1 | /* |
2 | * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved. |
3 | * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
4 | * |
5 | * This code is free software; you can redistribute it and/or modify it |
6 | * under the terms of the GNU General Public License version 2 only, as |
7 | * published by the Free Software Foundation. |
8 | * |
9 | * This code is distributed in the hope that it will be useful, but WITHOUT |
10 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
11 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
12 | * version 2 for more details (a copy is included in the LICENSE file that |
13 | * accompanied this code). |
14 | * |
15 | * You should have received a copy of the GNU General Public License version |
16 | * 2 along with this work; if not, write to the Free Software Foundation, |
17 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
18 | * |
19 | * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
20 | * or visit www.oracle.com if you need additional information or have any |
21 | * questions. |
22 | * |
23 | */ |
24 | |
25 | #include "precompiled.hpp" |
26 | #include "gc/shared/barrierSet.hpp" |
27 | #include "gc/shared/c2/barrierSetC2.hpp" |
28 | #include "memory/allocation.inline.hpp" |
29 | #include "memory/resourceArea.hpp" |
30 | #include "opto/block.hpp" |
31 | #include "opto/callnode.hpp" |
32 | #include "opto/castnode.hpp" |
33 | #include "opto/cfgnode.hpp" |
34 | #include "opto/idealGraphPrinter.hpp" |
35 | #include "opto/loopnode.hpp" |
36 | #include "opto/machnode.hpp" |
37 | #include "opto/opcodes.hpp" |
38 | #include "opto/phaseX.hpp" |
39 | #include "opto/regalloc.hpp" |
40 | #include "opto/rootnode.hpp" |
41 | #include "utilities/macros.hpp" |
42 | |
43 | //============================================================================= |
44 | #define NODE_HASH_MINIMUM_SIZE 255 |
45 | //------------------------------NodeHash--------------------------------------- |
46 | NodeHash::NodeHash(uint est_max_size) : |
47 | _a(Thread::current()->resource_area()), |
48 | _max( round_up(est_max_size < NODE_HASH_MINIMUM_SIZE ? NODE_HASH_MINIMUM_SIZE : est_max_size) ), |
49 | _inserts(0), _insert_limit( insert_limit() ), |
50 | _table( NEW_ARENA_ARRAY( _a , Node* , _max ) ) // (Node**)_a->Amalloc(_max * sizeof(Node*)) ), |
51 | #ifndef PRODUCT |
52 | , _grows(0),_look_probes(0), _lookup_hits(0), _lookup_misses(0), |
53 | _insert_probes(0), _delete_probes(0), _delete_hits(0), _delete_misses(0), |
54 | _total_inserts(0), _total_insert_probes(0) |
55 | #endif |
56 | { |
57 | // _sentinel must be in the current node space |
58 | _sentinel = new ProjNode(NULL, TypeFunc::Control); |
59 | memset(_table,0,sizeof(Node*)*_max); |
60 | } |
61 | |
62 | //------------------------------NodeHash--------------------------------------- |
63 | NodeHash::NodeHash(Arena *arena, uint est_max_size) : |
64 | _a(arena), |
65 | _max( round_up(est_max_size < NODE_HASH_MINIMUM_SIZE ? NODE_HASH_MINIMUM_SIZE : est_max_size) ), |
66 | _inserts(0), _insert_limit( insert_limit() ), |
67 | _table( NEW_ARENA_ARRAY( _a , Node* , _max ) ) |
68 | #ifndef PRODUCT |
69 | , _grows(0),_look_probes(0), _lookup_hits(0), _lookup_misses(0), |
70 | _insert_probes(0), _delete_probes(0), _delete_hits(0), _delete_misses(0), |
71 | _total_inserts(0), _total_insert_probes(0) |
72 | #endif |
73 | { |
74 | // _sentinel must be in the current node space |
75 | _sentinel = new ProjNode(NULL, TypeFunc::Control); |
76 | memset(_table,0,sizeof(Node*)*_max); |
77 | } |
78 | |
79 | //------------------------------NodeHash--------------------------------------- |
80 | NodeHash::NodeHash(NodeHash *nh) { |
81 | debug_only(_table = (Node**)badAddress); // interact correctly w/ operator= |
82 | // just copy in all the fields |
83 | *this = *nh; |
84 | // nh->_sentinel must be in the current node space |
85 | } |
86 | |
87 | void NodeHash::replace_with(NodeHash *nh) { |
88 | debug_only(_table = (Node**)badAddress); // interact correctly w/ operator= |
89 | // just copy in all the fields |
90 | *this = *nh; |
91 | // nh->_sentinel must be in the current node space |
92 | } |
93 | |
94 | //------------------------------hash_find-------------------------------------- |
95 | // Find in hash table |
96 | Node *NodeHash::hash_find( const Node *n ) { |
97 | // ((Node*)n)->set_hash( n->hash() ); |
98 | uint hash = n->hash(); |
99 | if (hash == Node::NO_HASH) { |
100 | NOT_PRODUCT( _lookup_misses++ ); |
101 | return NULL; |
102 | } |
103 | uint key = hash & (_max-1); |
104 | uint stride = key | 0x01; |
105 | NOT_PRODUCT( _look_probes++ ); |
106 | Node *k = _table[key]; // Get hashed value |
107 | if( !k ) { // ?Miss? |
108 | NOT_PRODUCT( _lookup_misses++ ); |
109 | return NULL; // Miss! |
110 | } |
111 | |
112 | int op = n->Opcode(); |
113 | uint req = n->req(); |
114 | while( 1 ) { // While probing hash table |
115 | if( k->req() == req && // Same count of inputs |
116 | k->Opcode() == op ) { // Same Opcode |
117 | for( uint i=0; i<req; i++ ) |
118 | if( n->in(i)!=k->in(i)) // Different inputs? |
119 | goto collision; // "goto" is a speed hack... |
120 | if( n->cmp(*k) ) { // Check for any special bits |
121 | NOT_PRODUCT( _lookup_hits++ ); |
122 | return k; // Hit! |
123 | } |
124 | } |
125 | collision: |
126 | NOT_PRODUCT( _look_probes++ ); |
127 | key = (key + stride/*7*/) & (_max-1); // Stride through table with relative prime |
128 | k = _table[key]; // Get hashed value |
129 | if( !k ) { // ?Miss? |
130 | NOT_PRODUCT( _lookup_misses++ ); |
131 | return NULL; // Miss! |
132 | } |
133 | } |
134 | ShouldNotReachHere(); |
135 | return NULL; |
136 | } |
137 | |
138 | //------------------------------hash_find_insert------------------------------- |
139 | // Find in hash table, insert if not already present |
140 | // Used to preserve unique entries in hash table |
141 | Node *NodeHash::hash_find_insert( Node *n ) { |
142 | // n->set_hash( ); |
143 | uint hash = n->hash(); |
144 | if (hash == Node::NO_HASH) { |
145 | NOT_PRODUCT( _lookup_misses++ ); |
146 | return NULL; |
147 | } |
148 | uint key = hash & (_max-1); |
149 | uint stride = key | 0x01; // stride must be relatively prime to table siz |
150 | uint first_sentinel = 0; // replace a sentinel if seen. |
151 | NOT_PRODUCT( _look_probes++ ); |
152 | Node *k = _table[key]; // Get hashed value |
153 | if( !k ) { // ?Miss? |
154 | NOT_PRODUCT( _lookup_misses++ ); |
155 | _table[key] = n; // Insert into table! |
156 | debug_only(n->enter_hash_lock()); // Lock down the node while in the table. |
157 | check_grow(); // Grow table if insert hit limit |
158 | return NULL; // Miss! |
159 | } |
160 | else if( k == _sentinel ) { |
161 | first_sentinel = key; // Can insert here |
162 | } |
163 | |
164 | int op = n->Opcode(); |
165 | uint req = n->req(); |
166 | while( 1 ) { // While probing hash table |
167 | if( k->req() == req && // Same count of inputs |
168 | k->Opcode() == op ) { // Same Opcode |
169 | for( uint i=0; i<req; i++ ) |
170 | if( n->in(i)!=k->in(i)) // Different inputs? |
171 | goto collision; // "goto" is a speed hack... |
172 | if( n->cmp(*k) ) { // Check for any special bits |
173 | NOT_PRODUCT( _lookup_hits++ ); |
174 | return k; // Hit! |
175 | } |
176 | } |
177 | collision: |
178 | NOT_PRODUCT( _look_probes++ ); |
179 | key = (key + stride) & (_max-1); // Stride through table w/ relative prime |
180 | k = _table[key]; // Get hashed value |
181 | if( !k ) { // ?Miss? |
182 | NOT_PRODUCT( _lookup_misses++ ); |
183 | key = (first_sentinel == 0) ? key : first_sentinel; // ?saw sentinel? |
184 | _table[key] = n; // Insert into table! |
185 | debug_only(n->enter_hash_lock()); // Lock down the node while in the table. |
186 | check_grow(); // Grow table if insert hit limit |
187 | return NULL; // Miss! |
188 | } |
189 | else if( first_sentinel == 0 && k == _sentinel ) { |
190 | first_sentinel = key; // Can insert here |
191 | } |
192 | |
193 | } |
194 | ShouldNotReachHere(); |
195 | return NULL; |
196 | } |
197 | |
198 | //------------------------------hash_insert------------------------------------ |
199 | // Insert into hash table |
200 | void NodeHash::hash_insert( Node *n ) { |
201 | // // "conflict" comments -- print nodes that conflict |
202 | // bool conflict = false; |
203 | // n->set_hash(); |
204 | uint hash = n->hash(); |
205 | if (hash == Node::NO_HASH) { |
206 | return; |
207 | } |
208 | check_grow(); |
209 | uint key = hash & (_max-1); |
210 | uint stride = key | 0x01; |
211 | |
212 | while( 1 ) { // While probing hash table |
213 | NOT_PRODUCT( _insert_probes++ ); |
214 | Node *k = _table[key]; // Get hashed value |
215 | if( !k || (k == _sentinel) ) break; // Found a slot |
216 | assert( k != n, "already inserted" ); |
217 | // if( PrintCompilation && PrintOptoStatistics && Verbose ) { tty->print(" conflict: "); k->dump(); conflict = true; } |
218 | key = (key + stride) & (_max-1); // Stride through table w/ relative prime |
219 | } |
220 | _table[key] = n; // Insert into table! |
221 | debug_only(n->enter_hash_lock()); // Lock down the node while in the table. |
222 | // if( conflict ) { n->dump(); } |
223 | } |
224 | |
225 | //------------------------------hash_delete------------------------------------ |
226 | // Replace in hash table with sentinel |
227 | bool NodeHash::hash_delete( const Node *n ) { |
228 | Node *k; |
229 | uint hash = n->hash(); |
230 | if (hash == Node::NO_HASH) { |
231 | NOT_PRODUCT( _delete_misses++ ); |
232 | return false; |
233 | } |
234 | uint key = hash & (_max-1); |
235 | uint stride = key | 0x01; |
236 | debug_only( uint counter = 0; ); |
237 | for( ; /* (k != NULL) && (k != _sentinel) */; ) { |
238 | debug_only( counter++ ); |
239 | NOT_PRODUCT( _delete_probes++ ); |
240 | k = _table[key]; // Get hashed value |
241 | if( !k ) { // Miss? |
242 | NOT_PRODUCT( _delete_misses++ ); |
243 | #ifdef ASSERT |
244 | if( VerifyOpto ) { |
245 | for( uint i=0; i < _max; i++ ) |
246 | assert( _table[i] != n, "changed edges with rehashing" ); |
247 | } |
248 | #endif |
249 | return false; // Miss! Not in chain |
250 | } |
251 | else if( n == k ) { |
252 | NOT_PRODUCT( _delete_hits++ ); |
253 | _table[key] = _sentinel; // Hit! Label as deleted entry |
254 | debug_only(((Node*)n)->exit_hash_lock()); // Unlock the node upon removal from table. |
255 | return true; |
256 | } |
257 | else { |
258 | // collision: move through table with prime offset |
259 | key = (key + stride/*7*/) & (_max-1); |
260 | assert( counter <= _insert_limit, "Cycle in hash-table" ); |
261 | } |
262 | } |
263 | ShouldNotReachHere(); |
264 | return false; |
265 | } |
266 | |
267 | //------------------------------round_up--------------------------------------- |
268 | // Round up to nearest power of 2 |
269 | uint NodeHash::round_up( uint x ) { |
270 | x += (x>>2); // Add 25% slop |
271 | if( x <16 ) return 16; // Small stuff |
272 | uint i=16; |
273 | while( i < x ) i <<= 1; // Double to fit |
274 | return i; // Return hash table size |
275 | } |
276 | |
