1 | /* |
2 | * Copyright (c) 2012, 2016, Oracle and/or its affiliates. All rights reserved. |
3 | * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
4 | * |
5 | * This code is free software; you can redistribute it and/or modify it |
6 | * under the terms of the GNU General Public License version 2 only, as |
7 | * published by the Free Software Foundation. |
8 | * |
9 | * This code is distributed in the hope that it will be useful, but WITHOUT |
10 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
11 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
12 | * version 2 for more details (a copy is included in the LICENSE file that |
13 | * accompanied this code). |
14 | * |
15 | * You should have received a copy of the GNU General Public License version |
16 | * 2 along with this work; if not, write to the Free Software Foundation, |
17 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
18 | * |
19 | * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
20 | * or visit www.oracle.com if you need additional information or have any |
21 | * questions. |
22 | * |
23 | */ |
24 | |
25 | #include "precompiled.hpp" |
26 | #include "gc/shared/barrierSet.hpp" |
27 | #include "opto/arraycopynode.hpp" |
28 | #include "oops/objArrayKlass.hpp" |
29 | #include "opto/convertnode.hpp" |
30 | #include "opto/graphKit.hpp" |
31 | #include "opto/macro.hpp" |
32 | #include "opto/runtime.hpp" |
33 | #include "utilities/align.hpp" |
34 | |
35 | |
36 | void PhaseMacroExpand::insert_mem_bar(Node** ctrl, Node** mem, int opcode, Node* precedent) { |
37 | MemBarNode* mb = MemBarNode::make(C, opcode, Compile::AliasIdxBot, precedent); |
38 | mb->init_req(TypeFunc::Control, *ctrl); |
39 | mb->init_req(TypeFunc::Memory, *mem); |
40 | transform_later(mb); |
41 | *ctrl = new ProjNode(mb,TypeFunc::Control); |
42 | transform_later(*ctrl); |
43 | Node* mem_proj = new ProjNode(mb,TypeFunc::Memory); |
44 | transform_later(mem_proj); |
45 | *mem = mem_proj; |
46 | } |
47 | |
48 | Node* PhaseMacroExpand::array_element_address(Node* ary, Node* idx, BasicType elembt) { |
49 | uint shift = exact_log2(type2aelembytes(elembt)); |
50 | uint = arrayOopDesc::base_offset_in_bytes(elembt); |
51 | Node* base = basic_plus_adr(ary, header); |
52 | #ifdef _LP64 |
53 | // see comment in GraphKit::array_element_address |
54 | int index_max = max_jint - 1; // array size is max_jint, index is one less |
55 | const TypeLong* lidxtype = TypeLong::make(CONST64(0), index_max, Type::WidenMax); |
56 | idx = transform_later( new ConvI2LNode(idx, lidxtype) ); |
57 | #endif |
58 | Node* scale = new LShiftXNode(idx, intcon(shift)); |
59 | transform_later(scale); |
60 | return basic_plus_adr(ary, base, scale); |
61 | } |
62 | |
63 | Node* PhaseMacroExpand::ConvI2L(Node* offset) { |
64 | return transform_later(new ConvI2LNode(offset)); |
65 | } |
66 | |
67 | Node* PhaseMacroExpand::make_leaf_call(Node* ctrl, Node* mem, |
68 | const TypeFunc* call_type, address call_addr, |
69 | const char* call_name, |
70 | const TypePtr* adr_type, |
71 | Node* parm0, Node* parm1, |
72 | Node* parm2, Node* parm3, |
73 | Node* parm4, Node* parm5, |
74 | Node* parm6, Node* parm7) { |
75 | Node* call = new CallLeafNoFPNode(call_type, call_addr, call_name, adr_type); |
76 | call->init_req(TypeFunc::Control, ctrl); |
77 | call->init_req(TypeFunc::I_O , top()); |
78 | call->init_req(TypeFunc::Memory , mem); |
79 | call->init_req(TypeFunc::ReturnAdr, top()); |
80 | call->init_req(TypeFunc::FramePtr, top()); |
81 | |
82 | // Hook each parm in order. Stop looking at the first NULL. |
83 | if (parm0 != NULL) { call->init_req(TypeFunc::Parms+0, parm0); |
84 | if (parm1 != NULL) { call->init_req(TypeFunc::Parms+1, parm1); |
85 | if (parm2 != NULL) { call->init_req(TypeFunc::Parms+2, parm2); |
86 | if (parm3 != NULL) { call->init_req(TypeFunc::Parms+3, parm3); |
87 | if (parm4 != NULL) { call->init_req(TypeFunc::Parms+4, parm4); |
88 | if (parm5 != NULL) { call->init_req(TypeFunc::Parms+5, parm5); |
89 | if (parm6 != NULL) { call->init_req(TypeFunc::Parms+6, parm6); |
90 | if (parm7 != NULL) { call->init_req(TypeFunc::Parms+7, parm7); |
91 | /* close each nested if ===> */ } } } } } } } } |
92 | assert(call->in(call->req()-1) != NULL, "must initialize all parms" ); |
93 | |
94 | return call; |
95 | } |
96 | |
97 | |
98 | //------------------------------generate_guard--------------------------- |
99 | // Helper function for generating guarded fast-slow graph structures. |
100 | // The given 'test', if true, guards a slow path. If the test fails |
101 | // then a fast path can be taken. (We generally hope it fails.) |
102 | // In all cases, GraphKit::control() is updated to the fast path. |
103 | // The returned value represents the control for the slow path. |
104 | // The return value is never 'top'; it is either a valid control |
105 | // or NULL if it is obvious that the slow path can never be taken. |
106 | // Also, if region and the slow control are not NULL, the slow edge |
107 | // is appended to the region. |
108 | Node* PhaseMacroExpand::generate_guard(Node** ctrl, Node* test, RegionNode* region, float true_prob) { |
109 | if ((*ctrl)->is_top()) { |
110 | // Already short circuited. |
111 | return NULL; |
112 | } |
113 | // Build an if node and its projections. |
114 | // If test is true we take the slow path, which we assume is uncommon. |
115 | if (_igvn.type(test) == TypeInt::ZERO) { |
116 | // The slow branch is never taken. No need to build this guard. |
117 | return NULL; |
118 | } |
119 | |
120 | IfNode* iff = new IfNode(*ctrl, test, true_prob, COUNT_UNKNOWN); |
121 | transform_later(iff); |
122 | |
123 | Node* if_slow = new IfTrueNode(iff); |
124 | transform_later(if_slow); |
125 | |
126 | if (region != NULL) { |
127 | region->add_req(if_slow); |
128 | } |
129 | |
130 | Node* if_fast = new IfFalseNode(iff); |
131 | transform_later(if_fast); |
132 | |
133 | *ctrl = if_fast; |
134 | |
135 | return if_slow; |
136 | } |
137 | |
138 | inline Node* PhaseMacroExpand::generate_slow_guard(Node** ctrl, Node* test, RegionNode* region) { |
139 | return generate_guard(ctrl, test, region, PROB_UNLIKELY_MAG(3)); |
140 | } |
141 | |
142 | void PhaseMacroExpand::generate_negative_guard(Node** ctrl, Node* index, RegionNode* region) { |
143 | if ((*ctrl)->is_top()) |
144 | return; // already stopped |
145 | if (_igvn.type(index)->higher_equal(TypeInt::POS)) // [0,maxint] |
146 | return; // index is already adequately typed |
147 | Node* cmp_lt = new CmpINode(index, intcon(0)); |
148 | transform_later(cmp_lt); |
149 | Node* bol_lt = new BoolNode(cmp_lt, BoolTest::lt); |
150 | transform_later(bol_lt); |
151 | generate_guard(ctrl, bol_lt, region, PROB_MIN); |
152 | } |
153 | |
154 | void PhaseMacroExpand::generate_limit_guard(Node** ctrl, Node* offset, Node* subseq_length, Node* array_length, RegionNode* region) { |
155 | if ((*ctrl)->is_top()) |
156 | return; // already stopped |
157 | bool zero_offset = _igvn.type(offset) == TypeInt::ZERO; |
158 | if (zero_offset && subseq_length->eqv_uncast(array_length)) |
159 | return; // common case of whole-array copy |
160 | Node* last = subseq_length; |
161 | if (!zero_offset) { // last += offset |
162 | last = new AddINode(last, offset); |
163 | transform_later(last); |
