMAT " "JLONG_FORMAT, | 
|---|
| 1971 | marking_start.ticks(), compaction_start.ticks(), | 
|---|
| 1972 | collection_exit.ticks()); | 
|---|
| 1973 | gc_task_manager()->print_task_time_stamps(); | 
|---|
| 1974 |  | 
|---|
| 1975 | #ifdef TRACESPINNING | 
|---|
| 1976 | ParallelTaskTerminator::print_termination_counts(); | 
|---|
| 1977 | #endif | 
|---|
| 1978 |  | 
|---|
| 1979 | AdaptiveSizePolicyOutput::print(size_policy, heap->total_collections()); | 
|---|
| 1980 |  | 
|---|
| 1981 | _gc_timer.register_gc_end(); | 
|---|
| 1982 |  | 
|---|
| 1983 | _gc_tracer.report_dense_prefix(dense_prefix(old_space_id)); | 
|---|
| 1984 | _gc_tracer.report_gc_end(_gc_timer.gc_end(), _gc_timer.time_partitions()); | 
|---|
| 1985 |  | 
|---|
| 1986 | return true; | 
|---|
| 1987 | } | 
|---|
| 1988 |  | 
|---|
| 1989 | bool PSParallelCompact::absorb_live_data_from_eden(PSAdaptiveSizePolicy* size_policy, | 
|---|
| 1990 | PSYoungGen* young_gen, | 
|---|
| 1991 | PSOldGen* old_gen) { | 
|---|
| 1992 | MutableSpace* const eden_space = young_gen->eden_space(); | 
|---|
| 1993 | assert(!eden_space->is_empty(), "eden must be non-empty"); | 
|---|
| 1994 | assert(young_gen->virtual_space()->alignment() == | 
|---|
| 1995 | old_gen->virtual_space()->alignment(), "alignments do not match"); | 
|---|
| 1996 |  | 
|---|
| 1997 | // We also return false when it's a heterogenous heap because old generation cannot absorb data from eden | 
|---|
| 1998 | // when it is allocated on different memory (example, nv-dimm) than young. | 
|---|
| 1999 | if (!(UseAdaptiveSizePolicy && UseAdaptiveGCBoundary) || | 
|---|
| 2000 | ParallelArguments::is_heterogeneous_heap()) { | 
|---|
| 2001 | return false; | 
|---|
| 2002 | } | 
|---|
| 2003 |  | 
|---|
| 2004 | // Both generations must be completely committed. | 
|---|
| 2005 | if (young_gen->virtual_space()->uncommitted_size() != 0) { | 
|---|
| 2006 | return false; | 
|---|
| 2007 | } | 
|---|
| 2008 | if (old_gen->virtual_space()->uncommitted_size() != 0) { | 
|---|
| 2009 | return false; | 
|---|
| 2010 | } | 
|---|
| 2011 |  | 
|---|
| 2012 | // Figure out how much to take from eden.  Include the average amount promoted | 
|---|
| 2013 | // in the total; otherwise the next young gen GC will simply bail out to a | 
|---|
| 2014 | // full GC. | 
|---|
| 2015 | const size_t alignment = old_gen->virtual_space()->alignment(); | 
|---|
| 2016 | const size_t eden_used = eden_space->used_in_bytes(); | 
|---|
| 2017 | const size_t promoted = (size_t)size_policy->avg_promoted()->padded_average(); | 
|---|
| 2018 | const size_t absorb_size = align_up(eden_used + promoted, alignment); | 
|---|
| 2019 | const size_t eden_capacity = eden_space->capacity_in_bytes(); | 
|---|
| 2020 |  | 
|---|
| 2021 | if (absorb_size >= eden_capacity) { | 
|---|
| 2022 | return false; // Must leave some space in eden. | 
|---|
| 2023 | } | 
|---|
| 2024 |  | 
|---|
| 2025 | const size_t new_young_size = young_gen->capacity_in_bytes() - absorb_size; | 
|---|
| 2026 | if (new_young_size < young_gen->min_gen_size()) { | 
|---|
| 2027 | return false; // Respect young gen minimum size. | 
|---|
| 2028 | } | 
|---|
| 2029 |  | 
|---|
| 2030 | log_trace(gc, ergo, heap)( " absorbing "SIZE_FORMAT "K:  " | 
|---|
| 2031 | "eden "SIZE_FORMAT "K->"SIZE_FORMAT "K " | 
|---|
| 2032 | "from "SIZE_FORMAT "K, to "SIZE_FORMAT "K " | 
|---|
| 2033 | "young_gen "SIZE_FORMAT "K->"SIZE_FORMAT "K ", | 
|---|
| 2034 | absorb_size / K, | 
|---|
| 2035 | eden_capacity / K, (eden_capacity - absorb_size) / K, | 
|---|
| 2036 | young_gen->from_space()->used_in_bytes() / K, | 
|---|
| 2037 | young_gen->to_space()->used_in_bytes() / K, | 
|---|
| 2038 | young_gen->capacity_in_bytes() / K, new_young_size / K); | 
|---|
| 2039 |  | 
|---|
| 2040 | // Fill the unused part of the old gen. | 
|---|
| 2041 | MutableSpace* const old_space = old_gen->object_space(); | 
|---|
| 2042 | HeapWord* const unused_start = old_space->top(); | 
|---|
| 2043 | size_t const unused_words = pointer_delta(old_space->end(), unused_start); | 
|---|
| 2044 |  | 
|---|
| 2045 | if (unused_words > 0) { | 
|---|
| 2046 | if (unused_words < CollectedHeap::min_fill_size()) { | 
|---|
| 2047 | return false;  // If the old gen cannot be filled, must give up. | 
|---|
| 2048 | } | 
|---|
| 2049 | CollectedHeap::fill_with_objects(unused_start, unused_words); | 
|---|
| 2050 | } | 
|---|
| 2051 |  | 
|---|
| 2052 | // Take the live data from eden and set both top and end in the old gen to | 
|---|
| 2053 | // eden top.  (Need to set end because reset_after_change() mangles the region | 
|---|
| 2054 | // from end to virtual_space->high() in debug builds). | 
|---|
| 2055 | HeapWord* const new_top = eden_space->top(); | 
|---|
| 2056 | old_gen->virtual_space()->expand_into(young_gen->virtual_space(), | 
|---|
| 2057 | absorb_size); | 
|---|
| 2058 | young_gen->reset_after_change(); | 
|---|
| 2059 | old_space->set_top(new_top); | 
|---|
| 2060 | old_space->set_end(new_top); | 
|---|
| 2061 | old_gen->reset_after_change(); | 
|---|
| 2062 |  | 
|---|
| 2063 | // Update the object start array for the filler object and the data from eden. | 
|---|
| 2064 | ObjectStartArray* const start_array = old_gen->start_array(); | 
|---|
| 2065 | for (HeapWord* p = unused_start; p < new_top; p += oop(p)->size()) { | 
|---|
| 2066 | start_array->allocate_block(p); | 
|---|
| 2067 | } | 
|---|
| 2068 |  | 
|---|
| 2069 | // Could update the promoted average here, but it is not typically updated at | 
|---|
| 2070 | // full GCs and the value to use is unclear.  Something like | 
|---|
| 2071 | // | 
|---|
| 2072 | // cur_promoted_avg + absorb_size / number_of_scavenges_since_last_full_gc. | 
|---|
| 2073 |  | 
|---|
| 2074 | size_policy->set_bytes_absorbed_from_eden(absorb_size); | 
|---|
| 2075 | return true; | 
|---|
| 2076 | } | 
|---|
| 2077 |  | 
|---|
| 2078 | GCTaskManager* const PSParallelCompact::gc_task_manager() { | 
|---|
| 2079 | assert(ParallelScavengeHeap::gc_task_manager() != NULL, | 
|---|
| 2080 | "shouldn't return NULL"); | 
|---|
| 2081 | return ParallelScavengeHeap::gc_task_manager(); | 
|---|
| 2082 | } | 
|---|
| 2083 |  | 
|---|
| 2084 | class PCAddThreadRootsMarkingTaskClosure : public ThreadClosure { | 
|---|
| 2085 | private: | 
|---|
| 2086 | GCTaskQueue* _q; | 
|---|
| 2087 |  | 
|---|
| 2088 | public: | 
|---|
| 2089 | PCAddThreadRootsMarkingTaskClosure(GCTaskQueue* q) : _q(q) { } | 
|---|
| 2090 | void do_thread(Thread* t) { | 
|---|
| 2091 | _q->enqueue(new ThreadRootsMarkingTask(t)); | 
|---|
| 2092 | } | 
|---|
| 2093 | }; | 
|---|
| 2094 |  | 
|---|
| 2095 | void PSParallelCompact::marking_phase(ParCompactionManager* cm, | 
|---|
| 2096 | bool maximum_heap_compaction, | 
|---|
| 2097 | ParallelOldTracer *gc_tracer) { | 
|---|
| 2098 | // Recursively traverse all live objects and mark them | 
|---|
| 2099 | GCTraceTime(Info, gc, phases) tm( "Marking Phase", &_gc_timer); | 
|---|
| 2100 |  | 
|---|
| 2101 | ParallelScavengeHeap* heap = ParallelScavengeHeap::heap(); | 
|---|
| 2102 | uint parallel_gc_threads = heap->gc_task_manager()->workers(); | 
|---|
| 2103 | uint active_gc_threads = heap->gc_task_manager()->active_workers(); | 
|---|
| 2104 | TaskQueueSetSuper* qset = ParCompactionManager::stack_array(); | 
|---|
| 2105 | TaskTerminator terminator(active_gc_threads, qset); | 
|---|
| 2106 |  | 
|---|
| 2107 | PCMarkAndPushClosure mark_and_push_closure(cm); | 
|---|
| 2108 | ParCompactionManager::FollowStackClosure follow_stack_closure(cm); | 
|---|
| 2109 |  | 
|---|
| 2110 | // Need new claim bits before marking starts. | 
|---|
| 2111 | ClassLoaderDataGraph::clear_claimed_marks(); | 
|---|
| 2112 |  | 
|---|
| 2113 | { | 
|---|
| 2114 | GCTraceTime(Debug, gc, phases) tm( "Par Mark", &_gc_timer); | 
|---|
| 2115 |  | 
|---|
| 2116 | ParallelScavengeHeap::ParStrongRootsScope psrs; | 
|---|
| 2117 |  | 
