| 1 | /* |
| 2 | * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved. |
| 3 | * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
| 4 | * |
| 5 | * This code is free software; you can redistribute it and/or modify it |
| 6 | * under the terms of the GNU General Public License version 2 only, as |
| 7 | * published by the Free Software Foundation. |
| 8 | * |
| 9 | * This code is distributed in the hope that it will be useful, but WITHOUT |
| 10 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| 11 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| 12 | * version 2 for more details (a copy is included in the LICENSE file that |
| 13 | * accompanied this code). |
| 14 | * |
| 15 | * You should have received a copy of the GNU General Public License version |
| 16 | * 2 along with this work; if not, write to the Free Software Foundation, |
| 17 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
| 18 | * |
| 19 | * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
| 20 | * or visit www.oracle.com if you need additional information or have any |
| 21 | * questions. |
| 22 | * |
| 23 | */ |
| 24 | |
| 25 | #include "precompiled.hpp" |
| 26 | #include "gc/shared/barrierSet.hpp" |
| 27 | #include "gc/shared/c2/barrierSetC2.hpp" |
| 28 | #include "memory/allocation.inline.hpp" |
| 29 | #include "memory/resourceArea.hpp" |
| 30 | #include "opto/block.hpp" |
| 31 | #include "opto/callnode.hpp" |
| 32 | #include "opto/castnode.hpp" |
| 33 | #include "opto/cfgnode.hpp" |
| 34 | #include "opto/idealGraphPrinter.hpp" |
| 35 | #include "opto/loopnode.hpp" |
| 36 | #include "opto/machnode.hpp" |
| 37 | #include "opto/opcodes.hpp" |
| 38 | #include "opto/phaseX.hpp" |
| 39 | #include "opto/regalloc.hpp" |
| 40 | #include "opto/rootnode.hpp" |
| 41 | #include "utilities/macros.hpp" |
| 42 | |
| 43 | //============================================================================= |
| 44 | #define NODE_HASH_MINIMUM_SIZE 255 |
| 45 | //------------------------------NodeHash--------------------------------------- |
| 46 | NodeHash::NodeHash(uint est_max_size) : |
| 47 | _a(Thread::current()->resource_area()), |
| 48 | _max( round_up(est_max_size < NODE_HASH_MINIMUM_SIZE ? NODE_HASH_MINIMUM_SIZE : est_max_size) ), |
| 49 | _inserts(0), _insert_limit( insert_limit() ), |
| 50 | _table( NEW_ARENA_ARRAY( _a , Node* , _max ) ) // (Node**)_a->Amalloc(_max * sizeof(Node*)) ), |
| 51 | #ifndef PRODUCT |
| 52 | , _grows(0),_look_probes(0), _lookup_hits(0), _lookup_misses(0), |
| 53 | _insert_probes(0), _delete_probes(0), _delete_hits(0), _delete_misses(0), |
| 54 | _total_inserts(0), _total_insert_probes(0) |
| 55 | #endif |
| 56 | { |
| 57 | // _sentinel must be in the current node space |
| 58 | _sentinel = new ProjNode(NULL, TypeFunc::Control); |
| 59 | memset(_table,0,sizeof(Node*)*_max); |
| 60 | } |
| 61 | |
| 62 | //------------------------------NodeHash--------------------------------------- |
| 63 | NodeHash::NodeHash(Arena *arena, uint est_max_size) : |
| 64 | _a(arena), |
| 65 | _max( round_up(est_max_size < NODE_HASH_MINIMUM_SIZE ? NODE_HASH_MINIMUM_SIZE : est_max_size) ), |
| 66 | _inserts(0), _insert_limit( insert_limit() ), |
| 67 | _table( NEW_ARENA_ARRAY( _a , Node* , _max ) ) |
| 68 | #ifndef PRODUCT |
| 69 | , _grows(0),_look_probes(0), _lookup_hits(0), _lookup_misses(0), |
| 70 | _insert_probes(0), _delete_probes(0), _delete_hits(0), _delete_misses(0), |
| 71 | _total_inserts(0), _total_insert_probes(0) |
| 72 | #endif |
| 73 | { |
| 74 | // _sentinel must be in the current node space |
| 75 | _sentinel = new ProjNode(NULL, TypeFunc::Control); |
| 76 | memset(_table,0,sizeof(Node*)*_max); |
| 77 | } |
| 78 | |
| 79 | //------------------------------NodeHash--------------------------------------- |
| 80 | NodeHash::NodeHash(NodeHash *nh) { |
| 81 | debug_only(_table = (Node**)badAddress); // interact correctly w/ operator= |
| 82 | // just copy in all the fields |
| 83 | *this = *nh; |
| 84 | // nh->_sentinel must be in the current node space |
| 85 | } |
| 86 | |
| 87 | void NodeHash::replace_with(NodeHash *nh) { |
| 88 | debug_only(_table = (Node**)badAddress); // interact correctly w/ operator= |
| 89 | // just copy in all the fields |
| 90 | *this = *nh; |
| 91 | // nh->_sentinel must be in the current node space |
| 92 | } |
| 93 | |
| 94 | //------------------------------hash_find-------------------------------------- |
| 95 | // Find in hash table |
| 96 | Node *NodeHash::hash_find( const Node *n ) { |
| 97 | // ((Node*)n)->set_hash( n->hash() ); |
| 98 | uint hash = n->hash(); |
| 99 | if (hash == Node::NO_HASH) { |
| 100 | NOT_PRODUCT( _lookup_misses++ ); |
| 101 | return NULL; |
| 102 | } |
| 103 | uint key = hash & (_max-1); |
| 104 | uint stride = key | 0x01; |
| 105 | NOT_PRODUCT( _look_probes++ ); |
| 106 | Node *k = _table[key]; // Get hashed value |
| 107 | if( !k ) { // ?Miss? |
| 108 | NOT_PRODUCT( _lookup_misses++ ); |
| 109 | return NULL; // Miss! |
| 110 | } |
| 111 | |
| 112 | int op = n->Opcode(); |
| 113 | uint req = n->req(); |
| 114 | while( 1 ) { // While probing hash table |
| 115 | if( k->req() == req && // Same count of inputs |
| 116 | k->Opcode() == op ) { // Same Opcode |
| 117 | for( uint i=0; i<req; i++ ) |
| 118 | if( n->in(i)!=k->in(i)) // Different inputs? |
| 119 | goto collision; // "goto" is a speed hack... |
| 120 | if( n->cmp(*k) ) { // Check for any special bits |
| 121 | NOT_PRODUCT( _lookup_hits++ ); |
| 122 | return k; // Hit! |
| 123 | } |
| 124 | } |
| 125 | collision: |
| 126 | NOT_PRODUCT( _look_probes++ ); |
| 127 | key = (key + stride/*7*/) & (_max-1); // Stride through table with relative prime |
| 128 | k = _table[key]; // Get hashed value |
| 129 | if( !k ) { // ?Miss? |
| 130 | NOT_PRODUCT( _lookup_misses++ ); |
| 131 | return NULL; // Miss! |
| 132 | } |
| 133 | } |
| 134 | ShouldNotReachHere(); |
| 135 | return NULL; |
| 136 | } |
| 137 | |
| 138 | //------------------------------hash_find_insert------------------------------- |
| 139 | // Find in hash table, insert if not already present |
| 140 | // Used to preserve unique entries in hash table |
| 141 | Node *NodeHash::hash_find_insert( Node *n ) { |
| 142 | // n->set_hash( ); |
| 143 | uint hash = n->hash(); |
| 144 | if (hash == Node::NO_HASH) { |
| 145 | NOT_PRODUCT( _lookup_misses++ ); |
| 146 | return NULL; |
| 147 | } |
| 148 | uint key = hash & (_max-1); |
| 149 | uint stride = key | 0x01; // stride must be relatively prime to table siz |
| 150 | uint first_sentinel = 0; // replace a sentinel if seen. |
| 151 | NOT_PRODUCT( _look_probes++ ); |
| 152 | Node *k = _table[key]; // Get hashed value |
| 153 | if( !k ) { // ?Miss? |
| 154 | NOT_PRODUCT( _lookup_misses++ ); |
| 155 | _table[key] = n; // Insert into table! |
| 156 | debug_only(n->enter_hash_lock()); // Lock down the node while in the table. |
| 157 | check_grow(); // Grow table if insert hit limit |
| 158 | return NULL; // Miss! |
| 159 | } |
| 160 | else if( k == _sentinel ) { |
| 161 | first_sentinel = key; // Can insert here |
| 162 | } |
| 163 | |
| 164 | int op = n->Opcode(); |
| 165 | uint req = n->req(); |
| 166 | while( 1 ) { // While probing hash table |
| 167 | if( k->req() == req && // Same count of inputs |
| 168 | k->Opcode() == op ) { // Same Opcode |
| 169 | for( uint i=0; i<req; i++ ) |
| 170 | if( n->in(i)!=k->in(i)) // Different inputs? |
| 171 | goto collision; // "goto" is a speed hack... |
| 172 | if( n->cmp(*k) ) { // Check for any special bits |
| 173 | NOT_PRODUCT( _lookup_hits++ ); |
| 174 | return k; // Hit! |
| 175 | } |
| 176 | } |
| 177 | collision: |
| 178 | NOT_PRODUCT( _look_probes++ ); |
| 179 | key = (key + stride) & (_max-1); // Stride through table w/ relative prime |
| 180 | k = _table[key]; // Get hashed value |
| 181 | if( !k ) { // ?Miss? |
| 182 | NOT_PRODUCT( _lookup_misses++ ); |
| 183 | key = (first_sentinel == 0) ? key : first_sentinel; // ?saw sentinel? |
| 184 | _table[key] = n; // Insert into table! |
| 185 | debug_only(n->enter_hash_lock()); // Lock down the node while in the table. |
| 186 | check_grow(); // Grow table if insert hit limit |
| 187 | return NULL; // Miss! |
| 188 | } |
| 189 | else if( first_sentinel == 0 && k == _sentinel ) { |
| 190 | first_sentinel = key; // Can insert here |
| 191 | } |
| 192 | |
| 193 | } |
| 194 | ShouldNotReachHere(); |
| 195 | return NULL; |
| 196 | } |
| 197 | |
| 198 | //------------------------------hash_insert------------------------------------ |
| 199 | // Insert into hash table |
| 200 | void NodeHash::hash_insert( Node *n ) { |
| 201 | // // "conflict" comments -- print nodes that conflict |
| 202 | // bool conflict = false; |
| 203 | // n->set_hash(); |
| 204 | uint hash = n->hash(); |
| 205 | if (hash == Node::NO_HASH) { |
| 206 | return; |
| 207 | } |
| 208 | check_grow(); |
| 209 | uint key = hash & (_max-1); |
| 210 | uint stride = key | 0x01; |
| 211 | |
| 212 | while( 1 ) { // While probing hash table |
| 213 | NOT_PRODUCT( _insert_probes++ ); |
| 214 | Node *k = _table[key]; // Get hashed value |
| 215 | if( !k || (k == _sentinel) ) break; // Found a slot |
| 216 | assert( k != n, "already inserted" ); |
| 217 | // if( PrintCompilation && PrintOptoStatistics && Verbose ) { tty->print(" conflict: "); k->dump(); conflict = true; } |
| 218 | key = (key + stride) & (_max-1); // Stride through table w/ relative prime |
| 219 | } |
| 220 | _table[key] = n; // Insert into table! |
| 221 | debug_only(n->enter_hash_lock()); // Lock down the node while in the table. |
| 222 | // if( conflict ) { n->dump(); } |
| 223 | } |
| 224 | |
| 225 | //------------------------------hash_delete------------------------------------ |
| 226 | // Replace in hash table with sentinel |
| 227 | bool NodeHash::hash_delete( const Node *n ) { |
| 228 | Node *k; |
| 229 | uint hash = n->hash(); |
| 230 | if (hash == Node::NO_HASH) { |
| 231 | NOT_PRODUCT( _delete_misses++ ); |
| 232 | return false; |
| 233 | } |
| 234 | uint key = hash & (_max-1); |
| 235 | uint stride = key | 0x01; |
| 236 | debug_only( uint counter = 0; ); |
| 237 | for( ; /* (k != NULL) && (k != _sentinel) */; ) { |
| 238 | debug_only( counter++ ); |
| 239 | NOT_PRODUCT( _delete_probes++ ); |
| 240 | k = _table[key]; // Get hashed value |
| 241 | if( !k ) { // Miss? |
| 242 | NOT_PRODUCT( _delete_misses++ ); |
| 243 | #ifdef ASSERT |
| 244 | if( VerifyOpto ) { |
| 245 | for( uint i=0; i < _max; i++ ) |
| 246 | assert( _table[i] != n, "changed edges with rehashing" ); |
| 247 | } |
| 248 | #endif |
| 249 | return false; // Miss! Not in chain |
| 250 | } |
| 251 | else if( n == k ) { |
| 252 | NOT_PRODUCT( _delete_hits++ ); |
| 253 | _table[key] = _sentinel; // Hit! Label as deleted entry |
| 254 | debug_only(((Node*)n)->exit_hash_lock()); // Unlock the node upon removal from table. |
| 255 | return true; |
| 256 | } |
| 257 | else { |
| 258 | // collision: move through table with prime offset |
| 259 | key = (key + stride/*7*/) & (_max-1); |
| 260 | assert( counter <= _insert_limit, "Cycle in hash-table" ); |
| 261 | } |
| 262 | } |
| 263 | ShouldNotReachHere(); |
| 264 | return false; |
| 265 | } |
| 266 | |
| 267 | //------------------------------round_up--------------------------------------- |
| 268 | // Round up to nearest power of 2 |
| 269 | uint NodeHash::round_up( uint x ) { |
| 270 | x += (x>>2); // Add 25% slop |
| 271 | if( x <16 ) return 16; // Small stuff |
| 272 | uint i=16; |
| 273 | while( i < x ) i <<= 1; // Double to fit |
| 274 | return i; // Return hash table size |
| 275 | } |
| 276 | |
