1 | /* |
2 | * Copyright (c) 2007, 2019, Oracle and/or its affiliates. All rights reserved. |
3 | * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
4 | * |
5 | * This code is free software; you can redistribute it and/or modify it |
6 | * under the terms of the GNU General Public License version 2 only, as |
7 | * published by the Free Software Foundation. |
8 | * |
9 | * This code is distributed in the hope that it will be useful, but WITHOUT |
10 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
11 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
12 | * version 2 for more details (a copy is included in the LICENSE file that |
13 | * accompanied this code). |
14 | * |
15 | * You should have received a copy of the GNU General Public License version |
16 | * 2 along with this work; if not, write to the Free Software Foundation, |
17 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
18 | * |
19 | * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
20 | * or visit www.oracle.com if you need additional information or have any |
21 | * questions. |
22 | */ |
23 | |
24 | #ifndef SHARE_OPTO_SUPERWORD_HPP |
25 | #define SHARE_OPTO_SUPERWORD_HPP |
26 | |
27 | #include "opto/loopnode.hpp" |
28 | #include "opto/node.hpp" |
29 | #include "opto/phaseX.hpp" |
30 | #include "opto/vectornode.hpp" |
31 | #include "utilities/growableArray.hpp" |
32 | #include "libadt/dict.hpp" |
33 | |
34 | // |
35 | // S U P E R W O R D T R A N S F O R M |
36 | // |
37 | // SuperWords are short, fixed length vectors. |
38 | // |
39 | // Algorithm from: |
40 | // |
41 | // Exploiting SuperWord Level Parallelism with |
42 | // Multimedia Instruction Sets |
43 | // by |
44 | // Samuel Larsen and Saman Amarasinghe |
45 | // MIT Laboratory for Computer Science |
46 | // date |
47 | // May 2000 |
48 | // published in |
49 | // ACM SIGPLAN Notices |
50 | // Proceedings of ACM PLDI '00, Volume 35 Issue 5 |
51 | // |
52 | // Definition 3.1 A Pack is an n-tuple, <s1, ...,sn>, where |
53 | // s1,...,sn are independent isomorphic statements in a basic |
54 | // block. |
55 | // |
56 | // Definition 3.2 A PackSet is a set of Packs. |
57 | // |
58 | // Definition 3.3 A Pair is a Pack of size two, where the |
59 | // first statement is considered the left element, and the |
60 | // second statement is considered the right element. |
61 | |
62 | class SWPointer; |
63 | class OrderedPair; |
64 | |
65 | // ========================= Dependence Graph ===================== |
66 | |
67 | class DepMem; |
68 | |
69 | //------------------------------DepEdge--------------------------- |
70 | // An edge in the dependence graph. The edges incident to a dependence |
71 | // node are threaded through _next_in for incoming edges and _next_out |
72 | // for outgoing edges. |
73 | class DepEdge : public ResourceObj { |
74 | protected: |
75 | DepMem* _pred; |
76 | DepMem* _succ; |
77 | DepEdge* _next_in; // list of in edges, null terminated |
78 | DepEdge* _next_out; // list of out edges, null terminated |
79 | |
80 | public: |
81 | DepEdge(DepMem* pred, DepMem* succ, DepEdge* next_in, DepEdge* next_out) : |
82 | _pred(pred), _succ(succ), _next_in(next_in), _next_out(next_out) {} |
83 | |
84 | DepEdge* next_in() { return _next_in; } |
85 | DepEdge* next_out() { return _next_out; } |
86 | DepMem* pred() { return _pred; } |
87 | DepMem* succ() { return _succ; } |
88 | |
89 | void print(); |
90 | }; |
91 | |
92 | //------------------------------DepMem--------------------------- |
93 | // A node in the dependence graph. _in_head starts the threaded list of |
94 | // incoming edges, and _out_head starts the list of outgoing edges. |
95 | class DepMem : public ResourceObj { |
96 | protected: |
97 | Node* _node; // Corresponding ideal node |
98 | DepEdge* _in_head; // Head of list of in edges, null terminated |