|---|
| 2118 | GCTaskQueue* q = GCTaskQueue::create(); | 
|---|
| 2119 |  | 
|---|
| 2120 | q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::universe)); | 
|---|
| 2121 | q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::jni_handles)); | 
|---|
| 2122 | // We scan the thread roots in parallel | 
|---|
| 2123 | PCAddThreadRootsMarkingTaskClosure cl(q); | 
|---|
| 2124 | Threads::java_threads_and_vm_thread_do(&cl); | 
|---|
| 2125 | q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::object_synchronizer)); | 
|---|
| 2126 | q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::management)); | 
|---|
| 2127 | q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::system_dictionary)); | 
|---|
| 2128 | q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::class_loader_data)); | 
|---|
| 2129 | q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::jvmti)); | 
|---|
| 2130 | q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::code_cache)); | 
|---|
| 2131 | JVMCI_ONLY(q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::jvmci));) | 
|---|
| 2132 |  | 
|---|
| 2133 | if (active_gc_threads > 1) { | 
|---|
| 2134 | for (uint j = 0; j < active_gc_threads; j++) { | 
|---|
| 2135 | q->enqueue(new StealMarkingTask(terminator.terminator())); | 
|---|
| 2136 | } | 
|---|
| 2137 | } | 
|---|
| 2138 |  | 
|---|
| 2139 | gc_task_manager()->execute_and_wait(q); | 
|---|
| 2140 | } | 
|---|
| 2141 |  | 
|---|
| 2142 | // Process reference objects found during marking | 
|---|
| 2143 | { | 
|---|
| 2144 | GCTraceTime(Debug, gc, phases) tm( "Reference Processing", &_gc_timer); | 
|---|
| 2145 |  | 
|---|
| 2146 | ReferenceProcessorStats stats; | 
|---|
| 2147 | ReferenceProcessorPhaseTimes pt(&_gc_timer, ref_processor()->max_num_queues()); | 
|---|
| 2148 |  | 
|---|
| 2149 | if (ref_processor()->processing_is_mt()) { | 
|---|
| 2150 | ref_processor()->set_active_mt_degree(active_gc_threads); | 
|---|
| 2151 |  | 
|---|
| 2152 | RefProcTaskExecutor task_executor; | 
|---|
| 2153 | stats = ref_processor()->process_discovered_references( | 
|---|
| 2154 | is_alive_closure(), &mark_and_push_closure, &follow_stack_closure, | 
|---|
| 2155 | &task_executor, &pt); | 
|---|
| 2156 | } else { | 
|---|
| 2157 | stats = ref_processor()->process_discovered_references( | 
|---|
| 2158 | is_alive_closure(), &mark_and_push_closure, &follow_stack_closure, NULL, | 
|---|
| 2159 | &pt); | 
|---|
| 2160 | } | 
|---|
| 2161 |  | 
|---|
| 2162 | gc_tracer->report_gc_reference_stats(stats); | 
|---|
| 2163 | pt.print_all_references(); | 
|---|
| 2164 | } | 
|---|
| 2165 |  | 
|---|
| 2166 | // This is the point where the entire marking should have completed. | 
|---|
| 2167 | assert(cm->marking_stacks_empty(), "Marking should have completed"); | 
|---|
| 2168 |  | 
|---|
| 2169 | { | 
|---|
| 2170 | GCTraceTime(Debug, gc, phases) tm( "Weak Processing", &_gc_timer); | 
|---|
| 2171 | WeakProcessor::weak_oops_do(is_alive_closure(), &do_nothing_cl); | 
|---|
| 2172 | } | 
|---|
| 2173 |  | 
|---|
| 2174 | { | 
|---|
| 2175 | GCTraceTime(Debug, gc, phases) tm_m( "Class Unloading", &_gc_timer); | 
|---|
| 2176 |  | 
|---|
| 2177 | // Follow system dictionary roots and unload classes. | 
|---|
| 2178 | bool purged_class = SystemDictionary::do_unloading(&_gc_timer); | 
|---|
| 2179 |  | 
|---|
| 2180 | // Unload nmethods. | 
|---|
| 2181 | CodeCache::do_unloading(is_alive_closure(), purged_class); | 
|---|
| 2182 |  | 
|---|
| 2183 | // Prune dead klasses from subklass/sibling/implementor lists. | 
|---|
| 2184 | Klass::clean_weak_klass_links(purged_class); | 
|---|
| 2185 |  | 
|---|
| 2186 | // Clean JVMCI metadata handles. | 
|---|
| 2187 | JVMCI_ONLY(JVMCI::do_unloading(purged_class)); | 
|---|
| 2188 | } | 
|---|
| 2189 |  | 
|---|
| 2190 | _gc_tracer.report_object_count_after_gc(is_alive_closure()); | 
|---|
| 2191 | } | 
|---|
| 2192 |  | 
|---|
| 2193 | void PSParallelCompact::adjust_roots(ParCompactionManager* cm) { | 
|---|
| 2194 | // Adjust the pointers to reflect the new locations | 
|---|
| 2195 | GCTraceTime(Info, gc, phases) tm( "Adjust Roots", &_gc_timer); | 
|---|
| 2196 |  | 
|---|
| 2197 | // Need new claim bits when tracing through and adjusting pointers. | 
|---|
| 2198 | ClassLoaderDataGraph::clear_claimed_marks(); | 
|---|
| 2199 |  | 
|---|
| 2200 | PCAdjustPointerClosure oop_closure(cm); | 
|---|
| 2201 |  | 
|---|
| 2202 | // General strong roots. | 
|---|
| 2203 | Universe::oops_do(&oop_closure); | 
|---|
| 2204 | JNIHandles::oops_do(&oop_closure);   // Global (strong) JNI handles | 
|---|
| 2205 | Threads::oops_do(&oop_closure, NULL); | 
|---|
| 2206 | ObjectSynchronizer::oops_do(&oop_closure); | 
|---|
| 2207 | Management::oops_do(&oop_closure); | 
|---|
| 2208 | JvmtiExport::oops_do(&oop_closure); | 
|---|
| 2209 | SystemDictionary::oops_do(&oop_closure); | 
|---|
| 2210 | CLDToOopClosure cld_closure(&oop_closure, ClassLoaderData::_claim_strong); | 
|---|
| 2211 | ClassLoaderDataGraph::cld_do(&cld_closure); | 
|---|
| 2212 |  | 
|---|
| 2213 | // Now adjust pointers in remaining weak roots.  (All of which should | 
|---|
| 2214 | // have been cleared if they pointed to non-surviving objects.) | 
|---|
| 2215 | WeakProcessor::oops_do(&oop_closure); | 
|---|
| 2216 |  | 
|---|
| 2217 | CodeBlobToOopClosure adjust_from_blobs(&oop_closure, CodeBlobToOopClosure::FixRelocations); | 
|---|
| 2218 | CodeCache::blobs_do(&adjust_from_blobs); | 
|---|
| 2219 | AOT_ONLY(AOTLoader::oops_do(&oop_closure);) | 
|---|
| 2220 |  | 
|---|
| 2221 | JVMCI_ONLY(JVMCI::oops_do(&oop_closure);) | 
|---|
| 2222 |  | 
|---|
| 2223 | ref_processor()->weak_oops_do(&oop_closure); | 
|---|
| 2224 | // Roots were visited so references into the young gen in roots | 
|---|
| 2225 | // may have been scanned.  Process them also. | 
|---|
| 2226 | // Should the reference processor have a span that excludes | 
|---|
| 2227 | // young gen objects? | 
|---|
| 2228 | PSScavenge::reference_processor()->weak_oops_do(&oop_closure); | 
|---|
| 2229 | } | 
|---|
| 2230 |  | 
|---|
| 2231 | // Helper class to print 8 region numbers per line and then print the total at the end. | 
|---|
| 2232 | class FillableRegionLogger : public StackObj { | 
|---|
| 2233 | private: | 
|---|
| 2234 | Log(gc, compaction) log; | 
|---|
| 2235 | static const int LineLength = 8; | 
|---|
| 2236 | size_t _regions[LineLength]; | 
|---|
| 2237 | int _next_index; | 
|---|
| 2238 | bool _enabled; | 
|---|
| 2239 | size_t _total_regions; | 
|---|
| 2240 | public: | 
|---|
| 2241 | FillableRegionLogger() : _next_index(0), _enabled(log_develop_is_enabled(Trace, gc, compaction)), _total_regions(0) { } | 
|---|
| 2242 | ~FillableRegionLogger() { | 
|---|
| 2243 | log.trace(SIZE_FORMAT " initially fillable regions", _total_regions); | 
|---|
| 2244 | } | 
|---|
| 2245 |  | 
|---|
| 2246 | void print_line() { | 
|---|
| 2247 | if (!_enabled || _next_index == 0) { | 
|---|
| 2248 | return; | 
|---|
| 2249 | } | 
|---|
| 2250 | FormatBuffer<> line( "Fillable: "); | 
|---|
| 2251 | for (int i = 0; i < _next_index; i++) { | 
|---|
| 2252 | line.append( " "SIZE_FORMAT_W(7), _regions[i]); | 
|---|
| 2253 | } | 
|---|
| 2254 | log.trace( "%s", line.buffer()); | 
|---|
| 2255 | _next_index = 0; | 
|---|
| 2256 | } | 
|---|
| 2257 |  | 
|---|
| 2258 | void handle(size_t region) { | 
|---|
| 2259 | if (!_enabled) { | 
|---|
| 2260 | return; | 
|---|
| 2261 | } | 
|---|
| 2262 | _regions[_next_index++] = region; | 
|---|
| 2263 | if (_next_index == LineLength) { | 
|---|
| 2264 | print_line(); | 
|---|
| 2265 | } | 
|---|
| 2266 | _total_regions++; | 
|---|
| 2267 | } | 
|---|
| 2268 | }; | 
|---|
| 2269 |  | 
|---|
| 2270 | void PSParallelCompact::prepare_region_draining_tasks(GCTaskQueue* q, | 
|---|
| 2271 | uint parallel_gc_threads) | 
|---|
| 2272 | { | 
|---|
| 2273 | GCTraceTime(Trace, gc, phases) tm( "Drain Task Setup", &_gc_timer); | 
