1 | /* |
2 | * Copyright (c) 2005, 2019, Oracle and/or its affiliates. All rights reserved. |
3 | * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
4 | * |
5 | * This code is free software; you can redistribute it and/or modify it |
6 | * under the terms of the GNU General Public License version 2 only, as |
7 | * published by the Free Software Foundation. |
8 | * |
9 | * This code is distributed in the hope that it will be useful, but WITHOUT |
10 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
11 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
12 | * version 2 for more details (a copy is included in the LICENSE file that |
13 | * accompanied this code). |
14 | * |
15 | * You should have received a copy of the GNU General Public License version |
16 | * 2 along with this work; if not, write to the Free Software Foundation, |
17 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
18 | * |
19 | * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
20 | * or visit www.oracle.com if you need additional information or have any |
21 | * questions. |
22 | * |
23 | */ |
24 | |
25 | #include "precompiled.hpp" |
26 | #include "aot/aotLoader.hpp" |
27 | #include "classfile/classLoaderDataGraph.hpp" |
28 | #include "classfile/javaClasses.inline.hpp" |
29 | #include "classfile/stringTable.hpp" |
30 | #include "classfile/symbolTable.hpp" |
31 | #include "classfile/systemDictionary.hpp" |
32 | #include "code/codeCache.hpp" |
33 | #include "gc/parallel/gcTaskManager.hpp" |
34 | #include "gc/parallel/parallelArguments.hpp" |
35 | #include "gc/parallel/parallelScavengeHeap.inline.hpp" |
36 | #include "gc/parallel/parMarkBitMap.inline.hpp" |
37 | #include "gc/parallel/pcTasks.hpp" |
38 | #include "gc/parallel/psAdaptiveSizePolicy.hpp" |
39 | #include "gc/parallel/psCompactionManager.inline.hpp" |
40 | #include "gc/parallel/psOldGen.hpp" |
41 | #include "gc/parallel/psParallelCompact.inline.hpp" |
42 | #include "gc/parallel/psPromotionManager.inline.hpp" |
43 | #include "gc/parallel/psScavenge.hpp" |
44 | #include "gc/parallel/psYoungGen.hpp" |
45 | #include "gc/shared/gcCause.hpp" |
46 | #include "gc/shared/gcHeapSummary.hpp" |
47 | #include "gc/shared/gcId.hpp" |
48 | #include "gc/shared/gcLocker.hpp" |
49 | #include "gc/shared/gcTimer.hpp" |
50 | #include "gc/shared/gcTrace.hpp" |
51 | #include "gc/shared/gcTraceTime.inline.hpp" |
52 | #include "gc/shared/isGCActiveMark.hpp" |
53 | #include "gc/shared/referencePolicy.hpp" |
54 | #include "gc/shared/referenceProcessor.hpp" |
55 | #include "gc/shared/referenceProcessorPhaseTimes.hpp" |
56 | #include "gc/shared/spaceDecorator.hpp" |
57 | #include "gc/shared/weakProcessor.hpp" |
58 | #include "logging/log.hpp" |
59 | #include "memory/iterator.inline.hpp" |
60 | #include "memory/resourceArea.hpp" |
61 | #include "memory/universe.hpp" |
62 | #include "oops/access.inline.hpp" |
63 | #include "oops/instanceClassLoaderKlass.inline.hpp" |
64 | #include "oops/instanceKlass.inline.hpp" |
65 | #include "oops/instanceMirrorKlass.inline.hpp" |
66 | #include "oops/methodData.hpp" |
67 | #include "oops/objArrayKlass.inline.hpp" |
68 | #include "oops/oop.inline.hpp" |
69 | #include "runtime/atomic.hpp" |
70 | #include "runtime/handles.inline.hpp" |
71 | #include "runtime/safepoint.hpp" |
72 | #include "runtime/vmThread.hpp" |
73 | #include "services/management.hpp" |
74 | #include "services/memTracker.hpp" |
75 | #include "services/memoryService.hpp" |
76 | #include "utilities/align.hpp" |
77 | #include "utilities/debug.hpp" |
78 | #include "utilities/events.hpp" |
79 | #include "utilities/formatBuffer.hpp" |
80 | #include "utilities/macros.hpp" |
81 | #include "utilities/stack.inline.hpp" |
82 | #if INCLUDE_JVMCI |
83 | #include "jvmci/jvmci.hpp" |
84 | #endif |
85 | |
86 | #include <math.h> |
87 | |
88 | // All sizes are in HeapWords. |
89 | const size_t ParallelCompactData::Log2RegionSize = 16; // 64K words |
90 | const size_t ParallelCompactData::RegionSize = (size_t)1 << Log2RegionSize; |
91 | const size_t ParallelCompactData::RegionSizeBytes = |
92 | RegionSize << LogHeapWordSize; |
93 | const size_t ParallelCompactData::RegionSizeOffsetMask = RegionSize - 1; |
94 | const size_t ParallelCompactData::RegionAddrOffsetMask = RegionSizeBytes - 1; |
95 | const size_t ParallelCompactData::RegionAddrMask = ~RegionAddrOffsetMask; |
96 | |
97 | const size_t ParallelCompactData::Log2BlockSize = 7; // 128 words |
98 | const size_t ParallelCompactData::BlockSize = (size_t)1 << Log2BlockSize; |
99 | const size_t ParallelCompactData::BlockSizeBytes = |
100 | BlockSize << LogHeapWordSize; |
101 | const size_t ParallelCompactData::BlockSizeOffsetMask = BlockSize - 1; |
102 | const size_t ParallelCompactData::BlockAddrOffsetMask = BlockSizeBytes - 1; |
103 | const size_t ParallelCompactData::BlockAddrMask = ~BlockAddrOffsetMask; |
104 | |
105 | const size_t ParallelCompactData::BlocksPerRegion = RegionSize / BlockSize; |
106 | const size_t ParallelCompactData::Log2BlocksPerRegion = |
107 | Log2RegionSize - Log2BlockSize; |
108 | |
109 | const ParallelCompactData::RegionData::region_sz_t |
110 | ParallelCompactData::RegionData::dc_shift = 27; |
111 | |
112 | const ParallelCompactData::RegionData::region_sz_t |
113 | ParallelCompactData::RegionData::dc_mask = ~0U << dc_shift; |
114 | |
115 | const ParallelCompactData::RegionData::region_sz_t |
116 | ParallelCompactData::RegionData::dc_one = 0x1U << dc_shift; |
117 | |
118 | const ParallelCompactData::RegionData::region_sz_t |
119 | ParallelCompactData::RegionData::los_mask = ~dc_mask; |
120 | |
121 | const ParallelCompactData::RegionData::region_sz_t |
122 | ParallelCompactData::RegionData::dc_claimed = 0x8U << dc_shift; |
123 | |
124 | const ParallelCompactData::RegionData::region_sz_t |
125 | ParallelCompactData::RegionData::dc_completed = 0xcU << dc_shift; |
126 | |
127 | SpaceInfo PSParallelCompact::_space_info[PSParallelCompact::last_space_id]; |
128 | |
129 | SpanSubjectToDiscoveryClosure PSParallelCompact::_span_based_discoverer; |
130 | ReferenceProcessor* PSParallelCompact::_ref_processor = NULL; |
131 | |
132 | double PSParallelCompact::_dwl_mean; |
133 | double PSParallelCompact::_dwl_std_dev; |
134 | double PSParallelCompact::_dwl_first_term; |
135 | double PSParallelCompact::_dwl_adjustment; |
136 | #ifdef ASSERT |
137 | bool PSParallelCompact::_dwl_initialized = false; |
138 | #endif // #ifdef ASSERT |
139 | |
140 | void SplitInfo::record(size_t src_region_idx, size_t partial_obj_size, |
141 | HeapWord* destination) |
142 | { |
143 | assert(src_region_idx != 0, "invalid src_region_idx" ); |
144 | assert(partial_obj_size != 0, "invalid partial_obj_size argument" ); |
145 | assert(destination != NULL, "invalid destination argument" ); |
146 | |
147 | _src_region_idx = src_region_idx; |
148 | _partial_obj_size = partial_obj_size; |
149 | _destination = destination; |
150 | |
151 | // These fields may not be updated below, so make sure they're clear. |
152 | assert(_dest_region_addr == NULL, "should have been cleared" ); |
153 | assert(_first_src_addr == NULL, "should have been cleared" ); |
154 | |
155 | // Determine the number of destination regions for the partial object. |
156 | HeapWord* const last_word = destination + partial_obj_size - 1; |
157 | const ParallelCompactData& sd = PSParallelCompact::summary_data(); |
158 | HeapWord* const beg_region_addr = sd.region_align_down(destination); |
159 | HeapWord* const end_region_addr = sd.region_align_down(last_word); |
160 | |
161 | if (beg_region_addr == end_region_addr) { |
162 | // One destination region. |
163 | _destination_count = 1; |
164 | if (end_region_addr == destination) { |
165 | // The destination falls on a region boundary, thus the first word of the |
166 | // partial object will be the first word copied to the destination region. |
167 | _dest_region_addr = end_region_addr; |
168 | _first_src_addr = sd.region_to_addr(src_region_idx); |
169 | } |
170 | } else { |
171 | // Two destination regions. When copied, the partial object will cross a |
172 | // destination region boundary, so a word somewhere within the partial |
173 | // object will be the first word copied to the second destination region. |
174 | _destination_count = 2; |
175 | _dest_region_addr = end_region_addr; |
176 | const size_t ofs = pointer_delta(end_region_addr, destination); |
177 | assert(ofs < _partial_obj_size, "sanity" ); |
178 | _first_src_addr = sd.region_to_addr(src_region_idx) + ofs; |
179 | } |
180 | } |
181 | |
182 | void SplitInfo::clear() |
183 | { |
184 | _src_region_idx = 0; |
185 | _partial_obj_size = 0; |
186 | _destination = NULL; |
187 | _destination_count = 0; |
188 | _dest_region_addr = NULL; |
189 | _first_src_addr = NULL; |
190 | assert(!is_valid(), "sanity" ); |
191 | } |
192 | |
193 | #ifdef ASSERT |
194 | void SplitInfo::verify_clear() |
195 | { |
196 | assert(_src_region_idx == 0, "not clear" ); |
197 | assert(_partial_obj_size == 0, "not clear" ); |
198 | assert(_destination == NULL, "not clear" ); |
199 | assert(_destination_count == 0, "not clear" ); |
200 | assert(_dest_region_addr == NULL, "not clear" ); |
201 | assert(_first_src_addr == NULL, "not clear" ); |
202 | } |
203 | #endif // #ifdef ASSERT |
204 | |
205 | |
206 | void PSParallelCompact::print_on_error(outputStream* st) { |
207 | _mark_bitmap.print_on_error(st); |
208 | } |
209 | |
210 | #ifndef PRODUCT |
211 | const char* PSParallelCompact::space_names[] = { |
212 | "old " , "eden" , "from" , "to " |
213 | }; |
214 | |
215 | void PSParallelCompact::print_region_ranges() { |
216 | if (!log_develop_is_enabled(Trace, gc, compaction)) { |
217 | return; |
218 | } |
219 | Log(gc, compaction) log; |
220 | ResourceMark rm; |
221 | LogStream ls(log.trace()); |
222 | Universe::print_on(&ls); |
223 | log.trace("space bottom top end new_top" ); |
224 | log.trace("------ ---------- ---------- ---------- ----------" ); |
225 | |
226 | for (unsigned int id = 0; id < last_space_id; ++id) { |
227 | const MutableSpace* space = _space_info[id].space(); |
228 | log.trace("%u %s " |
229 | SIZE_FORMAT_W(10) " " SIZE_FORMAT_W(10) " " |
230 | SIZE_FORMAT_W(10) " " SIZE_FORMAT_W(10) " " , |
231 | id, space_names[id], |
232 | summary_data().addr_to_region_idx(space->bottom()), |
233 | summary_data().addr_to_region_idx(space->top()), |
234 | summary_data().addr_to_region_idx(space->end()), |
235 | summary_data().addr_to_region_idx(_space_info[id].new_top())); |
236 | } |
237 | } |
238 | |
239 | void |
240 | print_generic_summary_region(size_t i, const ParallelCompactData::RegionData* c) |
241 | { |
242 | #define REGION_IDX_FORMAT SIZE_FORMAT_W(7) |
243 | #define REGION_DATA_FORMAT SIZE_FORMAT_W(5) |
244 | |
245 | ParallelCompactData& sd = PSParallelCompact::summary_data(); |
246 | size_t dci = c->destination() ? sd.addr_to_region_idx(c->destination()) : 0; |
247 | log_develop_trace(gc, compaction)( |
248 | REGION_IDX_FORMAT " " PTR_FORMAT " " |
249 | REGION_IDX_FORMAT " " PTR_FORMAT " " |
250 | REGION_DATA_FORMAT " " REGION_DATA_FORMAT " " |
251 | REGION_DATA_FORMAT " " REGION_IDX_FORMAT " %d" , |
252 | i, p2i(c->data_location()), dci, p2i(c->destination()), |
253 | c->partial_obj_size(), c->live_obj_size(), |
254 | c->data_size(), c->source_region(), c->destination_count()); |
255 | |
256 | #undef REGION_IDX_FORMAT |
257 | #undef REGION_DATA_FORMAT |
258 | } |
259 | |
260 | void |
261 | print_generic_summary_data(ParallelCompactData& summary_data, |
262 | HeapWord* const beg_addr, |
263 | HeapWord* const end_addr) |
264 | { |
265 | size_t total_words = 0; |
266 | size_t i = summary_data.addr_to_region_idx(beg_addr); |
267 | const size_t last = summary_data.addr_to_region_idx(end_addr); |
268 | HeapWord* pdest = 0; |
269 | |
270 | while (i < last) { |
271 | ParallelCompactData::RegionData* c = summary_data.region(i); |
272 | if (c->data_size() != 0 || c->destination() != pdest) { |
273 | print_generic_summary_region(i, c); |
274 | total_words += c->data_size(); |
275 | pdest = c->destination(); |
276 | } |
277 | ++i; |
278 | } |
279 | |
280 | log_develop_trace(gc, compaction)("summary_data_bytes=" SIZE_FORMAT, total_words * HeapWordSize); |
281 | } |
282 | |
283 | void |
284 | PSParallelCompact::print_generic_summary_data(ParallelCompactData& summary_data, |
285 | HeapWord* const beg_addr, |
286 | HeapWord* const end_addr) { |
287 | ::print_generic_summary_data(summary_data,beg_addr, end_addr); |
288 | } |
289 | |
290 | void |
291 | print_generic_summary_data(ParallelCompactData& summary_data, |
292 | SpaceInfo* space_info) |
293 | { |
294 | if (!log_develop_is_enabled(Trace, gc, compaction)) { |
295 | return; |
296 | } |
297 | |
298 | for (unsigned int id = 0; id < PSParallelCompact::last_space_id; ++id) { |
299 | const MutableSpace* space = space_info[id].space(); |
300 | print_generic_summary_data(summary_data, space->bottom(), |
301 | MAX2(space->top(), space_info[id].new_top())); |
302 | } |
303 | } |
304 | |
305 | void |
306 | print_initial_summary_data(ParallelCompactData& summary_data, |
307 | const MutableSpace* space) { |
308 | if (space->top() == space->bottom()) { |
309 | return; |
310 | } |
311 | |
312 | const size_t region_size = ParallelCompactData::RegionSize; |
313 | typedef ParallelCompactData::RegionData RegionData; |
314 | HeapWord* const top_aligned_up = summary_data.region_align_up(space->top()); |
315 | const size_t end_region = summary_data.addr_to_region_idx(top_aligned_up); |
316 | const RegionData* c = summary_data.region(end_region - 1); |
317 | HeapWord* end_addr = c->destination() + c->data_size(); |
318 | const size_t live_in_space = pointer_delta(end_addr, space->bottom()); |
319 | |
320 | // Print (and count) the full regions at the beginning of the space. |
321 | size_t full_region_count = 0; |
322 | size_t i = summary_data.addr_to_region_idx(space->bottom()); |
323 | while (i < end_region && summary_data.region(i)->data_size() == region_size) { |
324 | ParallelCompactData::RegionData* c = summary_data.region(i); |
325 | log_develop_trace(gc, compaction)( |
326 | SIZE_FORMAT_W(5) " " PTR_FORMAT " " SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " %d" , |
327 | i, p2i(c->destination()), |
328 | c->partial_obj_size(), c->live_obj_size(), |
329 | c->data_size(), c->source_region(), c->destination_count()); |
330 | ++full_region_count; |
331 | ++i; |
332 | } |
333 | |
334 | size_t live_to_right = live_in_space - full_region_count * region_size; |
335 | |
336 | double max_reclaimed_ratio = 0.0; |
337 | size_t max_reclaimed_ratio_region = 0; |
338 | size_t max_dead_to_right = 0; |
339 | size_t max_live_to_right = 0; |
340 | |
341 | // Print the 'reclaimed ratio' for regions while there is something live in |
342 | // the region or to the right of it. The remaining regions are empty (and |
343 | // uninteresting), and computing the ratio will result in division by 0. |
344 | while (i < end_region && live_to_right > 0) { |
345 | c = summary_data.region(i); |
346 | HeapWord* const region_addr = summary_data.region_to_addr(i); |
347 | const size_t used_to_right = pointer_delta(space->top(), region_addr); |
348 | const size_t dead_to_right = used_to_right - live_to_right; |
349 | const double reclaimed_ratio = double(dead_to_right) / live_to_right; |
350 | |
351 | if (reclaimed_ratio > max_reclaimed_ratio) { |
352 | max_reclaimed_ratio = reclaimed_ratio; |
353 | max_reclaimed_ratio_region = i; |
354 | max_dead_to_right = dead_to_right; |
355 | max_live_to_right = live_to_right; |
356 | } |
357 | |
358 | ParallelCompactData::RegionData* c = summary_data.region(i); |
359 | log_develop_trace(gc, compaction)( |
360 | SIZE_FORMAT_W(5) " " PTR_FORMAT " " SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " %d" |
361 | "%12.10f " SIZE_FORMAT_W(10) " " SIZE_FORMAT_W(10), |
362 | i, p2i(c->destination()), |
363 | c->partial_obj_size(), c->live_obj_size(), |
364 | c->data_size(), c->source_region(), c->destination_count(), |
365 | reclaimed_ratio, dead_to_right, live_to_right); |
366 | |
367 | |
368 | live_to_right -= c->data_size(); |
369 | ++i; |
370 | } |
371 | |
372 | // Any remaining regions are empty. Print one more if there is one. |
373 | if (i < end_region) { |
374 | ParallelCompactData::RegionData* c = summary_data.region(i); |
375 | log_develop_trace(gc, compaction)( |
376 | SIZE_FORMAT_W(5) " " PTR_FORMAT " " SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " %d" , |
377 | i, p2i(c->destination()), |
378 | c->partial_obj_size(), c->live_obj_size(), |
379 | c->data_size(), c->source_region(), c->destination_count()); |
380 | } |
381 | |
382 | log_develop_trace(gc, compaction)("max: " SIZE_FORMAT_W(4) " d2r=" SIZE_FORMAT_W(10) " l2r=" SIZE_FORMAT_W(10) " max_ratio=%14.12f" , |
383 | max_reclaimed_ratio_region, max_dead_to_right, max_live_to_right, max_reclaimed_ratio); |
384 | } |
385 | |
386 | void |
387 | print_initial_summary_data(ParallelCompactData& summary_data, |
388 | SpaceInfo* space_info) { |
389 | if (!log_develop_is_enabled(Trace, gc, compaction)) { |
390 | return; |
391 | } |
392 | |
393 | unsigned int id = PSParallelCompact::old_space_id; |
394 | const MutableSpace* space; |
395 | do { |
396 | space = space_info[id].space(); |
397 | print_initial_summary_data(summary_data, space); |
398 | } while (++id < PSParallelCompact::eden_space_id); |
399 | |
400 | do { |
401 | space = space_info[id].space(); |
402 | print_generic_summary_data(summary_data, space->bottom(), space->top()); |
