1 | /* |
2 | * Copyright (c) 2000, 2019, Oracle and/or its affiliates. All rights reserved. |
3 | * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
4 | * |
5 | * This code is free software; you can redistribute it and/or modify it |
6 | * under the terms of the GNU General Public License version 2 only, as |
7 | * published by the Free Software Foundation. |
8 | * |
9 | * This code is distributed in the hope that it will be useful, but WITHOUT |
10 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
11 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
12 | * version 2 for more details (a copy is included in the LICENSE file that |
13 | * accompanied this code). |
14 | * |
15 | * You should have received a copy of the GNU General Public License version |
16 | * 2 along with this work; if not, write to the Free Software Foundation, |
17 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
18 | * |
19 | * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
20 | * or visit www.oracle.com if you need additional information or have any |
21 | * questions. |
22 | * |
23 | */ |
24 | |
25 | #include "precompiled.hpp" |
26 | #include "compiler/compileLog.hpp" |
27 | #include "memory/allocation.inline.hpp" |
28 | #include "opto/addnode.hpp" |
29 | #include "opto/callnode.hpp" |
30 | #include "opto/castnode.hpp" |
31 | #include "opto/connode.hpp" |
32 | #include "opto/convertnode.hpp" |
33 | #include "opto/divnode.hpp" |
34 | #include "opto/loopnode.hpp" |
35 | #include "opto/mulnode.hpp" |
36 | #include "opto/movenode.hpp" |
37 | #include "opto/opaquenode.hpp" |
38 | #include "opto/rootnode.hpp" |
39 | #include "opto/runtime.hpp" |
40 | #include "opto/subnode.hpp" |
41 | #include "opto/superword.hpp" |
42 | #include "opto/vectornode.hpp" |
43 | |
44 | //------------------------------is_loop_exit----------------------------------- |
45 | // Given an IfNode, return the loop-exiting projection or NULL if both |
46 | // arms remain in the loop. |
47 | Node *IdealLoopTree::is_loop_exit(Node *iff) const { |
48 | if (iff->outcnt() != 2) return NULL; // Ignore partially dead tests |
49 | PhaseIdealLoop *phase = _phase; |
50 | // Test is an IfNode, has 2 projections. If BOTH are in the loop |
51 | // we need loop unswitching instead of peeling. |
52 | if (!is_member(phase->get_loop(iff->raw_out(0)))) |
53 | return iff->raw_out(0); |
54 | if (!is_member(phase->get_loop(iff->raw_out(1)))) |
55 | return iff->raw_out(1); |
56 | return NULL; |
57 | } |
58 | |
59 | |
60 | //============================================================================= |
61 | |
62 | |
63 | //------------------------------record_for_igvn---------------------------- |
64 | // Put loop body on igvn work list |
65 | void IdealLoopTree::record_for_igvn() { |
66 | for (uint i = 0; i < _body.size(); i++) { |
67 | Node *n = _body.at(i); |
68 | _phase->_igvn._worklist.push(n); |
69 | } |
70 | // put body of outer strip mined loop on igvn work list as well |
71 | if (_head->is_CountedLoop() && _head->as_Loop()->is_strip_mined()) { |
72 | CountedLoopNode* l = _head->as_CountedLoop(); |
73 | Node* outer_loop = l->outer_loop(); |
74 | assert(outer_loop != NULL, "missing piece of strip mined loop" ); |
75 | _phase->_igvn._worklist.push(outer_loop); |
76 | Node* outer_loop_tail = l->outer_loop_tail(); |
77 | assert(outer_loop_tail != NULL, "missing piece of strip mined loop" ); |
78 | _phase->_igvn._worklist.push(outer_loop_tail); |
79 | Node* outer_loop_end = l->outer_loop_end(); |
80 | assert(outer_loop_end != NULL, "missing piece of strip mined loop" ); |
81 | _phase->_igvn._worklist.push(outer_loop_end); |
82 | Node* outer_safepoint = l->outer_safepoint(); |
83 | assert(outer_safepoint != NULL, "missing piece of strip mined loop" ); |
84 | _phase->_igvn._worklist.push(outer_safepoint); |
85 | Node* cle_out = _head->as_CountedLoop()->loopexit()->proj_out(false); |
86 | assert(cle_out != NULL, "missing piece of strip mined loop" ); |
87 | _phase->_igvn._worklist.push(cle_out); |
88 | } |
89 | } |
90 | |
91 | //------------------------------compute_exact_trip_count----------------------- |
92 | // Compute loop trip count if possible. Do not recalculate trip count for |
93 | // split loops (pre-main-post) which have their limits and inits behind Opaque node. |
94 | void IdealLoopTree::compute_trip_count(PhaseIdealLoop* phase) { |
95 | if (!_head->as_Loop()->is_valid_counted_loop()) { |
96 | return; |
97 | } |
98 | CountedLoopNode* cl = _head->as_CountedLoop(); |
99 | // Trip count may become nonexact for iteration split loops since |
100 | // RCE modifies limits. Note, _trip_count value is not reset since |
101 | // it is used to limit unrolling of main loop. |
102 | cl->set_nonexact_trip_count(); |
103 | |
104 | // Loop's test should be part of loop. |
105 | if (!phase->is_member(this, phase->get_ctrl(cl->loopexit()->in(CountedLoopEndNode::TestValue)))) |
106 | return; // Infinite loop |
107 | |
108 | #ifdef ASSERT |
109 | BoolTest::mask bt = cl->loopexit()->test_trip(); |
110 | assert(bt == BoolTest::lt || bt == BoolTest::gt || |
111 | bt == BoolTest::ne, "canonical test is expected" ); |
112 | #endif |
113 | |
114 | Node* init_n = cl->init_trip(); |
115 | Node* limit_n = cl->limit(); |
116 | if (init_n != NULL && limit_n != NULL) { |
117 | // Use longs to avoid integer overflow. |
118 | int stride_con = cl->stride_con(); |
119 | const TypeInt* init_type = phase->_igvn.type(init_n)->is_int(); |
120 | const TypeInt* limit_type = phase->_igvn.type(limit_n)->is_int(); |
121 | jlong init_con = (stride_con > 0) ? init_type->_lo : init_type->_hi; |
122 | jlong limit_con = (stride_con > 0) ? limit_type->_hi : limit_type->_lo; |
123 | int stride_m = stride_con - (stride_con > 0 ? 1 : -1); |
124 | jlong trip_count = (limit_con - init_con + stride_m)/stride_con; |
125 | if (trip_count > 0 && (julong)trip_count < (julong)max_juint) { |
126 | if (init_n->is_Con() && limit_n->is_Con()) { |
127 | // Set exact trip count. |
128 | cl->set_exact_trip_count((uint)trip_count); |
129 | } else if (cl->unrolled_count() == 1) { |
130 | // Set maximum trip count before unrolling. |
131 | cl->set_trip_count((uint)trip_count); |
132 | } |
133 | } |
134 | } |
135 | } |
136 | |
137 | //------------------------------compute_profile_trip_cnt---------------------------- |
138 | // Compute loop trip count from profile data as |
139 | // (backedge_count + loop_exit_count) / loop_exit_count |
140 | |
141 | float IdealLoopTree::compute_profile_trip_cnt_helper(Node* n) { |
142 | if (n->is_If()) { |
143 | IfNode *iff = n->as_If(); |
144 | if (iff->_fcnt != COUNT_UNKNOWN && iff->_prob != PROB_UNKNOWN) { |
145 | Node *exit = is_loop_exit(iff); |
146 | if (exit) { |
147 | float exit_prob = iff->_prob; |
148 | if (exit->Opcode() == Op_IfFalse) { |
149 | exit_prob = 1.0 - exit_prob; |
150 | } |
151 | if (exit_prob > PROB_MIN) { |
152 | float exit_cnt = iff->_fcnt * exit_prob; |
153 | return exit_cnt; |
154 | } |
155 | } |
156 | } |
157 | } |
158 | if (n->is_Jump()) { |
159 | JumpNode *jmp = n->as_Jump(); |
160 | if (jmp->_fcnt != COUNT_UNKNOWN) { |
161 | float* probs = jmp->_probs; |
162 | float exit_prob = 0; |
163 | PhaseIdealLoop *phase = _phase; |
164 | for (DUIterator_Fast imax, i = jmp->fast_outs(imax); i < imax; i++) { |
165 | JumpProjNode* u = jmp->fast_out(i)->as_JumpProj(); |
166 | if (!is_member(_phase->get_loop(u))) { |
167 | exit_prob += probs[u->_con]; |
168 | } |
169 | } |
170 | return exit_prob * jmp->_fcnt; |
171 | } |
172 | } |
173 | return 0; |
174 | } |
175 | |
176 | void IdealLoopTree::compute_profile_trip_cnt(PhaseIdealLoop *phase) { |
177 | if (!_head->is_Loop()) { |
178 | return; |
179 | } |
180 | LoopNode* head = _head->as_Loop(); |
181 | if (head->profile_trip_cnt() != COUNT_UNKNOWN) { |
182 | return; // Already computed |
183 | } |
184 | float trip_cnt = (float)max_jint; // default is big |
185 | |
186 | Node* back = head->in(LoopNode::LoopBackControl); |
187 | while (back != head) { |
188 | if ((back->Opcode() == Op_IfTrue || back->Opcode() == Op_IfFalse) && |
189 | back->in(0) && |
190 | back->in(0)->is_If() && |
191 | back->in(0)->as_If()->_fcnt != COUNT_UNKNOWN && |
192 | back->in(0)->as_If()->_prob != PROB_UNKNOWN && |
193 | (back->Opcode() == Op_IfTrue ? 1-back->in(0)->as_If()->_prob : back->in(0)->as_If()->_prob) > PROB_MIN) { |
194 | break; |
195 | } |
196 | back = phase->idom(back); |
197 | } |
198 | if (back != head) { |
199 | assert((back->Opcode() == Op_IfTrue || back->Opcode() == Op_IfFalse) && |
200 | back->in(0), "if-projection exists" ); |
201 | IfNode* back_if = back->in(0)->as_If(); |
202 | float loop_back_cnt = back_if->_fcnt * (back->Opcode() == Op_IfTrue ? back_if->_prob : (1 - back_if->_prob)); |
203 | |
204 | // Now compute a loop exit count |
205 | float loop_exit_cnt = 0.0f; |
206 | if (_child == NULL) { |
207 | for (uint i = 0; i < _body.size(); i++) { |
208 | Node *n = _body[i]; |
209 | loop_exit_cnt += compute_profile_trip_cnt_helper(n); |
210 | } |
211 | } else { |
212 | ResourceMark rm; |
213 | Unique_Node_List wq; |
214 | wq.push(back); |
215 | for (uint i = 0; i < wq.size(); i++) { |
216 | Node *n = wq.at(i); |
217 | assert(n->is_CFG(), "only control nodes" ); |
218 | if (n != head) { |
219 | if (n->is_Region()) { |
220 | for (uint j = 1; j < n->req(); j++) { |
221 | wq.push(n->in(j)); |
222 | } |
223 | } else { |
224 | loop_exit_cnt += compute_profile_trip_cnt_helper(n); |
225 | wq.push(n->in(0)); |
226 | } |
227 | } |
228 | } |
229 | |
230 | } |
231 | if (loop_exit_cnt > 0.0f) { |
232 | trip_cnt = (loop_back_cnt + loop_exit_cnt) / loop_exit_cnt; |
233 | } else { |
234 | // No exit count so use |
235 | trip_cnt = loop_back_cnt; |
236 | } |
237 | } else { |
238 | head->mark_profile_trip_failed(); |
239 | } |
240 | #ifndef PRODUCT |
241 | if (TraceProfileTripCount) { |
242 | tty->print_cr("compute_profile_trip_cnt lp: %d cnt: %f\n" , head->_idx, trip_cnt); |
243 | } |
244 | #endif |
245 | head->set_profile_trip_cnt(trip_cnt); |
246 | } |
247 | |
248 | //---------------------is_invariant_addition----------------------------- |
249 | // Return nonzero index of invariant operand for an Add or Sub |
250 | // of (nonconstant) invariant and variant values. Helper for reassociate_invariants. |
251 | int IdealLoopTree::is_invariant_addition(Node* n, PhaseIdealLoop *phase) { |
252 | int op = n->Opcode(); |
253 | if (op == Op_AddI || op == Op_SubI) { |
254 | bool in1_invar = this->is_invariant(n->in(1)); |
255 | bool in2_invar = this->is_invariant(n->in(2)); |
256 | if (in1_invar && !in2_invar) return 1; |
257 | if (!in1_invar && in2_invar) return 2; |
258 | } |
259 | return 0; |
260 | } |
261 | |
262 | //---------------------reassociate_add_sub----------------------------- |
263 | // Reassociate invariant add and subtract expressions: |
264 | // |
265 | // inv1 + (x + inv2) => ( inv1 + inv2) + x |
266 | // (x + inv2) + inv1 => ( inv1 + inv2) + x |
267 | // inv1 + (x - inv2) => ( inv1 - inv2) + x |
268 | // inv1 - (inv2 - x) => ( inv1 - inv2) + x |
269 | // (x + inv2) - inv1 => (-inv1 + inv2) + x |
270 | // (x - inv2) + inv1 => ( inv1 - inv2) + x |
271 | // (x - inv2) - inv1 => (-inv1 - inv2) + x |
272 | // inv1 + (inv2 - x) => ( inv1 + inv2) - x |
273 | // inv1 - (x - inv2) => ( inv1 + inv2) - x |
274 | // (inv2 - x) + inv1 => ( inv1 + inv2) - x |
275 | // (inv2 - x) - inv1 => (-inv1 + inv2) - x |
276 | // inv1 - (x + inv2) => ( inv1 - inv2) - x |
277 | // |
278 | Node* IdealLoopTree::reassociate_add_sub(Node* n1, PhaseIdealLoop *phase) { |
279 | if ((!n1->is_Add() && !n1->is_Sub()) || n1->outcnt() == 0) return NULL; |
280 | if (is_invariant(n1)) return NULL; |
281 | int inv1_idx = is_invariant_addition(n1, phase); |
282 | if (!inv1_idx) return NULL; |
283 | // Don't mess with add of constant (igvn moves them to expression tree root.) |
284 | if (n1->is_Add() && n1->in(2)->is_Con()) return NULL; |
285 | Node* inv1 = n1->in(inv1_idx); |
286 | Node* n2 = n1->in(3 - inv1_idx); |
287 | int inv2_idx = is_invariant_addition(n2, phase); |
288 | if (!inv2_idx) return NULL; |
289 | |
290 | if (!phase->may_require_nodes(10, 10)) return NULL; |
291 | |
292 | Node* x = n2->in(3 - inv2_idx); |
293 | Node* inv2 = n2->in(inv2_idx); |
294 | |
295 | bool neg_x = n2->is_Sub() && inv2_idx == 1; |
296 | bool neg_inv2 = n2->is_Sub() && inv2_idx == 2; |
297 | bool neg_inv1 = n1->is_Sub() && inv1_idx == 2; |
298 | if (n1->is_Sub() && inv1_idx == 1) { |
299 | neg_x = !neg_x; |
300 | neg_inv2 = !neg_inv2; |
301 | } |
302 | Node* inv1_c = phase->get_ctrl(inv1); |
303 | Node* inv2_c = phase->get_ctrl(inv2); |
304 | Node* n_inv1; |
305 | if (neg_inv1) { |
306 | Node *zero = phase->_igvn.intcon(0); |
307 | phase->set_ctrl(zero, phase->C->root()); |
308 | n_inv1 = new SubINode(zero, inv1); |
309 | phase->register_new_node(n_inv1, inv1_c); |
310 | } else { |
311 | n_inv1 = inv1; |
312 | } |
313 | Node* inv; |
314 | if (neg_inv2) { |
315 | inv = new SubINode(n_inv1, inv2); |
316 | } else { |
317 | inv = new AddINode(n_inv1, inv2); |
318 | } |
319 | phase->register_new_node(inv, phase->get_early_ctrl(inv)); |
320 | |
321 | Node* addx; |
322 | if (neg_x) { |
323 | addx = new SubINode(inv, x); |
324 | } else { |
325 | addx = new AddINode(x, inv); |
326 | } |
327 | phase->register_new_node(addx, phase->get_ctrl(x)); |
328 | phase->_igvn.replace_node(n1, addx); |
329 | assert(phase->get_loop(phase->get_ctrl(n1)) == this, "" ); |
330 | _body.yank(n1); |
331 | return addx; |
332 | } |
333 | |
334 | //---------------------reassociate_invariants----------------------------- |
335 | // Reassociate invariant expressions: |
336 | void IdealLoopTree::reassociate_invariants(PhaseIdealLoop *phase) { |
337 | for (int i = _body.size() - 1; i >= 0; i--) { |
338 | Node *n = _body.at(i); |
339 | for (int j = 0; j < 5; j++) { |
340 | Node* nn = reassociate_add_sub(n, phase); |
341 | if (nn == NULL) break; |
342 | n = nn; // again |
343 | } |
344 | } |
345 | } |
346 | |
347 | //------------------------------policy_peeling--------------------------------- |
348 | // Return TRUE if the loop should be peeled, otherwise return FALSE. Peeling |
349 | // is applicable if we can make a loop-invariant test (usually a null-check) |
350 | // execute before we enter the loop. When TRUE, the estimated node budget is |
351 | // also requested. |
352 | bool IdealLoopTree::policy_peeling(PhaseIdealLoop *phase) { |
353 | uint estimate = estimate_peeling(phase); |
354 | |
355 | return estimate == 0 ? false : phase->may_require_nodes(estimate); |
356 | } |
357 | |
358 | // Perform actual policy and size estimate for the loop peeling transform, and |
359 | // return the estimated loop size if peeling is applicable, otherwise return |
360 | // zero. No node budget is allocated. |
361 | uint IdealLoopTree::estimate_peeling(PhaseIdealLoop *phase) { |
362 | |
363 | // If nodes are depleted, some transform has miscalculated its needs. |
364 | assert(!phase->exceeding_node_budget(), "sanity" ); |
365 | |
366 | // Peeling does loop cloning which can result in O(N^2) node construction. |
367 | if (_body.size() > 255) { |
368 | return 0; // Suppress too large body size. |
369 | } |
370 | // Optimistic estimate that approximates loop body complexity via data and |
371 | // control flow fan-out (instead of using the more pessimistic: BodySize^2). |
372 | uint estimate = est_loop_clone_sz(2); |
373 | |
374 | if (phase->exceeding_node_budget(estimate)) { |
375 | return 0; // Too large to safely clone. |
376 | } |
377 | |
378 | // Check for vectorized loops, any peeling done was already applied. |
379 | if (_head->is_CountedLoop()) { |
380 | CountedLoopNode* cl = _head->as_CountedLoop(); |
381 | if (cl->is_unroll_only() || cl->trip_count() == 1) { |
382 | return 0; |
383 | } |
384 | } |
385 | |
386 | Node* test = tail(); |
387 | |
388 | while (test != _head) { // Scan till run off top of loop |
389 | if (test->is_If()) { // Test? |
390 | Node *ctrl = phase->get_ctrl(test->in(1)); |
391 | if (ctrl->is_top()) { |
392 | return 0; // Found dead test on live IF? No peeling! |
393 | } |
394 | // Standard IF only has one input value to check for loop invariance. |
395 | assert(test->Opcode() == Op_If || |
396 | test->Opcode() == Op_CountedLoopEnd || |
397 | test->Opcode() == Op_RangeCheck, |
398 | "Check this code when new subtype is added" ); |
399 | // Condition is not a member of this loop? |
400 | if (!is_member(phase->get_loop(ctrl)) && is_loop_exit(test)) { |
401 | return estimate; // Found reason to peel! |
402 | } |
403 | } |
404 | // Walk up dominators to loop _head looking for test which is executed on |
405 | // every path through the loop. |
406 | test = phase->idom(test); |
407 | } |
408 | return 0; |
409 | } |
410 | |
411 | //------------------------------peeled_dom_test_elim--------------------------- |
412 | // If we got the effect of peeling, either by actually peeling or by making |
413 | // a pre-loop which must execute at least once, we can remove all |
414 | // loop-invariant dominated tests in the main body. |
415 | void PhaseIdealLoop::peeled_dom_test_elim(IdealLoopTree *loop, Node_List &old_new) { |
416 | bool progress = true; |
417 | while (progress) { |
418 | progress = false; // Reset for next iteration |
419 | Node *prev = loop->_head->in(LoopNode::LoopBackControl);//loop->tail(); |
420 | Node *test = prev->in(0); |
421 | while (test != loop->_head) { // Scan till run off top of loop |
422 | |
423 | int p_op = prev->Opcode(); |
424 | if ((p_op == Op_IfFalse || p_op == Op_IfTrue) && |
425 | test->is_If() && // Test? |
426 | !test->in(1)->is_Con() && // And not already obvious? |
427 | // Condition is not a member of this loop? |
428 | !loop->is_member(get_loop(get_ctrl(test->in(1))))){ |
429 | // Walk loop body looking for instances of this test |
430 | for (uint i = 0; i < loop->_body.size(); i++) { |
431 | Node *n = loop->_body.at(i); |
432 | if (n->is_If() && n->in(1) == test->in(1) /*&& n != loop->tail()->in(0)*/) { |