277 | //------------------------------grow------------------------------------------- |
278 | // Grow _table to next power of 2 and insert old entries |
279 | void NodeHash::grow() { |
280 | // Record old state |
281 | uint old_max = _max; |
282 | Node **old_table = _table; |
283 | // Construct new table with twice the space |
284 | #ifndef PRODUCT |
285 | _grows++; |
286 | _total_inserts += _inserts; |
287 | _total_insert_probes += _insert_probes; |
288 | _insert_probes = 0; |
289 | #endif |
290 | _inserts = 0; |
291 | _max = _max << 1; |
292 | _table = NEW_ARENA_ARRAY( _a , Node* , _max ); // (Node**)_a->Amalloc( _max * sizeof(Node*) ); |
293 | memset(_table,0,sizeof(Node*)*_max); |
294 | _insert_limit = insert_limit(); |
295 | // Insert old entries into the new table |
296 | for( uint i = 0; i < old_max; i++ ) { |
297 | Node *m = *old_table++; |
298 | if( !m || m == _sentinel ) continue; |
299 | debug_only(m->exit_hash_lock()); // Unlock the node upon removal from old table. |
300 | hash_insert(m); |
301 | } |
302 | } |
303 | |
304 | //------------------------------clear------------------------------------------ |
305 | // Clear all entries in _table to NULL but keep storage |
306 | void NodeHash::clear() { |
307 | #ifdef ASSERT |
308 | // Unlock all nodes upon removal from table. |
309 | for (uint i = 0; i < _max; i++) { |
310 | Node* n = _table[i]; |
311 | if (!n || n == _sentinel) continue; |
312 | n->exit_hash_lock(); |
313 | } |
314 | #endif |
315 | |
316 | memset( _table, 0, _max * sizeof(Node*) ); |
317 | } |
318 | |
319 | //-----------------------remove_useless_nodes---------------------------------- |
320 | // Remove useless nodes from value table, |
321 | // implementation does not depend on hash function |
322 | void NodeHash::remove_useless_nodes(VectorSet &useful) { |
323 | |
324 | // Dead nodes in the hash table inherited from GVN should not replace |
325 | // existing nodes, remove dead nodes. |
326 | uint max = size(); |
327 | Node *sentinel_node = sentinel(); |
328 | for( uint i = 0; i < max; ++i ) { |
329 | Node *n = at(i); |
330 | if(n != NULL && n != sentinel_node && !useful.test(n->_idx)) { |
331 | debug_only(n->exit_hash_lock()); // Unlock the node when removed |
332 | _table[i] = sentinel_node; // Replace with placeholder |
333 | } |
334 | } |
335 | } |
336 | |
337 | |
338 | void NodeHash::check_no_speculative_types() { |
339 | #ifdef ASSERT |
340 | uint max = size(); |
341 | Node *sentinel_node = sentinel(); |
342 | for (uint i = 0; i < max; ++i) { |
343 | Node *n = at(i); |
344 | if(n != NULL && n != sentinel_node && n->is_Type() && n->outcnt() > 0) { |
345 | TypeNode* tn = n->as_Type(); |
346 | const Type* t = tn->type(); |
347 | const Type* t_no_spec = t->remove_speculative(); |
348 | assert(t == t_no_spec, "dead node in hash table or missed node during speculative cleanup" ); |
349 | } |
350 | } |
351 | #endif |
352 | } |
353 | |
354 | #ifndef PRODUCT |
355 | //------------------------------dump------------------------------------------- |
356 | // Dump statistics for the hash table |
357 | void NodeHash::dump() { |
358 | _total_inserts += _inserts; |
359 | _total_insert_probes += _insert_probes; |
360 | if (PrintCompilation && PrintOptoStatistics && Verbose && (_inserts > 0)) { |
361 | if (WizardMode) { |
362 | for (uint i=0; i<_max; i++) { |
363 | if (_table[i]) |
364 | tty->print("%d/%d/%d " ,i,_table[i]->hash()&(_max-1),_table[i]->_idx); |
365 | } |
366 | } |
367 | tty->print("\nGVN Hash stats: %d grows to %d max_size\n" , _grows, _max); |
368 | tty->print(" %d/%d (%8.1f%% full)\n" , _inserts, _max, (double)_inserts/_max*100.0); |
369 | tty->print(" %dp/(%dh+%dm) (%8.2f probes/lookup)\n" , _look_probes, _lookup_hits, _lookup_misses, (double)_look_probes/(_lookup_hits+_lookup_misses)); |
370 | tty->print(" %dp/%di (%8.2f probes/insert)\n" , _total_insert_probes, _total_inserts, (double)_total_insert_probes/_total_inserts); |
371 | // sentinels increase lookup cost, but not insert cost |
372 | assert((_lookup_misses+_lookup_hits)*4+100 >= _look_probes, "bad hash function" ); |
373 | assert( _inserts+(_inserts>>3) < _max, "table too full" ); |
374 | assert( _inserts*3+100 >= _insert_probes, "bad hash function" ); |
375 | } |
376 | } |
377 | |
378 | Node *NodeHash::find_index(uint idx) { // For debugging |
379 | // Find an entry by its index value |
380 | for( uint i = 0; i < _max; i++ ) { |
381 | Node *m = _table[i]; |
382 | if( !m || m == _sentinel ) continue; |
383 | if( m->_idx == (uint)idx ) return m; |
384 | } |
385 | return NULL; |
386 | } |
387 | #endif |
388 | |
389 | #ifdef ASSERT |
390 | NodeHash::~NodeHash() { |
391 | // Unlock all nodes upon destruction of table. |
392 | if (_table != (Node**)badAddress) clear(); |
393 | } |
394 | |
395 | void NodeHash::operator=(const NodeHash& nh) { |
396 | // Unlock all nodes upon replacement of table. |
397 | if (&nh == this) return; |
398 | if (_table != (Node**)badAddress) clear(); |
399 | memcpy((void*)this, (void*)&nh, sizeof(*this)); |
400 | // Do not increment hash_lock counts again. |
401 | // Instead, be sure we never again use the source table. |
402 | ((NodeHash*)&nh)->_table = (Node**)badAddress; |
403 | } |
404 | |
405 | |
406 | #endif |
407 | |
408 | |
409 | //============================================================================= |
410 | //------------------------------PhaseRemoveUseless----------------------------- |
411 | // 1) Use a breadthfirst walk to collect useful nodes reachable from root. |
412 | PhaseRemoveUseless::PhaseRemoveUseless(PhaseGVN *gvn, Unique_Node_List *worklist, PhaseNumber phase_num) : Phase(phase_num), |
413 | _useful(Thread::current()->resource_area()) { |
414 | |
415 | // Implementation requires 'UseLoopSafepoints == true' and an edge from root |
416 | // to each SafePointNode at a backward branch. Inserted in add_safepoint(). |
417 | if( !UseLoopSafepoints || !OptoRemoveUseless ) return; |
418 | |
419 | // Identify nodes that are reachable from below, useful. |
420 | C->identify_useful_nodes(_useful); |
421 | // Update dead node list |
422 | C->update_dead_node_list(_useful); |
423 | |
424 | // Remove all useless nodes from PhaseValues' recorded types |
425 | // Must be done before disconnecting nodes to preserve hash-table-invariant |
426 | gvn->remove_useless_nodes(_useful.member_set()); |
427 | |
428 | // Remove all useless nodes from future worklist |
429 | worklist->remove_useless_nodes(_useful.member_set()); |
430 | |
431 | // Disconnect 'useless' nodes that are adjacent to useful nodes |
432 | C->remove_useless_nodes(_useful); |
433 | } |
434 | |
435 | //============================================================================= |
436 | //------------------------------PhaseRenumberLive------------------------------ |
437 | // First, remove useless nodes (equivalent to identifying live nodes). |
438 | // Then, renumber live nodes. |
439 | // |
440 | // The set of live nodes is returned by PhaseRemoveUseless in the _useful structure. |
441 | // If the number of live nodes is 'x' (where 'x' == _useful.size()), then the |
442 | // PhaseRenumberLive updates the node ID of each node (the _idx field) with a unique |
443 | // value in the range [0, x). |
444 | // |
445 | // At the end of the PhaseRenumberLive phase, the compiler's count of unique nodes is |
446 | // updated to 'x' and the list of dead nodes is reset (as there are no dead nodes). |
447 | // |
448 | // The PhaseRenumberLive phase updates two data structures with the new node IDs. |
449 | // (1) The worklist is used by the PhaseIterGVN phase to identify nodes that must be |
450 | // processed. A new worklist (with the updated node IDs) is returned in 'new_worklist'. |
451 | // (2) Type information (the field PhaseGVN::_types) maps type information to each |
452 | // node ID. The mapping is updated to use the new node IDs as well. Updated type |
453 | // information is returned in PhaseGVN::_types. |
454 | // |
455 | // The PhaseRenumberLive phase does not preserve the order of elements in the worklist. |
456 | // |
457 | // Other data structures used by the compiler are not updated. The hash table for value |
458 | // numbering (the field PhaseGVN::_table) is not updated because computing the hash |
459 | // values is not based on node IDs. The field PhaseGVN::_nodes is not updated either |
460 | // because it is empty wherever PhaseRenumberLive is used. |
461 | PhaseRenumberLive::PhaseRenumberLive(PhaseGVN* gvn, |
462 | Unique_Node_List* worklist, Unique_Node_List* new_worklist, |
463 | PhaseNumber phase_num) : |
464 | PhaseRemoveUseless(gvn, worklist, Remove_Useless_And_Renumber_Live), |
465 | _new_type_array(C->comp_arena()), |
466 | _old2new_map(C->unique(), C->unique(), -1), |
467 | _delayed(Thread::current()->resource_area()), |
468 | _is_pass_finished(false), |
469 | _live_node_count(C->live_nodes()) |
470 | { |
471 | assert(RenumberLiveNodes, "RenumberLiveNodes must be set to true for node renumbering to take place" ); |
472 | assert(C->live_nodes() == _useful.size(), "the number of live nodes must match the number of useful nodes" ); |
473 | assert(gvn->nodes_size() == 0, "GVN must not contain any nodes at this point" ); |
474 | assert(_delayed.size() == 0, "should be empty" ); |
475 | |
476 | uint worklist_size = worklist->size(); |
477 | |
478 | // Iterate over the set of live nodes. |
479 | for (uint current_idx = 0; current_idx < _useful.size(); current_idx++) { |
480 | Node* n = _useful.at(current_idx); |
481 | |
482 | bool in_worklist = false; |
483 | if (worklist->member(n)) { |
484 | in_worklist = true; |
485 | } |
486 | |
487 | const Type* type = gvn->type_or_null(n); |
488 | _new_type_array.map(current_idx, type); |
489 | |
490 | assert(_old2new_map.at(n->_idx) == -1, "already seen" ); |
491 | _old2new_map.at_put(n->_idx, current_idx); |
492 | |
493 | n->set_idx(current_idx); // Update node ID. |
494 | |
495 | if (in_worklist) { |
496 | new_worklist->push(n); |
497 | } |
498 | |
499 | if (update_embedded_ids(n) < 0) { |
500 | _delayed.push(n); // has embedded IDs; handle later |
501 | } |
502 | } |
503 | |
504 | assert(worklist_size == new_worklist->size(), "the new worklist must have the same size as the original worklist" ); |
505 | assert(_live_node_count == _useful.size(), "all live nodes must be processed" ); |
506 | |
507 | _is_pass_finished = true; // pass finished; safe to process delayed updates |
508 | |
509 | while (_delayed.size() > 0) { |
510 | Node* n = _delayed.pop(); |
511 | int no_of_updates = update_embedded_ids(n); |
512 | assert(no_of_updates > 0, "should be updated" ); |
513 | } |
514 | |
515 | // Replace the compiler's type information with the updated type information. |
516 | gvn->replace_types(_new_type_array); |
517 | |
518 | // Update the unique node count of the compilation to the number of currently live nodes. |
519 | C->set_unique(_live_node_count); |
520 | |
521 | // Set the dead node count to 0 and reset dead node list. |
522 | C->reset_dead_node_list(); |