99 | DepEdge* _out_head; // Head of list of out edges, null terminated |
100 | |
101 | public: |
102 | DepMem(Node* node) : _node(node), _in_head(NULL), _out_head(NULL) {} |
103 | |
104 | Node* node() { return _node; } |
105 | DepEdge* in_head() { return _in_head; } |
106 | DepEdge* out_head() { return _out_head; } |
107 | void set_in_head(DepEdge* hd) { _in_head = hd; } |
108 | void set_out_head(DepEdge* hd) { _out_head = hd; } |
109 | |
110 | int in_cnt(); // Incoming edge count |
111 | int out_cnt(); // Outgoing edge count |
112 | |
113 | void print(); |
114 | }; |
115 | |
116 | //------------------------------DepGraph--------------------------- |
117 | class DepGraph { |
118 | protected: |
119 | Arena* _arena; |
120 | GrowableArray<DepMem*> _map; |
121 | DepMem* _root; |
122 | DepMem* _tail; |
123 | |
124 | public: |
125 | DepGraph(Arena* a) : _arena(a), _map(a, 8, 0, NULL) { |
126 | _root = new (_arena) DepMem(NULL); |
127 | _tail = new (_arena) DepMem(NULL); |
128 | } |
129 | |
130 | DepMem* root() { return _root; } |
131 | DepMem* tail() { return _tail; } |
132 | |
133 | // Return dependence node corresponding to an ideal node |
134 | DepMem* dep(Node* node) { return _map.at(node->_idx); } |
135 | |
136 | // Make a new dependence graph node for an ideal node. |
137 | DepMem* make_node(Node* node); |
138 | |
139 | // Make a new dependence graph edge dprec->dsucc |
140 | DepEdge* make_edge(DepMem* dpred, DepMem* dsucc); |
141 | |
142 | DepEdge* make_edge(Node* pred, Node* succ) { return make_edge(dep(pred), dep(succ)); } |
143 | DepEdge* make_edge(DepMem* pred, Node* succ) { return make_edge(pred, dep(succ)); } |
144 | DepEdge* make_edge(Node* pred, DepMem* succ) { return make_edge(dep(pred), succ); } |
145 | |
146 | void init() { _map.clear(); } // initialize |
147 | |
148 | void print(Node* n) { dep(n)->print(); } |
149 | void print(DepMem* d) { d->print(); } |
150 | }; |
151 | |
152 | //------------------------------DepPreds--------------------------- |
153 | // Iterator over predecessors in the dependence graph and |
154 | // non-memory-graph inputs of ideal nodes. |
155 | class DepPreds : public StackObj { |
156 | private: |
157 | Node* _n; |
158 | int _next_idx, _end_idx; |
159 | DepEdge* _dep_next; |
160 | Node* _current; |
161 | bool _done; |
162 | |
163 | public: |
164 | DepPreds(Node* n, DepGraph& dg); |
165 | Node* current() { return _current; } |
166 | bool done() { return _done; } |
167 | void next(); |
168 | }; |
169 | |
170 | //------------------------------DepSuccs--------------------------- |
171 | // Iterator over successors in the dependence graph and |
172 | // non-memory-graph outputs of ideal nodes. |
173 | class DepSuccs : public StackObj { |
174 | private: |
175 | Node* _n; |
176 | int _next_idx, _end_idx; |
177 | DepEdge* _dep_next; |
178 | Node* _current; |
179 | bool _done; |
180 | |
181 | public: |
182 | DepSuccs(Node* n, DepGraph& dg); |
183 | Node* current() { return _current; } |
184 | bool done() { return _done; } |
185 | void next(); |
186 | }; |
187 | |
188 | |
189 | // ========================= SuperWord ===================== |
190 | |
191 | // -----------------------------SWNodeInfo--------------------------------- |
192 | // Per node info needed by SuperWord |
193 | class SWNodeInfo { |
194 | public: |
195 | int _alignment; // memory alignment for a node |
196 | int _depth; // Max expression (DAG) depth from block start |
197 | const Type* _velt_type; // vector element type |
198 | Node_List* _my_pack; // pack containing this node |
199 | |
200 | SWNodeInfo() : _alignment(-1), _depth(0), _velt_type(NULL), _my_pack(NULL) {} |
201 | static const SWNodeInfo initial; |
202 | }; |
203 | |
204 | class SuperWord; |
205 | class CMoveKit { |
206 | friend class SuperWord; |
207 | private: |
208 | SuperWord* _sw; |
209 | Dict* _dict; |