|---|
| 2274 |  | 
|---|
| 2275 | // Find the threads that are active | 
|---|
| 2276 | unsigned int which = 0; | 
|---|
| 2277 |  | 
|---|
| 2278 | // Find all regions that are available (can be filled immediately) and | 
|---|
| 2279 | // distribute them to the thread stacks.  The iteration is done in reverse | 
|---|
| 2280 | // order (high to low) so the regions will be removed in ascending order. | 
|---|
| 2281 |  | 
|---|
| 2282 | const ParallelCompactData& sd = PSParallelCompact::summary_data(); | 
|---|
| 2283 |  | 
|---|
| 2284 | which = 0; | 
|---|
| 2285 | // id + 1 is used to test termination so unsigned  can | 
|---|
| 2286 | // be used with an old_space_id == 0. | 
|---|
| 2287 | FillableRegionLogger region_logger; | 
|---|
| 2288 | for (unsigned int id = to_space_id; id + 1 > old_space_id; --id) { | 
|---|
| 2289 | SpaceInfo* const space_info = _space_info + id; | 
|---|
| 2290 | MutableSpace* const space = space_info->space(); | 
|---|
| 2291 | HeapWord* const new_top = space_info->new_top(); | 
|---|
| 2292 |  | 
|---|
| 2293 | const size_t beg_region = sd.addr_to_region_idx(space_info->dense_prefix()); | 
|---|
| 2294 | const size_t end_region = | 
|---|
| 2295 | sd.addr_to_region_idx(sd.region_align_up(new_top)); | 
|---|
| 2296 |  | 
|---|
| 2297 | for (size_t cur = end_region - 1; cur + 1 > beg_region; --cur) { | 
|---|
| 2298 | if (sd.region(cur)->claim_unsafe()) { | 
|---|
| 2299 | ParCompactionManager* cm = ParCompactionManager::manager_array(which); | 
|---|
| 2300 | cm->region_stack()->push(cur); | 
|---|
| 2301 | region_logger.handle(cur); | 
|---|
| 2302 | // Assign regions to tasks in round-robin fashion. | 
|---|
| 2303 | if (++which == parallel_gc_threads) { | 
|---|
| 2304 | which = 0; | 
|---|
| 2305 | } | 
|---|
| 2306 | } | 
|---|
| 2307 | } | 
|---|
| 2308 | region_logger.print_line(); | 
|---|
| 2309 | } | 
|---|
| 2310 | } | 
|---|
| 2311 |  | 
|---|
| 2312 | #define PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING 4 | 
|---|
| 2313 |  | 
|---|
| 2314 | void PSParallelCompact::enqueue_dense_prefix_tasks(GCTaskQueue* q, | 
|---|
| 2315 | uint parallel_gc_threads) { | 
|---|
| 2316 | GCTraceTime(Trace, gc, phases) tm( "Dense Prefix Task Setup", &_gc_timer); | 
|---|
| 2317 |  | 
|---|
| 2318 | ParallelCompactData& sd = PSParallelCompact::summary_data(); | 
|---|
| 2319 |  | 
|---|
| 2320 | // Iterate over all the spaces adding tasks for updating | 
|---|
| 2321 | // regions in the dense prefix.  Assume that 1 gc thread | 
|---|
| 2322 | // will work on opening the gaps and the remaining gc threads | 
|---|
| 2323 | // will work on the dense prefix. | 
|---|
| 2324 | unsigned int space_id; | 
|---|
| 2325 | for (space_id = old_space_id; space_id < last_space_id; ++ space_id) { | 
|---|
| 2326 | HeapWord* const dense_prefix_end = _space_info[space_id].dense_prefix(); | 
|---|
| 2327 | const MutableSpace* const space = _space_info[space_id].space(); | 
|---|
| 2328 |  | 
|---|
| 2329 | if (dense_prefix_end == space->bottom()) { | 
|---|
| 2330 | // There is no dense prefix for this space. | 
|---|
| 2331 | continue; | 
|---|
| 2332 | } | 
|---|
| 2333 |  | 
|---|
| 2334 | // The dense prefix is before this region. | 
|---|
| 2335 | size_t region_index_end_dense_prefix = | 
|---|
| 2336 | sd.addr_to_region_idx(dense_prefix_end); | 
|---|
| 2337 | RegionData* const dense_prefix_cp = | 
|---|
| 2338 | sd.region(region_index_end_dense_prefix); | 
|---|
| 2339 | assert(dense_prefix_end == space->end() || | 
|---|
| 2340 | dense_prefix_cp->available() || | 
|---|
| 2341 | dense_prefix_cp->claimed(), | 
|---|
| 2342 | "The region after the dense prefix should always be ready to fill"); | 
|---|
| 2343 |  | 
|---|
| 2344 | size_t region_index_start = sd.addr_to_region_idx(space->bottom()); | 
|---|
| 2345 |  | 
|---|
| 2346 | // Is there dense prefix work? | 
|---|
| 2347 | size_t total_dense_prefix_regions = | 
|---|
| 2348 | region_index_end_dense_prefix - region_index_start; | 
|---|
| 2349 | // How many regions of the dense prefix should be given to | 
|---|
| 2350 | // each thread? | 
|---|
| 2351 | if (total_dense_prefix_regions > 0) { | 
|---|
| 2352 | uint tasks_for_dense_prefix = 1; | 
|---|
| 2353 | if (total_dense_prefix_regions <= | 
|---|
| 2354 | (parallel_gc_threads * PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING)) { | 
|---|
| 2355 | // Don't over partition.  This assumes that | 
|---|
| 2356 | // PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING is a small integer value | 
|---|
| 2357 | // so there are not many regions to process. | 
|---|
| 2358 | tasks_for_dense_prefix = parallel_gc_threads; | 
|---|
| 2359 | } else { | 
|---|
| 2360 | // Over partition | 
|---|
| 2361 | tasks_for_dense_prefix = parallel_gc_threads * | 
|---|
| 2362 | PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING; | 
|---|
| 2363 | } | 
|---|
| 2364 | size_t regions_per_thread = total_dense_prefix_regions / | 
|---|
| 2365 | tasks_for_dense_prefix; | 
|---|
| 2366 | // Give each thread at least 1 region. | 
|---|
| 2367 | if (regions_per_thread == 0) { | 
|---|
| 2368 | regions_per_thread = 1; | 
|---|
| 2369 | } | 
|---|
| 2370 |  | 
|---|
| 2371 | for (uint k = 0; k < tasks_for_dense_prefix; k++) { | 
|---|
| 2372 | if (region_index_start >= region_index_end_dense_prefix) { | 
|---|
| 2373 | break; | 
|---|
| 2374 | } | 
|---|
| 2375 | // region_index_end is not processed | 
|---|
| 2376 | size_t region_index_end = MIN2(region_index_start + regions_per_thread, | 
|---|
| 2377 | region_index_end_dense_prefix); | 
|---|
| 2378 | q->enqueue(new UpdateDensePrefixTask(SpaceId(space_id), | 
|---|
| 2379 | region_index_start, | 
|---|
| 2380 | region_index_end)); | 
|---|
| 2381 | region_index_start = region_index_end; | 
|---|
| 2382 | } | 
|---|
| 2383 | } | 
|---|
| 2384 | // This gets any part of the dense prefix that did not | 
|---|
| 2385 | // fit evenly. | 
|---|
| 2386 | if (region_index_start < region_index_end_dense_prefix) { | 
|---|
| 2387 | q->enqueue(new UpdateDensePrefixTask(SpaceId(space_id), | 
|---|
| 2388 | region_index_start, | 
|---|
| 2389 | region_index_end_dense_prefix)); | 
|---|
| 2390 | } | 
|---|
| 2391 | } | 
|---|
| 2392 | } | 
|---|
| 2393 |  | 
|---|
| 2394 | void PSParallelCompact::enqueue_region_stealing_tasks( | 
|---|
| 2395 | GCTaskQueue* q, | 
|---|
| 2396 | ParallelTaskTerminator* terminator_ptr, | 
|---|
| 2397 | uint parallel_gc_threads) { | 
|---|
| 2398 | GCTraceTime(Trace, gc, phases) tm( "Steal Task Setup", &_gc_timer); | 
|---|
| 2399 |  | 
|---|
| 2400 | // Once a thread has drained it's stack, it should try to steal regions from | 
|---|
| 2401 | // other threads. | 
|---|
| 2402 | for (uint j = 0; j < parallel_gc_threads; j++) { | 
|---|
| 2403 | q->enqueue(new CompactionWithStealingTask(terminator_ptr)); | 
|---|
| 2404 | } | 
|---|
| 2405 | } | 
|---|
| 2406 |  | 
|---|
| 2407 | #ifdef ASSERT | 
|---|
| 2408 | // Write a histogram of the number of times the block table was filled for a | 
|---|
| 2409 | // region. | 
|---|
| 2410 | void PSParallelCompact::write_block_fill_histogram() | 
|---|
| 2411 | { | 
|---|
| 2412 | if (!log_develop_is_enabled(Trace, gc, compaction)) { | 
|---|
| 2413 | return; | 
|---|
| 2414 | } | 
|---|
| 2415 |  | 
|---|
| 2416 | Log(gc, compaction) log; | 
|---|
| 2417 | ResourceMark rm; | 
|---|
| 2418 | LogStream ls(log.trace()); | 
|---|
| 2419 | outputStream* out = &ls; | 
|---|
| 2420 |  | 
|---|
| 2421 | typedef ParallelCompactData::RegionData rd_t; | 
|---|
| 2422 | ParallelCompactData& sd = summary_data(); | 
|---|
| 2423 |  | 
|---|
| 2424 | for (unsigned int id = old_space_id; id < last_space_id; ++id) { | 
|---|
| 2425 | MutableSpace* const spc = _space_info[id].space(); | 
|---|
| 2426 | if (spc->bottom() != spc->top()) { | 
|---|
| 2427 | const rd_t* const beg = sd.addr_to_region_ptr(spc->bottom()); | 