433 | // IfNode was dominated by version in peeled loop body |
434 | progress = true; |
435 | dominated_by(old_new[prev->_idx], n); |
436 | } |
437 | } |
438 | } |
439 | prev = test; |
440 | test = idom(test); |
441 | } // End of scan tests in loop |
442 | |
443 | } // End of while (progress) |
444 | } |
445 | |
446 | //------------------------------do_peeling------------------------------------- |
447 | // Peel the first iteration of the given loop. |
448 | // Step 1: Clone the loop body. The clone becomes the peeled iteration. |
449 | // The pre-loop illegally has 2 control users (old & new loops). |
450 | // Step 2: Make the old-loop fall-in edges point to the peeled iteration. |
451 | // Do this by making the old-loop fall-in edges act as if they came |
452 | // around the loopback from the prior iteration (follow the old-loop |
453 | // backedges) and then map to the new peeled iteration. This leaves |
454 | // the pre-loop with only 1 user (the new peeled iteration), but the |
455 | // peeled-loop backedge has 2 users. |
456 | // Step 3: Cut the backedge on the clone (so its not a loop) and remove the |
457 | // extra backedge user. |
458 | // |
459 | // orig |
460 | // |
461 | // stmt1 |
462 | // | |
463 | // v |
464 | // loop predicate |
465 | // | |
466 | // v |
467 | // loop<----+ |
468 | // | | |
469 | // stmt2 | |
470 | // | | |
471 | // v | |
472 | // if ^ |
473 | // / \ | |
474 | // / \ | |
475 | // v v | |
476 | // false true | |
477 | // / \ | |
478 | // / ----+ |
479 | // | |
480 | // v |
481 | // exit |
482 | // |
483 | // |
484 | // after clone loop |
485 | // |
486 | // stmt1 |
487 | // | |
488 | // v |
489 | // loop predicate |
490 | // / \ |
491 | // clone / \ orig |
492 | // / \ |
493 | // / \ |
494 | // v v |
495 | // +---->loop clone loop<----+ |
496 | // | | | | |
497 | // | stmt2 clone stmt2 | |
498 | // | | | | |
499 | // | v v | |
500 | // ^ if clone If ^ |
501 | // | / \ / \ | |
502 | // | / \ / \ | |
503 | // | v v v v | |
504 | // | true false false true | |
505 | // | / \ / \ | |
506 | // +---- \ / ----+ |
507 | // \ / |
508 | // 1v v2 |
509 | // region |
510 | // | |
511 | // v |
512 | // exit |
513 | // |
514 | // |
515 | // after peel and predicate move |
516 | // |
517 | // stmt1 |
518 | // / |
519 | // / |
520 | // clone / orig |
521 | // / |
522 | // / +----------+ |
523 | // / | | |
524 | // / loop predicate | |
525 | // / | | |
526 | // v v | |
527 | // TOP-->loop clone loop<----+ | |
528 | // | | | | |
529 | // stmt2 clone stmt2 | | |
530 | // | | | ^ |
531 | // v v | | |
532 | // if clone If ^ | |
533 | // / \ / \ | | |
534 | // / \ / \ | | |
535 | // v v v v | | |
536 | // true false false true | | |
537 | // | \ / \ | | |
538 | // | \ / ----+ ^ |
539 | // | \ / | |
540 | // | 1v v2 | |
541 | // v region | |
542 | // | | | |
543 | // | v | |
544 | // | exit | |
545 | // | | |
546 | // +--------------->-----------------+ |
547 | // |
548 | // |
549 | // final graph |
550 | // |
551 | // stmt1 |
552 | // | |
553 | // v |
554 | // stmt2 clone |
555 | // | |
556 | // v |
557 | // if clone |
558 | // / | |
559 | // / | |
560 | // v v |
561 | // false true |
562 | // | | |
563 | // | v |
564 | // | loop predicate |
565 | // | | |
566 | // | v |
567 | // | loop<----+ |
568 | // | | | |
569 | // | stmt2 | |
570 | // | | | |
571 | // | v | |
572 | // v if ^ |
573 | // | / \ | |
574 | // | / \ | |
575 | // | v v | |
576 | // | false true | |
577 | // | | \ | |
578 | // v v --+ |
579 | // region |
580 | // | |
581 | // v |
582 | // exit |
583 | // |
584 | void PhaseIdealLoop::do_peeling(IdealLoopTree *loop, Node_List &old_new) { |
585 | |
586 | C->set_major_progress(); |
587 | // Peeling a 'main' loop in a pre/main/post situation obfuscates the |
588 | // 'pre' loop from the main and the 'pre' can no longer have its |
589 | // iterations adjusted. Therefore, we need to declare this loop as |
590 | // no longer a 'main' loop; it will need new pre and post loops before |
591 | // we can do further RCE. |
592 | #ifndef PRODUCT |
593 | if (TraceLoopOpts) { |
594 | tty->print("Peel " ); |
595 | loop->dump_head(); |
596 | } |
597 | #endif |
598 | LoopNode* head = loop->_head->as_Loop(); |
599 | bool counted_loop = head->is_CountedLoop(); |
600 | if (counted_loop) { |
601 | CountedLoopNode *cl = head->as_CountedLoop(); |
602 | assert(cl->trip_count() > 0, "peeling a fully unrolled loop" ); |
603 | cl->set_trip_count(cl->trip_count() - 1); |
604 | if (cl->is_main_loop()) { |
605 | cl->set_normal_loop(); |
606 | #ifndef PRODUCT |
607 | if (PrintOpto && VerifyLoopOptimizations) { |
608 | tty->print("Peeling a 'main' loop; resetting to 'normal' " ); |
609 | loop->dump_head(); |
610 | } |
611 | #endif |
612 | } |
613 | } |
614 | Node* entry = head->in(LoopNode::EntryControl); |
615 | |
616 | // Step 1: Clone the loop body. The clone becomes the peeled iteration. |
617 | // The pre-loop illegally has 2 control users (old & new loops). |
618 | clone_loop(loop, old_new, dom_depth(head->skip_strip_mined()), ControlAroundStripMined); |
619 | |
620 | // Step 2: Make the old-loop fall-in edges point to the peeled iteration. |
621 | // Do this by making the old-loop fall-in edges act as if they came |
622 | // around the loopback from the prior iteration (follow the old-loop |
623 | // backedges) and then map to the new peeled iteration. This leaves |
624 | // the pre-loop with only 1 user (the new peeled iteration), but the |
625 | // peeled-loop backedge has 2 users. |
626 | Node* new_entry = old_new[head->in(LoopNode::LoopBackControl)->_idx]; |
627 | _igvn.hash_delete(head->skip_strip_mined()); |
628 | head->skip_strip_mined()->set_req(LoopNode::EntryControl, new_entry); |
629 | for (DUIterator_Fast jmax, j = head->fast_outs(jmax); j < jmax; j++) { |
630 | Node* old = head->fast_out(j); |
631 | if (old->in(0) == loop->_head && old->req() == 3 && old->is_Phi()) { |
632 | Node* new_exit_value = old_new[old->in(LoopNode::LoopBackControl)->_idx]; |
633 | if (!new_exit_value) // Backedge value is ALSO loop invariant? |
634 | // Then loop body backedge value remains the same. |
635 | new_exit_value = old->in(LoopNode::LoopBackControl); |
636 | _igvn.hash_delete(old); |
637 | old->set_req(LoopNode::EntryControl, new_exit_value); |
638 | } |
639 | } |
640 | |
641 | |
642 | // Step 3: Cut the backedge on the clone (so its not a loop) and remove the |
643 | // extra backedge user. |
644 | Node* new_head = old_new[head->_idx]; |
645 | _igvn.hash_delete(new_head); |
646 | new_head->set_req(LoopNode::LoopBackControl, C->top()); |
647 | for (DUIterator_Fast j2max, j2 = new_head->fast_outs(j2max); j2 < j2max; j2++) { |
648 | Node* use = new_head->fast_out(j2); |
649 | if (use->in(0) == new_head && use->req() == 3 && use->is_Phi()) { |
650 | _igvn.hash_delete(use); |
651 | use->set_req(LoopNode::LoopBackControl, C->top()); |
652 | } |
653 | } |
654 | |
655 | // Step 4: Correct dom-depth info. Set to loop-head depth. |
656 | |
657 | int dd = dom_depth(head); |
658 | set_idom(head, head->in(1), dd); |
659 | for (uint j3 = 0; j3 < loop->_body.size(); j3++) { |
660 | Node *old = loop->_body.at(j3); |
661 | Node *nnn = old_new[old->_idx]; |
662 | if (!has_ctrl(nnn)) { |
663 | set_idom(nnn, idom(nnn), dd-1); |
664 | } |
665 | } |
666 | |
667 | // Now force out all loop-invariant dominating tests. The optimizer |
668 | // finds some, but we _know_ they are all useless. |
669 | peeled_dom_test_elim(loop,old_new); |
670 | |
671 | loop->record_for_igvn(); |
672 | } |
673 | |
674 | // The Estimated Loop Unroll Size: UnrollFactor * (106% * BodySize + BC) + CC, |
675 | // where BC and CC are (totally) ad-hoc/magic "body" and "clone" constants, |
676 | // respectively, used to ensure that node usage estimates made are on the safe |
677 | // side, for the most part. This is a simplified version of the loop clone |
678 | // size calculation in est_loop_clone_sz(), defined for unroll factors larger |
679 | // than one (>1), performing an overflow check and returning 'UINT_MAX' in |
680 | // case of an overflow. |
681 | static uint est_loop_unroll_sz(uint factor, uint size) { |
682 | precond(0 < factor); |
683 | |
684 | uint const bc = 5; |
685 | uint const cc = 7; |
686 | uint const sz = size + (size + 15) / 16; |
687 | uint estimate = factor * (sz + bc) + cc; |
688 | |
689 | return (estimate - cc) / factor == sz + bc ? estimate : UINT_MAX; |
690 | } |
691 | |
692 | #define EMPTY_LOOP_SIZE 7 // Number of nodes in an empty loop. |
693 | |
694 | //------------------------------policy_maximally_unroll------------------------ |
695 | // Calculate the exact loop trip-count and return TRUE if loop can be fully, |
696 | // i.e. maximally, unrolled, otherwise return FALSE. When TRUE, the estimated |
697 | // node budget is also requested. |
698 | bool IdealLoopTree::policy_maximally_unroll(PhaseIdealLoop *phase) const { |
699 | CountedLoopNode *cl = _head->as_CountedLoop(); |
700 | assert(cl->is_normal_loop(), "" ); |
701 | if (!cl->is_valid_counted_loop()) { |
702 | return false; // Malformed counted loop |
703 | } |
704 | if (!cl->has_exact_trip_count()) { |
705 | // Trip count is not exact. |
706 | return false; |
707 | } |
708 | |
709 | uint trip_count = cl->trip_count(); |
710 | // Note, max_juint is used to indicate unknown trip count. |
711 | assert(trip_count > 1, "one iteration loop should be optimized out already" ); |
712 | assert(trip_count < max_juint, "exact trip_count should be less than max_uint." ); |
713 | |
714 | // If nodes are depleted, some transform has miscalculated its needs. |
715 | assert(!phase->exceeding_node_budget(), "sanity" ); |
716 | |
717 | // Real policy: if we maximally unroll, does it get too big? |
718 | // Allow the unrolled mess to get larger than standard loop |
719 | // size. After all, it will no longer be a loop. |
720 | uint body_size = _body.size(); |
721 | uint unroll_limit = (uint)LoopUnrollLimit * 4; |
722 | assert((intx)unroll_limit == LoopUnrollLimit * 4, "LoopUnrollLimit must fit in 32bits" ); |
723 | if (trip_count > unroll_limit || body_size > unroll_limit) { |
724 | return false; |
725 | } |
726 | |
727 | // Take into account that after unroll conjoined heads and tails will fold, |
728 | // otherwise policy_unroll() may allow more unrolling than max unrolling. |
729 | uint new_body_size = est_loop_unroll_sz(trip_count, body_size - EMPTY_LOOP_SIZE); |
730 | |
731 | if (new_body_size == UINT_MAX) { // Check for bad estimate (overflow). |
732 | return false; |
733 | } |
734 | |
735 | // Fully unroll a loop with few iterations regardless next conditions since |
736 | // following loop optimizations will split such loop anyway (pre-main-post). |
737 | if (trip_count <= 3) { |
738 | return phase->may_require_nodes(new_body_size); |
739 | } |
740 | |
741 | if (new_body_size > unroll_limit || |
742 | // Unrolling can result in a large amount of node construction |
743 | phase->exceeding_node_budget(new_body_size)) { |
744 | return false; |
745 | } |
746 | |
747 | // Do not unroll a loop with String intrinsics code. |
748 | // String intrinsics are large and have loops. |
749 | for (uint k = 0; k < _body.size(); k++) { |
750 | Node* n = _body.at(k); |
751 | switch (n->Opcode()) { |
752 | case Op_StrComp: |
753 | case Op_StrEquals: |
754 | case Op_StrIndexOf: |
755 | case Op_StrIndexOfChar: |
756 | case Op_EncodeISOArray: |
757 | case Op_AryEq: |
758 | case Op_HasNegatives: { |
759 | return false; |
760 | } |
761 | #if INCLUDE_RTM_OPT |
762 | case Op_FastLock: |
763 | case Op_FastUnlock: { |
764 | // Don't unroll RTM locking code because it is large. |
765 | if (UseRTMLocking) { |
766 | return false; |
767 | } |
768 | } |
769 | #endif |
770 | } // switch |
771 | } |
772 | |
773 | return phase->may_require_nodes(new_body_size); |
774 | } |
775 | |
776 | |
777 | //------------------------------policy_unroll---------------------------------- |
778 | // Return TRUE or FALSE if the loop should be unrolled or not. Apply unroll if |
779 | // the loop is a counted loop and the loop body is small enough. When TRUE, |
780 | // the estimated node budget is also requested. |
781 | bool IdealLoopTree::policy_unroll(PhaseIdealLoop *phase) { |
782 | |
783 | CountedLoopNode *cl = _head->as_CountedLoop(); |
784 | assert(cl->is_normal_loop() || cl->is_main_loop(), "" ); |
785 | |
786 | if (!cl->is_valid_counted_loop()) { |
787 | return false; // Malformed counted loop |
788 | } |
789 | |
790 | // If nodes are depleted, some transform has miscalculated its needs. |
791 | assert(!phase->exceeding_node_budget(), "sanity" ); |
792 | |
793 | // Protect against over-unrolling. |
794 | // After split at least one iteration will be executed in pre-loop. |
795 | if (cl->trip_count() <= (cl->is_normal_loop() ? 2u : 1u)) { |
796 | return false; |
797 | } |
798 | _local_loop_unroll_limit = LoopUnrollLimit; |
799 | _local_loop_unroll_factor = 4; |
800 | int future_unroll_cnt = cl->unrolled_count() * 2; |
801 | if (!cl->is_vectorized_loop()) { |
802 | if (future_unroll_cnt > LoopMaxUnroll) return false; |
803 | } else { |
804 | // obey user constraints on vector mapped loops with additional unrolling applied |
805 | int unroll_constraint = (cl->slp_max_unroll()) ? cl->slp_max_unroll() : 1; |
806 | if ((future_unroll_cnt / unroll_constraint) > LoopMaxUnroll) return false; |
807 | } |
808 | |
809 | // Check for initial stride being a small enough constant |
810 | if (abs(cl->stride_con()) > (1<<2)*future_unroll_cnt) return false; |
811 | |
812 | // Don't unroll if the next round of unrolling would push us |
813 | // over the expected trip count of the loop. One is subtracted |
814 | // from the expected trip count because the pre-loop normally |
815 | // executes 1 iteration. |
816 | if (UnrollLimitForProfileCheck > 0 && |
817 | cl->profile_trip_cnt() != COUNT_UNKNOWN && |
818 | future_unroll_cnt > UnrollLimitForProfileCheck && |
819 | (float)future_unroll_cnt > cl->profile_trip_cnt() - 1.0) { |
820 | return false; |
821 | } |
822 | |
823 | // When unroll count is greater than LoopUnrollMin, don't unroll if: |
824 | // the residual iterations are more than 10% of the trip count |
825 | // and rounds of "unroll,optimize" are not making significant progress |
826 | // Progress defined as current size less than 20% larger than previous size. |
827 | if (UseSuperWord && cl->node_count_before_unroll() > 0 && |
828 | future_unroll_cnt > LoopUnrollMin && |
829 | (future_unroll_cnt - 1) * (100 / LoopPercentProfileLimit) > cl->profile_trip_cnt() && |
830 | 1.2 * cl->node_count_before_unroll() < (double)_body.size()) { |
831 | return false; |
832 | } |
833 | |
834 | Node *init_n = cl->init_trip(); |
835 | Node *limit_n = cl->limit(); |
836 | int stride_con = cl->stride_con(); |
837 | if (limit_n == NULL) return false; // We will dereference it below. |
838 | |
839 | // Non-constant bounds. |
840 | // Protect against over-unrolling when init or/and limit are not constant |
841 | // (so that trip_count's init value is maxint) but iv range is known. |
842 | if (init_n == NULL || !init_n->is_Con() || !limit_n->is_Con()) { |
843 | Node* phi = cl->phi(); |
844 | if (phi != NULL) { |
845 | assert(phi->is_Phi() && phi->in(0) == _head, "Counted loop should have iv phi." ); |
846 | const TypeInt* iv_type = phase->_igvn.type(phi)->is_int(); |
847 | int next_stride = stride_con * 2; // stride after this unroll |
848 | if (next_stride > 0) { |
849 | if (iv_type->_lo + next_stride <= iv_type->_lo || // overflow |
850 | iv_type->_lo + next_stride > iv_type->_hi) { |
851 | return false; // over-unrolling |
852 | } |
853 | } else if (next_stride < 0) { |
854 | if (iv_type->_hi + next_stride >= iv_type->_hi || // overflow |
855 | iv_type->_hi + next_stride < iv_type->_lo) { |
856 | return false; // over-unrolling |
857 | } |
858 | } |
859 | } |
860 | } |
861 | |
862 | // After unroll limit will be adjusted: new_limit = limit-stride. |
863 | // Bailout if adjustment overflow. |
864 | const TypeInt* limit_type = phase->_igvn.type(limit_n)->is_int(); |
865 | if ((stride_con > 0 && ((limit_type->_hi - stride_con) >= limit_type->_hi)) || |
866 | (stride_con < 0 && ((limit_type->_lo - stride_con) <= limit_type->_lo))) |
867 | return false; // overflow |
868 | |
869 | // Adjust body_size to determine if we unroll or not |
870 | uint body_size = _body.size(); |
871 | // Key test to unroll loop in CRC32 java code |
872 | int xors_in_loop = 0; |
873 | // Also count ModL, DivL and MulL which expand mightly |
874 | for (uint k = 0; k < _body.size(); k++) { |
875 | Node* n = _body.at(k); |
876 | switch (n->Opcode()) { |
877 | case Op_XorI: xors_in_loop++; break; // CRC32 java code |
878 | case Op_ModL: body_size += 30; break; |
879 | case Op_DivL: body_size += 30; break; |
880 | case Op_MulL: body_size += 10; break; |
881 | case Op_StrComp: |
882 | case Op_StrEquals: |
883 | case Op_StrIndexOf: |
884 | case Op_StrIndexOfChar: |
885 | case Op_EncodeISOArray: |
886 | case Op_AryEq: |
887 | case Op_HasNegatives: { |
888 | // Do not unroll a loop with String intrinsics code. |
889 | // String intrinsics are large and have loops. |
890 | return false; |
891 | } |
892 | #if INCLUDE_RTM_OPT |
893 | case Op_FastLock: |
894 | case Op_FastUnlock: { |
895 | // Don't unroll RTM locking code because it is large. |
896 | if (UseRTMLocking) { |
897 | return false; |
898 | } |
899 | } |
900 | #endif |
901 | } // switch |
902 | } |
903 | |
904 | if (UseSuperWord) { |
905 | if (!cl->is_reduction_loop()) { |
906 | phase->mark_reductions(this); |
907 | } |
908 | |
909 | // Only attempt slp analysis when user controls do not prohibit it |
910 | if (LoopMaxUnroll > _local_loop_unroll_factor) { |
911 | // Once policy_slp_analysis succeeds, mark the loop with the |
912 | // maximal unroll factor so that we minimize analysis passes |
913 | if (future_unroll_cnt >= _local_loop_unroll_factor) { |
914 | policy_unroll_slp_analysis(cl, phase, future_unroll_cnt); |