210 | CMoveKit(Arena* a, SuperWord* sw) : _sw(sw) {_dict = new Dict(cmpkey, hashkey, a);} |
211 | void* _2p(Node* key) const { return (void*)(intptr_t)key; } // 2 conversion functions to make gcc happy |
212 | Dict* dict() const { return _dict; } |
213 | void map(Node* key, Node_List* val) { assert(_dict->operator[](_2p(key)) == NULL, "key existed" ); _dict->Insert(_2p(key), (void*)val); } |
214 | void unmap(Node* key) { _dict->Delete(_2p(key)); } |
215 | Node_List* pack(Node* key) const { return (Node_List*)_dict->operator[](_2p(key)); } |
216 | Node* is_Bool_candidate(Node* nd) const; // if it is the right candidate return corresponding CMove* , |
217 | Node* is_CmpD_candidate(Node* nd) const; // otherwise return NULL |
218 | Node_List* make_cmovevd_pack(Node_List* cmovd_pk); |
219 | bool test_cmpd_pack(Node_List* cmpd_pk, Node_List* cmovd_pk); |
220 | };//class CMoveKit |
221 | |
222 | // JVMCI: OrderedPair is moved up to deal with compilation issues on Windows |
223 | //------------------------------OrderedPair--------------------------- |
224 | // Ordered pair of Node*. |
225 | class OrderedPair { |
226 | protected: |
227 | Node* _p1; |
228 | Node* _p2; |
229 | public: |
230 | OrderedPair() : _p1(NULL), _p2(NULL) {} |
231 | OrderedPair(Node* p1, Node* p2) { |
232 | if (p1->_idx < p2->_idx) { |
233 | _p1 = p1; _p2 = p2; |
234 | } else { |
235 | _p1 = p2; _p2 = p1; |
236 | } |
237 | } |
238 | |
239 | bool operator==(const OrderedPair &rhs) { |
240 | return _p1 == rhs._p1 && _p2 == rhs._p2; |
241 | } |
242 | void print() { tty->print(" (%d, %d)" , _p1->_idx, _p2->_idx); } |
243 | |
244 | static const OrderedPair initial; |
245 | }; |
246 | |
247 | // -----------------------------SuperWord--------------------------------- |
248 | // Transforms scalar operations into packed (superword) operations. |
249 | class SuperWord : public ResourceObj { |
250 | friend class SWPointer; |
251 | friend class CMoveKit; |
252 | private: |
253 | PhaseIdealLoop* _phase; |
254 | Arena* _arena; |
255 | PhaseIterGVN &_igvn; |
256 | |
257 | enum consts { top_align = -1, bottom_align = -666 }; |
258 | |
259 | GrowableArray<Node_List*> _packset; // Packs for the current block |
260 | |
261 | GrowableArray<int> _bb_idx; // Map from Node _idx to index within block |
262 | |
263 | GrowableArray<Node*> _block; // Nodes in current block |
264 | GrowableArray<Node*> _post_block; // Nodes in post loop block |
265 | GrowableArray<Node*> _data_entry; // Nodes with all inputs from outside |
266 | GrowableArray<Node*> _mem_slice_head; // Memory slice head nodes |
267 | GrowableArray<Node*> _mem_slice_tail; // Memory slice tail nodes |
268 | GrowableArray<Node*> _iteration_first; // nodes in the generation that has deps from phi |
269 | GrowableArray<Node*> _iteration_last; // nodes in the generation that has deps to phi |
270 | GrowableArray<SWNodeInfo> _node_info; // Info needed per node |
271 | CloneMap& _clone_map; // map of nodes created in cloning |
272 | CMoveKit _cmovev_kit; // support for vectorization of CMov |
273 | MemNode* _align_to_ref; // Memory reference that pre-loop will align to |
274 | |
275 | GrowableArray<OrderedPair> _disjoint_ptrs; // runtime disambiguated pointer pairs |
276 | |
277 | DepGraph _dg; // Dependence graph |
278 | |
279 | // Scratch pads |
280 | VectorSet _visited; // Visited set |
281 | VectorSet _post_visited; // Post-visited set |
282 | Node_Stack _n_idx_list; // List of (node,index) pairs |
283 | GrowableArray<Node*> _nlist; // List of nodes |
284 | GrowableArray<Node*> _stk; // Stack of nodes |
285 | |
286 | public: |
287 | SuperWord(PhaseIdealLoop* phase); |
288 | |
289 | void transform_loop(IdealLoopTree* lpt, bool do_optimization); |
290 | |
291 | void unrolling_analysis(int &local_loop_unroll_factor); |
292 | |
293 | // Accessors for SWPointer |
294 | PhaseIdealLoop* phase() { return _phase; } |
