1/*
2 * Copyright (c) 2012, 2016, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "gc/shared/barrierSet.hpp"
27#include "opto/arraycopynode.hpp"
28#include "oops/objArrayKlass.hpp"
29#include "opto/convertnode.hpp"
30#include "opto/graphKit.hpp"
31#include "opto/macro.hpp"
32#include "opto/runtime.hpp"
33#include "utilities/align.hpp"
34
35
36void PhaseMacroExpand::insert_mem_bar(Node** ctrl, Node** mem, int opcode, Node* precedent) {
37 MemBarNode* mb = MemBarNode::make(C, opcode, Compile::AliasIdxBot, precedent);
38 mb->init_req(TypeFunc::Control, *ctrl);
39 mb->init_req(TypeFunc::Memory, *mem);
40 transform_later(mb);
41 *ctrl = new ProjNode(mb,TypeFunc::Control);
42 transform_later(*ctrl);
43 Node* mem_proj = new ProjNode(mb,TypeFunc::Memory);
44 transform_later(mem_proj);
45 *mem = mem_proj;
46}
47
48Node* PhaseMacroExpand::array_element_address(Node* ary, Node* idx, BasicType elembt) {
49 uint shift = exact_log2(type2aelembytes(elembt));
50 uint header = arrayOopDesc::base_offset_in_bytes(elembt);
51 Node* base = basic_plus_adr(ary, header);
52#ifdef _LP64
53 // see comment in GraphKit::array_element_address
54 int index_max = max_jint - 1; // array size is max_jint, index is one less
55 const TypeLong* lidxtype = TypeLong::make(CONST64(0), index_max, Type::WidenMax);
56 idx = transform_later( new ConvI2LNode(idx, lidxtype) );
57#endif
58 Node* scale = new LShiftXNode(idx, intcon(shift));
59 transform_later(scale);
60 return basic_plus_adr(ary, base, scale);
61}
62
63Node* PhaseMacroExpand::ConvI2L(Node* offset) {
64 return transform_later(new ConvI2LNode(offset));
65}
66
67Node* PhaseMacroExpand::make_leaf_call(Node* ctrl, Node* mem,
68 const TypeFunc* call_type, address call_addr,
69 const char* call_name,
70 const TypePtr* adr_type,
71 Node* parm0, Node* parm1,
72 Node* parm2, Node* parm3,
73 Node* parm4, Node* parm5,
74 Node* parm6, Node* parm7) {
75 Node* call = new CallLeafNoFPNode(call_type, call_addr, call_name, adr_type);
76 call->init_req(TypeFunc::Control, ctrl);
77 call->init_req(TypeFunc::I_O , top());
78 call->init_req(TypeFunc::Memory , mem);
79 call->init_req(TypeFunc::ReturnAdr, top());
80 call->init_req(TypeFunc::FramePtr, top());
81
82 // Hook each parm in order. Stop looking at the first NULL.
83 if (parm0 != NULL) { call->init_req(TypeFunc::Parms+0, parm0);
84 if (parm1 != NULL) { call->init_req(TypeFunc::Parms+1, parm1);
85 if (parm2 != NULL) { call->init_req(TypeFunc::Parms+2, parm2);
86 if (parm3 != NULL) { call->init_req(TypeFunc::Parms+3, parm3);
87 if (parm4 != NULL) { call->init_req(TypeFunc::Parms+4, parm4);
88 if (parm5 != NULL) { call->init_req(TypeFunc::Parms+5, parm5);
89 if (parm6 != NULL) { call->init_req(TypeFunc::Parms+6, parm6);
90 if (parm7 != NULL) { call->init_req(TypeFunc::Parms+7, parm7);
91 /* close each nested if ===> */ } } } } } } } }
92 assert(call->in(call->req()-1) != NULL, "must initialize all parms");
93
94 return call;
95}
96
97
98//------------------------------generate_guard---------------------------
99// Helper function for generating guarded fast-slow graph structures.
100// The given 'test', if true, guards a slow path. If the test fails
101// then a fast path can be taken. (We generally hope it fails.)
102// In all cases, GraphKit::control() is updated to the fast path.
103// The returned value represents the control for the slow path.
104// The return value is never 'top'; it is either a valid control
105// or NULL if it is obvious that the slow path can never be taken.
106// Also, if region and the slow control are not NULL, the slow edge
107// is appended to the region.
108Node* PhaseMacroExpand::generate_guard(Node** ctrl, Node* test, RegionNode* region, float true_prob) {
109 if ((*ctrl)->is_top()) {
110 // Already short circuited.
111 return NULL;
112 }
113 // Build an if node and its projections.
114 // If test is true we take the slow path, which we assume is uncommon.
115 if (_igvn.type(test) == TypeInt::ZERO) {
116 // The slow branch is never taken. No need to build this guard.
117 return NULL;
118 }
119
120 IfNode* iff = new IfNode(*ctrl, test, true_prob, COUNT_UNKNOWN);
121 transform_later(iff);
122
123 Node* if_slow = new IfTrueNode(iff);
124 transform_later(if_slow);
125
126 if (region != NULL) {
127 region->add_req(if_slow);
128 }
129
130 Node* if_fast = new IfFalseNode(iff);
131 transform_later(if_fast);
132
133 *ctrl = if_fast;
134
135 return if_slow;
136}
137
138inline Node* PhaseMacroExpand::generate_slow_guard(Node** ctrl, Node* test, RegionNode* region) {
139 return generate_guard(ctrl, test, region, PROB_UNLIKELY_MAG(3));
140}
141
142void PhaseMacroExpand::generate_negative_guard(Node** ctrl, Node* index, RegionNode* region) {
143 if ((*ctrl)->is_top())
144 return; // already stopped
145 if (_igvn.type(index)->higher_equal(TypeInt::POS)) // [0,maxint]
146 return; // index is already adequately typed
147 Node* cmp_lt = new CmpINode(index, intcon(0));
148 transform_later(cmp_lt);
149 Node* bol_lt = new BoolNode(cmp_lt, BoolTest::lt);
150 transform_later(bol_lt);
151 generate_guard(ctrl, bol_lt, region, PROB_MIN);
152}
153
154void PhaseMacroExpand::generate_limit_guard(Node** ctrl, Node* offset, Node* subseq_length, Node* array_length, RegionNode* region) {
155 if ((*ctrl)->is_top())
156 return; // already stopped
157 bool zero_offset = _igvn.type(offset) == TypeInt::ZERO;
158 if (zero_offset && subseq_length->eqv_uncast(array_length))
159 return; // common case of whole-array copy
160 Node* last = subseq_length;
161 if (!zero_offset) { // last += offset
162 last = new AddINode(last, offset);
163 transform_later(last);
164 }
165 Node* cmp_lt = new CmpUNode(array_length, last);
166 transform_later(cmp_lt);
167 Node* bol_lt = new BoolNode(cmp_lt, BoolTest::lt);
168 transform_later(bol_lt);
169 generate_guard(ctrl, bol_lt, region, PROB_MIN);
170}
171
172Node* PhaseMacroExpand::generate_nonpositive_guard(Node** ctrl, Node* index, bool never_negative) {
173 if ((*ctrl)->is_top()) return NULL;
174
175 if (_igvn.type(index)->higher_equal(TypeInt::POS1)) // [1,maxint]
176 return NULL; // index is already adequately typed
177 Node* cmp_le = new CmpINode(index, intcon(0));
178 transform_later(cmp_le);
179 BoolTest::mask le_or_eq = (never_negative ? BoolTest::eq : BoolTest::le);
180 Node* bol_le = new BoolNode(cmp_le, le_or_eq);
181 transform_later(bol_le);
182 Node* is_notp = generate_guard(ctrl, bol_le, NULL, PROB_MIN);
183
184 return is_notp;
185}
186
187void PhaseMacroExpand::finish_arraycopy_call(Node* call, Node** ctrl, MergeMemNode** mem, const TypePtr* adr_type) {
188 transform_later(call);
189
190 *ctrl = new ProjNode(call,TypeFunc::Control);
191 transform_later(*ctrl);
192 Node* newmem = new ProjNode(call, TypeFunc::Memory);
193 transform_later(newmem);
194
195 uint alias_idx = C->get_alias_index(adr_type);
196 if (alias_idx != Compile::AliasIdxBot) {
197 *mem = MergeMemNode::make(*mem);
198 (*mem)->set_memory_at(alias_idx, newmem);
199 } else {
200 *mem = MergeMemNode::make(newmem);
201 }
202 transform_later(*mem);
203}
204
205address PhaseMacroExpand::basictype2arraycopy(BasicType t,
206 Node* src_offset,
207 Node* dest_offset,
208 bool disjoint_bases,
209 const char* &name,
210 bool dest_uninitialized) {
211 const TypeInt* src_offset_inttype = _igvn.find_int_type(src_offset);;
212 const TypeInt* dest_offset_inttype = _igvn.find_int_type(dest_offset);;
213
214 bool aligned = false;
215 bool disjoint = disjoint_bases;
216
217 // if the offsets are the same, we can treat the memory regions as
218 // disjoint, because either the memory regions are in different arrays,
219 // or they are identical (which we can treat as disjoint.) We can also
220 // treat a copy with a destination index less that the source index
221 // as disjoint since a low->high copy will work correctly in this case.