|---|
| 2428 | HeapWord* const top_aligned_up = sd.region_align_up(spc->top()); | 
|---|
| 2429 | const rd_t* const end = sd.addr_to_region_ptr(top_aligned_up); | 
|---|
| 2430 |  | 
|---|
| 2431 | size_t histo[5] = { 0, 0, 0, 0, 0 }; | 
|---|
| 2432 | const size_t histo_len = sizeof(histo) / sizeof(size_t); | 
|---|
| 2433 | const size_t region_cnt = pointer_delta(end, beg, sizeof(rd_t)); | 
|---|
| 2434 |  | 
|---|
| 2435 | for (const rd_t* cur = beg; cur < end; ++cur) { | 
|---|
| 2436 | ++histo[MIN2(cur->blocks_filled_count(), histo_len - 1)]; | 
|---|
| 2437 | } | 
|---|
| 2438 | out->print( "Block fill histogram: %u %-4s"SIZE_FORMAT_W(5), id, space_names[id], region_cnt); | 
|---|
| 2439 | for (size_t i = 0; i < histo_len; ++i) { | 
|---|
| 2440 | out->print( " "SIZE_FORMAT_W(5) " %5.1f%%", | 
|---|
| 2441 | histo[i], 100.0 * histo[i] / region_cnt); | 
|---|
| 2442 | } | 
|---|
| 2443 | out->cr(); | 
|---|
| 2444 | } | 
|---|
| 2445 | } | 
|---|
| 2446 | } | 
|---|
| 2447 | #endif // #ifdef ASSERT | 
|---|
| 2448 |  | 
|---|
| 2449 | void PSParallelCompact::compact() { | 
|---|
| 2450 | GCTraceTime(Info, gc, phases) tm( "Compaction Phase", &_gc_timer); | 
|---|
| 2451 |  | 
|---|
| 2452 | ParallelScavengeHeap* heap = ParallelScavengeHeap::heap(); | 
|---|
| 2453 | PSOldGen* old_gen = heap->old_gen(); | 
|---|
| 2454 | old_gen->start_array()->reset(); | 
|---|
| 2455 | uint parallel_gc_threads = heap->gc_task_manager()->workers(); | 
|---|
| 2456 | uint active_gc_threads = heap->gc_task_manager()->active_workers(); | 
|---|
| 2457 | TaskQueueSetSuper* qset = ParCompactionManager::region_array(); | 
|---|
| 2458 | TaskTerminator terminator(active_gc_threads, qset); | 
|---|
| 2459 |  | 
|---|
| 2460 | GCTaskQueue* q = GCTaskQueue::create(); | 
|---|
| 2461 | prepare_region_draining_tasks(q, active_gc_threads); | 
|---|
| 2462 | enqueue_dense_prefix_tasks(q, active_gc_threads); | 
|---|
| 2463 | enqueue_region_stealing_tasks(q, terminator.terminator(), active_gc_threads); | 
|---|
| 2464 |  | 
|---|
| 2465 | { | 
|---|
| 2466 | GCTraceTime(Trace, gc, phases) tm( "Par Compact", &_gc_timer); | 
|---|
| 2467 |  | 
|---|
| 2468 | gc_task_manager()->execute_and_wait(q); | 
|---|
| 2469 |  | 
|---|
| 2470 | #ifdef  ASSERT | 
|---|
| 2471 | // Verify that all regions have been processed before the deferred updates. | 
|---|
| 2472 | for (unsigned int id = old_space_id; id < last_space_id; ++id) { | 
|---|
| 2473 | verify_complete(SpaceId(id)); | 
|---|
| 2474 | } | 
|---|
| 2475 | #endif | 
|---|
| 2476 | } | 
|---|
| 2477 |  | 
|---|
| 2478 | { | 
|---|
| 2479 | // Update the deferred objects, if any.  Any compaction manager can be used. | 
|---|
| 2480 | GCTraceTime(Trace, gc, phases) tm( "Deferred Updates", &_gc_timer); | 
|---|
| 2481 | ParCompactionManager* cm = ParCompactionManager::manager_array(0); | 
|---|
| 2482 | for (unsigned int id = old_space_id; id < last_space_id; ++id) { | 
|---|
| 2483 | update_deferred_objects(cm, SpaceId(id)); | 
|---|
| 2484 | } | 
|---|
| 2485 | } | 
|---|
| 2486 |  | 
|---|
| 2487 | DEBUG_ONLY(write_block_fill_histogram()); | 
|---|
| 2488 | } | 
|---|
| 2489 |  | 
|---|
| 2490 | #ifdef  ASSERT | 
|---|
| 2491 | void PSParallelCompact::verify_complete(SpaceId space_id) { | 
|---|
| 2492 | // All Regions between space bottom() to new_top() should be marked as filled | 
|---|
| 2493 | // and all Regions between new_top() and top() should be available (i.e., | 
|---|
| 2494 | // should have been emptied). | 
|---|
| 2495 | ParallelCompactData& sd = summary_data(); | 
|---|
| 2496 | SpaceInfo si = _space_info[space_id]; | 
|---|
| 2497 | HeapWord* new_top_addr = sd.region_align_up(si.new_top()); | 
|---|
| 2498 | HeapWord* old_top_addr = sd.region_align_up(si.space()->top()); | 
|---|
| 2499 | const size_t beg_region = sd.addr_to_region_idx(si.space()->bottom()); | 
|---|
| 2500 | const size_t new_top_region = sd.addr_to_region_idx(new_top_addr); | 
|---|
| 2501 | const size_t old_top_region = sd.addr_to_region_idx(old_top_addr); | 
|---|
| 2502 |  | 
|---|
| 2503 | bool issued_a_warning = false; | 
|---|
| 2504 |  | 
|---|
| 2505 | size_t cur_region; | 
|---|
| 2506 | for (cur_region = beg_region; cur_region < new_top_region; ++cur_region) { | 
|---|
| 2507 | const RegionData* const c = sd.region(cur_region); | 
|---|
| 2508 | if (!c->completed()) { | 
|---|
| 2509 | log_warning(gc)( "region "SIZE_FORMAT " not filled: destination_count=%u", | 
|---|
| 2510 | cur_region, c->destination_count()); | 
|---|
| 2511 | issued_a_warning = true; | 
|---|
| 2512 | } | 
|---|
| 2513 | } | 
|---|
| 2514 |  | 
|---|
| 2515 | for (cur_region = new_top_region; cur_region < old_top_region; ++cur_region) { | 
|---|
| 2516 | const RegionData* const c = sd.region(cur_region); | 
|---|
| 2517 | if (!c->available()) { | 
|---|
| 2518 | log_warning(gc)( "region "SIZE_FORMAT " not empty: destination_count=%u", | 
|---|
| 2519 | cur_region, c->destination_count()); | 
|---|
| 2520 | issued_a_warning = true; | 
|---|
| 2521 | } | 
|---|
| 2522 | } | 
|---|
| 2523 |  | 
|---|
| 2524 | if (issued_a_warning) { | 
|---|
| 2525 | print_region_ranges(); | 
|---|
| 2526 | } | 
|---|
| 2527 | } | 
|---|
| 2528 | #endif  // #ifdef ASSERT | 
|---|
| 2529 |  | 
|---|
| 2530 | inline void UpdateOnlyClosure::do_addr(HeapWord* addr) { | 
|---|
| 2531 | _start_array->allocate_block(addr); | 
|---|
| 2532 | compaction_manager()->update_contents(oop(addr)); | 
|---|
| 2533 | } | 
|---|
| 2534 |  | 
|---|
| 2535 | // Update interior oops in the ranges of regions [beg_region, end_region). | 
|---|
| 2536 | void | 
|---|
| 2537 | PSParallelCompact::update_and_deadwood_in_dense_prefix(ParCompactionManager* cm, | 
|---|
| 2538 | SpaceId space_id, | 
|---|
| 2539 | size_t beg_region, | 
|---|
| 2540 | size_t end_region) { | 
|---|
| 2541 | ParallelCompactData& sd = summary_data(); | 
|---|
| 2542 | ParMarkBitMap* const mbm = mark_bitmap(); | 
|---|
| 2543 |  | 
|---|
| 2544 | HeapWord* beg_addr = sd.region_to_addr(beg_region); | 
|---|
| 2545 | HeapWord* const end_addr = sd.region_to_addr(end_region); | 
|---|
| 2546 | assert(beg_region <= end_region, "bad region range"); | 
|---|
| 2547 | assert(end_addr <= dense_prefix(space_id), "not in the dense prefix"); | 
|---|
| 2548 |  | 
|---|
| 2549 | #ifdef  ASSERT | 
|---|
| 2550 | // Claim the regions to avoid triggering an assert when they are marked as | 
|---|
| 2551 | // filled. | 
|---|
| 2552 | for (size_t claim_region = beg_region; claim_region < end_region; ++claim_region) { | 
|---|
| 2553 | assert(sd.region(claim_region)->claim_unsafe(), "claim() failed"); | 
|---|
| 2554 | } | 
|---|
| 2555 | #endif  // #ifdef ASSERT | 
|---|
| 2556 |  | 
|---|
| 2557 | if (beg_addr != space(space_id)->bottom()) { | 
|---|
| 2558 | // Find the first live object or block of dead space that *starts* in this | 
|---|
| 2559 | // range of regions.  If a partial object crosses onto the region, skip it; | 
|---|
| 2560 | // it will be marked for 'deferred update' when the object head is | 
|---|
| 2561 | // processed.  If dead space crosses onto the region, it is also skipped; it | 
|---|
| 2562 | // will be filled when the prior region is processed.  If neither of those | 
|---|
| 2563 | // apply, the first word in the region is the start of a live object or dead | 
|---|
| 2564 | // space. | 
|---|
| 2565 | assert(beg_addr > space(space_id)->bottom(), "sanity"); | 
|---|
| 2566 | const RegionData* const cp = sd.region(beg_region); | 
|---|
| 2567 | if (cp->partial_obj_size() != 0) { | 
|---|
| 2568 | beg_addr = sd.partial_obj_end(beg_region); | 
|---|
| 2569 | } else if (dead_space_crosses_boundary(cp, mbm->addr_to_bit(beg_addr))) { | 
|---|
| 2570 | beg_addr = mbm->find_obj_beg(beg_addr, end_addr); | 
|---|
| 2571 | } | 
|---|
| 2572 | } | 
|---|
| 2573 |  | 
|---|
| 2574 | if (beg_addr < end_addr) { | 
|---|