164 | } |
165 | Node* cmp_lt = new CmpUNode(array_length, last); |
166 | transform_later(cmp_lt); |
167 | Node* bol_lt = new BoolNode(cmp_lt, BoolTest::lt); |
168 | transform_later(bol_lt); |
169 | generate_guard(ctrl, bol_lt, region, PROB_MIN); |
170 | } |
171 | |
172 | Node* PhaseMacroExpand::generate_nonpositive_guard(Node** ctrl, Node* index, bool never_negative) { |
173 | if ((*ctrl)->is_top()) return NULL; |
174 | |
175 | if (_igvn.type(index)->higher_equal(TypeInt::POS1)) // [1,maxint] |
176 | return NULL; // index is already adequately typed |
177 | Node* cmp_le = new CmpINode(index, intcon(0)); |
178 | transform_later(cmp_le); |
179 | BoolTest::mask le_or_eq = (never_negative ? BoolTest::eq : BoolTest::le); |
180 | Node* bol_le = new BoolNode(cmp_le, le_or_eq); |
181 | transform_later(bol_le); |
182 | Node* is_notp = generate_guard(ctrl, bol_le, NULL, PROB_MIN); |
183 | |
184 | return is_notp; |
185 | } |
186 | |
187 | void PhaseMacroExpand::finish_arraycopy_call(Node* call, Node** ctrl, MergeMemNode** mem, const TypePtr* adr_type) { |
188 | transform_later(call); |
189 | |
190 | *ctrl = new ProjNode(call,TypeFunc::Control); |
191 | transform_later(*ctrl); |
192 | Node* newmem = new ProjNode(call, TypeFunc::Memory); |
193 | transform_later(newmem); |
194 | |
195 | uint alias_idx = C->get_alias_index(adr_type); |
196 | if (alias_idx != Compile::AliasIdxBot) { |
197 | *mem = MergeMemNode::make(*mem); |
198 | (*mem)->set_memory_at(alias_idx, newmem); |
199 | } else { |
200 | *mem = MergeMemNode::make(newmem); |
201 | } |
202 | transform_later(*mem); |
203 | } |
204 | |
205 | address PhaseMacroExpand::basictype2arraycopy(BasicType t, |
206 | Node* src_offset, |
207 | Node* dest_offset, |
208 | bool disjoint_bases, |
209 | const char* &name, |
210 | bool dest_uninitialized) { |
211 | const TypeInt* src_offset_inttype = _igvn.find_int_type(src_offset);; |
212 | const TypeInt* dest_offset_inttype = _igvn.find_int_type(dest_offset);; |
213 | |
214 | bool aligned = false; |
215 | bool disjoint = disjoint_bases; |
216 | |
217 | // if the offsets are the same, we can treat the memory regions as |
218 | // disjoint, because either the memory regions are in different arrays, |
219 | // or they are identical (which we can treat as disjoint.) We can also |
220 | // treat a copy with a destination index less that the source index |
221 | // as disjoint since a low->high copy will work correctly in this case. |
222 | if (src_offset_inttype != NULL && src_offset_inttype->is_con() && |
223 | dest_offset_inttype != NULL && dest_offset_inttype->is_con()) { |
224 | // both indices are constants |
225 | int s_offs = src_offset_inttype->get_con(); |
226 | int d_offs = dest_offset_inttype->get_con(); |
227 | int element_size = type2aelembytes(t); |
228 | aligned = ((arrayOopDesc::base_offset_in_bytes(t) + s_offs * element_size) % HeapWordSize == 0) && |
229 | ((arrayOopDesc::base_offset_in_bytes(t) + d_offs * element_size) % HeapWordSize == 0); |
230 | if (s_offs >= d_offs) disjoint = true; |
231 | } else if (src_offset == dest_offset && src_offset != NULL) { |
232 | // This can occur if the offsets are identical non-constants. |
233 | disjoint = true; |
234 | } |
235 | |
236 | return StubRoutines::select_arraycopy_function(t, aligned, disjoint, name, dest_uninitialized); |
237 | } |
238 | |
239 | #define XTOP LP64_ONLY(COMMA top()) |
240 | |
241 | // Generate an optimized call to arraycopy. |
242 | // Caller must guard against non-arrays. |
243 | // Caller must determine a common array basic-type for both arrays. |
244 | // Caller must validate offsets against array bounds. |
245 | // The slow_region has already collected guard failure paths |
246 | // (such as out of bounds length or non-conformable array types). |
247 | // The generated code has this shape, in general: |
248 | // |
249 | // if (length == 0) return // via zero_path |
250 | // slowval = -1 |
251 | // if (types unknown) { |
252 | // slowval = call generic copy loop |
253 | // if (slowval == 0) return // via checked_path |
254 | // } else if (indexes in bounds) { |
255 | // if ((is object array) && !(array type check)) { |
256 | // slowval = call checked copy loop |
257 | // if (slowval == 0) return // via checked_path |
258 | // } else { |
259 | // call bulk copy loop |
260 | // return // via fast_path |
261 | // } |
262 | // } |
263 | // // adjust params for remaining work: |
264 | // if (slowval != -1) { |
265 | // n = -1^slowval; src_offset += n; dest_offset += n; length -= n |
266 | // } |
267 | // slow_region: |
268 | // call slow arraycopy(src, src_offset, dest, dest_offset, length) |
269 | // return // via slow_call_path |
270 | // |
271 | // This routine is used from several intrinsics: System.arraycopy, |
272 | // Object.clone (the array subcase), and Arrays.copyOf[Range]. |
273 | // |
274 | Node* PhaseMacroExpand::generate_arraycopy(ArrayCopyNode *ac, AllocateArrayNode* alloc, |
275 | Node** ctrl, MergeMemNode* mem, Node** io, |
276 | const TypePtr* adr_type, |
277 | BasicType basic_elem_type, |
278 | Node* src, Node* src_offset, |
279 | Node* dest, Node* dest_offset, |
280 | Node* copy_length, |
281 | bool disjoint_bases, |
282 | bool length_never_negative, |
283 | RegionNode* slow_region) { |
284 | if (slow_region == NULL) { |
285 | slow_region = new RegionNode(1); |
286 | transform_later(slow_region); |
287 | } |
288 | |
289 | Node* original_dest = dest; |
290 | bool dest_uninitialized = false; |
291 | |
292 | // See if this is the initialization of a newly-allocated array. |
293 | // If so, we will take responsibility here for initializing it to zero. |
294 | // (Note: Because tightly_coupled_allocation performs checks on the |
295 | // out-edges of the dest, we need to avoid making derived pointers |
296 | // from it until we have checked its uses.) |
297 | if (ReduceBulkZeroing |
298 | && !(UseTLAB && ZeroTLAB) // pointless if already zeroed |
299 | && basic_elem_type != T_CONFLICT // avoid corner case |
300 | && !src->eqv_uncast(dest) |
301 | && alloc != NULL |
302 | && _igvn.find_int_con(alloc->in(AllocateNode::ALength), 1) > 0 |
303 | && alloc->maybe_set_complete(&_igvn)) { |
304 | // "You break it, you buy it." |
305 | InitializeNode* init = alloc->initialization(); |
306 | assert(init->is_complete(), "we just did this" ); |
307 | init->set_complete_with_arraycopy(); |
308 | assert(dest->is_CheckCastPP(), "sanity" ); |
309 | assert(dest->in(0)->in(0) == init, "dest pinned" ); |
310 | adr_type = TypeRawPtr::BOTTOM; // all initializations are into raw memory |
311 | // From this point on, every exit path is responsible for |
312 | // initializing any non-copied parts of the object to zero. |
313 | // Also, if this flag is set we make sure that arraycopy interacts properly |
314 | // with G1, eliding pre-barriers. See CR 6627983. |
315 | dest_uninitialized = true; |
316 | } else { |
317 | // No zeroing elimination here. |
318 | alloc = NULL; |
319 | //original_dest = dest; |
320 | //dest_uninitialized = false; |
321 | } |
322 | |
323 | uint alias_idx = C->get_alias_index(adr_type); |
324 | |
325 | // Results are placed here: |
326 | enum { fast_path = 1, // normal void-returning assembly stub |
327 | checked_path = 2, // special assembly stub with cleanup |