| 277 | //------------------------------grow------------------------------------------- |
| 278 | // Grow _table to next power of 2 and insert old entries |
| 279 | void NodeHash::grow() { |
| 280 | // Record old state |
| 281 | uint old_max = _max; |
| 282 | Node **old_table = _table; |
| 283 | // Construct new table with twice the space |
| 284 | #ifndef PRODUCT |
| 285 | _grows++; |
| 286 | _total_inserts += _inserts; |
| 287 | _total_insert_probes += _insert_probes; |
| 288 | _insert_probes = 0; |
| 289 | #endif |
| 290 | _inserts = 0; |
| 291 | _max = _max << 1; |
| 292 | _table = NEW_ARENA_ARRAY( _a , Node* , _max ); // (Node**)_a->Amalloc( _max * sizeof(Node*) ); |
| 293 | memset(_table,0,sizeof(Node*)*_max); |
| 294 | _insert_limit = insert_limit(); |
| 295 | // Insert old entries into the new table |
| 296 | for( uint i = 0; i < old_max; i++ ) { |
| 297 | Node *m = *old_table++; |
| 298 | if( !m || m == _sentinel ) continue; |
| 299 | debug_only(m->exit_hash_lock()); // Unlock the node upon removal from old table. |
| 300 | hash_insert(m); |
| 301 | } |
| 302 | } |
| 303 | |
| 304 | //------------------------------clear------------------------------------------ |
| 305 | // Clear all entries in _table to NULL but keep storage |
| 306 | void NodeHash::clear() { |
| 307 | #ifdef ASSERT |
| 308 | // Unlock all nodes upon removal from table. |
| 309 | for (uint i = 0; i < _max; i++) { |
| 310 | Node* n = _table[i]; |
| 311 | if (!n || n == _sentinel) continue; |
| 312 | n->exit_hash_lock(); |
| 313 | } |
| 314 | #endif |
| 315 | |
| 316 | memset( _table, 0, _max * sizeof(Node*) ); |
| 317 | } |
| 318 | |
| 319 | //-----------------------remove_useless_nodes---------------------------------- |
| 320 | // Remove useless nodes from value table, |
| 321 | // implementation does not depend on hash function |
| 322 | void NodeHash::remove_useless_nodes(VectorSet &useful) { |
| 323 | |
| 324 | // Dead nodes in the hash table inherited from GVN should not replace |
| 325 | // existing nodes, remove dead nodes. |
| 326 | uint max = size(); |
| 327 | Node *sentinel_node = sentinel(); |
| 328 | for( uint i = 0; i < max; ++i ) { |
| 329 | Node *n = at(i); |
| 330 | if(n != NULL && n != sentinel_node && !useful.test(n->_idx)) { |
| 331 | debug_only(n->exit_hash_lock()); // Unlock the node when removed |
| 332 | _table[i] = sentinel_node; // Replace with placeholder |
| 333 | } |
| 334 | } |
| 335 | } |
| 336 | |
| 337 | |
| 338 | void NodeHash::check_no_speculative_types() { |
| 339 | #ifdef ASSERT |
| 340 | uint max = size(); |
| 341 | Node *sentinel_node = sentinel(); |
| 342 | for (uint i = 0; i < max; ++i) { |
| 343 | Node *n = at(i); |
| 344 | if(n != NULL && n != sentinel_node && n->is_Type() && n->outcnt() > 0) { |
| 345 | TypeNode* tn = n->as_Type(); |
| 346 | const Type* t = tn->type(); |
| 347 | const Type* t_no_spec = t->remove_speculative(); |
| 348 | assert(t == t_no_spec, "dead node in hash table or missed node during speculative cleanup" ); |
| 349 | } |
| 350 | } |
| 351 | #endif |
| 352 | } |
| 353 | |
| 354 | #ifndef PRODUCT |
| 355 | //------------------------------dump------------------------------------------- |
| 356 | // Dump statistics for the hash table |
| 357 | void NodeHash::dump() { |
| 358 | _total_inserts += _inserts; |
| 359 | _total_insert_probes += _insert_probes; |
| 360 | if (PrintCompilation && PrintOptoStatistics && Verbose && (_inserts > 0)) { |
| 361 | if (WizardMode) { |
| 362 | for (uint i=0; i<_max; i++) { |
| 363 | if (_table[i]) |
| 364 | tty->print("%d/%d/%d " ,i,_table[i]->hash()&(_max-1),_table[i]->_idx); |
| 365 | } |
| 366 | } |
| 367 | tty->print("\nGVN Hash stats: %d grows to %d max_size\n" , _grows, _max); |
| 368 | tty->print(" %d/%d (%8.1f%% full)\n" , _inserts, _max, (double)_inserts/_max*100.0); |
| 369 | tty->print(" %dp/(%dh+%dm) (%8.2f probes/lookup)\n" , _look_probes, _lookup_hits, _lookup_misses, (double)_look_probes/(_lookup_hits+_lookup_misses)); |
| 370 | tty->print(" %dp/%di (%8.2f probes/insert)\n" , _total_insert_probes, _total_inserts, (double)_total_insert_probes/_total_inserts); |
| 371 | // sentinels increase lookup cost, but not insert cost |
| 372 | assert((_lookup_misses+_lookup_hits)*4+100 >= _look_probes, "bad hash function" ); |
| 373 | assert( _inserts+(_inserts>>3) < _max, "table too full" ); |
| 374 | assert( _inserts*3+100 >= _insert_probes, "bad hash function" ); |
| 375 | } |
| 376 | } |
| 377 | |
| 378 | Node *NodeHash::find_index(uint idx) { // For debugging |
| 379 | // Find an entry by its index value |
| 380 | for( uint i = 0; i < _max; i++ ) { |
| 381 | Node *m = _table[i]; |
| 382 | if( !m || m == _sentinel ) continue; |
| 383 | if( m->_idx == (uint)idx ) return m; |
| 384 | } |
| 385 | return NULL; |
| 386 | } |
| 387 | #endif |
| 388 | |
| 389 | #ifdef ASSERT |
| 390 | NodeHash::~NodeHash() { |
| 391 | // Unlock all nodes upon destruction of table. |
| 392 | if (_table != (Node**)badAddress) clear(); |
| 393 | } |
| 394 | |
| 395 | void NodeHash::operator=(const NodeHash& nh) { |
| 396 | // Unlock all nodes upon replacement of table. |
| 397 | if (&nh == this) return; |
| 398 | if (_table != (Node**)badAddress) clear(); |
| 399 | memcpy((void*)this, (void*)&nh, sizeof(*this)); |
| 400 | // Do not increment hash_lock counts again. |
| 401 | // Instead, be sure we never again use the source table. |
| 402 | ((NodeHash*)&nh)->_table = (Node**)badAddress; |
| 403 | } |
| 404 | |
| 405 | |
| 406 | #endif |
| 407 | |
| 408 | |
| 409 | //============================================================================= |
| 410 | //------------------------------PhaseRemoveUseless----------------------------- |
| 411 | // 1) Use a breadthfirst walk to collect useful nodes reachable from root. |
| 412 | PhaseRemoveUseless::PhaseRemoveUseless(PhaseGVN *gvn, Unique_Node_List *worklist, PhaseNumber phase_num) : Phase(phase_num), |
| 413 | _useful(Thread::current()->resource_area()) { |
| 414 | |
| 415 | // Implementation requires 'UseLoopSafepoints == true' and an edge from root |
| 416 | // to each SafePointNode at a backward branch. Inserted in add_safepoint(). |
| 417 | if( !UseLoopSafepoints || !OptoRemoveUseless ) return; |
| 418 | |
| 419 | // Identify nodes that are reachable from below, useful. |
| 420 | C->identify_useful_nodes(_useful); |
| 421 | // Update dead node list |
| 422 | C->update_dead_node_list(_useful); |
| 423 | |
| 424 | // Remove all useless nodes from PhaseValues' recorded types |
| 425 | // Must be done before disconnecting nodes to preserve hash-table-invariant |
| 426 | gvn->remove_useless_nodes(_useful.member_set()); |
| 427 | |
| 428 | // Remove all useless nodes from future worklist |
| 429 | worklist->remove_useless_nodes(_useful.member_set()); |
| 430 | |
| 431 | // Disconnect 'useless' nodes that are adjacent to useful nodes |
| 432 | C->remove_useless_nodes(_useful); |
| 433 | } |
| 434 | |
| 435 | //============================================================================= |
| 436 | //------------------------------PhaseRenumberLive------------------------------ |
| 437 | // First, remove useless nodes (equivalent to identifying live nodes). |
| 438 | // Then, renumber live nodes. |
| 439 | // |
| 440 | // The set of live nodes is returned by PhaseRemoveUseless in the _useful structure. |
| 441 | // If the number of live nodes is 'x' (where 'x' == _useful.size()), then the |
| 442 | // PhaseRenumberLive updates the node ID of each node (the _idx field) with a unique |
| 443 | // value in the range [0, x). |
| 444 | // |
| 445 | // At the end of the PhaseRenumberLive phase, the compiler's count of unique nodes is |
| 446 | // updated to 'x' and the list of dead nodes is reset (as there are no dead nodes). |
| 447 | // |
| 448 | // The PhaseRenumberLive phase updates two data structures with the new node IDs. |
| 449 | // (1) The worklist is used by the PhaseIterGVN phase to identify nodes that must be |
| 450 | // processed. A new worklist (with the updated node IDs) is returned in 'new_worklist'. |
| 451 | // (2) Type information (the field PhaseGVN::_types) maps type information to each |
| 452 | // node ID. The mapping is updated to use the new node IDs as well. Updated type |
| 453 | // information is returned in PhaseGVN::_types. |
| 454 | // |
| 455 | // The PhaseRenumberLive phase does not preserve the order of elements in the worklist. |
| 456 | // |
| 457 | // Other data structures used by the compiler are not updated. The hash table for value |
| 458 | // numbering (the field PhaseGVN::_table) is not updated because computing the hash |
| 459 | // values is not based on node IDs. The field PhaseGVN::_nodes is not updated either |
| 460 | // because it is empty wherever PhaseRenumberLive is used. |
| 461 | PhaseRenumberLive::PhaseRenumberLive(PhaseGVN* gvn, |
| 462 | Unique_Node_List* worklist, Unique_Node_List* new_worklist, |
| 463 | PhaseNumber phase_num) : |
| 464 | PhaseRemoveUseless(gvn, worklist, Remove_Useless_And_Renumber_Live), |
| 465 | _new_type_array(C->comp_arena()), |
| 466 | _old2new_map(C->unique(), C->unique(), -1), |
| 467 | _delayed(Thread::current()->resource_area()), |
| 468 | _is_pass_finished(false), |
| 469 | _live_node_count(C->live_nodes()) |
| 470 | { |
| 471 | assert(RenumberLiveNodes, "RenumberLiveNodes must be set to true for node renumbering to take place" ); |
| 472 | assert(C->live_nodes() == _useful.size(), "the number of live nodes must match the number of useful nodes" ); |
| 473 | assert(gvn->nodes_size() == 0, "GVN must not contain any nodes at this point" ); |
| 474 | assert(_delayed.size() == 0, "should be empty" ); |
| 475 | |
| 476 | uint worklist_size = worklist->size(); |
| 477 | |
| 478 | // Iterate over the set of live nodes. |
| 479 | for (uint current_idx = 0; current_idx < _useful.size(); current_idx++) { |
| 480 | Node* n = _useful.at(current_idx); |
| 481 | |
| 482 | bool in_worklist = false; |
| 483 | if (worklist->member(n)) { |
| 484 | in_worklist = true; |
| 485 | } |
| 486 | |
| 487 | const Type* type = gvn->type_or_null(n); |
| 488 | _new_type_array.map(current_idx, type); |
| 489 | |
| 490 | assert(_old2new_map.at(n->_idx) == -1, "already seen" ); |
| 491 | _old2new_map.at_put(n->_idx, current_idx); |
| 492 | |
| 493 | n->set_idx(current_idx); // Update node ID. |
| 494 | |
| 495 | if (in_worklist) { |
| 496 | new_worklist->push(n); |
| 497 | } |
| 498 | |
| 499 | if (update_embedded_ids(n) < 0) { |
| 500 | _delayed.push(n); // has embedded IDs; handle later |
| 501 | } |
| 502 | } |
| 503 | |
| 504 | assert(worklist_size == new_worklist->size(), "the new worklist must have the same size as the original worklist" ); |
| 505 | assert(_live_node_count == _useful.size(), "all live nodes must be processed" ); |
| 506 | |
| 507 | _is_pass_finished = true; // pass finished; safe to process delayed updates |
| 508 | |
| 509 | while (_delayed.size() > 0) { |
| 510 | Node* n = _delayed.pop(); |
| 511 | int no_of_updates = update_embedded_ids(n); |
| 512 | assert(no_of_updates > 0, "should be updated" ); |
| 513 | } |
| 514 | |
| 515 | // Replace the compiler's type information with the updated type information. |
| 516 | gvn->replace_types(_new_type_array); |
| 517 | |
| 518 | // Update the unique node count of the compilation to the number of currently live nodes. |
| 519 | C->set_unique(_live_node_count); |
| 520 | |
| 521 | // Set the dead node count to 0 and reset dead node list. |
| 522 | C->reset_dead_node_list(); |
| 523 | } |
| 524 | |
| 525 | int PhaseRenumberLive::new_index(int old_idx) { |