222 if (src_offset_inttype != NULL && src_offset_inttype->is_con() &&
223 dest_offset_inttype != NULL && dest_offset_inttype->is_con()) {
224 // both indices are constants
225 int s_offs = src_offset_inttype->get_con();
226 int d_offs = dest_offset_inttype->get_con();
227 int element_size = type2aelembytes(t);
228 aligned = ((arrayOopDesc::base_offset_in_bytes(t) + s_offs * element_size) % HeapWordSize == 0) &&
229 ((arrayOopDesc::base_offset_in_bytes(t) + d_offs * element_size) % HeapWordSize == 0);
230 if (s_offs >= d_offs) disjoint = true;
231 } else if (src_offset == dest_offset && src_offset != NULL) {
232 // This can occur if the offsets are identical non-constants.
233 disjoint = true;
234 }
235
236 return StubRoutines::select_arraycopy_function(t, aligned, disjoint, name, dest_uninitialized);
237}
238
239#define XTOP LP64_ONLY(COMMA top())
240
241// Generate an optimized call to arraycopy.
242// Caller must guard against non-arrays.
243// Caller must determine a common array basic-type for both arrays.
244// Caller must validate offsets against array bounds.
245// The slow_region has already collected guard failure paths
246// (such as out of bounds length or non-conformable array types).
247// The generated code has this shape, in general:
248//
249// if (length == 0) return // via zero_path
250// slowval = -1
251// if (types unknown) {
252// slowval = call generic copy loop
253// if (slowval == 0) return // via checked_path
254// } else if (indexes in bounds) {
255// if ((is object array) && !(array type check)) {
256// slowval = call checked copy loop
257// if (slowval == 0) return // via checked_path
258// } else {
259// call bulk copy loop
260// return // via fast_path
261// }
262// }
263// // adjust params for remaining work:
264// if (slowval != -1) {
265// n = -1^slowval; src_offset += n; dest_offset += n; length -= n
266// }
267// slow_region:
268// call slow arraycopy(src, src_offset, dest, dest_offset, length)
269// return // via slow_call_path
270//
271// This routine is used from several intrinsics: System.arraycopy,
272// Object.clone (the array subcase), and Arrays.copyOf[Range].
273//
274Node* PhaseMacroExpand::generate_arraycopy(ArrayCopyNode *ac, AllocateArrayNode* alloc,
275 Node** ctrl, MergeMemNode* mem, Node** io,
276 const TypePtr* adr_type,
277 BasicType basic_elem_type,
278 Node* src, Node* src_offset,
279 Node* dest, Node* dest_offset,
280 Node* copy_length,
281 bool disjoint_bases,
282 bool length_never_negative,
283 RegionNode* slow_region) {
284 if (slow_region == NULL) {
285 slow_region = new RegionNode(1);
286 transform_later(slow_region);
287 }
288
289 Node* original_dest = dest;
290 bool dest_uninitialized = false;
291
292 // See if this is the initialization of a newly-allocated array.
293 // If so, we will take responsibility here for initializing it to zero.
294 // (Note: Because tightly_coupled_allocation performs checks on the
295 // out-edges of the dest, we need to avoid making derived pointers
296 // from it until we have checked its uses.)
297 if (ReduceBulkZeroing
298 && !(UseTLAB && ZeroTLAB) // pointless if already zeroed
299 && basic_elem_type != T_CONFLICT // avoid corner case
300 && !src->eqv_uncast(dest)
301 && alloc != NULL
302 && _igvn.find_int_con(alloc->in(AllocateNode::ALength), 1) > 0
303 && alloc->maybe_set_complete(&_igvn)) {
304 // "You break it, you buy it."
305 InitializeNode* init = alloc->initialization();
306 assert(init->is_complete(), "we just did this");
307 init->set_complete_with_arraycopy();
308 assert(dest->is_CheckCastPP(), "sanity");
309 assert(dest->in(0)->in(0) == init, "dest pinned");
310 adr_type = TypeRawPtr::BOTTOM; // all initializations are into raw memory
311 // From this point on, every exit path is responsible for
312 // initializing any non-copied parts of the object to zero.
313 // Also, if this flag is set we make sure that arraycopy interacts properly
314 // with G1, eliding pre-barriers. See CR 6627983.
315 dest_uninitialized = true;
316 } else {
317 // No zeroing elimination here.
318 alloc = NULL;
319 //original_dest = dest;
320 //dest_uninitialized = false;
321 }
322
323 uint alias_idx = C->get_alias_index(adr_type);
324
325 // Results are placed here:
326 enum { fast_path = 1, // normal void-returning assembly stub
327 checked_path = 2, // special assembly stub with cleanup
328 slow_call_path = 3, // something went wrong; call the VM
329 zero_path = 4, // bypass when length of copy is zero
330 bcopy_path = 5, // copy primitive array by 64-bit blocks
331 PATH_LIMIT = 6
332 };
333 RegionNode* result_region = new RegionNode(PATH_LIMIT);
334 PhiNode* result_i_o = new PhiNode(result_region, Type::ABIO);
335 PhiNode* result_memory = new PhiNode(result_region, Type::MEMORY, adr_type);
336 assert(adr_type != TypePtr::BOTTOM, "must be RawMem or a T[] slice");
337 transform_later(result_region);
338 transform_later(result_i_o);
339 transform_later(result_memory);
340
341 // The slow_control path:
342 Node* slow_control;
343 Node* slow_i_o = *io;
344 Node* slow_mem = mem->memory_at(alias_idx);
345 DEBUG_ONLY(slow_control = (Node*) badAddress);
346
347 // Checked control path:
348 Node* checked_control = top();
349 Node* checked_mem = NULL;
350 Node* checked_i_o = NULL;
351 Node* checked_value = NULL;
352
353 if (basic_elem_type == T_CONFLICT) {
354 assert(!dest_uninitialized, "");
355 Node* cv = generate_generic_arraycopy(ctrl, &mem,
356 adr_type,
357 src, src_offset, dest, dest_offset,
358 copy_length, dest_uninitialized);
359 if (cv == NULL) cv = intcon(-1); // failure (no stub available)
360 checked_control = *ctrl;
361 checked_i_o = *io;
362 checked_mem = mem->memory_at(alias_idx);
363 checked_value = cv;
364 *ctrl = top();
365 }
366
367 Node* not_pos = generate_nonpositive_guard(ctrl, copy_length, length_never_negative);
368 if (not_pos != NULL) {
369 Node* local_ctrl = not_pos, *local_io = *io;
370 MergeMemNode* local_mem = MergeMemNode::make(mem);
371 transform_later(local_mem);
372
373 // (6) length must not be negative.