328 | slow_call_path = 3, // something went wrong; call the VM |
329 | zero_path = 4, // bypass when length of copy is zero |
330 | bcopy_path = 5, // copy primitive array by 64-bit blocks |
331 | PATH_LIMIT = 6 |
332 | }; |
333 | RegionNode* result_region = new RegionNode(PATH_LIMIT); |
334 | PhiNode* result_i_o = new PhiNode(result_region, Type::ABIO); |
335 | PhiNode* result_memory = new PhiNode(result_region, Type::MEMORY, adr_type); |
336 | assert(adr_type != TypePtr::BOTTOM, "must be RawMem or a T[] slice" ); |
337 | transform_later(result_region); |
338 | transform_later(result_i_o); |
339 | transform_later(result_memory); |
340 | |
341 | // The slow_control path: |
342 | Node* slow_control; |
343 | Node* slow_i_o = *io; |
344 | Node* slow_mem = mem->memory_at(alias_idx); |
345 | DEBUG_ONLY(slow_control = (Node*) badAddress); |
346 | |
347 | // Checked control path: |
348 | Node* checked_control = top(); |
349 | Node* checked_mem = NULL; |
350 | Node* checked_i_o = NULL; |
351 | Node* checked_value = NULL; |
352 | |
353 | if (basic_elem_type == T_CONFLICT) { |
354 | assert(!dest_uninitialized, "" ); |
355 | Node* cv = generate_generic_arraycopy(ctrl, &mem, |
356 | adr_type, |
357 | src, src_offset, dest, dest_offset, |
358 | copy_length, dest_uninitialized); |
359 | if (cv == NULL) cv = intcon(-1); // failure (no stub available) |
360 | checked_control = *ctrl; |
361 | checked_i_o = *io; |
362 | checked_mem = mem->memory_at(alias_idx); |
363 | checked_value = cv; |
364 | *ctrl = top(); |
365 | } |
366 | |
367 | Node* not_pos = generate_nonpositive_guard(ctrl, copy_length, length_never_negative); |
368 | if (not_pos != NULL) { |
369 | Node* local_ctrl = not_pos, *local_io = *io; |
370 | MergeMemNode* local_mem = MergeMemNode::make(mem); |
371 | transform_later(local_mem); |
372 | |
373 | // (6) length must not be negative. |
374 | if (!length_never_negative) { |
375 | generate_negative_guard(&local_ctrl, copy_length, slow_region); |
376 | } |
377 | |
378 | // copy_length is 0. |
379 | if (dest_uninitialized) { |
380 | assert(!local_ctrl->is_top(), "no ctrl?" ); |
381 | Node* dest_length = alloc->in(AllocateNode::ALength); |
382 | if (copy_length->eqv_uncast(dest_length) |
383 | || _igvn.find_int_con(dest_length, 1) <= 0) { |
384 | // There is no zeroing to do. No need for a secondary raw memory barrier. |
385 | } else { |
386 | // Clear the whole thing since there are no source elements to copy. |
387 | generate_clear_array(local_ctrl, local_mem, |
388 | adr_type, dest, basic_elem_type, |
389 | intcon(0), NULL, |
390 | alloc->in(AllocateNode::AllocSize)); |
391 | // Use a secondary InitializeNode as raw memory barrier. |
392 | // Currently it is needed only on this path since other |
393 | // paths have stub or runtime calls as raw memory barriers. |
394 | MemBarNode* mb = MemBarNode::make(C, Op_Initialize, |
395 | Compile::AliasIdxRaw, |
396 | top()); |
397 | transform_later(mb); |
398 | mb->set_req(TypeFunc::Control,local_ctrl); |
399 | mb->set_req(TypeFunc::Memory, local_mem->memory_at(Compile::AliasIdxRaw)); |
400 | local_ctrl = transform_later(new ProjNode(mb, TypeFunc::Control)); |
401 | local_mem->set_memory_at(Compile::AliasIdxRaw, transform_later(new ProjNode(mb, TypeFunc::Memory))); |
402 | |
403 | InitializeNode* init = mb->as_Initialize(); |
404 | init->set_complete(&_igvn); // (there is no corresponding AllocateNode) |
405 | } |
406 | } |
407 | |
408 | // Present the results of the fast call. |
409 | result_region->init_req(zero_path, local_ctrl); |
410 | result_i_o ->init_req(zero_path, local_io); |
411 | result_memory->init_req(zero_path, local_mem->memory_at(alias_idx)); |
412 | } |
413 | |
414 | if (!(*ctrl)->is_top() && dest_uninitialized) { |
415 | // We have to initialize the *uncopied* part of the array to zero. |
416 | // The copy destination is the slice dest[off..off+len]. The other slices |
417 | // are dest_head = dest[0..off] and dest_tail = dest[off+len..dest.length]. |
418 | Node* dest_size = alloc->in(AllocateNode::AllocSize); |
419 | Node* dest_length = alloc->in(AllocateNode::ALength); |
420 | Node* dest_tail = transform_later( new AddINode(dest_offset, copy_length)); |
421 | |
422 | // If there is a head section that needs zeroing, do it now. |
423 | if (_igvn.find_int_con(dest_offset, -1) != 0) { |
424 | generate_clear_array(*ctrl, mem, |
425 | adr_type, dest, basic_elem_type, |
426 | intcon(0), dest_offset, |
427 | NULL); |
428 | } |
429 | |
430 | // Next, perform a dynamic check on the tail length. |
431 | // It is often zero, and we can win big if we prove this. |
432 | // There are two wins: Avoid generating the ClearArray |
433 | // with its attendant messy index arithmetic, and upgrade |
434 | // the copy to a more hardware-friendly word size of 64 bits. |
435 | Node* tail_ctl = NULL; |
436 | if (!(*ctrl)->is_top() && !dest_tail->eqv_uncast(dest_length)) { |
437 | Node* cmp_lt = transform_later( new CmpINode(dest_tail, dest_length) ); |
438 | Node* bol_lt = transform_later( new BoolNode(cmp_lt, BoolTest::lt) ); |
439 | tail_ctl = generate_slow_guard(ctrl, bol_lt, NULL); |
440 | assert(tail_ctl != NULL || !(*ctrl)->is_top(), "must be an outcome" ); |
441 | } |
442 | |
443 | // At this point, let's assume there is no tail. |
444 | if (!(*ctrl)->is_top() && alloc != NULL && basic_elem_type != T_OBJECT) { |
445 | // There is no tail. Try an upgrade to a 64-bit copy. |
446 | bool didit = false; |
447 | { |
448 | Node* local_ctrl = *ctrl, *local_io = *io; |
449 | MergeMemNode* local_mem = MergeMemNode::make(mem); |
450 | transform_later(local_mem); |
451 | |
452 | didit = generate_block_arraycopy(&local_ctrl, &local_mem, local_io, |
453 | adr_type, basic_elem_type, alloc, |
454 | src, src_offset, dest, dest_offset, |
455 | dest_size, dest_uninitialized); |
456 | if (didit) { |
457 | // Present the results of the block-copying fast call. |
458 | result_region->init_req(bcopy_path, local_ctrl); |
459 | result_i_o ->init_req(bcopy_path, local_io); |
460 | result_memory->init_req(bcopy_path, local_mem->memory_at(alias_idx)); |
461 | } |
462 | } |
463 | if (didit) { |
464 | *ctrl = top(); // no regular fast path |
465 | } |
466 | } |
467 | |
468 | // Clear the tail, if any. |
469 | if (tail_ctl != NULL) { |
470 | Node* notail_ctl = (*ctrl)->is_top() ? NULL : *ctrl; |
471 | *ctrl = tail_ctl; |
472 | if (notail_ctl == NULL) { |
473 | generate_clear_array(*ctrl, mem, |
474 | adr_type, dest, basic_elem_type, |
475 | dest_tail, NULL, |
476 | dest_size); |
477 | } else { |
478 | // Make a local merge. |
479 | Node* done_ctl = transform_later(new RegionNode(3)); |
480 | Node* done_mem = transform_later(new PhiNode(done_ctl, Type::MEMORY, adr_type)); |
481 | done_ctl->init_req(1, notail_ctl); |
482 | done_mem->init_req(1, mem->memory_at(alias_idx)); |
483 | generate_clear_array(*ctrl, mem, |
484 | adr_type, dest, basic_elem_type, |
485 | dest_tail, NULL, |
486 | dest_size); |
487 | done_ctl->init_req(2, *ctrl); |
488 | done_mem->init_req(2, mem->memory_at(alias_idx)); |
489 | *ctrl = done_ctl; |
490 | mem->set_memory_at(alias_idx, done_mem); |
491 | } |
492 | } |
493 | } |
494 | |
495 | BasicType copy_type = basic_elem_type; |
496 | assert(basic_elem_type != T_ARRAY, "caller must fix this" ); |