| 526 | assert(_is_pass_finished, "not finished" ); |
| 527 | if (_old2new_map.at(old_idx) == -1) { // absent |
| 528 | // Allocate a placeholder to preserve uniqueness |
| 529 | _old2new_map.at_put(old_idx, _live_node_count); |
| 530 | _live_node_count++; |
| 531 | } |
| 532 | return _old2new_map.at(old_idx); |
| 533 | } |
| 534 | |
| 535 | int PhaseRenumberLive::update_embedded_ids(Node* n) { |
| 536 | int no_of_updates = 0; |
| 537 | if (n->is_Phi()) { |
| 538 | PhiNode* phi = n->as_Phi(); |
| 539 | if (phi->_inst_id != -1) { |
| 540 | if (!_is_pass_finished) { |
| 541 | return -1; // delay |
| 542 | } |
| 543 | int new_idx = new_index(phi->_inst_id); |
| 544 | assert(new_idx != -1, "" ); |
| 545 | phi->_inst_id = new_idx; |
| 546 | no_of_updates++; |
| 547 | } |
| 548 | if (phi->_inst_mem_id != -1) { |
| 549 | if (!_is_pass_finished) { |
| 550 | return -1; // delay |
| 551 | } |
| 552 | int new_idx = new_index(phi->_inst_mem_id); |
| 553 | assert(new_idx != -1, "" ); |
| 554 | phi->_inst_mem_id = new_idx; |
| 555 | no_of_updates++; |
| 556 | } |
| 557 | } |
| 558 | |
| 559 | const Type* type = _new_type_array.fast_lookup(n->_idx); |
| 560 | if (type != NULL && type->isa_oopptr() && type->is_oopptr()->is_known_instance()) { |
| 561 | if (!_is_pass_finished) { |
| 562 | return -1; // delay |
| 563 | } |
| 564 | int old_idx = type->is_oopptr()->instance_id(); |
| 565 | int new_idx = new_index(old_idx); |
| 566 | const Type* new_type = type->is_oopptr()->with_instance_id(new_idx); |
| 567 | _new_type_array.map(n->_idx, new_type); |
| 568 | no_of_updates++; |
| 569 | } |
| 570 | |
| 571 | return no_of_updates; |
| 572 | } |
| 573 | |
| 574 | //============================================================================= |
| 575 | //------------------------------PhaseTransform--------------------------------- |
| 576 | PhaseTransform::PhaseTransform( PhaseNumber pnum ) : Phase(pnum), |
| 577 | _arena(Thread::current()->resource_area()), |
| 578 | _nodes(_arena), |
| 579 | _types(_arena) |
| 580 | { |
| 581 | init_con_caches(); |
| 582 | #ifndef PRODUCT |
| 583 | clear_progress(); |
| 584 | clear_transforms(); |
| 585 | set_allow_progress(true); |
| 586 | #endif |
| 587 | // Force allocation for currently existing nodes |
| 588 | _types.map(C->unique(), NULL); |
| 589 | } |
| 590 | |
| 591 | //------------------------------PhaseTransform--------------------------------- |
| 592 | PhaseTransform::PhaseTransform( Arena *arena, PhaseNumber pnum ) : Phase(pnum), |
| 593 | _arena(arena), |
| 594 | _nodes(arena), |
| 595 | _types(arena) |
| 596 | { |
| 597 | init_con_caches(); |
| 598 | #ifndef PRODUCT |
| 599 | clear_progress(); |
| 600 | clear_transforms(); |
| 601 | set_allow_progress(true); |
| 602 | #endif |
| 603 | // Force allocation for currently existing nodes |
| 604 | _types.map(C->unique(), NULL); |
| 605 | } |
| 606 | |
| 607 | //------------------------------PhaseTransform--------------------------------- |
| 608 | // Initialize with previously generated type information |
| 609 | PhaseTransform::PhaseTransform( PhaseTransform *pt, PhaseNumber pnum ) : Phase(pnum), |
| 610 | _arena(pt->_arena), |
| 611 | _nodes(pt->_nodes), |
| 612 | _types(pt->_types) |
| 613 | { |
| 614 | init_con_caches(); |
| 615 | #ifndef PRODUCT |
| 616 | clear_progress(); |
| 617 | clear_transforms(); |
| 618 | set_allow_progress(true); |
| 619 | #endif |
| 620 | } |
| 621 | |
| 622 | void PhaseTransform::init_con_caches() { |
| 623 | memset(_icons,0,sizeof(_icons)); |
| 624 | memset(_lcons,0,sizeof(_lcons)); |
| 625 | memset(_zcons,0,sizeof(_zcons)); |
| 626 | } |
| 627 | |
| 628 | |
| 629 | //--------------------------------find_int_type-------------------------------- |
| 630 | const TypeInt* PhaseTransform::find_int_type(Node* n) { |
| 631 | if (n == NULL) return NULL; |
| 632 | // Call type_or_null(n) to determine node's type since we might be in |
| 633 | // parse phase and call n->Value() may return wrong type. |
| 634 | // (For example, a phi node at the beginning of loop parsing is not ready.) |
| 635 | const Type* t = type_or_null(n); |
| 636 | if (t == NULL) return NULL; |
| 637 | return t->isa_int(); |
| 638 | } |
| 639 | |
| 640 | |
| 641 | //-------------------------------find_long_type-------------------------------- |
| 642 | const TypeLong* PhaseTransform::find_long_type(Node* n) { |
| 643 | if (n == NULL) return NULL; |
| 644 | // (See comment above on type_or_null.) |
| 645 | const Type* t = type_or_null(n); |
| 646 | if (t == NULL) return NULL; |
| 647 | return t->isa_long(); |
| 648 | } |
| 649 | |
| 650 | |
| 651 | #ifndef PRODUCT |
| 652 | void PhaseTransform::dump_old2new_map() const { |
| 653 | _nodes.dump(); |
| 654 | } |
| 655 | |
| 656 | void PhaseTransform::dump_new( uint nidx ) const { |
| 657 | for( uint i=0; i<_nodes.Size(); i++ ) |
| 658 | if( _nodes[i] && _nodes[i]->_idx == nidx ) { |
| 659 | _nodes[i]->dump(); |
| 660 | tty->cr(); |
| 661 | tty->print_cr("Old index= %d" ,i); |
| 662 | return; |
| 663 | } |
| 664 | tty->print_cr("Node %d not found in the new indices" , nidx); |
| 665 | } |
| 666 | |
| 667 | //------------------------------dump_types------------------------------------- |
| 668 | void PhaseTransform::dump_types( ) const { |
| 669 | _types.dump(); |
| 670 | } |
| 671 | |
| 672 | //------------------------------dump_nodes_and_types--------------------------- |
| 673 | void PhaseTransform::dump_nodes_and_types(const Node *root, uint depth, bool only_ctrl) { |
| 674 | VectorSet visited(Thread::current()->resource_area()); |
| 675 | dump_nodes_and_types_recur( root, depth, only_ctrl, visited ); |
| 676 | } |
| 677 | |
| 678 | //------------------------------dump_nodes_and_types_recur--------------------- |
| 679 | void PhaseTransform::dump_nodes_and_types_recur( const Node *n, uint depth, bool only_ctrl, VectorSet &visited) { |
| 680 | if( !n ) return; |
| 681 | if( depth == 0 ) return; |
| 682 | if( visited.test_set(n->_idx) ) return; |
| 683 | for( uint i=0; i<n->len(); i++ ) { |
| 684 | if( only_ctrl && !(n->is_Region()) && i != TypeFunc::Control ) continue; |
| 685 | dump_nodes_and_types_recur( n->in(i), depth-1, only_ctrl, visited ); |
| 686 | } |
| 687 | n->dump(); |
| 688 | if (type_or_null(n) != NULL) { |
| 689 | tty->print(" " ); type(n)->dump(); tty->cr(); |
| 690 | } |
| 691 | } |
| 692 | |
| 693 | #endif |
| 694 | |
| 695 | |
| 696 | //============================================================================= |
| 697 | //------------------------------PhaseValues------------------------------------ |
| 698 | // Set minimum table size to "255" |
| 699 | PhaseValues::PhaseValues( Arena *arena, uint est_max_size ) : PhaseTransform(arena, GVN), _table(arena, est_max_size) { |
| 700 | NOT_PRODUCT( clear_new_values(); ) |
| 701 | } |
| 702 | |
| 703 | //------------------------------PhaseValues------------------------------------ |
| 704 | // Set minimum table size to "255" |
| 705 | PhaseValues::PhaseValues( PhaseValues *ptv ) : PhaseTransform( ptv, GVN ), |
| 706 | _table(&ptv->_table) { |
| 707 | NOT_PRODUCT( clear_new_values(); ) |
| 708 | } |
| 709 | |
| 710 | //------------------------------PhaseValues------------------------------------ |
| 711 | // Used by +VerifyOpto. Clear out hash table but copy _types array. |
| 712 | PhaseValues::PhaseValues( PhaseValues *ptv, const char *dummy ) : PhaseTransform( ptv, GVN ), |
| 713 | _table(ptv->arena(),ptv->_table.size()) { |
| 714 | NOT_PRODUCT( clear_new_values(); ) |
| 715 | } |
| 716 | |
| 717 | //------------------------------~PhaseValues----------------------------------- |
| 718 | #ifndef PRODUCT |
| 719 | PhaseValues::~PhaseValues() { |
| 720 | _table.dump(); |
| 721 | |
| 722 | // Statistics for value progress and efficiency |
| 723 | if( PrintCompilation && Verbose && WizardMode ) { |
| 724 | tty->print("\n%sValues: %d nodes ---> %d/%d (%d)" , |
| 725 | is_IterGVN() ? "Iter" : " " , C->unique(), made_progress(), made_transforms(), made_new_values()); |
| 726 | if( made_transforms() != 0 ) { |
| 727 | tty->print_cr(" ratio %f" , made_progress()/(float)made_transforms() ); |
| 728 | } else { |
| 729 | tty->cr(); |
| 730 | } |
| 731 | } |
| 732 | } |
| 733 | #endif |
| 734 | |
| 735 | //------------------------------makecon---------------------------------------- |
| 736 | ConNode* PhaseTransform::makecon(const Type *t) { |
| 737 | assert(t->singleton(), "must be a constant" ); |
| 738 | assert(!t->empty() || t == Type::TOP, "must not be vacuous range" ); |
| 739 | switch (t->base()) { // fast paths |
| 740 | case Type::Half: |
| 741 | case Type::Top: return (ConNode*) C->top(); |
| 742 | case Type::Int: return intcon( t->is_int()->get_con() ); |
| 743 | case Type::Long: return longcon( t->is_long()->get_con() ); |
| 744 | default: break; |
| 745 | } |
| 746 | if (t->is_zero_type()) |
| 747 | return zerocon(t->basic_type()); |
| 748 | return uncached_makecon(t); |
| 749 | } |
| 750 | |
| 751 | //--------------------------uncached_makecon----------------------------------- |
| 752 | // Make an idealized constant - one of ConINode, ConPNode, etc. |
| 753 | ConNode* PhaseValues::uncached_makecon(const Type *t) { |
| 754 | assert(t->singleton(), "must be a constant" ); |
| 755 | ConNode* x = ConNode::make(t); |
| 756 | ConNode* k = (ConNode*)hash_find_insert(x); // Value numbering |
| 757 | if (k == NULL) { |
| 758 | set_type(x, t); // Missed, provide type mapping |
| 759 | GrowableArray<Node_Notes*>* nna = C->node_note_array(); |
| 760 | if (nna != NULL) { |
| 761 | Node_Notes* loc = C->locate_node_notes(nna, x->_idx, true); |
| 762 | loc->clear(); // do not put debug info on constants |
| 763 | } |
| 764 | } else { |
| 765 | x->destruct(); // Hit, destroy duplicate constant |
| 766 | x = k; // use existing constant |
| 767 | } |
| 768 | return x; |
| 769 | } |
| 770 | |
| 771 | //------------------------------intcon----------------------------------------- |
| 772 | // Fast integer constant. Same as "transform(new ConINode(TypeInt::make(i)))" |
| 773 | ConINode* PhaseTransform::intcon(jint i) { |
| 774 | // Small integer? Check cache! Check that cached node is not dead |
| 775 | if (i >= _icon_min && i <= _icon_max) { |
| 776 | ConINode* icon = _icons[i-_icon_min]; |
| 777 | if (icon != NULL && icon->in(TypeFunc::Control) != NULL) |
| 778 | return icon; |
| 779 | } |
| 780 | ConINode* icon = (ConINode*) uncached_makecon(TypeInt::make(i)); |
| 781 | assert(icon->is_Con(), "" ); |
| 782 | if (i >= _icon_min && i <= _icon_max) |
| 783 | _icons[i-_icon_min] = icon; // Cache small integers |
| 784 | return icon; |
| 785 | } |
| 786 | |
| 787 | //------------------------------longcon---------------------------------------- |
| 788 | // Fast long constant. |
| 789 | ConLNode* PhaseTransform::longcon(jlong l) { |
| 790 | // Small integer? Check cache! Check that cached node is not dead |
| 791 | if (l >= _lcon_min && l <= _lcon_max) { |
| 792 | ConLNode* lcon = _lcons[l-_lcon_min]; |
| 793 | if (lcon != NULL && lcon->in(TypeFunc::Control) != NULL) |
| 794 | return lcon; |
| 795 | } |
| 796 | ConLNode* lcon = (ConLNode*) uncached_makecon(TypeLong::make(l)); |
| 797 | assert(lcon->is_Con(), "" ); |
| 798 | if (l >= _lcon_min && l <= _lcon_max) |
| 799 | _lcons[l-_lcon_min] = lcon; // Cache small integers |
| 800 | return lcon; |
| 801 | } |
| 802 | |
| 803 | //------------------------------zerocon----------------------------------------- |
| 804 | // Fast zero or null constant. Same as "transform(ConNode::make(Type::get_zero_type(bt)))" |