295 | IdealLoopTree* lpt() { return _lpt; } |
296 | PhiNode* iv() { return _iv; } |
297 | |
298 | bool early_return() { return _early_return; } |
299 | |
300 | #ifndef PRODUCT |
301 | bool is_debug() { return _vector_loop_debug > 0; } |
302 | bool is_trace_alignment() { return (_vector_loop_debug & 2) > 0; } |
303 | bool is_trace_mem_slice() { return (_vector_loop_debug & 4) > 0; } |
304 | bool is_trace_loop() { return (_vector_loop_debug & 8) > 0; } |
305 | bool is_trace_adjacent() { return (_vector_loop_debug & 16) > 0; } |
306 | bool is_trace_cmov() { return (_vector_loop_debug & 32) > 0; } |
307 | bool is_trace_loop_reverse() { return (_vector_loop_debug & 64) > 0; } |
308 | #endif |
309 | bool do_vector_loop() { return _do_vector_loop; } |
310 | bool do_reserve_copy() { return _do_reserve_copy; } |
311 | private: |
312 | IdealLoopTree* _lpt; // Current loop tree node |
313 | LoopNode* _lp; // Current LoopNode |
314 | Node* _bb; // Current basic block |
315 | PhiNode* _iv; // Induction var |
316 | bool _race_possible; // In cases where SDMU is true |
317 | bool _early_return; // True if we do not initialize |
318 | bool _do_vector_loop; // whether to do vectorization/simd style |
319 | bool _do_reserve_copy; // do reserve copy of the graph(loop) before final modification in output |
320 | int _num_work_vecs; // Number of non memory vector operations |
321 | int _num_reductions; // Number of reduction expressions applied |
322 | int _ii_first; // generation with direct deps from mem phi |
323 | int _ii_last; // generation with direct deps to mem phi |
324 | GrowableArray<int> _ii_order; |
325 | #ifndef PRODUCT |
326 | uintx _vector_loop_debug; // provide more printing in debug mode |
327 | #endif |
328 | |
329 | // Accessors |
330 | Arena* arena() { return _arena; } |
331 | |
332 | Node* bb() { return _bb; } |
333 | void set_bb(Node* bb) { _bb = bb; } |
334 | |
335 | void set_lpt(IdealLoopTree* lpt) { _lpt = lpt; } |
336 | |
337 | LoopNode* lp() { return _lp; } |
338 | void set_lp(LoopNode* lp) { _lp = lp; |
339 | _iv = lp->as_CountedLoop()->phi()->as_Phi(); } |
340 | int iv_stride() { return lp()->as_CountedLoop()->stride_con(); } |
341 | |
342 | int vector_width(Node* n) { |
343 | BasicType bt = velt_basic_type(n); |
344 | return MIN2(ABS(iv_stride()), Matcher::max_vector_size(bt)); |
345 | } |
346 | int vector_width_in_bytes(Node* n) { |
347 | BasicType bt = velt_basic_type(n); |
348 | return vector_width(n)*type2aelembytes(bt); |
349 | } |
350 | int get_vw_bytes_special(MemNode* s); |
351 | MemNode* align_to_ref() { return _align_to_ref; } |
352 | void set_align_to_ref(MemNode* m) { _align_to_ref = m; } |
353 | |
354 | Node* ctrl(Node* n) const { return _phase->has_ctrl(n) ? _phase->get_ctrl(n) : n; } |
355 | |
356 | // block accessors |
357 | bool in_bb(Node* n) { return n != NULL && n->outcnt() > 0 && ctrl(n) == _bb; } |
358 | int bb_idx(Node* n) { assert(in_bb(n), "must be" ); return _bb_idx.at(n->_idx); } |
359 | void set_bb_idx(Node* n, int i) { _bb_idx.at_put_grow(n->_idx, i); } |
360 | |
361 | // visited set accessors |
362 | void visited_clear() { _visited.Clear(); } |
363 | void visited_set(Node* n) { return _visited.set(bb_idx(n)); } |
364 | int visited_test(Node* n) { return _visited.test(bb_idx(n)); } |
365 | int visited_test_set(Node* n) { return _visited.test_set(bb_idx(n)); } |
366 | void post_visited_clear() { _post_visited.Clear(); } |
367 | void post_visited_set(Node* n) { return _post_visited.set(bb_idx(n)); } |
368 | int post_visited_test(Node* n) { return _post_visited.test(bb_idx(n)); } |
369 | |
370 | // Ensure node_info contains element "i" |
371 | void grow_node_info(int i) { if (i >= _node_info.length()) _node_info.at_put_grow(i, SWNodeInfo::initial); } |
372 | |
373 | // memory alignment for a node |