497 | if (!(*ctrl)->is_top() && copy_type == T_OBJECT) { |
498 | // If src and dest have compatible element types, we can copy bits. |
499 | // Types S[] and D[] are compatible if D is a supertype of S. |
500 | // |
501 | // If they are not, we will use checked_oop_disjoint_arraycopy, |
502 | // which performs a fast optimistic per-oop check, and backs off |
503 | // further to JVM_ArrayCopy on the first per-oop check that fails. |
504 | // (Actually, we don't move raw bits only; the GC requires card marks.) |
505 | |
506 | // We don't need a subtype check for validated copies and Object[].clone() |
507 | bool skip_subtype_check = ac->is_arraycopy_validated() || ac->is_copyof_validated() || |
508 | ac->is_copyofrange_validated() || ac->is_cloneoop(); |
509 | if (!skip_subtype_check) { |
510 | // Get the klass* for both src and dest |
511 | Node* src_klass = ac->in(ArrayCopyNode::SrcKlass); |
512 | Node* dest_klass = ac->in(ArrayCopyNode::DestKlass); |
513 | |
514 | assert(src_klass != NULL && dest_klass != NULL, "should have klasses" ); |
515 | |
516 | // Generate the subtype check. |
517 | // This might fold up statically, or then again it might not. |
518 | // |
519 | // Non-static example: Copying List<String>.elements to a new String[]. |
520 | // The backing store for a List<String> is always an Object[], |
521 | // but its elements are always type String, if the generic types |
522 | // are correct at the source level. |
523 | // |
524 | // Test S[] against D[], not S against D, because (probably) |
525 | // the secondary supertype cache is less busy for S[] than S. |
526 | // This usually only matters when D is an interface. |
527 | Node* not_subtype_ctrl = Phase::gen_subtype_check(src_klass, dest_klass, ctrl, mem, &_igvn); |
528 | // Plug failing path into checked_oop_disjoint_arraycopy |
529 | if (not_subtype_ctrl != top()) { |
530 | Node* local_ctrl = not_subtype_ctrl; |
531 | MergeMemNode* local_mem = MergeMemNode::make(mem); |
532 | transform_later(local_mem); |
533 | |
534 | // (At this point we can assume disjoint_bases, since types differ.) |
535 | int ek_offset = in_bytes(ObjArrayKlass::element_klass_offset()); |
536 | Node* p1 = basic_plus_adr(dest_klass, ek_offset); |
537 | Node* n1 = LoadKlassNode::make(_igvn, NULL, C->immutable_memory(), p1, TypeRawPtr::BOTTOM); |
538 | Node* dest_elem_klass = transform_later(n1); |
539 | Node* cv = generate_checkcast_arraycopy(&local_ctrl, &local_mem, |
540 | adr_type, |
541 | dest_elem_klass, |
542 | src, src_offset, dest, dest_offset, |
543 | ConvI2X(copy_length), dest_uninitialized); |
544 | if (cv == NULL) cv = intcon(-1); // failure (no stub available) |
545 | checked_control = local_ctrl; |
546 | checked_i_o = *io; |
547 | checked_mem = local_mem->memory_at(alias_idx); |
548 | checked_value = cv; |
549 | } |
550 | } |
551 | // At this point we know we do not need type checks on oop stores. |
552 | |
553 | BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); |
554 | if (!bs->array_copy_requires_gc_barriers(alloc != NULL, copy_type, false, BarrierSetC2::Expansion)) { |
555 | // If we do not need gc barriers, copy using the jint or jlong stub. |
556 | copy_type = LP64_ONLY(UseCompressedOops ? T_INT : T_LONG) NOT_LP64(T_INT); |
557 | assert(type2aelembytes(basic_elem_type) == type2aelembytes(copy_type), |
558 | "sizes agree" ); |
559 | } |
560 | } |
561 | |
562 | if (!(*ctrl)->is_top()) { |
563 | // Generate the fast path, if possible. |
564 | Node* local_ctrl = *ctrl; |
565 | MergeMemNode* local_mem = MergeMemNode::make(mem); |
566 | transform_later(local_mem); |
567 | |
568 | generate_unchecked_arraycopy(&local_ctrl, &local_mem, |
569 | adr_type, copy_type, disjoint_bases, |
570 | src, src_offset, dest, dest_offset, |
571 | ConvI2X(copy_length), dest_uninitialized); |
572 | |
573 | // Present the results of the fast call. |
574 | result_region->init_req(fast_path, local_ctrl); |
575 | result_i_o ->init_req(fast_path, *io); |
576 | result_memory->init_req(fast_path, local_mem->memory_at(alias_idx)); |
577 | } |
578 | |
579 | // Here are all the slow paths up to this point, in one bundle: |
580 | assert(slow_region != NULL, "allocated on entry" ); |
581 | slow_control = slow_region; |
582 | DEBUG_ONLY(slow_region = (RegionNode*)badAddress); |
583 | |
584 | *ctrl = checked_control; |
585 | if (!(*ctrl)->is_top()) { |
586 | // Clean up after the checked call. |
587 | // The returned value is either 0 or -1^K, |
588 | // where K = number of partially transferred array elements. |
589 | Node* cmp = new CmpINode(checked_value, intcon(0)); |
590 | transform_later(cmp); |
591 | Node* bol = new BoolNode(cmp, BoolTest::eq); |
592 | transform_later(bol); |
593 | IfNode* iff = new IfNode(*ctrl, bol, PROB_MAX, COUNT_UNKNOWN); |
594 | transform_later(iff); |
595 | |
596 | // If it is 0, we are done, so transfer to the end. |
597 | Node* checks_done = new IfTrueNode(iff); |
598 | transform_later(checks_done); |
599 | result_region->init_req(checked_path, checks_done); |
600 | result_i_o ->init_req(checked_path, checked_i_o); |
601 | result_memory->init_req(checked_path, checked_mem); |
602 | |
603 | // If it is not zero, merge into the slow call. |
604 | *ctrl = new IfFalseNode(iff); |
605 | transform_later(*ctrl); |
606 | RegionNode* slow_reg2 = new RegionNode(3); |
607 | PhiNode* slow_i_o2 = new PhiNode(slow_reg2, Type::ABIO); |
608 | PhiNode* slow_mem2 = new PhiNode(slow_reg2, Type::MEMORY, adr_type); |
609 | transform_later(slow_reg2); |
610 | transform_later(slow_i_o2); |
611 | transform_later(slow_mem2); |
612 | slow_reg2 ->init_req(1, slow_control); |
613 | slow_i_o2 ->init_req(1, slow_i_o); |
614 | slow_mem2 ->init_req(1, slow_mem); |
615 | slow_reg2 ->init_req(2, *ctrl); |
616 | slow_i_o2 ->init_req(2, checked_i_o); |
617 | slow_mem2 ->init_req(2, checked_mem); |
618 | |
619 | slow_control = slow_reg2; |
620 | slow_i_o = slow_i_o2; |
621 | slow_mem = slow_mem2; |
622 | |
623 | if (alloc != NULL) { |
624 | // We'll restart from the very beginning, after zeroing the whole thing. |
625 | // This can cause double writes, but that's OK since dest is brand new. |
626 | // So we ignore the low 31 bits of the value returned from the stub. |
627 | } else { |
628 | // We must continue the copy exactly where it failed, or else |
629 | // another thread might see the wrong number of writes to dest. |
630 | Node* checked_offset = new XorINode(checked_value, intcon(-1)); |
631 | Node* slow_offset = new PhiNode(slow_reg2, TypeInt::INT); |
632 | transform_later(checked_offset); |
633 | transform_later(slow_offset); |
634 | slow_offset->init_req(1, intcon(0)); |
635 | slow_offset->init_req(2, checked_offset); |
636 | |
637 | // Adjust the arguments by the conditionally incoming offset. |
638 | Node* src_off_plus = new AddINode(src_offset, slow_offset); |
639 | transform_later(src_off_plus); |
640 | Node* dest_off_plus = new AddINode(dest_offset, slow_offset); |
641 | transform_later(dest_off_plus); |
642 | Node* length_minus = new SubINode(copy_length, slow_offset); |
643 | transform_later(length_minus); |
644 | |
645 | // Tweak the node variables to adjust the code produced below: |
646 | src_offset = src_off_plus; |
647 | dest_offset = dest_off_plus; |