374 if (!length_never_negative) {
375 generate_negative_guard(&local_ctrl, copy_length, slow_region);
376 }
377
378 // copy_length is 0.
379 if (dest_uninitialized) {
380 assert(!local_ctrl->is_top(), "no ctrl?");
381 Node* dest_length = alloc->in(AllocateNode::ALength);
382 if (copy_length->eqv_uncast(dest_length)
383 || _igvn.find_int_con(dest_length, 1) <= 0) {
384 // There is no zeroing to do. No need for a secondary raw memory barrier.
385 } else {
386 // Clear the whole thing since there are no source elements to copy.
387 generate_clear_array(local_ctrl, local_mem,
388 adr_type, dest, basic_elem_type,
389 intcon(0), NULL,
390 alloc->in(AllocateNode::AllocSize));
391 // Use a secondary InitializeNode as raw memory barrier.
392 // Currently it is needed only on this path since other
393 // paths have stub or runtime calls as raw memory barriers.
394 MemBarNode* mb = MemBarNode::make(C, Op_Initialize,
395 Compile::AliasIdxRaw,
396 top());
397 transform_later(mb);
398 mb->set_req(TypeFunc::Control,local_ctrl);
399 mb->set_req(TypeFunc::Memory, local_mem->memory_at(Compile::AliasIdxRaw));
400 local_ctrl = transform_later(new ProjNode(mb, TypeFunc::Control));
401 local_mem->set_memory_at(Compile::AliasIdxRaw, transform_later(new ProjNode(mb, TypeFunc::Memory)));
402
403 InitializeNode* init = mb->as_Initialize();
404 init->set_complete(&_igvn); // (there is no corresponding AllocateNode)
405 }
406 }
407
408 // Present the results of the fast call.
409 result_region->init_req(zero_path, local_ctrl);
410 result_i_o ->init_req(zero_path, local_io);
411 result_memory->init_req(zero_path, local_mem->memory_at(alias_idx));
412 }
413
414 if (!(*ctrl)->is_top() && dest_uninitialized) {
415 // We have to initialize the *uncopied* part of the array to zero.
416 // The copy destination is the slice dest[off..off+len]. The other slices
417 // are dest_head = dest[0..off] and dest_tail = dest[off+len..dest.length].
418 Node* dest_size = alloc->in(AllocateNode::AllocSize);
419 Node* dest_length = alloc->in(AllocateNode::ALength);
420 Node* dest_tail = transform_later( new AddINode(dest_offset, copy_length));
421
422 // If there is a head section that needs zeroing, do it now.
423 if (_igvn.find_int_con(dest_offset, -1) != 0) {
424 generate_clear_array(*ctrl, mem,
425 adr_type, dest, basic_elem_type,
426 intcon(0), dest_offset,
427 NULL);
428 }
429
430 // Next, perform a dynamic check on the tail length.
431 // It is often zero, and we can win big if we prove this.
432 // There are two wins: Avoid generating the ClearArray
433 // with its attendant messy index arithmetic, and upgrade
434 // the copy to a more hardware-friendly word size of 64 bits.
435 Node* tail_ctl = NULL;
436 if (!(*ctrl)->is_top() && !dest_tail->eqv_uncast(dest_length)) {
437 Node* cmp_lt = transform_later( new CmpINode(dest_tail, dest_length) );
438 Node* bol_lt = transform_later( new BoolNode(cmp_lt, BoolTest::lt) );
439 tail_ctl = generate_slow_guard(ctrl, bol_lt, NULL);
440 assert(tail_ctl != NULL || !(*ctrl)->is_top(), "must be an outcome");
441 }
442
443 // At this point, let's assume there is no tail.
444 if (!(*ctrl)->is_top() && alloc != NULL && basic_elem_type != T_OBJECT) {
445 // There is no tail. Try an upgrade to a 64-bit copy.
446 bool didit = false;
447 {
448 Node* local_ctrl = *ctrl, *local_io = *io;
449 MergeMemNode* local_mem = MergeMemNode::make(mem);
450 transform_later(local_mem);
451
452 didit = generate_block_arraycopy(&local_ctrl, &local_mem, local_io,
453 adr_type, basic_elem_type, alloc,
454 src, src_offset, dest, dest_offset,
455 dest_size, dest_uninitialized);
456 if (didit) {
457 // Present the results of the block-copying fast call.
458 result_region->init_req(bcopy_path, local_ctrl);
459 result_i_o ->init_req(bcopy_path, local_io);
460 result_memory->init_req(bcopy_path, local_mem->memory_at(alias_idx));
461 }
462 }
463 if (didit) {
464 *ctrl = top(); // no regular fast path
465 }
466 }
467
468 // Clear the tail, if any.
469 if (tail_ctl != NULL) {
470 Node* notail_ctl = (*ctrl)->is_top() ? NULL : *ctrl;
471 *ctrl = tail_ctl;
472 if (notail_ctl == NULL) {
473 generate_clear_array(*ctrl, mem,
474 adr_type, dest, basic_elem_type,
475 dest_tail, NULL,
476 dest_size);
477 } else {
478 // Make a local merge.
479 Node* done_ctl = transform_later(new RegionNode(3));
480 Node* done_mem = transform_later(new PhiNode(done_ctl, Type::MEMORY, adr_type));
481 done_ctl->init_req(1, notail_ctl);
482 done_mem->init_req(1, mem->memory_at(alias_idx));
483 generate_clear_array(*ctrl, mem,
484 adr_type, dest, basic_elem_type,
485 dest_tail, NULL,
486 dest_size);
487 done_ctl->init_req(2, *ctrl);
488 done_mem->init_req(2, mem->memory_at(alias_idx));
489 *ctrl = done_ctl;
490 mem->set_memory_at(alias_idx, done_mem);
491 }
492 }
493 }
494
495 BasicType copy_type = basic_elem_type;
496 assert(basic_elem_type != T_ARRAY, "caller must fix this");
497 if (!(*ctrl)->is_top() && copy_type == T_OBJECT) {
498 // If src and dest have compatible element types, we can copy bits.
499 // Types S[] and D[] are compatible if D is a supertype of S.
500 //
501 // If they are not, we will use checked_oop_disjoint_arraycopy,
502 // which performs a fast optimistic per-oop check, and backs off
503 // further to JVM_ArrayCopy on the first per-oop check that fails.
504 // (Actually, we don't move raw bits only; the GC requires card marks.)