| 805 | ConNode* PhaseTransform::zerocon(BasicType bt) { |
| 806 | assert((uint)bt <= _zcon_max, "domain check" ); |
| 807 | ConNode* zcon = _zcons[bt]; |
| 808 | if (zcon != NULL && zcon->in(TypeFunc::Control) != NULL) |
| 809 | return zcon; |
| 810 | zcon = (ConNode*) uncached_makecon(Type::get_zero_type(bt)); |
| 811 | _zcons[bt] = zcon; |
| 812 | return zcon; |
| 813 | } |
| 814 | |
| 815 | |
| 816 | |
| 817 | //============================================================================= |
| 818 | Node* PhaseGVN::apply_ideal(Node* k, bool can_reshape) { |
| 819 | Node* i = BarrierSet::barrier_set()->barrier_set_c2()->ideal_node(this, k, can_reshape); |
| 820 | if (i == NULL) { |
| 821 | i = k->Ideal(this, can_reshape); |
| 822 | } |
| 823 | return i; |
| 824 | } |
| 825 | |
| 826 | Node* PhaseGVN::apply_identity(Node* k) { |
| 827 | Node* i = BarrierSet::barrier_set()->barrier_set_c2()->identity_node(this, k); |
| 828 | if (i == k) { |
| 829 | i = k->Identity(this); |
| 830 | } |
| 831 | return i; |
| 832 | } |
| 833 | |
| 834 | //------------------------------transform-------------------------------------- |
| 835 | // Return a node which computes the same function as this node, but in a |
| 836 | // faster or cheaper fashion. |
| 837 | Node *PhaseGVN::transform( Node *n ) { |
| 838 | return transform_no_reclaim(n); |
| 839 | } |
| 840 | |
| 841 | //------------------------------transform-------------------------------------- |
| 842 | // Return a node which computes the same function as this node, but |
| 843 | // in a faster or cheaper fashion. |
| 844 | Node *PhaseGVN::transform_no_reclaim( Node *n ) { |
| 845 | NOT_PRODUCT( set_transforms(); ) |
| 846 | |
| 847 | // Apply the Ideal call in a loop until it no longer applies |
| 848 | Node *k = n; |
| 849 | NOT_PRODUCT( uint loop_count = 0; ) |
| 850 | while( 1 ) { |
| 851 | Node *i = apply_ideal(k, /*can_reshape=*/false); |
| 852 | if( !i ) break; |
| 853 | assert( i->_idx >= k->_idx, "Idealize should return new nodes, use Identity to return old nodes" ); |
| 854 | k = i; |
| 855 | assert(loop_count++ < K, "infinite loop in PhaseGVN::transform" ); |
| 856 | } |
| 857 | NOT_PRODUCT( if( loop_count != 0 ) { set_progress(); } ) |
| 858 | |
| 859 | |
| 860 | // If brand new node, make space in type array. |
| 861 | ensure_type_or_null(k); |
| 862 | |
| 863 | // Since I just called 'Value' to compute the set of run-time values |
| 864 | // for this Node, and 'Value' is non-local (and therefore expensive) I'll |
| 865 | // cache Value. Later requests for the local phase->type of this Node can |
| 866 | // use the cached Value instead of suffering with 'bottom_type'. |
| 867 | const Type *t = k->Value(this); // Get runtime Value set |
| 868 | assert(t != NULL, "value sanity" ); |
| 869 | if (type_or_null(k) != t) { |
| 870 | #ifndef PRODUCT |
| 871 | // Do not count initial visit to node as a transformation |
| 872 | if (type_or_null(k) == NULL) { |
| 873 | inc_new_values(); |
| 874 | set_progress(); |
| 875 | } |
| 876 | #endif |
| 877 | set_type(k, t); |
| 878 | // If k is a TypeNode, capture any more-precise type permanently into Node |
| 879 | k->raise_bottom_type(t); |
| 880 | } |
| 881 | |
| 882 | if( t->singleton() && !k->is_Con() ) { |
| 883 | NOT_PRODUCT( set_progress(); ) |
| 884 | return makecon(t); // Turn into a constant |
| 885 | } |
| 886 | |
| 887 | // Now check for Identities |
| 888 | Node *i = apply_identity(k); // Look for a nearby replacement |
| 889 | if( i != k ) { // Found? Return replacement! |
| 890 | NOT_PRODUCT( set_progress(); ) |
| 891 | return i; |
| 892 | } |
| 893 | |
| 894 | // Global Value Numbering |
| 895 | i = hash_find_insert(k); // Insert if new |
| 896 | if( i && (i != k) ) { |
| 897 | // Return the pre-existing node |
| 898 | NOT_PRODUCT( set_progress(); ) |
| 899 | return i; |
| 900 | } |
| 901 | |
| 902 | // Return Idealized original |
| 903 | return k; |
| 904 | } |
| 905 | |
| 906 | bool PhaseGVN::is_dominator_helper(Node *d, Node *n, bool linear_only) { |
| 907 | if (d->is_top() || n->is_top()) { |
| 908 | return false; |
| 909 | } |
| 910 | assert(d->is_CFG() && n->is_CFG(), "must have CFG nodes" ); |
| 911 | int i = 0; |
| 912 | while (d != n) { |
| 913 | n = IfNode::up_one_dom(n, linear_only); |
| 914 | i++; |
| 915 | if (n == NULL || i >= 10) { |
| 916 | return false; |
| 917 | } |
| 918 | } |
| 919 | return true; |
| 920 | } |
| 921 | |
| 922 | #ifdef ASSERT |
| 923 | //------------------------------dead_loop_check-------------------------------- |
| 924 | // Check for a simple dead loop when a data node references itself directly |
| 925 | // or through an other data node excluding cons and phis. |
| 926 | void PhaseGVN::dead_loop_check( Node *n ) { |
| 927 | // Phi may reference itself in a loop |
| 928 | if (n != NULL && !n->is_dead_loop_safe() && !n->is_CFG()) { |
| 929 | // Do 2 levels check and only data inputs. |
| 930 | bool no_dead_loop = true; |
| 931 | uint cnt = n->req(); |
| 932 | for (uint i = 1; i < cnt && no_dead_loop; i++) { |
| 933 | Node *in = n->in(i); |
| 934 | if (in == n) { |
| 935 | no_dead_loop = false; |
| 936 | } else if (in != NULL && !in->is_dead_loop_safe()) { |
| 937 | uint icnt = in->req(); |
| 938 | for (uint j = 1; j < icnt && no_dead_loop; j++) { |
| 939 | if (in->in(j) == n || in->in(j) == in) |
| 940 | no_dead_loop = false; |
| 941 | } |
| 942 | } |
| 943 | } |
| 944 | if (!no_dead_loop) n->dump(3); |
| 945 | assert(no_dead_loop, "dead loop detected" ); |
| 946 | } |
| 947 | } |
| 948 | #endif |
| 949 | |
| 950 | //============================================================================= |
| 951 | //------------------------------PhaseIterGVN----------------------------------- |
| 952 | // Initialize hash table to fresh and clean for +VerifyOpto |
| 953 | PhaseIterGVN::PhaseIterGVN( PhaseIterGVN *igvn, const char *dummy ) : PhaseGVN(igvn,dummy), |
| 954 | _delay_transform(false), |
| 955 | _stack(C->live_nodes() >> 1), |
| 956 | _worklist( ) { |
| 957 | } |
| 958 | |
| 959 | //------------------------------PhaseIterGVN----------------------------------- |
| 960 | // Initialize with previous PhaseIterGVN info; used by PhaseCCP |
| 961 | PhaseIterGVN::PhaseIterGVN( PhaseIterGVN *igvn ) : PhaseGVN(igvn), |
| 962 | _delay_transform(igvn->_delay_transform), |
| 963 | _stack( igvn->_stack ), |
| 964 | _worklist( igvn->_worklist ) |
| 965 | { |
| 966 | } |
| 967 | |
| 968 | //------------------------------PhaseIterGVN----------------------------------- |
| 969 | // Initialize with previous PhaseGVN info from Parser |
| 970 | PhaseIterGVN::PhaseIterGVN( PhaseGVN *gvn ) : PhaseGVN(gvn), |
| 971 | _delay_transform(false), |
| 972 | // TODO: Before incremental inlining it was allocated only once and it was fine. Now that |
| 973 | // the constructor is used in incremental inlining, this consumes too much memory: |
| 974 | // _stack(C->live_nodes() >> 1), |
| 975 | // So, as a band-aid, we replace this by: |
| 976 | _stack(C->comp_arena(), 32), |
| 977 | _worklist(*C->for_igvn()) |
| 978 | { |
| 979 | uint max; |
| 980 | |
| 981 | // Dead nodes in the hash table inherited from GVN were not treated as |
| 982 | // roots during def-use info creation; hence they represent an invisible |
| 983 | // use. Clear them out. |
| 984 | max = _table.size(); |
| 985 | for( uint i = 0; i < max; ++i ) { |
| 986 | Node *n = _table.at(i); |
| 987 | if(n != NULL && n != _table.sentinel() && n->outcnt() == 0) { |
| 988 | if( n->is_top() ) continue; |
| 989 | assert( false, "Parse::remove_useless_nodes missed this node" ); |
| 990 | hash_delete(n); |
| 991 | } |
| 992 | } |
| 993 | |
| 994 | // Any Phis or Regions on the worklist probably had uses that could not |
| 995 | // make more progress because the uses were made while the Phis and Regions |
| 996 | // were in half-built states. Put all uses of Phis and Regions on worklist. |
| 997 | max = _worklist.size(); |
| 998 | for( uint j = 0; j < max; j++ ) { |
| 999 | Node *n = _worklist.at(j); |
| 1000 | uint uop = n->Opcode(); |
| 1001 | if( uop == Op_Phi || uop == Op_Region || |
| 1002 | n->is_Type() || |
| 1003 | n->is_Mem() ) |
| 1004 | add_users_to_worklist(n); |
| 1005 | } |
| 1006 | } |
| 1007 | |
| 1008 | /** |
| 1009 | * Initialize worklist for each node. |
| 1010 | */ |
| 1011 | void PhaseIterGVN::init_worklist(Node* first) { |
| 1012 | Unique_Node_List to_process; |
| 1013 | to_process.push(first); |
| 1014 | |
| 1015 | while (to_process.size() > 0) { |
| 1016 | Node* n = to_process.pop(); |
| 1017 | if (!_worklist.member(n)) { |
| 1018 | _worklist.push(n); |
| 1019 | |
| 1020 | uint cnt = n->req(); |
| 1021 | for(uint i = 0; i < cnt; i++) { |
| 1022 | Node* m = n->in(i); |
| 1023 | if (m != NULL) { |
| 1024 | to_process.push(m); |
| 1025 | } |
| 1026 | } |
| 1027 | } |
| 1028 | } |
| 1029 | } |
| 1030 | |
| 1031 | #ifndef PRODUCT |
| 1032 | void PhaseIterGVN::verify_step(Node* n) { |
| 1033 | if (VerifyIterativeGVN) { |
| 1034 | _verify_window[_verify_counter % _verify_window_size] = n; |
| 1035 | ++_verify_counter; |
| 1036 | ResourceMark rm; |
| 1037 | ResourceArea* area = Thread::current()->resource_area(); |
| 1038 | VectorSet old_space(area), new_space(area); |
| 1039 | if (C->unique() < 1000 || |
| 1040 | 0 == _verify_counter % (C->unique() < 10000 ? 10 : 100)) { |
| 1041 | ++_verify_full_passes; |
| 1042 | Node::verify_recur(C->root(), -1, old_space, new_space); |
| 1043 | } |
| 1044 | const int verify_depth = 4; |
| 1045 | for ( int i = 0; i < _verify_window_size; i++ ) { |
| 1046 | Node* n = _verify_window[i]; |
| 1047 | if ( n == NULL ) continue; |
| 1048 | if( n->in(0) == NodeSentinel ) { // xform_idom |
| 1049 | _verify_window[i] = n->in(1); |
| 1050 | --i; continue; |
| 1051 | } |
| 1052 | // Typical fanout is 1-2, so this call visits about 6 nodes. |
| 1053 | Node::verify_recur(n, verify_depth, old_space, new_space); |
| 1054 | } |
| 1055 | } |
| 1056 | } |
| 1057 | |
| 1058 | void PhaseIterGVN::trace_PhaseIterGVN(Node* n, Node* nn, const Type* oldtype) { |
| 1059 | if (TraceIterativeGVN) { |
| 1060 | uint wlsize = _worklist.size(); |
| 1061 | const Type* newtype = type_or_null(n); |
| 1062 | if (nn != n) { |
| 1063 | // print old node |
| 1064 | tty->print("< " ); |
| 1065 | if (oldtype != newtype && oldtype != NULL) { |
| 1066 | oldtype->dump(); |
| 1067 | } |
| 1068 | do { tty->print("\t" ); } while (tty->position() < 16); |
| 1069 | tty->print("<" ); |
| 1070 | n->dump(); |
| 1071 | } |
| 1072 | if (oldtype != newtype || nn != n) { |
| 1073 | // print new node and/or new type |
| 1074 | if (oldtype == NULL) { |
| 1075 | tty->print("* " ); |
| 1076 | } else if (nn != n) { |
| 1077 | tty->print("> " ); |
| 1078 | } else { |
| 1079 | tty->print("= " ); |
| 1080 | } |
| 1081 | if (newtype == NULL) { |
| 1082 | tty->print("null" ); |
| 1083 | } else { |
| 1084 | newtype->dump(); |
| 1085 | } |
| 1086 | do { tty->print("\t" ); } while (tty->position() < 16); |
| 1087 | nn->dump(); |
| 1088 | } |
| 1089 | if (Verbose && wlsize < _worklist.size()) { |
| 1090 | tty->print(" Push {" ); |
| 1091 | while (wlsize != _worklist.size()) { |
| 1092 | Node* pushed = _worklist.at(wlsize++); |
| 1093 | tty->print(" %d" , pushed->_idx); |
| 1094 | } |
| 1095 | tty->print_cr(" }" ); |
| 1096 | } |
| 1097 | if (nn != n) { |
| 1098 | // ignore n, it might be subsumed |
| 1099 | verify_step((Node*) NULL); |
| 1100 | } |
| 1101 | } |
| 1102 | } |
| 1103 | |
| 1104 | void PhaseIterGVN::init_verifyPhaseIterGVN() { |
| 1105 | _verify_counter = 0; |
| 1106 | _verify_full_passes = 0; |