| 2575 | // A live object or block of dead space starts in this range of Regions. | 
|---|
| 2576 | HeapWord* const dense_prefix_end = dense_prefix(space_id); | 
|---|
| 2577 |  | 
|---|
| 2578 | // Create closures and iterate. | 
|---|
| 2579 | UpdateOnlyClosure update_closure(mbm, cm, space_id); | 
|---|
| 2580 | FillClosure fill_closure(cm, space_id); | 
|---|
| 2581 | ParMarkBitMap::IterationStatus status; | 
|---|
| 2582 | status = mbm->iterate(&update_closure, &fill_closure, beg_addr, end_addr, | 
|---|
| 2583 | dense_prefix_end); | 
|---|
| 2584 | if (status == ParMarkBitMap::incomplete) { | 
|---|
| 2585 | update_closure.do_addr(update_closure.source()); | 
|---|
| 2586 | } | 
|---|
| 2587 | } | 
|---|
| 2588 |  | 
|---|
| 2589 | // Mark the regions as filled. | 
|---|
| 2590 | RegionData* const beg_cp = sd.region(beg_region); | 
|---|
| 2591 | RegionData* const end_cp = sd.region(end_region); | 
|---|
| 2592 | for (RegionData* cp = beg_cp; cp < end_cp; ++cp) { | 
|---|
| 2593 | cp->set_completed(); | 
|---|
| 2594 | } | 
|---|
| 2595 | } | 
|---|
| 2596 |  | 
|---|
| 2597 | // Return the SpaceId for the space containing addr.  If addr is not in the | 
|---|
| 2598 | // heap, last_space_id is returned.  In debug mode it expects the address to be | 
|---|
| 2599 | // in the heap and asserts such. | 
|---|
| 2600 | PSParallelCompact::SpaceId PSParallelCompact::space_id(HeapWord* addr) { | 
|---|
| 2601 | assert(ParallelScavengeHeap::heap()->is_in_reserved(addr), "addr not in the heap"); | 
|---|
| 2602 |  | 
|---|
| 2603 | for (unsigned int id = old_space_id; id < last_space_id; ++id) { | 
|---|
| 2604 | if (_space_info[id].space()->contains(addr)) { | 
|---|
| 2605 | return SpaceId(id); | 
|---|
| 2606 | } | 
|---|
| 2607 | } | 
|---|
| 2608 |  | 
|---|
| 2609 | assert(false, "no space contains the addr"); | 
|---|
| 2610 | return last_space_id; | 
|---|
| 2611 | } | 
|---|
| 2612 |  | 
|---|
| 2613 | void PSParallelCompact::update_deferred_objects(ParCompactionManager* cm, | 
|---|
| 2614 | SpaceId id) { | 
|---|
| 2615 | assert(id < last_space_id, "bad space id"); | 
|---|
| 2616 |  | 
|---|
| 2617 | ParallelCompactData& sd = summary_data(); | 
|---|
| 2618 | const SpaceInfo* const space_info = _space_info + id; | 
|---|
| 2619 | ObjectStartArray* const start_array = space_info->start_array(); | 
|---|
| 2620 |  | 
|---|
| 2621 | const MutableSpace* const space = space_info->space(); | 
|---|
| 2622 | assert(space_info->dense_prefix() >= space->bottom(), "dense_prefix not set"); | 
|---|
| 2623 | HeapWord* const beg_addr = space_info->dense_prefix(); | 
|---|
| 2624 | HeapWord* const end_addr = sd.region_align_up(space_info->new_top()); | 
|---|
| 2625 |  | 
|---|
| 2626 | const RegionData* const beg_region = sd.addr_to_region_ptr(beg_addr); | 
|---|
| 2627 | const RegionData* const end_region = sd.addr_to_region_ptr(end_addr); | 
|---|
| 2628 | const RegionData* cur_region; | 
|---|
| 2629 | for (cur_region = beg_region; cur_region < end_region; ++cur_region) { | 
|---|
| 2630 | HeapWord* const addr = cur_region->deferred_obj_addr(); | 
|---|
| 2631 | if (addr != NULL) { | 
|---|
| 2632 | if (start_array != NULL) { | 
|---|
| 2633 | start_array->allocate_block(addr); | 
|---|
| 2634 | } | 
|---|
| 2635 | cm->update_contents(oop(addr)); | 
|---|
| 2636 | assert(oopDesc::is_oop_or_null(oop(addr)), "Expected an oop or NULL at "PTR_FORMAT, p2i(oop(addr))); | 
|---|
| 2637 | } | 
|---|
| 2638 | } | 
|---|
| 2639 | } | 
|---|
| 2640 |  | 
|---|
| 2641 | // Skip over count live words starting from beg, and return the address of the | 
|---|
| 2642 | // next live word.  Unless marked, the word corresponding to beg is assumed to | 
|---|
| 2643 | // be dead.  Callers must either ensure beg does not correspond to the middle of | 
|---|
| 2644 | // an object, or account for those live words in some other way.  Callers must | 
|---|
| 2645 | // also ensure that there are enough live words in the range [beg, end) to skip. | 
|---|
| 2646 | HeapWord* | 
|---|
| 2647 | PSParallelCompact::skip_live_words(HeapWord* beg, HeapWord* end, size_t count) | 
|---|
| 2648 | { | 
|---|
| 2649 | assert(count > 0, "sanity"); | 
|---|
| 2650 |  | 
|---|
| 2651 | ParMarkBitMap* m = mark_bitmap(); | 
|---|
| 2652 | idx_t bits_to_skip = m->words_to_bits(count); | 
|---|
| 2653 | idx_t cur_beg = m->addr_to_bit(beg); | 
|---|
| 2654 | const idx_t search_end = BitMap::word_align_up(m->addr_to_bit(end)); | 
|---|
| 2655 |  | 
|---|
| 2656 | do { | 
|---|
| 2657 | cur_beg = m->find_obj_beg(cur_beg, search_end); | 
|---|
| 2658 | idx_t cur_end = m->find_obj_end(cur_beg, search_end); | 
|---|
| 2659 | const size_t obj_bits = cur_end - cur_beg + 1; | 
|---|
| 2660 | if (obj_bits > bits_to_skip) { | 
|---|
| 2661 | return m->bit_to_addr(cur_beg + bits_to_skip); | 
|---|
| 2662 | } | 
|---|
| 2663 | bits_to_skip -= obj_bits; | 
|---|
| 2664 | cur_beg = cur_end + 1; | 
|---|
| 2665 | } while (bits_to_skip > 0); | 
|---|
| 2666 |  | 
|---|
| 2667 | // Skipping the desired number of words landed just past the end of an object. | 
|---|
| 2668 | // Find the start of the next object. | 
|---|
| 2669 | cur_beg = m->find_obj_beg(cur_beg, search_end); | 
|---|
| 2670 | assert(cur_beg < m->addr_to_bit(end), "not enough live words to skip"); | 
|---|
| 2671 | return m->bit_to_addr(cur_beg); | 
|---|
| 2672 | } | 
|---|
| 2673 |  | 
|---|
| 2674 | HeapWord* PSParallelCompact::first_src_addr(HeapWord* const dest_addr, | 
|---|
| 2675 | SpaceId src_space_id, | 
|---|
| 2676 | size_t src_region_idx) | 
|---|
| 2677 | { | 
|---|
| 2678 | assert(summary_data().is_region_aligned(dest_addr), "not aligned"); | 
|---|
| 2679 |  | 
|---|
| 2680 | const SplitInfo& split_info = _space_info[src_space_id].split_info(); | 
|---|
| 2681 | if (split_info.dest_region_addr() == dest_addr) { | 
|---|
| 2682 | // The partial object ending at the split point contains the first word to | 
|---|
| 2683 | // be copied to dest_addr. | 
|---|
| 2684 | return split_info.first_src_addr(); | 
|---|
| 2685 | } | 
|---|
| 2686 |  | 
|---|
| 2687 | const ParallelCompactData& sd = summary_data(); | 
|---|
| 2688 | ParMarkBitMap* const bitmap = mark_bitmap(); | 
|---|
| 2689 | const size_t RegionSize = ParallelCompactData::RegionSize; | 
|---|
| 2690 |  | 
|---|
| 2691 | assert(sd.is_region_aligned(dest_addr), "not aligned"); | 
|---|
| 2692 | const RegionData* const src_region_ptr = sd.region(src_region_idx); | 
|---|
| 2693 | const size_t partial_obj_size = src_region_ptr->partial_obj_size(); | 
|---|
| 2694 | HeapWord* const src_region_destination = src_region_ptr->destination(); | 
|---|
| 2695 |  | 
|---|
| 2696 | assert(dest_addr >= src_region_destination, "wrong src region"); | 
|---|
| 2697 | assert(src_region_ptr->data_size() > 0, "src region cannot be empty"); | 
|---|
| 2698 |  | 
|---|
| 2699 | HeapWord* const src_region_beg = sd.region_to_addr(src_region_idx); | 
|---|
| 2700 | HeapWord* const src_region_end = src_region_beg + RegionSize; | 
|---|
| 2701 |  | 
|---|
| 2702 | HeapWord* addr = src_region_beg; | 
|---|
| 2703 | if (dest_addr == src_region_destination) { | 
|---|
| 2704 | // Return the first live word in the source region. | 
|---|
| 2705 | if (partial_obj_size == 0) { | 
|---|
| 2706 | addr = bitmap->find_obj_beg(addr, src_region_end); | 
|---|
| 2707 | assert(addr < src_region_end, "no objects start in src region"); | 
|---|
| 2708 | } | 
|---|
| 2709 | return addr; | 
|---|
| 2710 | } | 
|---|
| 2711 |  | 
|---|
| 2712 | // Must skip some live data. | 
|---|
| 2713 | size_t words_to_skip = dest_addr - src_region_destination; | 
|---|
| 2714 | assert(src_region_ptr->data_size() > words_to_skip, "wrong src region"); | 
|---|
| 2715 |  | 
|---|
| 2716 | if (partial_obj_size >= words_to_skip) { | 
|---|
| 2717 | // All the live words to skip are part of the partial object. | 
|---|
| 2718 | addr += words_to_skip; | 