523 | } |
524 | |
525 | int PhaseRenumberLive::new_index(int old_idx) { |
526 | assert(_is_pass_finished, "not finished" ); |
527 | if (_old2new_map.at(old_idx) == -1) { // absent |
528 | // Allocate a placeholder to preserve uniqueness |
529 | _old2new_map.at_put(old_idx, _live_node_count); |
530 | _live_node_count++; |
531 | } |
532 | return _old2new_map.at(old_idx); |
533 | } |
534 | |
535 | int PhaseRenumberLive::update_embedded_ids(Node* n) { |
536 | int no_of_updates = 0; |
537 | if (n->is_Phi()) { |
538 | PhiNode* phi = n->as_Phi(); |
539 | if (phi->_inst_id != -1) { |
540 | if (!_is_pass_finished) { |
541 | return -1; // delay |
542 | } |
543 | int new_idx = new_index(phi->_inst_id); |
544 | assert(new_idx != -1, "" ); |
545 | phi->_inst_id = new_idx; |
546 | no_of_updates++; |
547 | } |
548 | if (phi->_inst_mem_id != -1) { |
549 | if (!_is_pass_finished) { |
550 | return -1; // delay |
551 | } |
552 | int new_idx = new_index(phi->_inst_mem_id); |
553 | assert(new_idx != -1, "" ); |
554 | phi->_inst_mem_id = new_idx; |
555 | no_of_updates++; |
556 | } |
557 | } |
558 | |
559 | const Type* type = _new_type_array.fast_lookup(n->_idx); |
560 | if (type != NULL && type->isa_oopptr() && type->is_oopptr()->is_known_instance()) { |
561 | if (!_is_pass_finished) { |
562 | return -1; // delay |
563 | } |
564 | int old_idx = type->is_oopptr()->instance_id(); |
565 | int new_idx = new_index(old_idx); |
566 | const Type* new_type = type->is_oopptr()->with_instance_id(new_idx); |
567 | _new_type_array.map(n->_idx, new_type); |
568 | no_of_updates++; |
569 | } |
570 | |
571 | return no_of_updates; |
572 | } |
573 | |
574 | //============================================================================= |
575 | //------------------------------PhaseTransform--------------------------------- |
576 | PhaseTransform::PhaseTransform( PhaseNumber pnum ) : Phase(pnum), |
577 | _arena(Thread::current()->resource_area()), |
578 | _nodes(_arena), |
579 | _types(_arena) |
580 | { |
581 | init_con_caches(); |
582 | #ifndef PRODUCT |
583 | clear_progress(); |
584 | clear_transforms(); |
585 | set_allow_progress(true); |
586 | #endif |
587 | // Force allocation for currently existing nodes |
588 | _types.map(C->unique(), NULL); |
589 | } |
590 | |
591 | //------------------------------PhaseTransform--------------------------------- |
592 | PhaseTransform::PhaseTransform( Arena *arena, PhaseNumber pnum ) : Phase(pnum), |
593 | _arena(arena), |
594 | _nodes(arena), |
595 | _types(arena) |
596 | { |
597 | init_con_caches(); |
598 | #ifndef PRODUCT |
599 | clear_progress(); |
600 | clear_transforms(); |
601 | set_allow_progress(true); |
602 | #endif |
603 | // Force allocation for currently existing nodes |
604 | _types.map(C->unique(), NULL); |
605 | } |
606 | |
607 | //------------------------------PhaseTransform--------------------------------- |
608 | // Initialize with previously generated type information |
609 | PhaseTransform::PhaseTransform( PhaseTransform *pt, PhaseNumber pnum ) : Phase(pnum), |
610 | _arena(pt->_arena), |
611 | _nodes(pt->_nodes), |
612 | _types(pt->_types) |
613 | { |
614 | init_con_caches(); |
615 | #ifndef PRODUCT |
616 | clear_progress(); |
617 | clear_transforms(); |
618 | set_allow_progress(true); |
619 | #endif |
620 | } |
621 | |
622 | void PhaseTransform::init_con_caches() { |
623 | memset(_icons,0,sizeof(_icons)); |
624 | memset(_lcons,0,sizeof(_lcons)); |
625 | memset(_zcons,0,sizeof(_zcons)); |
626 | } |
627 | |
628 | |
629 | //--------------------------------find_int_type-------------------------------- |
630 | const TypeInt* PhaseTransform::find_int_type(Node* n) { |
631 | if (n == NULL) return NULL; |
632 | // Call type_or_null(n) to determine node's type since we might be in |
633 | // parse phase and call n->Value() may return wrong type. |
634 | // (For example, a phi node at the beginning of loop parsing is not ready.) |
635 | const Type* t = type_or_null(n); |
636 | if (t == NULL) return NULL; |
637 | return t->isa_int(); |
638 | } |
639 | |
640 | |
641 | //-------------------------------find_long_type-------------------------------- |
642 | const TypeLong* PhaseTransform::find_long_type(Node* n) { |
643 | if (n == NULL) return NULL; |
644 | // (See comment above on type_or_null.) |
645 | const Type* t = type_or_null(n); |
646 | if (t == NULL) return NULL; |
647 | return t->isa_long(); |
648 | } |
649 | |
650 | |
651 | #ifndef PRODUCT |
652 | void PhaseTransform::dump_old2new_map() const { |
653 | _nodes.dump(); |
654 | } |
655 | |
656 | void PhaseTransform::dump_new( uint nidx ) const { |
657 | for( uint i=0; i<_nodes.Size(); i++ ) |
658 | if( _nodes[i] && _nodes[i]->_idx == nidx ) { |
659 | _nodes[i]->dump(); |
660 | tty->cr(); |
661 | tty->print_cr("Old index= %d" ,i); |
662 | return; |
663 | } |
664 | tty->print_cr("Node %d not found in the new indices" , nidx); |
665 | } |
666 | |
667 | //------------------------------dump_types------------------------------------- |
668 | void PhaseTransform::dump_types( ) const { |
669 | _types.dump(); |
670 | } |
671 | |
672 | //------------------------------dump_nodes_and_types--------------------------- |
673 | void PhaseTransform::dump_nodes_and_types(const Node *root, uint depth, bool only_ctrl) { |
674 | VectorSet visited(Thread::current()->resource_area()); |
675 | dump_nodes_and_types_recur( root, depth, only_ctrl, visited ); |
676 | } |
677 | |
678 | //------------------------------dump_nodes_and_types_recur--------------------- |
679 | void PhaseTransform::dump_nodes_and_types_recur( const Node *n, uint depth, bool only_ctrl, VectorSet &visited) { |
680 | if( !n ) return; |
681 | if( depth == 0 ) return; |
682 | if( visited.test_set(n->_idx) ) return; |
683 | for( uint i=0; i<n->len(); i++ ) { |
684 | if( only_ctrl && !(n->is_Region()) && i != TypeFunc::Control ) continue; |
685 | dump_nodes_and_types_recur( n->in(i), depth-1, only_ctrl, visited ); |
686 | } |
687 | n->dump(); |
688 | if (type_or_null(n) != NULL) { |
689 | tty->print(" " ); type(n)->dump(); tty->cr(); |
690 | } |
691 | } |
692 | |
693 | #endif |
694 | |
695 | |
696 | //============================================================================= |
697 | //------------------------------PhaseValues------------------------------------ |
698 | // Set minimum table size to "255" |
699 | PhaseValues::PhaseValues( Arena *arena, uint est_max_size ) : PhaseTransform(arena, GVN), _table(arena, est_max_size) { |
700 | NOT_PRODUCT( clear_new_values(); ) |
701 | } |
702 | |
703 | //------------------------------PhaseValues------------------------------------ |
704 | // Set minimum table size to "255" |
705 | PhaseValues::PhaseValues( PhaseValues *ptv ) : PhaseTransform( ptv, GVN ), |
706 | _table(&ptv->_table) { |
707 | NOT_PRODUCT( clear_new_values(); ) |
708 | } |
709 | |
710 | //------------------------------PhaseValues------------------------------------ |
711 | // Used by +VerifyOpto. Clear out hash table but copy _types array. |
712 | PhaseValues::PhaseValues( PhaseValues *ptv, const char *dummy ) : PhaseTransform( ptv, GVN ), |
713 | _table(ptv->arena(),ptv->_table.size()) { |
714 | NOT_PRODUCT( clear_new_values(); ) |
715 | } |
716 | |
717 | //------------------------------~PhaseValues----------------------------------- |
718 | #ifndef PRODUCT |
719 | PhaseValues::~PhaseValues() { |
720 | _table.dump(); |
721 | |
722 | // Statistics for value progress and efficiency |
723 | if( PrintCompilation && Verbose && WizardMode ) { |
724 | tty->print("\n%sValues: %d nodes ---> %d/%d (%d)" , |
725 | is_IterGVN() ? "Iter" : " " , C->unique(), made_progress(), made_transforms(), made_new_values()); |
726 | if( made_transforms() != 0 ) { |
727 | tty->print_cr(" ratio %f" , made_progress()/(float)made_transforms() ); |
728 | } else { |
729 | tty->cr(); |
730 | } |
731 | } |
732 | } |
733 | #endif |
734 | |
735 | //------------------------------makecon---------------------------------------- |
736 | ConNode* PhaseTransform::makecon(const Type *t) { |
737 | assert(t->singleton(), "must be a constant" ); |
738 | assert(!t->empty() || t == Type::TOP, "must not be vacuous range" ); |
739 | switch (t->base()) { // fast paths |
740 | case Type::Half: |
741 | case Type::Top: return (ConNode*) C->top(); |
742 | case Type::Int: return intcon( t->is_int()->get_con() ); |
743 | case Type::Long: return longcon( t->is_long()->get_con() ); |
744 | default: break; |
745 | } |
746 | if (t->is_zero_type()) |
747 | return zerocon(t->basic_type()); |
748 | return uncached_makecon(t); |
749 | } |
750 | |
751 | //--------------------------uncached_makecon----------------------------------- |
752 | // Make an idealized constant - one of ConINode, ConPNode, etc. |
753 | ConNode* PhaseValues::uncached_makecon(const Type *t) { |
754 | assert(t->singleton(), "must be a constant" ); |
755 | ConNode* x = ConNode::make(t); |
756 | ConNode* k = (ConNode*)hash_find_insert(x); // Value numbering |
757 | if (k == NULL) { |
758 | set_type(x, t); // Missed, provide type mapping |
759 | GrowableArray<Node_Notes*>* nna = C->node_note_array(); |
760 | if (nna != NULL) { |
761 | Node_Notes* loc = C->locate_node_notes(nna, x->_idx, true); |
762 | loc->clear(); // do not put debug info on constants |
763 | } |
764 | } else { |
765 | x->destruct(); // Hit, destroy duplicate constant |
766 | x = k; // use existing constant |
767 | } |
768 | return x; |
769 | } |
770 | |
771 | //------------------------------intcon----------------------------------------- |
772 | // Fast integer constant. Same as "transform(new ConINode(TypeInt::make(i)))" |
773 | ConINode* PhaseTransform::intcon(jint i) { |
774 | // Small integer? Check cache! Check that cached node is not dead |
775 | if (i >= _icon_min && i <= _icon_max) { |
776 | ConINode* icon = _icons[i-_icon_min]; |
777 | if (icon != NULL && icon->in(TypeFunc::Control) != NULL) |
778 | return icon; |
779 | } |
780 | ConINode* icon = (ConINode*) uncached_makecon(TypeInt::make(i)); |
781 | assert(icon->is_Con(), "" ); |
782 | if (i >= _icon_min && i <= _icon_max) |
783 | _icons[i-_icon_min] = icon; // Cache small integers |
784 | return icon; |
785 | } |
786 | |
787 | //------------------------------longcon---------------------------------------- |
788 | // Fast long constant. |
789 | ConLNode* PhaseTransform::longcon(jlong l) { |
790 | // Small integer? Check cache! Check that cached node is not dead |
791 | if (l >= _lcon_min && l <= _lcon_max) { |
792 | ConLNode* lcon = _lcons[l-_lcon_min]; |
793 | if (lcon != NULL && lcon->in(TypeFunc::Control) != NULL) |
794 | return lcon; |
795 | } |
796 | ConLNode* lcon = (ConLNode*) uncached_makecon(TypeLong::make(l)); |
797 | assert(lcon->is_Con(), "" ); |
798 | if (l >= _lcon_min && l <= _lcon_max) |
799 | _lcons[l-_lcon_min] = lcon; // Cache small integers |
800 | return lcon; |
801 | } |
802 | |
803 | //------------------------------zerocon----------------------------------------- |
804 | // Fast zero or null constant. Same as "transform(ConNode::make(Type::get_zero_type(bt)))" |