505
506 // We don't need a subtype check for validated copies and Object[].clone()
507 bool skip_subtype_check = ac->is_arraycopy_validated() || ac->is_copyof_validated() ||
508 ac->is_copyofrange_validated() || ac->is_cloneoop();
509 if (!skip_subtype_check) {
510 // Get the klass* for both src and dest
511 Node* src_klass = ac->in(ArrayCopyNode::SrcKlass);
512 Node* dest_klass = ac->in(ArrayCopyNode::DestKlass);
513
514 assert(src_klass != NULL && dest_klass != NULL, "should have klasses");
515
516 // Generate the subtype check.
517 // This might fold up statically, or then again it might not.
518 //
519 // Non-static example: Copying List<String>.elements to a new String[].
520 // The backing store for a List<String> is always an Object[],
521 // but its elements are always type String, if the generic types
522 // are correct at the source level.
523 //
524 // Test S[] against D[], not S against D, because (probably)
525 // the secondary supertype cache is less busy for S[] than S.
526 // This usually only matters when D is an interface.
527 Node* not_subtype_ctrl = Phase::gen_subtype_check(src_klass, dest_klass, ctrl, mem, &_igvn);
528 // Plug failing path into checked_oop_disjoint_arraycopy
529 if (not_subtype_ctrl != top()) {
530 Node* local_ctrl = not_subtype_ctrl;
531 MergeMemNode* local_mem = MergeMemNode::make(mem);
532 transform_later(local_mem);
533
534 // (At this point we can assume disjoint_bases, since types differ.)
535 int ek_offset = in_bytes(ObjArrayKlass::element_klass_offset());
536 Node* p1 = basic_plus_adr(dest_klass, ek_offset);
537 Node* n1 = LoadKlassNode::make(_igvn, NULL, C->immutable_memory(), p1, TypeRawPtr::BOTTOM);
538 Node* dest_elem_klass = transform_later(n1);
539 Node* cv = generate_checkcast_arraycopy(&local_ctrl, &local_mem,
540 adr_type,
541 dest_elem_klass,
542 src, src_offset, dest, dest_offset,
543 ConvI2X(copy_length), dest_uninitialized);
544 if (cv == NULL) cv = intcon(-1); // failure (no stub available)
545 checked_control = local_ctrl;
546 checked_i_o = *io;
547 checked_mem = local_mem->memory_at(alias_idx);
548 checked_value = cv;
549 }
550 }
551 // At this point we know we do not need type checks on oop stores.
552
553 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
554 if (!bs->array_copy_requires_gc_barriers(alloc != NULL, copy_type, false, BarrierSetC2::Expansion)) {
555 // If we do not need gc barriers, copy using the jint or jlong stub.
556 copy_type = LP64_ONLY(UseCompressedOops ? T_INT : T_LONG) NOT_LP64(T_INT);
557 assert(type2aelembytes(basic_elem_type) == type2aelembytes(copy_type),
558 "sizes agree");
559 }
560 }
561
562 if (!(*ctrl)->is_top()) {
563 // Generate the fast path, if possible.
564 Node* local_ctrl = *ctrl;
565 MergeMemNode* local_mem = MergeMemNode::make(mem);
566 transform_later(local_mem);
567
568 generate_unchecked_arraycopy(&local_ctrl, &local_mem,
569 adr_type, copy_type, disjoint_bases,
570 src, src_offset, dest, dest_offset,
571 ConvI2X(copy_length), dest_uninitialized);
572
573 // Present the results of the fast call.
574 result_region->init_req(fast_path, local_ctrl);
575 result_i_o ->init_req(fast_path, *io);
576 result_memory->init_req(fast_path, local_mem->memory_at(alias_idx));
577 }
578
579 // Here are all the slow paths up to this point, in one bundle:
580 assert(slow_region != NULL, "allocated on entry");
581 slow_control = slow_region;
582 DEBUG_ONLY(slow_region = (RegionNode*)badAddress);
583
584 *ctrl = checked_control;
585 if (!(*ctrl)->is_top()) {
586 // Clean up after the checked call.
587 // The returned value is either 0 or -1^K,
588 // where K = number of partially transferred array elements.
589 Node* cmp = new CmpINode(checked_value, intcon(0));
590 transform_later(cmp);
591 Node* bol = new BoolNode(cmp, BoolTest::eq);
592 transform_later(bol);
593 IfNode* iff = new IfNode(*ctrl, bol, PROB_MAX, COUNT_UNKNOWN);
594 transform_later(iff);
595
596 // If it is 0, we are done, so transfer to the end.
597 Node* checks_done = new IfTrueNode(iff);
598 transform_later(checks_done);
599 result_region->init_req(checked_path, checks_done);
600 result_i_o ->init_req(checked_path, checked_i_o);
601 result_memory->init_req(checked_path, checked_mem);
602
603 // If it is not zero, merge into the slow call.
604 *ctrl = new IfFalseNode(iff);
605 transform_later(*ctrl);
606 RegionNode* slow_reg2 = new RegionNode(3);
607 PhiNode* slow_i_o2 = new PhiNode(slow_reg2, Type::ABIO);
608 PhiNode* slow_mem2 = new PhiNode(slow_reg2, Type::MEMORY, adr_type);
609 transform_later(slow_reg2);
610 transform_later(slow_i_o2);
611 transform_later(slow_mem2);
612 slow_reg2 ->init_req(1, slow_control);
613 slow_i_o2 ->init_req(1, slow_i_o);
614 slow_mem2 ->init_req(1, slow_mem);
615 slow_reg2 ->init_req(2, *ctrl);
616 slow_i_o2 ->init_req(2, checked_i_o);
617 slow_mem2 ->init_req(2, checked_mem);
618
619 slow_control = slow_reg2;
620 slow_i_o = slow_i_o2;
621 slow_mem = slow_mem2;
622
623 if (alloc != NULL) {
624 // We'll restart from the very beginning, after zeroing the whole thing.
625 // This can cause double writes, but that's OK since dest is brand new.
626 // So we ignore the low 31 bits of the value returned from the stub.
627 } else {
628 // We must continue the copy exactly where it failed, or else
629 // another thread might see the wrong number of writes to dest.
630 Node* checked_offset = new XorINode(checked_value, intcon(-1));
631 Node* slow_offset = new PhiNode(slow_reg2, TypeInt::INT);
632 transform_later(checked_offset);
633 transform_later(slow_offset);
634 slow_offset->init_req(1, intcon(0));
635 slow_offset->init_req(2, checked_offset);
636
637 // Adjust the arguments by the conditionally incoming offset.
638 Node* src_off_plus = new AddINode(src_offset, slow_offset);
639 transform_later(src_off_plus);
640 Node* dest_off_plus = new AddINode(dest_offset, slow_offset);
641 transform_later(dest_off_plus);
642 Node* length_minus = new SubINode(copy_length, slow_offset);
643 transform_later(length_minus);
644
645 // Tweak the node variables to adjust the code produced below:
646 src_offset = src_off_plus;
647 dest_offset = dest_off_plus;
648 copy_length = length_minus;
649 }
650 }
651 *ctrl = slow_control;
652 if (!(*ctrl)->is_top()) {
653 Node* local_ctrl = *ctrl, *local_io = slow_i_o;
654 MergeMemNode* local_mem = MergeMemNode::make(mem);
655 transform_later(local_mem);
656
657 // Generate the slow path, if needed.