403 | } while (++id < PSParallelCompact::last_space_id); |
404 | } |
405 | #endif // #ifndef PRODUCT |
406 | |
407 | #ifdef ASSERT |
408 | size_t add_obj_count; |
409 | size_t add_obj_size; |
410 | size_t mark_bitmap_count; |
411 | size_t mark_bitmap_size; |
412 | #endif // #ifdef ASSERT |
413 | |
414 | ParallelCompactData::ParallelCompactData() : |
415 | _region_start(NULL), |
416 | DEBUG_ONLY(_region_end(NULL) COMMA) |
417 | _region_vspace(NULL), |
418 | _reserved_byte_size(0), |
419 | _region_data(NULL), |
420 | _region_count(0), |
421 | _block_vspace(NULL), |
422 | _block_data(NULL), |
423 | _block_count(0) {} |
424 | |
425 | bool ParallelCompactData::initialize(MemRegion covered_region) |
426 | { |
427 | _region_start = covered_region.start(); |
428 | const size_t region_size = covered_region.word_size(); |
429 | DEBUG_ONLY(_region_end = _region_start + region_size;) |
430 | |
431 | assert(region_align_down(_region_start) == _region_start, |
432 | "region start not aligned" ); |
433 | assert((region_size & RegionSizeOffsetMask) == 0, |
434 | "region size not a multiple of RegionSize" ); |
435 | |
436 | bool result = initialize_region_data(region_size) && initialize_block_data(); |
437 | return result; |
438 | } |
439 | |
440 | PSVirtualSpace* |
441 | ParallelCompactData::create_vspace(size_t count, size_t element_size) |
442 | { |
443 | const size_t raw_bytes = count * element_size; |
444 | const size_t page_sz = os::page_size_for_region_aligned(raw_bytes, 10); |
445 | const size_t granularity = os::vm_allocation_granularity(); |
446 | _reserved_byte_size = align_up(raw_bytes, MAX2(page_sz, granularity)); |
447 | |
448 | const size_t rs_align = page_sz == (size_t) os::vm_page_size() ? 0 : |
449 | MAX2(page_sz, granularity); |
450 | ReservedSpace rs(_reserved_byte_size, rs_align, rs_align > 0); |
451 | os::trace_page_sizes("Parallel Compact Data" , raw_bytes, raw_bytes, page_sz, rs.base(), |
452 | rs.size()); |
453 | |
454 | MemTracker::record_virtual_memory_type((address)rs.base(), mtGC); |
455 | |
456 | PSVirtualSpace* vspace = new PSVirtualSpace(rs, page_sz); |
457 | if (vspace != 0) { |
458 | if (vspace->expand_by(_reserved_byte_size)) { |
459 | return vspace; |
460 | } |
461 | delete vspace; |
462 | // Release memory reserved in the space. |
463 | rs.release(); |
464 | } |
465 | |
466 | return 0; |
467 | } |
468 | |
469 | bool ParallelCompactData::initialize_region_data(size_t region_size) |
470 | { |
471 | const size_t count = (region_size + RegionSizeOffsetMask) >> Log2RegionSize; |
472 | _region_vspace = create_vspace(count, sizeof(RegionData)); |
473 | if (_region_vspace != 0) { |
474 | _region_data = (RegionData*)_region_vspace->reserved_low_addr(); |
475 | _region_count = count; |
476 | return true; |
477 | } |
478 | return false; |
479 | } |
480 | |
481 | bool ParallelCompactData::initialize_block_data() |
482 | { |
483 | assert(_region_count != 0, "region data must be initialized first" ); |
484 | const size_t count = _region_count << Log2BlocksPerRegion; |
485 | _block_vspace = create_vspace(count, sizeof(BlockData)); |
486 | if (_block_vspace != 0) { |
487 | _block_data = (BlockData*)_block_vspace->reserved_low_addr(); |
488 | _block_count = count; |
489 | return true; |
490 | } |
491 | return false; |
492 | } |
493 | |
494 | void ParallelCompactData::clear() |
495 | { |
496 | memset(_region_data, 0, _region_vspace->committed_size()); |
497 | memset(_block_data, 0, _block_vspace->committed_size()); |
498 | } |
499 | |
500 | void ParallelCompactData::clear_range(size_t beg_region, size_t end_region) { |
501 | assert(beg_region <= _region_count, "beg_region out of range" ); |
502 | assert(end_region <= _region_count, "end_region out of range" ); |
503 | assert(RegionSize % BlockSize == 0, "RegionSize not a multiple of BlockSize" ); |
504 | |
505 | const size_t region_cnt = end_region - beg_region; |
506 | memset(_region_data + beg_region, 0, region_cnt * sizeof(RegionData)); |
507 | |
508 | const size_t beg_block = beg_region * BlocksPerRegion; |
509 | const size_t block_cnt = region_cnt * BlocksPerRegion; |
510 | memset(_block_data + beg_block, 0, block_cnt * sizeof(BlockData)); |
511 | } |
512 | |
513 | HeapWord* ParallelCompactData::partial_obj_end(size_t region_idx) const |
514 | { |
515 | const RegionData* cur_cp = region(region_idx); |
516 | const RegionData* const end_cp = region(region_count() - 1); |
517 | |
518 | HeapWord* result = region_to_addr(region_idx); |
519 | if (cur_cp < end_cp) { |
520 | do { |
521 | result += cur_cp->partial_obj_size(); |
522 | } while (cur_cp->partial_obj_size() == RegionSize && ++cur_cp < end_cp); |
523 | } |
524 | return result; |
525 | } |
526 | |
527 | void ParallelCompactData::add_obj(HeapWord* addr, size_t len) |
528 | { |
529 | const size_t obj_ofs = pointer_delta(addr, _region_start); |
530 | const size_t beg_region = obj_ofs >> Log2RegionSize; |
531 | const size_t end_region = (obj_ofs + len - 1) >> Log2RegionSize; |
532 | |
533 | DEBUG_ONLY(Atomic::inc(&add_obj_count);) |
534 | DEBUG_ONLY(Atomic::add(len, &add_obj_size);) |
535 | |
536 | if (beg_region == end_region) { |
537 | // All in one region. |
538 | _region_data[beg_region].add_live_obj(len); |
539 | return; |
540 | } |
541 | |
542 | // First region. |
543 | const size_t beg_ofs = region_offset(addr); |
544 | _region_data[beg_region].add_live_obj(RegionSize - beg_ofs); |
545 | |
546 | Klass* klass = ((oop)addr)->klass(); |
547 | // Middle regions--completely spanned by this object. |
548 | for (size_t region = beg_region + 1; region < end_region; ++region) { |
549 | _region_data[region].set_partial_obj_size(RegionSize); |
550 | _region_data[region].set_partial_obj_addr(addr); |
551 | } |
552 | |
553 | // Last region. |
554 | const size_t end_ofs = region_offset(addr + len - 1); |
555 | _region_data[end_region].set_partial_obj_size(end_ofs + 1); |
556 | _region_data[end_region].set_partial_obj_addr(addr); |
557 | } |
558 | |
559 | void |
560 | ParallelCompactData::summarize_dense_prefix(HeapWord* beg, HeapWord* end) |
561 | { |
562 | assert(region_offset(beg) == 0, "not RegionSize aligned" ); |
563 | assert(region_offset(end) == 0, "not RegionSize aligned" ); |
564 | |
565 | size_t cur_region = addr_to_region_idx(beg); |
566 | const size_t end_region = addr_to_region_idx(end); |
567 | HeapWord* addr = beg; |
568 | while (cur_region < end_region) { |
569 | _region_data[cur_region].set_destination(addr); |
570 | _region_data[cur_region].set_destination_count(0); |
571 | _region_data[cur_region].set_source_region(cur_region); |
572 | _region_data[cur_region].set_data_location(addr); |
573 | |
574 | // Update live_obj_size so the region appears completely full. |
575 | size_t live_size = RegionSize - _region_data[cur_region].partial_obj_size(); |
576 | _region_data[cur_region].set_live_obj_size(live_size); |
577 | |
578 | ++cur_region; |
579 | addr += RegionSize; |
580 | } |
581 | } |
582 | |
583 | // Find the point at which a space can be split and, if necessary, record the |
584 | // split point. |
585 | // |
586 | // If the current src region (which overflowed the destination space) doesn't |
587 | // have a partial object, the split point is at the beginning of the current src |
588 | // region (an "easy" split, no extra bookkeeping required). |
589 | // |
590 | // If the current src region has a partial object, the split point is in the |
591 | // region where that partial object starts (call it the split_region). If |
592 | // split_region has a partial object, then the split point is just after that |
593 | // partial object (a "hard" split where we have to record the split data and |
594 | // zero the partial_obj_size field). With a "hard" split, we know that the |
595 | // partial_obj ends within split_region because the partial object that caused |
596 | // the overflow starts in split_region. If split_region doesn't have a partial |
597 | // obj, then the split is at the beginning of split_region (another "easy" |
598 | // split). |
599 | HeapWord* |
600 | ParallelCompactData::summarize_split_space(size_t src_region, |
601 | SplitInfo& split_info, |
602 | HeapWord* destination, |
603 | HeapWord* target_end, |
604 | HeapWord** target_next) |
605 | { |
606 | assert(destination <= target_end, "sanity" ); |
607 | assert(destination + _region_data[src_region].data_size() > target_end, |
608 | "region should not fit into target space" ); |
609 | assert(is_region_aligned(target_end), "sanity" ); |
610 | |
611 | size_t split_region = src_region; |
612 | HeapWord* split_destination = destination; |
613 | size_t partial_obj_size = _region_data[src_region].partial_obj_size(); |
614 | |
615 | if (destination + partial_obj_size > target_end) { |
616 | // The split point is just after the partial object (if any) in the |
617 | // src_region that contains the start of the object that overflowed the |
618 | // destination space. |
619 | // |
620 | // Find the start of the "overflow" object and set split_region to the |
621 | // region containing it. |
622 | HeapWord* const overflow_obj = _region_data[src_region].partial_obj_addr(); |
623 | split_region = addr_to_region_idx(overflow_obj); |
624 | |
625 | // Clear the source_region field of all destination regions whose first word |
626 | // came from data after the split point (a non-null source_region field |
627 | // implies a region must be filled). |
628 | // |
629 | // An alternative to the simple loop below: clear during post_compact(), |
630 | // which uses memcpy instead of individual stores, and is easy to |
631 | // parallelize. (The downside is that it clears the entire RegionData |
632 | // object as opposed to just one field.) |
633 | // |
634 | // post_compact() would have to clear the summary data up to the highest |
635 | // address that was written during the summary phase, which would be |
636 | // |
637 | // max(top, max(new_top, clear_top)) |
638 | // |
639 | // where clear_top is a new field in SpaceInfo. Would have to set clear_top |
640 | // to target_end. |
641 | const RegionData* const sr = region(split_region); |
642 | const size_t beg_idx = |
643 | addr_to_region_idx(region_align_up(sr->destination() + |
644 | sr->partial_obj_size())); |
645 | const size_t end_idx = addr_to_region_idx(target_end); |
646 | |
647 | log_develop_trace(gc, compaction)("split: clearing source_region field in [" SIZE_FORMAT ", " SIZE_FORMAT ")" , beg_idx, end_idx); |
648 | for (size_t idx = beg_idx; idx < end_idx; ++idx) { |
649 | _region_data[idx].set_source_region(0); |
650 | } |
651 | |
652 | // Set split_destination and partial_obj_size to reflect the split region. |
653 | split_destination = sr->destination(); |
654 | partial_obj_size = sr->partial_obj_size(); |
655 | } |
656 | |
657 | // The split is recorded only if a partial object extends onto the region. |
658 | if (partial_obj_size != 0) { |
659 | _region_data[split_region].set_partial_obj_size(0); |
660 | split_info.record(split_region, partial_obj_size, split_destination); |
661 | } |
662 | |
663 | // Setup the continuation addresses. |
664 | *target_next = split_destination + partial_obj_size; |
665 | HeapWord* const source_next = region_to_addr(split_region) + partial_obj_size; |
666 | |
667 | if (log_develop_is_enabled(Trace, gc, compaction)) { |
668 | const char * split_type = partial_obj_size == 0 ? "easy" : "hard" ; |
669 | log_develop_trace(gc, compaction)("%s split: src=" PTR_FORMAT " src_c=" SIZE_FORMAT " pos=" SIZE_FORMAT, |
670 | split_type, p2i(source_next), split_region, partial_obj_size); |
671 | log_develop_trace(gc, compaction)("%s split: dst=" PTR_FORMAT " dst_c=" SIZE_FORMAT " tn=" PTR_FORMAT, |
672 | split_type, p2i(split_destination), |
673 | addr_to_region_idx(split_destination), |
674 | p2i(*target_next)); |
675 | |
676 | if (partial_obj_size != 0) { |
677 | HeapWord* const po_beg = split_info.destination(); |
678 | HeapWord* const po_end = po_beg + split_info.partial_obj_size(); |
679 | log_develop_trace(gc, compaction)("%s split: po_beg=" PTR_FORMAT " " SIZE_FORMAT " po_end=" PTR_FORMAT " " SIZE_FORMAT, |
680 | split_type, |
681 | p2i(po_beg), addr_to_region_idx(po_beg), |
682 | p2i(po_end), addr_to_region_idx(po_end)); |
683 | } |
684 | } |
685 | |
686 | return source_next; |
687 | } |
688 | |
689 | bool ParallelCompactData::summarize(SplitInfo& split_info, |
690 | HeapWord* source_beg, HeapWord* source_end, |
691 | HeapWord** source_next, |
692 | HeapWord* target_beg, HeapWord* target_end, |
693 | HeapWord** target_next) |
694 | { |
695 | HeapWord* const source_next_val = source_next == NULL ? NULL : *source_next; |
696 | log_develop_trace(gc, compaction)( |
697 | "sb=" PTR_FORMAT " se=" PTR_FORMAT " sn=" PTR_FORMAT |
698 | "tb=" PTR_FORMAT " te=" PTR_FORMAT " tn=" PTR_FORMAT, |
699 | p2i(source_beg), p2i(source_end), p2i(source_next_val), |
700 | p2i(target_beg), p2i(target_end), p2i(*target_next)); |
701 | |
702 | size_t cur_region = addr_to_region_idx(source_beg); |
703 | const size_t end_region = addr_to_region_idx(region_align_up(source_end)); |
704 | |
705 | HeapWord *dest_addr = target_beg; |
706 | while (cur_region < end_region) { |
707 | // The destination must be set even if the region has no data. |
708 | _region_data[cur_region].set_destination(dest_addr); |
709 | |
710 | size_t words = _region_data[cur_region].data_size(); |
711 | if (words > 0) { |
712 | // If cur_region does not fit entirely into the target space, find a point |
713 | // at which the source space can be 'split' so that part is copied to the |
714 | // target space and the rest is copied elsewhere. |
715 | if (dest_addr + words > target_end) { |
716 | assert(source_next != NULL, "source_next is NULL when splitting" ); |
717 | *source_next = summarize_split_space(cur_region, split_info, dest_addr, |
718 | target_end, target_next); |
719 | return false; |
720 | } |
721 | |
722 | // Compute the destination_count for cur_region, and if necessary, update |
723 | // source_region for a destination region. The source_region field is |
724 | // updated if cur_region is the first (left-most) region to be copied to a |
725 | // destination region. |
726 | // |
727 | // The destination_count calculation is a bit subtle. A region that has |
728 | // data that compacts into itself does not count itself as a destination. |
729 | // This maintains the invariant that a zero count means the region is |
730 | // available and can be claimed and then filled. |
731 | uint destination_count = 0; |
732 | if (split_info.is_split(cur_region)) { |
733 | // The current region has been split: the partial object will be copied |
734 | // to one destination space and the remaining data will be copied to |
735 | // another destination space. Adjust the initial destination_count and, |
736 | // if necessary, set the source_region field if the partial object will |
737 | // cross a destination region boundary. |
738 | destination_count = split_info.destination_count(); |
739 | if (destination_count == 2) { |
740 | size_t dest_idx = addr_to_region_idx(split_info.dest_region_addr()); |
741 | _region_data[dest_idx].set_source_region(cur_region); |
742 | } |
743 | } |
744 | |
745 | HeapWord* const last_addr = dest_addr + words - 1; |
746 | const size_t dest_region_1 = addr_to_region_idx(dest_addr); |
747 | const size_t dest_region_2 = addr_to_region_idx(last_addr); |
748 | |
749 | // Initially assume that the destination regions will be the same and |
750 | // adjust the value below if necessary. Under this assumption, if |
751 | // cur_region == dest_region_2, then cur_region will be compacted |
752 | // completely into itself. |
753 | destination_count += cur_region == dest_region_2 ? 0 : 1; |
754 | if (dest_region_1 != dest_region_2) { |
755 | // Destination regions differ; adjust destination_count. |
756 | destination_count += 1; |
757 | // Data from cur_region will be copied to the start of dest_region_2. |
758 | _region_data[dest_region_2].set_source_region(cur_region); |
759 | } else if (region_offset(dest_addr) == 0) { |
760 | // Data from cur_region will be copied to the start of the destination |
761 | // region. |
762 | _region_data[dest_region_1].set_source_region(cur_region); |
763 | } |
764 | |
765 | _region_data[cur_region].set_destination_count(destination_count); |
766 | _region_data[cur_region].set_data_location(region_to_addr(cur_region)); |
767 | dest_addr += words; |
768 | } |
769 | |
770 | ++cur_region; |
771 | } |
772 | |
773 | *target_next = dest_addr; |
774 | return true; |
775 | } |
776 | |
777 | HeapWord* ParallelCompactData::calc_new_pointer(HeapWord* addr, ParCompactionManager* cm) { |
778 | assert(addr != NULL, "Should detect NULL oop earlier" ); |
779 | assert(ParallelScavengeHeap::heap()->is_in(addr), "not in heap" ); |
780 | assert(PSParallelCompact::mark_bitmap()->is_marked(addr), "not marked" ); |
781 | |
782 | // Region covering the object. |
783 | RegionData* const region_ptr = addr_to_region_ptr(addr); |
784 | HeapWord* result = region_ptr->destination(); |
785 | |
786 | // If the entire Region is live, the new location is region->destination + the |
787 | // offset of the object within in the Region. |
788 | |
789 | // Run some performance tests to determine if this special case pays off. It |
790 | // is worth it for pointers into the dense prefix. If the optimization to |
791 | // avoid pointer updates in regions that only point to the dense prefix is |
792 | // ever implemented, this should be revisited. |