805 | ConNode* PhaseTransform::zerocon(BasicType bt) { |
806 | assert((uint)bt <= _zcon_max, "domain check" ); |
807 | ConNode* zcon = _zcons[bt]; |
808 | if (zcon != NULL && zcon->in(TypeFunc::Control) != NULL) |
809 | return zcon; |
810 | zcon = (ConNode*) uncached_makecon(Type::get_zero_type(bt)); |
811 | _zcons[bt] = zcon; |
812 | return zcon; |
813 | } |
814 | |
815 | |
816 | |
817 | //============================================================================= |
818 | Node* PhaseGVN::apply_ideal(Node* k, bool can_reshape) { |
819 | Node* i = BarrierSet::barrier_set()->barrier_set_c2()->ideal_node(this, k, can_reshape); |
820 | if (i == NULL) { |
821 | i = k->Ideal(this, can_reshape); |
822 | } |
823 | return i; |
824 | } |
825 | |
826 | Node* PhaseGVN::apply_identity(Node* k) { |
827 | Node* i = BarrierSet::barrier_set()->barrier_set_c2()->identity_node(this, k); |
828 | if (i == k) { |
829 | i = k->Identity(this); |
830 | } |
831 | return i; |
832 | } |
833 | |
834 | //------------------------------transform-------------------------------------- |
835 | // Return a node which computes the same function as this node, but in a |
836 | // faster or cheaper fashion. |
837 | Node *PhaseGVN::transform( Node *n ) { |
838 | return transform_no_reclaim(n); |
839 | } |
840 | |
841 | //------------------------------transform-------------------------------------- |
842 | // Return a node which computes the same function as this node, but |
843 | // in a faster or cheaper fashion. |
844 | Node *PhaseGVN::transform_no_reclaim( Node *n ) { |
845 | NOT_PRODUCT( set_transforms(); ) |
846 | |
847 | // Apply the Ideal call in a loop until it no longer applies |
848 | Node *k = n; |
849 | NOT_PRODUCT( uint loop_count = 0; ) |
850 | while( 1 ) { |
851 | Node *i = apply_ideal(k, /*can_reshape=*/false); |
852 | if( !i ) break; |
853 | assert( i->_idx >= k->_idx, "Idealize should return new nodes, use Identity to return old nodes" ); |
854 | k = i; |
855 | assert(loop_count++ < K, "infinite loop in PhaseGVN::transform" ); |
856 | } |
857 | NOT_PRODUCT( if( loop_count != 0 ) { set_progress(); } ) |
858 | |
859 | |
860 | // If brand new node, make space in type array. |
861 | ensure_type_or_null(k); |
862 | |
863 | // Since I just called 'Value' to compute the set of run-time values |
864 | // for this Node, and 'Value' is non-local (and therefore expensive) I'll |
865 | // cache Value. Later requests for the local phase->type of this Node can |
866 | // use the cached Value instead of suffering with 'bottom_type'. |
867 | const Type *t = k->Value(this); // Get runtime Value set |
868 | assert(t != NULL, "value sanity" ); |
869 | if (type_or_null(k) != t) { |
870 | #ifndef PRODUCT |
871 | // Do not count initial visit to node as a transformation |
872 | if (type_or_null(k) == NULL) { |
873 | inc_new_values(); |
874 | set_progress(); |
875 | } |
876 | #endif |
877 | set_type(k, t); |
878 | // If k is a TypeNode, capture any more-precise type permanently into Node |
879 | k->raise_bottom_type(t); |
880 | } |
881 | |
882 | if( t->singleton() && !k->is_Con() ) { |
883 | NOT_PRODUCT( set_progress(); ) |
884 | return makecon(t); // Turn into a constant |
885 | } |
886 | |
887 | // Now check for Identities |
888 | Node *i = apply_identity(k); // Look for a nearby replacement |
889 | if( i != k ) { // Found? Return replacement! |
890 | NOT_PRODUCT( set_progress(); ) |
891 | return i; |
892 | } |
893 | |
894 | // Global Value Numbering |
895 | i = hash_find_insert(k); // Insert if new |
896 | if( i && (i != k) ) { |
897 | // Return the pre-existing node |
898 | NOT_PRODUCT( set_progress(); ) |
899 | return i; |
900 | } |
901 | |
902 | // Return Idealized original |
903 | return k; |
904 | } |
905 | |
906 | bool PhaseGVN::is_dominator_helper(Node *d, Node *n, bool linear_only) { |
907 | if (d->is_top() || n->is_top()) { |
908 | return false; |
909 | } |
910 | assert(d->is_CFG() && n->is_CFG(), "must have CFG nodes" ); |
911 | int i = 0; |
912 | while (d != n) { |
913 | n = IfNode::up_one_dom(n, linear_only); |
914 | i++; |
915 | if (n == NULL || i >= 10) { |
916 | return false; |
917 | } |
918 | } |
919 | return true; |
920 | } |
921 | |
922 | #ifdef ASSERT |
923 | //------------------------------dead_loop_check-------------------------------- |
924 | // Check for a simple dead loop when a data node references itself directly |
925 | // or through an other data node excluding cons and phis. |
926 | void PhaseGVN::dead_loop_check( Node *n ) { |
927 | // Phi may reference itself in a loop |
928 | if (n != NULL && !n->is_dead_loop_safe() && !n->is_CFG()) { |
929 | // Do 2 levels check and only data inputs. |
930 | bool no_dead_loop = true; |
931 | uint cnt = n->req(); |
932 | for (uint i = 1; i < cnt && no_dead_loop; i++) { |
933 | Node *in = n->in(i); |
934 | if (in == n) { |
935 | no_dead_loop = false; |
936 | } else if (in != NULL && !in->is_dead_loop_safe()) { |
937 | uint icnt = in->req(); |
938 | for (uint j = 1; j < icnt && no_dead_loop; j++) { |
939 | if (in->in(j) == n || in->in(j) == in) |
940 | no_dead_loop = false; |
941 | } |
942 | } |
943 | } |
944 | if (!no_dead_loop) n->dump(3); |
945 | assert(no_dead_loop, "dead loop detected" ); |
946 | } |
947 | } |
948 | #endif |
949 | |
950 | //============================================================================= |
951 | //------------------------------PhaseIterGVN----------------------------------- |
952 | // Initialize hash table to fresh and clean for +VerifyOpto |
953 | PhaseIterGVN::PhaseIterGVN( PhaseIterGVN *igvn, const char *dummy ) : PhaseGVN(igvn,dummy), |
954 | _delay_transform(false), |
955 | _stack(C->live_nodes() >> 1), |
956 | _worklist( ) { |
957 | } |
958 | |
959 | //------------------------------PhaseIterGVN----------------------------------- |
960 | // Initialize with previous PhaseIterGVN info; used by PhaseCCP |
961 | PhaseIterGVN::PhaseIterGVN( PhaseIterGVN *igvn ) : PhaseGVN(igvn), |
962 | _delay_transform(igvn->_delay_transform), |
963 | _stack( igvn->_stack ), |
964 | _worklist( igvn->_worklist ) |
965 | { |
966 | } |
967 | |
968 | //------------------------------PhaseIterGVN----------------------------------- |
969 | // Initialize with previous PhaseGVN info from Parser |
970 | PhaseIterGVN::PhaseIterGVN( PhaseGVN *gvn ) : PhaseGVN(gvn), |
971 | _delay_transform(false), |
972 | // TODO: Before incremental inlining it was allocated only once and it was fine. Now that |
973 | // the constructor is used in incremental inlining, this consumes too much memory: |
974 | // _stack(C->live_nodes() >> 1), |
975 | // So, as a band-aid, we replace this by: |
976 | _stack(C->comp_arena(), 32), |
977 | _worklist(*C->for_igvn()) |
978 | { |
979 | uint max; |
980 | |
981 | // Dead nodes in the hash table inherited from GVN were not treated as |
982 | // roots during def-use info creation; hence they represent an invisible |
983 | // use. Clear them out. |
984 | max = _table.size(); |
985 | for( uint i = 0; i < max; ++i ) { |
986 | Node *n = _table.at(i); |
987 | if(n != NULL && n != _table.sentinel() && n->outcnt() == 0) { |
988 | if( n->is_top() ) continue; |
989 | assert( false, "Parse::remove_useless_nodes missed this node" ); |
990 | hash_delete(n); |
991 | } |
992 | } |
993 | |
994 | // Any Phis or Regions on the worklist probably had uses that could not |
995 | // make more progress because the uses were made while the Phis and Regions |
996 | // were in half-built states. Put all uses of Phis and Regions on worklist. |
997 | max = _worklist.size(); |
998 | for( uint j = 0; j < max; j++ ) { |
999 | Node *n = _worklist.at(j); |
1000 | uint uop = n->Opcode(); |
1001 | if( uop == Op_Phi || uop == Op_Region || |
1002 | n->is_Type() || |
1003 | n->is_Mem() ) |
1004 | add_users_to_worklist(n); |
1005 | } |
1006 | } |
1007 | |
1008 | /** |
1009 | * Initialize worklist for each node. |
1010 | */ |
1011 | void PhaseIterGVN::init_worklist(Node* first) { |
1012 | Unique_Node_List to_process; |
1013 | to_process.push(first); |
1014 | |
1015 | while (to_process.size() > 0) { |
1016 | Node* n = to_process.pop(); |
1017 | if (!_worklist.member(n)) { |
1018 | _worklist.push(n); |
1019 | |
1020 | uint cnt = n->req(); |
1021 | for(uint i = 0; i < cnt; i++) { |
1022 | Node* m = n->in(i); |
1023 | if (m != NULL) { |
1024 | to_process.push(m); |
1025 | } |
1026 | } |
1027 | } |
1028 | } |
1029 | } |
1030 | |
1031 | #ifndef PRODUCT |
1032 | void PhaseIterGVN::verify_step(Node* n) { |
1033 | if (VerifyIterativeGVN) { |
1034 | _verify_window[_verify_counter % _verify_window_size] = n; |
1035 | ++_verify_counter; |
1036 | ResourceMark rm; |
1037 | ResourceArea* area = Thread::current()->resource_area(); |
1038 | VectorSet old_space(area), new_space(area); |
1039 | if (C->unique() < 1000 || |
1040 | 0 == _verify_counter % (C->unique() < 10000 ? 10 : 100)) { |
1041 | ++_verify_full_passes; |
1042 | Node::verify_recur(C->root(), -1, old_space, new_space); |
1043 | } |
1044 | const int verify_depth = 4; |
1045 | for ( int i = 0; i < _verify_window_size; i++ ) { |
1046 | Node* n = _verify_window[i]; |
1047 | if ( n == NULL ) continue; |
1048 | if( n->in(0) == NodeSentinel ) { // xform_idom |
1049 | _verify_window[i] = n->in(1); |
1050 | --i; continue; |
1051 | } |
1052 | // Typical fanout is 1-2, so this call visits about 6 nodes. |
1053 | Node::verify_recur(n, verify_depth, old_space, new_space); |
1054 | } |
1055 | } |
1056 | } |
1057 | |
1058 | void PhaseIterGVN::trace_PhaseIterGVN(Node* n, Node* nn, const Type* oldtype) { |
1059 | if (TraceIterativeGVN) { |
1060 | uint wlsize = _worklist.size(); |
1061 | const Type* newtype = type_or_null(n); |
1062 | if (nn != n) { |
1063 | // print old node |
1064 | tty->print("< " ); |
1065 | if (oldtype != newtype && oldtype != NULL) { |
1066 | oldtype->dump(); |
1067 | } |
1068 | do { tty->print("\t" ); } while (tty->position() < 16); |
1069 | tty->print("<" ); |
1070 | n->dump(); |
1071 | } |
1072 | if (oldtype != newtype || nn != n) { |
1073 | // print new node and/or new type |
1074 | if (oldtype == NULL) { |
1075 | tty->print("* " ); |
1076 | } else if (nn != n) { |
1077 | tty->print("> " ); |
1078 | } else { |
1079 | tty->print("= " ); |
1080 | } |
1081 | if (newtype == NULL) { |
1082 | tty->print("null" ); |
1083 | } else { |
1084 | newtype->dump(); |
1085 | } |
1086 | do { tty->print("\t" ); } while (tty->position() < 16); |
1087 | nn->dump(); |
1088 | } |
1089 | if (Verbose && wlsize < _worklist.size()) { |
1090 | tty->print(" Push {" ); |
1091 | while (wlsize != _worklist.size()) { |
1092 | Node* pushed = _worklist.at(wlsize++); |
1093 | tty->print(" %d" , pushed->_idx); |
1094 | } |
1095 | tty->print_cr(" }" ); |
1096 | } |
1097 | if (nn != n) { |
1098 | // ignore n, it might be subsumed |
1099 | verify_step((Node*) NULL); |
1100 | } |
1101 | } |
1102 | } |
1103 | |
1104 | void PhaseIterGVN::init_verifyPhaseIterGVN() { |
1105 | _verify_counter = 0; |
1106 | _verify_full_passes = 0; |