658 local_mem->set_memory_at(alias_idx, slow_mem);
659
660 if (dest_uninitialized) {
661 generate_clear_array(local_ctrl, local_mem,
662 adr_type, dest, basic_elem_type,
663 intcon(0), NULL,
664 alloc->in(AllocateNode::AllocSize));
665 }
666
667 local_mem = generate_slow_arraycopy(ac,
668 &local_ctrl, local_mem, &local_io,
669 adr_type,
670 src, src_offset, dest, dest_offset,
671 copy_length, /*dest_uninitialized*/false);
672
673 result_region->init_req(slow_call_path, local_ctrl);
674 result_i_o ->init_req(slow_call_path, local_io);
675 result_memory->init_req(slow_call_path, local_mem->memory_at(alias_idx));
676 } else {
677 ShouldNotReachHere(); // no call to generate_slow_arraycopy:
678 // projections were not extracted
679 }
680
681 // Remove unused edges.
682 for (uint i = 1; i < result_region->req(); i++) {
683 if (result_region->in(i) == NULL) {
684 result_region->init_req(i, top());
685 }
686 }
687
688 // Finished; return the combined state.
689 *ctrl = result_region;
690 *io = result_i_o;
691 mem->set_memory_at(alias_idx, result_memory);
692
693 // mem no longer guaranteed to stay a MergeMemNode
694 Node* out_mem = mem;
695 DEBUG_ONLY(mem = NULL);
696
697 // The memory edges above are precise in order to model effects around
698 // array copies accurately to allow value numbering of field loads around
699 // arraycopy. Such field loads, both before and after, are common in Java
700 // collections and similar classes involving header/array data structures.
701 //
702 // But with low number of register or when some registers are used or killed
703 // by arraycopy calls it causes registers spilling on stack. See 6544710.
704 // The next memory barrier is added to avoid it. If the arraycopy can be
705 // optimized away (which it can, sometimes) then we can manually remove
706 // the membar also.
707 //
708 // Do not let reads from the cloned object float above the arraycopy.
709 if (alloc != NULL && !alloc->initialization()->does_not_escape()) {
710 // Do not let stores that initialize this object be reordered with
711 // a subsequent store that would make this object accessible by
712 // other threads.
713 insert_mem_bar(ctrl, &out_mem, Op_MemBarStoreStore);
714 } else if (InsertMemBarAfterArraycopy) {
715 insert_mem_bar(ctrl, &out_mem, Op_MemBarCPUOrder);
716 }
717
718 _igvn.replace_node(_memproj_fallthrough, out_mem);
719 _igvn.replace_node(_ioproj_fallthrough, *io);
720 _igvn.replace_node(_fallthroughcatchproj, *ctrl);
721
722#ifdef ASSERT
723 const TypeOopPtr* dest_t = _igvn.type(dest)->is_oopptr();
724 if (dest_t->is_known_instance()) {
725 ArrayCopyNode* ac = NULL;
726 assert(ArrayCopyNode::may_modify(dest_t, (*ctrl)->in(0)->as_MemBar(), &_igvn, ac), "dependency on arraycopy lost");
727 assert(ac == NULL, "no arraycopy anymore");
728 }
729#endif
730
731 return out_mem;
732}
733
734// Helper for initialization of arrays, creating a ClearArray.
735// It writes zero bits in [start..end), within the body of an array object.
736// The memory effects are all chained onto the 'adr_type' alias category.
737//
738// Since the object is otherwise uninitialized, we are free
739// to put a little "slop" around the edges of the cleared area,
740// as long as it does not go back into the array's header,
741// or beyond the array end within the heap.
742//
743// The lower edge can be rounded down to the nearest jint and the
744// upper edge can be rounded up to the nearest MinObjAlignmentInBytes.
745//
746// Arguments:
747// adr_type memory slice where writes are generated
748// dest oop of the destination array
749// basic_elem_type element type of the destination
750// slice_idx array index of first element to store
751// slice_len number of elements to store (or NULL)
752// dest_size total size in bytes of the array object
753//
754// Exactly one of slice_len or dest_size must be non-NULL.
755// If dest_size is non-NULL, zeroing extends to the end of the object.
756// If slice_len is non-NULL, the slice_idx value must be a constant.
757void PhaseMacroExpand::generate_clear_array(Node* ctrl, MergeMemNode* merge_mem,
758 const TypePtr* adr_type,
759 Node* dest,
760 BasicType basic_elem_type,
761 Node* slice_idx,
762 Node* slice_len,
763 Node* dest_size) {
764 // one or the other but not both of slice_len and dest_size:
765 assert((slice_len != NULL? 1: 0) + (dest_size != NULL? 1: 0) == 1, "");
766 if (slice_len == NULL) slice_len = top();
767 if (dest_size == NULL) dest_size = top();
768
769 uint alias_idx = C->get_alias_index(adr_type);
770
771 // operate on this memory slice:
772 Node* mem = merge_mem->memory_at(alias_idx); // memory slice to operate on
773
774 // scaling and rounding of indexes:
775 int scale = exact_log2(type2aelembytes(basic_elem_type));
776 int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
777 int clear_low = (-1 << scale) & (BytesPerInt - 1);
778 int bump_bit = (-1 << scale) & BytesPerInt;
779
780 // determine constant starts and ends
781 const intptr_t BIG_NEG = -128;
782 assert(BIG_NEG + 2*abase < 0, "neg enough");
783 intptr_t slice_idx_con = (intptr_t) _igvn.find_int_con(slice_idx, BIG_NEG);
784 intptr_t slice_len_con = (intptr_t) _igvn.find_int_con(slice_len, BIG_NEG);
785 if (slice_len_con == 0) {
786 return; // nothing to do here
787 }
788 intptr_t start_con = (abase + (slice_idx_con << scale)) & ~clear_low;
789 intptr_t end_con = _igvn.find_intptr_t_con(dest_size, -1);
790 if (slice_idx_con >= 0 && slice_len_con >= 0) {
791 assert(end_con < 0, "not two cons");
792 end_con = align_up(abase + ((slice_idx_con + slice_len_con) << scale),
793 BytesPerLong);
794 }
795
796 if (start_con >= 0 && end_con >= 0) {
797 // Constant start and end. Simple.
798 mem = ClearArrayNode::clear_memory(ctrl, mem, dest,
799 start_con, end_con, &_igvn);
800 } else if (start_con >= 0 && dest_size != top()) {
801 // Constant start, pre-rounded end after the tail of the array.
802 Node* end = dest_size;
803 mem = ClearArrayNode::clear_memory(ctrl, mem, dest,
804 start_con, end, &_igvn);
805 } else if (start_con >= 0 && slice_len != top()) {
806 // Constant start, non-constant end. End needs rounding up.
807 // End offset = round_up(abase + ((slice_idx_con + slice_len) << scale), 8)
808 intptr_t end_base = abase + (slice_idx_con << scale);
809 int end_round = (-1 << scale) & (BytesPerLong - 1);
810 Node* end = ConvI2X(slice_len);
811 if (scale != 0)
812 end = transform_later(new LShiftXNode(end, intcon(scale) ));
813 end_base += end_round;
814 end = transform_later(new AddXNode(end, MakeConX(end_base)) );
815 end = transform_later(new AndXNode(end, MakeConX(~end_round)) );
816 mem = ClearArrayNode::clear_memory(ctrl, mem, dest,
817 start_con, end, &_igvn);
818 } else if (start_con < 0 && dest_size != top()) {
819 // Non-constant start, pre-rounded end after the tail of the array.
820 // This is almost certainly a "round-to-end" operation.
821 Node* start = slice_idx;
822 start = ConvI2X(start);
823 if (scale != 0)
824 start = transform_later(new LShiftXNode( start, intcon(scale) ));
825 start = transform_later(new AddXNode(start, MakeConX(abase)) );
826 if ((bump_bit | clear_low) != 0) {
827 int to_clear = (bump_bit | clear_low);
828 // Align up mod 8, then store a jint zero unconditionally
829 // just before the mod-8 boundary.