915 | } |
916 | } |
917 | } |
918 | |
919 | int slp_max_unroll_factor = cl->slp_max_unroll(); |
920 | if ((LoopMaxUnroll < slp_max_unroll_factor) && FLAG_IS_DEFAULT(LoopMaxUnroll) && UseSubwordForMaxVector) { |
921 | LoopMaxUnroll = slp_max_unroll_factor; |
922 | } |
923 | |
924 | uint estimate = est_loop_clone_sz(2); |
925 | |
926 | if (cl->has_passed_slp()) { |
927 | if (slp_max_unroll_factor >= future_unroll_cnt) { |
928 | return phase->may_require_nodes(estimate); |
929 | } |
930 | return false; // Loop too big. |
931 | } |
932 | |
933 | // Check for being too big |
934 | if (body_size > (uint)_local_loop_unroll_limit) { |
935 | if ((cl->is_subword_loop() || xors_in_loop >= 4) && body_size < 4u * LoopUnrollLimit) { |
936 | return phase->may_require_nodes(estimate); |
937 | } |
938 | return false; // Loop too big. |
939 | } |
940 | |
941 | if (cl->is_unroll_only()) { |
942 | if (TraceSuperWordLoopUnrollAnalysis) { |
943 | tty->print_cr("policy_unroll passed vector loop(vlen=%d, factor=%d)\n" , |
944 | slp_max_unroll_factor, future_unroll_cnt); |
945 | } |
946 | } |
947 | |
948 | // Unroll once! (Each trip will soon do double iterations) |
949 | return phase->may_require_nodes(estimate); |
950 | } |
951 | |
952 | void IdealLoopTree::policy_unroll_slp_analysis(CountedLoopNode *cl, PhaseIdealLoop *phase, int future_unroll_cnt) { |
953 | |
954 | // If nodes are depleted, some transform has miscalculated its needs. |
955 | assert(!phase->exceeding_node_budget(), "sanity" ); |
956 | |
957 | // Enable this functionality target by target as needed |
958 | if (SuperWordLoopUnrollAnalysis) { |
959 | if (!cl->was_slp_analyzed()) { |
960 | SuperWord sw(phase); |
961 | sw.transform_loop(this, false); |
962 | |
963 | // If the loop is slp canonical analyze it |
964 | if (sw.early_return() == false) { |
965 | sw.unrolling_analysis(_local_loop_unroll_factor); |
966 | } |
967 | } |
968 | |
969 | if (cl->has_passed_slp()) { |
970 | int slp_max_unroll_factor = cl->slp_max_unroll(); |
971 | if (slp_max_unroll_factor >= future_unroll_cnt) { |
972 | int new_limit = cl->node_count_before_unroll() * slp_max_unroll_factor; |
973 | if (new_limit > LoopUnrollLimit) { |
974 | if (TraceSuperWordLoopUnrollAnalysis) { |
975 | tty->print_cr("slp analysis unroll=%d, default limit=%d\n" , new_limit, _local_loop_unroll_limit); |
976 | } |
977 | _local_loop_unroll_limit = new_limit; |
978 | } |
979 | } |
980 | } |
981 | } |
982 | } |
983 | |
984 | //------------------------------policy_align----------------------------------- |
985 | // Return TRUE or FALSE if the loop should be cache-line aligned. Gather the |
986 | // expression that does the alignment. Note that only one array base can be |
987 | // aligned in a loop (unless the VM guarantees mutual alignment). Note that |
988 | // if we vectorize short memory ops into longer memory ops, we may want to |
989 | // increase alignment. |
990 | bool IdealLoopTree::policy_align(PhaseIdealLoop *phase) const { |
991 | return false; |
992 | } |
993 | |
994 | //------------------------------policy_range_check----------------------------- |
995 | // Return TRUE or FALSE if the loop should be range-check-eliminated or not. |
996 | // When TRUE, the estimated node budget is also requested. |
997 | // |
998 | // We will actually perform iteration-splitting, a more powerful form of RCE. |
999 | bool IdealLoopTree::policy_range_check(PhaseIdealLoop *phase) const { |
1000 | if (!RangeCheckElimination) return false; |
1001 | |
1002 | // If nodes are depleted, some transform has miscalculated its needs. |
1003 | assert(!phase->exceeding_node_budget(), "sanity" ); |
1004 | |
1005 | CountedLoopNode *cl = _head->as_CountedLoop(); |
1006 | // If we unrolled with no intention of doing RCE and we later changed our |
1007 | // minds, we got no pre-loop. Either we need to make a new pre-loop, or we |
1008 | // have to disallow RCE. |
1009 | if (cl->is_main_no_pre_loop()) return false; // Disallowed for now. |
1010 | Node *trip_counter = cl->phi(); |
1011 | |
1012 | // check for vectorized loops, some opts are no longer needed |
1013 | if (cl->is_unroll_only()) return false; |
1014 | |
1015 | // Check loop body for tests of trip-counter plus loop-invariant vs |
1016 | // loop-invariant. |
1017 | for (uint i = 0; i < _body.size(); i++) { |
1018 | Node *iff = _body[i]; |
1019 | if (iff->Opcode() == Op_If || |
1020 | iff->Opcode() == Op_RangeCheck) { // Test? |
1021 | |
1022 | // Comparing trip+off vs limit |
1023 | Node *bol = iff->in(1); |
1024 | if (bol->req() != 2) { |
1025 | continue; // dead constant test |
1026 | } |
1027 | if (!bol->is_Bool()) { |
1028 | assert(bol->Opcode() == Op_Conv2B, "predicate check only" ); |
1029 | continue; |
1030 | } |
1031 | if (bol->as_Bool()->_test._test == BoolTest::ne) { |
1032 | continue; // not RC |
1033 | } |
1034 | Node *cmp = bol->in(1); |
1035 | Node *rc_exp = cmp->in(1); |
1036 | Node *limit = cmp->in(2); |
1037 | |
1038 | Node *limit_c = phase->get_ctrl(limit); |
1039 | if (limit_c == phase->C->top()) { |
1040 | return false; // Found dead test on live IF? No RCE! |
1041 | } |
1042 | if (is_member(phase->get_loop(limit_c))) { |
1043 | // Compare might have operands swapped; commute them |
1044 | rc_exp = cmp->in(2); |
1045 | limit = cmp->in(1); |
1046 | limit_c = phase->get_ctrl(limit); |
1047 | if (is_member(phase->get_loop(limit_c))) { |
1048 | continue; // Both inputs are loop varying; cannot RCE |
1049 | } |
1050 | } |
1051 | |
1052 | if (!phase->is_scaled_iv_plus_offset(rc_exp, trip_counter, NULL, NULL)) { |
1053 | continue; |
1054 | } |
1055 | // Found a test like 'trip+off vs limit'. Test is an IfNode, has two (2) |
1056 | // projections. If BOTH are in the loop we need loop unswitching instead |
1057 | // of iteration splitting. |
1058 | if (is_loop_exit(iff)) { |
1059 | // Found valid reason to split iterations (if there is room). |
1060 | // NOTE: Usually a gross overestimate. |
1061 | return phase->may_require_nodes(est_loop_clone_sz(2)); |
1062 | } |
1063 | } // End of is IF |
1064 | } |
1065 | |
1066 | return false; |
1067 | } |
1068 | |
1069 | //------------------------------policy_peel_only------------------------------- |
1070 | // Return TRUE or FALSE if the loop should NEVER be RCE'd or aligned. Useful |
1071 | // for unrolling loops with NO array accesses. |
1072 | bool IdealLoopTree::policy_peel_only(PhaseIdealLoop *phase) const { |
1073 | |
1074 | // If nodes are depleted, some transform has miscalculated its needs. |
1075 | assert(!phase->exceeding_node_budget(), "sanity" ); |
1076 | |
1077 | // check for vectorized loops, any peeling done was already applied |
1078 | if (_head->is_CountedLoop() && _head->as_CountedLoop()->is_unroll_only()) { |
1079 | return false; |
1080 | } |
1081 | |
1082 | for (uint i = 0; i < _body.size(); i++) { |
1083 | if (_body[i]->is_Mem()) { |
1084 | return false; |
1085 | } |
1086 | } |
1087 | // No memory accesses at all! |
1088 | return true; |
1089 | } |
1090 | |
1091 | //------------------------------clone_up_backedge_goo-------------------------- |
1092 | // If Node n lives in the back_ctrl block and cannot float, we clone a private |
1093 | // version of n in preheader_ctrl block and return that, otherwise return n. |
1094 | Node *PhaseIdealLoop::clone_up_backedge_goo(Node *back_ctrl, Node *, Node *n, VectorSet &visited, Node_Stack &clones) { |
1095 | if (get_ctrl(n) != back_ctrl) return n; |
1096 | |
1097 | // Only visit once |
1098 | if (visited.test_set(n->_idx)) { |
1099 | Node *x = clones.find(n->_idx); |
1100 | return (x != NULL) ? x : n; |
1101 | } |
1102 | |
1103 | Node *x = NULL; // If required, a clone of 'n' |
1104 | // Check for 'n' being pinned in the backedge. |
1105 | if (n->in(0) && n->in(0) == back_ctrl) { |
1106 | assert(clones.find(n->_idx) == NULL, "dead loop" ); |
1107 | x = n->clone(); // Clone a copy of 'n' to preheader |
1108 | clones.push(x, n->_idx); |
1109 | x->set_req(0, preheader_ctrl); // Fix x's control input to preheader |
1110 | } |
1111 | |
1112 | // Recursive fixup any other input edges into x. |
1113 | // If there are no changes we can just return 'n', otherwise |
1114 | // we need to clone a private copy and change it. |
1115 | for (uint i = 1; i < n->req(); i++) { |
1116 | Node *g = clone_up_backedge_goo(back_ctrl, preheader_ctrl, n->in(i), visited, clones); |
1117 | if (g != n->in(i)) { |
1118 | if (!x) { |
1119 | assert(clones.find(n->_idx) == NULL, "dead loop" ); |
1120 | x = n->clone(); |
1121 | clones.push(x, n->_idx); |
1122 | } |
1123 | x->set_req(i, g); |
1124 | } |
1125 | } |
1126 | if (x) { // x can legally float to pre-header location |
1127 | register_new_node(x, preheader_ctrl); |
1128 | return x; |
1129 | } else { // raise n to cover LCA of uses |
1130 | set_ctrl(n, find_non_split_ctrl(back_ctrl->in(0))); |
1131 | } |
1132 | return n; |
1133 | } |
1134 | |
1135 | Node* PhaseIdealLoop::cast_incr_before_loop(Node* incr, Node* ctrl, Node* loop) { |
1136 | Node* castii = new CastIINode(incr, TypeInt::INT, true); |
1137 | castii->set_req(0, ctrl); |
1138 | register_new_node(castii, ctrl); |
1139 | for (DUIterator_Fast imax, i = incr->fast_outs(imax); i < imax; i++) { |
1140 | Node* n = incr->fast_out(i); |
1141 | if (n->is_Phi() && n->in(0) == loop) { |
1142 | int nrep = n->replace_edge(incr, castii); |
1143 | return castii; |
1144 | } |
1145 | } |
1146 | return NULL; |
1147 | } |
1148 | |
1149 | // Make a copy of the skeleton range check predicates before the main |
1150 | // loop and set the initial value of loop as input. After unrolling, |
1151 | // the range of values for the induction variable in the main loop can |
1152 | // fall outside the allowed range of values by the array access (main |
1153 | // loop is never executed). When that happens, range check |
1154 | // CastII/ConvI2L nodes cause some data paths to die. For consistency, |
1155 | // the control paths must die too but the range checks were removed by |
1156 | // predication. The range checks that we add here guarantee that they do. |
1157 | void PhaseIdealLoop::duplicate_predicates_helper(Node* predicate, Node* start, Node* end, |
1158 | IdealLoopTree* outer_loop, LoopNode* outer_main_head, |
1159 | uint dd_main_head) { |
1160 | if (predicate != NULL) { |
1161 | IfNode* iff = predicate->in(0)->as_If(); |
1162 | ProjNode* uncommon_proj = iff->proj_out(1 - predicate->as_Proj()->_con); |
1163 | Node* rgn = uncommon_proj->unique_ctrl_out(); |
1164 | assert(rgn->is_Region() || rgn->is_Call(), "must be a region or call uct" ); |
1165 | assert(iff->in(1)->in(1)->Opcode() == Op_Opaque1, "unexpected predicate shape" ); |
1166 | predicate = iff->in(0); |
1167 | Node* current_proj = outer_main_head->in(LoopNode::EntryControl); |
1168 | Node* prev_proj = current_proj; |
1169 | while (predicate != NULL && predicate->is_Proj() && predicate->in(0)->is_If()) { |
1170 | iff = predicate->in(0)->as_If(); |
1171 | uncommon_proj = iff->proj_out(1 - predicate->as_Proj()->_con); |
1172 | if (uncommon_proj->unique_ctrl_out() != rgn) |
1173 | break; |
1174 | if (iff->in(1)->Opcode() == Op_Opaque4) { |
1175 | assert(skeleton_predicate_has_opaque(iff), "unexpected" ); |
1176 | // Clone the predicate twice and initialize one with the initial |
1177 | // value of the loop induction variable. Leave the other predicate |
1178 | // to be initialized when increasing the stride during loop unrolling. |
1179 | prev_proj = clone_skeleton_predicate(iff, start, predicate, uncommon_proj, current_proj, outer_loop, prev_proj); |
1180 | assert(skeleton_predicate_has_opaque(prev_proj->in(0)->as_If()) == (start->Opcode() == Op_Opaque1), "" ); |
1181 | prev_proj = clone_skeleton_predicate(iff, end, predicate, uncommon_proj, current_proj, outer_loop, prev_proj); |
1182 | assert(skeleton_predicate_has_opaque(prev_proj->in(0)->as_If()) == (end->Opcode() == Op_Opaque1), "" ); |
1183 | // Remove the skeleton predicate from the pre-loop |
1184 | _igvn.replace_input_of(iff, 1, _igvn.intcon(1)); |
1185 | } |
1186 | predicate = predicate->in(0)->in(0); |
1187 | } |
1188 | _igvn.replace_input_of(outer_main_head, LoopNode::EntryControl, prev_proj); |
1189 | set_idom(outer_main_head, prev_proj, dd_main_head); |
1190 | } |
1191 | } |
1192 | |
1193 | static bool skeleton_follow_inputs(Node* n, int op) { |
1194 | return (n->is_Bool() || |
1195 | n->is_Cmp() || |
1196 | op == Op_AndL || |
1197 | op == Op_OrL || |
1198 | op == Op_RShiftL || |
1199 | op == Op_LShiftL || |
1200 | op == Op_AddL || |
1201 | op == Op_AddI || |
1202 | op == Op_MulL || |
1203 | op == Op_MulI || |
1204 | op == Op_SubL || |
1205 | op == Op_SubI || |
1206 | op == Op_ConvI2L); |
1207 | } |
1208 | |
1209 | bool PhaseIdealLoop::skeleton_predicate_has_opaque(IfNode* iff) { |
1210 | ResourceMark rm; |
1211 | Unique_Node_List wq; |
1212 | wq.push(iff->in(1)->in(1)); |
1213 | for (uint i = 0; i < wq.size(); i++) { |
1214 | Node* n = wq.at(i); |
1215 | int op = n->Opcode(); |
1216 | if (skeleton_follow_inputs(n, op)) { |
1217 | for (uint j = 1; j < n->req(); j++) { |
1218 | Node* m = n->in(j); |
1219 | if (m != NULL) { |
1220 | wq.push(m); |
1221 | } |
1222 | } |
1223 | continue; |
1224 | } |
1225 | if (op == Op_Opaque1) { |
1226 | return true; |
1227 | } |
1228 | } |
1229 | return false; |
1230 | } |
1231 | |
1232 | Node* PhaseIdealLoop::clone_skeleton_predicate(Node* iff, Node* value, Node* predicate, Node* uncommon_proj, |
1233 | Node* current_proj, IdealLoopTree* outer_loop, Node* prev_proj) { |
1234 | Node_Stack to_clone(2); |
1235 | to_clone.push(iff->in(1), 1); |
1236 | uint current = C->unique(); |
1237 | Node* result = NULL; |
1238 | // Look for the opaque node to replace with the new value |
1239 | // and clone everything in between. We keep the Opaque4 node |
1240 | // so the duplicated predicates are eliminated once loop |
1241 | // opts are over: they are here only to keep the IR graph |
1242 | // consistent. |
1243 | do { |
1244 | Node* n = to_clone.node(); |
1245 | uint i = to_clone.index(); |
1246 | Node* m = n->in(i); |
1247 | int op = m->Opcode(); |
1248 | if (skeleton_follow_inputs(m, op)) { |
1249 | to_clone.push(m, 1); |
1250 | continue; |
1251 | } |
1252 | if (op == Op_Opaque1) { |
1253 | if (n->_idx < current) { |
1254 | n = n->clone(); |
1255 | } |
1256 | n->set_req(i, value); |
1257 | register_new_node(n, current_proj); |
1258 | to_clone.set_node(n); |
1259 | } |
1260 | for (;;) { |
1261 | Node* cur = to_clone.node(); |
1262 | uint j = to_clone.index(); |
1263 | if (j+1 < cur->req()) { |
1264 | to_clone.set_index(j+1); |
1265 | break; |
1266 | } |
1267 | to_clone.pop(); |
1268 | if (to_clone.size() == 0) { |
1269 | result = cur; |
1270 | break; |
1271 | } |
1272 | Node* next = to_clone.node(); |
1273 | j = to_clone.index(); |
1274 | if (next->in(j) != cur) { |
1275 | assert(cur->_idx >= current || next->in(j)->Opcode() == Op_Opaque1, "new node or Opaque1 being replaced" ); |
1276 | if (next->_idx < current) { |
1277 | next = next->clone(); |
1278 | register_new_node(next, current_proj); |
1279 | to_clone.set_node(next); |
1280 | } |
1281 | next->set_req(j, cur); |
1282 | } |
1283 | } |
1284 | } while (result == NULL); |
1285 | assert(result->_idx >= current, "new node expected" ); |
1286 | |
1287 | Node* proj = predicate->clone(); |
1288 | Node* other_proj = uncommon_proj->clone(); |
1289 | Node* new_iff = iff->clone(); |
1290 | new_iff->set_req(1, result); |
1291 | proj->set_req(0, new_iff); |
1292 | other_proj->set_req(0, new_iff); |
1293 | Node *frame = new ParmNode(C->start(), TypeFunc::FramePtr); |
1294 | register_new_node(frame, C->start()); |
1295 | // It's impossible for the predicate to fail at runtime. Use an Halt node. |
1296 | Node* halt = new HaltNode(other_proj, frame); |
1297 | C->root()->add_req(halt); |
1298 | new_iff->set_req(0, prev_proj); |
1299 | |
1300 | register_control(new_iff, outer_loop->_parent, prev_proj); |
1301 | register_control(proj, outer_loop->_parent, new_iff); |
1302 | register_control(other_proj, _ltree_root, new_iff); |
1303 | register_control(halt, _ltree_root, other_proj); |
1304 | return proj; |
1305 | } |
1306 | |
1307 | void PhaseIdealLoop::duplicate_predicates(CountedLoopNode* pre_head, Node* start, Node* end, |
1308 | IdealLoopTree* outer_loop, LoopNode* outer_main_head, |
1309 | uint dd_main_head) { |
1310 | if (UseLoopPredicate) { |
1311 | Node* entry = pre_head->in(LoopNode::EntryControl); |
1312 | Node* predicate = NULL; |
1313 | predicate = find_predicate_insertion_point(entry, Deoptimization::Reason_loop_limit_check); |
1314 | if (predicate != NULL) { |
1315 | entry = skip_loop_predicates(entry); |
1316 | } |
1317 | Node* profile_predicate = NULL; |
1318 | if (UseProfiledLoopPredicate) { |
1319 | profile_predicate = find_predicate_insertion_point(entry, Deoptimization::Reason_profile_predicate); |
1320 | if (profile_predicate != NULL) { |
1321 | entry = skip_loop_predicates(entry); |
1322 | } |
1323 | } |
1324 | predicate = find_predicate_insertion_point(entry, Deoptimization::Reason_predicate); |
1325 | duplicate_predicates_helper(predicate, start, end, outer_loop, outer_main_head, dd_main_head); |
1326 | duplicate_predicates_helper(profile_predicate, start, end, outer_loop, outer_main_head, dd_main_head); |
1327 | } |
1328 | } |
1329 | |
1330 | //------------------------------insert_pre_post_loops-------------------------- |
1331 | // Insert pre and post loops. If peel_only is set, the pre-loop can not have |
1332 | // more iterations added. It acts as a 'peel' only, no lower-bound RCE, no |
1333 | // alignment. Useful to unroll loops that do no array accesses. |
1334 | void PhaseIdealLoop::insert_pre_post_loops(IdealLoopTree *loop, Node_List &old_new, bool peel_only) { |
1335 | |
1336 | #ifndef PRODUCT |
1337 | if (TraceLoopOpts) { |
1338 | if (peel_only) |
1339 | tty->print("PeelMainPost " ); |
1340 | else |
1341 | tty->print("PreMainPost " ); |
1342 | loop->dump_head(); |