| 1107 | for (int i = 0; i < _verify_window_size; i++) { |
| 1108 | _verify_window[i] = NULL; |
| 1109 | } |
| 1110 | #ifdef ASSERT |
| 1111 | // Verify that all modified nodes are on _worklist |
| 1112 | Unique_Node_List* modified_list = C->modified_nodes(); |
| 1113 | while (modified_list != NULL && modified_list->size()) { |
| 1114 | Node* n = modified_list->pop(); |
| 1115 | if (n->outcnt() != 0 && !n->is_Con() && !_worklist.member(n)) { |
| 1116 | n->dump(); |
| 1117 | assert(false, "modified node is not on IGVN._worklist" ); |
| 1118 | } |
| 1119 | } |
| 1120 | #endif |
| 1121 | } |
| 1122 | |
| 1123 | void PhaseIterGVN::verify_PhaseIterGVN() { |
| 1124 | #ifdef ASSERT |
| 1125 | // Verify nodes with changed inputs. |
| 1126 | Unique_Node_List* modified_list = C->modified_nodes(); |
| 1127 | while (modified_list != NULL && modified_list->size()) { |
| 1128 | Node* n = modified_list->pop(); |
| 1129 | if (n->outcnt() != 0 && !n->is_Con()) { // skip dead and Con nodes |
| 1130 | n->dump(); |
| 1131 | assert(false, "modified node was not processed by IGVN.transform_old()" ); |
| 1132 | } |
| 1133 | } |
| 1134 | #endif |
| 1135 | |
| 1136 | C->verify_graph_edges(); |
| 1137 | if( VerifyOpto && allow_progress() ) { |
| 1138 | // Must turn off allow_progress to enable assert and break recursion |
| 1139 | C->root()->verify(); |
| 1140 | { // Check if any progress was missed using IterGVN |
| 1141 | // Def-Use info enables transformations not attempted in wash-pass |
| 1142 | // e.g. Region/Phi cleanup, ... |
| 1143 | // Null-check elision -- may not have reached fixpoint |
| 1144 | // do not propagate to dominated nodes |
| 1145 | ResourceMark rm; |
| 1146 | PhaseIterGVN igvn2(this,"Verify" ); // Fresh and clean! |
| 1147 | // Fill worklist completely |
| 1148 | igvn2.init_worklist(C->root()); |
| 1149 | |
| 1150 | igvn2.set_allow_progress(false); |
| 1151 | igvn2.optimize(); |
| 1152 | igvn2.set_allow_progress(true); |
| 1153 | } |
| 1154 | } |
| 1155 | if (VerifyIterativeGVN && PrintOpto) { |
| 1156 | if (_verify_counter == _verify_full_passes) { |
| 1157 | tty->print_cr("VerifyIterativeGVN: %d transforms and verify passes" , |
| 1158 | (int) _verify_full_passes); |
| 1159 | } else { |
| 1160 | tty->print_cr("VerifyIterativeGVN: %d transforms, %d full verify passes" , |
| 1161 | (int) _verify_counter, (int) _verify_full_passes); |
| 1162 | } |
| 1163 | } |
| 1164 | |
| 1165 | #ifdef ASSERT |
| 1166 | while (modified_list->size()) { |
| 1167 | Node* n = modified_list->pop(); |
| 1168 | n->dump(); |
| 1169 | assert(false, "VerifyIterativeGVN: new modified node was added" ); |
| 1170 | } |
| 1171 | #endif |
| 1172 | } |
| 1173 | #endif /* PRODUCT */ |
| 1174 | |
| 1175 | #ifdef ASSERT |
| 1176 | /** |
| 1177 | * Dumps information that can help to debug the problem. A debug |
| 1178 | * build fails with an assert. |
| 1179 | */ |
| 1180 | void PhaseIterGVN::dump_infinite_loop_info(Node* n) { |
| 1181 | n->dump(4); |
| 1182 | _worklist.dump(); |
| 1183 | assert(false, "infinite loop in PhaseIterGVN::optimize" ); |
| 1184 | } |
| 1185 | |
| 1186 | /** |
| 1187 | * Prints out information about IGVN if the 'verbose' option is used. |
| 1188 | */ |
| 1189 | void PhaseIterGVN::trace_PhaseIterGVN_verbose(Node* n, int num_processed) { |
| 1190 | if (TraceIterativeGVN && Verbose) { |
| 1191 | tty->print(" Pop " ); |
| 1192 | n->dump(); |
| 1193 | if ((num_processed % 100) == 0) { |
| 1194 | _worklist.print_set(); |
| 1195 | } |
| 1196 | } |
| 1197 | } |
| 1198 | #endif /* ASSERT */ |
| 1199 | |
| 1200 | void PhaseIterGVN::optimize() { |
| 1201 | DEBUG_ONLY(uint num_processed = 0;) |
| 1202 | NOT_PRODUCT(init_verifyPhaseIterGVN();) |
| 1203 | |
| 1204 | uint loop_count = 0; |
| 1205 | // Pull from worklist and transform the node. If the node has changed, |
| 1206 | // update edge info and put uses on worklist. |
| 1207 | while(_worklist.size()) { |
| 1208 | if (C->check_node_count(NodeLimitFudgeFactor * 2, "Out of nodes" )) { |
| 1209 | return; |
| 1210 | } |
| 1211 | Node* n = _worklist.pop(); |
| 1212 | if (++loop_count >= K * C->live_nodes()) { |
| 1213 | DEBUG_ONLY(dump_infinite_loop_info(n);) |
| 1214 | C->record_method_not_compilable("infinite loop in PhaseIterGVN::optimize" ); |
| 1215 | return; |
| 1216 | } |
| 1217 | DEBUG_ONLY(trace_PhaseIterGVN_verbose(n, num_processed++);) |
| 1218 | if (n->outcnt() != 0) { |
| 1219 | NOT_PRODUCT(const Type* oldtype = type_or_null(n)); |
| 1220 | // Do the transformation |
| 1221 | Node* nn = transform_old(n); |
| 1222 | NOT_PRODUCT(trace_PhaseIterGVN(n, nn, oldtype);) |
| 1223 | } else if (!n->is_top()) { |
| 1224 | remove_dead_node(n); |
| 1225 | } |
| 1226 | } |
| 1227 | NOT_PRODUCT(verify_PhaseIterGVN();) |
| 1228 | } |
| 1229 | |
| 1230 | |
| 1231 | /** |
| 1232 | * Register a new node with the optimizer. Update the types array, the def-use |
| 1233 | * info. Put on worklist. |
| 1234 | */ |
| 1235 | Node* PhaseIterGVN::register_new_node_with_optimizer(Node* n, Node* orig) { |
| 1236 | set_type_bottom(n); |
| 1237 | _worklist.push(n); |
| 1238 | if (orig != NULL) C->copy_node_notes_to(n, orig); |
| 1239 | return n; |
| 1240 | } |
| 1241 | |
| 1242 | //------------------------------transform-------------------------------------- |
| 1243 | // Non-recursive: idealize Node 'n' with respect to its inputs and its value |
| 1244 | Node *PhaseIterGVN::transform( Node *n ) { |
| 1245 | if (_delay_transform) { |
| 1246 | // Register the node but don't optimize for now |
| 1247 | register_new_node_with_optimizer(n); |
| 1248 | return n; |
| 1249 | } |
| 1250 | |
| 1251 | // If brand new node, make space in type array, and give it a type. |
| 1252 | ensure_type_or_null(n); |
| 1253 | if (type_or_null(n) == NULL) { |
| 1254 | set_type_bottom(n); |
| 1255 | } |
| 1256 | |
| 1257 | return transform_old(n); |
| 1258 | } |
| 1259 | |
| 1260 | Node *PhaseIterGVN::transform_old(Node* n) { |
| 1261 | DEBUG_ONLY(uint loop_count = 0;); |
| 1262 | NOT_PRODUCT(set_transforms()); |
| 1263 | |
| 1264 | // Remove 'n' from hash table in case it gets modified |
| 1265 | _table.hash_delete(n); |
| 1266 | if (VerifyIterativeGVN) { |
| 1267 | assert(!_table.find_index(n->_idx), "found duplicate entry in table" ); |
| 1268 | } |
| 1269 | |
| 1270 | // Apply the Ideal call in a loop until it no longer applies |
| 1271 | Node* k = n; |
| 1272 | DEBUG_ONLY(dead_loop_check(k);) |
| 1273 | DEBUG_ONLY(bool is_new = (k->outcnt() == 0);) |
| 1274 | C->remove_modified_node(k); |
| 1275 | Node* i = apply_ideal(k, /*can_reshape=*/true); |
| 1276 | assert(i != k || is_new || i->outcnt() > 0, "don't return dead nodes" ); |
| 1277 | #ifndef PRODUCT |
| 1278 | verify_step(k); |
| 1279 | if (i && VerifyOpto ) { |
| 1280 | if (!allow_progress()) { |
| 1281 | if (i->is_Add() && (i->outcnt() == 1)) { |
| 1282 | // Switched input to left side because this is the only use |
| 1283 | } else if (i->is_If() && (i->in(0) == NULL)) { |
| 1284 | // This IF is dead because it is dominated by an equivalent IF When |
| 1285 | // dominating if changed, info is not propagated sparsely to 'this' |
| 1286 | // Propagating this info further will spuriously identify other |
| 1287 | // progress. |
| 1288 | return i; |
| 1289 | } else |
| 1290 | set_progress(); |
| 1291 | } else { |
| 1292 | set_progress(); |
| 1293 | } |
| 1294 | } |
| 1295 | #endif |
| 1296 | |
| 1297 | while (i != NULL) { |
| 1298 | #ifdef ASSERT |
| 1299 | if (loop_count >= K) { |
| 1300 | dump_infinite_loop_info(i); |
| 1301 | } |
| 1302 | loop_count++; |
| 1303 | #endif |
| 1304 | assert((i->_idx >= k->_idx) || i->is_top(), "Idealize should return new nodes, use Identity to return old nodes" ); |
| 1305 | // Made a change; put users of original Node on worklist |
| 1306 | add_users_to_worklist(k); |
| 1307 | // Replacing root of transform tree? |
| 1308 | if (k != i) { |
| 1309 | // Make users of old Node now use new. |
| 1310 | subsume_node(k, i); |
| 1311 | k = i; |
| 1312 | } |
| 1313 | DEBUG_ONLY(dead_loop_check(k);) |
| 1314 | // Try idealizing again |
| 1315 | DEBUG_ONLY(is_new = (k->outcnt() == 0);) |
| 1316 | C->remove_modified_node(k); |
| 1317 | i = apply_ideal(k, /*can_reshape=*/true); |
| 1318 | assert(i != k || is_new || (i->outcnt() > 0), "don't return dead nodes" ); |
| 1319 | #ifndef PRODUCT |
| 1320 | verify_step(k); |
| 1321 | if (i && VerifyOpto) { |
| 1322 | set_progress(); |
| 1323 | } |
| 1324 | #endif |
| 1325 | } |
| 1326 | |
| 1327 | // If brand new node, make space in type array. |
| 1328 | ensure_type_or_null(k); |
| 1329 | |
| 1330 | // See what kind of values 'k' takes on at runtime |
| 1331 | const Type* t = k->Value(this); |
| 1332 | assert(t != NULL, "value sanity" ); |
| 1333 | |
| 1334 | // Since I just called 'Value' to compute the set of run-time values |
| 1335 | // for this Node, and 'Value' is non-local (and therefore expensive) I'll |
| 1336 | // cache Value. Later requests for the local phase->type of this Node can |
| 1337 | // use the cached Value instead of suffering with 'bottom_type'. |
| 1338 | if (type_or_null(k) != t) { |
| 1339 | #ifndef PRODUCT |
| 1340 | inc_new_values(); |
| 1341 | set_progress(); |
| 1342 | #endif |
| 1343 | set_type(k, t); |
| 1344 | // If k is a TypeNode, capture any more-precise type permanently into Node |
| 1345 | k->raise_bottom_type(t); |
| 1346 | // Move users of node to worklist |
| 1347 | add_users_to_worklist(k); |
| 1348 | } |
| 1349 | // If 'k' computes a constant, replace it with a constant |
| 1350 | if (t->singleton() && !k->is_Con()) { |
| 1351 | NOT_PRODUCT(set_progress();) |
| 1352 | Node* con = makecon(t); // Make a constant |
| 1353 | add_users_to_worklist(k); |
| 1354 | subsume_node(k, con); // Everybody using k now uses con |
| 1355 | return con; |
| 1356 | } |
| 1357 | |
| 1358 | // Now check for Identities |
| 1359 | i = apply_identity(k); // Look for a nearby replacement |
| 1360 | if (i != k) { // Found? Return replacement! |
| 1361 | NOT_PRODUCT(set_progress();) |
| 1362 | add_users_to_worklist(k); |
| 1363 | subsume_node(k, i); // Everybody using k now uses i |
| 1364 | return i; |
| 1365 | } |
| 1366 | |
| 1367 | // Global Value Numbering |
| 1368 | i = hash_find_insert(k); // Check for pre-existing node |
| 1369 | if (i && (i != k)) { |
| 1370 | // Return the pre-existing node if it isn't dead |
| 1371 | NOT_PRODUCT(set_progress();) |
| 1372 | add_users_to_worklist(k); |
| 1373 | subsume_node(k, i); // Everybody using k now uses i |
| 1374 | return i; |
| 1375 | } |
| 1376 | |
| 1377 | // Return Idealized original |
| 1378 | return k; |
| 1379 | } |
| 1380 | |
| 1381 | //---------------------------------saturate------------------------------------ |
| 1382 | const Type* PhaseIterGVN::saturate(const Type* new_type, const Type* old_type, |
| 1383 | const Type* limit_type) const { |
| 1384 | return new_type->narrow(old_type); |
| 1385 | } |
| 1386 | |
| 1387 | //------------------------------remove_globally_dead_node---------------------- |
| 1388 | // Kill a globally dead Node. All uses are also globally dead and are |
| 1389 | // aggressively trimmed. |
| 1390 | void PhaseIterGVN::remove_globally_dead_node( Node *dead ) { |
| 1391 | enum DeleteProgress { |
| 1392 | PROCESS_INPUTS, |
| 1393 | PROCESS_OUTPUTS |
| 1394 | }; |
| 1395 | assert(_stack.is_empty(), "not empty" ); |
| 1396 | _stack.push(dead, PROCESS_INPUTS); |
| 1397 | |
| 1398 | while (_stack.is_nonempty()) { |
| 1399 | dead = _stack.node(); |
| 1400 | if (dead->Opcode() == Op_SafePoint) { |
| 1401 | dead->as_SafePoint()->disconnect_from_root(this); |