793 | if (region_ptr->data_size() == RegionSize) { |
794 | result += region_offset(addr); |
795 | return result; |
796 | } |
797 | |
798 | // Otherwise, the new location is region->destination + block offset + the |
799 | // number of live words in the Block that are (a) to the left of addr and (b) |
800 | // due to objects that start in the Block. |
801 | |
802 | // Fill in the block table if necessary. This is unsynchronized, so multiple |
803 | // threads may fill the block table for a region (harmless, since it is |
804 | // idempotent). |
805 | if (!region_ptr->blocks_filled()) { |
806 | PSParallelCompact::fill_blocks(addr_to_region_idx(addr)); |
807 | region_ptr->set_blocks_filled(); |
808 | } |
809 | |
810 | HeapWord* const search_start = block_align_down(addr); |
811 | const size_t block_offset = addr_to_block_ptr(addr)->offset(); |
812 | |
813 | const ParMarkBitMap* bitmap = PSParallelCompact::mark_bitmap(); |
814 | const size_t live = bitmap->live_words_in_range(cm, search_start, oop(addr)); |
815 | result += block_offset + live; |
816 | DEBUG_ONLY(PSParallelCompact::check_new_location(addr, result)); |
817 | return result; |
818 | } |
819 | |
820 | #ifdef ASSERT |
821 | void ParallelCompactData::verify_clear(const PSVirtualSpace* vspace) |
822 | { |
823 | const size_t* const beg = (const size_t*)vspace->committed_low_addr(); |
824 | const size_t* const end = (const size_t*)vspace->committed_high_addr(); |
825 | for (const size_t* p = beg; p < end; ++p) { |
826 | assert(*p == 0, "not zero" ); |
827 | } |
828 | } |
829 | |
830 | void ParallelCompactData::verify_clear() |
831 | { |
832 | verify_clear(_region_vspace); |
833 | verify_clear(_block_vspace); |
834 | } |
835 | #endif // #ifdef ASSERT |
836 | |
837 | STWGCTimer PSParallelCompact::_gc_timer; |
838 | ParallelOldTracer PSParallelCompact::_gc_tracer; |
839 | elapsedTimer PSParallelCompact::_accumulated_time; |
840 | unsigned int PSParallelCompact::_total_invocations = 0; |
841 | unsigned int PSParallelCompact::_maximum_compaction_gc_num = 0; |
842 | jlong PSParallelCompact::_time_of_last_gc = 0; |
843 | CollectorCounters* PSParallelCompact::_counters = NULL; |
844 | ParMarkBitMap PSParallelCompact::_mark_bitmap; |
845 | ParallelCompactData PSParallelCompact::_summary_data; |
846 | |
847 | PSParallelCompact::IsAliveClosure PSParallelCompact::_is_alive_closure; |
848 | |
849 | bool PSParallelCompact::IsAliveClosure::do_object_b(oop p) { return mark_bitmap()->is_marked(p); } |
850 | |
851 | class PCReferenceProcessor: public ReferenceProcessor { |
852 | public: |
853 | PCReferenceProcessor( |
854 | BoolObjectClosure* is_subject_to_discovery, |
855 | BoolObjectClosure* ) : |
856 | ReferenceProcessor(is_subject_to_discovery, |
857 | ParallelRefProcEnabled && (ParallelGCThreads > 1), // mt processing |
858 | ParallelGCThreads, // mt processing degree |
859 | true, // mt discovery |
860 | ParallelGCThreads, // mt discovery degree |
861 | true, // atomic_discovery |
862 | is_alive_non_header) { |
863 | } |
864 | |
865 | template<typename T> bool discover(oop obj, ReferenceType type) { |
866 | T* referent_addr = (T*) java_lang_ref_Reference::referent_addr_raw(obj); |
867 | T heap_oop = RawAccess<>::oop_load(referent_addr); |
868 | oop referent = CompressedOops::decode_not_null(heap_oop); |
869 | return PSParallelCompact::mark_bitmap()->is_unmarked(referent) |
870 | && ReferenceProcessor::discover_reference(obj, type); |
871 | } |
872 | virtual bool discover_reference(oop obj, ReferenceType type) { |
873 | if (UseCompressedOops) { |
874 | return discover<narrowOop>(obj, type); |
875 | } else { |
876 | return discover<oop>(obj, type); |
877 | } |
878 | } |
879 | }; |
880 | |
881 | void PSParallelCompact::post_initialize() { |
882 | ParallelScavengeHeap* heap = ParallelScavengeHeap::heap(); |
883 | _span_based_discoverer.set_span(heap->reserved_region()); |
884 | _ref_processor = |
885 | new PCReferenceProcessor(&_span_based_discoverer, |
886 | &_is_alive_closure); // non-header is alive closure |
887 | |
888 | _counters = new CollectorCounters("Parallel full collection pauses" , 1); |
889 | |
890 | // Initialize static fields in ParCompactionManager. |
891 | ParCompactionManager::initialize(mark_bitmap()); |
892 | } |
893 | |
894 | bool PSParallelCompact::initialize() { |
895 | ParallelScavengeHeap* heap = ParallelScavengeHeap::heap(); |
896 | MemRegion mr = heap->reserved_region(); |
897 | |
898 | // Was the old gen get allocated successfully? |
899 | if (!heap->old_gen()->is_allocated()) { |
900 | return false; |
901 | } |
902 | |
903 | initialize_space_info(); |
904 | initialize_dead_wood_limiter(); |
905 | |
906 | if (!_mark_bitmap.initialize(mr)) { |
907 | vm_shutdown_during_initialization( |
908 | err_msg("Unable to allocate " SIZE_FORMAT "KB bitmaps for parallel " |
909 | "garbage collection for the requested " SIZE_FORMAT "KB heap." , |
910 | _mark_bitmap.reserved_byte_size()/K, mr.byte_size()/K)); |
911 | return false; |
912 | } |
913 | |
914 | if (!_summary_data.initialize(mr)) { |
915 | vm_shutdown_during_initialization( |
916 | err_msg("Unable to allocate " SIZE_FORMAT "KB card tables for parallel " |
917 | "garbage collection for the requested " SIZE_FORMAT "KB heap." , |
918 | _summary_data.reserved_byte_size()/K, mr.byte_size()/K)); |
919 | return false; |
920 | } |
921 | |
922 | return true; |
923 | } |
924 | |
925 | void PSParallelCompact::initialize_space_info() |
926 | { |
927 | memset(&_space_info, 0, sizeof(_space_info)); |
928 | |
929 | ParallelScavengeHeap* heap = ParallelScavengeHeap::heap(); |
930 | PSYoungGen* young_gen = heap->young_gen(); |
931 | |
932 | _space_info[old_space_id].set_space(heap->old_gen()->object_space()); |
933 | _space_info[eden_space_id].set_space(young_gen->eden_space()); |
934 | _space_info[from_space_id].set_space(young_gen->from_space()); |
935 | _space_info[to_space_id].set_space(young_gen->to_space()); |
936 | |
937 | _space_info[old_space_id].set_start_array(heap->old_gen()->start_array()); |
938 | } |
939 | |
940 | void PSParallelCompact::initialize_dead_wood_limiter() |
941 | { |
942 | const size_t max = 100; |
943 | _dwl_mean = double(MIN2(ParallelOldDeadWoodLimiterMean, max)) / 100.0; |
944 | _dwl_std_dev = double(MIN2(ParallelOldDeadWoodLimiterStdDev, max)) / 100.0; |
945 | _dwl_first_term = 1.0 / (sqrt(2.0 * M_PI) * _dwl_std_dev); |
946 | DEBUG_ONLY(_dwl_initialized = true;) |
947 | _dwl_adjustment = normal_distribution(1.0); |
948 | } |
949 | |
950 | void |
951 | PSParallelCompact::clear_data_covering_space(SpaceId id) |
952 | { |
953 | // At this point, top is the value before GC, new_top() is the value that will |
954 | // be set at the end of GC. The marking bitmap is cleared to top; nothing |
955 | // should be marked above top. The summary data is cleared to the larger of |
956 | // top & new_top. |
957 | MutableSpace* const space = _space_info[id].space(); |
958 | HeapWord* const bot = space->bottom(); |
959 | HeapWord* const top = space->top(); |
960 | HeapWord* const max_top = MAX2(top, _space_info[id].new_top()); |
961 | |
962 | const idx_t beg_bit = _mark_bitmap.addr_to_bit(bot); |
963 | const idx_t end_bit = BitMap::word_align_up(_mark_bitmap.addr_to_bit(top)); |
964 | _mark_bitmap.clear_range(beg_bit, end_bit); |
965 | |
966 | const size_t beg_region = _summary_data.addr_to_region_idx(bot); |
967 | const size_t end_region = |
968 | _summary_data.addr_to_region_idx(_summary_data.region_align_up(max_top)); |
969 | _summary_data.clear_range(beg_region, end_region); |
970 | |
971 | // Clear the data used to 'split' regions. |
972 | SplitInfo& split_info = _space_info[id].split_info(); |
973 | if (split_info.is_valid()) { |
974 | split_info.clear(); |
975 | } |
976 | DEBUG_ONLY(split_info.verify_clear();) |
977 | } |
978 | |
979 | void PSParallelCompact::pre_compact() |
980 | { |
981 | // Update the from & to space pointers in space_info, since they are swapped |
982 | // at each young gen gc. Do the update unconditionally (even though a |
983 | // promotion failure does not swap spaces) because an unknown number of young |
984 | // collections will have swapped the spaces an unknown number of times. |
985 | GCTraceTime(Debug, gc, phases) tm("Pre Compact" , &_gc_timer); |
986 | ParallelScavengeHeap* heap = ParallelScavengeHeap::heap(); |
987 | _space_info[from_space_id].set_space(heap->young_gen()->from_space()); |
988 | _space_info[to_space_id].set_space(heap->young_gen()->to_space()); |
989 | |
990 | DEBUG_ONLY(add_obj_count = add_obj_size = 0;) |
991 | DEBUG_ONLY(mark_bitmap_count = mark_bitmap_size = 0;) |
992 | |
993 | // Increment the invocation count |
994 | heap->increment_total_collections(true); |
995 | |
996 | // We need to track unique mark sweep invocations as well. |
997 | _total_invocations++; |
998 | |
999 | heap->print_heap_before_gc(); |
1000 | heap->trace_heap_before_gc(&_gc_tracer); |
1001 | |
1002 | // Fill in TLABs |
1003 | heap->ensure_parsability(true); // retire TLABs |
1004 | |
1005 | if (VerifyBeforeGC && heap->total_collections() >= VerifyGCStartAt) { |
1006 | HandleMark hm; // Discard invalid handles created during verification |
1007 | Universe::verify("Before GC" ); |
1008 | } |
1009 | |
1010 | // Verify object start arrays |
1011 | if (VerifyObjectStartArray && |
1012 | VerifyBeforeGC) { |
1013 | heap->old_gen()->verify_object_start_array(); |
1014 | } |
1015 | |
1016 | DEBUG_ONLY(mark_bitmap()->verify_clear();) |
1017 | DEBUG_ONLY(summary_data().verify_clear();) |
1018 | |
1019 | // Have worker threads release resources the next time they run a task. |
1020 | gc_task_manager()->release_all_resources(); |
1021 | |
1022 | ParCompactionManager::reset_all_bitmap_query_caches(); |
1023 | } |
1024 | |
1025 | void PSParallelCompact::post_compact() |
1026 | { |
1027 | GCTraceTime(Info, gc, phases) tm("Post Compact" , &_gc_timer); |
1028 | |
1029 | for (unsigned int id = old_space_id; id < last_space_id; ++id) { |
1030 | // Clear the marking bitmap, summary data and split info. |
1031 | clear_data_covering_space(SpaceId(id)); |
1032 | // Update top(). Must be done after clearing the bitmap and summary data. |
1033 | _space_info[id].publish_new_top(); |
1034 | } |
1035 | |
1036 | MutableSpace* const eden_space = _space_info[eden_space_id].space(); |
1037 | MutableSpace* const from_space = _space_info[from_space_id].space(); |
1038 | MutableSpace* const to_space = _space_info[to_space_id].space(); |
1039 | |
1040 | ParallelScavengeHeap* heap = ParallelScavengeHeap::heap(); |
1041 | bool eden_empty = eden_space->is_empty(); |
1042 | if (!eden_empty) { |
1043 | eden_empty = absorb_live_data_from_eden(heap->size_policy(), |
1044 | heap->young_gen(), heap->old_gen()); |
1045 | } |
1046 | |
1047 | // Update heap occupancy information which is used as input to the soft ref |
1048 | // clearing policy at the next gc. |
1049 | Universe::update_heap_info_at_gc(); |
1050 | |
1051 | bool young_gen_empty = eden_empty && from_space->is_empty() && |
1052 | to_space->is_empty(); |
1053 | |
1054 | PSCardTable* ct = heap->card_table(); |
1055 | MemRegion old_mr = heap->old_gen()->reserved(); |
1056 | if (young_gen_empty) { |
1057 | ct->clear(MemRegion(old_mr.start(), old_mr.end())); |
1058 | } else { |
1059 | ct->invalidate(MemRegion(old_mr.start(), old_mr.end())); |
1060 | } |
1061 | |
1062 | // Delete metaspaces for unloaded class loaders and clean up loader_data graph |
1063 | ClassLoaderDataGraph::purge(); |
1064 | MetaspaceUtils::verify_metrics(); |
1065 | |
1066 | heap->prune_scavengable_nmethods(); |
1067 | JvmtiExport::gc_epilogue(); |
1068 | |
1069 | #if COMPILER2_OR_JVMCI |
1070 | DerivedPointerTable::update_pointers(); |
1071 | #endif |
1072 | |
1073 | if (ZapUnusedHeapArea) { |
1074 | heap->gen_mangle_unused_area(); |
1075 | } |
1076 | |
1077 | // Update time of last GC |
1078 | reset_millis_since_last_gc(); |
1079 | } |
1080 | |
1081 | HeapWord* |
1082 | PSParallelCompact::compute_dense_prefix_via_density(const SpaceId id, |
1083 | bool maximum_compaction) |
1084 | { |
1085 | const size_t region_size = ParallelCompactData::RegionSize; |
1086 | const ParallelCompactData& sd = summary_data(); |
1087 | |
1088 | const MutableSpace* const space = _space_info[id].space(); |
1089 | HeapWord* const top_aligned_up = sd.region_align_up(space->top()); |
1090 | const RegionData* const beg_cp = sd.addr_to_region_ptr(space->bottom()); |
1091 | const RegionData* const end_cp = sd.addr_to_region_ptr(top_aligned_up); |
1092 | |
1093 | // Skip full regions at the beginning of the space--they are necessarily part |
1094 | // of the dense prefix. |
1095 | size_t full_count = 0; |
1096 | const RegionData* cp; |
1097 | for (cp = beg_cp; cp < end_cp && cp->data_size() == region_size; ++cp) { |
1098 | ++full_count; |
1099 | } |
1100 | |
1101 | assert(total_invocations() >= _maximum_compaction_gc_num, "sanity" ); |
1102 | const size_t gcs_since_max = total_invocations() - _maximum_compaction_gc_num; |
1103 | const bool interval_ended = gcs_since_max > HeapMaximumCompactionInterval; |
1104 | if (maximum_compaction || cp == end_cp || interval_ended) { |
1105 | _maximum_compaction_gc_num = total_invocations(); |
1106 | return sd.region_to_addr(cp); |
1107 | } |
1108 | |
1109 | HeapWord* const new_top = _space_info[id].new_top(); |
1110 | const size_t space_live = pointer_delta(new_top, space->bottom()); |
1111 | const size_t space_used = space->used_in_words(); |
1112 | const size_t space_capacity = space->capacity_in_words(); |
1113 | |
1114 | const double cur_density = double(space_live) / space_capacity; |
1115 | const double deadwood_density = |
1116 | (1.0 - cur_density) * (1.0 - cur_density) * cur_density * cur_density; |
1117 | const size_t deadwood_goal = size_t(space_capacity * deadwood_density); |
1118 | |
1119 | if (TraceParallelOldGCDensePrefix) { |
1120 | tty->print_cr("cur_dens=%5.3f dw_dens=%5.3f dw_goal=" SIZE_FORMAT, |
1121 | cur_density, deadwood_density, deadwood_goal); |
1122 | tty->print_cr("space_live=" SIZE_FORMAT " " "space_used=" SIZE_FORMAT " " |
1123 | "space_cap=" SIZE_FORMAT, |
1124 | space_live, space_used, |
1125 | space_capacity); |
1126 | } |
1127 | |
1128 | // XXX - Use binary search? |
1129 | HeapWord* dense_prefix = sd.region_to_addr(cp); |
1130 | const RegionData* full_cp = cp; |
1131 | const RegionData* const top_cp = sd.addr_to_region_ptr(space->top() - 1); |
1132 | while (cp < end_cp) { |
1133 | HeapWord* region_destination = cp->destination(); |
1134 | const size_t cur_deadwood = pointer_delta(dense_prefix, region_destination); |
1135 | if (TraceParallelOldGCDensePrefix && Verbose) { |
1136 | tty->print_cr("c#=" SIZE_FORMAT_W(4) " dst=" PTR_FORMAT " " |
1137 | "dp=" PTR_FORMAT " " "cdw=" SIZE_FORMAT_W(8), |
1138 | sd.region(cp), p2i(region_destination), |
1139 | p2i(dense_prefix), cur_deadwood); |
1140 | } |
1141 | |
1142 | if (cur_deadwood >= deadwood_goal) { |
1143 | // Found the region that has the correct amount of deadwood to the left. |
1144 | // This typically occurs after crossing a fairly sparse set of regions, so |
1145 | // iterate backwards over those sparse regions, looking for the region |
1146 | // that has the lowest density of live objects 'to the right.' |
1147 | size_t space_to_left = sd.region(cp) * region_size; |
1148 | size_t live_to_left = space_to_left - cur_deadwood; |
1149 | size_t space_to_right = space_capacity - space_to_left; |
1150 | size_t live_to_right = space_live - live_to_left; |
1151 | double density_to_right = double(live_to_right) / space_to_right; |
1152 | while (cp > full_cp) { |
1153 | --cp; |
1154 | const size_t prev_region_live_to_right = live_to_right - |
1155 | cp->data_size(); |
1156 | const size_t prev_region_space_to_right = space_to_right + region_size; |
1157 | double prev_region_density_to_right = |
1158 | double(prev_region_live_to_right) / prev_region_space_to_right; |
1159 | if (density_to_right <= prev_region_density_to_right) { |
1160 | return dense_prefix; |
1161 | } |
1162 | if (TraceParallelOldGCDensePrefix && Verbose) { |
1163 | tty->print_cr("backing up from c=" SIZE_FORMAT_W(4) " d2r=%10.8f " |
1164 | "pc_d2r=%10.8f" , sd.region(cp), density_to_right, |
1165 | prev_region_density_to_right); |
1166 | } |
1167 | dense_prefix -= region_size; |
1168 | live_to_right = prev_region_live_to_right; |
1169 | space_to_right = prev_region_space_to_right; |
1170 | density_to_right = prev_region_density_to_right; |
1171 | } |
1172 | return dense_prefix; |
1173 | } |
1174 | |
1175 | dense_prefix += region_size; |
1176 | ++cp; |
1177 | } |
1178 | |
1179 | return dense_prefix; |
1180 | } |
1181 | |
1182 | #ifndef PRODUCT |
1183 | void PSParallelCompact::print_dense_prefix_stats(const char* const algorithm, |
1184 | const SpaceId id, |
1185 | const bool maximum_compaction, |
1186 | HeapWord* const addr) |
1187 | { |
1188 | const size_t region_idx = summary_data().addr_to_region_idx(addr); |
1189 | RegionData* const cp = summary_data().region(region_idx); |
1190 | const MutableSpace* const space = _space_info[id].space(); |
1191 | HeapWord* const new_top = _space_info[id].new_top(); |
1192 | |
1193 | const size_t space_live = pointer_delta(new_top, space->bottom()); |
1194 | const size_t dead_to_left = pointer_delta(addr, cp->destination()); |
1195 | const size_t space_cap = space->capacity_in_words(); |
1196 | const double dead_to_left_pct = double(dead_to_left) / space_cap; |
1197 | const size_t live_to_right = new_top - cp->destination(); |