648 | copy_length = length_minus; |
649 | } |
650 | } |
651 | *ctrl = slow_control; |
652 | if (!(*ctrl)->is_top()) { |
653 | Node* local_ctrl = *ctrl, *local_io = slow_i_o; |
654 | MergeMemNode* local_mem = MergeMemNode::make(mem); |
655 | transform_later(local_mem); |
656 | |
657 | // Generate the slow path, if needed. |
658 | local_mem->set_memory_at(alias_idx, slow_mem); |
659 | |
660 | if (dest_uninitialized) { |
661 | generate_clear_array(local_ctrl, local_mem, |
662 | adr_type, dest, basic_elem_type, |
663 | intcon(0), NULL, |
664 | alloc->in(AllocateNode::AllocSize)); |
665 | } |
666 | |
667 | local_mem = generate_slow_arraycopy(ac, |
668 | &local_ctrl, local_mem, &local_io, |
669 | adr_type, |
670 | src, src_offset, dest, dest_offset, |
671 | copy_length, /*dest_uninitialized*/false); |
672 | |
673 | result_region->init_req(slow_call_path, local_ctrl); |
674 | result_i_o ->init_req(slow_call_path, local_io); |
675 | result_memory->init_req(slow_call_path, local_mem->memory_at(alias_idx)); |
676 | } else { |
677 | ShouldNotReachHere(); // no call to generate_slow_arraycopy: |
678 | // projections were not extracted |
679 | } |
680 | |
681 | // Remove unused edges. |
682 | for (uint i = 1; i < result_region->req(); i++) { |
683 | if (result_region->in(i) == NULL) { |
684 | result_region->init_req(i, top()); |
685 | } |
686 | } |
687 | |
688 | // Finished; return the combined state. |
689 | *ctrl = result_region; |
690 | *io = result_i_o; |
691 | mem->set_memory_at(alias_idx, result_memory); |
692 | |
693 | // mem no longer guaranteed to stay a MergeMemNode |
694 | Node* out_mem = mem; |
695 | DEBUG_ONLY(mem = NULL); |
696 | |
697 | // The memory edges above are precise in order to model effects around |
698 | // array copies accurately to allow value numbering of field loads around |
699 | // arraycopy. Such field loads, both before and after, are common in Java |
700 | // collections and similar classes involving header/array data structures. |
701 | // |
702 | // But with low number of register or when some registers are used or killed |
703 | // by arraycopy calls it causes registers spilling on stack. See 6544710. |
704 | // The next memory barrier is added to avoid it. If the arraycopy can be |
705 | // optimized away (which it can, sometimes) then we can manually remove |
706 | // the membar also. |
707 | // |
708 | // Do not let reads from the cloned object float above the arraycopy. |
709 | if (alloc != NULL && !alloc->initialization()->does_not_escape()) { |
710 | // Do not let stores that initialize this object be reordered with |
711 | // a subsequent store that would make this object accessible by |
712 | // other threads. |
713 | insert_mem_bar(ctrl, &out_mem, Op_MemBarStoreStore); |
714 | } else if (InsertMemBarAfterArraycopy) { |
715 | insert_mem_bar(ctrl, &out_mem, Op_MemBarCPUOrder); |
716 | } |
717 | |
718 | _igvn.replace_node(_memproj_fallthrough, out_mem); |
719 | _igvn.replace_node(_ioproj_fallthrough, *io); |
720 | _igvn.replace_node(_fallthroughcatchproj, *ctrl); |
721 | |
722 | #ifdef ASSERT |
723 | const TypeOopPtr* dest_t = _igvn.type(dest)->is_oopptr(); |
724 | if (dest_t->is_known_instance()) { |
725 | ArrayCopyNode* ac = NULL; |
726 | assert(ArrayCopyNode::may_modify(dest_t, (*ctrl)->in(0)->as_MemBar(), &_igvn, ac), "dependency on arraycopy lost" ); |
727 | assert(ac == NULL, "no arraycopy anymore" ); |
728 | } |
729 | #endif |
730 | |
731 | return out_mem; |
732 | } |
733 | |
734 | // Helper for initialization of arrays, creating a ClearArray. |
735 | // It writes zero bits in [start..end), within the body of an array object. |
736 | // The memory effects are all chained onto the 'adr_type' alias category. |
737 | // |
738 | // Since the object is otherwise uninitialized, we are free |
739 | // to put a little "slop" around the edges of the cleared area, |
740 | // as long as it does not go back into the array's header, |
741 | // or beyond the array end within the heap. |
742 | // |
743 | // The lower edge can be rounded down to the nearest jint and the |
744 | // upper edge can be rounded up to the nearest MinObjAlignmentInBytes. |
745 | // |
746 | // Arguments: |
747 | // adr_type memory slice where writes are generated |
748 | // dest oop of the destination array |
749 | // basic_elem_type element type of the destination |
750 | // slice_idx array index of first element to store |
751 | // slice_len number of elements to store (or NULL) |
752 | // dest_size total size in bytes of the array object |
753 | // |
754 | // Exactly one of slice_len or dest_size must be non-NULL. |
755 | // If dest_size is non-NULL, zeroing extends to the end of the object. |
756 | // If slice_len is non-NULL, the slice_idx value must be a constant. |
757 | void PhaseMacroExpand::generate_clear_array(Node* ctrl, MergeMemNode* merge_mem, |
758 | const TypePtr* adr_type, |
759 | Node* dest, |
760 | BasicType basic_elem_type, |
761 | Node* slice_idx, |
762 | Node* slice_len, |
763 | Node* dest_size) { |
764 | // one or the other but not both of slice_len and dest_size: |
765 | assert((slice_len != NULL? 1: 0) + (dest_size != NULL? 1: 0) == 1, "" ); |
766 | if (slice_len == NULL) slice_len = top(); |
767 | if (dest_size == NULL) dest_size = top(); |
768 | |
769 | uint alias_idx = C->get_alias_index(adr_type); |
770 | |
771 | // operate on this memory slice: |
772 | Node* mem = merge_mem->memory_at(alias_idx); // memory slice to operate on |
773 | |
774 | // scaling and rounding of indexes: |
775 | int scale = exact_log2(type2aelembytes(basic_elem_type)); |
776 | int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type); |
777 | int clear_low = (-1 << scale) & (BytesPerInt - 1); |
778 | int bump_bit = (-1 << scale) & BytesPerInt; |
779 | |
780 | // determine constant starts and ends |
781 | const intptr_t BIG_NEG = -128; |
782 | assert(BIG_NEG + 2*abase < 0, "neg enough" ); |
783 | intptr_t slice_idx_con = (intptr_t) _igvn.find_int_con(slice_idx, BIG_NEG); |
784 | intptr_t slice_len_con = (intptr_t) _igvn.find_int_con(slice_len, BIG_NEG); |
785 | if (slice_len_con == 0) { |
786 | return; // nothing to do here |
787 | } |
788 | intptr_t start_con = (abase + (slice_idx_con << scale)) & ~clear_low; |
789 | intptr_t end_con = _igvn.find_intptr_t_con(dest_size, -1); |
790 | if (slice_idx_con >= 0 && slice_len_con >= 0) { |
791 | assert(end_con < 0, "not two cons" ); |
792 | end_con = align_up(abase + ((slice_idx_con + slice_len_con) << scale), |
793 | BytesPerLong); |
794 | } |
795 | |
796 | if (start_con >= 0 && end_con >= 0) { |
797 | // Constant start and end. Simple. |
798 | mem = ClearArrayNode::clear_memory(ctrl, mem, dest, |
799 | start_con, end_con, &_igvn); |
800 | } else if (start_con >= 0 && dest_size != top()) { |
801 | // Constant start, pre-rounded end after the tail of the array. |
802 | Node* end = dest_size; |
803 | mem = ClearArrayNode::clear_memory(ctrl, mem, dest, |
804 | start_con, end, &_igvn); |
805 | } else if (start_con >= 0 && slice_len != top()) { |
806 | // Constant start, non-constant end. End needs rounding up. |
807 | // End offset = round_up(abase + ((slice_idx_con + slice_len) << scale), 8) |
808 | intptr_t end_base = abase + (slice_idx_con << scale); |