830 if (((abase + bump_bit) & ~to_clear) - bump_bit
831 < arrayOopDesc::length_offset_in_bytes() + BytesPerInt) {
832 bump_bit = 0;
833 assert((abase & to_clear) == 0, "array base must be long-aligned");
834 } else {
835 // Bump 'start' up to (or past) the next jint boundary:
836 start = transform_later( new AddXNode(start, MakeConX(bump_bit)) );
837 assert((abase & clear_low) == 0, "array base must be int-aligned");
838 }
839 // Round bumped 'start' down to jlong boundary in body of array.
840 start = transform_later(new AndXNode(start, MakeConX(~to_clear)) );
841 if (bump_bit != 0) {
842 // Store a zero to the immediately preceding jint:
843 Node* x1 = transform_later(new AddXNode(start, MakeConX(-bump_bit)) );
844 Node* p1 = basic_plus_adr(dest, x1);
845 mem = StoreNode::make(_igvn, ctrl, mem, p1, adr_type, intcon(0), T_INT, MemNode::unordered);
846 mem = transform_later(mem);
847 }
848 }
849 Node* end = dest_size; // pre-rounded
850 mem = ClearArrayNode::clear_memory(ctrl, mem, dest,
851 start, end, &_igvn);
852 } else {
853 // Non-constant start, unrounded non-constant end.
854 // (Nobody zeroes a random midsection of an array using this routine.)
855 ShouldNotReachHere(); // fix caller
856 }
857
858 // Done.
859 merge_mem->set_memory_at(alias_idx, mem);
860}
861
862bool PhaseMacroExpand::generate_block_arraycopy(Node** ctrl, MergeMemNode** mem, Node* io,
863 const TypePtr* adr_type,
864 BasicType basic_elem_type,
865 AllocateNode* alloc,
866 Node* src, Node* src_offset,
867 Node* dest, Node* dest_offset,
868 Node* dest_size, bool dest_uninitialized) {
869 // See if there is an advantage from block transfer.
870 int scale = exact_log2(type2aelembytes(basic_elem_type));
871 if (scale >= LogBytesPerLong)
872 return false; // it is already a block transfer
873
874 // Look at the alignment of the starting offsets.
875 int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
876
877 intptr_t src_off_con = (intptr_t) _igvn.find_int_con(src_offset, -1);
878 intptr_t dest_off_con = (intptr_t) _igvn.find_int_con(dest_offset, -1);
879 if (src_off_con < 0 || dest_off_con < 0) {
880 // At present, we can only understand constants.
881 return false;
882 }
883
884 intptr_t src_off = abase + (src_off_con << scale);
885 intptr_t dest_off = abase + (dest_off_con << scale);
886
887 if (((src_off | dest_off) & (BytesPerLong-1)) != 0) {
888 // Non-aligned; too bad.
889 // One more chance: Pick off an initial 32-bit word.
890 // This is a common case, since abase can be odd mod 8.
891 if (((src_off | dest_off) & (BytesPerLong-1)) == BytesPerInt &&
892 ((src_off ^ dest_off) & (BytesPerLong-1)) == 0) {
893 Node* sptr = basic_plus_adr(src, src_off);
894 Node* dptr = basic_plus_adr(dest, dest_off);
895 const TypePtr* s_adr_type = _igvn.type(sptr)->is_ptr();
896 assert(s_adr_type->isa_aryptr(), "impossible slice");
897 uint s_alias_idx = C->get_alias_index(s_adr_type);
898 uint d_alias_idx = C->get_alias_index(adr_type);
899 bool is_mismatched = (basic_elem_type != T_INT);
900 Node* sval = transform_later(
901 LoadNode::make(_igvn, *ctrl, (*mem)->memory_at(s_alias_idx), sptr, s_adr_type,
902 TypeInt::INT, T_INT, MemNode::unordered, LoadNode::DependsOnlyOnTest,
903 false /*unaligned*/, is_mismatched));
904 Node* st = transform_later(
905 StoreNode::make(_igvn, *ctrl, (*mem)->memory_at(d_alias_idx), dptr, adr_type,
906 sval, T_INT, MemNode::unordered));
907 if (is_mismatched) {
908 st->as_Store()->set_mismatched_access();
909 }
910 (*mem)->set_memory_at(d_alias_idx, st);
911 src_off += BytesPerInt;
912 dest_off += BytesPerInt;
913 } else {
914 return false;
915 }
916 }
917 assert(src_off % BytesPerLong == 0, "");
918 assert(dest_off % BytesPerLong == 0, "");
919
920 // Do this copy by giant steps.
921 Node* sptr = basic_plus_adr(src, src_off);
922 Node* dptr = basic_plus_adr(dest, dest_off);
923 Node* countx = dest_size;
924 countx = transform_later(new SubXNode(countx, MakeConX(dest_off)));
925 countx = transform_later(new URShiftXNode(countx, intcon(LogBytesPerLong)));
926
927 bool disjoint_bases = true; // since alloc != NULL
928 generate_unchecked_arraycopy(ctrl, mem,
929 adr_type, T_LONG, disjoint_bases,
930 sptr, NULL, dptr, NULL, countx, dest_uninitialized);
931
932 return true;
933}
934
935// Helper function; generates code for the slow case.
936// We make a call to a runtime method which emulates the native method,
937// but without the native wrapper overhead.
938MergeMemNode* PhaseMacroExpand::generate_slow_arraycopy(ArrayCopyNode *ac,
939 Node** ctrl, Node* mem, Node** io,
940 const TypePtr* adr_type,
941 Node* src, Node* src_offset,
942 Node* dest, Node* dest_offset,
943 Node* copy_length, bool dest_uninitialized) {
944 assert(!dest_uninitialized, "Invariant");
945
946 const TypeFunc* call_type = OptoRuntime::slow_arraycopy_Type();
947 CallNode* call = new CallStaticJavaNode(call_type, OptoRuntime::slow_arraycopy_Java(),
948 "slow_arraycopy",
949 ac->jvms()->bci(), TypePtr::BOTTOM);
950
951 call->init_req(TypeFunc::Control, *ctrl);
952 call->init_req(TypeFunc::I_O , *io);
953 call->init_req(TypeFunc::Memory , mem);
954 call->init_req(TypeFunc::ReturnAdr, top());
955 call->init_req(TypeFunc::FramePtr, top());
956 call->init_req(TypeFunc::Parms+0, src);
957 call->init_req(TypeFunc::Parms+1, src_offset);
958 call->init_req(TypeFunc::Parms+2, dest);
959 call->init_req(TypeFunc::Parms+3, dest_offset);
960 call->init_req(TypeFunc::Parms+4, copy_length);
961 copy_call_debug_info(ac, call);
962
963 call->set_cnt(PROB_UNLIKELY_MAG(4)); // Same effect as RC_UNCOMMON.
964 _igvn.replace_node(ac, call);
965 transform_later(call);
966
967 extract_call_projections(call);
968 *ctrl = _fallthroughcatchproj->clone();
969 transform_later(*ctrl);
970
971 Node* m = _memproj_fallthrough->clone();
972 transform_later(m);
973
974 uint alias_idx = C->get_alias_index(adr_type);
975 MergeMemNode* out_mem;
976 if (alias_idx != Compile::AliasIdxBot) {
977 out_mem = MergeMemNode::make(mem);
978 out_mem->set_memory_at(alias_idx, m);
979 } else {
980 out_mem = MergeMemNode::make(m);
981 }
982 transform_later(out_mem);
983
984 *io = _ioproj_fallthrough->clone();
985 transform_later(*io);
986
987 return out_mem;
988}
989
990// Helper function; generates code for cases requiring runtime checks.