1343 | } |
1344 | #endif |
1345 | C->set_major_progress(); |
1346 | |
1347 | // Find common pieces of the loop being guarded with pre & post loops |
1348 | CountedLoopNode *main_head = loop->_head->as_CountedLoop(); |
1349 | assert(main_head->is_normal_loop(), "" ); |
1350 | CountedLoopEndNode *main_end = main_head->loopexit(); |
1351 | assert(main_end->outcnt() == 2, "1 true, 1 false path only" ); |
1352 | |
1353 | Node *= main_head->in(LoopNode::EntryControl); |
1354 | Node *init = main_head->init_trip(); |
1355 | Node *incr = main_end ->incr(); |
1356 | Node *limit = main_end ->limit(); |
1357 | Node *stride = main_end ->stride(); |
1358 | Node *cmp = main_end ->cmp_node(); |
1359 | BoolTest::mask b_test = main_end->test_trip(); |
1360 | |
1361 | // Need only 1 user of 'bol' because I will be hacking the loop bounds. |
1362 | Node *bol = main_end->in(CountedLoopEndNode::TestValue); |
1363 | if (bol->outcnt() != 1) { |
1364 | bol = bol->clone(); |
1365 | register_new_node(bol,main_end->in(CountedLoopEndNode::TestControl)); |
1366 | _igvn.replace_input_of(main_end, CountedLoopEndNode::TestValue, bol); |
1367 | } |
1368 | // Need only 1 user of 'cmp' because I will be hacking the loop bounds. |
1369 | if (cmp->outcnt() != 1) { |
1370 | cmp = cmp->clone(); |
1371 | register_new_node(cmp,main_end->in(CountedLoopEndNode::TestControl)); |
1372 | _igvn.replace_input_of(bol, 1, cmp); |
1373 | } |
1374 | |
1375 | // Add the post loop |
1376 | CountedLoopNode *post_head = NULL; |
1377 | Node *main_exit = insert_post_loop(loop, old_new, main_head, main_end, incr, limit, post_head); |
1378 | |
1379 | //------------------------------ |
1380 | // Step B: Create Pre-Loop. |
1381 | |
1382 | // Step B1: Clone the loop body. The clone becomes the pre-loop. The main |
1383 | // loop pre-header illegally has 2 control users (old & new loops). |
1384 | LoopNode* outer_main_head = main_head; |
1385 | IdealLoopTree* outer_loop = loop; |
1386 | if (main_head->is_strip_mined()) { |
1387 | main_head->verify_strip_mined(1); |
1388 | outer_main_head = main_head->outer_loop(); |
1389 | outer_loop = loop->_parent; |
1390 | assert(outer_loop->_head == outer_main_head, "broken loop tree" ); |
1391 | } |
1392 | uint dd_main_head = dom_depth(outer_main_head); |
1393 | clone_loop(loop, old_new, dd_main_head, ControlAroundStripMined); |
1394 | CountedLoopNode* pre_head = old_new[main_head->_idx]->as_CountedLoop(); |
1395 | CountedLoopEndNode* pre_end = old_new[main_end ->_idx]->as_CountedLoopEnd(); |
1396 | pre_head->set_pre_loop(main_head); |
1397 | Node *pre_incr = old_new[incr->_idx]; |
1398 | |
1399 | // Reduce the pre-loop trip count. |
1400 | pre_end->_prob = PROB_FAIR; |
1401 | |
1402 | // Find the pre-loop normal exit. |
1403 | Node* pre_exit = pre_end->proj_out(false); |
1404 | assert(pre_exit->Opcode() == Op_IfFalse, "" ); |
1405 | IfFalseNode *new_pre_exit = new IfFalseNode(pre_end); |
1406 | _igvn.register_new_node_with_optimizer(new_pre_exit); |
1407 | set_idom(new_pre_exit, pre_end, dd_main_head); |
1408 | set_loop(new_pre_exit, outer_loop->_parent); |
1409 | |
1410 | // Step B2: Build a zero-trip guard for the main-loop. After leaving the |
1411 | // pre-loop, the main-loop may not execute at all. Later in life this |
1412 | // zero-trip guard will become the minimum-trip guard when we unroll |
1413 | // the main-loop. |
1414 | Node *min_opaq = new Opaque1Node(C, limit); |
1415 | Node *min_cmp = new CmpINode(pre_incr, min_opaq); |
1416 | Node *min_bol = new BoolNode(min_cmp, b_test); |
1417 | register_new_node(min_opaq, new_pre_exit); |
1418 | register_new_node(min_cmp , new_pre_exit); |
1419 | register_new_node(min_bol , new_pre_exit); |
1420 | |
1421 | // Build the IfNode (assume the main-loop is executed always). |
1422 | IfNode *min_iff = new IfNode(new_pre_exit, min_bol, PROB_ALWAYS, COUNT_UNKNOWN); |
1423 | _igvn.register_new_node_with_optimizer(min_iff); |
1424 | set_idom(min_iff, new_pre_exit, dd_main_head); |
1425 | set_loop(min_iff, outer_loop->_parent); |
1426 | |
1427 | // Plug in the false-path, taken if we need to skip main-loop |
1428 | _igvn.hash_delete(pre_exit); |
1429 | pre_exit->set_req(0, min_iff); |
1430 | set_idom(pre_exit, min_iff, dd_main_head); |
1431 | set_idom(pre_exit->unique_ctrl_out(), min_iff, dd_main_head); |
1432 | // Make the true-path, must enter the main loop |
1433 | Node *min_taken = new IfTrueNode(min_iff); |
1434 | _igvn.register_new_node_with_optimizer(min_taken); |
1435 | set_idom(min_taken, min_iff, dd_main_head); |
1436 | set_loop(min_taken, outer_loop->_parent); |
1437 | // Plug in the true path |
1438 | _igvn.hash_delete(outer_main_head); |
1439 | outer_main_head->set_req(LoopNode::EntryControl, min_taken); |
1440 | set_idom(outer_main_head, min_taken, dd_main_head); |
1441 | |
1442 | Arena *a = Thread::current()->resource_area(); |
1443 | VectorSet visited(a); |
1444 | Node_Stack clones(a, main_head->back_control()->outcnt()); |
1445 | // Step B3: Make the fall-in values to the main-loop come from the |
1446 | // fall-out values of the pre-loop. |
1447 | for (DUIterator_Fast i2max, i2 = main_head->fast_outs(i2max); i2 < i2max; i2++) { |
1448 | Node* main_phi = main_head->fast_out(i2); |
1449 | if (main_phi->is_Phi() && main_phi->in(0) == main_head && main_phi->outcnt() > 0) { |
1450 | Node *pre_phi = old_new[main_phi->_idx]; |
1451 | Node *fallpre = clone_up_backedge_goo(pre_head->back_control(), |
1452 | main_head->skip_strip_mined()->in(LoopNode::EntryControl), |
1453 | pre_phi->in(LoopNode::LoopBackControl), |
1454 | visited, clones); |
1455 | _igvn.hash_delete(main_phi); |
1456 | main_phi->set_req(LoopNode::EntryControl, fallpre); |
1457 | } |
1458 | } |
1459 | |
1460 | // Nodes inside the loop may be control dependent on a predicate |
1461 | // that was moved before the preloop. If the back branch of the main |
1462 | // or post loops becomes dead, those nodes won't be dependent on the |
1463 | // test that guards that loop nest anymore which could lead to an |
1464 | // incorrect array access because it executes independently of the |
1465 | // test that was guarding the loop nest. We add a special CastII on |
1466 | // the if branch that enters the loop, between the input induction |
1467 | // variable value and the induction variable Phi to preserve correct |
1468 | // dependencies. |
1469 | |
1470 | // CastII for the main loop: |
1471 | Node* castii = cast_incr_before_loop(pre_incr, min_taken, main_head); |
1472 | assert(castii != NULL, "no castII inserted" ); |
1473 | Node* opaque_castii = new Opaque1Node(C, castii); |
1474 | register_new_node(opaque_castii, outer_main_head->in(LoopNode::EntryControl)); |
1475 | duplicate_predicates(pre_head, castii, opaque_castii, outer_loop, outer_main_head, dd_main_head); |
1476 | |
1477 | // Step B4: Shorten the pre-loop to run only 1 iteration (for now). |
1478 | // RCE and alignment may change this later. |
1479 | Node *cmp_end = pre_end->cmp_node(); |
1480 | assert(cmp_end->in(2) == limit, "" ); |
1481 | Node *pre_limit = new AddINode(init, stride); |
1482 | |
1483 | // Save the original loop limit in this Opaque1 node for |
1484 | // use by range check elimination. |
1485 | Node *pre_opaq = new Opaque1Node(C, pre_limit, limit); |
1486 | |
1487 | register_new_node(pre_limit, pre_head->in(0)); |
1488 | register_new_node(pre_opaq , pre_head->in(0)); |
1489 | |
1490 | // Since no other users of pre-loop compare, I can hack limit directly |
1491 | assert(cmp_end->outcnt() == 1, "no other users" ); |
1492 | _igvn.hash_delete(cmp_end); |
1493 | cmp_end->set_req(2, peel_only ? pre_limit : pre_opaq); |
1494 | |
1495 | // Special case for not-equal loop bounds: |
1496 | // Change pre loop test, main loop test, and the |
1497 | // main loop guard test to use lt or gt depending on stride |
1498 | // direction: |
1499 | // positive stride use < |
1500 | // negative stride use > |
1501 | // |
1502 | // not-equal test is kept for post loop to handle case |
1503 | // when init > limit when stride > 0 (and reverse). |
1504 | |
1505 | if (pre_end->in(CountedLoopEndNode::TestValue)->as_Bool()->_test._test == BoolTest::ne) { |
1506 | |
1507 | BoolTest::mask new_test = (main_end->stride_con() > 0) ? BoolTest::lt : BoolTest::gt; |
1508 | // Modify pre loop end condition |
1509 | Node* pre_bol = pre_end->in(CountedLoopEndNode::TestValue)->as_Bool(); |
1510 | BoolNode* new_bol0 = new BoolNode(pre_bol->in(1), new_test); |
1511 | register_new_node(new_bol0, pre_head->in(0)); |
1512 | _igvn.replace_input_of(pre_end, CountedLoopEndNode::TestValue, new_bol0); |
1513 | // Modify main loop guard condition |
1514 | assert(min_iff->in(CountedLoopEndNode::TestValue) == min_bol, "guard okay" ); |
1515 | BoolNode* new_bol1 = new BoolNode(min_bol->in(1), new_test); |
1516 | register_new_node(new_bol1, new_pre_exit); |
1517 | _igvn.hash_delete(min_iff); |
1518 | min_iff->set_req(CountedLoopEndNode::TestValue, new_bol1); |
1519 | // Modify main loop end condition |
1520 | BoolNode* main_bol = main_end->in(CountedLoopEndNode::TestValue)->as_Bool(); |
1521 | BoolNode* new_bol2 = new BoolNode(main_bol->in(1), new_test); |
1522 | register_new_node(new_bol2, main_end->in(CountedLoopEndNode::TestControl)); |
1523 | _igvn.replace_input_of(main_end, CountedLoopEndNode::TestValue, new_bol2); |
1524 | } |
1525 | |
1526 | // Flag main loop |
1527 | main_head->set_main_loop(); |
1528 | if (peel_only) { |
1529 | main_head->set_main_no_pre_loop(); |
1530 | } |
1531 | |
1532 | // Subtract a trip count for the pre-loop. |
1533 | main_head->set_trip_count(main_head->trip_count() - 1); |
1534 | |
1535 | // It's difficult to be precise about the trip-counts |
1536 | // for the pre/post loops. They are usually very short, |
1537 | // so guess that 4 trips is a reasonable value. |
1538 | post_head->set_profile_trip_cnt(4.0); |
1539 | pre_head->set_profile_trip_cnt(4.0); |
1540 | |
1541 | // Now force out all loop-invariant dominating tests. The optimizer |
1542 | // finds some, but we _know_ they are all useless. |
1543 | peeled_dom_test_elim(loop,old_new); |
1544 | loop->record_for_igvn(); |
1545 | } |
1546 | |
1547 | //------------------------------insert_vector_post_loop------------------------ |
1548 | // Insert a copy of the atomic unrolled vectorized main loop as a post loop, |
1549 | // unroll_policy has already informed us that more unrolling is about to |
1550 | // happen to the main loop. The resultant post loop will serve as a |
1551 | // vectorized drain loop. |
1552 | void PhaseIdealLoop::insert_vector_post_loop(IdealLoopTree *loop, Node_List &old_new) { |
1553 | if (!loop->_head->is_CountedLoop()) return; |
1554 | |
1555 | CountedLoopNode *cl = loop->_head->as_CountedLoop(); |
1556 | |
1557 | // only process vectorized main loops |
1558 | if (!cl->is_vectorized_loop() || !cl->is_main_loop()) return; |
1559 | |
1560 | int slp_max_unroll_factor = cl->slp_max_unroll(); |
1561 | int cur_unroll = cl->unrolled_count(); |
1562 | |
1563 | if (slp_max_unroll_factor == 0) return; |
1564 | |
1565 | // only process atomic unroll vector loops (not super unrolled after vectorization) |
1566 | if (cur_unroll != slp_max_unroll_factor) return; |
1567 | |
1568 | // we only ever process this one time |
1569 | if (cl->has_atomic_post_loop()) return; |
1570 | |
1571 | if (!may_require_nodes(loop->est_loop_clone_sz(2))) { |
1572 | return; |
1573 | } |
1574 | |
1575 | #ifndef PRODUCT |
1576 | if (TraceLoopOpts) { |
1577 | tty->print("PostVector " ); |
1578 | loop->dump_head(); |
1579 | } |
1580 | #endif |
1581 | C->set_major_progress(); |
1582 | |
1583 | // Find common pieces of the loop being guarded with pre & post loops |
1584 | CountedLoopNode *main_head = loop->_head->as_CountedLoop(); |
1585 | CountedLoopEndNode *main_end = main_head->loopexit(); |
1586 | // diagnostic to show loop end is not properly formed |
1587 | assert(main_end->outcnt() == 2, "1 true, 1 false path only" ); |
1588 | |
1589 | // mark this loop as processed |
1590 | main_head->mark_has_atomic_post_loop(); |
1591 | |
1592 | Node *incr = main_end->incr(); |
1593 | Node *limit = main_end->limit(); |
1594 | |
1595 | // In this case we throw away the result as we are not using it to connect anything else. |
1596 | CountedLoopNode *post_head = NULL; |
1597 | insert_post_loop(loop, old_new, main_head, main_end, incr, limit, post_head); |
1598 | |
1599 | // It's difficult to be precise about the trip-counts |
1600 | // for post loops. They are usually very short, |
1601 | // so guess that unit vector trips is a reasonable value. |
1602 | post_head->set_profile_trip_cnt(cur_unroll); |
1603 | |
1604 | // Now force out all loop-invariant dominating tests. The optimizer |
1605 | // finds some, but we _know_ they are all useless. |
1606 | peeled_dom_test_elim(loop, old_new); |
1607 | loop->record_for_igvn(); |
1608 | } |
1609 | |
1610 | |
1611 | //-------------------------insert_scalar_rced_post_loop------------------------ |
1612 | // Insert a copy of the rce'd main loop as a post loop, |
1613 | // We have not unrolled the main loop, so this is the right time to inject this. |
1614 | // Later we will examine the partner of this post loop pair which still has range checks |
1615 | // to see inject code which tests at runtime if the range checks are applicable. |
1616 | void PhaseIdealLoop::insert_scalar_rced_post_loop(IdealLoopTree *loop, Node_List &old_new) { |
1617 | if (!loop->_head->is_CountedLoop()) return; |
1618 | |
1619 | CountedLoopNode *cl = loop->_head->as_CountedLoop(); |
1620 | |
1621 | // only process RCE'd main loops |
1622 | if (!cl->is_main_loop() || cl->range_checks_present()) return; |
1623 | |
1624 | #ifndef PRODUCT |
1625 | if (TraceLoopOpts) { |
1626 | tty->print("PostScalarRce " ); |
1627 | loop->dump_head(); |
1628 | } |
1629 | #endif |
1630 | C->set_major_progress(); |
1631 | |
1632 | // Find common pieces of the loop being guarded with pre & post loops |
1633 | CountedLoopNode *main_head = loop->_head->as_CountedLoop(); |
1634 | CountedLoopEndNode *main_end = main_head->loopexit(); |
1635 | // diagnostic to show loop end is not properly formed |
1636 | assert(main_end->outcnt() == 2, "1 true, 1 false path only" ); |
1637 | |
1638 | Node *incr = main_end->incr(); |
1639 | Node *limit = main_end->limit(); |
1640 | |
1641 | // In this case we throw away the result as we are not using it to connect anything else. |
1642 | CountedLoopNode *post_head = NULL; |
1643 | insert_post_loop(loop, old_new, main_head, main_end, incr, limit, post_head); |
1644 | |
1645 | // It's difficult to be precise about the trip-counts |
1646 | // for post loops. They are usually very short, |
1647 | // so guess that unit vector trips is a reasonable value. |
1648 | post_head->set_profile_trip_cnt(4.0); |
1649 | post_head->set_is_rce_post_loop(); |
1650 | |
1651 | // Now force out all loop-invariant dominating tests. The optimizer |
1652 | // finds some, but we _know_ they are all useless. |
1653 | peeled_dom_test_elim(loop, old_new); |
1654 | loop->record_for_igvn(); |
1655 | } |
1656 | |
1657 | |
1658 | //------------------------------insert_post_loop------------------------------- |
1659 | // Insert post loops. Add a post loop to the given loop passed. |
1660 | Node *PhaseIdealLoop::insert_post_loop(IdealLoopTree *loop, Node_List &old_new, |
1661 | CountedLoopNode *main_head, CountedLoopEndNode *main_end, |
1662 | Node *incr, Node *limit, CountedLoopNode *&post_head) { |
1663 | IfNode* outer_main_end = main_end; |
1664 | IdealLoopTree* outer_loop = loop; |
1665 | if (main_head->is_strip_mined()) { |
1666 | main_head->verify_strip_mined(1); |
1667 | outer_main_end = main_head->outer_loop_end(); |
1668 | outer_loop = loop->_parent; |
1669 | assert(outer_loop->_head == main_head->in(LoopNode::EntryControl), "broken loop tree" ); |
1670 | } |
1671 | |
1672 | //------------------------------ |
1673 | // Step A: Create a new post-Loop. |
1674 | Node* main_exit = outer_main_end->proj_out(false); |
1675 | assert(main_exit->Opcode() == Op_IfFalse, "" ); |
1676 | int dd_main_exit = dom_depth(main_exit); |
1677 | |
1678 | // Step A1: Clone the loop body of main. The clone becomes the post-loop. |
1679 | // The main loop pre-header illegally has 2 control users (old & new loops). |
1680 | clone_loop(loop, old_new, dd_main_exit, ControlAroundStripMined); |
1681 | assert(old_new[main_end->_idx]->Opcode() == Op_CountedLoopEnd, "" ); |
1682 | post_head = old_new[main_head->_idx]->as_CountedLoop(); |
1683 | post_head->set_normal_loop(); |
1684 | post_head->set_post_loop(main_head); |
1685 | |
1686 | // Reduce the post-loop trip count. |
1687 | CountedLoopEndNode* post_end = old_new[main_end->_idx]->as_CountedLoopEnd(); |
1688 | post_end->_prob = PROB_FAIR; |
1689 | |
1690 | // Build the main-loop normal exit. |
1691 | IfFalseNode *new_main_exit = new IfFalseNode(outer_main_end); |
1692 | _igvn.register_new_node_with_optimizer(new_main_exit); |
1693 | set_idom(new_main_exit, outer_main_end, dd_main_exit); |
1694 | set_loop(new_main_exit, outer_loop->_parent); |
1695 | |
1696 | // Step A2: Build a zero-trip guard for the post-loop. After leaving the |
1697 | // main-loop, the post-loop may not execute at all. We 'opaque' the incr |
1698 | // (the previous loop trip-counter exit value) because we will be changing |
1699 | // the exit value (via additional unrolling) so we cannot constant-fold away the zero |
1700 | // trip guard until all unrolling is done. |
1701 | Node *zer_opaq = new Opaque1Node(C, incr); |
1702 | Node *zer_cmp = new CmpINode(zer_opaq, limit); |
1703 | Node *zer_bol = new BoolNode(zer_cmp, main_end->test_trip()); |
1704 | register_new_node(zer_opaq, new_main_exit); |
1705 | register_new_node(zer_cmp, new_main_exit); |
1706 | register_new_node(zer_bol, new_main_exit); |
1707 | |
1708 | // Build the IfNode |
1709 | IfNode *zer_iff = new IfNode(new_main_exit, zer_bol, PROB_FAIR, COUNT_UNKNOWN); |