809 | int end_round = (-1 << scale) & (BytesPerLong - 1); |
810 | Node* end = ConvI2X(slice_len); |
811 | if (scale != 0) |
812 | end = transform_later(new LShiftXNode(end, intcon(scale) )); |
813 | end_base += end_round; |
814 | end = transform_later(new AddXNode(end, MakeConX(end_base)) ); |
815 | end = transform_later(new AndXNode(end, MakeConX(~end_round)) ); |
816 | mem = ClearArrayNode::clear_memory(ctrl, mem, dest, |
817 | start_con, end, &_igvn); |
818 | } else if (start_con < 0 && dest_size != top()) { |
819 | // Non-constant start, pre-rounded end after the tail of the array. |
820 | // This is almost certainly a "round-to-end" operation. |
821 | Node* start = slice_idx; |
822 | start = ConvI2X(start); |
823 | if (scale != 0) |
824 | start = transform_later(new LShiftXNode( start, intcon(scale) )); |
825 | start = transform_later(new AddXNode(start, MakeConX(abase)) ); |
826 | if ((bump_bit | clear_low) != 0) { |
827 | int to_clear = (bump_bit | clear_low); |
828 | // Align up mod 8, then store a jint zero unconditionally |
829 | // just before the mod-8 boundary. |
830 | if (((abase + bump_bit) & ~to_clear) - bump_bit |
831 | < arrayOopDesc::length_offset_in_bytes() + BytesPerInt) { |
832 | bump_bit = 0; |
833 | assert((abase & to_clear) == 0, "array base must be long-aligned" ); |
834 | } else { |
835 | // Bump 'start' up to (or past) the next jint boundary: |
836 | start = transform_later( new AddXNode(start, MakeConX(bump_bit)) ); |
837 | assert((abase & clear_low) == 0, "array base must be int-aligned" ); |
838 | } |
839 | // Round bumped 'start' down to jlong boundary in body of array. |
840 | start = transform_later(new AndXNode(start, MakeConX(~to_clear)) ); |
841 | if (bump_bit != 0) { |
842 | // Store a zero to the immediately preceding jint: |
843 | Node* x1 = transform_later(new AddXNode(start, MakeConX(-bump_bit)) ); |
844 | Node* p1 = basic_plus_adr(dest, x1); |
845 | mem = StoreNode::make(_igvn, ctrl, mem, p1, adr_type, intcon(0), T_INT, MemNode::unordered); |
846 | mem = transform_later(mem); |
847 | } |
848 | } |
849 | Node* end = dest_size; // pre-rounded |
850 | mem = ClearArrayNode::clear_memory(ctrl, mem, dest, |
851 | start, end, &_igvn); |
852 | } else { |
853 | // Non-constant start, unrounded non-constant end. |
854 | // (Nobody zeroes a random midsection of an array using this routine.) |
855 | ShouldNotReachHere(); // fix caller |
856 | } |
857 | |
858 | // Done. |
859 | merge_mem->set_memory_at(alias_idx, mem); |
860 | } |
861 | |
862 | bool PhaseMacroExpand::generate_block_arraycopy(Node** ctrl, MergeMemNode** mem, Node* io, |
863 | const TypePtr* adr_type, |
864 | BasicType basic_elem_type, |
865 | AllocateNode* alloc, |
866 | Node* src, Node* src_offset, |
867 | Node* dest, Node* dest_offset, |
868 | Node* dest_size, bool dest_uninitialized) { |
869 | // See if there is an advantage from block transfer. |
870 | int scale = exact_log2(type2aelembytes(basic_elem_type)); |
871 | if (scale >= LogBytesPerLong) |
872 | return false; // it is already a block transfer |
873 | |
874 | // Look at the alignment of the starting offsets. |
875 | int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type); |
876 | |
877 | intptr_t src_off_con = (intptr_t) _igvn.find_int_con(src_offset, -1); |
878 | intptr_t dest_off_con = (intptr_t) _igvn.find_int_con(dest_offset, -1); |
879 | if (src_off_con < 0 || dest_off_con < 0) { |
880 | // At present, we can only understand constants. |
881 | return false; |
882 | } |
883 | |
884 | intptr_t src_off = abase + (src_off_con << scale); |
885 | intptr_t dest_off = abase + (dest_off_con << scale); |
886 | |
887 | if (((src_off | dest_off) & (BytesPerLong-1)) != 0) { |
888 | // Non-aligned; too bad. |
889 | // One more chance: Pick off an initial 32-bit word. |
890 | // This is a common case, since abase can be odd mod 8. |
891 | if (((src_off | dest_off) & (BytesPerLong-1)) == BytesPerInt && |
892 | ((src_off ^ dest_off) & (BytesPerLong-1)) == 0) { |
893 | Node* sptr = basic_plus_adr(src, src_off); |
894 | Node* dptr = basic_plus_adr(dest, dest_off); |
895 | const TypePtr* s_adr_type = _igvn.type(sptr)->is_ptr(); |
896 | assert(s_adr_type->isa_aryptr(), "impossible slice" ); |
897 | uint s_alias_idx = C->get_alias_index(s_adr_type); |
898 | uint d_alias_idx = C->get_alias_index(adr_type); |
899 | bool is_mismatched = (basic_elem_type != T_INT); |
900 | Node* sval = transform_later( |
901 | LoadNode::make(_igvn, *ctrl, (*mem)->memory_at(s_alias_idx), sptr, s_adr_type, |
902 | TypeInt::INT, T_INT, MemNode::unordered, LoadNode::DependsOnlyOnTest, |
903 | false /*unaligned*/, is_mismatched)); |
904 | Node* st = transform_later( |
905 | StoreNode::make(_igvn, *ctrl, (*mem)->memory_at(d_alias_idx), dptr, adr_type, |
906 | sval, T_INT, MemNode::unordered)); |
907 | if (is_mismatched) { |
908 | st->as_Store()->set_mismatched_access(); |
909 | } |
910 | (*mem)->set_memory_at(d_alias_idx, st); |
911 | src_off += BytesPerInt; |
912 | dest_off += BytesPerInt; |
913 | } else { |
914 | return false; |
915 | } |
916 | } |
917 | assert(src_off % BytesPerLong == 0, "" ); |
918 | assert(dest_off % BytesPerLong == 0, "" ); |
919 | |
920 | // Do this copy by giant steps. |
921 | Node* sptr = basic_plus_adr(src, src_off); |
922 | Node* dptr = basic_plus_adr(dest, dest_off); |
923 | Node* countx = dest_size; |
924 | countx = transform_later(new SubXNode(countx, MakeConX(dest_off))); |
925 | countx = transform_later(new URShiftXNode(countx, intcon(LogBytesPerLong))); |
926 | |
927 | bool disjoint_bases = true; // since alloc != NULL |
928 | generate_unchecked_arraycopy(ctrl, mem, |
929 | adr_type, T_LONG, disjoint_bases, |
930 | sptr, NULL, dptr, NULL, countx, dest_uninitialized); |
931 | |
932 | return true; |
933 | } |
934 | |
935 | // Helper function; generates code for the slow case. |
936 | // We make a call to a runtime method which emulates the native method, |
937 | // but without the native wrapper overhead. |
938 | MergeMemNode* PhaseMacroExpand::generate_slow_arraycopy(ArrayCopyNode *ac, |
939 | Node** ctrl, Node* mem, Node** io, |
940 | const TypePtr* adr_type, |
941 | Node* src, Node* src_offset, |
942 | Node* dest, Node* dest_offset, |
943 | Node* copy_length, bool dest_uninitialized) { |
944 | assert(!dest_uninitialized, "Invariant" ); |
945 | |
946 | const TypeFunc* call_type = OptoRuntime::slow_arraycopy_Type(); |
947 | CallNode* call = new CallStaticJavaNode(call_type, OptoRuntime::slow_arraycopy_Java(), |
948 | "slow_arraycopy" , |
949 | ac->jvms()->bci(), TypePtr::BOTTOM); |
950 | |
951 | call->init_req(TypeFunc::Control, *ctrl); |
952 | call->init_req(TypeFunc::I_O , *io); |
953 | call->init_req(TypeFunc::Memory , mem); |
954 | call->init_req(TypeFunc::ReturnAdr, top()); |
955 | call->init_req(TypeFunc::FramePtr, top()); |
956 | call->init_req(TypeFunc::Parms+0, src); |
957 | call->init_req(TypeFunc::Parms+1, src_offset); |
958 | call->init_req(TypeFunc::Parms+2, dest); |
959 | call->init_req(TypeFunc::Parms+3, dest_offset); |
960 | call->init_req(TypeFunc::Parms+4, copy_length); |
961 | copy_call_debug_info(ac, call); |
962 | |
963 | call->set_cnt(PROB_UNLIKELY_MAG(4)); // Same effect as RC_UNCOMMON. |
964 | _igvn.replace_node(ac, call); |