| 1402 | } |
| 1403 | uint progress_state = _stack.index(); |
| 1404 | assert(dead != C->root(), "killing root, eh?" ); |
| 1405 | assert(!dead->is_top(), "add check for top when pushing" ); |
| 1406 | NOT_PRODUCT( set_progress(); ) |
| 1407 | if (progress_state == PROCESS_INPUTS) { |
| 1408 | // After following inputs, continue to outputs |
| 1409 | _stack.set_index(PROCESS_OUTPUTS); |
| 1410 | if (!dead->is_Con()) { // Don't kill cons but uses |
| 1411 | bool recurse = false; |
| 1412 | // Remove from hash table |
| 1413 | _table.hash_delete( dead ); |
| 1414 | // Smash all inputs to 'dead', isolating him completely |
| 1415 | for (uint i = 0; i < dead->req(); i++) { |
| 1416 | Node *in = dead->in(i); |
| 1417 | if (in != NULL && in != C->top()) { // Points to something? |
| 1418 | int nrep = dead->replace_edge(in, NULL); // Kill edges |
| 1419 | assert((nrep > 0), "sanity" ); |
| 1420 | if (in->outcnt() == 0) { // Made input go dead? |
| 1421 | _stack.push(in, PROCESS_INPUTS); // Recursively remove |
| 1422 | recurse = true; |
| 1423 | } else if (in->outcnt() == 1 && |
| 1424 | in->has_special_unique_user()) { |
| 1425 | _worklist.push(in->unique_out()); |
| 1426 | } else if (in->outcnt() <= 2 && dead->is_Phi()) { |
| 1427 | if (in->Opcode() == Op_Region) { |
| 1428 | _worklist.push(in); |
| 1429 | } else if (in->is_Store()) { |
| 1430 | DUIterator_Fast imax, i = in->fast_outs(imax); |
| 1431 | _worklist.push(in->fast_out(i)); |
| 1432 | i++; |
| 1433 | if (in->outcnt() == 2) { |
| 1434 | _worklist.push(in->fast_out(i)); |
| 1435 | i++; |
| 1436 | } |
| 1437 | assert(!(i < imax), "sanity" ); |
| 1438 | } |
| 1439 | } else { |
| 1440 | BarrierSet::barrier_set()->barrier_set_c2()->enqueue_useful_gc_barrier(this, in); |
| 1441 | } |
| 1442 | if (ReduceFieldZeroing && dead->is_Load() && i == MemNode::Memory && |
| 1443 | in->is_Proj() && in->in(0) != NULL && in->in(0)->is_Initialize()) { |
| 1444 | // A Load that directly follows an InitializeNode is |
| 1445 | // going away. The Stores that follow are candidates |
| 1446 | // again to be captured by the InitializeNode. |
| 1447 | for (DUIterator_Fast jmax, j = in->fast_outs(jmax); j < jmax; j++) { |
| 1448 | Node *n = in->fast_out(j); |
| 1449 | if (n->is_Store()) { |
| 1450 | _worklist.push(n); |
| 1451 | } |
| 1452 | } |
| 1453 | } |
| 1454 | } // if (in != NULL && in != C->top()) |
| 1455 | } // for (uint i = 0; i < dead->req(); i++) |
| 1456 | if (recurse) { |
| 1457 | continue; |
| 1458 | } |
| 1459 | } // if (!dead->is_Con()) |
| 1460 | } // if (progress_state == PROCESS_INPUTS) |
| 1461 | |
| 1462 | // Aggressively kill globally dead uses |
| 1463 | // (Rather than pushing all the outs at once, we push one at a time, |
| 1464 | // plus the parent to resume later, because of the indefinite number |
| 1465 | // of edge deletions per loop trip.) |
| 1466 | if (dead->outcnt() > 0) { |
| 1467 | // Recursively remove output edges |
| 1468 | _stack.push(dead->raw_out(0), PROCESS_INPUTS); |
| 1469 | } else { |
| 1470 | // Finished disconnecting all input and output edges. |
| 1471 | _stack.pop(); |
| 1472 | // Remove dead node from iterative worklist |
| 1473 | _worklist.remove(dead); |
| 1474 | C->remove_modified_node(dead); |
| 1475 | // Constant node that has no out-edges and has only one in-edge from |
| 1476 | // root is usually dead. However, sometimes reshaping walk makes |
| 1477 | // it reachable by adding use edges. So, we will NOT count Con nodes |
| 1478 | // as dead to be conservative about the dead node count at any |
| 1479 | // given time. |
| 1480 | if (!dead->is_Con()) { |
| 1481 | C->record_dead_node(dead->_idx); |
| 1482 | } |
| 1483 | if (dead->is_macro()) { |
| 1484 | C->remove_macro_node(dead); |
| 1485 | } |
| 1486 | if (dead->is_expensive()) { |
| 1487 | C->remove_expensive_node(dead); |
| 1488 | } |
| 1489 | CastIINode* cast = dead->isa_CastII(); |
| 1490 | if (cast != NULL && cast->has_range_check()) { |
| 1491 | C->remove_range_check_cast(cast); |
| 1492 | } |
| 1493 | if (dead->Opcode() == Op_Opaque4) { |
| 1494 | C->remove_opaque4_node(dead); |
| 1495 | } |
| 1496 | BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); |
| 1497 | bs->unregister_potential_barrier_node(dead); |
| 1498 | } |
| 1499 | } // while (_stack.is_nonempty()) |
| 1500 | } |
| 1501 | |
| 1502 | //------------------------------subsume_node----------------------------------- |
| 1503 | // Remove users from node 'old' and add them to node 'nn'. |
| 1504 | void PhaseIterGVN::subsume_node( Node *old, Node *nn ) { |
| 1505 | if (old->Opcode() == Op_SafePoint) { |
| 1506 | old->as_SafePoint()->disconnect_from_root(this); |
| 1507 | } |
| 1508 | assert( old != hash_find(old), "should already been removed" ); |
| 1509 | assert( old != C->top(), "cannot subsume top node" ); |
| 1510 | // Copy debug or profile information to the new version: |
| 1511 | C->copy_node_notes_to(nn, old); |
| 1512 | // Move users of node 'old' to node 'nn' |
| 1513 | for (DUIterator_Last imin, i = old->last_outs(imin); i >= imin; ) { |
| 1514 | Node* use = old->last_out(i); // for each use... |
| 1515 | // use might need re-hashing (but it won't if it's a new node) |
| 1516 | rehash_node_delayed(use); |
| 1517 | // Update use-def info as well |
| 1518 | // We remove all occurrences of old within use->in, |
| 1519 | // so as to avoid rehashing any node more than once. |
| 1520 | // The hash table probe swamps any outer loop overhead. |
| 1521 | uint num_edges = 0; |
| 1522 | for (uint jmax = use->len(), j = 0; j < jmax; j++) { |
| 1523 | if (use->in(j) == old) { |
| 1524 | use->set_req(j, nn); |
| 1525 | ++num_edges; |
| 1526 | } |
| 1527 | } |
| 1528 | i -= num_edges; // we deleted 1 or more copies of this edge |
| 1529 | } |
| 1530 | |
| 1531 | // Search for instance field data PhiNodes in the same region pointing to the old |
| 1532 | // memory PhiNode and update their instance memory ids to point to the new node. |
| 1533 | if (old->is_Phi() && old->as_Phi()->type()->has_memory() && old->in(0) != NULL) { |
| 1534 | Node* region = old->in(0); |
| 1535 | for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) { |
| 1536 | PhiNode* phi = region->fast_out(i)->isa_Phi(); |
| 1537 | if (phi != NULL && phi->inst_mem_id() == (int)old->_idx) { |
| 1538 | phi->set_inst_mem_id((int)nn->_idx); |
| 1539 | } |
| 1540 | } |
| 1541 | } |
| 1542 | |
| 1543 | // Smash all inputs to 'old', isolating him completely |
| 1544 | Node *temp = new Node(1); |
| 1545 | temp->init_req(0,nn); // Add a use to nn to prevent him from dying |
| 1546 | remove_dead_node( old ); |
| 1547 | temp->del_req(0); // Yank bogus edge |
| 1548 | #ifndef PRODUCT |
| 1549 | if( VerifyIterativeGVN ) { |
| 1550 | for ( int i = 0; i < _verify_window_size; i++ ) { |
| 1551 | if ( _verify_window[i] == old ) |
| 1552 | _verify_window[i] = nn; |
| 1553 | } |
| 1554 | } |
| 1555 | #endif |
| 1556 | _worklist.remove(temp); // this can be necessary |
| 1557 | temp->destruct(); // reuse the _idx of this little guy |
| 1558 | } |
| 1559 | |
| 1560 | //------------------------------add_users_to_worklist-------------------------- |
| 1561 | void PhaseIterGVN::add_users_to_worklist0( Node *n ) { |
| 1562 | for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { |
| 1563 | _worklist.push(n->fast_out(i)); // Push on worklist |
| 1564 | } |
| 1565 | } |
| 1566 | |
| 1567 | // Return counted loop Phi if as a counted loop exit condition, cmp |
| 1568 | // compares the the induction variable with n |
| 1569 | static PhiNode* countedloop_phi_from_cmp(CmpINode* cmp, Node* n) { |
| 1570 | for (DUIterator_Fast imax, i = cmp->fast_outs(imax); i < imax; i++) { |
| 1571 | Node* bol = cmp->fast_out(i); |
| 1572 | for (DUIterator_Fast i2max, i2 = bol->fast_outs(i2max); i2 < i2max; i2++) { |
| 1573 | Node* iff = bol->fast_out(i2); |
| 1574 | if (iff->is_CountedLoopEnd()) { |
| 1575 | CountedLoopEndNode* cle = iff->as_CountedLoopEnd(); |
| 1576 | if (cle->limit() == n) { |
| 1577 | PhiNode* phi = cle->phi(); |
| 1578 | if (phi != NULL) { |
| 1579 | return phi; |
| 1580 | } |
| 1581 | } |
| 1582 | } |
| 1583 | } |
| 1584 | } |
| 1585 | return NULL; |
| 1586 | } |
| 1587 | |
| 1588 | void PhaseIterGVN::add_users_to_worklist( Node *n ) { |
| 1589 | add_users_to_worklist0(n); |
| 1590 | |
| 1591 | // Move users of node to worklist |
| 1592 | for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { |
| 1593 | Node* use = n->fast_out(i); // Get use |
| 1594 | |
| 1595 | if( use->is_Multi() || // Multi-definer? Push projs on worklist |
| 1596 | use->is_Store() ) // Enable store/load same address |
| 1597 | add_users_to_worklist0(use); |
| 1598 | |
| 1599 | // If we changed the receiver type to a call, we need to revisit |
| 1600 | // the Catch following the call. It's looking for a non-NULL |
| 1601 | // receiver to know when to enable the regular fall-through path |
| 1602 | // in addition to the NullPtrException path. |
| 1603 | if (use->is_CallDynamicJava() && n == use->in(TypeFunc::Parms)) { |
| 1604 | Node* p = use->as_CallDynamicJava()->proj_out_or_null(TypeFunc::Control); |
| 1605 | if (p != NULL) { |
| 1606 | add_users_to_worklist0(p); |
| 1607 | } |
| 1608 | } |
| 1609 | |
| 1610 | uint use_op = use->Opcode(); |
| 1611 | if(use->is_Cmp()) { // Enable CMP/BOOL optimization |
| 1612 | add_users_to_worklist(use); // Put Bool on worklist |
| 1613 | if (use->outcnt() > 0) { |
| 1614 | Node* bol = use->raw_out(0); |
| 1615 | if (bol->outcnt() > 0) { |
| 1616 | Node* iff = bol->raw_out(0); |
| 1617 | if (iff->outcnt() == 2) { |
| 1618 | // Look for the 'is_x2logic' pattern: "x ? : 0 : 1" and put the |
| 1619 | // phi merging either 0 or 1 onto the worklist |
| 1620 | Node* ifproj0 = iff->raw_out(0); |
| 1621 | Node* ifproj1 = iff->raw_out(1); |
| 1622 | if (ifproj0->outcnt() > 0 && ifproj1->outcnt() > 0) { |
| 1623 | Node* region0 = ifproj0->raw_out(0); |
| 1624 | Node* region1 = ifproj1->raw_out(0); |
| 1625 | if( region0 == region1 ) |
| 1626 | add_users_to_worklist0(region0); |
| 1627 | } |
| 1628 | } |
| 1629 | } |
| 1630 | } |
| 1631 | if (use_op == Op_CmpI) { |
| 1632 | Node* phi = countedloop_phi_from_cmp((CmpINode*)use, n); |
| 1633 | if (phi != NULL) { |
| 1634 | // If an opaque node feeds into the limit condition of a |
| 1635 | // CountedLoop, we need to process the Phi node for the |
| 1636 | // induction variable when the opaque node is removed: |
| 1637 | // the range of values taken by the Phi is now known and |
| 1638 | // so its type is also known. |
| 1639 | _worklist.push(phi); |
| 1640 | } |
| 1641 | Node* in1 = use->in(1); |
| 1642 | for (uint i = 0; i < in1->outcnt(); i++) { |
| 1643 | if (in1->raw_out(i)->Opcode() == Op_CastII) { |
| 1644 | Node* castii = in1->raw_out(i); |
| 1645 | if (castii->in(0) != NULL && castii->in(0)->in(0) != NULL && castii->in(0)->in(0)->is_If()) { |
| 1646 | Node* ifnode = castii->in(0)->in(0); |
| 1647 | if (ifnode->in(1) != NULL && ifnode->in(1)->is_Bool() && ifnode->in(1)->in(1) == use) { |
| 1648 | // Reprocess a CastII node that may depend on an |
| 1649 | // opaque node value when the opaque node is |
| 1650 | // removed. In case it carries a dependency we can do |
| 1651 | // a better job of computing its type. |
| 1652 | _worklist.push(castii); |
| 1653 | } |
| 1654 | } |
| 1655 | } |
| 1656 | } |
| 1657 | } |
| 1658 | } |
| 1659 | |
| 1660 | // If changed Cast input, check Phi users for simple cycles |
| 1661 | if (use->is_ConstraintCast()) { |
| 1662 | for (DUIterator_Fast i2max, i2 = use->fast_outs(i2max); i2 < i2max; i2++) { |