1710 | _igvn.register_new_node_with_optimizer(zer_iff); |
1711 | set_idom(zer_iff, new_main_exit, dd_main_exit); |
1712 | set_loop(zer_iff, outer_loop->_parent); |
1713 | |
1714 | // Plug in the false-path, taken if we need to skip this post-loop |
1715 | _igvn.replace_input_of(main_exit, 0, zer_iff); |
1716 | set_idom(main_exit, zer_iff, dd_main_exit); |
1717 | set_idom(main_exit->unique_out(), zer_iff, dd_main_exit); |
1718 | // Make the true-path, must enter this post loop |
1719 | Node *zer_taken = new IfTrueNode(zer_iff); |
1720 | _igvn.register_new_node_with_optimizer(zer_taken); |
1721 | set_idom(zer_taken, zer_iff, dd_main_exit); |
1722 | set_loop(zer_taken, outer_loop->_parent); |
1723 | // Plug in the true path |
1724 | _igvn.hash_delete(post_head); |
1725 | post_head->set_req(LoopNode::EntryControl, zer_taken); |
1726 | set_idom(post_head, zer_taken, dd_main_exit); |
1727 | |
1728 | Arena *a = Thread::current()->resource_area(); |
1729 | VectorSet visited(a); |
1730 | Node_Stack clones(a, main_head->back_control()->outcnt()); |
1731 | // Step A3: Make the fall-in values to the post-loop come from the |
1732 | // fall-out values of the main-loop. |
1733 | for (DUIterator_Fast imax, i = main_head->fast_outs(imax); i < imax; i++) { |
1734 | Node* main_phi = main_head->fast_out(i); |
1735 | if (main_phi->is_Phi() && main_phi->in(0) == main_head && main_phi->outcnt() > 0) { |
1736 | Node *cur_phi = old_new[main_phi->_idx]; |
1737 | Node *fallnew = clone_up_backedge_goo(main_head->back_control(), |
1738 | post_head->init_control(), |
1739 | main_phi->in(LoopNode::LoopBackControl), |
1740 | visited, clones); |
1741 | _igvn.hash_delete(cur_phi); |
1742 | cur_phi->set_req(LoopNode::EntryControl, fallnew); |
1743 | } |
1744 | } |
1745 | |
1746 | // CastII for the new post loop: |
1747 | Node* castii = cast_incr_before_loop(zer_opaq->in(1), zer_taken, post_head); |
1748 | assert(castii != NULL, "no castII inserted" ); |
1749 | |
1750 | return new_main_exit; |
1751 | } |
1752 | |
1753 | //------------------------------is_invariant----------------------------- |
1754 | // Return true if n is invariant |
1755 | bool IdealLoopTree::is_invariant(Node* n) const { |
1756 | Node *n_c = _phase->has_ctrl(n) ? _phase->get_ctrl(n) : n; |
1757 | if (n_c->is_top()) return false; |
1758 | return !is_member(_phase->get_loop(n_c)); |
1759 | } |
1760 | |
1761 | void PhaseIdealLoop::update_skeleton_predicates(Node* ctrl, CountedLoopNode* loop_head, Node* init, int stride_con) { |
1762 | // Search for skeleton predicates and update them according to the new stride |
1763 | Node* entry = ctrl; |
1764 | Node* prev_proj = ctrl; |
1765 | LoopNode* outer_loop_head = loop_head->skip_strip_mined(); |
1766 | IdealLoopTree* outer_loop = get_loop(outer_loop_head); |
1767 | while (entry != NULL && entry->is_Proj() && entry->in(0)->is_If()) { |
1768 | IfNode* iff = entry->in(0)->as_If(); |
1769 | ProjNode* proj = iff->proj_out(1 - entry->as_Proj()->_con); |
1770 | if (proj->unique_ctrl_out()->Opcode() != Op_Halt) { |
1771 | break; |
1772 | } |
1773 | if (iff->in(1)->Opcode() == Op_Opaque4) { |
1774 | // Look for predicate with an Opaque1 node that can be used as a template |
1775 | if (!skeleton_predicate_has_opaque(iff)) { |
1776 | // No Opaque1 node? It's either the check for the first value |
1777 | // of the first iteration or the check for the last value of |
1778 | // the first iteration of an unrolled loop. We can't |
1779 | // tell. Kill it in any case. |
1780 | _igvn.replace_input_of(iff, 1, iff->in(1)->in(2)); |
1781 | } else { |
1782 | // Add back the predicate for the value at the beginning of the first entry |
1783 | prev_proj = clone_skeleton_predicate(iff, init, entry, proj, ctrl, outer_loop, prev_proj); |
1784 | assert(!skeleton_predicate_has_opaque(prev_proj->in(0)->as_If()), "unexpected" ); |
1785 | // Compute the value of the loop induction variable at the end of the |
1786 | // first iteration of the unrolled loop: init + new_stride_con - init_inc |
1787 | int init_inc = stride_con/loop_head->unrolled_count(); |
1788 | assert(init_inc != 0, "invalid loop increment" ); |
1789 | int new_stride_con = stride_con * 2; |
1790 | Node* max_value = _igvn.intcon(new_stride_con - init_inc); |
1791 | max_value = new AddINode(init, max_value); |
1792 | register_new_node(max_value, get_ctrl(iff->in(1))); |
1793 | prev_proj = clone_skeleton_predicate(iff, max_value, entry, proj, ctrl, outer_loop, prev_proj); |
1794 | assert(!skeleton_predicate_has_opaque(prev_proj->in(0)->as_If()), "unexpected" ); |
1795 | } |
1796 | } |
1797 | entry = entry->in(0)->in(0); |
1798 | } |
1799 | if (prev_proj != ctrl) { |
1800 | _igvn.replace_input_of(outer_loop_head, LoopNode::EntryControl, prev_proj); |
1801 | set_idom(outer_loop_head, prev_proj, dom_depth(outer_loop_head)); |
1802 | } |
1803 | } |
1804 | |
1805 | //------------------------------do_unroll-------------------------------------- |
1806 | // Unroll the loop body one step - make each trip do 2 iterations. |
1807 | void PhaseIdealLoop::do_unroll(IdealLoopTree *loop, Node_List &old_new, bool adjust_min_trip) { |
1808 | assert(LoopUnrollLimit, "" ); |
1809 | CountedLoopNode *loop_head = loop->_head->as_CountedLoop(); |
1810 | CountedLoopEndNode *loop_end = loop_head->loopexit(); |
1811 | #ifndef PRODUCT |
1812 | if (PrintOpto && VerifyLoopOptimizations) { |
1813 | tty->print("Unrolling " ); |
1814 | loop->dump_head(); |
1815 | } else if (TraceLoopOpts) { |
1816 | if (loop_head->trip_count() < (uint)LoopUnrollLimit) { |
1817 | tty->print("Unroll %d(%2d) " , loop_head->unrolled_count()*2, loop_head->trip_count()); |
1818 | } else { |
1819 | tty->print("Unroll %d " , loop_head->unrolled_count()*2); |
1820 | } |
1821 | loop->dump_head(); |
1822 | } |
1823 | |
1824 | if (C->do_vector_loop() && (PrintOpto && (VerifyLoopOptimizations || TraceLoopOpts))) { |
1825 | Arena* arena = Thread::current()->resource_area(); |
1826 | Node_Stack stack(arena, C->live_nodes() >> 2); |
1827 | Node_List rpo_list; |
1828 | VectorSet visited(arena); |
1829 | visited.set(loop_head->_idx); |
1830 | rpo(loop_head, stack, visited, rpo_list); |
1831 | dump(loop, rpo_list.size(), rpo_list); |
1832 | } |
1833 | #endif |
1834 | |
1835 | // Remember loop node count before unrolling to detect |
1836 | // if rounds of unroll,optimize are making progress |
1837 | loop_head->set_node_count_before_unroll(loop->_body.size()); |
1838 | |
1839 | Node *ctrl = loop_head->skip_strip_mined()->in(LoopNode::EntryControl); |
1840 | Node *limit = loop_head->limit(); |
1841 | Node *init = loop_head->init_trip(); |
1842 | Node *stride = loop_head->stride(); |
1843 | |
1844 | Node *opaq = NULL; |
1845 | if (adjust_min_trip) { // If not maximally unrolling, need adjustment |
1846 | // Search for zero-trip guard. |
1847 | |
1848 | // Check the shape of the graph at the loop entry. If an inappropriate |
1849 | // graph shape is encountered, the compiler bails out loop unrolling; |
1850 | // compilation of the method will still succeed. |
1851 | if (!is_canonical_loop_entry(loop_head)) { |
1852 | return; |
1853 | } |
1854 | opaq = loop_head->skip_predicates()->in(0)->in(1)->in(1)->in(2); |
1855 | // Zero-trip test uses an 'opaque' node which is not shared. |
1856 | assert(opaq->outcnt() == 1 && opaq->in(1) == limit, "" ); |
1857 | } |
1858 | |
1859 | C->set_major_progress(); |
1860 | |
1861 | Node* new_limit = NULL; |
1862 | int stride_con = stride->get_int(); |
1863 | int stride_p = (stride_con > 0) ? stride_con : -stride_con; |
1864 | uint old_trip_count = loop_head->trip_count(); |
1865 | // Verify that unroll policy result is still valid. |
1866 | assert(old_trip_count > 1 && |
1867 | (!adjust_min_trip || stride_p <= (1<<3)*loop_head->unrolled_count()), "sanity" ); |
1868 | |
1869 | update_skeleton_predicates(ctrl, loop_head, init, stride_con); |
1870 | |
1871 | // Adjust loop limit to keep valid iterations number after unroll. |
1872 | // Use (limit - stride) instead of (((limit - init)/stride) & (-2))*stride |
1873 | // which may overflow. |
1874 | if (!adjust_min_trip) { |
1875 | assert(old_trip_count > 1 && (old_trip_count & 1) == 0, |
1876 | "odd trip count for maximally unroll" ); |
1877 | // Don't need to adjust limit for maximally unroll since trip count is even. |
1878 | } else if (loop_head->has_exact_trip_count() && init->is_Con()) { |
1879 | // Loop's limit is constant. Loop's init could be constant when pre-loop |
1880 | // become peeled iteration. |
1881 | jlong init_con = init->get_int(); |
1882 | // We can keep old loop limit if iterations count stays the same: |
1883 | // old_trip_count == new_trip_count * 2 |
1884 | // Note: since old_trip_count >= 2 then new_trip_count >= 1 |
1885 | // so we also don't need to adjust zero trip test. |
1886 | jlong limit_con = limit->get_int(); |
1887 | // (stride_con*2) not overflow since stride_con <= 8. |
1888 | int new_stride_con = stride_con * 2; |
1889 | int stride_m = new_stride_con - (stride_con > 0 ? 1 : -1); |
1890 | jlong trip_count = (limit_con - init_con + stride_m)/new_stride_con; |
1891 | // New trip count should satisfy next conditions. |
1892 | assert(trip_count > 0 && (julong)trip_count < (julong)max_juint/2, "sanity" ); |
1893 | uint new_trip_count = (uint)trip_count; |
1894 | adjust_min_trip = (old_trip_count != new_trip_count*2); |
1895 | } |
1896 | |
1897 | if (adjust_min_trip) { |
1898 | // Step 2: Adjust the trip limit if it is called for. |
1899 | // The adjustment amount is -stride. Need to make sure if the |
1900 | // adjustment underflows or overflows, then the main loop is skipped. |
1901 | Node* cmp = loop_end->cmp_node(); |
1902 | assert(cmp->in(2) == limit, "sanity" ); |
1903 | assert(opaq != NULL && opaq->in(1) == limit, "sanity" ); |
1904 | |
1905 | // Verify that policy_unroll result is still valid. |
1906 | const TypeInt* limit_type = _igvn.type(limit)->is_int(); |
1907 | assert(stride_con > 0 && ((limit_type->_hi - stride_con) < limit_type->_hi) || |
1908 | stride_con < 0 && ((limit_type->_lo - stride_con) > limit_type->_lo), |
1909 | "sanity" ); |
1910 | |
1911 | if (limit->is_Con()) { |
1912 | // The check in policy_unroll and the assert above guarantee |
1913 | // no underflow if limit is constant. |
1914 | new_limit = _igvn.intcon(limit->get_int() - stride_con); |
1915 | set_ctrl(new_limit, C->root()); |
1916 | } else { |
1917 | // Limit is not constant. |
1918 | if (loop_head->unrolled_count() == 1) { // only for first unroll |
1919 | // Separate limit by Opaque node in case it is an incremented |
1920 | // variable from previous loop to avoid using pre-incremented |
1921 | // value which could increase register pressure. |
1922 | // Otherwise reorg_offsets() optimization will create a separate |
1923 | // Opaque node for each use of trip-counter and as result |
1924 | // zero trip guard limit will be different from loop limit. |
1925 | assert(has_ctrl(opaq), "should have it" ); |
1926 | Node* opaq_ctrl = get_ctrl(opaq); |
1927 | limit = new Opaque2Node(C, limit); |
1928 | register_new_node(limit, opaq_ctrl); |
1929 | } |
1930 | if ((stride_con > 0 && (java_subtract(limit_type->_lo, stride_con) < limit_type->_lo)) || |
1931 | (stride_con < 0 && (java_subtract(limit_type->_hi, stride_con) > limit_type->_hi))) { |
1932 | // No underflow. |
1933 | new_limit = new SubINode(limit, stride); |
1934 | } else { |
1935 | // (limit - stride) may underflow. |
1936 | // Clamp the adjustment value with MININT or MAXINT: |
1937 | // |
1938 | // new_limit = limit-stride |
1939 | // if (stride > 0) |
1940 | // new_limit = (limit < new_limit) ? MININT : new_limit; |
1941 | // else |
1942 | // new_limit = (limit > new_limit) ? MAXINT : new_limit; |
1943 | // |
1944 | BoolTest::mask bt = loop_end->test_trip(); |
1945 | assert(bt == BoolTest::lt || bt == BoolTest::gt, "canonical test is expected" ); |
1946 | Node* adj_max = _igvn.intcon((stride_con > 0) ? min_jint : max_jint); |
1947 | set_ctrl(adj_max, C->root()); |
1948 | Node* old_limit = NULL; |
1949 | Node* adj_limit = NULL; |
1950 | Node* bol = limit->is_CMove() ? limit->in(CMoveNode::Condition) : NULL; |
1951 | if (loop_head->unrolled_count() > 1 && |
1952 | limit->is_CMove() && limit->Opcode() == Op_CMoveI && |
1953 | limit->in(CMoveNode::IfTrue) == adj_max && |
1954 | bol->as_Bool()->_test._test == bt && |
1955 | bol->in(1)->Opcode() == Op_CmpI && |
1956 | bol->in(1)->in(2) == limit->in(CMoveNode::IfFalse)) { |
1957 | // Loop was unrolled before. |
1958 | // Optimize the limit to avoid nested CMove: |
1959 | // use original limit as old limit. |
1960 | old_limit = bol->in(1)->in(1); |
1961 | // Adjust previous adjusted limit. |
1962 | adj_limit = limit->in(CMoveNode::IfFalse); |
1963 | adj_limit = new SubINode(adj_limit, stride); |
1964 | } else { |
1965 | old_limit = limit; |
1966 | adj_limit = new SubINode(limit, stride); |
1967 | } |
1968 | assert(old_limit != NULL && adj_limit != NULL, "" ); |
1969 | register_new_node(adj_limit, ctrl); // adjust amount |
1970 | Node* adj_cmp = new CmpINode(old_limit, adj_limit); |
1971 | register_new_node(adj_cmp, ctrl); |
1972 | Node* adj_bool = new BoolNode(adj_cmp, bt); |
1973 | register_new_node(adj_bool, ctrl); |
1974 | new_limit = new CMoveINode(adj_bool, adj_limit, adj_max, TypeInt::INT); |
1975 | } |
1976 | register_new_node(new_limit, ctrl); |
1977 | } |
1978 | |
1979 | assert(new_limit != NULL, "" ); |
1980 | // Replace in loop test. |
1981 | assert(loop_end->in(1)->in(1) == cmp, "sanity" ); |
1982 | if (cmp->outcnt() == 1 && loop_end->in(1)->outcnt() == 1) { |
1983 | // Don't need to create new test since only one user. |
1984 | _igvn.hash_delete(cmp); |
1985 | cmp->set_req(2, new_limit); |
1986 | } else { |
1987 | // Create new test since it is shared. |
1988 | Node* ctrl2 = loop_end->in(0); |
1989 | Node* cmp2 = cmp->clone(); |
1990 | cmp2->set_req(2, new_limit); |
1991 | register_new_node(cmp2, ctrl2); |
1992 | Node* bol2 = loop_end->in(1)->clone(); |
1993 | bol2->set_req(1, cmp2); |
1994 | register_new_node(bol2, ctrl2); |
1995 | _igvn.replace_input_of(loop_end, 1, bol2); |
1996 | } |
1997 | // Step 3: Find the min-trip test guaranteed before a 'main' loop. |
1998 | // Make it a 1-trip test (means at least 2 trips). |
1999 | |
2000 | // Guard test uses an 'opaque' node which is not shared. Hence I |
2001 | // can edit it's inputs directly. Hammer in the new limit for the |
2002 | // minimum-trip guard. |
2003 | assert(opaq->outcnt() == 1, "" ); |
2004 | _igvn.replace_input_of(opaq, 1, new_limit); |
2005 | } |
2006 | |
2007 | // Adjust max trip count. The trip count is intentionally rounded |
2008 | // down here (e.g. 15-> 7-> 3-> 1) because if we unwittingly over-unroll, |
2009 | // the main, unrolled, part of the loop will never execute as it is protected |
2010 | // by the min-trip test. See bug 4834191 for a case where we over-unrolled |
2011 | // and later determined that part of the unrolled loop was dead. |
2012 | loop_head->set_trip_count(old_trip_count / 2); |
2013 | |
2014 | // Double the count of original iterations in the unrolled loop body. |
2015 | loop_head->double_unrolled_count(); |
2016 | |
2017 | // --------- |
2018 | // Step 4: Clone the loop body. Move it inside the loop. This loop body |
2019 | // represents the odd iterations; since the loop trips an even number of |
2020 | // times its backedge is never taken. Kill the backedge. |
2021 | uint dd = dom_depth(loop_head); |
2022 | clone_loop(loop, old_new, dd, IgnoreStripMined); |
2023 | |
2024 | // Make backedges of the clone equal to backedges of the original. |
2025 | // Make the fall-in from the original come from the fall-out of the clone. |
2026 | for (DUIterator_Fast jmax, j = loop_head->fast_outs(jmax); j < jmax; j++) { |
2027 | Node* phi = loop_head->fast_out(j); |
2028 | if (phi->is_Phi() && phi->in(0) == loop_head && phi->outcnt() > 0) { |
2029 | Node *newphi = old_new[phi->_idx]; |
2030 | _igvn.hash_delete(phi); |
2031 | _igvn.hash_delete(newphi); |
2032 | |
2033 | phi ->set_req(LoopNode:: EntryControl, newphi->in(LoopNode::LoopBackControl)); |
2034 | newphi->set_req(LoopNode::LoopBackControl, phi ->in(LoopNode::LoopBackControl)); |
2035 | phi ->set_req(LoopNode::LoopBackControl, C->top()); |
2036 | } |
2037 | } |
2038 | Node *clone_head = old_new[loop_head->_idx]; |
2039 | _igvn.hash_delete(clone_head); |
2040 | loop_head ->set_req(LoopNode:: EntryControl, clone_head->in(LoopNode::LoopBackControl)); |
2041 | clone_head->set_req(LoopNode::LoopBackControl, loop_head ->in(LoopNode::LoopBackControl)); |
2042 | loop_head ->set_req(LoopNode::LoopBackControl, C->top()); |
2043 | loop->_head = clone_head; // New loop header |
2044 | |
2045 | set_idom(loop_head, loop_head ->in(LoopNode::EntryControl), dd); |
2046 | set_idom(clone_head, clone_head->in(LoopNode::EntryControl), dd); |
2047 | |
2048 | // Kill the clone's backedge |
2049 | Node *newcle = old_new[loop_end->_idx]; |
2050 | _igvn.hash_delete(newcle); |
2051 | Node *one = _igvn.intcon(1); |
2052 | set_ctrl(one, C->root()); |
2053 | newcle->set_req(1, one); |
2054 | // Force clone into same loop body |
2055 | uint max = loop->_body.size(); |
2056 | for (uint k = 0; k < max; k++) { |
2057 | Node *old = loop->_body.at(k); |
2058 | Node *nnn = old_new[old->_idx]; |
2059 | loop->_body.push(nnn); |
2060 | if (!has_ctrl(old)) { |
2061 | set_loop(nnn, loop); |
2062 | } |
2063 | } |
2064 | |
2065 | loop->record_for_igvn(); |
2066 | loop_head->clear_strip_mined(); |
2067 | |
2068 | #ifndef PRODUCT |
2069 | if (C->do_vector_loop() && (PrintOpto && (VerifyLoopOptimizations || TraceLoopOpts))) { |
2070 | tty->print("\nnew loop after unroll\n" ); loop->dump_head(); |
2071 | for (uint i = 0; i < loop->_body.size(); i++) { |
2072 | loop->_body.at(i)->dump(); |
2073 | } |
2074 | if (C->clone_map().is_debug()) { |
2075 | tty->print("\nCloneMap\n" ); |
2076 | Dict* dict = C->clone_map().dict(); |
2077 | DictI i(dict); |
2078 | tty->print_cr("Dict@%p[%d] = " , dict, dict->Size()); |