|---|
| 2719 | if (partial_obj_size == words_to_skip) { | 
|---|
| 2720 | // Find the first live word past the partial object. | 
|---|
| 2721 | addr = bitmap->find_obj_beg(addr, src_region_end); | 
|---|
| 2722 | assert(addr < src_region_end, "wrong src region"); | 
|---|
| 2723 | } | 
|---|
| 2724 | return addr; | 
|---|
| 2725 | } | 
|---|
| 2726 |  | 
|---|
| 2727 | // Skip over the partial object (if any). | 
|---|
| 2728 | if (partial_obj_size != 0) { | 
|---|
| 2729 | words_to_skip -= partial_obj_size; | 
|---|
| 2730 | addr += partial_obj_size; | 
|---|
| 2731 | } | 
|---|
| 2732 |  | 
|---|
| 2733 | // Skip over live words due to objects that start in the region. | 
|---|
| 2734 | addr = skip_live_words(addr, src_region_end, words_to_skip); | 
|---|
| 2735 | assert(addr < src_region_end, "wrong src region"); | 
|---|
| 2736 | return addr; | 
|---|
| 2737 | } | 
|---|
| 2738 |  | 
|---|
| 2739 | void PSParallelCompact::decrement_destination_counts(ParCompactionManager* cm, | 
|---|
| 2740 | SpaceId src_space_id, | 
|---|
| 2741 | size_t beg_region, | 
|---|
| 2742 | HeapWord* end_addr) | 
|---|
| 2743 | { | 
|---|
| 2744 | ParallelCompactData& sd = summary_data(); | 
|---|
| 2745 |  | 
|---|
| 2746 | #ifdef ASSERT | 
|---|
| 2747 | MutableSpace* const src_space = _space_info[src_space_id].space(); | 
|---|
| 2748 | HeapWord* const beg_addr = sd.region_to_addr(beg_region); | 
|---|
| 2749 | assert(src_space->contains(beg_addr) || beg_addr == src_space->end(), | 
|---|
| 2750 | "src_space_id does not match beg_addr"); | 
|---|
| 2751 | assert(src_space->contains(end_addr) || end_addr == src_space->end(), | 
|---|
| 2752 | "src_space_id does not match end_addr"); | 
|---|
| 2753 | #endif // #ifdef ASSERT | 
|---|
| 2754 |  | 
|---|
| 2755 | RegionData* const beg = sd.region(beg_region); | 
|---|
| 2756 | RegionData* const end = sd.addr_to_region_ptr(sd.region_align_up(end_addr)); | 
|---|
| 2757 |  | 
|---|
| 2758 | // Regions up to new_top() are enqueued if they become available. | 
|---|
| 2759 | HeapWord* const new_top = _space_info[src_space_id].new_top(); | 
|---|
| 2760 | RegionData* const enqueue_end = | 
|---|
| 2761 | sd.addr_to_region_ptr(sd.region_align_up(new_top)); | 
|---|
| 2762 |  | 
|---|
| 2763 | for (RegionData* cur = beg; cur < end; ++cur) { | 
|---|
| 2764 | assert(cur->data_size() > 0, "region must have live data"); | 
|---|
| 2765 | cur->decrement_destination_count(); | 
|---|
| 2766 | if (cur < enqueue_end && cur->available() && cur->claim()) { | 
|---|
| 2767 | cm->push_region(sd.region(cur)); | 
|---|
| 2768 | } | 
|---|
| 2769 | } | 
|---|
| 2770 | } | 
|---|
| 2771 |  | 
|---|
| 2772 | size_t PSParallelCompact::next_src_region(MoveAndUpdateClosure& closure, | 
|---|
| 2773 | SpaceId& src_space_id, | 
|---|
| 2774 | HeapWord*& src_space_top, | 
|---|
| 2775 | HeapWord* end_addr) | 
|---|
| 2776 | { | 
|---|
| 2777 | typedef ParallelCompactData::RegionData RegionData; | 
|---|
| 2778 |  | 
|---|
| 2779 | ParallelCompactData& sd = PSParallelCompact::summary_data(); | 
|---|
| 2780 | const size_t region_size = ParallelCompactData::RegionSize; | 
|---|
| 2781 |  | 
|---|
| 2782 | size_t src_region_idx = 0; | 
|---|
| 2783 |  | 
|---|
| 2784 | // Skip empty regions (if any) up to the top of the space. | 
|---|
| 2785 | HeapWord* const src_aligned_up = sd.region_align_up(end_addr); | 
|---|
| 2786 | RegionData* src_region_ptr = sd.addr_to_region_ptr(src_aligned_up); | 
|---|
| 2787 | HeapWord* const top_aligned_up = sd.region_align_up(src_space_top); | 
|---|
| 2788 | const RegionData* const top_region_ptr = | 
|---|
| 2789 | sd.addr_to_region_ptr(top_aligned_up); | 
|---|
| 2790 | while (src_region_ptr < top_region_ptr && src_region_ptr->data_size() == 0) { | 
|---|
| 2791 | ++src_region_ptr; | 
|---|
| 2792 | } | 
|---|
| 2793 |  | 
|---|
| 2794 | if (src_region_ptr < top_region_ptr) { | 
|---|
| 2795 | // The next source region is in the current space.  Update src_region_idx | 
|---|
| 2796 | // and the source address to match src_region_ptr. | 
|---|
| 2797 | src_region_idx = sd.region(src_region_ptr); | 
|---|
| 2798 | HeapWord* const src_region_addr = sd.region_to_addr(src_region_idx); | 
|---|
| 2799 | if (src_region_addr > closure.source()) { | 
|---|
| 2800 | closure.set_source(src_region_addr); | 
|---|
| 2801 | } | 
|---|
| 2802 | return src_region_idx; | 
|---|
| 2803 | } | 
|---|
| 2804 |  | 
|---|
| 2805 | // Switch to a new source space and find the first non-empty region. | 
|---|
| 2806 | unsigned int space_id = src_space_id + 1; | 
|---|
| 2807 | assert(space_id < last_space_id, "not enough spaces"); | 
|---|
| 2808 |  | 
|---|
| 2809 | HeapWord* const destination = closure.destination(); | 
|---|
| 2810 |  | 
|---|
| 2811 | do { | 
|---|
| 2812 | MutableSpace* space = _space_info[space_id].space(); | 
|---|
| 2813 | HeapWord* const bottom = space->bottom(); | 
|---|
| 2814 | const RegionData* const bottom_cp = sd.addr_to_region_ptr(bottom); | 
|---|
| 2815 |  | 
|---|
| 2816 | // Iterate over the spaces that do not compact into themselves. | 
|---|
| 2817 | if (bottom_cp->destination() != bottom) { | 
|---|
| 2818 | HeapWord* const top_aligned_up = sd.region_align_up(space->top()); | 
|---|
| 2819 | const RegionData* const top_cp = sd.addr_to_region_ptr(top_aligned_up); | 
|---|
| 2820 |  | 
|---|
| 2821 | for (const RegionData* src_cp = bottom_cp; src_cp < top_cp; ++src_cp) { | 
|---|
| 2822 | if (src_cp->live_obj_size() > 0) { | 
|---|
| 2823 | // Found it. | 
|---|
| 2824 | assert(src_cp->destination() == destination, | 
|---|
| 2825 | "first live obj in the space must match the destination"); | 
|---|
| 2826 | assert(src_cp->partial_obj_size() == 0, | 
|---|
| 2827 | "a space cannot begin with a partial obj"); | 
|---|
| 2828 |  | 
|---|
| 2829 | src_space_id = SpaceId(space_id); | 
|---|
| 2830 | src_space_top = space->top(); | 
|---|
| 2831 | const size_t src_region_idx = sd.region(src_cp); | 
|---|
| 2832 | closure.set_source(sd.region_to_addr(src_region_idx)); | 
|---|
| 2833 | return src_region_idx; | 
|---|
| 2834 | } else { | 
|---|
| 2835 | assert(src_cp->data_size() == 0, "sanity"); | 
|---|
| 2836 | } | 
|---|
| 2837 | } | 
|---|
| 2838 | } | 
|---|
| 2839 | } while (++space_id < last_space_id); | 
|---|
| 2840 |  | 
|---|
| 2841 | assert(false, "no source region was found"); | 
|---|
| 2842 | return 0; | 
|---|
| 2843 | } | 
|---|
| 2844 |  | 
|---|
| 2845 | void PSParallelCompact::fill_region(ParCompactionManager* cm, size_t region_idx) | 
|---|
| 2846 | { | 
|---|
| 2847 | typedef ParMarkBitMap::IterationStatus IterationStatus; | 
|---|
| 2848 | const size_t RegionSize = ParallelCompactData::RegionSize; | 
|---|
| 2849 | ParMarkBitMap* const bitmap = mark_bitmap(); | 
|---|
| 2850 | ParallelCompactData& sd = summary_data(); | 
|---|
| 2851 | RegionData* const region_ptr = sd.region(region_idx); | 
|---|
| 2852 |  | 
|---|
| 2853 | // Get the items needed to construct the closure. | 
|---|
| 2854 | HeapWord* dest_addr = sd.region_to_addr(region_idx); | 
|---|
| 2855 | SpaceId dest_space_id = space_id(dest_addr); | 
|---|
| 2856 | ObjectStartArray* start_array = _space_info[dest_space_id].start_array(); | 
|---|
| 2857 | HeapWord* new_top = _space_info[dest_space_id].new_top(); | 
|---|
| 2858 | assert(dest_addr < new_top, "sanity"); | 
|---|
| 2859 | const size_t words = MIN2(pointer_delta(new_top, dest_addr), RegionSize); | 
|---|
| 2860 |  | 
|---|
| 2861 | // Get the source region and related info. | 
|---|
| 2862 | size_t src_region_idx = region_ptr->source_region(); | 
|---|
| 2863 | SpaceId src_space_id = space_id(sd.region_to_addr(src_region_idx)); | 
|---|
| 2864 | HeapWord* src_space_top = _space_info[src_space_id].space()->top(); | 
|---|
| 2865 |  | 
|---|
| 2866 | MoveAndUpdateClosure closure(bitmap, cm, start_array, dest_addr, words); | 
|---|