1107 | for (int i = 0; i < _verify_window_size; i++) { |
1108 | _verify_window[i] = NULL; |
1109 | } |
1110 | #ifdef ASSERT |
1111 | // Verify that all modified nodes are on _worklist |
1112 | Unique_Node_List* modified_list = C->modified_nodes(); |
1113 | while (modified_list != NULL && modified_list->size()) { |
1114 | Node* n = modified_list->pop(); |
1115 | if (n->outcnt() != 0 && !n->is_Con() && !_worklist.member(n)) { |
1116 | n->dump(); |
1117 | assert(false, "modified node is not on IGVN._worklist" ); |
1118 | } |
1119 | } |
1120 | #endif |
1121 | } |
1122 | |
1123 | void PhaseIterGVN::verify_PhaseIterGVN() { |
1124 | #ifdef ASSERT |
1125 | // Verify nodes with changed inputs. |
1126 | Unique_Node_List* modified_list = C->modified_nodes(); |
1127 | while (modified_list != NULL && modified_list->size()) { |
1128 | Node* n = modified_list->pop(); |
1129 | if (n->outcnt() != 0 && !n->is_Con()) { // skip dead and Con nodes |
1130 | n->dump(); |
1131 | assert(false, "modified node was not processed by IGVN.transform_old()" ); |
1132 | } |
1133 | } |
1134 | #endif |
1135 | |
1136 | C->verify_graph_edges(); |
1137 | if( VerifyOpto && allow_progress() ) { |
1138 | // Must turn off allow_progress to enable assert and break recursion |
1139 | C->root()->verify(); |
1140 | { // Check if any progress was missed using IterGVN |
1141 | // Def-Use info enables transformations not attempted in wash-pass |
1142 | // e.g. Region/Phi cleanup, ... |
1143 | // Null-check elision -- may not have reached fixpoint |
1144 | // do not propagate to dominated nodes |
1145 | ResourceMark rm; |
1146 | PhaseIterGVN igvn2(this,"Verify" ); // Fresh and clean! |
1147 | // Fill worklist completely |
1148 | igvn2.init_worklist(C->root()); |
1149 | |
1150 | igvn2.set_allow_progress(false); |
1151 | igvn2.optimize(); |
1152 | igvn2.set_allow_progress(true); |
1153 | } |
1154 | } |
1155 | if (VerifyIterativeGVN && PrintOpto) { |
1156 | if (_verify_counter == _verify_full_passes) { |
1157 | tty->print_cr("VerifyIterativeGVN: %d transforms and verify passes" , |
1158 | (int) _verify_full_passes); |
1159 | } else { |
1160 | tty->print_cr("VerifyIterativeGVN: %d transforms, %d full verify passes" , |
1161 | (int) _verify_counter, (int) _verify_full_passes); |
1162 | } |
1163 | } |
1164 | |
1165 | #ifdef ASSERT |
1166 | while (modified_list->size()) { |
1167 | Node* n = modified_list->pop(); |
1168 | n->dump(); |
1169 | assert(false, "VerifyIterativeGVN: new modified node was added" ); |
1170 | } |
1171 | #endif |
1172 | } |
1173 | #endif /* PRODUCT */ |
1174 | |
1175 | #ifdef ASSERT |
1176 | /** |
1177 | * Dumps information that can help to debug the problem. A debug |
1178 | * build fails with an assert. |
1179 | */ |
1180 | void PhaseIterGVN::dump_infinite_loop_info(Node* n) { |
1181 | n->dump(4); |
1182 | _worklist.dump(); |
1183 | assert(false, "infinite loop in PhaseIterGVN::optimize" ); |
1184 | } |
1185 | |
1186 | /** |
1187 | * Prints out information about IGVN if the 'verbose' option is used. |
1188 | */ |
1189 | void PhaseIterGVN::trace_PhaseIterGVN_verbose(Node* n, int num_processed) { |
1190 | if (TraceIterativeGVN && Verbose) { |
1191 | tty->print(" Pop " ); |
1192 | n->dump(); |
1193 | if ((num_processed % 100) == 0) { |
1194 | _worklist.print_set(); |
1195 | } |
1196 | } |
1197 | } |
1198 | #endif /* ASSERT */ |
1199 | |
1200 | void PhaseIterGVN::optimize() { |
1201 | DEBUG_ONLY(uint num_processed = 0;) |
1202 | NOT_PRODUCT(init_verifyPhaseIterGVN();) |
1203 | |
1204 | uint loop_count = 0; |
1205 | // Pull from worklist and transform the node. If the node has changed, |
1206 | // update edge info and put uses on worklist. |
1207 | while(_worklist.size()) { |
1208 | if (C->check_node_count(NodeLimitFudgeFactor * 2, "Out of nodes" )) { |
1209 | return; |
1210 | } |
1211 | Node* n = _worklist.pop(); |
1212 | if (++loop_count >= K * C->live_nodes()) { |
1213 | DEBUG_ONLY(dump_infinite_loop_info(n);) |
1214 | C->record_method_not_compilable("infinite loop in PhaseIterGVN::optimize" ); |
1215 | return; |
1216 | } |
1217 | DEBUG_ONLY(trace_PhaseIterGVN_verbose(n, num_processed++);) |
1218 | if (n->outcnt() != 0) { |
1219 | NOT_PRODUCT(const Type* oldtype = type_or_null(n)); |
1220 | // Do the transformation |
1221 | Node* nn = transform_old(n); |
1222 | NOT_PRODUCT(trace_PhaseIterGVN(n, nn, oldtype);) |
1223 | } else if (!n->is_top()) { |
1224 | remove_dead_node(n); |
1225 | } |
1226 | } |
1227 | NOT_PRODUCT(verify_PhaseIterGVN();) |
1228 | } |
1229 | |
1230 | |
1231 | /** |
1232 | * Register a new node with the optimizer. Update the types array, the def-use |
1233 | * info. Put on worklist. |
1234 | */ |
1235 | Node* PhaseIterGVN::register_new_node_with_optimizer(Node* n, Node* orig) { |
1236 | set_type_bottom(n); |
1237 | _worklist.push(n); |
1238 | if (orig != NULL) C->copy_node_notes_to(n, orig); |
1239 | return n; |
1240 | } |
1241 | |
1242 | //------------------------------transform-------------------------------------- |
1243 | // Non-recursive: idealize Node 'n' with respect to its inputs and its value |
1244 | Node *PhaseIterGVN::transform( Node *n ) { |
1245 | if (_delay_transform) { |
1246 | // Register the node but don't optimize for now |
1247 | register_new_node_with_optimizer(n); |
1248 | return n; |
1249 | } |
1250 | |
1251 | // If brand new node, make space in type array, and give it a type. |
1252 | ensure_type_or_null(n); |
1253 | if (type_or_null(n) == NULL) { |
1254 | set_type_bottom(n); |
1255 | } |
1256 | |
1257 | return transform_old(n); |
1258 | } |
1259 | |
1260 | Node *PhaseIterGVN::transform_old(Node* n) { |
1261 | DEBUG_ONLY(uint loop_count = 0;); |
1262 | NOT_PRODUCT(set_transforms()); |
1263 | |
1264 | // Remove 'n' from hash table in case it gets modified |
1265 | _table.hash_delete(n); |
1266 | if (VerifyIterativeGVN) { |
1267 | assert(!_table.find_index(n->_idx), "found duplicate entry in table" ); |
1268 | } |
1269 | |
1270 | // Apply the Ideal call in a loop until it no longer applies |
1271 | Node* k = n; |
1272 | DEBUG_ONLY(dead_loop_check(k);) |
1273 | DEBUG_ONLY(bool is_new = (k->outcnt() == 0);) |
1274 | C->remove_modified_node(k); |
1275 | Node* i = apply_ideal(k, /*can_reshape=*/true); |
1276 | assert(i != k || is_new || i->outcnt() > 0, "don't return dead nodes" ); |
1277 | #ifndef PRODUCT |
1278 | verify_step(k); |
1279 | if (i && VerifyOpto ) { |
1280 | if (!allow_progress()) { |
1281 | if (i->is_Add() && (i->outcnt() == 1)) { |
1282 | // Switched input to left side because this is the only use |
1283 | } else if (i->is_If() && (i->in(0) == NULL)) { |
1284 | // This IF is dead because it is dominated by an equivalent IF When |
1285 | // dominating if changed, info is not propagated sparsely to 'this' |
1286 | // Propagating this info further will spuriously identify other |
1287 | // progress. |
1288 | return i; |
1289 | } else |
1290 | set_progress(); |
1291 | } else { |
1292 | set_progress(); |
1293 | } |
1294 | } |
1295 | #endif |
1296 | |
1297 | while (i != NULL) { |
1298 | #ifdef ASSERT |
1299 | if (loop_count >= K) { |
1300 | dump_infinite_loop_info(i); |
1301 | } |
1302 | loop_count++; |
1303 | #endif |
1304 | assert((i->_idx >= k->_idx) || i->is_top(), "Idealize should return new nodes, use Identity to return old nodes" ); |
1305 | // Made a change; put users of original Node on worklist |
1306 | add_users_to_worklist(k); |
1307 | // Replacing root of transform tree? |
1308 | if (k != i) { |
1309 | // Make users of old Node now use new. |
1310 | subsume_node(k, i); |
1311 | k = i; |
1312 | } |
1313 | DEBUG_ONLY(dead_loop_check(k);) |
1314 | // Try idealizing again |
1315 | DEBUG_ONLY(is_new = (k->outcnt() == 0);) |
1316 | C->remove_modified_node(k); |
1317 | i = apply_ideal(k, /*can_reshape=*/true); |
1318 | assert(i != k || is_new || (i->outcnt() > 0), "don't return dead nodes" ); |
1319 | #ifndef PRODUCT |
1320 | verify_step(k); |
1321 | if (i && VerifyOpto) { |
1322 | set_progress(); |
1323 | } |
1324 | #endif |
1325 | } |
1326 | |
1327 | // If brand new node, make space in type array. |
1328 | ensure_type_or_null(k); |
1329 | |
1330 | // See what kind of values 'k' takes on at runtime |
1331 | const Type* t = k->Value(this); |
1332 | assert(t != NULL, "value sanity" ); |
1333 | |
1334 | // Since I just called 'Value' to compute the set of run-time values |
1335 | // for this Node, and 'Value' is non-local (and therefore expensive) I'll |
1336 | // cache Value. Later requests for the local phase->type of this Node can |
1337 | // use the cached Value instead of suffering with 'bottom_type'. |
1338 | if (type_or_null(k) != t) { |
1339 | #ifndef PRODUCT |
1340 | inc_new_values(); |
1341 | set_progress(); |
1342 | #endif |
1343 | set_type(k, t); |
1344 | // If k is a TypeNode, capture any more-precise type permanently into Node |
1345 | k->raise_bottom_type(t); |
1346 | // Move users of node to worklist |
1347 | add_users_to_worklist(k); |
1348 | } |
1349 | // If 'k' computes a constant, replace it with a constant |
1350 | if (t->singleton() && !k->is_Con()) { |
1351 | NOT_PRODUCT(set_progress();) |
1352 | Node* con = makecon(t); // Make a constant |
1353 | add_users_to_worklist(k); |
1354 | subsume_node(k, con); // Everybody using k now uses con |
1355 | return con; |
1356 | } |
1357 | |
1358 | // Now check for Identities |
1359 | i = apply_identity(k); // Look for a nearby replacement |
1360 | if (i != k) { // Found? Return replacement! |
1361 | NOT_PRODUCT(set_progress();) |
1362 | add_users_to_worklist(k); |
1363 | subsume_node(k, i); // Everybody using k now uses i |
1364 | return i; |
1365 | } |
1366 | |
1367 | // Global Value Numbering |
1368 | i = hash_find_insert(k); // Check for pre-existing node |
1369 | if (i && (i != k)) { |
1370 | // Return the pre-existing node if it isn't dead |
1371 | NOT_PRODUCT(set_progress();) |
1372 | add_users_to_worklist(k); |
1373 | subsume_node(k, i); // Everybody using k now uses i |
1374 | return i; |
1375 | } |
1376 | |
1377 | // Return Idealized original |
1378 | return k; |
1379 | } |
1380 | |
1381 | //---------------------------------saturate------------------------------------ |
1382 | const Type* PhaseIterGVN::saturate(const Type* new_type, const Type* old_type, |
1383 | const Type* limit_type) const { |
1384 | return new_type->narrow(old_type); |
1385 | } |
1386 | |
1387 | //------------------------------remove_globally_dead_node---------------------- |
1388 | // Kill a globally dead Node. All uses are also globally dead and are |
1389 | // aggressively trimmed. |
1390 | void PhaseIterGVN::remove_globally_dead_node( Node *dead ) { |
1391 | enum DeleteProgress { |
1392 | PROCESS_INPUTS, |
1393 | PROCESS_OUTPUTS |
1394 | }; |
1395 | assert(_stack.is_empty(), "not empty" ); |
1396 | _stack.push(dead, PROCESS_INPUTS); |
1397 | |
1398 | while (_stack.is_nonempty()) { |
1399 | dead = _stack.node(); |
1400 | if (dead->Opcode() == Op_SafePoint) { |
1401 | dead->as_SafePoint()->disconnect_from_root(this); |
1402 | } |