1198 | const size_t dead_to_right = space->top() - addr - live_to_right; |
1199 | |
1200 | tty->print_cr("%s=" PTR_FORMAT " dpc=" SIZE_FORMAT_W(5) " " |
1201 | "spl=" SIZE_FORMAT " " |
1202 | "d2l=" SIZE_FORMAT " d2l%%=%6.4f " |
1203 | "d2r=" SIZE_FORMAT " l2r=" SIZE_FORMAT |
1204 | " ratio=%10.8f" , |
1205 | algorithm, p2i(addr), region_idx, |
1206 | space_live, |
1207 | dead_to_left, dead_to_left_pct, |
1208 | dead_to_right, live_to_right, |
1209 | double(dead_to_right) / live_to_right); |
1210 | } |
1211 | #endif // #ifndef PRODUCT |
1212 | |
1213 | // Return a fraction indicating how much of the generation can be treated as |
1214 | // "dead wood" (i.e., not reclaimed). The function uses a normal distribution |
1215 | // based on the density of live objects in the generation to determine a limit, |
1216 | // which is then adjusted so the return value is min_percent when the density is |
1217 | // 1. |
1218 | // |
1219 | // The following table shows some return values for a different values of the |
1220 | // standard deviation (ParallelOldDeadWoodLimiterStdDev); the mean is 0.5 and |
1221 | // min_percent is 1. |
1222 | // |
1223 | // fraction allowed as dead wood |
1224 | // ----------------------------------------------------------------- |
1225 | // density std_dev=70 std_dev=75 std_dev=80 std_dev=85 std_dev=90 std_dev=95 |
1226 | // ------- ---------- ---------- ---------- ---------- ---------- ---------- |
1227 | // 0.00000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000 |
1228 | // 0.05000 0.03193096 0.02836880 0.02550828 0.02319280 0.02130337 0.01974941 |
1229 | // 0.10000 0.05247504 0.04547452 0.03988045 0.03537016 0.03170171 0.02869272 |
1230 | // 0.15000 0.07135702 0.06111390 0.05296419 0.04641639 0.04110601 0.03676066 |
1231 | // 0.20000 0.08831616 0.07509618 0.06461766 0.05622444 0.04943437 0.04388975 |
1232 | // 0.25000 0.10311208 0.08724696 0.07471205 0.06469760 0.05661313 0.05002313 |
1233 | // 0.30000 0.11553050 0.09741183 0.08313394 0.07175114 0.06257797 0.05511132 |
1234 | // 0.35000 0.12538832 0.10545958 0.08978741 0.07731366 0.06727491 0.05911289 |
1235 | // 0.40000 0.13253818 0.11128511 0.09459590 0.08132834 0.07066107 0.06199500 |
1236 | // 0.45000 0.13687208 0.11481163 0.09750361 0.08375387 0.07270534 0.06373386 |
1237 | // 0.50000 0.13832410 0.11599237 0.09847664 0.08456518 0.07338887 0.06431510 |
1238 | // 0.55000 0.13687208 0.11481163 0.09750361 0.08375387 0.07270534 0.06373386 |
1239 | // 0.60000 0.13253818 0.11128511 0.09459590 0.08132834 0.07066107 0.06199500 |
1240 | // 0.65000 0.12538832 0.10545958 0.08978741 0.07731366 0.06727491 0.05911289 |
1241 | // 0.70000 0.11553050 0.09741183 0.08313394 0.07175114 0.06257797 0.05511132 |
1242 | // 0.75000 0.10311208 0.08724696 0.07471205 0.06469760 0.05661313 0.05002313 |
1243 | // 0.80000 0.08831616 0.07509618 0.06461766 0.05622444 0.04943437 0.04388975 |
1244 | // 0.85000 0.07135702 0.06111390 0.05296419 0.04641639 0.04110601 0.03676066 |
1245 | // 0.90000 0.05247504 0.04547452 0.03988045 0.03537016 0.03170171 0.02869272 |
1246 | // 0.95000 0.03193096 0.02836880 0.02550828 0.02319280 0.02130337 0.01974941 |
1247 | // 1.00000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000 |
1248 | |
1249 | double PSParallelCompact::dead_wood_limiter(double density, size_t min_percent) |
1250 | { |
1251 | assert(_dwl_initialized, "uninitialized" ); |
1252 | |
1253 | // The raw limit is the value of the normal distribution at x = density. |
1254 | const double raw_limit = normal_distribution(density); |
1255 | |
1256 | // Adjust the raw limit so it becomes the minimum when the density is 1. |
1257 | // |
1258 | // First subtract the adjustment value (which is simply the precomputed value |
1259 | // normal_distribution(1.0)); this yields a value of 0 when the density is 1. |
1260 | // Then add the minimum value, so the minimum is returned when the density is |
1261 | // 1. Finally, prevent negative values, which occur when the mean is not 0.5. |
1262 | const double min = double(min_percent) / 100.0; |
1263 | const double limit = raw_limit - _dwl_adjustment + min; |
1264 | return MAX2(limit, 0.0); |
1265 | } |
1266 | |
1267 | ParallelCompactData::RegionData* |
1268 | PSParallelCompact::first_dead_space_region(const RegionData* beg, |
1269 | const RegionData* end) |
1270 | { |
1271 | const size_t region_size = ParallelCompactData::RegionSize; |
1272 | ParallelCompactData& sd = summary_data(); |
1273 | size_t left = sd.region(beg); |
1274 | size_t right = end > beg ? sd.region(end) - 1 : left; |
1275 | |
1276 | // Binary search. |
1277 | while (left < right) { |
1278 | // Equivalent to (left + right) / 2, but does not overflow. |
1279 | const size_t middle = left + (right - left) / 2; |
1280 | RegionData* const middle_ptr = sd.region(middle); |
1281 | HeapWord* const dest = middle_ptr->destination(); |
1282 | HeapWord* const addr = sd.region_to_addr(middle); |
1283 | assert(dest != NULL, "sanity" ); |
1284 | assert(dest <= addr, "must move left" ); |
1285 | |
1286 | if (middle > left && dest < addr) { |
1287 | right = middle - 1; |
1288 | } else if (middle < right && middle_ptr->data_size() == region_size) { |
1289 | left = middle + 1; |
1290 | } else { |
1291 | return middle_ptr; |
1292 | } |
1293 | } |
1294 | return sd.region(left); |
1295 | } |
1296 | |
1297 | ParallelCompactData::RegionData* |
1298 | PSParallelCompact::dead_wood_limit_region(const RegionData* beg, |
1299 | const RegionData* end, |
1300 | size_t dead_words) |
1301 | { |
1302 | ParallelCompactData& sd = summary_data(); |
1303 | size_t left = sd.region(beg); |
1304 | size_t right = end > beg ? sd.region(end) - 1 : left; |
1305 | |
1306 | // Binary search. |
1307 | while (left < right) { |
1308 | // Equivalent to (left + right) / 2, but does not overflow. |
1309 | const size_t middle = left + (right - left) / 2; |
1310 | RegionData* const middle_ptr = sd.region(middle); |
1311 | HeapWord* const dest = middle_ptr->destination(); |
1312 | HeapWord* const addr = sd.region_to_addr(middle); |
1313 | assert(dest != NULL, "sanity" ); |
1314 | assert(dest <= addr, "must move left" ); |
1315 | |
1316 | const size_t dead_to_left = pointer_delta(addr, dest); |
1317 | if (middle > left && dead_to_left > dead_words) { |
1318 | right = middle - 1; |
1319 | } else if (middle < right && dead_to_left < dead_words) { |
1320 | left = middle + 1; |
1321 | } else { |
1322 | return middle_ptr; |
1323 | } |
1324 | } |
1325 | return sd.region(left); |
1326 | } |
1327 | |
1328 | // The result is valid during the summary phase, after the initial summarization |
1329 | // of each space into itself, and before final summarization. |
1330 | inline double |
1331 | PSParallelCompact::reclaimed_ratio(const RegionData* const cp, |
1332 | HeapWord* const bottom, |
1333 | HeapWord* const top, |
1334 | HeapWord* const new_top) |
1335 | { |
1336 | ParallelCompactData& sd = summary_data(); |
1337 | |
1338 | assert(cp != NULL, "sanity" ); |
1339 | assert(bottom != NULL, "sanity" ); |
1340 | assert(top != NULL, "sanity" ); |
1341 | assert(new_top != NULL, "sanity" ); |
1342 | assert(top >= new_top, "summary data problem?" ); |
1343 | assert(new_top > bottom, "space is empty; should not be here" ); |
1344 | assert(new_top >= cp->destination(), "sanity" ); |
1345 | assert(top >= sd.region_to_addr(cp), "sanity" ); |
1346 | |
1347 | HeapWord* const destination = cp->destination(); |
1348 | const size_t dense_prefix_live = pointer_delta(destination, bottom); |
1349 | const size_t compacted_region_live = pointer_delta(new_top, destination); |
1350 | const size_t compacted_region_used = pointer_delta(top, |
1351 | sd.region_to_addr(cp)); |
1352 | const size_t reclaimable = compacted_region_used - compacted_region_live; |
1353 | |
1354 | const double divisor = dense_prefix_live + 1.25 * compacted_region_live; |
1355 | return double(reclaimable) / divisor; |
1356 | } |
1357 | |
1358 | // Return the address of the end of the dense prefix, a.k.a. the start of the |
1359 | // compacted region. The address is always on a region boundary. |
1360 | // |
1361 | // Completely full regions at the left are skipped, since no compaction can |
1362 | // occur in those regions. Then the maximum amount of dead wood to allow is |
1363 | // computed, based on the density (amount live / capacity) of the generation; |
1364 | // the region with approximately that amount of dead space to the left is |
1365 | // identified as the limit region. Regions between the last completely full |
1366 | // region and the limit region are scanned and the one that has the best |
1367 | // (maximum) reclaimed_ratio() is selected. |
1368 | HeapWord* |
1369 | PSParallelCompact::compute_dense_prefix(const SpaceId id, |
1370 | bool maximum_compaction) |
1371 | { |
1372 | const size_t region_size = ParallelCompactData::RegionSize; |
1373 | const ParallelCompactData& sd = summary_data(); |
1374 | |
1375 | const MutableSpace* const space = _space_info[id].space(); |
1376 | HeapWord* const top = space->top(); |
1377 | HeapWord* const top_aligned_up = sd.region_align_up(top); |
1378 | HeapWord* const new_top = _space_info[id].new_top(); |
1379 | HeapWord* const new_top_aligned_up = sd.region_align_up(new_top); |
1380 | HeapWord* const bottom = space->bottom(); |
1381 | const RegionData* const beg_cp = sd.addr_to_region_ptr(bottom); |
1382 | const RegionData* const top_cp = sd.addr_to_region_ptr(top_aligned_up); |
1383 | const RegionData* const new_top_cp = |
1384 | sd.addr_to_region_ptr(new_top_aligned_up); |
1385 | |
1386 | // Skip full regions at the beginning of the space--they are necessarily part |
1387 | // of the dense prefix. |
1388 | const RegionData* const full_cp = first_dead_space_region(beg_cp, new_top_cp); |
1389 | assert(full_cp->destination() == sd.region_to_addr(full_cp) || |
1390 | space->is_empty(), "no dead space allowed to the left" ); |
1391 | assert(full_cp->data_size() < region_size || full_cp == new_top_cp - 1, |
1392 | "region must have dead space" ); |
1393 | |
1394 | // The gc number is saved whenever a maximum compaction is done, and used to |
1395 | // determine when the maximum compaction interval has expired. This avoids |
1396 | // successive max compactions for different reasons. |
1397 | assert(total_invocations() >= _maximum_compaction_gc_num, "sanity" ); |
1398 | const size_t gcs_since_max = total_invocations() - _maximum_compaction_gc_num; |
1399 | const bool interval_ended = gcs_since_max > HeapMaximumCompactionInterval || |
1400 | total_invocations() == HeapFirstMaximumCompactionCount; |
1401 | if (maximum_compaction || full_cp == top_cp || interval_ended) { |
1402 | _maximum_compaction_gc_num = total_invocations(); |
1403 | return sd.region_to_addr(full_cp); |
1404 | } |
1405 | |
1406 | const size_t space_live = pointer_delta(new_top, bottom); |
1407 | const size_t space_used = space->used_in_words(); |
1408 | const size_t space_capacity = space->capacity_in_words(); |
1409 | |
1410 | const double density = double(space_live) / double(space_capacity); |
1411 | const size_t min_percent_free = MarkSweepDeadRatio; |
1412 | const double limiter = dead_wood_limiter(density, min_percent_free); |
1413 | const size_t dead_wood_max = space_used - space_live; |
1414 | const size_t dead_wood_limit = MIN2(size_t(space_capacity * limiter), |
1415 | dead_wood_max); |
1416 | |
1417 | if (TraceParallelOldGCDensePrefix) { |
1418 | tty->print_cr("space_live=" SIZE_FORMAT " " "space_used=" SIZE_FORMAT " " |
1419 | "space_cap=" SIZE_FORMAT, |
1420 | space_live, space_used, |
1421 | space_capacity); |
1422 | tty->print_cr("dead_wood_limiter(%6.4f, " SIZE_FORMAT ")=%6.4f " |
1423 | "dead_wood_max=" SIZE_FORMAT " dead_wood_limit=" SIZE_FORMAT, |
1424 | density, min_percent_free, limiter, |
1425 | dead_wood_max, dead_wood_limit); |
1426 | } |
1427 | |
1428 | // Locate the region with the desired amount of dead space to the left. |
1429 | const RegionData* const limit_cp = |
1430 | dead_wood_limit_region(full_cp, top_cp, dead_wood_limit); |
1431 | |
1432 | // Scan from the first region with dead space to the limit region and find the |
1433 | // one with the best (largest) reclaimed ratio. |
1434 | double best_ratio = 0.0; |
1435 | const RegionData* best_cp = full_cp; |
1436 | for (const RegionData* cp = full_cp; cp < limit_cp; ++cp) { |
1437 | double tmp_ratio = reclaimed_ratio(cp, bottom, top, new_top); |
1438 | if (tmp_ratio > best_ratio) { |
1439 | best_cp = cp; |
1440 | best_ratio = tmp_ratio; |
1441 | } |
1442 | } |
1443 | |
1444 | return sd.region_to_addr(best_cp); |
1445 | } |
1446 | |
1447 | void PSParallelCompact::summarize_spaces_quick() |
1448 | { |
1449 | for (unsigned int i = 0; i < last_space_id; ++i) { |
1450 | const MutableSpace* space = _space_info[i].space(); |
1451 | HeapWord** nta = _space_info[i].new_top_addr(); |
1452 | bool result = _summary_data.summarize(_space_info[i].split_info(), |
1453 | space->bottom(), space->top(), NULL, |
1454 | space->bottom(), space->end(), nta); |
1455 | assert(result, "space must fit into itself" ); |
1456 | _space_info[i].set_dense_prefix(space->bottom()); |
1457 | } |
1458 | } |
1459 | |
1460 | void PSParallelCompact::fill_dense_prefix_end(SpaceId id) |
1461 | { |
1462 | HeapWord* const dense_prefix_end = dense_prefix(id); |
1463 | const RegionData* region = _summary_data.addr_to_region_ptr(dense_prefix_end); |
1464 | const idx_t dense_prefix_bit = _mark_bitmap.addr_to_bit(dense_prefix_end); |
1465 | if (dead_space_crosses_boundary(region, dense_prefix_bit)) { |
1466 | // Only enough dead space is filled so that any remaining dead space to the |
1467 | // left is larger than the minimum filler object. (The remainder is filled |
1468 | // during the copy/update phase.) |
1469 | // |
1470 | // The size of the dead space to the right of the boundary is not a |
1471 | // concern, since compaction will be able to use whatever space is |
1472 | // available. |
1473 | // |
1474 | // Here '||' is the boundary, 'x' represents a don't care bit and a box |
1475 | // surrounds the space to be filled with an object. |
1476 | // |
1477 | // In the 32-bit VM, each bit represents two 32-bit words: |
1478 | // +---+ |
1479 | // a) beg_bits: ... x x x | 0 | || 0 x x ... |
1480 | // end_bits: ... x x x | 0 | || 0 x x ... |
1481 | // +---+ |
1482 | // |
1483 | // In the 64-bit VM, each bit represents one 64-bit word: |
1484 | // +------------+ |
1485 | // b) beg_bits: ... x x x | 0 || 0 | x x ... |
1486 | // end_bits: ... x x 1 | 0 || 0 | x x ... |
1487 | // +------------+ |
1488 | // +-------+ |
1489 | // c) beg_bits: ... x x | 0 0 | || 0 x x ... |
1490 | // end_bits: ... x 1 | 0 0 | || 0 x x ... |
1491 | // +-------+ |
1492 | // +-----------+ |
1493 | // d) beg_bits: ... x | 0 0 0 | || 0 x x ... |
1494 | // end_bits: ... 1 | 0 0 0 | || 0 x x ... |
1495 | // +-----------+ |
1496 | // +-------+ |
1497 | // e) beg_bits: ... 0 0 | 0 0 | || 0 x x ... |
1498 | // end_bits: ... 0 0 | 0 0 | || 0 x x ... |
1499 | // +-------+ |
1500 | |
1501 | // Initially assume case a, c or e will apply. |
1502 | size_t obj_len = CollectedHeap::min_fill_size(); |
1503 | HeapWord* obj_beg = dense_prefix_end - obj_len; |
1504 | |
1505 | #ifdef _LP64 |
1506 | if (MinObjAlignment > 1) { // object alignment > heap word size |
1507 | // Cases a, c or e. |
1508 | } else if (_mark_bitmap.is_obj_end(dense_prefix_bit - 2)) { |
1509 | // Case b above. |
1510 | obj_beg = dense_prefix_end - 1; |
1511 | } else if (!_mark_bitmap.is_obj_end(dense_prefix_bit - 3) && |
1512 | _mark_bitmap.is_obj_end(dense_prefix_bit - 4)) { |
1513 | // Case d above. |
1514 | obj_beg = dense_prefix_end - 3; |
1515 | obj_len = 3; |
1516 | } |
1517 | #endif // #ifdef _LP64 |
1518 | |
1519 | CollectedHeap::fill_with_object(obj_beg, obj_len); |
1520 | _mark_bitmap.mark_obj(obj_beg, obj_len); |
1521 | _summary_data.add_obj(obj_beg, obj_len); |
1522 | assert(start_array(id) != NULL, "sanity" ); |
1523 | start_array(id)->allocate_block(obj_beg); |
1524 | } |
1525 | } |
1526 | |
1527 | void |
1528 | PSParallelCompact::summarize_space(SpaceId id, bool maximum_compaction) |
1529 | { |
1530 | assert(id < last_space_id, "id out of range" ); |
1531 | assert(_space_info[id].dense_prefix() == _space_info[id].space()->bottom(), |
1532 | "should have been reset in summarize_spaces_quick()" ); |
1533 | |
1534 | const MutableSpace* space = _space_info[id].space(); |
1535 | if (_space_info[id].new_top() != space->bottom()) { |
1536 | HeapWord* dense_prefix_end = compute_dense_prefix(id, maximum_compaction); |
1537 | _space_info[id].set_dense_prefix(dense_prefix_end); |
1538 | |
1539 | #ifndef PRODUCT |
1540 | if (TraceParallelOldGCDensePrefix) { |
1541 | print_dense_prefix_stats("ratio" , id, maximum_compaction, |
1542 | dense_prefix_end); |
1543 | HeapWord* addr = compute_dense_prefix_via_density(id, maximum_compaction); |
1544 | print_dense_prefix_stats("density" , id, maximum_compaction, addr); |
1545 | } |
1546 | #endif // #ifndef PRODUCT |
1547 | |
1548 | // Recompute the summary data, taking into account the dense prefix. If |
1549 | // every last byte will be reclaimed, then the existing summary data which |
1550 | // compacts everything can be left in place. |
1551 | if (!maximum_compaction && dense_prefix_end != space->bottom()) { |
1552 | // If dead space crosses the dense prefix boundary, it is (at least |
1553 | // partially) filled with a dummy object, marked live and added to the |
1554 | // summary data. This simplifies the copy/update phase and must be done |