| 1663 | Node* u = use->fast_out(i2); |
| 1664 | if (u->is_Phi()) |
| 1665 | _worklist.push(u); |
| 1666 | } |
| 1667 | } |
| 1668 | // If changed LShift inputs, check RShift users for useless sign-ext |
| 1669 | if( use_op == Op_LShiftI ) { |
| 1670 | for (DUIterator_Fast i2max, i2 = use->fast_outs(i2max); i2 < i2max; i2++) { |
| 1671 | Node* u = use->fast_out(i2); |
| 1672 | if (u->Opcode() == Op_RShiftI) |
| 1673 | _worklist.push(u); |
| 1674 | } |
| 1675 | } |
| 1676 | // If changed AddI/SubI inputs, check CmpU for range check optimization. |
| 1677 | if (use_op == Op_AddI || use_op == Op_SubI) { |
| 1678 | for (DUIterator_Fast i2max, i2 = use->fast_outs(i2max); i2 < i2max; i2++) { |
| 1679 | Node* u = use->fast_out(i2); |
| 1680 | if (u->is_Cmp() && (u->Opcode() == Op_CmpU)) { |
| 1681 | _worklist.push(u); |
| 1682 | } |
| 1683 | } |
| 1684 | } |
| 1685 | // If changed AddP inputs, check Stores for loop invariant |
| 1686 | if( use_op == Op_AddP ) { |
| 1687 | for (DUIterator_Fast i2max, i2 = use->fast_outs(i2max); i2 < i2max; i2++) { |
| 1688 | Node* u = use->fast_out(i2); |
| 1689 | if (u->is_Mem()) |
| 1690 | _worklist.push(u); |
| 1691 | } |
| 1692 | } |
| 1693 | // If changed initialization activity, check dependent Stores |
| 1694 | if (use_op == Op_Allocate || use_op == Op_AllocateArray) { |
| 1695 | InitializeNode* init = use->as_Allocate()->initialization(); |
| 1696 | if (init != NULL) { |
| 1697 | Node* imem = init->proj_out_or_null(TypeFunc::Memory); |
| 1698 | if (imem != NULL) add_users_to_worklist0(imem); |
| 1699 | } |
| 1700 | } |
| 1701 | if (use_op == Op_Initialize) { |
| 1702 | Node* imem = use->as_Initialize()->proj_out_or_null(TypeFunc::Memory); |
| 1703 | if (imem != NULL) add_users_to_worklist0(imem); |
| 1704 | } |
| 1705 | // Loading the java mirror from a Klass requires two loads and the type |
| 1706 | // of the mirror load depends on the type of 'n'. See LoadNode::Value(). |
| 1707 | // LoadBarrier?(LoadP(LoadP(AddP(foo:Klass, #java_mirror)))) |
| 1708 | BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); |
| 1709 | bool has_load_barriers = bs->has_load_barriers(); |
| 1710 | |
| 1711 | if (use_op == Op_LoadP && use->bottom_type()->isa_rawptr()) { |
| 1712 | for (DUIterator_Fast i2max, i2 = use->fast_outs(i2max); i2 < i2max; i2++) { |
| 1713 | Node* u = use->fast_out(i2); |
| 1714 | const Type* ut = u->bottom_type(); |
| 1715 | if (u->Opcode() == Op_LoadP && ut->isa_instptr()) { |
| 1716 | if (has_load_barriers) { |
| 1717 | // Search for load barriers behind the load |
| 1718 | for (DUIterator_Fast i3max, i3 = u->fast_outs(i3max); i3 < i3max; i3++) { |
| 1719 | Node* b = u->fast_out(i3); |
| 1720 | if (bs->is_gc_barrier_node(b)) { |
| 1721 | _worklist.push(b); |
| 1722 | } |
| 1723 | } |
| 1724 | } |
| 1725 | _worklist.push(u); |
| 1726 | } |
| 1727 | } |
| 1728 | } |
| 1729 | |
| 1730 | BarrierSet::barrier_set()->barrier_set_c2()->igvn_add_users_to_worklist(this, use); |
| 1731 | } |
| 1732 | } |
| 1733 | |
| 1734 | /** |
| 1735 | * Remove the speculative part of all types that we know of |
| 1736 | */ |
| 1737 | void PhaseIterGVN::remove_speculative_types() { |
| 1738 | assert(UseTypeSpeculation, "speculation is off" ); |
| 1739 | for (uint i = 0; i < _types.Size(); i++) { |
| 1740 | const Type* t = _types.fast_lookup(i); |
| 1741 | if (t != NULL) { |
| 1742 | _types.map(i, t->remove_speculative()); |
| 1743 | } |
| 1744 | } |
| 1745 | _table.check_no_speculative_types(); |
| 1746 | } |
| 1747 | |
| 1748 | //============================================================================= |
| 1749 | #ifndef PRODUCT |
| 1750 | uint PhaseCCP::_total_invokes = 0; |
| 1751 | uint PhaseCCP::_total_constants = 0; |
| 1752 | #endif |
| 1753 | //------------------------------PhaseCCP--------------------------------------- |
| 1754 | // Conditional Constant Propagation, ala Wegman & Zadeck |
| 1755 | PhaseCCP::PhaseCCP( PhaseIterGVN *igvn ) : PhaseIterGVN(igvn) { |
| 1756 | NOT_PRODUCT( clear_constants(); ) |
| 1757 | assert( _worklist.size() == 0, "" ); |
| 1758 | // Clear out _nodes from IterGVN. Must be clear to transform call. |
| 1759 | _nodes.clear(); // Clear out from IterGVN |
| 1760 | analyze(); |
| 1761 | } |
| 1762 | |
| 1763 | #ifndef PRODUCT |
| 1764 | //------------------------------~PhaseCCP-------------------------------------- |
| 1765 | PhaseCCP::~PhaseCCP() { |
| 1766 | inc_invokes(); |
| 1767 | _total_constants += count_constants(); |
| 1768 | } |
| 1769 | #endif |
| 1770 | |
| 1771 | |
| 1772 | #ifdef ASSERT |
| 1773 | static bool ccp_type_widens(const Type* t, const Type* t0) { |
| 1774 | assert(t->meet(t0) == t, "Not monotonic" ); |
| 1775 | switch (t->base() == t0->base() ? t->base() : Type::Top) { |
| 1776 | case Type::Int: |
| 1777 | assert(t0->isa_int()->_widen <= t->isa_int()->_widen, "widen increases" ); |
| 1778 | break; |
| 1779 | case Type::Long: |
| 1780 | assert(t0->isa_long()->_widen <= t->isa_long()->_widen, "widen increases" ); |
| 1781 | break; |
| 1782 | default: |
| 1783 | break; |
| 1784 | } |
| 1785 | return true; |
| 1786 | } |
| 1787 | #endif //ASSERT |
| 1788 | |
| 1789 | //------------------------------analyze---------------------------------------- |
| 1790 | void PhaseCCP::analyze() { |
| 1791 | // Initialize all types to TOP, optimistic analysis |
| 1792 | for (int i = C->unique() - 1; i >= 0; i--) { |
| 1793 | _types.map(i,Type::TOP); |
| 1794 | } |
| 1795 | |
| 1796 | // Push root onto worklist |
| 1797 | Unique_Node_List worklist; |
| 1798 | worklist.push(C->root()); |
| 1799 | |
| 1800 | // Pull from worklist; compute new value; push changes out. |
| 1801 | // This loop is the meat of CCP. |
| 1802 | while( worklist.size() ) { |
| 1803 | Node *n = worklist.pop(); |
| 1804 | const Type *t = n->Value(this); |
| 1805 | if (t != type(n)) { |
| 1806 | assert(ccp_type_widens(t, type(n)), "ccp type must widen" ); |
| 1807 | #ifndef PRODUCT |
| 1808 | if( TracePhaseCCP ) { |
| 1809 | t->dump(); |
| 1810 | do { tty->print("\t" ); } while (tty->position() < 16); |
| 1811 | n->dump(); |
| 1812 | } |
| 1813 | #endif |
| 1814 | set_type(n, t); |
| 1815 | for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { |
| 1816 | Node* m = n->fast_out(i); // Get user |
| 1817 | if (m->is_Region()) { // New path to Region? Must recheck Phis too |
| 1818 | for (DUIterator_Fast i2max, i2 = m->fast_outs(i2max); i2 < i2max; i2++) { |
| 1819 | Node* p = m->fast_out(i2); // Propagate changes to uses |
| 1820 | if (p->bottom_type() != type(p)) { // If not already bottomed out |
| 1821 | worklist.push(p); // Propagate change to user |
| 1822 | } |
| 1823 | } |
| 1824 | } |
| 1825 | // If we changed the receiver type to a call, we need to revisit |
| 1826 | // the Catch following the call. It's looking for a non-NULL |
| 1827 | // receiver to know when to enable the regular fall-through path |
| 1828 | // in addition to the NullPtrException path |
| 1829 | if (m->is_Call()) { |
| 1830 | for (DUIterator_Fast i2max, i2 = m->fast_outs(i2max); i2 < i2max; i2++) { |
| 1831 | Node* p = m->fast_out(i2); // Propagate changes to uses |
| 1832 | if (p->is_Proj() && p->as_Proj()->_con == TypeFunc::Control && p->outcnt() == 1) { |
| 1833 | worklist.push(p->unique_out()); |
| 1834 | } |
| 1835 | } |
| 1836 | } |
| 1837 | if (m->bottom_type() != type(m)) { // If not already bottomed out |
| 1838 | worklist.push(m); // Propagate change to user |
| 1839 | } |
| 1840 | |
| 1841 | // CmpU nodes can get their type information from two nodes up in the |
| 1842 | // graph (instead of from the nodes immediately above). Make sure they |
| 1843 | // are added to the worklist if nodes they depend on are updated, since |
| 1844 | // they could be missed and get wrong types otherwise. |
| 1845 | uint m_op = m->Opcode(); |
| 1846 | if (m_op == Op_AddI || m_op == Op_SubI) { |
| 1847 | for (DUIterator_Fast i2max, i2 = m->fast_outs(i2max); i2 < i2max; i2++) { |
| 1848 | Node* p = m->fast_out(i2); // Propagate changes to uses |
| 1849 | if (p->Opcode() == Op_CmpU) { |
| 1850 | // Got a CmpU which might need the new type information from node n. |
| 1851 | if(p->bottom_type() != type(p)) { // If not already bottomed out |
| 1852 | worklist.push(p); // Propagate change to user |
| 1853 | } |
| 1854 | } |
| 1855 | } |
| 1856 | } |
| 1857 | // If n is used in a counted loop exit condition then the type |
| 1858 | // of the counted loop's Phi depends on the type of n. See |
| 1859 | // PhiNode::Value(). |
| 1860 | if (m_op == Op_CmpI) { |
| 1861 | PhiNode* phi = countedloop_phi_from_cmp((CmpINode*)m, n); |
| 1862 | if (phi != NULL) { |
| 1863 | worklist.push(phi); |
| 1864 | } |
| 1865 | } |
| 1866 | // Loading the java mirror from a Klass requires two loads and the type |
| 1867 | // of the mirror load depends on the type of 'n'. See LoadNode::Value(). |
| 1868 | BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); |
| 1869 | bool has_load_barriers = bs->has_load_barriers(); |
| 1870 | |
| 1871 | if (m_op == Op_LoadP && m->bottom_type()->isa_rawptr()) { |
| 1872 | for (DUIterator_Fast i2max, i2 = m->fast_outs(i2max); i2 < i2max; i2++) { |
| 1873 | Node* u = m->fast_out(i2); |
| 1874 | const Type* ut = u->bottom_type(); |
| 1875 | if (u->Opcode() == Op_LoadP && ut->isa_instptr() && ut != type(u)) { |
| 1876 | if (has_load_barriers) { |
| 1877 | // Search for load barriers behind the load |
| 1878 | for (DUIterator_Fast i3max, i3 = u->fast_outs(i3max); i3 < i3max; i3++) { |
| 1879 | Node* b = u->fast_out(i3); |
| 1880 | if (bs->is_gc_barrier_node(b)) { |
| 1881 | worklist.push(b); |
| 1882 | } |
| 1883 | } |
| 1884 | } |
| 1885 | worklist.push(u); |
| 1886 | } |
| 1887 | } |
| 1888 | } |
| 1889 | |
| 1890 | BarrierSet::barrier_set()->barrier_set_c2()->ccp_analyze(this, worklist, m); |
| 1891 | } |
| 1892 | } |
| 1893 | } |
| 1894 | } |
| 1895 | |
| 1896 | //------------------------------do_transform----------------------------------- |
| 1897 | // Top level driver for the recursive transformer |
| 1898 | void PhaseCCP::do_transform() { |
| 1899 | // Correct leaves of new-space Nodes; they point to old-space. |
| 1900 | C->set_root( transform(C->root())->as_Root() ); |
| 1901 | assert( C->top(), "missing TOP node" ); |
| 1902 | assert( C->root(), "missing root" ); |
| 1903 | } |
| 1904 | |
| 1905 | //------------------------------transform-------------------------------------- |
| 1906 | // Given a Node in old-space, clone him into new-space. |
| 1907 | // Convert any of his old-space children into new-space children. |
| 1908 | Node *PhaseCCP::transform( Node *n ) { |
| 1909 | Node *new_node = _nodes[n->_idx]; // Check for transformed node |
| 1910 | if( new_node != NULL ) |
| 1911 | return new_node; // Been there, done that, return old answer |
| 1912 | new_node = transform_once(n); // Check for constant |
| 1913 | _nodes.map( n->_idx, new_node ); // Flag as having been cloned |
| 1914 | |
| 1915 | // Allocate stack of size _nodes.Size()/2 to avoid frequent realloc |
| 1916 | GrowableArray <Node *> trstack(C->live_nodes() >> 1); |
| 1917 | |
| 1918 | trstack.push(new_node); // Process children of cloned node |
| 1919 | while ( trstack.is_nonempty() ) { |
| 1920 | Node *clone = trstack.pop(); |
| 1921 | uint cnt = clone->req(); |
| 1922 | for( uint i = 0; i < cnt; i++ ) { // For all inputs do |
| 1923 | Node *input = clone->in(i); |
| 1924 | if( input != NULL ) { // Ignore NULLs |
| 1925 | Node *new_input = _nodes[input->_idx]; // Check for cloned input node |
| 1926 | if( new_input == NULL ) { |