374 | int alignment(Node* n) { return _node_info.adr_at(bb_idx(n))->_alignment; } |
375 | void set_alignment(Node* n, int a) { int i = bb_idx(n); grow_node_info(i); _node_info.adr_at(i)->_alignment = a; } |
376 | |
377 | // Max expression (DAG) depth from beginning of the block for each node |
378 | int depth(Node* n) { return _node_info.adr_at(bb_idx(n))->_depth; } |
379 | void set_depth(Node* n, int d) { int i = bb_idx(n); grow_node_info(i); _node_info.adr_at(i)->_depth = d; } |
380 | |
381 | // vector element type |
382 | const Type* velt_type(Node* n) { return _node_info.adr_at(bb_idx(n))->_velt_type; } |
383 | BasicType velt_basic_type(Node* n) { return velt_type(n)->array_element_basic_type(); } |
384 | void set_velt_type(Node* n, const Type* t) { int i = bb_idx(n); grow_node_info(i); _node_info.adr_at(i)->_velt_type = t; } |
385 | bool same_velt_type(Node* n1, Node* n2); |
386 | |
387 | // my_pack |
388 | Node_List* my_pack(Node* n) { return !in_bb(n) ? NULL : _node_info.adr_at(bb_idx(n))->_my_pack; } |
389 | void set_my_pack(Node* n, Node_List* p) { int i = bb_idx(n); grow_node_info(i); _node_info.adr_at(i)->_my_pack = p; } |
390 | // is pack good for converting into one vector node replacing 12 nodes of Cmp, Bool, CMov |
391 | bool is_cmov_pack(Node_List* p); |
392 | bool is_cmov_pack_internal_node(Node_List* p, Node* nd) { return is_cmov_pack(p) && !nd->is_CMove(); } |
393 | // For pack p, are all idx operands the same? |
394 | bool same_inputs(Node_List* p, int idx); |
395 | // CloneMap utilities |
396 | bool same_origin_idx(Node* a, Node* b) const; |
397 | bool same_generation(Node* a, Node* b) const; |
398 | |
399 | // methods |
400 | |
401 | // Extract the superword level parallelism |
402 | void (); |
403 | // Find the adjacent memory references and create pack pairs for them. |
404 | void find_adjacent_refs(); |
405 | // Tracing support |
406 | #ifndef PRODUCT |
407 | void find_adjacent_refs_trace_1(Node* best_align_to_mem_ref, int best_iv_adjustment); |
408 | void print_loop(bool whole); |
409 | #endif |
410 | // Find a memory reference to align the loop induction variable to. |
411 | MemNode* find_align_to_ref(Node_List &memops); |
412 | // Calculate loop's iv adjustment for this memory ops. |
413 | int get_iv_adjustment(MemNode* mem); |
414 | // Can the preloop align the reference to position zero in the vector? |
415 | bool ref_is_alignable(SWPointer& p); |
416 | // rebuild the graph so all loads in different iterations of cloned loop become dependant on phi node (in _do_vector_loop only) |
417 | bool hoist_loads_in_graph(); |
418 | // Test whether MemNode::Memory dependency to the same load but in the first iteration of this loop is coming from memory phi |
419 | // Return false if failed |
420 | Node* find_phi_for_mem_dep(LoadNode* ld); |
421 | // Return same node but from the first generation. Return 0, if not found |
422 | Node* first_node(Node* nd); |
423 | // Return same node as this but from the last generation. Return 0, if not found |
424 | Node* last_node(Node* n); |
425 | // Mark nodes belonging to first and last generation |
426 | // returns first generation index or -1 if vectorization/simd is impossible |
427 | int mark_generations(); |
428 | // swapping inputs of commutative instruction (Add or Mul) |
429 | bool fix_commutative_inputs(Node* gold, Node* fix); |
430 | // make packs forcefully (in _do_vector_loop only) |
431 | bool pack_parallel(); |
432 | // Construct dependency graph. |
433 | void dependence_graph(); |
434 | // Return a memory slice (node list) in predecessor order starting at "start" |
435 | void mem_slice_preds(Node* start, Node* stop, GrowableArray<Node*> &preds); |
436 | // Can s1 and s2 be in a pack with s1 immediately preceding s2 and s1 aligned at "align" |
437 | bool stmts_can_pack(Node* s1, Node* s2, int align); |
438 | // Does s exist in a pack at position pos? |