1555 | // before the final locations of objects are determined, to prevent |
1556 | // leaving a fragment of dead space that is too small to fill. |
1557 | fill_dense_prefix_end(id); |
1558 | |
1559 | // Compute the destination of each Region, and thus each object. |
1560 | _summary_data.summarize_dense_prefix(space->bottom(), dense_prefix_end); |
1561 | _summary_data.summarize(_space_info[id].split_info(), |
1562 | dense_prefix_end, space->top(), NULL, |
1563 | dense_prefix_end, space->end(), |
1564 | _space_info[id].new_top_addr()); |
1565 | } |
1566 | } |
1567 | |
1568 | if (log_develop_is_enabled(Trace, gc, compaction)) { |
1569 | const size_t region_size = ParallelCompactData::RegionSize; |
1570 | HeapWord* const dense_prefix_end = _space_info[id].dense_prefix(); |
1571 | const size_t dp_region = _summary_data.addr_to_region_idx(dense_prefix_end); |
1572 | const size_t dp_words = pointer_delta(dense_prefix_end, space->bottom()); |
1573 | HeapWord* const new_top = _space_info[id].new_top(); |
1574 | const HeapWord* nt_aligned_up = _summary_data.region_align_up(new_top); |
1575 | const size_t cr_words = pointer_delta(nt_aligned_up, dense_prefix_end); |
1576 | log_develop_trace(gc, compaction)( |
1577 | "id=%d cap=" SIZE_FORMAT " dp=" PTR_FORMAT " " |
1578 | "dp_region=" SIZE_FORMAT " " "dp_count=" SIZE_FORMAT " " |
1579 | "cr_count=" SIZE_FORMAT " " "nt=" PTR_FORMAT, |
1580 | id, space->capacity_in_words(), p2i(dense_prefix_end), |
1581 | dp_region, dp_words / region_size, |
1582 | cr_words / region_size, p2i(new_top)); |
1583 | } |
1584 | } |
1585 | |
1586 | #ifndef PRODUCT |
1587 | void PSParallelCompact::summary_phase_msg(SpaceId dst_space_id, |
1588 | HeapWord* dst_beg, HeapWord* dst_end, |
1589 | SpaceId src_space_id, |
1590 | HeapWord* src_beg, HeapWord* src_end) |
1591 | { |
1592 | log_develop_trace(gc, compaction)( |
1593 | "Summarizing %d [%s] into %d [%s]: " |
1594 | "src=" PTR_FORMAT "-" PTR_FORMAT " " |
1595 | SIZE_FORMAT "-" SIZE_FORMAT " " |
1596 | "dst=" PTR_FORMAT "-" PTR_FORMAT " " |
1597 | SIZE_FORMAT "-" SIZE_FORMAT, |
1598 | src_space_id, space_names[src_space_id], |
1599 | dst_space_id, space_names[dst_space_id], |
1600 | p2i(src_beg), p2i(src_end), |
1601 | _summary_data.addr_to_region_idx(src_beg), |
1602 | _summary_data.addr_to_region_idx(src_end), |
1603 | p2i(dst_beg), p2i(dst_end), |
1604 | _summary_data.addr_to_region_idx(dst_beg), |
1605 | _summary_data.addr_to_region_idx(dst_end)); |
1606 | } |
1607 | #endif // #ifndef PRODUCT |
1608 | |
1609 | void PSParallelCompact::summary_phase(ParCompactionManager* cm, |
1610 | bool maximum_compaction) |
1611 | { |
1612 | GCTraceTime(Info, gc, phases) tm("Summary Phase" , &_gc_timer); |
1613 | |
1614 | #ifdef ASSERT |
1615 | if (TraceParallelOldGCMarkingPhase) { |
1616 | tty->print_cr("add_obj_count=" SIZE_FORMAT " " |
1617 | "add_obj_bytes=" SIZE_FORMAT, |
1618 | add_obj_count, add_obj_size * HeapWordSize); |
1619 | tty->print_cr("mark_bitmap_count=" SIZE_FORMAT " " |
1620 | "mark_bitmap_bytes=" SIZE_FORMAT, |
1621 | mark_bitmap_count, mark_bitmap_size * HeapWordSize); |
1622 | } |
1623 | #endif // #ifdef ASSERT |
1624 | |
1625 | // Quick summarization of each space into itself, to see how much is live. |
1626 | summarize_spaces_quick(); |
1627 | |
1628 | log_develop_trace(gc, compaction)("summary phase: after summarizing each space to self" ); |
1629 | NOT_PRODUCT(print_region_ranges()); |
1630 | NOT_PRODUCT(print_initial_summary_data(_summary_data, _space_info)); |
1631 | |
1632 | // The amount of live data that will end up in old space (assuming it fits). |
1633 | size_t old_space_total_live = 0; |
1634 | for (unsigned int id = old_space_id; id < last_space_id; ++id) { |
1635 | old_space_total_live += pointer_delta(_space_info[id].new_top(), |
1636 | _space_info[id].space()->bottom()); |
1637 | } |
1638 | |
1639 | MutableSpace* const old_space = _space_info[old_space_id].space(); |
1640 | const size_t old_capacity = old_space->capacity_in_words(); |
1641 | if (old_space_total_live > old_capacity) { |
1642 | // XXX - should also try to expand |
1643 | maximum_compaction = true; |
1644 | } |
1645 | |
1646 | // Old generations. |
1647 | summarize_space(old_space_id, maximum_compaction); |
1648 | |
1649 | // Summarize the remaining spaces in the young gen. The initial target space |
1650 | // is the old gen. If a space does not fit entirely into the target, then the |
1651 | // remainder is compacted into the space itself and that space becomes the new |
1652 | // target. |
1653 | SpaceId dst_space_id = old_space_id; |
1654 | HeapWord* dst_space_end = old_space->end(); |
1655 | HeapWord** new_top_addr = _space_info[dst_space_id].new_top_addr(); |
1656 | for (unsigned int id = eden_space_id; id < last_space_id; ++id) { |
1657 | const MutableSpace* space = _space_info[id].space(); |
1658 | const size_t live = pointer_delta(_space_info[id].new_top(), |
1659 | space->bottom()); |
1660 | const size_t available = pointer_delta(dst_space_end, *new_top_addr); |
1661 | |
1662 | NOT_PRODUCT(summary_phase_msg(dst_space_id, *new_top_addr, dst_space_end, |
1663 | SpaceId(id), space->bottom(), space->top());) |
1664 | if (live > 0 && live <= available) { |
1665 | // All the live data will fit. |
1666 | bool done = _summary_data.summarize(_space_info[id].split_info(), |
1667 | space->bottom(), space->top(), |
1668 | NULL, |
1669 | *new_top_addr, dst_space_end, |
1670 | new_top_addr); |
1671 | assert(done, "space must fit into old gen" ); |
1672 | |
1673 | // Reset the new_top value for the space. |
1674 | _space_info[id].set_new_top(space->bottom()); |
1675 | } else if (live > 0) { |
1676 | // Attempt to fit part of the source space into the target space. |
1677 | HeapWord* next_src_addr = NULL; |
1678 | bool done = _summary_data.summarize(_space_info[id].split_info(), |
1679 | space->bottom(), space->top(), |
1680 | &next_src_addr, |
1681 | *new_top_addr, dst_space_end, |
1682 | new_top_addr); |
1683 | assert(!done, "space should not fit into old gen" ); |
1684 | assert(next_src_addr != NULL, "sanity" ); |
1685 | |
1686 | // The source space becomes the new target, so the remainder is compacted |
1687 | // within the space itself. |
1688 | dst_space_id = SpaceId(id); |
1689 | dst_space_end = space->end(); |
1690 | new_top_addr = _space_info[id].new_top_addr(); |
1691 | NOT_PRODUCT(summary_phase_msg(dst_space_id, |
1692 | space->bottom(), dst_space_end, |
1693 | SpaceId(id), next_src_addr, space->top());) |
1694 | done = _summary_data.summarize(_space_info[id].split_info(), |
1695 | next_src_addr, space->top(), |
1696 | NULL, |
1697 | space->bottom(), dst_space_end, |
1698 | new_top_addr); |
1699 | assert(done, "space must fit when compacted into itself" ); |
1700 | assert(*new_top_addr <= space->top(), "usage should not grow" ); |
1701 | } |
1702 | } |
1703 | |
1704 | log_develop_trace(gc, compaction)("Summary_phase: after final summarization" ); |
1705 | NOT_PRODUCT(print_region_ranges()); |
1706 | NOT_PRODUCT(print_initial_summary_data(_summary_data, _space_info)); |
1707 | } |
1708 | |
1709 | // This method should contain all heap-specific policy for invoking a full |
1710 | // collection. invoke_no_policy() will only attempt to compact the heap; it |
1711 | // will do nothing further. If we need to bail out for policy reasons, scavenge |
1712 | // before full gc, or any other specialized behavior, it needs to be added here. |
1713 | // |
1714 | // Note that this method should only be called from the vm_thread while at a |
1715 | // safepoint. |
1716 | // |
1717 | // Note that the all_soft_refs_clear flag in the soft ref policy |
1718 | // may be true because this method can be called without intervening |
1719 | // activity. For example when the heap space is tight and full measure |
1720 | // are being taken to free space. |
1721 | void PSParallelCompact::invoke(bool maximum_heap_compaction) { |
1722 | assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint" ); |
1723 | assert(Thread::current() == (Thread*)VMThread::vm_thread(), |
1724 | "should be in vm thread" ); |
1725 | |
1726 | ParallelScavengeHeap* heap = ParallelScavengeHeap::heap(); |
1727 | GCCause::Cause gc_cause = heap->gc_cause(); |
1728 | assert(!heap->is_gc_active(), "not reentrant" ); |
1729 | |
1730 | PSAdaptiveSizePolicy* policy = heap->size_policy(); |
1731 | IsGCActiveMark mark; |
1732 | |
1733 | if (ScavengeBeforeFullGC) { |
1734 | PSScavenge::invoke_no_policy(); |
1735 | } |
1736 | |
1737 | const bool clear_all_soft_refs = |
1738 | heap->soft_ref_policy()->should_clear_all_soft_refs(); |
1739 | |
1740 | PSParallelCompact::invoke_no_policy(clear_all_soft_refs || |
1741 | maximum_heap_compaction); |
1742 | } |
1743 | |
1744 | // This method contains no policy. You should probably |
1745 | // be calling invoke() instead. |
1746 | bool PSParallelCompact::invoke_no_policy(bool maximum_heap_compaction) { |
1747 | assert(SafepointSynchronize::is_at_safepoint(), "must be at a safepoint" ); |
1748 | assert(ref_processor() != NULL, "Sanity" ); |
1749 | |
1750 | if (GCLocker::check_active_before_gc()) { |
1751 | return false; |
1752 | } |
1753 | |
1754 | ParallelScavengeHeap* heap = ParallelScavengeHeap::heap(); |
1755 | |
1756 | GCIdMark gc_id_mark; |
1757 | _gc_timer.register_gc_start(); |
1758 | _gc_tracer.report_gc_start(heap->gc_cause(), _gc_timer.gc_start()); |
1759 | |
1760 | TimeStamp marking_start; |
1761 | TimeStamp compaction_start; |
1762 | TimeStamp collection_exit; |
1763 | |
1764 | GCCause::Cause gc_cause = heap->gc_cause(); |
1765 | PSYoungGen* young_gen = heap->young_gen(); |
1766 | PSOldGen* old_gen = heap->old_gen(); |
1767 | PSAdaptiveSizePolicy* size_policy = heap->size_policy(); |
1768 | |
1769 | // The scope of casr should end after code that can change |
1770 | // SoftRefPolicy::_should_clear_all_soft_refs. |
1771 | ClearedAllSoftRefs casr(maximum_heap_compaction, |
1772 | heap->soft_ref_policy()); |
1773 | |
1774 | if (ZapUnusedHeapArea) { |
1775 | // Save information needed to minimize mangling |
1776 | heap->record_gen_tops_before_GC(); |
1777 | } |
1778 | |
1779 | // Make sure data structures are sane, make the heap parsable, and do other |
1780 | // miscellaneous bookkeeping. |
1781 | pre_compact(); |
1782 | |
1783 | PreGCValues pre_gc_values(heap); |
1784 | |
1785 | // Get the compaction manager reserved for the VM thread. |
1786 | ParCompactionManager* const vmthread_cm = |
1787 | ParCompactionManager::manager_array(gc_task_manager()->workers()); |
1788 | |
1789 | { |
1790 | ResourceMark rm; |
1791 | HandleMark hm; |
1792 | |
1793 | // Set the number of GC threads to be used in this collection |
1794 | gc_task_manager()->set_active_gang(); |
1795 | gc_task_manager()->task_idle_workers(); |
1796 | |
1797 | GCTraceCPUTime tcpu; |
1798 | GCTraceTime(Info, gc) tm("Pause Full" , NULL, gc_cause, true); |
1799 | |
1800 | heap->pre_full_gc_dump(&_gc_timer); |
1801 | |
1802 | TraceCollectorStats tcs(counters()); |
1803 | TraceMemoryManagerStats tms(heap->old_gc_manager(), gc_cause); |
1804 | |
1805 | if (log_is_enabled(Debug, gc, heap, exit)) { |
1806 | accumulated_time()->start(); |
1807 | } |
1808 | |
1809 | // Let the size policy know we're starting |
1810 | size_policy->major_collection_begin(); |
1811 | |
1812 | #if COMPILER2_OR_JVMCI |
1813 | DerivedPointerTable::clear(); |
1814 | #endif |
1815 | |
1816 | ref_processor()->enable_discovery(); |
1817 | ref_processor()->setup_policy(maximum_heap_compaction); |
1818 | |
1819 | bool marked_for_unloading = false; |
1820 | |
1821 | marking_start.update(); |
1822 | marking_phase(vmthread_cm, maximum_heap_compaction, &_gc_tracer); |
1823 | |
1824 | bool max_on_system_gc = UseMaximumCompactionOnSystemGC |
1825 | && GCCause::is_user_requested_gc(gc_cause); |
1826 | summary_phase(vmthread_cm, maximum_heap_compaction || max_on_system_gc); |
1827 | |
1828 | #if COMPILER2_OR_JVMCI |
1829 | assert(DerivedPointerTable::is_active(), "Sanity" ); |
1830 | DerivedPointerTable::set_active(false); |
1831 | #endif |
1832 | |
1833 | // adjust_roots() updates Universe::_intArrayKlassObj which is |
1834 | // needed by the compaction for filling holes in the dense prefix. |
1835 | adjust_roots(vmthread_cm); |
1836 | |
1837 | compaction_start.update(); |
1838 | compact(); |
1839 | |
1840 | // Reset the mark bitmap, summary data, and do other bookkeeping. Must be |
1841 | // done before resizing. |
1842 | post_compact(); |
1843 | |
1844 | // Let the size policy know we're done |
1845 | size_policy->major_collection_end(old_gen->used_in_bytes(), gc_cause); |
1846 | |
1847 | if (UseAdaptiveSizePolicy) { |
1848 | log_debug(gc, ergo)("AdaptiveSizeStart: collection: %d " , heap->total_collections()); |
1849 | log_trace(gc, ergo)("old_gen_capacity: " SIZE_FORMAT " young_gen_capacity: " SIZE_FORMAT, |
1850 | old_gen->capacity_in_bytes(), young_gen->capacity_in_bytes()); |
1851 | |
1852 | // Don't check if the size_policy is ready here. Let |
1853 | // the size_policy check that internally. |
1854 | if (UseAdaptiveGenerationSizePolicyAtMajorCollection && |
1855 | AdaptiveSizePolicy::should_update_promo_stats(gc_cause)) { |
1856 | // Swap the survivor spaces if from_space is empty. The |
1857 | // resize_young_gen() called below is normally used after |
1858 | // a successful young GC and swapping of survivor spaces; |
1859 | // otherwise, it will fail to resize the young gen with |
1860 | // the current implementation. |
1861 | if (young_gen->from_space()->is_empty()) { |
1862 | young_gen->from_space()->clear(SpaceDecorator::Mangle); |
1863 | young_gen->swap_spaces(); |
1864 | } |
1865 | |
1866 | // Calculate optimal free space amounts |
1867 | assert(young_gen->max_size() > |
1868 | young_gen->from_space()->capacity_in_bytes() + |
1869 | young_gen->to_space()->capacity_in_bytes(), |
1870 | "Sizes of space in young gen are out-of-bounds" ); |
1871 | |
1872 | size_t young_live = young_gen->used_in_bytes(); |
1873 | size_t eden_live = young_gen->eden_space()->used_in_bytes(); |
1874 | size_t old_live = old_gen->used_in_bytes(); |
1875 | size_t cur_eden = young_gen->eden_space()->capacity_in_bytes(); |
1876 | size_t max_old_gen_size = old_gen->max_gen_size(); |
1877 | size_t max_eden_size = young_gen->max_size() - |
1878 | young_gen->from_space()->capacity_in_bytes() - |
1879 | young_gen->to_space()->capacity_in_bytes(); |
1880 | |
1881 | // Used for diagnostics |
1882 | size_policy->clear_generation_free_space_flags(); |
1883 | |
1884 | size_policy->compute_generations_free_space(young_live, |
1885 | eden_live, |
1886 | old_live, |
1887 | cur_eden, |
1888 | max_old_gen_size, |
1889 | max_eden_size, |
1890 | true /* full gc*/); |
1891 | |
1892 | size_policy->check_gc_overhead_limit(eden_live, |
1893 | max_old_gen_size, |
1894 | max_eden_size, |
1895 | true /* full gc*/, |
1896 | gc_cause, |
1897 | heap->soft_ref_policy()); |
1898 | |
1899 | size_policy->decay_supplemental_growth(true /* full gc*/); |
1900 | |
1901 | heap->resize_old_gen( |
1902 | size_policy->calculated_old_free_size_in_bytes()); |
1903 | |
1904 | heap->resize_young_gen(size_policy->calculated_eden_size_in_bytes(), |
1905 | size_policy->calculated_survivor_size_in_bytes()); |
1906 | } |
1907 | |
1908 | log_debug(gc, ergo)("AdaptiveSizeStop: collection: %d " , heap->total_collections()); |
1909 | } |
1910 | |
1911 | if (UsePerfData) { |
1912 | PSGCAdaptivePolicyCounters* const counters = heap->gc_policy_counters(); |
1913 | counters->update_counters(); |
1914 | counters->update_old_capacity(old_gen->capacity_in_bytes()); |
1915 | counters->update_young_capacity(young_gen->capacity_in_bytes()); |
1916 | } |
1917 | |
1918 | heap->resize_all_tlabs(); |
1919 | |
1920 | // Resize the metaspace capacity after a collection |
1921 | MetaspaceGC::compute_new_size(); |
1922 | |
1923 | if (log_is_enabled(Debug, gc, heap, exit)) { |
1924 | accumulated_time()->stop(); |
1925 | } |
1926 | |
1927 | young_gen->print_used_change(pre_gc_values.young_gen_used()); |
1928 | old_gen->print_used_change(pre_gc_values.old_gen_used()); |
1929 | MetaspaceUtils::print_metaspace_change(pre_gc_values.metadata_used()); |
1930 | |
1931 | // Track memory usage and detect low memory |
1932 | MemoryService::track_memory_usage(); |
1933 | heap->update_counters(); |
1934 | gc_task_manager()->release_idle_workers(); |
1935 | |
1936 | heap->post_full_gc_dump(&_gc_timer); |
1937 | } |
1938 | |
1939 | #ifdef ASSERT |
1940 | for (size_t i = 0; i < ParallelGCThreads + 1; ++i) { |
1941 | ParCompactionManager* const cm = |
1942 | ParCompactionManager::manager_array(int(i)); |
1943 | assert(cm->marking_stack()->is_empty(), "should be empty" ); |
1944 | assert(cm->region_stack()->is_empty(), "Region stack " SIZE_FORMAT " is not empty" , i); |
1945 | } |
1946 | #endif // ASSERT |
1947 | |
1948 | if (VerifyAfterGC && heap->total_collections() >= VerifyGCStartAt) { |
1949 | HandleMark hm; // Discard invalid handles created during verification |
1950 | Universe::verify("After GC" ); |
1951 | } |
1952 | |
1953 | // Re-verify object start arrays |
1954 | if (VerifyObjectStartArray && |
1955 | VerifyAfterGC) { |
1956 | old_gen->verify_object_start_array(); |
1957 | } |
1958 | |
1959 | if (ZapUnusedHeapArea) { |
1960 | old_gen->object_space()->check_mangled_unused_area_complete(); |
1961 | } |
1962 | |
1963 | NOT_PRODUCT(ref_processor()->verify_no_references_recorded()); |
1964 | |
1965 | collection_exit.update(); |
1966 | |