| 2867 | closure.set_source(first_src_addr(dest_addr, src_space_id, src_region_idx)); | 
|---|
| 2868 |  | 
|---|
| 2869 | // Adjust src_region_idx to prepare for decrementing destination counts (the | 
|---|
| 2870 | // destination count is not decremented when a region is copied to itself). | 
|---|
| 2871 | if (src_region_idx == region_idx) { | 
|---|
| 2872 | src_region_idx += 1; | 
|---|
| 2873 | } | 
|---|
| 2874 |  | 
|---|
| 2875 | if (bitmap->is_unmarked(closure.source())) { | 
|---|
| 2876 | // The first source word is in the middle of an object; copy the remainder | 
|---|
| 2877 | // of the object or as much as will fit.  The fact that pointer updates were | 
|---|
| 2878 | // deferred will be noted when the object header is processed. | 
|---|
| 2879 | HeapWord* const old_src_addr = closure.source(); | 
|---|
| 2880 | closure.copy_partial_obj(); | 
|---|
| 2881 | if (closure.is_full()) { | 
|---|
| 2882 | decrement_destination_counts(cm, src_space_id, src_region_idx, | 
|---|
| 2883 | closure.source()); | 
|---|
| 2884 | region_ptr->set_deferred_obj_addr(NULL); | 
|---|
| 2885 | region_ptr->set_completed(); | 
|---|
| 2886 | return; | 
|---|
| 2887 | } | 
|---|
| 2888 |  | 
|---|
| 2889 | HeapWord* const end_addr = sd.region_align_down(closure.source()); | 
|---|
| 2890 | if (sd.region_align_down(old_src_addr) != end_addr) { | 
|---|
| 2891 | // The partial object was copied from more than one source region. | 
|---|
| 2892 | decrement_destination_counts(cm, src_space_id, src_region_idx, end_addr); | 
|---|
| 2893 |  | 
|---|
| 2894 | // Move to the next source region, possibly switching spaces as well.  All | 
|---|
| 2895 | // args except end_addr may be modified. | 
|---|
| 2896 | src_region_idx = next_src_region(closure, src_space_id, src_space_top, | 
|---|
| 2897 | end_addr); | 
|---|
| 2898 | } | 
|---|
| 2899 | } | 
|---|
| 2900 |  | 
|---|
| 2901 | do { | 
|---|
| 2902 | HeapWord* const cur_addr = closure.source(); | 
|---|
| 2903 | HeapWord* const end_addr = MIN2(sd.region_align_up(cur_addr + 1), | 
|---|
| 2904 | src_space_top); | 
|---|
| 2905 | IterationStatus status = bitmap->iterate(&closure, cur_addr, end_addr); | 
|---|
| 2906 |  | 
|---|
| 2907 | if (status == ParMarkBitMap::incomplete) { | 
|---|
| 2908 | // The last obj that starts in the source region does not end in the | 
|---|
| 2909 | // region. | 
|---|
| 2910 | assert(closure.source() < end_addr, "sanity"); | 
|---|
| 2911 | HeapWord* const obj_beg = closure.source(); | 
|---|
| 2912 | HeapWord* const range_end = MIN2(obj_beg + closure.words_remaining(), | 
|---|
| 2913 | src_space_top); | 
|---|
| 2914 | HeapWord* const obj_end = bitmap->find_obj_end(obj_beg, range_end); | 
|---|
| 2915 | if (obj_end < range_end) { | 
|---|
| 2916 | // The end was found; the entire object will fit. | 
|---|
| 2917 | status = closure.do_addr(obj_beg, bitmap->obj_size(obj_beg, obj_end)); | 
|---|
| 2918 | assert(status != ParMarkBitMap::would_overflow, "sanity"); | 
|---|
| 2919 | } else { | 
|---|
| 2920 | // The end was not found; the object will not fit. | 
|---|
| 2921 | assert(range_end < src_space_top, "obj cannot cross space boundary"); | 
|---|
| 2922 | status = ParMarkBitMap::would_overflow; | 
|---|
| 2923 | } | 
|---|
| 2924 | } | 
|---|
| 2925 |  | 
|---|
| 2926 | if (status == ParMarkBitMap::would_overflow) { | 
|---|
| 2927 | // The last object did not fit.  Note that interior oop updates were | 
|---|
| 2928 | // deferred, then copy enough of the object to fill the region. | 
|---|
| 2929 | region_ptr->set_deferred_obj_addr(closure.destination()); | 
|---|
| 2930 | status = closure.copy_until_full(); // copies from closure.source() | 
|---|
| 2931 |  | 
|---|
| 2932 | decrement_destination_counts(cm, src_space_id, src_region_idx, | 
|---|
| 2933 | closure.source()); | 
|---|
| 2934 | region_ptr->set_completed(); | 
|---|
| 2935 | return; | 
|---|
| 2936 | } | 
|---|
| 2937 |  | 
|---|
| 2938 | if (status == ParMarkBitMap::full) { | 
|---|
| 2939 | decrement_destination_counts(cm, src_space_id, src_region_idx, | 
|---|
| 2940 | closure.source()); | 
|---|
| 2941 | region_ptr->set_deferred_obj_addr(NULL); | 
|---|
| 2942 | region_ptr->set_completed(); | 
|---|
| 2943 | return; | 
|---|
| 2944 | } | 
|---|
| 2945 |  | 
|---|
| 2946 | decrement_destination_counts(cm, src_space_id, src_region_idx, end_addr); | 
|---|
| 2947 |  | 
|---|
| 2948 | // Move to the next source region, possibly switching spaces as well.  All | 
|---|
| 2949 | // args except end_addr may be modified. | 
|---|
| 2950 | src_region_idx = next_src_region(closure, src_space_id, src_space_top, | 
|---|
| 2951 | end_addr); | 
|---|
| 2952 | } while (true); | 
|---|
| 2953 | } | 
|---|
| 2954 |  | 
|---|
| 2955 | void PSParallelCompact::fill_blocks(size_t region_idx) | 
|---|
| 2956 | { | 
|---|
| 2957 | // Fill in the block table elements for the specified region.  Each block | 
|---|
| 2958 | // table element holds the number of live words in the region that are to the | 
|---|
| 2959 | // left of the first object that starts in the block.  Thus only blocks in | 
|---|
| 2960 | // which an object starts need to be filled. | 
|---|
| 2961 | // | 
|---|
| 2962 | // The algorithm scans the section of the bitmap that corresponds to the | 
|---|
| 2963 | // region, keeping a running total of the live words.  When an object start is | 
|---|
| 2964 | // found, if it's the first to start in the block that contains it, the | 
|---|
| 2965 | // current total is written to the block table element. | 
|---|
| 2966 | const size_t Log2BlockSize = ParallelCompactData::Log2BlockSize; | 
|---|
| 2967 | const size_t Log2RegionSize = ParallelCompactData::Log2RegionSize; | 
|---|
| 2968 | const size_t RegionSize = ParallelCompactData::RegionSize; | 
|---|
| 2969 |  | 
|---|
| 2970 | ParallelCompactData& sd = summary_data(); | 
|---|
| 2971 | const size_t partial_obj_size = sd.region(region_idx)->partial_obj_size(); | 
|---|
| 2972 | if (partial_obj_size >= RegionSize) { | 
|---|
| 2973 | return; // No objects start in this region. | 
|---|
| 2974 | } | 
|---|
| 2975 |  | 
|---|
| 2976 | // Ensure the first loop iteration decides that the block has changed. | 
|---|
| 2977 | size_t cur_block = sd.block_count(); | 
|---|
| 2978 |  | 
|---|
| 2979 | const ParMarkBitMap* const bitmap = mark_bitmap(); | 
|---|
| 2980 |  | 
|---|
| 2981 | const size_t Log2BitsPerBlock = Log2BlockSize - LogMinObjAlignment; | 
|---|
| 2982 | assert((size_t)1 << Log2BitsPerBlock == | 
|---|
| 2983 | bitmap->words_to_bits(ParallelCompactData::BlockSize), "sanity"); | 
|---|
| 2984 |  | 
|---|
| 2985 | size_t beg_bit = bitmap->words_to_bits(region_idx << Log2RegionSize); | 
|---|
| 2986 | const size_t range_end = beg_bit + bitmap->words_to_bits(RegionSize); | 
|---|
| 2987 | size_t live_bits = bitmap->words_to_bits(partial_obj_size); | 
|---|
| 2988 | beg_bit = bitmap->find_obj_beg(beg_bit + live_bits, range_end); | 
|---|
| 2989 | while (beg_bit < range_end) { | 
|---|
| 2990 | const size_t new_block = beg_bit >> Log2BitsPerBlock; | 
|---|
| 2991 | if (new_block != cur_block) { | 
|---|
| 2992 | cur_block = new_block; | 
|---|
| 2993 | sd.block(cur_block)->set_offset(bitmap->bits_to_words(live_bits)); | 
|---|
| 2994 | } | 
|---|
| 2995 |  | 
|---|
| 2996 | const size_t end_bit = bitmap->find_obj_end(beg_bit, range_end); | 
|---|
| 2997 | if (end_bit < range_end - 1) { | 
|---|
| 2998 | live_bits += end_bit - beg_bit + 1; | 
|---|
| 2999 | beg_bit = bitmap->find_obj_beg(end_bit + 1, range_end); | 
|---|
| 3000 | } else { | 
|---|
| 3001 | return; | 
|---|
| 3002 | } | 
|---|
| 3003 | } | 
|---|
| 3004 | } | 
|---|
| 3005 |  | 
|---|
| 3006 | void | 
|---|
| 3007 | PSParallelCompact::move_and_update(ParCompactionManager* cm, SpaceId space_id) { | 
|---|
| 3008 | const MutableSpace* sp = space(space_id); | 
|---|
| 3009 | if (sp->is_empty()) { | 
|---|