1403 | uint progress_state = _stack.index(); |
1404 | assert(dead != C->root(), "killing root, eh?" ); |
1405 | assert(!dead->is_top(), "add check for top when pushing" ); |
1406 | NOT_PRODUCT( set_progress(); ) |
1407 | if (progress_state == PROCESS_INPUTS) { |
1408 | // After following inputs, continue to outputs |
1409 | _stack.set_index(PROCESS_OUTPUTS); |
1410 | if (!dead->is_Con()) { // Don't kill cons but uses |
1411 | bool recurse = false; |
1412 | // Remove from hash table |
1413 | _table.hash_delete( dead ); |
1414 | // Smash all inputs to 'dead', isolating him completely |
1415 | for (uint i = 0; i < dead->req(); i++) { |
1416 | Node *in = dead->in(i); |
1417 | if (in != NULL && in != C->top()) { // Points to something? |
1418 | int nrep = dead->replace_edge(in, NULL); // Kill edges |
1419 | assert((nrep > 0), "sanity" ); |
1420 | if (in->outcnt() == 0) { // Made input go dead? |
1421 | _stack.push(in, PROCESS_INPUTS); // Recursively remove |
1422 | recurse = true; |
1423 | } else if (in->outcnt() == 1 && |
1424 | in->has_special_unique_user()) { |
1425 | _worklist.push(in->unique_out()); |
1426 | } else if (in->outcnt() <= 2 && dead->is_Phi()) { |
1427 | if (in->Opcode() == Op_Region) { |
1428 | _worklist.push(in); |
1429 | } else if (in->is_Store()) { |
1430 | DUIterator_Fast imax, i = in->fast_outs(imax); |
1431 | _worklist.push(in->fast_out(i)); |
1432 | i++; |
1433 | if (in->outcnt() == 2) { |
1434 | _worklist.push(in->fast_out(i)); |
1435 | i++; |
1436 | } |
1437 | assert(!(i < imax), "sanity" ); |
1438 | } |
1439 | } else { |
1440 | BarrierSet::barrier_set()->barrier_set_c2()->enqueue_useful_gc_barrier(this, in); |
1441 | } |
1442 | if (ReduceFieldZeroing && dead->is_Load() && i == MemNode::Memory && |
1443 | in->is_Proj() && in->in(0) != NULL && in->in(0)->is_Initialize()) { |
1444 | // A Load that directly follows an InitializeNode is |
1445 | // going away. The Stores that follow are candidates |
1446 | // again to be captured by the InitializeNode. |
1447 | for (DUIterator_Fast jmax, j = in->fast_outs(jmax); j < jmax; j++) { |
1448 | Node *n = in->fast_out(j); |
1449 | if (n->is_Store()) { |
1450 | _worklist.push(n); |
1451 | } |
1452 | } |
1453 | } |
1454 | } // if (in != NULL && in != C->top()) |
1455 | } // for (uint i = 0; i < dead->req(); i++) |
1456 | if (recurse) { |
1457 | continue; |
1458 | } |
1459 | } // if (!dead->is_Con()) |
1460 | } // if (progress_state == PROCESS_INPUTS) |
1461 | |
1462 | // Aggressively kill globally dead uses |
1463 | // (Rather than pushing all the outs at once, we push one at a time, |
1464 | // plus the parent to resume later, because of the indefinite number |
1465 | // of edge deletions per loop trip.) |
1466 | if (dead->outcnt() > 0) { |
1467 | // Recursively remove output edges |
1468 | _stack.push(dead->raw_out(0), PROCESS_INPUTS); |
1469 | } else { |
1470 | // Finished disconnecting all input and output edges. |
1471 | _stack.pop(); |
1472 | // Remove dead node from iterative worklist |
1473 | _worklist.remove(dead); |
1474 | C->remove_modified_node(dead); |
1475 | // Constant node that has no out-edges and has only one in-edge from |
1476 | // root is usually dead. However, sometimes reshaping walk makes |
1477 | // it reachable by adding use edges. So, we will NOT count Con nodes |
1478 | // as dead to be conservative about the dead node count at any |
1479 | // given time. |
1480 | if (!dead->is_Con()) { |
1481 | C->record_dead_node(dead->_idx); |
1482 | } |
1483 | if (dead->is_macro()) { |
1484 | C->remove_macro_node(dead); |
1485 | } |
1486 | if (dead->is_expensive()) { |
1487 | C->remove_expensive_node(dead); |
1488 | } |
1489 | CastIINode* cast = dead->isa_CastII(); |
1490 | if (cast != NULL && cast->has_range_check()) { |
1491 | C->remove_range_check_cast(cast); |
1492 | } |
1493 | if (dead->Opcode() == Op_Opaque4) { |
1494 | C->remove_opaque4_node(dead); |
1495 | } |
1496 | BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); |
1497 | bs->unregister_potential_barrier_node(dead); |
1498 | } |
1499 | } // while (_stack.is_nonempty()) |
1500 | } |
1501 | |
1502 | //------------------------------subsume_node----------------------------------- |
1503 | // Remove users from node 'old' and add them to node 'nn'. |
1504 | void PhaseIterGVN::subsume_node( Node *old, Node *nn ) { |
1505 | if (old->Opcode() == Op_SafePoint) { |
1506 | old->as_SafePoint()->disconnect_from_root(this); |
1507 | } |
1508 | assert( old != hash_find(old), "should already been removed" ); |
1509 | assert( old != C->top(), "cannot subsume top node" ); |
1510 | // Copy debug or profile information to the new version: |
1511 | C->copy_node_notes_to(nn, old); |
1512 | // Move users of node 'old' to node 'nn' |
1513 | for (DUIterator_Last imin, i = old->last_outs(imin); i >= imin; ) { |
1514 | Node* use = old->last_out(i); // for each use... |
1515 | // use might need re-hashing (but it won't if it's a new node) |
1516 | rehash_node_delayed(use); |
1517 | // Update use-def info as well |
1518 | // We remove all occurrences of old within use->in, |
1519 | // so as to avoid rehashing any node more than once. |
1520 | // The hash table probe swamps any outer loop overhead. |
1521 | uint num_edges = 0; |
1522 | for (uint jmax = use->len(), j = 0; j < jmax; j++) { |
1523 | if (use->in(j) == old) { |
1524 | use->set_req(j, nn); |
1525 | ++num_edges; |
1526 | } |
1527 | } |
1528 | i -= num_edges; // we deleted 1 or more copies of this edge |
1529 | } |
1530 | |
1531 | // Search for instance field data PhiNodes in the same region pointing to the old |
1532 | // memory PhiNode and update their instance memory ids to point to the new node. |
1533 | if (old->is_Phi() && old->as_Phi()->type()->has_memory() && old->in(0) != NULL) { |
1534 | Node* region = old->in(0); |
1535 | for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) { |
1536 | PhiNode* phi = region->fast_out(i)->isa_Phi(); |
1537 | if (phi != NULL && phi->inst_mem_id() == (int)old->_idx) { |
1538 | phi->set_inst_mem_id((int)nn->_idx); |
1539 | } |
1540 | } |
1541 | } |
1542 | |
1543 | // Smash all inputs to 'old', isolating him completely |
1544 | Node *temp = new Node(1); |
1545 | temp->init_req(0,nn); // Add a use to nn to prevent him from dying |
1546 | remove_dead_node( old ); |
1547 | temp->del_req(0); // Yank bogus edge |
1548 | #ifndef PRODUCT |
1549 | if( VerifyIterativeGVN ) { |
1550 | for ( int i = 0; i < _verify_window_size; i++ ) { |
1551 | if ( _verify_window[i] == old ) |
1552 | _verify_window[i] = nn; |
1553 | } |
1554 | } |
1555 | #endif |
1556 | _worklist.remove(temp); // this can be necessary |
1557 | temp->destruct(); // reuse the _idx of this little guy |
1558 | } |
1559 | |
1560 | //------------------------------add_users_to_worklist-------------------------- |
1561 | void PhaseIterGVN::add_users_to_worklist0( Node *n ) { |
1562 | for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { |
1563 | _worklist.push(n->fast_out(i)); // Push on worklist |
1564 | } |
1565 | } |
1566 | |
1567 | // Return counted loop Phi if as a counted loop exit condition, cmp |
1568 | // compares the the induction variable with n |
1569 | static PhiNode* countedloop_phi_from_cmp(CmpINode* cmp, Node* n) { |
1570 | for (DUIterator_Fast imax, i = cmp->fast_outs(imax); i < imax; i++) { |
1571 | Node* bol = cmp->fast_out(i); |
1572 | for (DUIterator_Fast i2max, i2 = bol->fast_outs(i2max); i2 < i2max; i2++) { |
1573 | Node* iff = bol->fast_out(i2); |
1574 | if (iff->is_CountedLoopEnd()) { |
1575 | CountedLoopEndNode* cle = iff->as_CountedLoopEnd(); |
1576 | if (cle->limit() == n) { |
1577 | PhiNode* phi = cle->phi(); |
1578 | if (phi != NULL) { |
1579 | return phi; |
1580 | } |
1581 | } |
1582 | } |
1583 | } |
1584 | } |
1585 | return NULL; |
1586 | } |
1587 | |
1588 | void PhaseIterGVN::add_users_to_worklist( Node *n ) { |
1589 | add_users_to_worklist0(n); |
1590 | |
1591 | // Move users of node to worklist |
1592 | for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { |
1593 | Node* use = n->fast_out(i); // Get use |
1594 | |
1595 | if( use->is_Multi() || // Multi-definer? Push projs on worklist |
1596 | use->is_Store() ) // Enable store/load same address |
1597 | add_users_to_worklist0(use); |
1598 | |
1599 | // If we changed the receiver type to a call, we need to revisit |
1600 | // the Catch following the call. It's looking for a non-NULL |
1601 | // receiver to know when to enable the regular fall-through path |
1602 | // in addition to the NullPtrException path. |
1603 | if (use->is_CallDynamicJava() && n == use->in(TypeFunc::Parms)) { |
1604 | Node* p = use->as_CallDynamicJava()->proj_out_or_null(TypeFunc::Control); |
1605 | if (p != NULL) { |
1606 | add_users_to_worklist0(p); |
1607 | } |
1608 | } |
1609 | |
1610 | uint use_op = use->Opcode(); |
1611 | if(use->is_Cmp()) { // Enable CMP/BOOL optimization |
1612 | add_users_to_worklist(use); // Put Bool on worklist |
1613 | if (use->outcnt() > 0) { |
1614 | Node* bol = use->raw_out(0); |
1615 | if (bol->outcnt() > 0) { |
1616 | Node* iff = bol->raw_out(0); |
1617 | if (iff->outcnt() == 2) { |
1618 | // Look for the 'is_x2logic' pattern: "x ? : 0 : 1" and put the |
1619 | // phi merging either 0 or 1 onto the worklist |
1620 | Node* ifproj0 = iff->raw_out(0); |
1621 | Node* ifproj1 = iff->raw_out(1); |
1622 | if (ifproj0->outcnt() > 0 && ifproj1->outcnt() > 0) { |
1623 | Node* region0 = ifproj0->raw_out(0); |
1624 | Node* region1 = ifproj1->raw_out(0); |
1625 | if( region0 == region1 ) |
1626 | add_users_to_worklist0(region0); |
1627 | } |
1628 | } |
1629 | } |
1630 | } |
1631 | if (use_op == Op_CmpI) { |
1632 | Node* phi = countedloop_phi_from_cmp((CmpINode*)use, n); |
1633 | if (phi != NULL) { |
1634 | // If an opaque node feeds into the limit condition of a |
1635 | // CountedLoop, we need to process the Phi node for the |
1636 | // induction variable when the opaque node is removed: |
1637 | // the range of values taken by the Phi is now known and |
1638 | // so its type is also known. |
1639 | _worklist.push(phi); |
1640 | } |
1641 | Node* in1 = use->in(1); |
1642 | for (uint i = 0; i < in1->outcnt(); i++) { |
1643 | if (in1->raw_out(i)->Opcode() == Op_CastII) { |
1644 | Node* castii = in1->raw_out(i); |
1645 | if (castii->in(0) != NULL && castii->in(0)->in(0) != NULL && castii->in(0)->in(0)->is_If()) { |
1646 | Node* ifnode = castii->in(0)->in(0); |
1647 | if (ifnode->in(1) != NULL && ifnode->in(1)->is_Bool() && ifnode->in(1)->in(1) == use) { |
1648 | // Reprocess a CastII node that may depend on an |
1649 | // opaque node value when the opaque node is |
1650 | // removed. In case it carries a dependency we can do |
1651 | // a better job of computing its type. |
1652 | _worklist.push(castii); |
1653 | } |
1654 | } |
1655 | } |
1656 | } |
1657 | } |
1658 | } |
1659 | |
1660 | // If changed Cast input, check Phi users for simple cycles |
1661 | if (use->is_ConstraintCast()) { |
1662 | for (DUIterator_Fast i2max, i2 = use->fast_outs(i2max); i2 < i2max; i2++) { |