991Node* PhaseMacroExpand::generate_checkcast_arraycopy(Node** ctrl, MergeMemNode** mem,
992 const TypePtr* adr_type,
993 Node* dest_elem_klass,
994 Node* src, Node* src_offset,
995 Node* dest, Node* dest_offset,
996 Node* copy_length, bool dest_uninitialized) {
997 if ((*ctrl)->is_top()) return NULL;
998
999 address copyfunc_addr = StubRoutines::checkcast_arraycopy(dest_uninitialized);
1000 if (copyfunc_addr == NULL) { // Stub was not generated, go slow path.
1001 return NULL;
1002 }
1003
1004 // Pick out the parameters required to perform a store-check
1005 // for the target array. This is an optimistic check. It will
1006 // look in each non-null element's class, at the desired klass's
1007 // super_check_offset, for the desired klass.
1008 int sco_offset = in_bytes(Klass::super_check_offset_offset());
1009 Node* p3 = basic_plus_adr(dest_elem_klass, sco_offset);
1010 Node* n3 = new LoadINode(NULL, *mem /*memory(p3)*/, p3, _igvn.type(p3)->is_ptr(), TypeInt::INT, MemNode::unordered);
1011 Node* check_offset = ConvI2X(transform_later(n3));
1012 Node* check_value = dest_elem_klass;
1013
1014 Node* src_start = array_element_address(src, src_offset, T_OBJECT);
1015 Node* dest_start = array_element_address(dest, dest_offset, T_OBJECT);
1016
1017 const TypeFunc* call_type = OptoRuntime::checkcast_arraycopy_Type();
1018 Node* call = make_leaf_call(*ctrl, *mem, call_type, copyfunc_addr, "checkcast_arraycopy", adr_type,
1019 src_start, dest_start, copy_length XTOP, check_offset XTOP, check_value);
1020
1021 finish_arraycopy_call(call, ctrl, mem, adr_type);
1022
1023 Node* proj = new ProjNode(call, TypeFunc::Parms);
1024 transform_later(proj);
1025
1026 return proj;
1027}
1028
1029// Helper function; generates code for cases requiring runtime checks.
1030Node* PhaseMacroExpand::generate_generic_arraycopy(Node** ctrl, MergeMemNode** mem,
1031 const TypePtr* adr_type,
1032 Node* src, Node* src_offset,
1033 Node* dest, Node* dest_offset,
1034 Node* copy_length, bool dest_uninitialized) {
1035 if ((*ctrl)->is_top()) return NULL;
1036 assert(!dest_uninitialized, "Invariant");
1037
1038 address copyfunc_addr = StubRoutines::generic_arraycopy();
1039 if (copyfunc_addr == NULL) { // Stub was not generated, go slow path.
1040 return NULL;
1041 }
1042
1043 const TypeFunc* call_type = OptoRuntime::generic_arraycopy_Type();
1044 Node* call = make_leaf_call(*ctrl, *mem, call_type, copyfunc_addr, "generic_arraycopy", adr_type,
1045 src, src_offset, dest, dest_offset, copy_length);
1046
1047 finish_arraycopy_call(call, ctrl, mem, adr_type);
1048
1049 Node* proj = new ProjNode(call, TypeFunc::Parms);
1050 transform_later(proj);
1051
1052 return proj;
1053}
1054
1055// Helper function; generates the fast out-of-line call to an arraycopy stub.
1056void PhaseMacroExpand::generate_unchecked_arraycopy(Node** ctrl, MergeMemNode** mem,
1057 const TypePtr* adr_type,
1058 BasicType basic_elem_type,
1059 bool disjoint_bases,
1060 Node* src, Node* src_offset,
1061 Node* dest, Node* dest_offset,
1062 Node* copy_length, bool dest_uninitialized) {
1063 if ((*ctrl)->is_top()) return;
1064
1065 Node* src_start = src;
1066 Node* dest_start = dest;
1067 if (src_offset != NULL || dest_offset != NULL) {
1068 src_start = array_element_address(src, src_offset, basic_elem_type);
1069 dest_start = array_element_address(dest, dest_offset, basic_elem_type);
1070 }
1071
1072 // Figure out which arraycopy runtime method to call.
1073 const char* copyfunc_name = "arraycopy";
1074 address copyfunc_addr =
1075 basictype2arraycopy(basic_elem_type, src_offset, dest_offset,
1076 disjoint_bases, copyfunc_name, dest_uninitialized);
1077
1078 const TypeFunc* call_type = OptoRuntime::fast_arraycopy_Type();
1079 Node* call = make_leaf_call(*ctrl, *mem, call_type, copyfunc_addr, copyfunc_name, adr_type,
1080 src_start, dest_start, copy_length XTOP);
1081
1082 finish_arraycopy_call(call, ctrl, mem, adr_type);
1083}
1084
1085void PhaseMacroExpand::expand_arraycopy_node(ArrayCopyNode *ac) {
1086 Node* ctrl = ac->in(TypeFunc::Control);
1087 Node* io = ac->in(TypeFunc::I_O);
1088 Node* src = ac->in(ArrayCopyNode::Src);
1089 Node* src_offset = ac->in(ArrayCopyNode::SrcPos);
1090 Node* dest = ac->in(ArrayCopyNode::Dest);
1091 Node* dest_offset = ac->in(ArrayCopyNode::DestPos);
1092 Node* length = ac->in(ArrayCopyNode::Length);
1093 MergeMemNode* merge_mem = NULL;
1094
1095 if (ac->is_clonebasic()) {
1096 assert (src_offset == NULL && dest_offset == NULL, "for clone offsets should be null");
1097 Node* mem = ac->in(TypeFunc::Memory);
1098 const char* copyfunc_name = "arraycopy";
1099 address copyfunc_addr =
1100 basictype2arraycopy(T_LONG, NULL, NULL,
1101 true, copyfunc_name, true);
1102
1103 const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
1104 const TypeFunc* call_type = OptoRuntime::fast_arraycopy_Type();
1105
1106 Node* call = make_leaf_call(ctrl, mem, call_type, copyfunc_addr, copyfunc_name, raw_adr_type, src, dest, length XTOP);
1107 transform_later(call);
1108
1109 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
1110 bs->clone_barrier_at_expansion(ac, call, _igvn);
1111
1112 return;
1113 } else if (ac->is_copyof() || ac->is_copyofrange() || ac->is_cloneoop()) {
1114 Node* mem = ac->in(TypeFunc::Memory);
1115 merge_mem = MergeMemNode::make(mem);
1116 transform_later(merge_mem);
1117
1118 RegionNode* slow_region = new RegionNode(1);
1119 transform_later(slow_region);
1120
1121 AllocateArrayNode* alloc = NULL;
1122 if (ac->is_alloc_tightly_coupled()) {
1123 alloc = AllocateArrayNode::Ideal_array_allocation(dest, &_igvn);
1124 assert(alloc != NULL, "expect alloc");
1125 }
1126
1127 const TypePtr* adr_type = _igvn.type(dest)->is_oopptr()->add_offset(Type::OffsetBot);
1128 if (ac->_dest_type != TypeOopPtr::BOTTOM) {
1129 adr_type = ac->_dest_type->add_offset(Type::OffsetBot)->is_ptr();
1130 }
1131 generate_arraycopy(ac, alloc, &ctrl, merge_mem, &io,
1132 adr_type, T_OBJECT,
1133 src, src_offset, dest, dest_offset, length,
1134 true, !ac->is_copyofrange());
1135
1136 return;
1137 }
1138
1139 AllocateArrayNode* alloc = NULL;
1140 if (ac->is_alloc_tightly_coupled()) {
1141 alloc = AllocateArrayNode::Ideal_array_allocation(dest, &_igvn);
1142 assert(alloc != NULL, "expect alloc");
1143 }
1144
1145 assert(ac->is_arraycopy() || ac->is_arraycopy_validated(), "should be an arraycopy");
1146
1147 // Compile time checks. If any of these checks cannot be verified at compile time,
1148 // we do not make a fast path for this call. Instead, we let the call remain as it
1149 // is. The checks we choose to mandate at compile time are:
1150 //
1151 // (1) src and dest are arrays.