2079 | for (int ii = 0; i.test(); ++i, ++ii) { |
2080 | NodeCloneInfo cl((uint64_t)dict->operator[]((void*)i._key)); |
2081 | tty->print("%d->%d:%d," , (int)(intptr_t)i._key, cl.idx(), cl.gen()); |
2082 | if (ii % 10 == 9) { |
2083 | tty->print_cr(" " ); |
2084 | } |
2085 | } |
2086 | tty->print_cr(" " ); |
2087 | } |
2088 | } |
2089 | #endif |
2090 | } |
2091 | |
2092 | //------------------------------do_maximally_unroll---------------------------- |
2093 | |
2094 | void PhaseIdealLoop::do_maximally_unroll(IdealLoopTree *loop, Node_List &old_new) { |
2095 | CountedLoopNode *cl = loop->_head->as_CountedLoop(); |
2096 | assert(cl->has_exact_trip_count(), "trip count is not exact" ); |
2097 | assert(cl->trip_count() > 0, "" ); |
2098 | #ifndef PRODUCT |
2099 | if (TraceLoopOpts) { |
2100 | tty->print("MaxUnroll %d " , cl->trip_count()); |
2101 | loop->dump_head(); |
2102 | } |
2103 | #endif |
2104 | |
2105 | // If loop is tripping an odd number of times, peel odd iteration |
2106 | if ((cl->trip_count() & 1) == 1) { |
2107 | do_peeling(loop, old_new); |
2108 | } |
2109 | |
2110 | // Now its tripping an even number of times remaining. Double loop body. |
2111 | // Do not adjust pre-guards; they are not needed and do not exist. |
2112 | if (cl->trip_count() > 0) { |
2113 | assert((cl->trip_count() & 1) == 0, "missed peeling" ); |
2114 | do_unroll(loop, old_new, false); |
2115 | } |
2116 | } |
2117 | |
2118 | void PhaseIdealLoop::mark_reductions(IdealLoopTree *loop) { |
2119 | if (SuperWordReductions == false) return; |
2120 | |
2121 | CountedLoopNode* loop_head = loop->_head->as_CountedLoop(); |
2122 | if (loop_head->unrolled_count() > 1) { |
2123 | return; |
2124 | } |
2125 | |
2126 | Node* trip_phi = loop_head->phi(); |
2127 | for (DUIterator_Fast imax, i = loop_head->fast_outs(imax); i < imax; i++) { |
2128 | Node* phi = loop_head->fast_out(i); |
2129 | if (phi->is_Phi() && phi->outcnt() > 0 && phi != trip_phi) { |
2130 | // For definitions which are loop inclusive and not tripcounts. |
2131 | Node* def_node = phi->in(LoopNode::LoopBackControl); |
2132 | |
2133 | if (def_node != NULL) { |
2134 | Node* n_ctrl = get_ctrl(def_node); |
2135 | if (n_ctrl != NULL && loop->is_member(get_loop(n_ctrl))) { |
2136 | // Now test it to see if it fits the standard pattern for a reduction operator. |
2137 | int opc = def_node->Opcode(); |
2138 | if (opc != ReductionNode::opcode(opc, def_node->bottom_type()->basic_type()) |
2139 | || opc == Op_MinD || opc == Op_MinF || opc == Op_MaxD || opc == Op_MaxF) { |
2140 | if (!def_node->is_reduction()) { // Not marked yet |
2141 | // To be a reduction, the arithmetic node must have the phi as input and provide a def to it |
2142 | bool ok = false; |
2143 | for (unsigned j = 1; j < def_node->req(); j++) { |
2144 | Node* in = def_node->in(j); |
2145 | if (in == phi) { |
2146 | ok = true; |
2147 | break; |
2148 | } |
2149 | } |
2150 | |
2151 | // do nothing if we did not match the initial criteria |
2152 | if (ok == false) { |
2153 | continue; |
2154 | } |
2155 | |
2156 | // The result of the reduction must not be used in the loop |
2157 | for (DUIterator_Fast imax, i = def_node->fast_outs(imax); i < imax && ok; i++) { |
2158 | Node* u = def_node->fast_out(i); |
2159 | if (!loop->is_member(get_loop(ctrl_or_self(u)))) { |
2160 | continue; |
2161 | } |
2162 | if (u == phi) { |
2163 | continue; |
2164 | } |
2165 | ok = false; |
2166 | } |
2167 | |
2168 | // iff the uses conform |
2169 | if (ok) { |
2170 | def_node->add_flag(Node::Flag_is_reduction); |
2171 | loop_head->mark_has_reductions(); |
2172 | } |
2173 | } |
2174 | } |
2175 | } |
2176 | } |
2177 | } |
2178 | } |
2179 | } |
2180 | |
2181 | //------------------------------adjust_limit----------------------------------- |
2182 | // Helper function for add_constraint(). |
2183 | Node* PhaseIdealLoop::adjust_limit(int stride_con, Node * scale, Node *offset, Node *rc_limit, Node *loop_limit, Node *pre_ctrl, bool round_up) { |
2184 | // Compute "I :: (limit-offset)/scale" |
2185 | Node *con = new SubINode(rc_limit, offset); |
2186 | register_new_node(con, pre_ctrl); |
2187 | Node *X = new DivINode(0, con, scale); |
2188 | register_new_node(X, pre_ctrl); |
2189 | |
2190 | // When the absolute value of scale is greater than one, the integer |
2191 | // division may round limit down so add one to the limit. |
2192 | if (round_up) { |
2193 | X = new AddINode(X, _igvn.intcon(1)); |
2194 | register_new_node(X, pre_ctrl); |
2195 | } |
2196 | |
2197 | // Adjust loop limit |
2198 | loop_limit = (stride_con > 0) |
2199 | ? (Node*)(new MinINode(loop_limit, X)) |
2200 | : (Node*)(new MaxINode(loop_limit, X)); |
2201 | register_new_node(loop_limit, pre_ctrl); |
2202 | return loop_limit; |
2203 | } |
2204 | |
2205 | //------------------------------add_constraint--------------------------------- |
2206 | // Constrain the main loop iterations so the conditions: |
2207 | // low_limit <= scale_con * I + offset < upper_limit |
2208 | // always holds true. That is, either increase the number of iterations in |
2209 | // the pre-loop or the post-loop until the condition holds true in the main |
2210 | // loop. Stride, scale, offset and limit are all loop invariant. Further, |
2211 | // stride and scale are constants (offset and limit often are). |
2212 | void PhaseIdealLoop::add_constraint(int stride_con, int scale_con, Node *offset, Node *low_limit, Node *upper_limit, Node *pre_ctrl, Node **pre_limit, Node **main_limit) { |
2213 | // For positive stride, the pre-loop limit always uses a MAX function |
2214 | // and the main loop a MIN function. For negative stride these are |
2215 | // reversed. |
2216 | |
2217 | // Also for positive stride*scale the affine function is increasing, so the |
2218 | // pre-loop must check for underflow and the post-loop for overflow. |
2219 | // Negative stride*scale reverses this; pre-loop checks for overflow and |
2220 | // post-loop for underflow. |
2221 | |
2222 | Node *scale = _igvn.intcon(scale_con); |
2223 | set_ctrl(scale, C->root()); |
2224 | |
2225 | if ((stride_con^scale_con) >= 0) { // Use XOR to avoid overflow |
2226 | // The overflow limit: scale*I+offset < upper_limit |
2227 | // For main-loop compute |
2228 | // ( if (scale > 0) /* and stride > 0 */ |
2229 | // I < (upper_limit-offset)/scale |
2230 | // else /* scale < 0 and stride < 0 */ |
2231 | // I > (upper_limit-offset)/scale |
2232 | // ) |
2233 | // |
2234 | // (upper_limit-offset) may overflow or underflow. |
2235 | // But it is fine since main loop will either have |
2236 | // less iterations or will be skipped in such case. |
2237 | *main_limit = adjust_limit(stride_con, scale, offset, upper_limit, *main_limit, pre_ctrl, false); |
2238 | |
2239 | // The underflow limit: low_limit <= scale*I+offset. |
2240 | // For pre-loop compute |
2241 | // NOT(scale*I+offset >= low_limit) |
2242 | // scale*I+offset < low_limit |
2243 | // ( if (scale > 0) /* and stride > 0 */ |
2244 | // I < (low_limit-offset)/scale |
2245 | // else /* scale < 0 and stride < 0 */ |
2246 | // I > (low_limit-offset)/scale |
2247 | // ) |
2248 | |
2249 | if (low_limit->get_int() == -max_jint) { |
2250 | // We need this guard when scale*pre_limit+offset >= limit |
2251 | // due to underflow. So we need execute pre-loop until |
2252 | // scale*I+offset >= min_int. But (min_int-offset) will |
2253 | // underflow when offset > 0 and X will be > original_limit |
2254 | // when stride > 0. To avoid it we replace positive offset with 0. |
2255 | // |
2256 | // Also (min_int+1 == -max_int) is used instead of min_int here |
2257 | // to avoid problem with scale == -1 (min_int/(-1) == min_int). |
2258 | Node* shift = _igvn.intcon(31); |
2259 | set_ctrl(shift, C->root()); |
2260 | Node* sign = new RShiftINode(offset, shift); |
2261 | register_new_node(sign, pre_ctrl); |
2262 | offset = new AndINode(offset, sign); |
2263 | register_new_node(offset, pre_ctrl); |
2264 | } else { |
2265 | assert(low_limit->get_int() == 0, "wrong low limit for range check" ); |
2266 | // The only problem we have here when offset == min_int |
2267 | // since (0-min_int) == min_int. It may be fine for stride > 0 |
2268 | // but for stride < 0 X will be < original_limit. To avoid it |
2269 | // max(pre_limit, original_limit) is used in do_range_check(). |
2270 | } |
2271 | // Pass (-stride) to indicate pre_loop_cond = NOT(main_loop_cond); |
2272 | *pre_limit = adjust_limit((-stride_con), scale, offset, low_limit, *pre_limit, pre_ctrl, |
2273 | scale_con > 1 && stride_con > 0); |
2274 | |
2275 | } else { // stride_con*scale_con < 0 |
2276 | // For negative stride*scale pre-loop checks for overflow and |
2277 | // post-loop for underflow. |
2278 | // |
2279 | // The overflow limit: scale*I+offset < upper_limit |
2280 | // For pre-loop compute |
2281 | // NOT(scale*I+offset < upper_limit) |
2282 | // scale*I+offset >= upper_limit |
2283 | // scale*I+offset+1 > upper_limit |
2284 | // ( if (scale < 0) /* and stride > 0 */ |
2285 | // I < (upper_limit-(offset+1))/scale |
2286 | // else /* scale > 0 and stride < 0 */ |
2287 | // I > (upper_limit-(offset+1))/scale |
2288 | // ) |
2289 | // |
2290 | // (upper_limit-offset-1) may underflow or overflow. |
2291 | // To avoid it min(pre_limit, original_limit) is used |
2292 | // in do_range_check() for stride > 0 and max() for < 0. |
2293 | Node *one = _igvn.intcon(1); |
2294 | set_ctrl(one, C->root()); |
2295 | |
2296 | Node *plus_one = new AddINode(offset, one); |
2297 | register_new_node(plus_one, pre_ctrl); |
2298 | // Pass (-stride) to indicate pre_loop_cond = NOT(main_loop_cond); |
2299 | *pre_limit = adjust_limit((-stride_con), scale, plus_one, upper_limit, *pre_limit, pre_ctrl, |
2300 | scale_con < -1 && stride_con > 0); |
2301 | |
2302 | if (low_limit->get_int() == -max_jint) { |
2303 | // We need this guard when scale*main_limit+offset >= limit |
2304 | // due to underflow. So we need execute main-loop while |
2305 | // scale*I+offset+1 > min_int. But (min_int-offset-1) will |
2306 | // underflow when (offset+1) > 0 and X will be < main_limit |
2307 | // when scale < 0 (and stride > 0). To avoid it we replace |
2308 | // positive (offset+1) with 0. |
2309 | // |
2310 | // Also (min_int+1 == -max_int) is used instead of min_int here |
2311 | // to avoid problem with scale == -1 (min_int/(-1) == min_int). |
2312 | Node* shift = _igvn.intcon(31); |
2313 | set_ctrl(shift, C->root()); |
2314 | Node* sign = new RShiftINode(plus_one, shift); |
2315 | register_new_node(sign, pre_ctrl); |
2316 | plus_one = new AndINode(plus_one, sign); |
2317 | register_new_node(plus_one, pre_ctrl); |
2318 | } else { |
2319 | assert(low_limit->get_int() == 0, "wrong low limit for range check" ); |
2320 | // The only problem we have here when offset == max_int |
2321 | // since (max_int+1) == min_int and (0-min_int) == min_int. |
2322 | // But it is fine since main loop will either have |
2323 | // less iterations or will be skipped in such case. |
2324 | } |
2325 | // The underflow limit: low_limit <= scale*I+offset. |
2326 | // For main-loop compute |
2327 | // scale*I+offset+1 > low_limit |
2328 | // ( if (scale < 0) /* and stride > 0 */ |
2329 | // I < (low_limit-(offset+1))/scale |
2330 | // else /* scale > 0 and stride < 0 */ |
2331 | // I > (low_limit-(offset+1))/scale |
2332 | // ) |
2333 | |
2334 | *main_limit = adjust_limit(stride_con, scale, plus_one, low_limit, *main_limit, pre_ctrl, |
2335 | false); |
2336 | } |
2337 | } |
2338 | |
2339 | |
2340 | //------------------------------is_scaled_iv--------------------------------- |
2341 | // Return true if exp is a constant times an induction var |
2342 | bool PhaseIdealLoop::is_scaled_iv(Node* exp, Node* iv, int* p_scale) { |
2343 | if (exp == iv) { |
2344 | if (p_scale != NULL) { |
2345 | *p_scale = 1; |
2346 | } |
2347 | return true; |
2348 | } |
2349 | int opc = exp->Opcode(); |
2350 | if (opc == Op_MulI) { |
2351 | if (exp->in(1) == iv && exp->in(2)->is_Con()) { |
2352 | if (p_scale != NULL) { |
2353 | *p_scale = exp->in(2)->get_int(); |
2354 | } |
2355 | return true; |
2356 | } |
2357 | if (exp->in(2) == iv && exp->in(1)->is_Con()) { |
2358 | if (p_scale != NULL) { |
2359 | *p_scale = exp->in(1)->get_int(); |
2360 | } |
2361 | return true; |
2362 | } |
2363 | } else if (opc == Op_LShiftI) { |
2364 | if (exp->in(1) == iv && exp->in(2)->is_Con()) { |
2365 | if (p_scale != NULL) { |
2366 | *p_scale = 1 << exp->in(2)->get_int(); |
2367 | } |
2368 | return true; |
2369 | } |
2370 | } |
2371 | return false; |
2372 | } |
2373 | |
2374 | //-----------------------------is_scaled_iv_plus_offset------------------------------ |
2375 | // Return true if exp is a simple induction variable expression: k1*iv + (invar + k2) |
2376 | bool PhaseIdealLoop::is_scaled_iv_plus_offset(Node* exp, Node* iv, int* p_scale, Node** p_offset, int depth) { |
2377 | if (is_scaled_iv(exp, iv, p_scale)) { |
2378 | if (p_offset != NULL) { |
2379 | Node *zero = _igvn.intcon(0); |
2380 | set_ctrl(zero, C->root()); |
2381 | *p_offset = zero; |
2382 | } |
2383 | return true; |
2384 | } |
2385 | int opc = exp->Opcode(); |
2386 | if (opc == Op_AddI) { |
2387 | if (is_scaled_iv(exp->in(1), iv, p_scale)) { |
2388 | if (p_offset != NULL) { |
2389 | *p_offset = exp->in(2); |
2390 | } |
2391 | return true; |
2392 | } |
2393 | if (is_scaled_iv(exp->in(2), iv, p_scale)) { |
2394 | if (p_offset != NULL) { |
2395 | *p_offset = exp->in(1); |
2396 | } |
2397 | return true; |
2398 | } |
2399 | if (exp->in(2)->is_Con()) { |
2400 | Node* offset2 = NULL; |
2401 | if (depth < 2 && |
2402 | is_scaled_iv_plus_offset(exp->in(1), iv, p_scale, |
2403 | p_offset != NULL ? &offset2 : NULL, depth+1)) { |
2404 | if (p_offset != NULL) { |
2405 | Node *ctrl_off2 = get_ctrl(offset2); |
2406 | Node* offset = new AddINode(offset2, exp->in(2)); |
2407 | register_new_node(offset, ctrl_off2); |
2408 | *p_offset = offset; |
2409 | } |
2410 | return true; |
2411 | } |
2412 | } |
2413 | } else if (opc == Op_SubI) { |
2414 | if (is_scaled_iv(exp->in(1), iv, p_scale)) { |
2415 | if (p_offset != NULL) { |
2416 | Node *zero = _igvn.intcon(0); |
2417 | set_ctrl(zero, C->root()); |
2418 | Node *ctrl_off = get_ctrl(exp->in(2)); |
2419 | Node* offset = new SubINode(zero, exp->in(2)); |
2420 | register_new_node(offset, ctrl_off); |
2421 | *p_offset = offset; |
2422 | } |
2423 | return true; |
2424 | } |
2425 | if (is_scaled_iv(exp->in(2), iv, p_scale)) { |
2426 | if (p_offset != NULL) { |
2427 | *p_scale *= -1; |
2428 | *p_offset = exp->in(1); |
2429 | } |
2430 | return true; |
2431 | } |
2432 | } |
2433 | return false; |
2434 | } |
2435 | |
2436 | // Same as PhaseIdealLoop::duplicate_predicates() but for range checks |
2437 | // eliminated by iteration splitting. |
2438 | Node* PhaseIdealLoop::add_range_check_predicate(IdealLoopTree* loop, CountedLoopNode* cl, |
2439 | Node* predicate_proj, int scale_con, Node* offset, |
2440 | Node* limit, jint stride_con, Node* value) { |
2441 | bool overflow = false; |
2442 | BoolNode* bol = rc_predicate(loop, predicate_proj, scale_con, offset, value, NULL, stride_con, limit, (stride_con > 0) != (scale_con > 0), overflow); |
2443 | Node* opaque_bol = new Opaque4Node(C, bol, _igvn.intcon(1)); |
2444 | register_new_node(opaque_bol, predicate_proj); |
2445 | IfNode* new_iff = NULL; |
2446 | if (overflow) { |
2447 | new_iff = new IfNode(predicate_proj, opaque_bol, PROB_MAX, COUNT_UNKNOWN); |
2448 | } else { |
2449 | new_iff = new RangeCheckNode(predicate_proj, opaque_bol, PROB_MAX, COUNT_UNKNOWN); |
2450 | } |
2451 | register_control(new_iff, loop->_parent, predicate_proj); |
2452 | Node* iffalse = new IfFalseNode(new_iff); |
2453 | register_control(iffalse, _ltree_root, new_iff); |
2454 | ProjNode* iftrue = new IfTrueNode(new_iff); |
2455 | register_control(iftrue, loop->_parent, new_iff); |
2456 | Node *frame = new ParmNode(C->start(), TypeFunc::FramePtr); |
2457 | register_new_node(frame, C->start()); |
2458 | Node* halt = new HaltNode(iffalse, frame); |
2459 | register_control(halt, _ltree_root, iffalse); |
2460 | C->root()->add_req(halt); |
2461 | return iftrue; |
2462 | } |
2463 | |
2464 | //------------------------------do_range_check--------------------------------- |
2465 | // Eliminate range-checks and other trip-counter vs loop-invariant tests. |
2466 | int PhaseIdealLoop::do_range_check(IdealLoopTree *loop, Node_List &old_new) { |
2467 | #ifndef PRODUCT |
2468 | if (PrintOpto && VerifyLoopOptimizations) { |
2469 | tty->print("Range Check Elimination " ); |
2470 | loop->dump_head(); |
2471 | } else if (TraceLoopOpts) { |
2472 | tty->print("RangeCheck " ); |
2473 | loop->dump_head(); |
2474 | } |
2475 | #endif |
2476 | |
2477 | assert(RangeCheckElimination, "" ); |
2478 | CountedLoopNode *cl = loop->_head->as_CountedLoop(); |
2479 | // If we fail before trying to eliminate range checks, set multiversion state |
2480 | int closed_range_checks = 1; |
2481 | |
2482 | // protect against stride not being a constant |
2483 | if (!cl->stride_is_con()) { |
2484 | return closed_range_checks; |
2485 | } |
2486 | // Find the trip counter; we are iteration splitting based on it |
2487 | Node *trip_counter = cl->phi(); |
2488 | // Find the main loop limit; we will trim it's iterations |
2489 | // to not ever trip end tests |
2490 | Node *main_limit = cl->limit(); |
2491 | |
2492 | // Check graph shape. Cannot optimize a loop if zero-trip |
2493 | // Opaque1 node is optimized away and then another round |
2494 | // of loop opts attempted. |
2495 | if (!is_canonical_loop_entry(cl)) { |
2496 | return closed_range_checks; |
2497 | } |
2498 | |
2499 | // Need to find the main-loop zero-trip guard |
2500 | Node *ctrl = cl->skip_predicates(); |
2501 | Node *iffm = ctrl->in(0); |
2502 | Node *opqzm = iffm->in(1)->in(1)->in(2); |
2503 | assert(opqzm->in(1) == main_limit, "do not understand situation" ); |
2504 | |
2505 | // Find the pre-loop limit; we will expand its iterations to |