1663 | Node* u = use->fast_out(i2); |
1664 | if (u->is_Phi()) |
1665 | _worklist.push(u); |
1666 | } |
1667 | } |
1668 | // If changed LShift inputs, check RShift users for useless sign-ext |
1669 | if( use_op == Op_LShiftI ) { |
1670 | for (DUIterator_Fast i2max, i2 = use->fast_outs(i2max); i2 < i2max; i2++) { |
1671 | Node* u = use->fast_out(i2); |
1672 | if (u->Opcode() == Op_RShiftI) |
1673 | _worklist.push(u); |
1674 | } |
1675 | } |
1676 | // If changed AddI/SubI inputs, check CmpU for range check optimization. |
1677 | if (use_op == Op_AddI || use_op == Op_SubI) { |
1678 | for (DUIterator_Fast i2max, i2 = use->fast_outs(i2max); i2 < i2max; i2++) { |
1679 | Node* u = use->fast_out(i2); |
1680 | if (u->is_Cmp() && (u->Opcode() == Op_CmpU)) { |
1681 | _worklist.push(u); |
1682 | } |
1683 | } |
1684 | } |
1685 | // If changed AddP inputs, check Stores for loop invariant |
1686 | if( use_op == Op_AddP ) { |
1687 | for (DUIterator_Fast i2max, i2 = use->fast_outs(i2max); i2 < i2max; i2++) { |
1688 | Node* u = use->fast_out(i2); |
1689 | if (u->is_Mem()) |
1690 | _worklist.push(u); |
1691 | } |
1692 | } |
1693 | // If changed initialization activity, check dependent Stores |
1694 | if (use_op == Op_Allocate || use_op == Op_AllocateArray) { |
1695 | InitializeNode* init = use->as_Allocate()->initialization(); |
1696 | if (init != NULL) { |
1697 | Node* imem = init->proj_out_or_null(TypeFunc::Memory); |
1698 | if (imem != NULL) add_users_to_worklist0(imem); |
1699 | } |
1700 | } |
1701 | if (use_op == Op_Initialize) { |
1702 | Node* imem = use->as_Initialize()->proj_out_or_null(TypeFunc::Memory); |
1703 | if (imem != NULL) add_users_to_worklist0(imem); |
1704 | } |
1705 | // Loading the java mirror from a Klass requires two loads and the type |
1706 | // of the mirror load depends on the type of 'n'. See LoadNode::Value(). |
1707 | // LoadBarrier?(LoadP(LoadP(AddP(foo:Klass, #java_mirror)))) |
1708 | BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); |
1709 | bool has_load_barriers = bs->has_load_barriers(); |
1710 | |
1711 | if (use_op == Op_LoadP && use->bottom_type()->isa_rawptr()) { |
1712 | for (DUIterator_Fast i2max, i2 = use->fast_outs(i2max); i2 < i2max; i2++) { |
1713 | Node* u = use->fast_out(i2); |
1714 | const Type* ut = u->bottom_type(); |
1715 | if (u->Opcode() == Op_LoadP && ut->isa_instptr()) { |
1716 | if (has_load_barriers) { |
1717 | // Search for load barriers behind the load |
1718 | for (DUIterator_Fast i3max, i3 = u->fast_outs(i3max); i3 < i3max; i3++) { |
1719 | Node* b = u->fast_out(i3); |
1720 | if (bs->is_gc_barrier_node(b)) { |
1721 | _worklist.push(b); |
1722 | } |
1723 | } |
1724 | } |
1725 | _worklist.push(u); |
1726 | } |
1727 | } |
1728 | } |
1729 | |
1730 | BarrierSet::barrier_set()->barrier_set_c2()->igvn_add_users_to_worklist(this, use); |
1731 | } |
1732 | } |
1733 | |
1734 | /** |
1735 | * Remove the speculative part of all types that we know of |
1736 | */ |
1737 | void PhaseIterGVN::remove_speculative_types() { |
1738 | assert(UseTypeSpeculation, "speculation is off" ); |
1739 | for (uint i = 0; i < _types.Size(); i++) { |
1740 | const Type* t = _types.fast_lookup(i); |
1741 | if (t != NULL) { |
1742 | _types.map(i, t->remove_speculative()); |
1743 | } |
1744 | } |
1745 | _table.check_no_speculative_types(); |
1746 | } |
1747 | |
1748 | //============================================================================= |
1749 | #ifndef PRODUCT |
1750 | uint PhaseCCP::_total_invokes = 0; |
1751 | uint PhaseCCP::_total_constants = 0; |
1752 | #endif |
1753 | //------------------------------PhaseCCP--------------------------------------- |
1754 | // Conditional Constant Propagation, ala Wegman & Zadeck |
1755 | PhaseCCP::PhaseCCP( PhaseIterGVN *igvn ) : PhaseIterGVN(igvn) { |
1756 | NOT_PRODUCT( clear_constants(); ) |
1757 | assert( _worklist.size() == 0, "" ); |
1758 | // Clear out _nodes from IterGVN. Must be clear to transform call. |
1759 | _nodes.clear(); // Clear out from IterGVN |
1760 | analyze(); |
1761 | } |
1762 | |
1763 | #ifndef PRODUCT |
1764 | //------------------------------~PhaseCCP-------------------------------------- |
1765 | PhaseCCP::~PhaseCCP() { |
1766 | inc_invokes(); |
1767 | _total_constants += count_constants(); |
1768 | } |
1769 | #endif |
1770 | |
1771 | |
1772 | #ifdef ASSERT |
1773 | static bool ccp_type_widens(const Type* t, const Type* t0) { |
1774 | assert(t->meet(t0) == t, "Not monotonic" ); |
1775 | switch (t->base() == t0->base() ? t->base() : Type::Top) { |
1776 | case Type::Int: |
1777 | assert(t0->isa_int()->_widen <= t->isa_int()->_widen, "widen increases" ); |
1778 | break; |
1779 | case Type::Long: |
1780 | assert(t0->isa_long()->_widen <= t->isa_long()->_widen, "widen increases" ); |
1781 | break; |
1782 | default: |
1783 | break; |
1784 | } |
1785 | return true; |
1786 | } |
1787 | #endif //ASSERT |
1788 | |
1789 | //------------------------------analyze---------------------------------------- |
1790 | void PhaseCCP::analyze() { |
1791 | // Initialize all types to TOP, optimistic analysis |
1792 | for (int i = C->unique() - 1; i >= 0; i--) { |
1793 | _types.map(i,Type::TOP); |
1794 | } |
1795 | |
1796 | // Push root onto worklist |
1797 | Unique_Node_List worklist; |
1798 | worklist.push(C->root()); |
1799 | |
1800 | // Pull from worklist; compute new value; push changes out. |
1801 | // This loop is the meat of CCP. |
1802 | while( worklist.size() ) { |
1803 | Node *n = worklist.pop(); |
1804 | const Type *t = n->Value(this); |
1805 | if (t != type(n)) { |
1806 | assert(ccp_type_widens(t, type(n)), "ccp type must widen" ); |
1807 | #ifndef PRODUCT |
1808 | if( TracePhaseCCP ) { |
1809 | t->dump(); |
1810 | do { tty->print("\t" ); } while (tty->position() < 16); |
1811 | n->dump(); |
1812 | } |
1813 | #endif |
1814 | set_type(n, t); |
1815 | for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { |
1816 | Node* m = n->fast_out(i); // Get user |
1817 | if (m->is_Region()) { // New path to Region? Must recheck Phis too |
1818 | for (DUIterator_Fast i2max, i2 = m->fast_outs(i2max); i2 < i2max; i2++) { |
1819 | Node* p = m->fast_out(i2); // Propagate changes to uses |
1820 | if (p->bottom_type() != type(p)) { // If not already bottomed out |
1821 | worklist.push(p); // Propagate change to user |
1822 | } |
1823 | } |
1824 | } |
1825 | // If we changed the receiver type to a call, we need to revisit |
1826 | // the Catch following the call. It's looking for a non-NULL |
1827 | // receiver to know when to enable the regular fall-through path |
1828 | // in addition to the NullPtrException path |
1829 | if (m->is_Call()) { |
1830 | for (DUIterator_Fast i2max, i2 = m->fast_outs(i2max); i2 < i2max; i2++) { |
1831 | Node* p = m->fast_out(i2); // Propagate changes to uses |
1832 | if (p->is_Proj() && p->as_Proj()->_con == TypeFunc::Control && p->outcnt() == 1) { |
1833 | worklist.push(p->unique_out()); |
1834 | } |
1835 | } |
1836 | } |
1837 | if (m->bottom_type() != type(m)) { // If not already bottomed out |
1838 | worklist.push(m); // Propagate change to user |
1839 | } |
1840 | |
1841 | // CmpU nodes can get their type information from two nodes up in the |
1842 | // graph (instead of from the nodes immediately above). Make sure they |
1843 | // are added to the worklist if nodes they depend on are updated, since |
1844 | // they could be missed and get wrong types otherwise. |
1845 | uint m_op = m->Opcode(); |
1846 | if (m_op == Op_AddI || m_op == Op_SubI) { |
1847 | for (DUIterator_Fast i2max, i2 = m->fast_outs(i2max); i2 < i2max; i2++) { |
1848 | Node* p = m->fast_out(i2); // Propagate changes to uses |
1849 | if (p->Opcode() == Op_CmpU) { |
1850 | // Got a CmpU which might need the new type information from node n. |
1851 | if(p->bottom_type() != type(p)) { // If not already bottomed out |
1852 | worklist.push(p); // Propagate change to user |
1853 | } |
1854 | } |
1855 | } |
1856 | } |
1857 | // If n is used in a counted loop exit condition then the type |
1858 | // of the counted loop's Phi depends on the type of n. See |
1859 | // PhiNode::Value(). |
1860 | if (m_op == Op_CmpI) { |
1861 | PhiNode* phi = countedloop_phi_from_cmp((CmpINode*)m, n); |
1862 | if (phi != NULL) { |
1863 | worklist.push(phi); |
1864 | } |
1865 | } |
1866 | // Loading the java mirror from a Klass requires two loads and the type |
1867 | // of the mirror load depends on the type of 'n'. See LoadNode::Value(). |
1868 | BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); |
1869 | bool has_load_barriers = bs->has_load_barriers(); |
1870 | |
1871 | if (m_op == Op_LoadP && m->bottom_type()->isa_rawptr()) { |
1872 | for (DUIterator_Fast i2max, i2 = m->fast_outs(i2max); i2 < i2max; i2++) { |
1873 | Node* u = m->fast_out(i2); |
1874 | const Type* ut = u->bottom_type(); |
1875 | if (u->Opcode() == Op_LoadP && ut->isa_instptr() && ut != type(u)) { |
1876 | if (has_load_barriers) { |
1877 | // Search for load barriers behind the load |
1878 | for (DUIterator_Fast i3max, i3 = u->fast_outs(i3max); i3 < i3max; i3++) { |
1879 | Node* b = u->fast_out(i3); |
1880 | if (bs->is_gc_barrier_node(b)) { |
1881 | worklist.push(b); |
1882 | } |
1883 | } |
1884 | } |
1885 | worklist.push(u); |
1886 | } |
1887 | } |
1888 | } |
1889 | |
1890 | BarrierSet::barrier_set()->barrier_set_c2()->ccp_analyze(this, worklist, m); |
1891 | } |
1892 | } |
1893 | } |
1894 | } |
1895 | |
1896 | //------------------------------do_transform----------------------------------- |
1897 | // Top level driver for the recursive transformer |
1898 | void PhaseCCP::do_transform() { |
1899 | // Correct leaves of new-space Nodes; they point to old-space. |
1900 | C->set_root( transform(C->root())->as_Root() ); |
1901 | assert( C->top(), "missing TOP node" ); |
1902 | assert( C->root(), "missing root" ); |
1903 | } |
1904 | |
1905 | //------------------------------transform-------------------------------------- |
1906 | // Given a Node in old-space, clone him into new-space. |
1907 | // Convert any of his old-space children into new-space children. |
1908 | Node *PhaseCCP::transform( Node *n ) { |
1909 | Node *new_node = _nodes[n->_idx]; // Check for transformed node |
1910 | if( new_node != NULL ) |
1911 | return new_node; // Been there, done that, return old answer |
1912 | new_node = transform_once(n); // Check for constant |
1913 | _nodes.map( n->_idx, new_node ); // Flag as having been cloned |
1914 | |
1915 | // Allocate stack of size _nodes.Size()/2 to avoid frequent realloc |
1916 | GrowableArray <Node *> trstack(C->live_nodes() >> 1); |
1917 | |
1918 | trstack.push(new_node); // Process children of cloned node |
1919 | while ( trstack.is_nonempty() ) { |
1920 | Node *clone = trstack.pop(); |
1921 | uint cnt = clone->req(); |
1922 | for( uint i = 0; i < cnt; i++ ) { // For all inputs do |
1923 | Node *input = clone->in(i); |
1924 | if( input != NULL ) { // Ignore NULLs |
1925 | Node *new_input = _nodes[input->_idx]; // Check for cloned input node |
1926 | if( new_input == NULL ) { |