1967 | heap->print_heap_after_gc(); |
1968 | heap->trace_heap_after_gc(&_gc_tracer); |
1969 | |
1970 | log_debug(gc, task, time)("VM-Thread " JLONG_FORMAT " " JLONG_FORMAT " " JLONG_FORMAT, |
1971 | marking_start.ticks(), compaction_start.ticks(), |
1972 | collection_exit.ticks()); |
1973 | gc_task_manager()->print_task_time_stamps(); |
1974 | |
1975 | #ifdef TRACESPINNING |
1976 | ParallelTaskTerminator::print_termination_counts(); |
1977 | #endif |
1978 | |
1979 | AdaptiveSizePolicyOutput::print(size_policy, heap->total_collections()); |
1980 | |
1981 | _gc_timer.register_gc_end(); |
1982 | |
1983 | _gc_tracer.report_dense_prefix(dense_prefix(old_space_id)); |
1984 | _gc_tracer.report_gc_end(_gc_timer.gc_end(), _gc_timer.time_partitions()); |
1985 | |
1986 | return true; |
1987 | } |
1988 | |
1989 | bool PSParallelCompact::absorb_live_data_from_eden(PSAdaptiveSizePolicy* size_policy, |
1990 | PSYoungGen* young_gen, |
1991 | PSOldGen* old_gen) { |
1992 | MutableSpace* const eden_space = young_gen->eden_space(); |
1993 | assert(!eden_space->is_empty(), "eden must be non-empty" ); |
1994 | assert(young_gen->virtual_space()->alignment() == |
1995 | old_gen->virtual_space()->alignment(), "alignments do not match" ); |
1996 | |
1997 | // We also return false when it's a heterogenous heap because old generation cannot absorb data from eden |
1998 | // when it is allocated on different memory (example, nv-dimm) than young. |
1999 | if (!(UseAdaptiveSizePolicy && UseAdaptiveGCBoundary) || |
2000 | ParallelArguments::is_heterogeneous_heap()) { |
2001 | return false; |
2002 | } |
2003 | |
2004 | // Both generations must be completely committed. |
2005 | if (young_gen->virtual_space()->uncommitted_size() != 0) { |
2006 | return false; |
2007 | } |
2008 | if (old_gen->virtual_space()->uncommitted_size() != 0) { |
2009 | return false; |
2010 | } |
2011 | |
2012 | // Figure out how much to take from eden. Include the average amount promoted |
2013 | // in the total; otherwise the next young gen GC will simply bail out to a |
2014 | // full GC. |
2015 | const size_t alignment = old_gen->virtual_space()->alignment(); |
2016 | const size_t eden_used = eden_space->used_in_bytes(); |
2017 | const size_t promoted = (size_t)size_policy->avg_promoted()->padded_average(); |
2018 | const size_t absorb_size = align_up(eden_used + promoted, alignment); |
2019 | const size_t eden_capacity = eden_space->capacity_in_bytes(); |
2020 | |
2021 | if (absorb_size >= eden_capacity) { |
2022 | return false; // Must leave some space in eden. |
2023 | } |
2024 | |
2025 | const size_t new_young_size = young_gen->capacity_in_bytes() - absorb_size; |
2026 | if (new_young_size < young_gen->min_gen_size()) { |
2027 | return false; // Respect young gen minimum size. |
2028 | } |
2029 | |
2030 | log_trace(gc, ergo, heap)(" absorbing " SIZE_FORMAT "K: " |
2031 | "eden " SIZE_FORMAT "K->" SIZE_FORMAT "K " |
2032 | "from " SIZE_FORMAT "K, to " SIZE_FORMAT "K " |
2033 | "young_gen " SIZE_FORMAT "K->" SIZE_FORMAT "K " , |
2034 | absorb_size / K, |
2035 | eden_capacity / K, (eden_capacity - absorb_size) / K, |
2036 | young_gen->from_space()->used_in_bytes() / K, |
2037 | young_gen->to_space()->used_in_bytes() / K, |
2038 | young_gen->capacity_in_bytes() / K, new_young_size / K); |
2039 | |
2040 | // Fill the unused part of the old gen. |
2041 | MutableSpace* const old_space = old_gen->object_space(); |
2042 | HeapWord* const unused_start = old_space->top(); |
2043 | size_t const unused_words = pointer_delta(old_space->end(), unused_start); |
2044 | |
2045 | if (unused_words > 0) { |
2046 | if (unused_words < CollectedHeap::min_fill_size()) { |
2047 | return false; // If the old gen cannot be filled, must give up. |
2048 | } |
2049 | CollectedHeap::fill_with_objects(unused_start, unused_words); |
2050 | } |
2051 | |
2052 | // Take the live data from eden and set both top and end in the old gen to |
2053 | // eden top. (Need to set end because reset_after_change() mangles the region |
2054 | // from end to virtual_space->high() in debug builds). |
2055 | HeapWord* const new_top = eden_space->top(); |
2056 | old_gen->virtual_space()->expand_into(young_gen->virtual_space(), |
2057 | absorb_size); |
2058 | young_gen->reset_after_change(); |
2059 | old_space->set_top(new_top); |
2060 | old_space->set_end(new_top); |
2061 | old_gen->reset_after_change(); |
2062 | |
2063 | // Update the object start array for the filler object and the data from eden. |
2064 | ObjectStartArray* const start_array = old_gen->start_array(); |
2065 | for (HeapWord* p = unused_start; p < new_top; p += oop(p)->size()) { |
2066 | start_array->allocate_block(p); |
2067 | } |
2068 | |
2069 | // Could update the promoted average here, but it is not typically updated at |
2070 | // full GCs and the value to use is unclear. Something like |
2071 | // |
2072 | // cur_promoted_avg + absorb_size / number_of_scavenges_since_last_full_gc. |
2073 | |
2074 | size_policy->set_bytes_absorbed_from_eden(absorb_size); |
2075 | return true; |
2076 | } |
2077 | |
2078 | GCTaskManager* const PSParallelCompact::gc_task_manager() { |
2079 | assert(ParallelScavengeHeap::gc_task_manager() != NULL, |
2080 | "shouldn't return NULL" ); |
2081 | return ParallelScavengeHeap::gc_task_manager(); |
2082 | } |
2083 | |
2084 | class PCAddThreadRootsMarkingTaskClosure : public ThreadClosure { |
2085 | private: |
2086 | GCTaskQueue* _q; |
2087 | |
2088 | public: |
2089 | PCAddThreadRootsMarkingTaskClosure(GCTaskQueue* q) : _q(q) { } |
2090 | void do_thread(Thread* t) { |
2091 | _q->enqueue(new ThreadRootsMarkingTask(t)); |
2092 | } |
2093 | }; |
2094 | |
2095 | void PSParallelCompact::marking_phase(ParCompactionManager* cm, |
2096 | bool maximum_heap_compaction, |
2097 | ParallelOldTracer *gc_tracer) { |
2098 | // Recursively traverse all live objects and mark them |
2099 | GCTraceTime(Info, gc, phases) tm("Marking Phase" , &_gc_timer); |
2100 | |
2101 | ParallelScavengeHeap* heap = ParallelScavengeHeap::heap(); |
2102 | uint parallel_gc_threads = heap->gc_task_manager()->workers(); |
2103 | uint active_gc_threads = heap->gc_task_manager()->active_workers(); |
2104 | TaskQueueSetSuper* qset = ParCompactionManager::stack_array(); |
2105 | TaskTerminator terminator(active_gc_threads, qset); |
2106 | |
2107 | PCMarkAndPushClosure mark_and_push_closure(cm); |
2108 | ParCompactionManager::FollowStackClosure follow_stack_closure(cm); |
2109 | |
2110 | // Need new claim bits before marking starts. |
2111 | ClassLoaderDataGraph::clear_claimed_marks(); |
2112 | |
2113 | { |
2114 | GCTraceTime(Debug, gc, phases) tm("Par Mark" , &_gc_timer); |
2115 | |
2116 | ParallelScavengeHeap::ParStrongRootsScope psrs; |
2117 | |
2118 | GCTaskQueue* q = GCTaskQueue::create(); |
2119 | |
2120 | q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::universe)); |
2121 | q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::jni_handles)); |
2122 | // We scan the thread roots in parallel |
2123 | PCAddThreadRootsMarkingTaskClosure cl(q); |
2124 | Threads::java_threads_and_vm_thread_do(&cl); |
2125 | q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::object_synchronizer)); |
2126 | q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::management)); |
2127 | q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::system_dictionary)); |
2128 | q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::class_loader_data)); |
2129 | q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::jvmti)); |
2130 | q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::code_cache)); |
2131 | JVMCI_ONLY(q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::jvmci));) |
2132 | |
2133 | if (active_gc_threads > 1) { |
2134 | for (uint j = 0; j < active_gc_threads; j++) { |
2135 | q->enqueue(new StealMarkingTask(terminator.terminator())); |
2136 | } |
2137 | } |
2138 | |
2139 | gc_task_manager()->execute_and_wait(q); |
2140 | } |
2141 | |
2142 | // Process reference objects found during marking |
2143 | { |
2144 | GCTraceTime(Debug, gc, phases) tm("Reference Processing" , &_gc_timer); |
2145 | |
2146 | ReferenceProcessorStats stats; |
2147 | ReferenceProcessorPhaseTimes pt(&_gc_timer, ref_processor()->max_num_queues()); |
2148 | |
2149 | if (ref_processor()->processing_is_mt()) { |
2150 | ref_processor()->set_active_mt_degree(active_gc_threads); |
2151 | |
2152 | RefProcTaskExecutor task_executor; |
2153 | stats = ref_processor()->process_discovered_references( |
2154 | is_alive_closure(), &mark_and_push_closure, &follow_stack_closure, |
2155 | &task_executor, &pt); |
2156 | } else { |
2157 | stats = ref_processor()->process_discovered_references( |
2158 | is_alive_closure(), &mark_and_push_closure, &follow_stack_closure, NULL, |
2159 | &pt); |
2160 | } |
2161 | |
2162 | gc_tracer->report_gc_reference_stats(stats); |
2163 | pt.print_all_references(); |
2164 | } |
2165 | |
2166 | // This is the point where the entire marking should have completed. |
2167 | assert(cm->marking_stacks_empty(), "Marking should have completed" ); |
2168 | |
2169 | { |
2170 | GCTraceTime(Debug, gc, phases) tm("Weak Processing" , &_gc_timer); |
2171 | WeakProcessor::weak_oops_do(is_alive_closure(), &do_nothing_cl); |
2172 | } |
2173 | |
2174 | { |
2175 | GCTraceTime(Debug, gc, phases) tm_m("Class Unloading" , &_gc_timer); |
2176 | |
2177 | // Follow system dictionary roots and unload classes. |
2178 | bool purged_class = SystemDictionary::do_unloading(&_gc_timer); |
2179 | |
2180 | // Unload nmethods. |
2181 | CodeCache::do_unloading(is_alive_closure(), purged_class); |
2182 | |
2183 | // Prune dead klasses from subklass/sibling/implementor lists. |
2184 | Klass::clean_weak_klass_links(purged_class); |
2185 | |
2186 | // Clean JVMCI metadata handles. |
2187 | JVMCI_ONLY(JVMCI::do_unloading(purged_class)); |
2188 | } |
2189 | |
2190 | _gc_tracer.report_object_count_after_gc(is_alive_closure()); |
2191 | } |
2192 | |
2193 | void PSParallelCompact::adjust_roots(ParCompactionManager* cm) { |
2194 | // Adjust the pointers to reflect the new locations |
2195 | GCTraceTime(Info, gc, phases) tm("Adjust Roots" , &_gc_timer); |
2196 | |
2197 | // Need new claim bits when tracing through and adjusting pointers. |
2198 | ClassLoaderDataGraph::clear_claimed_marks(); |
2199 | |
2200 | PCAdjustPointerClosure oop_closure(cm); |
2201 | |
2202 | // General strong roots. |
2203 | Universe::oops_do(&oop_closure); |
2204 | JNIHandles::oops_do(&oop_closure); // Global (strong) JNI handles |
2205 | Threads::oops_do(&oop_closure, NULL); |
2206 | ObjectSynchronizer::oops_do(&oop_closure); |
2207 | Management::oops_do(&oop_closure); |
2208 | JvmtiExport::oops_do(&oop_closure); |
2209 | SystemDictionary::oops_do(&oop_closure); |
2210 | CLDToOopClosure cld_closure(&oop_closure, ClassLoaderData::_claim_strong); |
2211 | ClassLoaderDataGraph::cld_do(&cld_closure); |
2212 | |
2213 | // Now adjust pointers in remaining weak roots. (All of which should |
2214 | // have been cleared if they pointed to non-surviving objects.) |
2215 | WeakProcessor::oops_do(&oop_closure); |
2216 | |
2217 | CodeBlobToOopClosure adjust_from_blobs(&oop_closure, CodeBlobToOopClosure::FixRelocations); |
2218 | CodeCache::blobs_do(&adjust_from_blobs); |
2219 | AOT_ONLY(AOTLoader::oops_do(&oop_closure);) |
2220 | |
2221 | JVMCI_ONLY(JVMCI::oops_do(&oop_closure);) |
2222 | |
2223 | ref_processor()->weak_oops_do(&oop_closure); |
2224 | // Roots were visited so references into the young gen in roots |
2225 | // may have been scanned. Process them also. |
2226 | // Should the reference processor have a span that excludes |
2227 | // young gen objects? |
2228 | PSScavenge::reference_processor()->weak_oops_do(&oop_closure); |
2229 | } |
2230 | |
2231 | // Helper class to print 8 region numbers per line and then print the total at the end. |
2232 | class FillableRegionLogger : public StackObj { |
2233 | private: |
2234 | Log(gc, compaction) log; |
2235 | static const int LineLength = 8; |
2236 | size_t _regions[LineLength]; |
2237 | int _next_index; |
2238 | bool _enabled; |
2239 | size_t _total_regions; |
2240 | public: |
2241 | FillableRegionLogger() : _next_index(0), _enabled(log_develop_is_enabled(Trace, gc, compaction)), _total_regions(0) { } |
2242 | ~FillableRegionLogger() { |
2243 | log.trace(SIZE_FORMAT " initially fillable regions" , _total_regions); |
2244 | } |
2245 | |
2246 | void print_line() { |
2247 | if (!_enabled || _next_index == 0) { |
2248 | return; |
2249 | } |
2250 | FormatBuffer<> line("Fillable: " ); |
2251 | for (int i = 0; i < _next_index; i++) { |
2252 | line.append(" " SIZE_FORMAT_W(7), _regions[i]); |
2253 | } |
2254 | log.trace("%s" , line.buffer()); |
2255 | _next_index = 0; |
2256 | } |
2257 | |
2258 | void handle(size_t region) { |
2259 | if (!_enabled) { |
2260 | return; |
2261 | } |
2262 | _regions[_next_index++] = region; |
2263 | if (_next_index == LineLength) { |
2264 | print_line(); |
2265 | } |
2266 | _total_regions++; |
2267 | } |
2268 | }; |
2269 | |
2270 | void PSParallelCompact::prepare_region_draining_tasks(GCTaskQueue* q, |
2271 | uint parallel_gc_threads) |
2272 | { |
2273 | GCTraceTime(Trace, gc, phases) tm("Drain Task Setup" , &_gc_timer); |
2274 | |
2275 | // Find the threads that are active |
2276 | unsigned int which = 0; |
2277 | |
2278 | // Find all regions that are available (can be filled immediately) and |
2279 | // distribute them to the thread stacks. The iteration is done in reverse |
2280 | // order (high to low) so the regions will be removed in ascending order. |
2281 | |
2282 | const ParallelCompactData& sd = PSParallelCompact::summary_data(); |
2283 | |
2284 | which = 0; |
2285 | // id + 1 is used to test termination so unsigned can |
2286 | // be used with an old_space_id == 0. |
2287 | FillableRegionLogger region_logger; |
2288 | for (unsigned int id = to_space_id; id + 1 > old_space_id; --id) { |
2289 | SpaceInfo* const space_info = _space_info + id; |
2290 | MutableSpace* const space = space_info->space(); |
2291 | HeapWord* const new_top = space_info->new_top(); |
2292 | |
2293 | const size_t beg_region = sd.addr_to_region_idx(space_info->dense_prefix()); |
2294 | const size_t end_region = |
2295 | sd.addr_to_region_idx(sd.region_align_up(new_top)); |
2296 | |
2297 | for (size_t cur = end_region - 1; cur + 1 > beg_region; --cur) { |
2298 | if (sd.region(cur)->claim_unsafe()) { |
2299 | ParCompactionManager* cm = ParCompactionManager::manager_array(which); |
2300 | cm->region_stack()->push(cur); |
2301 | region_logger.handle(cur); |
2302 | // Assign regions to tasks in round-robin fashion. |
2303 | if (++which == parallel_gc_threads) { |
2304 | which = 0; |
2305 | } |
2306 | } |
2307 | } |
2308 | region_logger.print_line(); |
2309 | } |
2310 | } |
2311 | |
2312 | #define PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING 4 |
2313 | |
2314 | void PSParallelCompact::enqueue_dense_prefix_tasks(GCTaskQueue* q, |
2315 | uint parallel_gc_threads) { |
2316 | GCTraceTime(Trace, gc, phases) tm("Dense Prefix Task Setup" , &_gc_timer); |
2317 | |
2318 | ParallelCompactData& sd = PSParallelCompact::summary_data(); |
2319 | |
2320 | // Iterate over all the spaces adding tasks for updating |
2321 | // regions in the dense prefix. Assume that 1 gc thread |
2322 | // will work on opening the gaps and the remaining gc threads |
2323 | // will work on the dense prefix. |
2324 | unsigned int space_id; |
2325 | for (space_id = old_space_id; space_id < last_space_id; ++ space_id) { |
2326 | HeapWord* const dense_prefix_end = _space_info[space_id].dense_prefix(); |
2327 | const MutableSpace* const space = _space_info[space_id].space(); |
2328 | |
2329 | if (dense_prefix_end == space->bottom()) { |
2330 | // There is no dense prefix for this space. |
2331 | continue; |
2332 | } |
2333 | |
2334 | // The dense prefix is before this region. |
2335 | size_t region_index_end_dense_prefix = |
2336 | sd.addr_to_region_idx(dense_prefix_end); |
2337 | RegionData* const dense_prefix_cp = |
2338 | sd.region(region_index_end_dense_prefix); |
2339 | assert(dense_prefix_end == space->end() || |
2340 | dense_prefix_cp->available() || |
2341 | dense_prefix_cp->claimed(), |
2342 | "The region after the dense prefix should always be ready to fill" ); |
2343 | |
2344 | size_t region_index_start = sd.addr_to_region_idx(space->bottom()); |
2345 | |
2346 | // Is there dense prefix work? |
2347 | size_t total_dense_prefix_regions = |
2348 | region_index_end_dense_prefix - region_index_start; |
2349 | // How many regions of the dense prefix should be given to |
2350 | // each thread? |
2351 | if (total_dense_prefix_regions > 0) { |
2352 | uint tasks_for_dense_prefix = 1; |
2353 | if (total_dense_prefix_regions <= |
2354 | (parallel_gc_threads * PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING)) { |
2355 | // Don't over partition. This assumes that |
2356 | // PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING is a small integer value |
2357 | // so there are not many regions to process. |
2358 | tasks_for_dense_prefix = parallel_gc_threads; |
2359 | } else { |
2360 | // Over partition |
2361 | tasks_for_dense_prefix = parallel_gc_threads * |
2362 | PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING; |
2363 | } |
2364 | size_t regions_per_thread = total_dense_prefix_regions / |
2365 | tasks_for_dense_prefix; |
2366 | // Give each thread at least 1 region. |
2367 | if (regions_per_thread == 0) { |
2368 | regions_per_thread = 1; |
2369 | } |
2370 | |