965 | transform_later(call); |
966 | |
967 | extract_call_projections(call); |
968 | *ctrl = _fallthroughcatchproj->clone(); |
969 | transform_later(*ctrl); |
970 | |
971 | Node* m = _memproj_fallthrough->clone(); |
972 | transform_later(m); |
973 | |
974 | uint alias_idx = C->get_alias_index(adr_type); |
975 | MergeMemNode* out_mem; |
976 | if (alias_idx != Compile::AliasIdxBot) { |
977 | out_mem = MergeMemNode::make(mem); |
978 | out_mem->set_memory_at(alias_idx, m); |
979 | } else { |
980 | out_mem = MergeMemNode::make(m); |
981 | } |
982 | transform_later(out_mem); |
983 | |
984 | *io = _ioproj_fallthrough->clone(); |
985 | transform_later(*io); |
986 | |
987 | return out_mem; |
988 | } |
989 | |
990 | // Helper function; generates code for cases requiring runtime checks. |
991 | Node* PhaseMacroExpand::generate_checkcast_arraycopy(Node** ctrl, MergeMemNode** mem, |
992 | const TypePtr* adr_type, |
993 | Node* dest_elem_klass, |
994 | Node* src, Node* src_offset, |
995 | Node* dest, Node* dest_offset, |
996 | Node* copy_length, bool dest_uninitialized) { |
997 | if ((*ctrl)->is_top()) return NULL; |
998 | |
999 | address copyfunc_addr = StubRoutines::checkcast_arraycopy(dest_uninitialized); |
1000 | if (copyfunc_addr == NULL) { // Stub was not generated, go slow path. |
1001 | return NULL; |
1002 | } |
1003 | |
1004 | // Pick out the parameters required to perform a store-check |
1005 | // for the target array. This is an optimistic check. It will |
1006 | // look in each non-null element's class, at the desired klass's |
1007 | // super_check_offset, for the desired klass. |
1008 | int sco_offset = in_bytes(Klass::super_check_offset_offset()); |
1009 | Node* p3 = basic_plus_adr(dest_elem_klass, sco_offset); |
1010 | Node* n3 = new LoadINode(NULL, *mem /*memory(p3)*/, p3, _igvn.type(p3)->is_ptr(), TypeInt::INT, MemNode::unordered); |
1011 | Node* check_offset = ConvI2X(transform_later(n3)); |
1012 | Node* check_value = dest_elem_klass; |
1013 | |
1014 | Node* src_start = array_element_address(src, src_offset, T_OBJECT); |
1015 | Node* dest_start = array_element_address(dest, dest_offset, T_OBJECT); |
1016 | |
1017 | const TypeFunc* call_type = OptoRuntime::checkcast_arraycopy_Type(); |
1018 | Node* call = make_leaf_call(*ctrl, *mem, call_type, copyfunc_addr, "checkcast_arraycopy" , adr_type, |
1019 | src_start, dest_start, copy_length XTOP, check_offset XTOP, check_value); |
1020 | |
1021 | finish_arraycopy_call(call, ctrl, mem, adr_type); |
1022 | |
1023 | Node* proj = new ProjNode(call, TypeFunc::Parms); |
1024 | transform_later(proj); |
1025 | |
1026 | return proj; |
1027 | } |
1028 | |
1029 | // Helper function; generates code for cases requiring runtime checks. |
1030 | Node* PhaseMacroExpand::generate_generic_arraycopy(Node** ctrl, MergeMemNode** mem, |
1031 | const TypePtr* adr_type, |
1032 | Node* src, Node* src_offset, |
1033 | Node* dest, Node* dest_offset, |
1034 | Node* copy_length, bool dest_uninitialized) { |
1035 | if ((*ctrl)->is_top()) return NULL; |
1036 | assert(!dest_uninitialized, "Invariant" ); |
1037 | |
1038 | address copyfunc_addr = StubRoutines::generic_arraycopy(); |
1039 | if (copyfunc_addr == NULL) { // Stub was not generated, go slow path. |
1040 | return NULL; |
1041 | } |
1042 | |
1043 | const TypeFunc* call_type = OptoRuntime::generic_arraycopy_Type(); |
1044 | Node* call = make_leaf_call(*ctrl, *mem, call_type, copyfunc_addr, "generic_arraycopy" , adr_type, |
1045 | src, src_offset, dest, dest_offset, copy_length); |
1046 | |
1047 | finish_arraycopy_call(call, ctrl, mem, adr_type); |
1048 | |
1049 | Node* proj = new ProjNode(call, TypeFunc::Parms); |
1050 | transform_later(proj); |
1051 | |
1052 | return proj; |
1053 | } |
1054 | |
1055 | // Helper function; generates the fast out-of-line call to an arraycopy stub. |
1056 | void PhaseMacroExpand::generate_unchecked_arraycopy(Node** ctrl, MergeMemNode** mem, |
1057 | const TypePtr* adr_type, |
1058 | BasicType basic_elem_type, |
1059 | bool disjoint_bases, |
1060 | Node* src, Node* src_offset, |
1061 | Node* dest, Node* dest_offset, |
1062 | Node* copy_length, bool dest_uninitialized) { |
1063 | if ((*ctrl)->is_top()) return; |
1064 | |
1065 | Node* src_start = src; |
1066 | Node* dest_start = dest; |
1067 | if (src_offset != NULL || dest_offset != NULL) { |
1068 | src_start = array_element_address(src, src_offset, basic_elem_type); |
1069 | dest_start = array_element_address(dest, dest_offset, basic_elem_type); |
1070 | } |
1071 | |
1072 | // Figure out which arraycopy runtime method to call. |
1073 | const char* copyfunc_name = "arraycopy" ; |
1074 | address copyfunc_addr = |
1075 | basictype2arraycopy(basic_elem_type, src_offset, dest_offset, |
1076 | disjoint_bases, copyfunc_name, dest_uninitialized); |
1077 | |
1078 | const TypeFunc* call_type = OptoRuntime::fast_arraycopy_Type(); |
1079 | Node* call = make_leaf_call(*ctrl, *mem, call_type, copyfunc_addr, copyfunc_name, adr_type, |
1080 | src_start, dest_start, copy_length XTOP); |
1081 | |
1082 | finish_arraycopy_call(call, ctrl, mem, adr_type); |
1083 | } |
1084 | |
1085 | void PhaseMacroExpand::expand_arraycopy_node(ArrayCopyNode *ac) { |
1086 | Node* ctrl = ac->in(TypeFunc::Control); |
1087 | Node* io = ac->in(TypeFunc::I_O); |
1088 | Node* src = ac->in(ArrayCopyNode::Src); |
1089 | Node* src_offset = ac->in(ArrayCopyNode::SrcPos); |
1090 | Node* dest = ac->in(ArrayCopyNode::Dest); |
1091 | Node* dest_offset = ac->in(ArrayCopyNode::DestPos); |
1092 | Node* length = ac->in(ArrayCopyNode::Length); |
1093 | MergeMemNode* merge_mem = NULL; |
1094 | |
1095 | if (ac->is_clonebasic()) { |
1096 | assert (src_offset == NULL && dest_offset == NULL, "for clone offsets should be null" ); |
1097 | Node* mem = ac->in(TypeFunc::Memory); |
1098 | const char* copyfunc_name = "arraycopy" ; |
1099 | address copyfunc_addr = |
1100 | basictype2arraycopy(T_LONG, NULL, NULL, |
1101 | true, copyfunc_name, true); |
1102 | |
1103 | const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM; |
1104 | const TypeFunc* call_type = OptoRuntime::fast_arraycopy_Type(); |
1105 | |
1106 | Node* call = make_leaf_call(ctrl, mem, call_type, copyfunc_addr, copyfunc_name, raw_adr_type, src, dest, length XTOP); |
1107 | transform_later(call); |
1108 | |
1109 | BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); |
1110 | bs->clone_barrier_at_expansion(ac, call, _igvn); |
1111 | |
1112 | return; |
1113 | } else if (ac->is_copyof() || ac->is_copyofrange() || ac->is_cloneoop()) { |
1114 | Node* mem = ac->in(TypeFunc::Memory); |
1115 | merge_mem = MergeMemNode::make(mem); |
1116 | transform_later(merge_mem); |
1117 | |
1118 | RegionNode* slow_region = new RegionNode(1); |
1119 | transform_later(slow_region); |
1120 | |
1121 | AllocateArrayNode* alloc = NULL; |
1122 | if (ac->is_alloc_tightly_coupled()) { |
1123 | alloc = AllocateArrayNode::Ideal_array_allocation(dest, &_igvn); |
1124 | assert(alloc != NULL, "expect alloc" ); |
1125 | } |
1126 | |
1127 | const TypePtr* adr_type = _igvn.type(dest)->is_oopptr()->add_offset(Type::OffsetBot); |
1128 | if (ac->_dest_type != TypeOopPtr::BOTTOM) { |
1129 | adr_type = ac->_dest_type->add_offset(Type::OffsetBot)->is_ptr(); |
1130 | } |
1131 | generate_arraycopy(ac, alloc, &ctrl, merge_mem, &io, |