1927 | new_input = transform_once(input); // Check for constant |
1928 | _nodes.map( input->_idx, new_input );// Flag as having been cloned |
1929 | trstack.push(new_input); |
1930 | } |
1931 | assert( new_input == clone->in(i), "insanity check" ); |
1932 | } |
1933 | } |
1934 | } |
1935 | return new_node; |
1936 | } |
1937 | |
1938 | |
1939 | //------------------------------transform_once--------------------------------- |
1940 | // For PhaseCCP, transformation is IDENTITY unless Node computed a constant. |
1941 | Node *PhaseCCP::transform_once( Node *n ) { |
1942 | const Type *t = type(n); |
1943 | // Constant? Use constant Node instead |
1944 | if( t->singleton() ) { |
1945 | Node *nn = n; // Default is to return the original constant |
1946 | if( t == Type::TOP ) { |
1947 | // cache my top node on the Compile instance |
1948 | if( C->cached_top_node() == NULL || C->cached_top_node()->in(0) == NULL ) { |
1949 | C->set_cached_top_node(ConNode::make(Type::TOP)); |
1950 | set_type(C->top(), Type::TOP); |
1951 | } |
1952 | nn = C->top(); |
1953 | } |
1954 | if( !n->is_Con() ) { |
1955 | if( t != Type::TOP ) { |
1956 | nn = makecon(t); // ConNode::make(t); |
1957 | NOT_PRODUCT( inc_constants(); ) |
1958 | } else if( n->is_Region() ) { // Unreachable region |
1959 | // Note: nn == C->top() |
1960 | n->set_req(0, NULL); // Cut selfreference |
1961 | bool progress = true; |
1962 | uint max = n->outcnt(); |
1963 | DUIterator i; |
1964 | while (progress) { |
1965 | progress = false; |
1966 | // Eagerly remove dead phis to avoid phis copies creation. |
1967 | for (i = n->outs(); n->has_out(i); i++) { |
1968 | Node* m = n->out(i); |
1969 | if (m->is_Phi()) { |
1970 | assert(type(m) == Type::TOP, "Unreachable region should not have live phis." ); |
1971 | replace_node(m, nn); |
1972 | if (max != n->outcnt()) { |
1973 | progress = true; |
1974 | i = n->refresh_out_pos(i); |
1975 | max = n->outcnt(); |
1976 | } |
1977 | } |
1978 | } |
1979 | } |
1980 | } |
1981 | replace_node(n,nn); // Update DefUse edges for new constant |
1982 | } |
1983 | return nn; |
1984 | } |
1985 | |
1986 | // If x is a TypeNode, capture any more-precise type permanently into Node |
1987 | if (t != n->bottom_type()) { |
1988 | hash_delete(n); // changing bottom type may force a rehash |
1989 | n->raise_bottom_type(t); |
1990 | _worklist.push(n); // n re-enters the hash table via the worklist |
1991 | } |
1992 | |
1993 | // TEMPORARY fix to ensure that 2nd GVN pass eliminates NULL checks |
1994 | switch( n->Opcode() ) { |
1995 | case Op_FastLock: // Revisit FastLocks for lock coarsening |
1996 | case Op_If: |
1997 | case Op_CountedLoopEnd: |
1998 | case Op_Region: |
1999 | case Op_Loop: |
2000 | case Op_CountedLoop: |
2001 | case Op_Conv2B: |
2002 | case Op_Opaque1: |
2003 | case Op_Opaque2: |
2004 | _worklist.push(n); |
2005 | break; |
2006 | default: |
2007 | break; |
2008 | } |
2009 | |
2010 | return n; |
2011 | } |
2012 | |
2013 | //---------------------------------saturate------------------------------------ |
2014 | const Type* PhaseCCP::saturate(const Type* new_type, const Type* old_type, |
2015 | const Type* limit_type) const { |
2016 | const Type* wide_type = new_type->widen(old_type, limit_type); |
2017 | if (wide_type != new_type) { // did we widen? |
2018 | // If so, we may have widened beyond the limit type. Clip it back down. |
2019 | new_type = wide_type->filter(limit_type); |
2020 | } |
2021 | return new_type; |
2022 | } |
2023 | |
2024 | //------------------------------print_statistics------------------------------- |
2025 | #ifndef PRODUCT |
2026 | void PhaseCCP::print_statistics() { |
2027 | tty->print_cr("CCP: %d constants found: %d" , _total_invokes, _total_constants); |
2028 | } |
2029 | #endif |
2030 | |
2031 | |
2032 | //============================================================================= |
2033 | #ifndef PRODUCT |
2034 | uint PhasePeephole::_total_peepholes = 0; |
2035 | #endif |
2036 | //------------------------------PhasePeephole---------------------------------- |
2037 | // Conditional Constant Propagation, ala Wegman & Zadeck |
2038 | PhasePeephole::PhasePeephole( PhaseRegAlloc *regalloc, PhaseCFG &cfg ) |
2039 | : PhaseTransform(Peephole), _regalloc(regalloc), _cfg(cfg) { |
2040 | NOT_PRODUCT( clear_peepholes(); ) |
2041 | } |
2042 | |
2043 | #ifndef PRODUCT |
2044 | //------------------------------~PhasePeephole--------------------------------- |
2045 | PhasePeephole::~PhasePeephole() { |
2046 | _total_peepholes += count_peepholes(); |
2047 | } |
2048 | #endif |
2049 | |
2050 | //------------------------------transform-------------------------------------- |
2051 | Node *PhasePeephole::transform( Node *n ) { |
2052 | ShouldNotCallThis(); |
2053 | return NULL; |
2054 | } |
2055 | |
2056 | //------------------------------do_transform----------------------------------- |
2057 | void PhasePeephole::do_transform() { |
2058 | bool method_name_not_printed = true; |
2059 | |
2060 | // Examine each basic block |
2061 | for (uint block_number = 1; block_number < _cfg.number_of_blocks(); ++block_number) { |
2062 | Block* block = _cfg.get_block(block_number); |
2063 | bool block_not_printed = true; |
2064 | |
2065 | // and each instruction within a block |
2066 | uint end_index = block->number_of_nodes(); |
2067 | // block->end_idx() not valid after PhaseRegAlloc |
2068 | for( uint instruction_index = 1; instruction_index < end_index; ++instruction_index ) { |
2069 | Node *n = block->get_node(instruction_index); |
2070 | if( n->is_Mach() ) { |
2071 | MachNode *m = n->as_Mach(); |
2072 | int deleted_count = 0; |
2073 | // check for peephole opportunities |
2074 | MachNode *m2 = m->peephole(block, instruction_index, _regalloc, deleted_count); |
2075 | if( m2 != NULL ) { |
2076 | #ifndef PRODUCT |
2077 | if( PrintOptoPeephole ) { |
2078 | // Print method, first time only |
2079 | if( C->method() && method_name_not_printed ) { |
2080 | C->method()->print_short_name(); tty->cr(); |
2081 | method_name_not_printed = false; |
2082 | } |
2083 | // Print this block |
2084 | if( Verbose && block_not_printed) { |
2085 | tty->print_cr("in block" ); |
2086 | block->dump(); |
2087 | block_not_printed = false; |
2088 | } |
2089 | // Print instructions being deleted |
2090 | for( int i = (deleted_count - 1); i >= 0; --i ) { |
2091 | block->get_node(instruction_index-i)->as_Mach()->format(_regalloc); tty->cr(); |
2092 | } |
2093 | tty->print_cr("replaced with" ); |
2094 | // Print new instruction |
2095 | m2->format(_regalloc); |
2096 | tty->print("\n\n" ); |
2097 | } |
2098 | #endif |
2099 | // Remove old nodes from basic block and update instruction_index |
2100 | // (old nodes still exist and may have edges pointing to them |
2101 | // as register allocation info is stored in the allocator using |
2102 | // the node index to live range mappings.) |
2103 | uint safe_instruction_index = (instruction_index - deleted_count); |
2104 | for( ; (instruction_index > safe_instruction_index); --instruction_index ) { |
2105 | block->remove_node( instruction_index ); |
2106 | } |
2107 | // install new node after safe_instruction_index |
2108 | block->insert_node(m2, safe_instruction_index + 1); |
2109 | end_index = block->number_of_nodes() - 1; // Recompute new block size |
2110 | NOT_PRODUCT( inc_peepholes(); ) |
2111 | } |
2112 | } |
2113 | } |
2114 | } |
2115 | } |
2116 | |
2117 | //------------------------------print_statistics------------------------------- |
2118 | #ifndef PRODUCT |
2119 | void PhasePeephole::print_statistics() { |
2120 | tty->print_cr("Peephole: peephole rules applied: %d" , _total_peepholes); |
2121 | } |
2122 | #endif |
2123 | |
2124 | |
2125 | //============================================================================= |
2126 | //------------------------------set_req_X-------------------------------------- |
2127 | void Node::set_req_X( uint i, Node *n, PhaseIterGVN *igvn ) { |
2128 | assert( is_not_dead(n), "can not use dead node" ); |
2129 | assert( igvn->hash_find(this) != this, "Need to remove from hash before changing edges" ); |
2130 | Node *old = in(i); |
2131 | set_req(i, n); |
2132 | |
2133 | // old goes dead? |
2134 | if( old ) { |
2135 | switch (old->outcnt()) { |
2136 | case 0: |
2137 | // Put into the worklist to kill later. We do not kill it now because the |
2138 | // recursive kill will delete the current node (this) if dead-loop exists |
2139 | if (!old->is_top()) |
2140 | igvn->_worklist.push( old ); |
2141 | break; |
2142 | case 1: |
2143 | if( old->is_Store() || old->has_special_unique_user() ) |
2144 | igvn->add_users_to_worklist( old ); |
2145 | break; |
2146 | case 2: |
2147 | if( old->is_Store() ) |
2148 | igvn->add_users_to_worklist( old ); |
2149 | if( old->Opcode() == Op_Region ) |
2150 | igvn->_worklist.push(old); |
2151 | break; |
2152 | case 3: |
2153 | if( old->Opcode() == Op_Region ) { |
2154 | igvn->_worklist.push(old); |
2155 | igvn->add_users_to_worklist( old ); |
2156 | } |
2157 | break; |
2158 | default: |
2159 | break; |
2160 | } |
2161 | |
2162 | BarrierSet::barrier_set()->barrier_set_c2()->enqueue_useful_gc_barrier(igvn, old); |
2163 | } |
2164 | |
2165 | } |
2166 | |
2167 | //-------------------------------replace_by----------------------------------- |
2168 | // Using def-use info, replace one node for another. Follow the def-use info |
2169 | // to all users of the OLD node. Then make all uses point to the NEW node. |
2170 | void Node::replace_by(Node *new_node) { |
2171 | assert(!is_top(), "top node has no DU info" ); |
2172 | for (DUIterator_Last imin, i = last_outs(imin); i >= imin; ) { |
2173 | Node* use = last_out(i); |
2174 | uint uses_found = 0; |
2175 | for (uint j = 0; j < use->len(); j++) { |
2176 | if (use->in(j) == this) { |
2177 | if (j < use->req()) |
2178 | use->set_req(j, new_node); |
2179 | else use->set_prec(j, new_node); |
2180 | uses_found++; |
2181 | } |
2182 | } |
2183 | i -= uses_found; // we deleted 1 or more copies of this edge |
2184 | } |
2185 | } |
2186 | |
2187 | //============================================================================= |
2188 | //----------------------------------------------------------------------------- |
2189 | void Type_Array::grow( uint i ) { |
2190 | if( !_max ) { |
2191 | _max = 1; |
2192 | _types = (const Type**)_a->Amalloc( _max * sizeof(Type*) ); |
2193 | _types[0] = NULL; |
2194 | } |
2195 | uint old = _max; |
2196 | while( i >= _max ) _max <<= 1; // Double to fit |
2197 | _types = (const Type**)_a->Arealloc( _types, old*sizeof(Type*),_max*sizeof(Type*)); |
2198 | memset( &_types[old], 0, (_max-old)*sizeof(Type*) ); |
2199 | } |
2200 | |
2201 | //------------------------------dump------------------------------------------- |
2202 | #ifndef PRODUCT |
2203 | void Type_Array::dump() const { |
2204 | uint max = Size(); |
2205 | for( uint i = 0; i < max; i++ ) { |
2206 | if( _types[i] != NULL ) { |
2207 | tty->print(" %d\t== " , i); _types[i]->dump(); tty->cr(); |
2208 | } |
2209 | } |
2210 | } |
2211 | #endif |
2212 | |