2371 | for (uint k = 0; k < tasks_for_dense_prefix; k++) { |
2372 | if (region_index_start >= region_index_end_dense_prefix) { |
2373 | break; |
2374 | } |
2375 | // region_index_end is not processed |
2376 | size_t region_index_end = MIN2(region_index_start + regions_per_thread, |
2377 | region_index_end_dense_prefix); |
2378 | q->enqueue(new UpdateDensePrefixTask(SpaceId(space_id), |
2379 | region_index_start, |
2380 | region_index_end)); |
2381 | region_index_start = region_index_end; |
2382 | } |
2383 | } |
2384 | // This gets any part of the dense prefix that did not |
2385 | // fit evenly. |
2386 | if (region_index_start < region_index_end_dense_prefix) { |
2387 | q->enqueue(new UpdateDensePrefixTask(SpaceId(space_id), |
2388 | region_index_start, |
2389 | region_index_end_dense_prefix)); |
2390 | } |
2391 | } |
2392 | } |
2393 | |
2394 | void PSParallelCompact::enqueue_region_stealing_tasks( |
2395 | GCTaskQueue* q, |
2396 | ParallelTaskTerminator* terminator_ptr, |
2397 | uint parallel_gc_threads) { |
2398 | GCTraceTime(Trace, gc, phases) tm("Steal Task Setup" , &_gc_timer); |
2399 | |
2400 | // Once a thread has drained it's stack, it should try to steal regions from |
2401 | // other threads. |
2402 | for (uint j = 0; j < parallel_gc_threads; j++) { |
2403 | q->enqueue(new CompactionWithStealingTask(terminator_ptr)); |
2404 | } |
2405 | } |
2406 | |
2407 | #ifdef ASSERT |
2408 | // Write a histogram of the number of times the block table was filled for a |
2409 | // region. |
2410 | void PSParallelCompact::write_block_fill_histogram() |
2411 | { |
2412 | if (!log_develop_is_enabled(Trace, gc, compaction)) { |
2413 | return; |
2414 | } |
2415 | |
2416 | Log(gc, compaction) log; |
2417 | ResourceMark rm; |
2418 | LogStream ls(log.trace()); |
2419 | outputStream* out = &ls; |
2420 | |
2421 | typedef ParallelCompactData::RegionData rd_t; |
2422 | ParallelCompactData& sd = summary_data(); |
2423 | |
2424 | for (unsigned int id = old_space_id; id < last_space_id; ++id) { |
2425 | MutableSpace* const spc = _space_info[id].space(); |
2426 | if (spc->bottom() != spc->top()) { |
2427 | const rd_t* const beg = sd.addr_to_region_ptr(spc->bottom()); |
2428 | HeapWord* const top_aligned_up = sd.region_align_up(spc->top()); |
2429 | const rd_t* const end = sd.addr_to_region_ptr(top_aligned_up); |
2430 | |
2431 | size_t histo[5] = { 0, 0, 0, 0, 0 }; |
2432 | const size_t histo_len = sizeof(histo) / sizeof(size_t); |
2433 | const size_t region_cnt = pointer_delta(end, beg, sizeof(rd_t)); |
2434 | |
2435 | for (const rd_t* cur = beg; cur < end; ++cur) { |
2436 | ++histo[MIN2(cur->blocks_filled_count(), histo_len - 1)]; |
2437 | } |
2438 | out->print("Block fill histogram: %u %-4s" SIZE_FORMAT_W(5), id, space_names[id], region_cnt); |
2439 | for (size_t i = 0; i < histo_len; ++i) { |
2440 | out->print(" " SIZE_FORMAT_W(5) " %5.1f%%" , |
2441 | histo[i], 100.0 * histo[i] / region_cnt); |
2442 | } |
2443 | out->cr(); |
2444 | } |
2445 | } |
2446 | } |
2447 | #endif // #ifdef ASSERT |
2448 | |
2449 | void PSParallelCompact::compact() { |
2450 | GCTraceTime(Info, gc, phases) tm("Compaction Phase" , &_gc_timer); |
2451 | |
2452 | ParallelScavengeHeap* heap = ParallelScavengeHeap::heap(); |
2453 | PSOldGen* old_gen = heap->old_gen(); |
2454 | old_gen->start_array()->reset(); |
2455 | uint parallel_gc_threads = heap->gc_task_manager()->workers(); |
2456 | uint active_gc_threads = heap->gc_task_manager()->active_workers(); |
2457 | TaskQueueSetSuper* qset = ParCompactionManager::region_array(); |
2458 | TaskTerminator terminator(active_gc_threads, qset); |
2459 | |
2460 | GCTaskQueue* q = GCTaskQueue::create(); |
2461 | prepare_region_draining_tasks(q, active_gc_threads); |
2462 | enqueue_dense_prefix_tasks(q, active_gc_threads); |
2463 | enqueue_region_stealing_tasks(q, terminator.terminator(), active_gc_threads); |
2464 | |
2465 | { |
2466 | GCTraceTime(Trace, gc, phases) tm("Par Compact" , &_gc_timer); |
2467 | |
2468 | gc_task_manager()->execute_and_wait(q); |
2469 | |
2470 | #ifdef ASSERT |
2471 | // Verify that all regions have been processed before the deferred updates. |
2472 | for (unsigned int id = old_space_id; id < last_space_id; ++id) { |
2473 | verify_complete(SpaceId(id)); |
2474 | } |
2475 | #endif |
2476 | } |
2477 | |
2478 | { |
2479 | // Update the deferred objects, if any. Any compaction manager can be used. |
2480 | GCTraceTime(Trace, gc, phases) tm("Deferred Updates" , &_gc_timer); |
2481 | ParCompactionManager* cm = ParCompactionManager::manager_array(0); |
2482 | for (unsigned int id = old_space_id; id < last_space_id; ++id) { |
2483 | update_deferred_objects(cm, SpaceId(id)); |
2484 | } |
2485 | } |
2486 | |
2487 | DEBUG_ONLY(write_block_fill_histogram()); |
2488 | } |
2489 | |
2490 | #ifdef ASSERT |
2491 | void PSParallelCompact::verify_complete(SpaceId space_id) { |
2492 | // All Regions between space bottom() to new_top() should be marked as filled |
2493 | // and all Regions between new_top() and top() should be available (i.e., |
2494 | // should have been emptied). |
2495 | ParallelCompactData& sd = summary_data(); |
2496 | SpaceInfo si = _space_info[space_id]; |
2497 | HeapWord* new_top_addr = sd.region_align_up(si.new_top()); |
2498 | HeapWord* old_top_addr = sd.region_align_up(si.space()->top()); |
2499 | const size_t beg_region = sd.addr_to_region_idx(si.space()->bottom()); |
2500 | const size_t new_top_region = sd.addr_to_region_idx(new_top_addr); |
2501 | const size_t old_top_region = sd.addr_to_region_idx(old_top_addr); |
2502 | |
2503 | bool issued_a_warning = false; |
2504 | |
2505 | size_t cur_region; |
2506 | for (cur_region = beg_region; cur_region < new_top_region; ++cur_region) { |
2507 | const RegionData* const c = sd.region(cur_region); |
2508 | if (!c->completed()) { |
2509 | log_warning(gc)("region " SIZE_FORMAT " not filled: destination_count=%u" , |
2510 | cur_region, c->destination_count()); |
2511 | issued_a_warning = true; |
2512 | } |
2513 | } |
2514 | |
2515 | for (cur_region = new_top_region; cur_region < old_top_region; ++cur_region) { |
2516 | const RegionData* const c = sd.region(cur_region); |
2517 | if (!c->available()) { |
2518 | log_warning(gc)("region " SIZE_FORMAT " not empty: destination_count=%u" , |
2519 | cur_region, c->destination_count()); |
2520 | issued_a_warning = true; |
2521 | } |
2522 | } |
2523 | |
2524 | if (issued_a_warning) { |
2525 | print_region_ranges(); |
2526 | } |
2527 | } |
2528 | #endif // #ifdef ASSERT |
2529 | |
2530 | inline void UpdateOnlyClosure::do_addr(HeapWord* addr) { |
2531 | _start_array->allocate_block(addr); |
2532 | compaction_manager()->update_contents(oop(addr)); |
2533 | } |
2534 | |
2535 | // Update interior oops in the ranges of regions [beg_region, end_region). |
2536 | void |
2537 | PSParallelCompact::update_and_deadwood_in_dense_prefix(ParCompactionManager* cm, |
2538 | SpaceId space_id, |
2539 | size_t beg_region, |
2540 | size_t end_region) { |
2541 | ParallelCompactData& sd = summary_data(); |
2542 | ParMarkBitMap* const mbm = mark_bitmap(); |
2543 | |
2544 | HeapWord* beg_addr = sd.region_to_addr(beg_region); |
2545 | HeapWord* const end_addr = sd.region_to_addr(end_region); |
2546 | assert(beg_region <= end_region, "bad region range" ); |
2547 | assert(end_addr <= dense_prefix(space_id), "not in the dense prefix" ); |
2548 | |
2549 | #ifdef ASSERT |
2550 | // Claim the regions to avoid triggering an assert when they are marked as |
2551 | // filled. |
2552 | for (size_t claim_region = beg_region; claim_region < end_region; ++claim_region) { |
2553 | assert(sd.region(claim_region)->claim_unsafe(), "claim() failed" ); |
2554 | } |
2555 | #endif // #ifdef ASSERT |
2556 | |
2557 | if (beg_addr != space(space_id)->bottom()) { |
2558 | // Find the first live object or block of dead space that *starts* in this |
2559 | // range of regions. If a partial object crosses onto the region, skip it; |
2560 | // it will be marked for 'deferred update' when the object head is |
2561 | // processed. If dead space crosses onto the region, it is also skipped; it |
2562 | // will be filled when the prior region is processed. If neither of those |
2563 | // apply, the first word in the region is the start of a live object or dead |
2564 | // space. |
2565 | assert(beg_addr > space(space_id)->bottom(), "sanity" ); |
2566 | const RegionData* const cp = sd.region(beg_region); |
2567 | if (cp->partial_obj_size() != 0) { |
2568 | beg_addr = sd.partial_obj_end(beg_region); |
2569 | } else if (dead_space_crosses_boundary(cp, mbm->addr_to_bit(beg_addr))) { |
2570 | beg_addr = mbm->find_obj_beg(beg_addr, end_addr); |
2571 | } |
2572 | } |
2573 | |
2574 | if (beg_addr < end_addr) { |
2575 | // A live object or block of dead space starts in this range of Regions. |
2576 | HeapWord* const dense_prefix_end = dense_prefix(space_id); |
2577 | |
2578 | // Create closures and iterate. |
2579 | UpdateOnlyClosure update_closure(mbm, cm, space_id); |
2580 | FillClosure fill_closure(cm, space_id); |
2581 | ParMarkBitMap::IterationStatus status; |
2582 | status = mbm->iterate(&update_closure, &fill_closure, beg_addr, end_addr, |
2583 | dense_prefix_end); |
2584 | if (status == ParMarkBitMap::incomplete) { |
2585 | update_closure.do_addr(update_closure.source()); |
2586 | } |
2587 | } |
2588 | |
2589 | // Mark the regions as filled. |
2590 | RegionData* const beg_cp = sd.region(beg_region); |
2591 | RegionData* const end_cp = sd.region(end_region); |
2592 | for (RegionData* cp = beg_cp; cp < end_cp; ++cp) { |
2593 | cp->set_completed(); |
2594 | } |
2595 | } |
2596 | |
2597 | // Return the SpaceId for the space containing addr. If addr is not in the |
2598 | // heap, last_space_id is returned. In debug mode it expects the address to be |
2599 | // in the heap and asserts such. |
2600 | PSParallelCompact::SpaceId PSParallelCompact::space_id(HeapWord* addr) { |
2601 | assert(ParallelScavengeHeap::heap()->is_in_reserved(addr), "addr not in the heap" ); |
2602 | |
2603 | for (unsigned int id = old_space_id; id < last_space_id; ++id) { |
2604 | if (_space_info[id].space()->contains(addr)) { |
2605 | return SpaceId(id); |
2606 | } |
2607 | } |
2608 | |
2609 | assert(false, "no space contains the addr" ); |
2610 | return last_space_id; |
2611 | } |
2612 | |
2613 | void PSParallelCompact::update_deferred_objects(ParCompactionManager* cm, |
2614 | SpaceId id) { |
2615 | assert(id < last_space_id, "bad space id" ); |
2616 | |
2617 | ParallelCompactData& sd = summary_data(); |
2618 | const SpaceInfo* const space_info = _space_info + id; |
2619 | ObjectStartArray* const start_array = space_info->start_array(); |
2620 | |
2621 | const MutableSpace* const space = space_info->space(); |
2622 | assert(space_info->dense_prefix() >= space->bottom(), "dense_prefix not set" ); |
2623 | HeapWord* const beg_addr = space_info->dense_prefix(); |
2624 | HeapWord* const end_addr = sd.region_align_up(space_info->new_top()); |
2625 | |
2626 | const RegionData* const beg_region = sd.addr_to_region_ptr(beg_addr); |
2627 | const RegionData* const end_region = sd.addr_to_region_ptr(end_addr); |
2628 | const RegionData* cur_region; |
2629 | for (cur_region = beg_region; cur_region < end_region; ++cur_region) { |
2630 | HeapWord* const addr = cur_region->deferred_obj_addr(); |
2631 | if (addr != NULL) { |
2632 | if (start_array != NULL) { |
2633 | start_array->allocate_block(addr); |
2634 | } |
2635 | cm->update_contents(oop(addr)); |
2636 | assert(oopDesc::is_oop_or_null(oop(addr)), "Expected an oop or NULL at " PTR_FORMAT, p2i(oop(addr))); |
2637 | } |
2638 | } |
2639 | } |
2640 | |
2641 | // Skip over count live words starting from beg, and return the address of the |
2642 | // next live word. Unless marked, the word corresponding to beg is assumed to |
2643 | // be dead. Callers must either ensure beg does not correspond to the middle of |
2644 | // an object, or account for those live words in some other way. Callers must |
2645 | // also ensure that there are enough live words in the range [beg, end) to skip. |
2646 | HeapWord* |
2647 | PSParallelCompact::skip_live_words(HeapWord* beg, HeapWord* end, size_t count) |
2648 | { |
2649 | assert(count > 0, "sanity" ); |
2650 | |
2651 | ParMarkBitMap* m = mark_bitmap(); |
2652 | idx_t bits_to_skip = m->words_to_bits(count); |
2653 | idx_t cur_beg = m->addr_to_bit(beg); |
2654 | const idx_t search_end = BitMap::word_align_up(m->addr_to_bit(end)); |
2655 | |
2656 | do { |
2657 | cur_beg = m->find_obj_beg(cur_beg, search_end); |
2658 | idx_t cur_end = m->find_obj_end(cur_beg, search_end); |
2659 | const size_t obj_bits = cur_end - cur_beg + 1; |
2660 | if (obj_bits > bits_to_skip) { |
2661 | return m->bit_to_addr(cur_beg + bits_to_skip); |
2662 | } |
2663 | bits_to_skip -= obj_bits; |
2664 | cur_beg = cur_end + 1; |
2665 | } while (bits_to_skip > 0); |
2666 | |
2667 | // Skipping the desired number of words landed just past the end of an object. |
2668 | // Find the start of the next object. |
2669 | cur_beg = m->find_obj_beg(cur_beg, search_end); |
2670 | assert(cur_beg < m->addr_to_bit(end), "not enough live words to skip" ); |
2671 | return m->bit_to_addr(cur_beg); |
2672 | } |
2673 | |
2674 | HeapWord* PSParallelCompact::first_src_addr(HeapWord* const dest_addr, |
2675 | SpaceId src_space_id, |
2676 | size_t src_region_idx) |
2677 | { |
2678 | assert(summary_data().is_region_aligned(dest_addr), "not aligned" ); |
2679 | |
2680 | const SplitInfo& split_info = _space_info[src_space_id].split_info(); |
2681 | if (split_info.dest_region_addr() == dest_addr) { |
2682 | // The partial object ending at the split point contains the first word to |
2683 | // be copied to dest_addr. |
2684 | return split_info.first_src_addr(); |
2685 | } |
2686 | |
2687 | const ParallelCompactData& sd = summary_data(); |
2688 | ParMarkBitMap* const bitmap = mark_bitmap(); |
2689 | const size_t RegionSize = ParallelCompactData::RegionSize; |
2690 | |
2691 | assert(sd.is_region_aligned(dest_addr), "not aligned" ); |
2692 | const RegionData* const src_region_ptr = sd.region(src_region_idx); |
2693 | const size_t partial_obj_size = src_region_ptr->partial_obj_size(); |
2694 | HeapWord* const src_region_destination = src_region_ptr->destination(); |
2695 | |
2696 | assert(dest_addr >= src_region_destination, "wrong src region" ); |
2697 | assert(src_region_ptr->data_size() > 0, "src region cannot be empty" ); |
2698 | |
2699 | HeapWord* const src_region_beg = sd.region_to_addr(src_region_idx); |
2700 | HeapWord* const src_region_end = src_region_beg + RegionSize; |
2701 | |
2702 | HeapWord* addr = src_region_beg; |
2703 | if (dest_addr == src_region_destination) { |
2704 | // Return the first live word in the source region. |
2705 | if (partial_obj_size == 0) { |
2706 | addr = bitmap->find_obj_beg(addr, src_region_end); |
2707 | assert(addr < src_region_end, "no objects start in src region" ); |
2708 | } |
2709 | return addr; |
2710 | } |
2711 | |
2712 | // Must skip some live data. |
2713 | size_t words_to_skip = dest_addr - src_region_destination; |
2714 | assert(src_region_ptr->data_size() > words_to_skip, "wrong src region" ); |
2715 | |
2716 | if (partial_obj_size >= words_to_skip) { |
2717 | // All the live words to skip are part of the partial object. |
2718 | addr += words_to_skip; |
2719 | if (partial_obj_size == words_to_skip) { |
2720 | // Find the first live word past the partial object. |
2721 | addr = bitmap->find_obj_beg(addr, src_region_end); |
2722 | assert(addr < src_region_end, "wrong src region" ); |
2723 | } |
2724 | return addr; |
2725 | } |
2726 | |
2727 | // Skip over the partial object (if any). |
2728 | if (partial_obj_size != 0) { |
2729 | words_to_skip -= partial_obj_size; |
2730 | addr += partial_obj_size; |
2731 | } |
2732 | |
2733 | // Skip over live words due to objects that start in the region. |
2734 | addr = skip_live_words(addr, src_region_end, words_to_skip); |
2735 | assert(addr < src_region_end, "wrong src region" ); |
2736 | return addr; |
2737 | } |
2738 | |
2739 | void PSParallelCompact::decrement_destination_counts(ParCompactionManager* cm, |
2740 | SpaceId src_space_id, |
2741 | size_t beg_region, |
2742 | HeapWord* end_addr) |
2743 | { |
2744 | ParallelCompactData& sd = summary_data(); |
2745 | |
2746 | #ifdef ASSERT |
2747 | MutableSpace* const src_space = _space_info[src_space_id].space(); |
2748 | HeapWord* const beg_addr = sd.region_to_addr(beg_region); |
2749 | assert(src_space->contains(beg_addr) || beg_addr == src_space->end(), |
2750 | "src_space_id does not match beg_addr" ); |
2751 | assert(src_space->contains(end_addr) || end_addr == src_space->end(), |
2752 | "src_space_id does not match end_addr" ); |
2753 | #endif // #ifdef ASSERT |
2754 | |
2755 | RegionData* const beg = sd.region(beg_region); |
2756 | RegionData* const end = sd.addr_to_region_ptr(sd.region_align_up(end_addr)); |
2757 | |
2758 | // Regions up to new_top() are enqueued if they become available. |
2759 | HeapWord* const new_top = _space_info[src_space_id].new_top(); |
2760 | RegionData* const enqueue_end = |
2761 | sd.addr_to_region_ptr(sd.region_align_up(new_top)); |
2762 | |
2763 | for (RegionData* cur = beg; cur < end; ++cur) { |
2764 | assert(cur->data_size() > 0, "region must have live data" ); |
2765 | cur->decrement_destination_count(); |
2766 | if (cur < enqueue_end && cur->available() && cur->claim()) { |
2767 | cm->push_region(sd.region(cur)); |
2768 | } |
2769 | } |