2506 | // not ever trip low tests. |
2507 | Node *p_f = iffm->in(0); |
2508 | // pre loop may have been optimized out |
2509 | if (p_f->Opcode() != Op_IfFalse) { |
2510 | return closed_range_checks; |
2511 | } |
2512 | CountedLoopEndNode *pre_end = p_f->in(0)->as_CountedLoopEnd(); |
2513 | assert(pre_end->loopnode()->is_pre_loop(), "" ); |
2514 | Node *pre_opaq1 = pre_end->limit(); |
2515 | // Occasionally it's possible for a pre-loop Opaque1 node to be |
2516 | // optimized away and then another round of loop opts attempted. |
2517 | // We can not optimize this particular loop in that case. |
2518 | if (pre_opaq1->Opcode() != Op_Opaque1) { |
2519 | return closed_range_checks; |
2520 | } |
2521 | Opaque1Node *pre_opaq = (Opaque1Node*)pre_opaq1; |
2522 | Node *pre_limit = pre_opaq->in(1); |
2523 | |
2524 | // Where do we put new limit calculations |
2525 | Node *pre_ctrl = pre_end->loopnode()->in(LoopNode::EntryControl); |
2526 | |
2527 | // Ensure the original loop limit is available from the |
2528 | // pre-loop Opaque1 node. |
2529 | Node *orig_limit = pre_opaq->original_loop_limit(); |
2530 | if (orig_limit == NULL || _igvn.type(orig_limit) == Type::TOP) { |
2531 | return closed_range_checks; |
2532 | } |
2533 | // Must know if its a count-up or count-down loop |
2534 | |
2535 | int stride_con = cl->stride_con(); |
2536 | Node *zero = _igvn.intcon(0); |
2537 | Node *one = _igvn.intcon(1); |
2538 | // Use symmetrical int range [-max_jint,max_jint] |
2539 | Node *mini = _igvn.intcon(-max_jint); |
2540 | set_ctrl(zero, C->root()); |
2541 | set_ctrl(one, C->root()); |
2542 | set_ctrl(mini, C->root()); |
2543 | |
2544 | // Range checks that do not dominate the loop backedge (ie. |
2545 | // conditionally executed) can lengthen the pre loop limit beyond |
2546 | // the original loop limit. To prevent this, the pre limit is |
2547 | // (for stride > 0) MINed with the original loop limit (MAXed |
2548 | // stride < 0) when some range_check (rc) is conditionally |
2549 | // executed. |
2550 | bool conditional_rc = false; |
2551 | |
2552 | // Count number of range checks and reduce by load range limits, if zero, |
2553 | // the loop is in canonical form to multiversion. |
2554 | closed_range_checks = 0; |
2555 | |
2556 | Node* predicate_proj = cl->skip_strip_mined()->in(LoopNode::EntryControl); |
2557 | assert(predicate_proj->is_Proj() && predicate_proj->in(0)->is_If(), "if projection only" ); |
2558 | |
2559 | // Check loop body for tests of trip-counter plus loop-invariant vs loop-variant. |
2560 | for (uint i = 0; i < loop->_body.size(); i++) { |
2561 | Node *iff = loop->_body[i]; |
2562 | if (iff->Opcode() == Op_If || |
2563 | iff->Opcode() == Op_RangeCheck) { // Test? |
2564 | // Test is an IfNode, has 2 projections. If BOTH are in the loop |
2565 | // we need loop unswitching instead of iteration splitting. |
2566 | closed_range_checks++; |
2567 | Node *exit = loop->is_loop_exit(iff); |
2568 | if (!exit) continue; |
2569 | int flip = (exit->Opcode() == Op_IfTrue) ? 1 : 0; |
2570 | |
2571 | // Get boolean condition to test |
2572 | Node *i1 = iff->in(1); |
2573 | if (!i1->is_Bool()) continue; |
2574 | BoolNode *bol = i1->as_Bool(); |
2575 | BoolTest b_test = bol->_test; |
2576 | // Flip sense of test if exit condition is flipped |
2577 | if (flip) { |
2578 | b_test = b_test.negate(); |
2579 | } |
2580 | // Get compare |
2581 | Node *cmp = bol->in(1); |
2582 | |
2583 | // Look for trip_counter + offset vs limit |
2584 | Node *rc_exp = cmp->in(1); |
2585 | Node *limit = cmp->in(2); |
2586 | int scale_con= 1; // Assume trip counter not scaled |
2587 | |
2588 | Node *limit_c = get_ctrl(limit); |
2589 | if (loop->is_member(get_loop(limit_c))) { |
2590 | // Compare might have operands swapped; commute them |
2591 | b_test = b_test.commute(); |
2592 | rc_exp = cmp->in(2); |
2593 | limit = cmp->in(1); |
2594 | limit_c = get_ctrl(limit); |
2595 | if (loop->is_member(get_loop(limit_c))) { |
2596 | continue; // Both inputs are loop varying; cannot RCE |
2597 | } |
2598 | } |
2599 | // Here we know 'limit' is loop invariant |
2600 | |
2601 | // 'limit' maybe pinned below the zero trip test (probably from a |
2602 | // previous round of rce), in which case, it can't be used in the |
2603 | // zero trip test expression which must occur before the zero test's if. |
2604 | if (is_dominator(ctrl, limit_c)) { |
2605 | continue; // Don't rce this check but continue looking for other candidates. |
2606 | } |
2607 | |
2608 | // Check for scaled induction variable plus an offset |
2609 | Node *offset = NULL; |
2610 | |
2611 | if (!is_scaled_iv_plus_offset(rc_exp, trip_counter, &scale_con, &offset)) { |
2612 | continue; |
2613 | } |
2614 | |
2615 | Node *offset_c = get_ctrl(offset); |
2616 | if (loop->is_member(get_loop(offset_c))) { |
2617 | continue; // Offset is not really loop invariant |
2618 | } |
2619 | // Here we know 'offset' is loop invariant. |
2620 | |
2621 | // As above for the 'limit', the 'offset' maybe pinned below the |
2622 | // zero trip test. |
2623 | if (is_dominator(ctrl, offset_c)) { |
2624 | continue; // Don't rce this check but continue looking for other candidates. |
2625 | } |
2626 | #ifdef ASSERT |
2627 | if (TraceRangeLimitCheck) { |
2628 | tty->print_cr("RC bool node%s" , flip ? " flipped:" : ":" ); |
2629 | bol->dump(2); |
2630 | } |
2631 | #endif |
2632 | // At this point we have the expression as: |
2633 | // scale_con * trip_counter + offset :: limit |
2634 | // where scale_con, offset and limit are loop invariant. Trip_counter |
2635 | // monotonically increases by stride_con, a constant. Both (or either) |
2636 | // stride_con and scale_con can be negative which will flip about the |
2637 | // sense of the test. |
2638 | |
2639 | // Adjust pre and main loop limits to guard the correct iteration set |
2640 | if (cmp->Opcode() == Op_CmpU) { // Unsigned compare is really 2 tests |
2641 | if (b_test._test == BoolTest::lt) { // Range checks always use lt |
2642 | // The underflow and overflow limits: 0 <= scale*I+offset < limit |
2643 | add_constraint(stride_con, scale_con, offset, zero, limit, pre_ctrl, &pre_limit, &main_limit); |
2644 | // (0-offset)/scale could be outside of loop iterations range. |
2645 | conditional_rc = true; |
2646 | Node* init = cl->init_trip(); |
2647 | Node* opaque_init = new Opaque1Node(C, init); |
2648 | register_new_node(opaque_init, predicate_proj); |
2649 | // template predicate so it can be updated on next unrolling |
2650 | predicate_proj = add_range_check_predicate(loop, cl, predicate_proj, scale_con, offset, limit, stride_con, opaque_init); |
2651 | assert(skeleton_predicate_has_opaque(predicate_proj->in(0)->as_If()), "unexpected" ); |
2652 | // predicate on first value of first iteration |
2653 | predicate_proj = add_range_check_predicate(loop, cl, predicate_proj, scale_con, offset, limit, stride_con, init); |
2654 | assert(!skeleton_predicate_has_opaque(predicate_proj->in(0)->as_If()), "unexpected" ); |
2655 | int init_inc = stride_con/cl->unrolled_count(); |
2656 | assert(init_inc != 0, "invalid loop increment" ); |
2657 | Node* max_value = _igvn.intcon(stride_con - init_inc); |
2658 | max_value = new AddINode(init, max_value); |
2659 | register_new_node(max_value, predicate_proj); |
2660 | // predicate on last value of first iteration (in case unrolling has already happened) |
2661 | predicate_proj = add_range_check_predicate(loop, cl, predicate_proj, scale_con, offset, limit, stride_con, max_value); |
2662 | assert(!skeleton_predicate_has_opaque(predicate_proj->in(0)->as_If()), "unexpected" ); |
2663 | } else { |
2664 | if (PrintOpto) { |
2665 | tty->print_cr("missed RCE opportunity" ); |
2666 | } |
2667 | continue; // In release mode, ignore it |
2668 | } |
2669 | } else { // Otherwise work on normal compares |
2670 | switch(b_test._test) { |
2671 | case BoolTest::gt: |
2672 | // Fall into GE case |
2673 | case BoolTest::ge: |
2674 | // Convert (I*scale+offset) >= Limit to (I*(-scale)+(-offset)) <= -Limit |
2675 | scale_con = -scale_con; |
2676 | offset = new SubINode(zero, offset); |
2677 | register_new_node(offset, pre_ctrl); |
2678 | limit = new SubINode(zero, limit); |
2679 | register_new_node(limit, pre_ctrl); |
2680 | // Fall into LE case |
2681 | case BoolTest::le: |
2682 | if (b_test._test != BoolTest::gt) { |
2683 | // Convert X <= Y to X < Y+1 |
2684 | limit = new AddINode(limit, one); |
2685 | register_new_node(limit, pre_ctrl); |
2686 | } |
2687 | // Fall into LT case |
2688 | case BoolTest::lt: |
2689 | // The underflow and overflow limits: MIN_INT <= scale*I+offset < limit |
2690 | // Note: (MIN_INT+1 == -MAX_INT) is used instead of MIN_INT here |
2691 | // to avoid problem with scale == -1: MIN_INT/(-1) == MIN_INT. |
2692 | add_constraint(stride_con, scale_con, offset, mini, limit, pre_ctrl, &pre_limit, &main_limit); |
2693 | // ((MIN_INT+1)-offset)/scale could be outside of loop iterations range. |
2694 | // Note: negative offset is replaced with 0 but (MIN_INT+1)/scale could |
2695 | // still be outside of loop range. |
2696 | conditional_rc = true; |
2697 | break; |
2698 | default: |
2699 | if (PrintOpto) { |
2700 | tty->print_cr("missed RCE opportunity" ); |
2701 | } |
2702 | continue; // Unhandled case |
2703 | } |
2704 | } |
2705 | |
2706 | // Kill the eliminated test |
2707 | C->set_major_progress(); |
2708 | Node *kill_con = _igvn.intcon(1-flip); |
2709 | set_ctrl(kill_con, C->root()); |
2710 | _igvn.replace_input_of(iff, 1, kill_con); |
2711 | // Find surviving projection |
2712 | assert(iff->is_If(), "" ); |
2713 | ProjNode* dp = ((IfNode*)iff)->proj_out(1-flip); |
2714 | // Find loads off the surviving projection; remove their control edge |
2715 | for (DUIterator_Fast imax, i = dp->fast_outs(imax); i < imax; i++) { |
2716 | Node* cd = dp->fast_out(i); // Control-dependent node |
2717 | if (cd->is_Load() && cd->depends_only_on_test()) { // Loads can now float around in the loop |
2718 | // Allow the load to float around in the loop, or before it |
2719 | // but NOT before the pre-loop. |
2720 | _igvn.replace_input_of(cd, 0, ctrl); // ctrl, not NULL |
2721 | --i; |
2722 | --imax; |
2723 | } |
2724 | } |
2725 | if (limit->Opcode() == Op_LoadRange) { |
2726 | closed_range_checks--; |
2727 | } |
2728 | } // End of is IF |
2729 | } |
2730 | if (predicate_proj != cl->skip_strip_mined()->in(LoopNode::EntryControl)) { |
2731 | _igvn.replace_input_of(cl->skip_strip_mined(), LoopNode::EntryControl, predicate_proj); |
2732 | set_idom(cl->skip_strip_mined(), predicate_proj, dom_depth(cl->skip_strip_mined())); |
2733 | } |
2734 | |
2735 | // Update loop limits |
2736 | if (conditional_rc) { |
2737 | pre_limit = (stride_con > 0) ? (Node*)new MinINode(pre_limit, orig_limit) |
2738 | : (Node*)new MaxINode(pre_limit, orig_limit); |
2739 | register_new_node(pre_limit, pre_ctrl); |
2740 | } |
2741 | _igvn.replace_input_of(pre_opaq, 1, pre_limit); |
2742 | |
2743 | // Note:: we are making the main loop limit no longer precise; |
2744 | // need to round up based on stride. |
2745 | cl->set_nonexact_trip_count(); |
2746 | Node *main_cle = cl->loopexit(); |
2747 | Node *main_bol = main_cle->in(1); |
2748 | // Hacking loop bounds; need private copies of exit test |
2749 | if (main_bol->outcnt() > 1) { // BoolNode shared? |
2750 | main_bol = main_bol->clone(); // Clone a private BoolNode |
2751 | register_new_node(main_bol, main_cle->in(0)); |
2752 | _igvn.replace_input_of(main_cle, 1, main_bol); |
2753 | } |
2754 | Node *main_cmp = main_bol->in(1); |
2755 | if (main_cmp->outcnt() > 1) { // CmpNode shared? |
2756 | main_cmp = main_cmp->clone(); // Clone a private CmpNode |
2757 | register_new_node(main_cmp, main_cle->in(0)); |
2758 | _igvn.replace_input_of(main_bol, 1, main_cmp); |
2759 | } |
2760 | // Hack the now-private loop bounds |
2761 | _igvn.replace_input_of(main_cmp, 2, main_limit); |
2762 | // The OpaqueNode is unshared by design |
2763 | assert(opqzm->outcnt() == 1, "cannot hack shared node" ); |
2764 | _igvn.replace_input_of(opqzm, 1, main_limit); |
2765 | |
2766 | return closed_range_checks; |
2767 | } |
2768 | |
2769 | //------------------------------has_range_checks------------------------------- |
2770 | // Check to see if RCE cleaned the current loop of range-checks. |
2771 | void PhaseIdealLoop::has_range_checks(IdealLoopTree *loop) { |
2772 | assert(RangeCheckElimination, "" ); |
2773 | |
2774 | // skip if not a counted loop |
2775 | if (!loop->is_counted()) return; |
2776 | |
2777 | CountedLoopNode *cl = loop->_head->as_CountedLoop(); |
2778 | |
2779 | // skip this loop if it is already checked |
2780 | if (cl->has_been_range_checked()) return; |
2781 | |
2782 | // Now check for existence of range checks |
2783 | for (uint i = 0; i < loop->_body.size(); i++) { |
2784 | Node *iff = loop->_body[i]; |
2785 | int iff_opc = iff->Opcode(); |
2786 | if (iff_opc == Op_If || iff_opc == Op_RangeCheck) { |
2787 | cl->mark_has_range_checks(); |
2788 | break; |
2789 | } |
2790 | } |
2791 | cl->set_has_been_range_checked(); |
2792 | } |
2793 | |
2794 | //-------------------------multi_version_post_loops---------------------------- |
2795 | // Check the range checks that remain, if simple, use the bounds to guard |
2796 | // which version to a post loop we execute, one with range checks or one without |
2797 | bool PhaseIdealLoop::multi_version_post_loops(IdealLoopTree *rce_loop, IdealLoopTree *legacy_loop) { |
2798 | bool multi_version_succeeded = false; |
2799 | assert(RangeCheckElimination, "" ); |
2800 | CountedLoopNode *legacy_cl = legacy_loop->_head->as_CountedLoop(); |
2801 | assert(legacy_cl->is_post_loop(), "" ); |
2802 | |
2803 | // Check for existence of range checks using the unique instance to make a guard with |
2804 | Unique_Node_List worklist; |
2805 | for (uint i = 0; i < legacy_loop->_body.size(); i++) { |
2806 | Node *iff = legacy_loop->_body[i]; |
2807 | int iff_opc = iff->Opcode(); |
2808 | if (iff_opc == Op_If || iff_opc == Op_RangeCheck) { |
2809 | worklist.push(iff); |
2810 | } |
2811 | } |
2812 | |
2813 | // Find RCE'd post loop so that we can stage its guard. |
2814 | if (!is_canonical_loop_entry(legacy_cl)) return multi_version_succeeded; |
2815 | Node* ctrl = legacy_cl->in(LoopNode::EntryControl); |
2816 | Node* iffm = ctrl->in(0); |
2817 | |
2818 | // Now we test that both the post loops are connected |
2819 | Node* post_loop_region = iffm->in(0); |
2820 | if (post_loop_region == NULL) return multi_version_succeeded; |
2821 | if (!post_loop_region->is_Region()) return multi_version_succeeded; |
2822 | Node* covering_region = post_loop_region->in(RegionNode::Control+1); |
2823 | if (covering_region == NULL) return multi_version_succeeded; |
2824 | if (!covering_region->is_Region()) return multi_version_succeeded; |
2825 | Node* p_f = covering_region->in(RegionNode::Control); |
2826 | if (p_f == NULL) return multi_version_succeeded; |
2827 | if (!p_f->is_IfFalse()) return multi_version_succeeded; |
2828 | if (!p_f->in(0)->is_CountedLoopEnd()) return multi_version_succeeded; |
2829 | CountedLoopEndNode* rce_loop_end = p_f->in(0)->as_CountedLoopEnd(); |
2830 | if (rce_loop_end == NULL) return multi_version_succeeded; |
2831 | CountedLoopNode* rce_cl = rce_loop_end->loopnode(); |
2832 | if (rce_cl == NULL || !rce_cl->is_post_loop()) return multi_version_succeeded; |
2833 | CountedLoopNode *known_rce_cl = rce_loop->_head->as_CountedLoop(); |
2834 | if (rce_cl != known_rce_cl) return multi_version_succeeded; |
2835 | |
2836 | // Then we fetch the cover entry test |
2837 | ctrl = rce_cl->in(LoopNode::EntryControl); |
2838 | if (!ctrl->is_IfTrue() && !ctrl->is_IfFalse()) return multi_version_succeeded; |
2839 | |
2840 | #ifndef PRODUCT |
2841 | if (TraceLoopOpts) { |
2842 | tty->print("PostMultiVersion\n" ); |
2843 | rce_loop->dump_head(); |
2844 | legacy_loop->dump_head(); |
2845 | } |
2846 | #endif |
2847 | |
2848 | // Now fetch the limit we want to compare against |
2849 | Node *limit = rce_cl->limit(); |
2850 | bool first_time = true; |
2851 | |
2852 | // If we got this far, we identified the post loop which has been RCE'd and |
2853 | // we have a work list. Now we will try to transform the if guard to cause |
2854 | // the loop pair to be multi version executed with the determination left to runtime |
2855 | // or the optimizer if full information is known about the given arrays at compile time. |
2856 | Node *last_min = NULL; |
2857 | multi_version_succeeded = true; |
2858 | while (worklist.size()) { |
2859 | Node* rc_iffm = worklist.pop(); |
2860 | if (rc_iffm->is_If()) { |
2861 | Node *rc_bolzm = rc_iffm->in(1); |
2862 | if (rc_bolzm->is_Bool()) { |
2863 | Node *rc_cmpzm = rc_bolzm->in(1); |
2864 | if (rc_cmpzm->is_Cmp()) { |
2865 | Node *rc_left = rc_cmpzm->in(2); |
2866 | if (rc_left->Opcode() != Op_LoadRange) { |
2867 | multi_version_succeeded = false; |
2868 | break; |
2869 | } |
2870 | if (first_time) { |
2871 | last_min = rc_left; |
2872 | first_time = false; |
2873 | } else { |
2874 | Node *cur_min = new MinINode(last_min, rc_left); |
2875 | last_min = cur_min; |
2876 | _igvn.register_new_node_with_optimizer(last_min); |
2877 | } |
2878 | } |
2879 | } |
2880 | } |
2881 | } |
2882 | |
2883 | // All we have to do is update the limit of the rce loop |
2884 | // with the min of our expression and the current limit. |
2885 | // We will use this expression to replace the current limit. |
2886 | if (last_min && multi_version_succeeded) { |
2887 | Node *cur_min = new MinINode(last_min, limit); |
2888 | _igvn.register_new_node_with_optimizer(cur_min); |
2889 | Node *cmp_node = rce_loop_end->cmp_node(); |
2890 | _igvn.replace_input_of(cmp_node, 2, cur_min); |
2891 | set_ctrl(cur_min, ctrl); |
2892 | set_loop(cur_min, rce_loop->_parent); |
2893 | |
2894 | legacy_cl->mark_is_multiversioned(); |
2895 | rce_cl->mark_is_multiversioned(); |
2896 | multi_version_succeeded = true; |
2897 | |