439 | bool exists_at(Node* s, uint pos); |
440 | // Is s1 immediately before s2 in memory? |
441 | bool are_adjacent_refs(Node* s1, Node* s2); |
442 | // Are s1 and s2 similar? |
443 | bool isomorphic(Node* s1, Node* s2); |
444 | // Is there no data path from s1 to s2 or s2 to s1? |
445 | bool independent(Node* s1, Node* s2); |
446 | // For a node pair (s1, s2) which is isomorphic and independent, |
447 | // do s1 and s2 have similar input edges? |
448 | bool have_similar_inputs(Node* s1, Node* s2); |
449 | // Is there a data path between s1 and s2 and both are reductions? |
450 | bool reduction(Node* s1, Node* s2); |
451 | // Helper for independent |
452 | bool independent_path(Node* shallow, Node* deep, uint dp=0); |
453 | void set_alignment(Node* s1, Node* s2, int align); |
454 | int data_size(Node* s); |
455 | // Extend packset by following use->def and def->use links from pack members. |
456 | void extend_packlist(); |
457 | // Extend the packset by visiting operand definitions of nodes in pack p |
458 | bool follow_use_defs(Node_List* p); |
459 | // Extend the packset by visiting uses of nodes in pack p |
460 | bool follow_def_uses(Node_List* p); |
461 | // For extended packsets, ordinally arrange uses packset by major component |
462 | void order_def_uses(Node_List* p); |
463 | // Estimate the savings from executing s1 and s2 as a pack |
464 | int est_savings(Node* s1, Node* s2); |
465 | int adjacent_profit(Node* s1, Node* s2); |
466 | int pack_cost(int ct); |
467 | int unpack_cost(int ct); |
468 | // Combine packs A and B with A.last == B.first into A.first..,A.last,B.second,..B.last |
469 | void combine_packs(); |
470 | // Construct the map from nodes to packs. |
471 | void construct_my_pack_map(); |
472 | // Remove packs that are not implemented or not profitable. |
473 | void filter_packs(); |
474 | // Merge CMoveD into new vector-nodes |
475 | void merge_packs_to_cmovd(); |
476 | // Adjust the memory graph for the packed operations |
477 | void schedule(); |
478 | // Remove "current" from its current position in the memory graph and insert |
479 | // it after the appropriate insert points (lip or uip); |
480 | void remove_and_insert(MemNode *current, MemNode *prev, MemNode *lip, Node *uip, Unique_Node_List &schd_before); |
481 | // Within a store pack, schedule stores together by moving out the sandwiched memory ops according |
482 | // to dependence info; and within a load pack, move loads down to the last executed load. |
483 | void co_locate_pack(Node_List* p); |
484 | // Convert packs into vector node operations |
485 | void output(); |
486 | // Create a vector operand for the nodes in pack p for operand: in(opd_idx) |
487 | Node* vector_opd(Node_List* p, int opd_idx); |
488 | // Can code be generated for pack p? |
489 | bool implemented(Node_List* p); |
490 | // For pack p, are all operands and all uses (with in the block) vector? |
491 | bool profitable(Node_List* p); |
492 | // If a use of pack p is not a vector use, then replace the use with an extract operation. |
493 | void (Node_List* p); |
494 | // Is use->in(u_idx) a vector use? |
495 | bool is_vector_use(Node* use, int u_idx); |
496 | // Construct reverse postorder list of block members |
497 | bool construct_bb(); |
498 | // Initialize per node info |
499 | void initialize_bb(); |
500 | // Insert n into block after pos |
501 | void bb_insert_after(Node* n, int pos); |
502 | // Compute max depth for expressions from beginning of block |
503 | void compute_max_depth(); |
504 | // Compute necessary vector element type for expressions |
505 | void compute_vector_element_type(); |
506 | // Are s1 and s2 in a pack pair and ordered as s1,s2? |
507 | bool in_packset(Node* s1, Node* s2); |
508 | // Is s in pack p? |
509 | Node_List* in_pack(Node* s, Node_List* p); |
510 | // Remove the pack at position pos in the packset |