2770 | } |
2771 | |
2772 | size_t PSParallelCompact::next_src_region(MoveAndUpdateClosure& closure, |
2773 | SpaceId& src_space_id, |
2774 | HeapWord*& src_space_top, |
2775 | HeapWord* end_addr) |
2776 | { |
2777 | typedef ParallelCompactData::RegionData RegionData; |
2778 | |
2779 | ParallelCompactData& sd = PSParallelCompact::summary_data(); |
2780 | const size_t region_size = ParallelCompactData::RegionSize; |
2781 | |
2782 | size_t src_region_idx = 0; |
2783 | |
2784 | // Skip empty regions (if any) up to the top of the space. |
2785 | HeapWord* const src_aligned_up = sd.region_align_up(end_addr); |
2786 | RegionData* src_region_ptr = sd.addr_to_region_ptr(src_aligned_up); |
2787 | HeapWord* const top_aligned_up = sd.region_align_up(src_space_top); |
2788 | const RegionData* const top_region_ptr = |
2789 | sd.addr_to_region_ptr(top_aligned_up); |
2790 | while (src_region_ptr < top_region_ptr && src_region_ptr->data_size() == 0) { |
2791 | ++src_region_ptr; |
2792 | } |
2793 | |
2794 | if (src_region_ptr < top_region_ptr) { |
2795 | // The next source region is in the current space. Update src_region_idx |
2796 | // and the source address to match src_region_ptr. |
2797 | src_region_idx = sd.region(src_region_ptr); |
2798 | HeapWord* const src_region_addr = sd.region_to_addr(src_region_idx); |
2799 | if (src_region_addr > closure.source()) { |
2800 | closure.set_source(src_region_addr); |
2801 | } |
2802 | return src_region_idx; |
2803 | } |
2804 | |
2805 | // Switch to a new source space and find the first non-empty region. |
2806 | unsigned int space_id = src_space_id + 1; |
2807 | assert(space_id < last_space_id, "not enough spaces" ); |
2808 | |
2809 | HeapWord* const destination = closure.destination(); |
2810 | |
2811 | do { |
2812 | MutableSpace* space = _space_info[space_id].space(); |
2813 | HeapWord* const bottom = space->bottom(); |
2814 | const RegionData* const bottom_cp = sd.addr_to_region_ptr(bottom); |
2815 | |
2816 | // Iterate over the spaces that do not compact into themselves. |
2817 | if (bottom_cp->destination() != bottom) { |
2818 | HeapWord* const top_aligned_up = sd.region_align_up(space->top()); |
2819 | const RegionData* const top_cp = sd.addr_to_region_ptr(top_aligned_up); |
2820 | |
2821 | for (const RegionData* src_cp = bottom_cp; src_cp < top_cp; ++src_cp) { |
2822 | if (src_cp->live_obj_size() > 0) { |
2823 | // Found it. |
2824 | assert(src_cp->destination() == destination, |
2825 | "first live obj in the space must match the destination" ); |
2826 | assert(src_cp->partial_obj_size() == 0, |
2827 | "a space cannot begin with a partial obj" ); |
2828 | |
2829 | src_space_id = SpaceId(space_id); |
2830 | src_space_top = space->top(); |
2831 | const size_t src_region_idx = sd.region(src_cp); |
2832 | closure.set_source(sd.region_to_addr(src_region_idx)); |
2833 | return src_region_idx; |
2834 | } else { |
2835 | assert(src_cp->data_size() == 0, "sanity" ); |
2836 | } |
2837 | } |
2838 | } |
2839 | } while (++space_id < last_space_id); |
2840 | |
2841 | assert(false, "no source region was found" ); |
2842 | return 0; |
2843 | } |
2844 | |
2845 | void PSParallelCompact::fill_region(ParCompactionManager* cm, size_t region_idx) |
2846 | { |
2847 | typedef ParMarkBitMap::IterationStatus IterationStatus; |
2848 | const size_t RegionSize = ParallelCompactData::RegionSize; |
2849 | ParMarkBitMap* const bitmap = mark_bitmap(); |
2850 | ParallelCompactData& sd = summary_data(); |
2851 | RegionData* const region_ptr = sd.region(region_idx); |
2852 | |
2853 | // Get the items needed to construct the closure. |
2854 | HeapWord* dest_addr = sd.region_to_addr(region_idx); |
2855 | SpaceId dest_space_id = space_id(dest_addr); |
2856 | ObjectStartArray* start_array = _space_info[dest_space_id].start_array(); |
2857 | HeapWord* new_top = _space_info[dest_space_id].new_top(); |
2858 | assert(dest_addr < new_top, "sanity" ); |
2859 | const size_t words = MIN2(pointer_delta(new_top, dest_addr), RegionSize); |
2860 | |
2861 | // Get the source region and related info. |
2862 | size_t src_region_idx = region_ptr->source_region(); |
2863 | SpaceId src_space_id = space_id(sd.region_to_addr(src_region_idx)); |
2864 | HeapWord* src_space_top = _space_info[src_space_id].space()->top(); |
2865 | |
2866 | MoveAndUpdateClosure closure(bitmap, cm, start_array, dest_addr, words); |
2867 | closure.set_source(first_src_addr(dest_addr, src_space_id, src_region_idx)); |
2868 | |
2869 | // Adjust src_region_idx to prepare for decrementing destination counts (the |
2870 | // destination count is not decremented when a region is copied to itself). |
2871 | if (src_region_idx == region_idx) { |
2872 | src_region_idx += 1; |
2873 | } |
2874 | |
2875 | if (bitmap->is_unmarked(closure.source())) { |
2876 | // The first source word is in the middle of an object; copy the remainder |
2877 | // of the object or as much as will fit. The fact that pointer updates were |
2878 | // deferred will be noted when the object header is processed. |
2879 | HeapWord* const old_src_addr = closure.source(); |
2880 | closure.copy_partial_obj(); |
2881 | if (closure.is_full()) { |
2882 | decrement_destination_counts(cm, src_space_id, src_region_idx, |
2883 | closure.source()); |
2884 | region_ptr->set_deferred_obj_addr(NULL); |
2885 | region_ptr->set_completed(); |
2886 | return; |
2887 | } |
2888 | |
2889 | HeapWord* const end_addr = sd.region_align_down(closure.source()); |
2890 | if (sd.region_align_down(old_src_addr) != end_addr) { |
2891 | // The partial object was copied from more than one source region. |
2892 | decrement_destination_counts(cm, src_space_id, src_region_idx, end_addr); |
2893 | |
2894 | // Move to the next source region, possibly switching spaces as well. All |
2895 | // args except end_addr may be modified. |
2896 | src_region_idx = next_src_region(closure, src_space_id, src_space_top, |
2897 | end_addr); |
2898 | } |
2899 | } |
2900 | |
2901 | do { |
2902 | HeapWord* const cur_addr = closure.source(); |
2903 | HeapWord* const end_addr = MIN2(sd.region_align_up(cur_addr + 1), |
2904 | src_space_top); |
2905 | IterationStatus status = bitmap->iterate(&closure, cur_addr, end_addr); |
2906 | |
2907 | if (status == ParMarkBitMap::incomplete) { |
2908 | // The last obj that starts in the source region does not end in the |
2909 | // region. |
2910 | assert(closure.source() < end_addr, "sanity" ); |
2911 | HeapWord* const obj_beg = closure.source(); |
2912 | HeapWord* const range_end = MIN2(obj_beg + closure.words_remaining(), |
2913 | src_space_top); |
2914 | HeapWord* const obj_end = bitmap->find_obj_end(obj_beg, range_end); |
2915 | if (obj_end < range_end) { |
2916 | // The end was found; the entire object will fit. |
2917 | status = closure.do_addr(obj_beg, bitmap->obj_size(obj_beg, obj_end)); |
2918 | assert(status != ParMarkBitMap::would_overflow, "sanity" ); |
2919 | } else { |
2920 | // The end was not found; the object will not fit. |
2921 | assert(range_end < src_space_top, "obj cannot cross space boundary" ); |
2922 | status = ParMarkBitMap::would_overflow; |
2923 | } |
2924 | } |
2925 | |
2926 | if (status == ParMarkBitMap::would_overflow) { |
2927 | // The last object did not fit. Note that interior oop updates were |
2928 | // deferred, then copy enough of the object to fill the region. |
2929 | region_ptr->set_deferred_obj_addr(closure.destination()); |
2930 | status = closure.copy_until_full(); // copies from closure.source() |
2931 | |
2932 | decrement_destination_counts(cm, src_space_id, src_region_idx, |
2933 | closure.source()); |
2934 | region_ptr->set_completed(); |
2935 | return; |
2936 | } |
2937 | |
2938 | if (status == ParMarkBitMap::full) { |
2939 | decrement_destination_counts(cm, src_space_id, src_region_idx, |
2940 | closure.source()); |
2941 | region_ptr->set_deferred_obj_addr(NULL); |
2942 | region_ptr->set_completed(); |
2943 | return; |
2944 | } |
2945 | |
2946 | decrement_destination_counts(cm, src_space_id, src_region_idx, end_addr); |
2947 | |
2948 | // Move to the next source region, possibly switching spaces as well. All |
2949 | // args except end_addr may be modified. |
2950 | src_region_idx = next_src_region(closure, src_space_id, src_space_top, |
2951 | end_addr); |
2952 | } while (true); |
2953 | } |
2954 | |
2955 | void PSParallelCompact::fill_blocks(size_t region_idx) |
2956 | { |
2957 | // Fill in the block table elements for the specified region. Each block |
2958 | // table element holds the number of live words in the region that are to the |
2959 | // left of the first object that starts in the block. Thus only blocks in |
2960 | // which an object starts need to be filled. |
2961 | // |
2962 | // The algorithm scans the section of the bitmap that corresponds to the |
2963 | // region, keeping a running total of the live words. When an object start is |
2964 | // found, if it's the first to start in the block that contains it, the |
2965 | // current total is written to the block table element. |
2966 | const size_t Log2BlockSize = ParallelCompactData::Log2BlockSize; |
2967 | const size_t Log2RegionSize = ParallelCompactData::Log2RegionSize; |
2968 | const size_t RegionSize = ParallelCompactData::RegionSize; |
2969 | |
2970 | ParallelCompactData& sd = summary_data(); |
2971 | const size_t partial_obj_size = sd.region(region_idx)->partial_obj_size(); |
2972 | if (partial_obj_size >= RegionSize) { |
2973 | return; // No objects start in this region. |
2974 | } |
2975 | |
2976 | // Ensure the first loop iteration decides that the block has changed. |
2977 | size_t cur_block = sd.block_count(); |
2978 | |
2979 | const ParMarkBitMap* const bitmap = mark_bitmap(); |
2980 | |
2981 | const size_t Log2BitsPerBlock = Log2BlockSize - LogMinObjAlignment; |
2982 | assert((size_t)1 << Log2BitsPerBlock == |
2983 | bitmap->words_to_bits(ParallelCompactData::BlockSize), "sanity" ); |
2984 | |
2985 | size_t beg_bit = bitmap->words_to_bits(region_idx << Log2RegionSize); |
2986 | const size_t range_end = beg_bit + bitmap->words_to_bits(RegionSize); |
2987 | size_t live_bits = bitmap->words_to_bits(partial_obj_size); |
2988 | beg_bit = bitmap->find_obj_beg(beg_bit + live_bits, range_end); |
2989 | while (beg_bit < range_end) { |
2990 | const size_t new_block = beg_bit >> Log2BitsPerBlock; |
2991 | if (new_block != cur_block) { |
2992 | cur_block = new_block; |
2993 | sd.block(cur_block)->set_offset(bitmap->bits_to_words(live_bits)); |
2994 | } |
2995 | |
2996 | const size_t end_bit = bitmap->find_obj_end(beg_bit, range_end); |
2997 | if (end_bit < range_end - 1) { |
2998 | live_bits += end_bit - beg_bit + 1; |
2999 | beg_bit = bitmap->find_obj_beg(end_bit + 1, range_end); |
3000 | } else { |
3001 | return; |
3002 | } |
3003 | } |
3004 | } |
3005 | |
3006 | void |
3007 | PSParallelCompact::move_and_update(ParCompactionManager* cm, SpaceId space_id) { |
3008 | const MutableSpace* sp = space(space_id); |
3009 | if (sp->is_empty()) { |
3010 | return; |
3011 | } |
3012 | |
3013 | ParallelCompactData& sd = PSParallelCompact::summary_data(); |
3014 | ParMarkBitMap* const bitmap = mark_bitmap(); |
3015 | HeapWord* const dp_addr = dense_prefix(space_id); |
3016 | HeapWord* beg_addr = sp->bottom(); |
3017 | HeapWord* end_addr = sp->top(); |
3018 | |
3019 | assert(beg_addr <= dp_addr && dp_addr <= end_addr, "bad dense prefix" ); |
3020 | |
3021 | const size_t beg_region = sd.addr_to_region_idx(beg_addr); |
3022 | const size_t dp_region = sd.addr_to_region_idx(dp_addr); |
3023 | if (beg_region < dp_region) { |
3024 | update_and_deadwood_in_dense_prefix(cm, space_id, beg_region, dp_region); |
3025 | } |
3026 | |
3027 | // The destination of the first live object that starts in the region is one |
3028 | // past the end of the partial object entering the region (if any). |
3029 | HeapWord* const dest_addr = sd.partial_obj_end(dp_region); |
3030 | HeapWord* const new_top = _space_info[space_id].new_top(); |
3031 | assert(new_top >= dest_addr, "bad new_top value" ); |
3032 | const size_t words = pointer_delta(new_top, dest_addr); |
3033 | |
3034 | if (words > 0) { |
3035 | ObjectStartArray* start_array = _space_info[space_id].start_array(); |
3036 | MoveAndUpdateClosure closure(bitmap, cm, start_array, dest_addr, words); |
3037 | |
3038 | ParMarkBitMap::IterationStatus status; |
3039 | status = bitmap->iterate(&closure, dest_addr, end_addr); |
3040 | assert(status == ParMarkBitMap::full, "iteration not complete" ); |
3041 | assert(bitmap->find_obj_beg(closure.source(), end_addr) == end_addr, |
3042 | "live objects skipped because closure is full" ); |
3043 | } |
3044 | } |
3045 | |
3046 | jlong PSParallelCompact::millis_since_last_gc() { |
3047 | // We need a monotonically non-decreasing time in ms but |
3048 | // os::javaTimeMillis() does not guarantee monotonicity. |
3049 | jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC; |
3050 | jlong ret_val = now - _time_of_last_gc; |
3051 | // XXX See note in genCollectedHeap::millis_since_last_gc(). |
3052 | if (ret_val < 0) { |
3053 | NOT_PRODUCT(log_warning(gc)("time warp: " JLONG_FORMAT, ret_val);) |
3054 | return 0; |
3055 | } |
3056 | return ret_val; |
3057 | } |
3058 | |
3059 | void PSParallelCompact::reset_millis_since_last_gc() { |
3060 | // We need a monotonically non-decreasing time in ms but |
3061 | // os::javaTimeMillis() does not guarantee monotonicity. |
3062 | _time_of_last_gc = os::javaTimeNanos() / NANOSECS_PER_MILLISEC; |
3063 | } |
3064 | |
3065 | ParMarkBitMap::IterationStatus MoveAndUpdateClosure::copy_until_full() |
3066 | { |
3067 | if (source() != destination()) { |
3068 | DEBUG_ONLY(PSParallelCompact::check_new_location(source(), destination());) |
3069 | Copy::aligned_conjoint_words(source(), destination(), words_remaining()); |
3070 | } |
3071 | update_state(words_remaining()); |
3072 | assert(is_full(), "sanity" ); |
3073 | return ParMarkBitMap::full; |
3074 | } |
3075 | |
3076 | void MoveAndUpdateClosure::copy_partial_obj() |
3077 | { |
3078 | size_t words = words_remaining(); |
3079 | |
3080 | HeapWord* const range_end = MIN2(source() + words, bitmap()->region_end()); |
3081 | HeapWord* const end_addr = bitmap()->find_obj_end(source(), range_end); |
3082 | if (end_addr < range_end) { |
3083 | words = bitmap()->obj_size(source(), end_addr); |
3084 | } |
3085 | |
3086 | // This test is necessary; if omitted, the pointer updates to a partial object |
3087 | // that crosses the dense prefix boundary could be overwritten. |
3088 | if (source() != destination()) { |
3089 | DEBUG_ONLY(PSParallelCompact::check_new_location(source(), destination());) |
3090 | Copy::aligned_conjoint_words(source(), destination(), words); |
3091 | } |
3092 | update_state(words); |
3093 | } |
3094 | |
3095 | ParMarkBitMapClosure::IterationStatus |
3096 | MoveAndUpdateClosure::do_addr(HeapWord* addr, size_t words) { |
3097 | assert(destination() != NULL, "sanity" ); |
3098 | assert(bitmap()->obj_size(addr) == words, "bad size" ); |
3099 | |
3100 | _source = addr; |
3101 | assert(PSParallelCompact::summary_data().calc_new_pointer(source(), compaction_manager()) == |
3102 | destination(), "wrong destination" ); |
3103 | |
3104 | if (words > words_remaining()) { |
3105 | return ParMarkBitMap::would_overflow; |
3106 | } |
3107 | |
3108 | // The start_array must be updated even if the object is not moving. |
3109 | if (_start_array != NULL) { |
3110 | _start_array->allocate_block(destination()); |
3111 | } |
3112 | |
3113 | if (destination() != source()) { |
3114 | DEBUG_ONLY(PSParallelCompact::check_new_location(source(), destination());) |
3115 | Copy::aligned_conjoint_words(source(), destination(), words); |
3116 | } |
3117 | |
3118 | oop moved_oop = (oop) destination(); |
3119 | compaction_manager()->update_contents(moved_oop); |
3120 | assert(oopDesc::is_oop_or_null(moved_oop), "Expected an oop or NULL at " PTR_FORMAT, p2i(moved_oop)); |
3121 | |
3122 | update_state(words); |
3123 | assert(destination() == (HeapWord*)moved_oop + moved_oop->size(), "sanity" ); |
3124 | return is_full() ? ParMarkBitMap::full : ParMarkBitMap::incomplete; |
3125 | } |
3126 | |
3127 | UpdateOnlyClosure::UpdateOnlyClosure(ParMarkBitMap* mbm, |
3128 | ParCompactionManager* cm, |
3129 | PSParallelCompact::SpaceId space_id) : |
3130 | ParMarkBitMapClosure(mbm, cm), |
3131 | _space_id(space_id), |
3132 | _start_array(PSParallelCompact::start_array(space_id)) |
3133 | { |
3134 | } |
3135 | |
3136 | // Updates the references in the object to their new values. |
3137 | ParMarkBitMapClosure::IterationStatus |
3138 | UpdateOnlyClosure::do_addr(HeapWord* addr, size_t words) { |
3139 | do_addr(addr); |
3140 | return ParMarkBitMap::incomplete; |
3141 | } |
3142 | |
3143 | FillClosure::FillClosure(ParCompactionManager* cm, PSParallelCompact::SpaceId space_id) : |
3144 | ParMarkBitMapClosure(PSParallelCompact::mark_bitmap(), cm), |
3145 | _start_array(PSParallelCompact::start_array(space_id)) |
3146 | { |
3147 | assert(space_id == PSParallelCompact::old_space_id, |
3148 | "cannot use FillClosure in the young gen" ); |
3149 | } |
3150 | |
3151 | ParMarkBitMapClosure::IterationStatus |
3152 | FillClosure::do_addr(HeapWord* addr, size_t size) { |
3153 | CollectedHeap::fill_with_objects(addr, size); |
3154 | HeapWord* const end = addr + size; |
3155 | do { |
3156 | _start_array->allocate_block(addr); |
3157 | addr += oop(addr)->size(); |
3158 | } while (addr < end); |
3159 | return ParMarkBitMap::incomplete; |
3160 | } |
3161 | |