1132 | adr_type, T_OBJECT, |
1133 | src, src_offset, dest, dest_offset, length, |
1134 | true, !ac->is_copyofrange()); |
1135 | |
1136 | return; |
1137 | } |
1138 | |
1139 | AllocateArrayNode* alloc = NULL; |
1140 | if (ac->is_alloc_tightly_coupled()) { |
1141 | alloc = AllocateArrayNode::Ideal_array_allocation(dest, &_igvn); |
1142 | assert(alloc != NULL, "expect alloc" ); |
1143 | } |
1144 | |
1145 | assert(ac->is_arraycopy() || ac->is_arraycopy_validated(), "should be an arraycopy" ); |
1146 | |
1147 | // Compile time checks. If any of these checks cannot be verified at compile time, |
1148 | // we do not make a fast path for this call. Instead, we let the call remain as it |
1149 | // is. The checks we choose to mandate at compile time are: |
1150 | // |
1151 | // (1) src and dest are arrays. |
1152 | const Type* src_type = src->Value(&_igvn); |
1153 | const Type* dest_type = dest->Value(&_igvn); |
1154 | const TypeAryPtr* top_src = src_type->isa_aryptr(); |
1155 | const TypeAryPtr* top_dest = dest_type->isa_aryptr(); |
1156 | |
1157 | BasicType src_elem = T_CONFLICT; |
1158 | BasicType dest_elem = T_CONFLICT; |
1159 | |
1160 | if (top_dest != NULL && top_dest->klass() != NULL) { |
1161 | dest_elem = top_dest->klass()->as_array_klass()->element_type()->basic_type(); |
1162 | } |
1163 | if (top_src != NULL && top_src->klass() != NULL) { |
1164 | src_elem = top_src->klass()->as_array_klass()->element_type()->basic_type(); |
1165 | } |
1166 | if (src_elem == T_ARRAY) src_elem = T_OBJECT; |
1167 | if (dest_elem == T_ARRAY) dest_elem = T_OBJECT; |
1168 | |
1169 | if (ac->is_arraycopy_validated() && |
1170 | dest_elem != T_CONFLICT && |
1171 | src_elem == T_CONFLICT) { |
1172 | src_elem = dest_elem; |
1173 | } |
1174 | |
1175 | if (src_elem == T_CONFLICT || dest_elem == T_CONFLICT) { |
1176 | // Conservatively insert a memory barrier on all memory slices. |
1177 | // Do not let writes into the source float below the arraycopy. |
1178 | { |
1179 | Node* mem = ac->in(TypeFunc::Memory); |
1180 | insert_mem_bar(&ctrl, &mem, Op_MemBarCPUOrder); |
1181 | |
1182 | merge_mem = MergeMemNode::make(mem); |
1183 | transform_later(merge_mem); |
1184 | } |
1185 | |
1186 | // Call StubRoutines::generic_arraycopy stub. |
1187 | Node* mem = generate_arraycopy(ac, NULL, &ctrl, merge_mem, &io, |
1188 | TypeRawPtr::BOTTOM, T_CONFLICT, |
1189 | src, src_offset, dest, dest_offset, length, |
1190 | // If a negative length guard was generated for the ArrayCopyNode, |
1191 | // the length of the array can never be negative. |
1192 | false, ac->has_negative_length_guard()); |
1193 | |
1194 | // Do not let reads from the destination float above the arraycopy. |
1195 | // Since we cannot type the arrays, we don't know which slices |
1196 | // might be affected. We could restrict this barrier only to those |
1197 | // memory slices which pertain to array elements--but don't bother. |
1198 | if (!InsertMemBarAfterArraycopy) { |
1199 | // (If InsertMemBarAfterArraycopy, there is already one in place.) |
1200 | insert_mem_bar(&ctrl, &mem, Op_MemBarCPUOrder); |
1201 | } |
1202 | return; |
1203 | } |
1204 | |
1205 | assert(!ac->is_arraycopy_validated() || (src_elem == dest_elem && dest_elem != T_VOID), "validated but different basic types" ); |
1206 | |
1207 | // (2) src and dest arrays must have elements of the same BasicType |
1208 | // Figure out the size and type of the elements we will be copying. |
1209 | if (src_elem != dest_elem || dest_elem == T_VOID) { |
1210 | // The component types are not the same or are not recognized. Punt. |
1211 | // (But, avoid the native method wrapper to JVM_ArrayCopy.) |
1212 | { |
1213 | Node* mem = ac->in(TypeFunc::Memory); |
1214 | merge_mem = generate_slow_arraycopy(ac, &ctrl, mem, &io, TypePtr::BOTTOM, src, src_offset, dest, dest_offset, length, false); |
1215 | } |
1216 | |
1217 | _igvn.replace_node(_memproj_fallthrough, merge_mem); |
1218 | _igvn.replace_node(_ioproj_fallthrough, io); |
1219 | _igvn.replace_node(_fallthroughcatchproj, ctrl); |
1220 | return; |
1221 | } |
1222 | |
1223 | //--------------------------------------------------------------------------- |
1224 | // We will make a fast path for this call to arraycopy. |
1225 | |
1226 | // We have the following tests left to perform: |
1227 | // |
1228 | // (3) src and dest must not be null. |
1229 | // (4) src_offset must not be negative. |
1230 | // (5) dest_offset must not be negative. |
1231 | // (6) length must not be negative. |
1232 | // (7) src_offset + length must not exceed length of src. |
1233 | // (8) dest_offset + length must not exceed length of dest. |
1234 | // (9) each element of an oop array must be assignable |
1235 | |
1236 | { |
1237 | Node* mem = ac->in(TypeFunc::Memory); |
1238 | merge_mem = MergeMemNode::make(mem); |
1239 | transform_later(merge_mem); |
1240 | } |
1241 | |
1242 | RegionNode* slow_region = new RegionNode(1); |
1243 | transform_later(slow_region); |
1244 | |
1245 | if (!ac->is_arraycopy_validated()) { |
1246 | // (3) operands must not be null |
1247 | // We currently perform our null checks with the null_check routine. |
1248 | // This means that the null exceptions will be reported in the caller |
1249 | // rather than (correctly) reported inside of the native arraycopy call. |
1250 | // This should be corrected, given time. We do our null check with the |
1251 | // stack pointer restored. |
1252 | // null checks done library_call.cpp |
1253 | |
1254 | // (4) src_offset must not be negative. |
1255 | generate_negative_guard(&ctrl, src_offset, slow_region); |
1256 | |
1257 | // (5) dest_offset must not be negative. |
1258 | generate_negative_guard(&ctrl, dest_offset, slow_region); |
1259 | |
1260 | // (6) length must not be negative (moved to generate_arraycopy()). |
1261 | // generate_negative_guard(length, slow_region); |
1262 | |
1263 | // (7) src_offset + length must not exceed length of src. |
1264 | Node* alen = ac->in(ArrayCopyNode::SrcLen); |
1265 | assert(alen != NULL, "need src len" ); |
1266 | generate_limit_guard(&ctrl, |
1267 | src_offset, length, |
1268 | alen, |
1269 | slow_region); |
1270 | |
1271 | // (8) dest_offset + length must not exceed length of dest. |
1272 | alen = ac->in(ArrayCopyNode::DestLen); |
1273 | assert(alen != NULL, "need dest len" ); |
1274 | generate_limit_guard(&ctrl, |
1275 | dest_offset, length, |
1276 | alen, |
1277 | slow_region); |
1278 | |
1279 | // (9) each element of an oop array must be assignable |
1280 | // The generate_arraycopy subroutine checks this. |
1281 | } |
1282 | // This is where the memory effects are placed: |
1283 | const TypePtr* adr_type = NULL; |
1284 | if (ac->_dest_type != TypeOopPtr::BOTTOM) { |
1285 | adr_type = ac->_dest_type->add_offset(Type::OffsetBot)->is_ptr(); |
1286 | } else { |
1287 | adr_type = TypeAryPtr::get_array_body_type(dest_elem); |
1288 | } |
1289 | |
1290 | generate_arraycopy(ac, alloc, &ctrl, merge_mem, &io, |
1291 | adr_type, dest_elem, |
1292 | src, src_offset, dest, dest_offset, length, |
1293 | // If a negative length guard was generated for the ArrayCopyNode, |
1294 | // the length of the array can never be negative. |
1295 | false, ac->has_negative_length_guard(), slow_region); |
1296 | } |
1297 | |