1152 const Type* src_type = src->Value(&_igvn);
1153 const Type* dest_type = dest->Value(&_igvn);
1154 const TypeAryPtr* top_src = src_type->isa_aryptr();
1155 const TypeAryPtr* top_dest = dest_type->isa_aryptr();
1156
1157 BasicType src_elem = T_CONFLICT;
1158 BasicType dest_elem = T_CONFLICT;
1159
1160 if (top_dest != NULL && top_dest->klass() != NULL) {
1161 dest_elem = top_dest->klass()->as_array_klass()->element_type()->basic_type();
1162 }
1163 if (top_src != NULL && top_src->klass() != NULL) {
1164 src_elem = top_src->klass()->as_array_klass()->element_type()->basic_type();
1165 }
1166 if (src_elem == T_ARRAY) src_elem = T_OBJECT;
1167 if (dest_elem == T_ARRAY) dest_elem = T_OBJECT;
1168
1169 if (ac->is_arraycopy_validated() &&
1170 dest_elem != T_CONFLICT &&
1171 src_elem == T_CONFLICT) {
1172 src_elem = dest_elem;
1173 }
1174
1175 if (src_elem == T_CONFLICT || dest_elem == T_CONFLICT) {
1176 // Conservatively insert a memory barrier on all memory slices.
1177 // Do not let writes into the source float below the arraycopy.
1178 {
1179 Node* mem = ac->in(TypeFunc::Memory);
1180 insert_mem_bar(&ctrl, &mem, Op_MemBarCPUOrder);
1181
1182 merge_mem = MergeMemNode::make(mem);
1183 transform_later(merge_mem);
1184 }
1185
1186 // Call StubRoutines::generic_arraycopy stub.
1187 Node* mem = generate_arraycopy(ac, NULL, &ctrl, merge_mem, &io,
1188 TypeRawPtr::BOTTOM, T_CONFLICT,
1189 src, src_offset, dest, dest_offset, length,
1190 // If a negative length guard was generated for the ArrayCopyNode,
1191 // the length of the array can never be negative.
1192 false, ac->has_negative_length_guard());
1193
1194 // Do not let reads from the destination float above the arraycopy.
1195 // Since we cannot type the arrays, we don't know which slices
1196 // might be affected. We could restrict this barrier only to those
1197 // memory slices which pertain to array elements--but don't bother.
1198 if (!InsertMemBarAfterArraycopy) {
1199 // (If InsertMemBarAfterArraycopy, there is already one in place.)
1200 insert_mem_bar(&ctrl, &mem, Op_MemBarCPUOrder);
1201 }
1202 return;
1203 }
1204
1205 assert(!ac->is_arraycopy_validated() || (src_elem == dest_elem && dest_elem != T_VOID), "validated but different basic types");
1206
1207 // (2) src and dest arrays must have elements of the same BasicType
1208 // Figure out the size and type of the elements we will be copying.
1209 if (src_elem != dest_elem || dest_elem == T_VOID) {
1210 // The component types are not the same or are not recognized. Punt.
1211 // (But, avoid the native method wrapper to JVM_ArrayCopy.)
1212 {
1213 Node* mem = ac->in(TypeFunc::Memory);
1214 merge_mem = generate_slow_arraycopy(ac, &ctrl, mem, &io, TypePtr::BOTTOM, src, src_offset, dest, dest_offset, length, false);
1215 }
1216
1217 _igvn.replace_node(_memproj_fallthrough, merge_mem);
1218 _igvn.replace_node(_ioproj_fallthrough, io);
1219 _igvn.replace_node(_fallthroughcatchproj, ctrl);
1220 return;
1221 }
1222
1223 //---------------------------------------------------------------------------
1224 // We will make a fast path for this call to arraycopy.
1225
1226 // We have the following tests left to perform:
1227 //
1228 // (3) src and dest must not be null.
1229 // (4) src_offset must not be negative.
1230 // (5) dest_offset must not be negative.
1231 // (6) length must not be negative.
1232 // (7) src_offset + length must not exceed length of src.
1233 // (8) dest_offset + length must not exceed length of dest.
1234 // (9) each element of an oop array must be assignable
1235
1236 {
1237 Node* mem = ac->in(TypeFunc::Memory);
1238 merge_mem = MergeMemNode::make(mem);
1239 transform_later(merge_mem);
1240 }
1241
1242 RegionNode* slow_region = new RegionNode(1);
1243 transform_later(slow_region);
1244
1245 if (!ac->is_arraycopy_validated()) {
1246 // (3) operands must not be null
1247 // We currently perform our null checks with the null_check routine.
1248 // This means that the null exceptions will be reported in the caller
1249 // rather than (correctly) reported inside of the native arraycopy call.
1250 // This should be corrected, given time. We do our null check with the
1251 // stack pointer restored.
1252 // null checks done library_call.cpp
1253
1254 // (4) src_offset must not be negative.
1255 generate_negative_guard(&ctrl, src_offset, slow_region);
1256
1257 // (5) dest_offset must not be negative.
1258 generate_negative_guard(&ctrl, dest_offset, slow_region);
1259
1260 // (6) length must not be negative (moved to generate_arraycopy()).
1261 // generate_negative_guard(length, slow_region);
1262
1263 // (7) src_offset + length must not exceed length of src.
1264 Node* alen = ac->in(ArrayCopyNode::SrcLen);
1265 assert(alen != NULL, "need src len");
1266 generate_limit_guard(&ctrl,
1267 src_offset, length,
1268 alen,
1269 slow_region);
1270
1271 // (8) dest_offset + length must not exceed length of dest.
1272 alen = ac->in(ArrayCopyNode::DestLen);
1273 assert(alen != NULL, "need dest len");
1274 generate_limit_guard(&ctrl,
1275 dest_offset, length,
1276 alen,
1277 slow_region);
1278
1279 // (9) each element of an oop array must be assignable
1280 // The generate_arraycopy subroutine checks this.
1281 }
1282 // This is where the memory effects are placed:
1283 const TypePtr* adr_type = NULL;
1284 if (ac->_dest_type != TypeOopPtr::BOTTOM) {
1285 adr_type = ac->_dest_type->add_offset(Type::OffsetBot)->is_ptr();
1286 } else {
1287 adr_type = TypeAryPtr::get_array_body_type(dest_elem);
1288 }
1289
1290 generate_arraycopy(ac, alloc, &ctrl, merge_mem, &io,
1291 adr_type, dest_elem,
1292 src, src_offset, dest, dest_offset, length,
1293 // If a negative length guard was generated for the ArrayCopyNode,
1294 // the length of the array can never be negative.
1295 false, ac->has_negative_length_guard(), slow_region);
1296}
1297