511 | void remove_pack_at(int pos); |
512 | // Return the node executed first in pack p. |
513 | Node* executed_first(Node_List* p); |
514 | // Return the node executed last in pack p. |
515 | Node* executed_last(Node_List* p); |
516 | static LoadNode::ControlDependency control_dependency(Node_List* p); |
517 | // Alignment within a vector memory reference |
518 | int memory_alignment(MemNode* s, int iv_adjust); |
519 | // (Start, end] half-open range defining which operands are vector |
520 | void vector_opd_range(Node* n, uint* start, uint* end); |
521 | // Smallest type containing range of values |
522 | const Type* container_type(Node* n); |
523 | // Adjust pre-loop limit so that in main loop, a load/store reference |
524 | // to align_to_ref will be a position zero in the vector. |
525 | void align_initial_loop_index(MemNode* align_to_ref); |
526 | // Find pre loop end from main loop. Returns null if none. |
527 | CountedLoopEndNode* get_pre_loop_end(CountedLoopNode *cl); |
528 | // Is the use of d1 in u1 at the same operand position as d2 in u2? |
529 | bool opnd_positions_match(Node* d1, Node* u1, Node* d2, Node* u2); |
530 | void init(); |
531 | // clean up some basic structures - used if the ideal graph was rebuilt |
532 | void restart(); |
533 | |
534 | // print methods |
535 | void print_packset(); |
536 | void print_pack(Node_List* p); |
537 | void print_bb(); |
538 | void print_stmt(Node* s); |
539 | char* blank(uint depth); |
540 | |
541 | void packset_sort(int n); |
542 | }; |
543 | |
544 | |
545 | |
546 | //------------------------------SWPointer--------------------------- |
547 | // Information about an address for dependence checking and vector alignment |
548 | class SWPointer { |
549 | protected: |
550 | MemNode* _mem; // My memory reference node |
551 | SuperWord* _slp; // SuperWord class |
552 | |
553 | Node* _base; // NULL if unsafe nonheap reference |
554 | Node* _adr; // address pointer |
555 | jint _scale; // multiplier for iv (in bytes), 0 if no loop iv |
556 | jint _offset; // constant offset (in bytes) |
557 | Node* _invar; // invariant offset (in bytes), NULL if none |
558 | bool _negate_invar; // if true then use: (0 - _invar) |
559 | Node_Stack* _nstack; // stack used to record a swpointer trace of variants |
560 | bool _analyze_only; // Used in loop unrolling only for swpointer trace |
561 | uint _stack_idx; // Used in loop unrolling only for swpointer trace |
562 | |
563 | PhaseIdealLoop* phase() { return _slp->phase(); } |
564 | IdealLoopTree* lpt() { return _slp->lpt(); } |
565 | PhiNode* iv() { return _slp->iv(); } // Induction var |
566 | |
567 | bool invariant(Node* n); |
568 | |
569 | // Match: k*iv + offset |
570 | bool scaled_iv_plus_offset(Node* n); |
571 | // Match: k*iv where k is a constant that's not zero |
572 | bool scaled_iv(Node* n); |
573 | // Match: offset is (k [+/- invariant]) |
574 | bool offset_plus_k(Node* n, bool negate = false); |
575 | |
576 | public: |
577 | enum CMP { |
578 | Less = 1, |
579 | Greater = 2, |
580 | Equal = 4, |
581 | NotEqual = (Less | Greater), |
582 | NotComparable = (Less | Greater | Equal) |
583 | }; |
584 | |
585 | SWPointer(MemNode* mem, SuperWord* slp, Node_Stack *nstack, bool analyze_only); |
586 | // Following is used to create a temporary object during |
587 | // the pattern match of an address expression. |
588 | SWPointer(SWPointer* p); |
589 | |
590 | bool valid() { return _adr != NULL; } |
591 | bool has_iv() { return _scale != 0; } |
592 | |
593 | Node* base() { return _base; } |
594 | Node* adr() { return _adr; } |
595 | MemNode* mem() { return _mem; } |
596 | int scale_in_bytes() { return _scale; } |
597 | Node* invar() { return _invar; } |
598 | bool negate_invar() { return _negate_invar; } |
599 | int offset_in_bytes() { return _offset; } |