| 1927 | new_input = transform_once(input); // Check for constant |
| 1928 | _nodes.map( input->_idx, new_input );// Flag as having been cloned |
| 1929 | trstack.push(new_input); |
| 1930 | } |
| 1931 | assert( new_input == clone->in(i), "insanity check" ); |
| 1932 | } |
| 1933 | } |
| 1934 | } |
| 1935 | return new_node; |
| 1936 | } |
| 1937 | |
| 1938 | |
| 1939 | //------------------------------transform_once--------------------------------- |
| 1940 | // For PhaseCCP, transformation is IDENTITY unless Node computed a constant. |
| 1941 | Node *PhaseCCP::transform_once( Node *n ) { |
| 1942 | const Type *t = type(n); |
| 1943 | // Constant? Use constant Node instead |
| 1944 | if( t->singleton() ) { |
| 1945 | Node *nn = n; // Default is to return the original constant |
| 1946 | if( t == Type::TOP ) { |
| 1947 | // cache my top node on the Compile instance |
| 1948 | if( C->cached_top_node() == NULL || C->cached_top_node()->in(0) == NULL ) { |
| 1949 | C->set_cached_top_node(ConNode::make(Type::TOP)); |
| 1950 | set_type(C->top(), Type::TOP); |
| 1951 | } |
| 1952 | nn = C->top(); |
| 1953 | } |
| 1954 | if( !n->is_Con() ) { |
| 1955 | if( t != Type::TOP ) { |
| 1956 | nn = makecon(t); // ConNode::make(t); |
| 1957 | NOT_PRODUCT( inc_constants(); ) |
| 1958 | } else if( n->is_Region() ) { // Unreachable region |
| 1959 | // Note: nn == C->top() |
| 1960 | n->set_req(0, NULL); // Cut selfreference |
| 1961 | bool progress = true; |
| 1962 | uint max = n->outcnt(); |
| 1963 | DUIterator i; |
| 1964 | while (progress) { |
| 1965 | progress = false; |
| 1966 | // Eagerly remove dead phis to avoid phis copies creation. |
| 1967 | for (i = n->outs(); n->has_out(i); i++) { |
| 1968 | Node* m = n->out(i); |
| 1969 | if (m->is_Phi()) { |
| 1970 | assert(type(m) == Type::TOP, "Unreachable region should not have live phis." ); |
| 1971 | replace_node(m, nn); |
| 1972 | if (max != n->outcnt()) { |
| 1973 | progress = true; |
| 1974 | i = n->refresh_out_pos(i); |
| 1975 | max = n->outcnt(); |
| 1976 | } |
| 1977 | } |
| 1978 | } |
| 1979 | } |
| 1980 | } |
| 1981 | replace_node(n,nn); // Update DefUse edges for new constant |
| 1982 | } |
| 1983 | return nn; |
| 1984 | } |
| 1985 | |
| 1986 | // If x is a TypeNode, capture any more-precise type permanently into Node |
| 1987 | if (t != n->bottom_type()) { |
| 1988 | hash_delete(n); // changing bottom type may force a rehash |
| 1989 | n->raise_bottom_type(t); |
| 1990 | _worklist.push(n); // n re-enters the hash table via the worklist |
| 1991 | } |
| 1992 | |
| 1993 | // TEMPORARY fix to ensure that 2nd GVN pass eliminates NULL checks |
| 1994 | switch( n->Opcode() ) { |
| 1995 | case Op_FastLock: // Revisit FastLocks for lock coarsening |
| 1996 | case Op_If: |
| 1997 | case Op_CountedLoopEnd: |
| 1998 | case Op_Region: |
| 1999 | case Op_Loop: |
| 2000 | case Op_CountedLoop: |
| 2001 | case Op_Conv2B: |
| 2002 | case Op_Opaque1: |
| 2003 | case Op_Opaque2: |
| 2004 | _worklist.push(n); |
| 2005 | break; |
| 2006 | default: |
| 2007 | break; |
| 2008 | } |
| 2009 | |
| 2010 | return n; |
| 2011 | } |
| 2012 | |
| 2013 | //---------------------------------saturate------------------------------------ |
| 2014 | const Type* PhaseCCP::saturate(const Type* new_type, const Type* old_type, |
| 2015 | const Type* limit_type) const { |
| 2016 | const Type* wide_type = new_type->widen(old_type, limit_type); |
| 2017 | if (wide_type != new_type) { // did we widen? |
| 2018 | // If so, we may have widened beyond the limit type. Clip it back down. |
| 2019 | new_type = wide_type->filter(limit_type); |
| 2020 | } |
| 2021 | return new_type; |
| 2022 | } |
| 2023 | |
| 2024 | //------------------------------print_statistics------------------------------- |
| 2025 | #ifndef PRODUCT |
| 2026 | void PhaseCCP::print_statistics() { |
| 2027 | tty->print_cr("CCP: %d constants found: %d" , _total_invokes, _total_constants); |
| 2028 | } |
| 2029 | #endif |
| 2030 | |
| 2031 | |
| 2032 | //============================================================================= |
| 2033 | #ifndef PRODUCT |
| 2034 | uint PhasePeephole::_total_peepholes = 0; |
| 2035 | #endif |
| 2036 | //------------------------------PhasePeephole---------------------------------- |
| 2037 | // Conditional Constant Propagation, ala Wegman & Zadeck |
| 2038 | PhasePeephole::PhasePeephole( PhaseRegAlloc *regalloc, PhaseCFG &cfg ) |
| 2039 | : PhaseTransform(Peephole), _regalloc(regalloc), _cfg(cfg) { |
| 2040 | NOT_PRODUCT( clear_peepholes(); ) |
| 2041 | } |
| 2042 | |
| 2043 | #ifndef PRODUCT |
| 2044 | //------------------------------~PhasePeephole--------------------------------- |
| 2045 | PhasePeephole::~PhasePeephole() { |
| 2046 | _total_peepholes += count_peepholes(); |
| 2047 | } |
| 2048 | #endif |
| 2049 | |
| 2050 | //------------------------------transform-------------------------------------- |
| 2051 | Node *PhasePeephole::transform( Node *n ) { |
| 2052 | ShouldNotCallThis(); |
| 2053 | return NULL; |
| 2054 | } |
| 2055 | |
| 2056 | //------------------------------do_transform----------------------------------- |
| 2057 | void PhasePeephole::do_transform() { |
| 2058 | bool method_name_not_printed = true; |
| 2059 | |
| 2060 | // Examine each basic block |
| 2061 | for (uint block_number = 1; block_number < _cfg.number_of_blocks(); ++block_number) { |
| 2062 | Block* block = _cfg.get_block(block_number); |
| 2063 | bool block_not_printed = true; |
| 2064 | |
| 2065 | // and each instruction within a block |
| 2066 | uint end_index = block->number_of_nodes(); |
| 2067 | // block->end_idx() not valid after PhaseRegAlloc |
| 2068 | for( uint instruction_index = 1; instruction_index < end_index; ++instruction_index ) { |
| 2069 | Node *n = block->get_node(instruction_index); |
| 2070 | if( n->is_Mach() ) { |
| 2071 | MachNode *m = n->as_Mach(); |
| 2072 | int deleted_count = 0; |
| 2073 | // check for peephole opportunities |
| 2074 | MachNode *m2 = m->peephole(block, instruction_index, _regalloc, deleted_count); |
| 2075 | if( m2 != NULL ) { |
| 2076 | #ifndef PRODUCT |
| 2077 | if( PrintOptoPeephole ) { |
| 2078 | // Print method, first time only |
| 2079 | if( C->method() && method_name_not_printed ) { |
| 2080 | C->method()->print_short_name(); tty->cr(); |
| 2081 | method_name_not_printed = false; |
| 2082 | } |
| 2083 | // Print this block |
| 2084 | if( Verbose && block_not_printed) { |
| 2085 | tty->print_cr("in block" ); |
| 2086 | block->dump(); |
| 2087 | block_not_printed = false; |
| 2088 | } |
| 2089 | // Print instructions being deleted |
| 2090 | for( int i = (deleted_count - 1); i >= 0; --i ) { |
| 2091 | block->get_node(instruction_index-i)->as_Mach()->format(_regalloc); tty->cr(); |
| 2092 | } |
| 2093 | tty->print_cr("replaced with" ); |
| 2094 | // Print new instruction |
| 2095 | m2->format(_regalloc); |
| 2096 | tty->print("\n\n" ); |
| 2097 | } |
| 2098 | #endif |
| 2099 | // Remove old nodes from basic block and update instruction_index |
| 2100 | // (old nodes still exist and may have edges pointing to them |
| 2101 | // as register allocation info is stored in the allocator using |
| 2102 | // the node index to live range mappings.) |
| 2103 | uint safe_instruction_index = (instruction_index - deleted_count); |
| 2104 | for( ; (instruction_index > safe_instruction_index); --instruction_index ) { |
| 2105 | block->remove_node( instruction_index ); |
| 2106 | } |
| 2107 | // install new node after safe_instruction_index |
| 2108 | block->insert_node(m2, safe_instruction_index + 1); |
| 2109 | end_index = block->number_of_nodes() - 1; // Recompute new block size |
| 2110 | NOT_PRODUCT( inc_peepholes(); ) |
| 2111 | } |
| 2112 | } |
| 2113 | } |
| 2114 | } |
| 2115 | } |
| 2116 | |
| 2117 | //------------------------------print_statistics------------------------------- |
| 2118 | #ifndef PRODUCT |
| 2119 | void PhasePeephole::print_statistics() { |
| 2120 | tty->print_cr("Peephole: peephole rules applied: %d" , _total_peepholes); |
| 2121 | } |
| 2122 | #endif |
| 2123 | |
| 2124 | |
| 2125 | //============================================================================= |
| 2126 | //------------------------------set_req_X-------------------------------------- |
| 2127 | void Node::set_req_X( uint i, Node *n, PhaseIterGVN *igvn ) { |
| 2128 | assert( is_not_dead(n), "can not use dead node" ); |
| 2129 | assert( igvn->hash_find(this) != this, "Need to remove from hash before changing edges" ); |
| 2130 | Node *old = in(i); |
| 2131 | set_req(i, n); |
| 2132 | |
| 2133 | // old goes dead? |
| 2134 | if( old ) { |
| 2135 | switch (old->outcnt()) { |
| 2136 | case 0: |
| 2137 | // Put into the worklist to kill later. We do not kill it now because the |
| 2138 | // recursive kill will delete the current node (this) if dead-loop exists |
| 2139 | if (!old->is_top()) |
| 2140 | igvn->_worklist.push( old ); |
| 2141 | break; |
| 2142 | case 1: |
| 2143 | if( old->is_Store() || old->has_special_unique_user() ) |
| 2144 | igvn->add_users_to_worklist( old ); |
| 2145 | break; |
| 2146 | case 2: |
| 2147 | if( old->is_Store() ) |
| 2148 | igvn->add_users_to_worklist( old ); |
| 2149 | if( old->Opcode() == Op_Region ) |
| 2150 | igvn->_worklist.push(old); |
| 2151 | break; |
| 2152 | case 3: |
| 2153 | if( old->Opcode() == Op_Region ) { |
| 2154 | igvn->_worklist.push(old); |
| 2155 | igvn->add_users_to_worklist( old ); |
| 2156 | } |
| 2157 | break; |
| 2158 | default: |
| 2159 | break; |
| 2160 | } |
| 2161 | |
| 2162 | BarrierSet::barrier_set()->barrier_set_c2()->enqueue_useful_gc_barrier(igvn, old); |
| 2163 | } |
| 2164 | |
| 2165 | } |
| 2166 | |
| 2167 | //-------------------------------replace_by----------------------------------- |
| 2168 | // Using def-use info, replace one node for another. Follow the def-use info |
| 2169 | // to all users of the OLD node. Then make all uses point to the NEW node. |
| 2170 | void Node::replace_by(Node *new_node) { |
| 2171 | assert(!is_top(), "top node has no DU info" ); |
| 2172 | for (DUIterator_Last imin, i = last_outs(imin); i >= imin; ) { |
| 2173 | Node* use = last_out(i); |
| 2174 | uint uses_found = 0; |
| 2175 | for (uint j = 0; j < use->len(); j++) { |
| 2176 | if (use->in(j) == this) { |
| 2177 | if (j < use->req()) |
| 2178 | use->set_req(j, new_node); |
| 2179 | else use->set_prec(j, new_node); |
| 2180 | uses_found++; |
| 2181 | } |
| 2182 | } |
| 2183 | i -= uses_found; // we deleted 1 or more copies of this edge |
| 2184 | } |
| 2185 | } |
| 2186 | |
| 2187 | //============================================================================= |
| 2188 | //----------------------------------------------------------------------------- |
| 2189 | void Type_Array::grow( uint i ) { |
| 2190 | if( !_max ) { |
| 2191 | _max = 1; |
| 2192 | _types = (const Type**)_a->Amalloc( _max * sizeof(Type*) ); |
| 2193 | _types[0] = NULL; |
| 2194 | } |
| 2195 | uint old = _max; |
| 2196 | while( i >= _max ) _max <<= 1; // Double to fit |
| 2197 | _types = (const Type**)_a->Arealloc( _types, old*sizeof(Type*),_max*sizeof(Type*)); |
| 2198 | memset( &_types[old], 0, (_max-old)*sizeof(Type*) ); |
| 2199 | } |
| 2200 | |
| 2201 | //------------------------------dump------------------------------------------- |
| 2202 | #ifndef PRODUCT |
| 2203 | void Type_Array::dump() const { |
| 2204 | uint max = Size(); |
| 2205 | for( uint i = 0; i < max; i++ ) { |
| 2206 | if( _types[i] != NULL ) { |
| 2207 | tty->print(" %d\t== " , i); _types[i]->dump(); tty->cr(); |
| 2208 | } |
| 2209 | } |
| 2210 | } |
| 2211 | #endif |
| 2212 | |