| 3010 | return; | 
|---|
| 3011 | } | 
|---|
| 3012 |  | 
|---|
| 3013 | ParallelCompactData& sd = PSParallelCompact::summary_data(); | 
|---|
| 3014 | ParMarkBitMap* const bitmap = mark_bitmap(); | 
|---|
| 3015 | HeapWord* const dp_addr = dense_prefix(space_id); | 
|---|
| 3016 | HeapWord* beg_addr = sp->bottom(); | 
|---|
| 3017 | HeapWord* end_addr = sp->top(); | 
|---|
| 3018 |  | 
|---|
| 3019 | assert(beg_addr <= dp_addr && dp_addr <= end_addr, "bad dense prefix"); | 
|---|
| 3020 |  | 
|---|
| 3021 | const size_t beg_region = sd.addr_to_region_idx(beg_addr); | 
|---|
| 3022 | const size_t dp_region = sd.addr_to_region_idx(dp_addr); | 
|---|
| 3023 | if (beg_region < dp_region) { | 
|---|
| 3024 | update_and_deadwood_in_dense_prefix(cm, space_id, beg_region, dp_region); | 
|---|
| 3025 | } | 
|---|
| 3026 |  | 
|---|
| 3027 | // The destination of the first live object that starts in the region is one | 
|---|
| 3028 | // past the end of the partial object entering the region (if any). | 
|---|
| 3029 | HeapWord* const dest_addr = sd.partial_obj_end(dp_region); | 
|---|
| 3030 | HeapWord* const new_top = _space_info[space_id].new_top(); | 
|---|
| 3031 | assert(new_top >= dest_addr, "bad new_top value"); | 
|---|
| 3032 | const size_t words = pointer_delta(new_top, dest_addr); | 
|---|
| 3033 |  | 
|---|
| 3034 | if (words > 0) { | 
|---|
| 3035 | ObjectStartArray* start_array = _space_info[space_id].start_array(); | 
|---|
| 3036 | MoveAndUpdateClosure closure(bitmap, cm, start_array, dest_addr, words); | 
|---|
| 3037 |  | 
|---|
| 3038 | ParMarkBitMap::IterationStatus status; | 
|---|
| 3039 | status = bitmap->iterate(&closure, dest_addr, end_addr); | 
|---|
| 3040 | assert(status == ParMarkBitMap::full, "iteration not complete"); | 
|---|
| 3041 | assert(bitmap->find_obj_beg(closure.source(), end_addr) == end_addr, | 
|---|
| 3042 | "live objects skipped because closure is full"); | 
|---|
| 3043 | } | 
|---|
| 3044 | } | 
|---|
| 3045 |  | 
|---|
| 3046 | jlong PSParallelCompact::millis_since_last_gc() { | 
|---|
| 3047 | // We need a monotonically non-decreasing time in ms but | 
|---|
| 3048 | // os::javaTimeMillis() does not guarantee monotonicity. | 
|---|
| 3049 | jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC; | 
|---|
| 3050 | jlong ret_val = now - _time_of_last_gc; | 
|---|
| 3051 | // XXX See note in genCollectedHeap::millis_since_last_gc(). | 
|---|
| 3052 | if (ret_val < 0) { | 
|---|
| 3053 | NOT_PRODUCT(log_warning(gc)( "time warp: "JLONG_FORMAT, ret_val);) | 
|---|
| 3054 | return 0; | 
|---|
| 3055 | } | 
|---|
| 3056 | return ret_val; | 
|---|
| 3057 | } | 
|---|
| 3058 |  | 
|---|
| 3059 | void PSParallelCompact::reset_millis_since_last_gc() { | 
|---|
| 3060 | // We need a monotonically non-decreasing time in ms but | 
|---|
| 3061 | // os::javaTimeMillis() does not guarantee monotonicity. | 
|---|
| 3062 | _time_of_last_gc = os::javaTimeNanos() / NANOSECS_PER_MILLISEC; | 
|---|
| 3063 | } | 
|---|
| 3064 |  | 
|---|
| 3065 | ParMarkBitMap::IterationStatus MoveAndUpdateClosure::copy_until_full() | 
|---|
| 3066 | { | 
|---|
| 3067 | if (source() != destination()) { | 
|---|
| 3068 | DEBUG_ONLY(PSParallelCompact::check_new_location(source(), destination());) | 
|---|
| 3069 | Copy::aligned_conjoint_words(source(), destination(), words_remaining()); | 
|---|
| 3070 | } | 
|---|
| 3071 | update_state(words_remaining()); | 
|---|
| 3072 | assert(is_full(), "sanity"); | 
|---|
| 3073 | return ParMarkBitMap::full; | 
|---|
| 3074 | } | 
|---|
| 3075 |  | 
|---|
| 3076 | void MoveAndUpdateClosure::copy_partial_obj() | 
|---|
| 3077 | { | 
|---|
| 3078 | size_t words = words_remaining(); | 
|---|
| 3079 |  | 
|---|
| 3080 | HeapWord* const range_end = MIN2(source() + words, bitmap()->region_end()); | 
|---|
| 3081 | HeapWord* const end_addr = bitmap()->find_obj_end(source(), range_end); | 
|---|
| 3082 | if (end_addr < range_end) { | 
|---|
| 3083 | words = bitmap()->obj_size(source(), end_addr); | 
|---|
| 3084 | } | 
|---|
| 3085 |  | 
|---|
| 3086 | // This test is necessary; if omitted, the pointer updates to a partial object | 
|---|
| 3087 | // that crosses the dense prefix boundary could be overwritten. | 
|---|
| 3088 | if (source() != destination()) { | 
|---|
| 3089 | DEBUG_ONLY(PSParallelCompact::check_new_location(source(), destination());) | 
|---|
| 3090 | Copy::aligned_conjoint_words(source(), destination(), words); | 
|---|
| 3091 | } | 
|---|
| 3092 | update_state(words); | 
|---|
| 3093 | } | 
|---|
| 3094 |  | 
|---|
| 3095 | ParMarkBitMapClosure::IterationStatus | 
|---|
| 3096 | MoveAndUpdateClosure::do_addr(HeapWord* addr, size_t words) { | 
|---|
| 3097 | assert(destination() != NULL, "sanity"); | 
|---|
| 3098 | assert(bitmap()->obj_size(addr) == words, "bad size"); | 
|---|
| 3099 |  | 
|---|
| 3100 | _source = addr; | 
|---|
| 3101 | assert(PSParallelCompact::summary_data().calc_new_pointer(source(), compaction_manager()) == | 
|---|
| 3102 | destination(), "wrong destination"); | 
|---|
| 3103 |  | 
|---|
| 3104 | if (words > words_remaining()) { | 
|---|
| 3105 | return ParMarkBitMap::would_overflow; | 
|---|
| 3106 | } | 
|---|
| 3107 |  | 
|---|
| 3108 | // The start_array must be updated even if the object is not moving. | 
|---|
| 3109 | if (_start_array != NULL) { | 
|---|
| 3110 | _start_array->allocate_block(destination()); | 
|---|
| 3111 | } | 
|---|
| 3112 |  | 
|---|
| 3113 | if (destination() != source()) { | 
|---|
| 3114 | DEBUG_ONLY(PSParallelCompact::check_new_location(source(), destination());) | 
|---|
| 3115 | Copy::aligned_conjoint_words(source(), destination(), words); | 
|---|
| 3116 | } | 
|---|
| 3117 |  | 
|---|
| 3118 | oop moved_oop = (oop) destination(); | 
|---|
| 3119 | compaction_manager()->update_contents(moved_oop); | 
|---|
| 3120 | assert(oopDesc::is_oop_or_null(moved_oop), "Expected an oop or NULL at "PTR_FORMAT, p2i(moved_oop)); | 
|---|
| 3121 |  | 
|---|
| 3122 | update_state(words); | 
|---|
| 3123 | assert(destination() == (HeapWord*)moved_oop + moved_oop->size(), "sanity"); | 
|---|
| 3124 | return is_full() ? ParMarkBitMap::full : ParMarkBitMap::incomplete; | 
|---|
| 3125 | } | 
|---|
| 3126 |  | 
|---|
| 3127 | UpdateOnlyClosure::UpdateOnlyClosure(ParMarkBitMap* mbm, | 
|---|
| 3128 | ParCompactionManager* cm, | 
|---|
| 3129 | PSParallelCompact::SpaceId space_id) : | 
|---|
| 3130 | ParMarkBitMapClosure(mbm, cm), | 
|---|
| 3131 | _space_id(space_id), | 
|---|
| 3132 | _start_array(PSParallelCompact::start_array(space_id)) | 
|---|
| 3133 | { | 
|---|
| 3134 | } | 
|---|
| 3135 |  | 
|---|
| 3136 | // Updates the references in the object to their new values. | 
|---|
| 3137 | ParMarkBitMapClosure::IterationStatus | 
|---|
| 3138 | UpdateOnlyClosure::do_addr(HeapWord* addr, size_t words) { | 
|---|
| 3139 | do_addr(addr); | 
|---|
| 3140 | return ParMarkBitMap::incomplete; | 
|---|
| 3141 | } | 
|---|
| 3142 |  | 
|---|
| 3143 | FillClosure::FillClosure(ParCompactionManager* cm, PSParallelCompact::SpaceId space_id) : | 
|---|
| 3144 | ParMarkBitMapClosure(PSParallelCompact::mark_bitmap(), cm), | 
|---|
| 3145 | _start_array(PSParallelCompact::start_array(space_id)) | 
|---|
| 3146 | { | 
|---|
| 3147 | assert(space_id == PSParallelCompact::old_space_id, | 
|---|
| 3148 | "cannot use FillClosure in the young gen"); | 
|---|
| 3149 | } | 
|---|
| 3150 |  | 
|---|
| 3151 | ParMarkBitMapClosure::IterationStatus | 
|---|
| 3152 | FillClosure::do_addr(HeapWord* addr, size_t size) { | 
|---|
| 3153 | CollectedHeap::fill_with_objects(addr, size); | 
|---|
| 3154 | HeapWord* const end = addr + size; | 
|---|
| 3155 | do { | 
|---|
| 3156 | _start_array->allocate_block(addr); | 
|---|
| 3157 | addr += oop(addr)->size(); | 
|---|
| 3158 | } while (addr < end); | 
|---|
| 3159 | return ParMarkBitMap::incomplete; | 
|---|
| 3160 | } | 
|---|
| 3161 |  | 
|---|