600 | int memory_size() { return _mem->memory_size(); } |
601 | Node_Stack* node_stack() { return _nstack; } |
602 | |
603 | // Comparable? |
604 | int cmp(SWPointer& q) { |
605 | if (valid() && q.valid() && |
606 | (_adr == q._adr || (_base == _adr && q._base == q._adr)) && |
607 | _scale == q._scale && |
608 | _invar == q._invar && |
609 | _negate_invar == q._negate_invar) { |
610 | bool overlap = q._offset < _offset + memory_size() && |
611 | _offset < q._offset + q.memory_size(); |
612 | return overlap ? Equal : (_offset < q._offset ? Less : Greater); |
613 | } else { |
614 | return NotComparable; |
615 | } |
616 | } |
617 | |
618 | bool not_equal(SWPointer& q) { return not_equal(cmp(q)); } |
619 | bool equal(SWPointer& q) { return equal(cmp(q)); } |
620 | bool comparable(SWPointer& q) { return comparable(cmp(q)); } |
621 | static bool not_equal(int cmp) { return cmp <= NotEqual; } |
622 | static bool equal(int cmp) { return cmp == Equal; } |
623 | static bool comparable(int cmp) { return cmp < NotComparable; } |
624 | |
625 | void print(); |
626 | |
627 | #ifndef PRODUCT |
628 | class Tracer { |
629 | friend class SuperWord; |
630 | friend class SWPointer; |
631 | SuperWord* _slp; |
632 | static int _depth; |
633 | int _depth_save; |
634 | void print_depth(); |
635 | int depth() const { return _depth; } |
636 | void set_depth(int d) { _depth = d; } |
637 | void inc_depth() { _depth++;} |
638 | void dec_depth() { if (_depth > 0) _depth--;} |
639 | void store_depth() {_depth_save = _depth;} |
640 | void restore_depth() {_depth = _depth_save;} |
641 | |
642 | class Depth { |
643 | friend class Tracer; |
644 | friend class SWPointer; |
645 | friend class SuperWord; |
646 | Depth() { ++_depth; } |
647 | Depth(int x) { _depth = 0; } |
648 | ~Depth() { if (_depth > 0) --_depth;} |
649 | }; |
650 | Tracer (SuperWord* slp) : _slp(slp) {} |
651 | |
652 | // tracing functions |
653 | void ctor_1(Node* mem); |
654 | void ctor_2(Node* adr); |
655 | void ctor_3(Node* adr, int i); |
656 | void ctor_4(Node* adr, int i); |
657 | void ctor_5(Node* adr, Node* base, int i); |
658 | void ctor_6(Node* mem); |
659 | |
660 | void invariant_1(Node *n, Node *n_c); |
661 | |
662 | void scaled_iv_plus_offset_1(Node* n); |
663 | void scaled_iv_plus_offset_2(Node* n); |
664 | void scaled_iv_plus_offset_3(Node* n); |
665 | void scaled_iv_plus_offset_4(Node* n); |
666 | void scaled_iv_plus_offset_5(Node* n); |
667 | void scaled_iv_plus_offset_6(Node* n); |
668 | void scaled_iv_plus_offset_7(Node* n); |
669 | void scaled_iv_plus_offset_8(Node* n); |
670 | |
671 | void scaled_iv_1(Node* n); |
672 | void scaled_iv_2(Node* n, int scale); |
673 | void scaled_iv_3(Node* n, int scale); |
674 | void scaled_iv_4(Node* n, int scale); |
675 | void scaled_iv_5(Node* n, int scale); |
676 | void scaled_iv_6(Node* n, int scale); |
677 | void scaled_iv_7(Node* n); |
678 | void scaled_iv_8(Node* n, SWPointer* tmp); |
679 | void scaled_iv_9(Node* n, int _scale, int _offset, int mult); |
680 | void scaled_iv_10(Node* n); |
681 | |
682 | void offset_plus_k_1(Node* n); |
683 | void offset_plus_k_2(Node* n, int _offset); |
684 | void offset_plus_k_3(Node* n, int _offset); |
685 | void offset_plus_k_4(Node* n); |
686 | void offset_plus_k_5(Node* n, Node* _invar); |
687 | void offset_plus_k_6(Node* n, Node* _invar, bool _negate_invar, int _offset); |
688 | void offset_plus_k_7(Node* n, Node* _invar, bool _negate_invar, int _offset); |
689 | void offset_plus_k_8(Node* n, Node* _invar, bool _negate_invar, int _offset); |
690 | void offset_plus_k_9(Node* n, Node* _invar, bool _negate_invar, int _offset); |
691 | void offset_plus_k_10(Node* n, Node* _invar, bool _negate_invar, int _offset); |
692 | void offset_plus_k_11(Node* n); |
693 | |
694 | } _tracer;//TRacer; |
695 | #endif |
696 | }; |
697 | |
698 | #endif // SHARE_OPTO_SUPERWORD_HPP |
699 | |