2898 | C->set_major_progress(); |
2899 | } |
2900 | |
2901 | return multi_version_succeeded; |
2902 | } |
2903 | |
2904 | //-------------------------poison_rce_post_loop-------------------------------- |
2905 | // Causes the rce'd post loop to be optimized away if multiversioning fails |
2906 | void PhaseIdealLoop::poison_rce_post_loop(IdealLoopTree *rce_loop) { |
2907 | CountedLoopNode *rce_cl = rce_loop->_head->as_CountedLoop(); |
2908 | Node* ctrl = rce_cl->in(LoopNode::EntryControl); |
2909 | if (ctrl->is_IfTrue() || ctrl->is_IfFalse()) { |
2910 | Node* iffm = ctrl->in(0); |
2911 | if (iffm->is_If()) { |
2912 | Node* cur_bool = iffm->in(1); |
2913 | if (cur_bool->is_Bool()) { |
2914 | Node* cur_cmp = cur_bool->in(1); |
2915 | if (cur_cmp->is_Cmp()) { |
2916 | BoolTest::mask new_test = BoolTest::gt; |
2917 | BoolNode *new_bool = new BoolNode(cur_cmp, new_test); |
2918 | _igvn.replace_node(cur_bool, new_bool); |
2919 | _igvn._worklist.push(new_bool); |
2920 | Node* left_op = cur_cmp->in(1); |
2921 | _igvn.replace_input_of(cur_cmp, 2, left_op); |
2922 | C->set_major_progress(); |
2923 | } |
2924 | } |
2925 | } |
2926 | } |
2927 | } |
2928 | |
2929 | //------------------------------DCE_loop_body---------------------------------- |
2930 | // Remove simplistic dead code from loop body |
2931 | void IdealLoopTree::DCE_loop_body() { |
2932 | for (uint i = 0; i < _body.size(); i++) { |
2933 | if (_body.at(i)->outcnt() == 0) { |
2934 | _body.map(i, _body.pop()); |
2935 | i--; // Ensure we revisit the updated index. |
2936 | } |
2937 | } |
2938 | } |
2939 | |
2940 | |
2941 | //------------------------------adjust_loop_exit_prob-------------------------- |
2942 | // Look for loop-exit tests with the 50/50 (or worse) guesses from the parsing stage. |
2943 | // Replace with a 1-in-10 exit guess. |
2944 | void IdealLoopTree::adjust_loop_exit_prob(PhaseIdealLoop *phase) { |
2945 | Node *test = tail(); |
2946 | while (test != _head) { |
2947 | uint top = test->Opcode(); |
2948 | if (top == Op_IfTrue || top == Op_IfFalse) { |
2949 | int test_con = ((ProjNode*)test)->_con; |
2950 | assert(top == (uint)(test_con? Op_IfTrue: Op_IfFalse), "sanity" ); |
2951 | IfNode *iff = test->in(0)->as_If(); |
2952 | if (iff->outcnt() == 2) { // Ignore dead tests |
2953 | Node *bol = iff->in(1); |
2954 | if (bol && bol->req() > 1 && bol->in(1) && |
2955 | ((bol->in(1)->Opcode() == Op_StorePConditional) || |
2956 | (bol->in(1)->Opcode() == Op_StoreIConditional) || |
2957 | (bol->in(1)->Opcode() == Op_StoreLConditional) || |
2958 | (bol->in(1)->Opcode() == Op_CompareAndExchangeB) || |
2959 | (bol->in(1)->Opcode() == Op_CompareAndExchangeS) || |
2960 | (bol->in(1)->Opcode() == Op_CompareAndExchangeI) || |
2961 | (bol->in(1)->Opcode() == Op_CompareAndExchangeL) || |
2962 | (bol->in(1)->Opcode() == Op_CompareAndExchangeP) || |
2963 | (bol->in(1)->Opcode() == Op_CompareAndExchangeN) || |
2964 | (bol->in(1)->Opcode() == Op_WeakCompareAndSwapB) || |
2965 | (bol->in(1)->Opcode() == Op_WeakCompareAndSwapS) || |
2966 | (bol->in(1)->Opcode() == Op_WeakCompareAndSwapI) || |
2967 | (bol->in(1)->Opcode() == Op_WeakCompareAndSwapL) || |
2968 | (bol->in(1)->Opcode() == Op_WeakCompareAndSwapP) || |
2969 | (bol->in(1)->Opcode() == Op_WeakCompareAndSwapN) || |
2970 | (bol->in(1)->Opcode() == Op_CompareAndSwapB) || |
2971 | (bol->in(1)->Opcode() == Op_CompareAndSwapS) || |
2972 | (bol->in(1)->Opcode() == Op_CompareAndSwapI) || |
2973 | (bol->in(1)->Opcode() == Op_CompareAndSwapL) || |
2974 | (bol->in(1)->Opcode() == Op_CompareAndSwapP) || |
2975 | (bol->in(1)->Opcode() == Op_CompareAndSwapN) || |
2976 | (bol->in(1)->Opcode() == Op_ShenandoahCompareAndExchangeP) || |
2977 | (bol->in(1)->Opcode() == Op_ShenandoahCompareAndExchangeN) || |
2978 | (bol->in(1)->Opcode() == Op_ShenandoahWeakCompareAndSwapP) || |
2979 | (bol->in(1)->Opcode() == Op_ShenandoahWeakCompareAndSwapN) || |
2980 | (bol->in(1)->Opcode() == Op_ShenandoahCompareAndSwapP) || |
2981 | (bol->in(1)->Opcode() == Op_ShenandoahCompareAndSwapN))) |
2982 | return; // Allocation loops RARELY take backedge |
2983 | // Find the OTHER exit path from the IF |
2984 | Node* ex = iff->proj_out(1-test_con); |
2985 | float p = iff->_prob; |
2986 | if (!phase->is_member(this, ex) && iff->_fcnt == COUNT_UNKNOWN) { |
2987 | if (top == Op_IfTrue) { |
2988 | if (p < (PROB_FAIR + PROB_UNLIKELY_MAG(3))) { |
2989 | iff->_prob = PROB_STATIC_FREQUENT; |
2990 | } |
2991 | } else { |
2992 | if (p > (PROB_FAIR - PROB_UNLIKELY_MAG(3))) { |
2993 | iff->_prob = PROB_STATIC_INFREQUENT; |
2994 | } |
2995 | } |
2996 | } |
2997 | } |
2998 | } |
2999 | test = phase->idom(test); |
3000 | } |
3001 | } |
3002 | |
3003 | #ifdef ASSERT |
3004 | static CountedLoopNode* locate_pre_from_main(CountedLoopNode *cl) { |
3005 | Node *ctrl = cl->skip_predicates(); |
3006 | assert(ctrl->Opcode() == Op_IfTrue || ctrl->Opcode() == Op_IfFalse, "" ); |
3007 | Node *iffm = ctrl->in(0); |
3008 | assert(iffm->Opcode() == Op_If, "" ); |
3009 | Node *p_f = iffm->in(0); |
3010 | assert(p_f->Opcode() == Op_IfFalse, "" ); |
3011 | CountedLoopEndNode *pre_end = p_f->in(0)->as_CountedLoopEnd(); |
3012 | assert(pre_end->loopnode()->is_pre_loop(), "" ); |
3013 | return pre_end->loopnode(); |
3014 | } |
3015 | #endif |
3016 | |
3017 | // Remove the main and post loops and make the pre loop execute all |
3018 | // iterations. Useful when the pre loop is found empty. |
3019 | void IdealLoopTree::remove_main_post_loops(CountedLoopNode *cl, PhaseIdealLoop *phase) { |
3020 | CountedLoopEndNode* pre_end = cl->loopexit(); |
3021 | Node* pre_cmp = pre_end->cmp_node(); |
3022 | if (pre_cmp->in(2)->Opcode() != Op_Opaque1) { |
3023 | // Only safe to remove the main loop if the compiler optimized it |
3024 | // out based on an unknown number of iterations |
3025 | return; |
3026 | } |
3027 | |
3028 | // Can we find the main loop? |
3029 | if (_next == NULL) { |
3030 | return; |
3031 | } |
3032 | |
3033 | Node* next_head = _next->_head; |
3034 | if (!next_head->is_CountedLoop()) { |
3035 | return; |
3036 | } |
3037 | |
3038 | CountedLoopNode* main_head = next_head->as_CountedLoop(); |
3039 | if (!main_head->is_main_loop()) { |
3040 | return; |
3041 | } |
3042 | |
3043 | assert(locate_pre_from_main(main_head) == cl, "bad main loop" ); |
3044 | Node* main_iff = main_head->skip_predicates()->in(0); |
3045 | |
3046 | // Remove the Opaque1Node of the pre loop and make it execute all iterations |
3047 | phase->_igvn.replace_input_of(pre_cmp, 2, pre_cmp->in(2)->in(2)); |
3048 | // Remove the Opaque1Node of the main loop so it can be optimized out |
3049 | Node* main_cmp = main_iff->in(1)->in(1); |
3050 | assert(main_cmp->in(2)->Opcode() == Op_Opaque1, "main loop has no opaque node?" ); |
3051 | phase->_igvn.replace_input_of(main_cmp, 2, main_cmp->in(2)->in(1)); |
3052 | } |
3053 | |
3054 | //------------------------------do_remove_empty_loop--------------------------- |
3055 | // We always attempt remove empty loops. The approach is to replace the trip |
3056 | // counter with the value it will have on the last iteration. This will break |
3057 | // the loop. |
3058 | bool IdealLoopTree::do_remove_empty_loop(PhaseIdealLoop *phase) { |
3059 | // Minimum size must be empty loop |
3060 | if (_body.size() > EMPTY_LOOP_SIZE) { |
3061 | return false; |
3062 | } |
3063 | if (!_head->is_CountedLoop()) { |
3064 | return false; // Dead loop |
3065 | } |
3066 | CountedLoopNode *cl = _head->as_CountedLoop(); |
3067 | if (!cl->is_valid_counted_loop()) { |
3068 | return false; // Malformed loop |
3069 | } |
3070 | if (!phase->is_member(this, phase->get_ctrl(cl->loopexit()->in(CountedLoopEndNode::TestValue)))) { |
3071 | return false; // Infinite loop |
3072 | } |
3073 | if (cl->is_pre_loop()) { |
3074 | // If the loop we are removing is a pre-loop then the main and post loop |
3075 | // can be removed as well. |
3076 | remove_main_post_loops(cl, phase); |
3077 | } |
3078 | |
3079 | #ifdef ASSERT |
3080 | // Ensure only one phi which is the iv. |
3081 | Node* iv = NULL; |
3082 | for (DUIterator_Fast imax, i = cl->fast_outs(imax); i < imax; i++) { |
3083 | Node* n = cl->fast_out(i); |
3084 | if (n->Opcode() == Op_Phi) { |
3085 | assert(iv == NULL, "Too many phis" ); |
3086 | iv = n; |
3087 | } |
3088 | } |
3089 | assert(iv == cl->phi(), "Wrong phi" ); |
3090 | #endif |
3091 | |
3092 | // main and post loops have explicitly created zero trip guard |
3093 | bool needs_guard = !cl->is_main_loop() && !cl->is_post_loop(); |
3094 | if (needs_guard) { |
3095 | // Skip guard if values not overlap. |
3096 | const TypeInt* init_t = phase->_igvn.type(cl->init_trip())->is_int(); |
3097 | const TypeInt* limit_t = phase->_igvn.type(cl->limit())->is_int(); |
3098 | int stride_con = cl->stride_con(); |
3099 | if (stride_con > 0) { |
3100 | needs_guard = (init_t->_hi >= limit_t->_lo); |
3101 | } else { |
3102 | needs_guard = (init_t->_lo <= limit_t->_hi); |
3103 | } |
3104 | } |
3105 | if (needs_guard) { |
3106 | // Check for an obvious zero trip guard. |
3107 | Node* inctrl = PhaseIdealLoop::skip_all_loop_predicates(cl->skip_predicates()); |
3108 | if (inctrl->Opcode() == Op_IfTrue || inctrl->Opcode() == Op_IfFalse) { |
3109 | bool maybe_swapped = (inctrl->Opcode() == Op_IfFalse); |
3110 | // The test should look like just the backedge of a CountedLoop |
3111 | Node* iff = inctrl->in(0); |
3112 | if (iff->is_If()) { |
3113 | Node* bol = iff->in(1); |
3114 | if (bol->is_Bool()) { |
3115 | BoolTest test = bol->as_Bool()->_test; |
3116 | if (maybe_swapped) { |
3117 | test._test = test.commute(); |
3118 | test._test = test.negate(); |
3119 | } |
3120 | if (test._test == cl->loopexit()->test_trip()) { |
3121 | Node* cmp = bol->in(1); |
3122 | int init_idx = maybe_swapped ? 2 : 1; |
3123 | int limit_idx = maybe_swapped ? 1 : 2; |
3124 | if (cmp->is_Cmp() && cmp->in(init_idx) == cl->init_trip() && cmp->in(limit_idx) == cl->limit()) { |
3125 | needs_guard = false; |
3126 | } |
3127 | } |
3128 | } |
3129 | } |
3130 | } |
3131 | } |
3132 | |
3133 | #ifndef PRODUCT |
3134 | if (PrintOpto) { |
3135 | tty->print("Removing empty loop with%s zero trip guard" , needs_guard ? "out" : "" ); |
3136 | this->dump_head(); |
3137 | } else if (TraceLoopOpts) { |
3138 | tty->print("Empty with%s zero trip guard " , needs_guard ? "out" : "" ); |
3139 | this->dump_head(); |
3140 | } |
3141 | #endif |
3142 | |
3143 | if (needs_guard) { |
3144 | // Peel the loop to ensure there's a zero trip guard |
3145 | Node_List old_new; |
3146 | phase->do_peeling(this, old_new); |
3147 | } |
3148 | |
3149 | // Replace the phi at loop head with the final value of the last |
3150 | // iteration. Then the CountedLoopEnd will collapse (backedge never |
3151 | // taken) and all loop-invariant uses of the exit values will be correct. |
3152 | Node *phi = cl->phi(); |
3153 | Node *exact_limit = phase->exact_limit(this); |
3154 | if (exact_limit != cl->limit()) { |
3155 | // We also need to replace the original limit to collapse loop exit. |
3156 | Node* cmp = cl->loopexit()->cmp_node(); |
3157 | assert(cl->limit() == cmp->in(2), "sanity" ); |
3158 | phase->_igvn._worklist.push(cmp->in(2)); // put limit on worklist |
3159 | phase->_igvn.replace_input_of(cmp, 2, exact_limit); // put cmp on worklist |
3160 | } |
3161 | // Note: the final value after increment should not overflow since |
3162 | // counted loop has limit check predicate. |
3163 | Node *final = new SubINode(exact_limit, cl->stride()); |
3164 | phase->register_new_node(final,cl->in(LoopNode::EntryControl)); |
3165 | phase->_igvn.replace_node(phi,final); |
3166 | phase->C->set_major_progress(); |
3167 | return true; |
3168 | } |
3169 | |
3170 | //------------------------------do_one_iteration_loop-------------------------- |
3171 | // Convert one iteration loop into normal code. |
3172 | bool IdealLoopTree::do_one_iteration_loop(PhaseIdealLoop *phase) { |
3173 | if (!_head->as_Loop()->is_valid_counted_loop()) { |
3174 | return false; // Only for counted loop |
3175 | } |
3176 | CountedLoopNode *cl = _head->as_CountedLoop(); |
3177 | if (!cl->has_exact_trip_count() || cl->trip_count() != 1) { |
3178 | return false; |
3179 | } |
3180 | |
3181 | #ifndef PRODUCT |
3182 | if (TraceLoopOpts) { |
3183 | tty->print("OneIteration " ); |
3184 | this->dump_head(); |
3185 | } |
3186 | #endif |
3187 | |
3188 | Node *init_n = cl->init_trip(); |
3189 | #ifdef ASSERT |
3190 | // Loop boundaries should be constant since trip count is exact. |
3191 | assert(init_n->get_int() + cl->stride_con() >= cl->limit()->get_int(), "should be one iteration" ); |
3192 | #endif |
3193 | // Replace the phi at loop head with the value of the init_trip. |
3194 | // Then the CountedLoopEnd will collapse (backedge will not be taken) |
3195 | // and all loop-invariant uses of the exit values will be correct. |
3196 | phase->_igvn.replace_node(cl->phi(), cl->init_trip()); |
3197 | phase->C->set_major_progress(); |
3198 | return true; |
3199 | } |
3200 | |
3201 | //============================================================================= |
3202 | //------------------------------iteration_split_impl--------------------------- |
3203 | bool IdealLoopTree::iteration_split_impl(PhaseIdealLoop *phase, Node_List &old_new) { |
3204 | // Compute loop trip count if possible. |
3205 | compute_trip_count(phase); |
3206 | |
3207 | // Convert one iteration loop into normal code. |
3208 | if (do_one_iteration_loop(phase)) { |
3209 | return true; |
3210 | } |
3211 | // Check and remove empty loops (spam micro-benchmarks) |
3212 | if (do_remove_empty_loop(phase)) { |
3213 | return true; // Here we removed an empty loop |
3214 | } |
3215 | |
3216 | AutoNodeBudget node_budget(phase); |
3217 | |
3218 | // Non-counted loops may be peeled; exactly 1 iteration is peeled. |
3219 | // This removes loop-invariant tests (usually null checks). |
3220 | if (!_head->is_CountedLoop()) { // Non-counted loop |
3221 | if (PartialPeelLoop && phase->partial_peel(this, old_new)) { |
3222 | // Partial peel succeeded so terminate this round of loop opts |
3223 | return false; |
3224 | } |
3225 | if (policy_peeling(phase)) { // Should we peel? |
3226 | if (PrintOpto) { tty->print_cr("should_peel" ); } |
3227 | phase->do_peeling(this, old_new); |
3228 | } else if (policy_unswitching(phase)) { |
3229 | phase->do_unswitching(this, old_new); |
3230 | } |
3231 | return true; |
3232 | } |
3233 | CountedLoopNode *cl = _head->as_CountedLoop(); |
3234 | |
3235 | if (!cl->is_valid_counted_loop()) return true; // Ignore various kinds of broken loops |
3236 | |
3237 | // Do nothing special to pre- and post- loops |
3238 | if (cl->is_pre_loop() || cl->is_post_loop()) return true; |
3239 | |
3240 | // Compute loop trip count from profile data |
3241 | compute_profile_trip_cnt(phase); |
3242 | |
3243 | // Before attempting fancy unrolling, RCE or alignment, see if we want |
3244 | // to completely unroll this loop or do loop unswitching. |
3245 | if (cl->is_normal_loop()) { |
3246 | if (policy_unswitching(phase)) { |
3247 | phase->do_unswitching(this, old_new); |
3248 | return true; |
3249 | } |
3250 | if (policy_maximally_unroll(phase)) { |
3251 | // Here we did some unrolling and peeling. Eventually we will |
3252 | // completely unroll this loop and it will no longer be a loop. |
3253 | phase->do_maximally_unroll(this, old_new); |
3254 | return true; |
3255 | } |
3256 | } |
3257 | |
3258 | uint est_peeling = estimate_peeling(phase); |
3259 | bool should_peel = 0 < est_peeling; |
3260 | |
3261 | // Counted loops may be peeled, may need some iterations run up |
3262 | // front for RCE, and may want to align loop refs to a cache |
3263 | // line. Thus we clone a full loop up front whose trip count is |
3264 | // at least 1 (if peeling), but may be several more. |
3265 | |
3266 | // The main loop will start cache-line aligned with at least 1 |
3267 | // iteration of the unrolled body (zero-trip test required) and |
3268 | // will have some range checks removed. |
3269 | |
3270 | // A post-loop will finish any odd iterations (leftover after |
3271 | // unrolling), plus any needed for RCE purposes. |
3272 | |
3273 | bool should_unroll = policy_unroll(phase); |
3274 | bool should_rce = policy_range_check(phase); |
3275 | // TODO: Remove align -- not used. |
3276 | bool should_align = policy_align(phase); |
3277 | |
3278 | // If not RCE'ing (iteration splitting) or Aligning, then we do not need a |
3279 | // pre-loop. We may still need to peel an initial iteration but we will not |
3280 | // be needing an unknown number of pre-iterations. |
3281 | // |
3282 | // Basically, if may_rce_align reports FALSE first time through, we will not |
3283 | // be able to later do RCE or Aligning on this loop. |
3284 | bool may_rce_align = !policy_peel_only(phase) || should_rce || should_align; |
3285 | |
3286 | // If we have any of these conditions (RCE, alignment, unrolling) met, then |
3287 | // we switch to the pre-/main-/post-loop model. This model also covers |
3288 | // peeling. |
3289 | if (should_rce || should_align || should_unroll) { |
3290 | if (cl->is_normal_loop()) { // Convert to 'pre/main/post' loops |
3291 | uint estimate = est_loop_clone_sz(3); |
3292 | if (!phase->may_require_nodes(estimate)) { |
3293 | return false; |
3294 | } |
3295 | phase->insert_pre_post_loops(this, old_new, !may_rce_align); |
3296 | } |
3297 | // Adjust the pre- and main-loop limits to let the pre and post loops run |
3298 | // with full checks, but the main-loop with no checks. Remove said checks |
3299 | // from the main body. |
3300 | if (should_rce) { |
3301 | if (phase->do_range_check(this, old_new) != 0) { |
3302 | cl->mark_has_range_checks(); |
3303 | } |
3304 | } else if (PostLoopMultiversioning) { |
3305 | phase->has_range_checks(this); |
3306 | } |
3307 | |
3308 | if (should_unroll && !should_peel && PostLoopMultiversioning) { |
3309 | // Try to setup multiversioning on main loops before they are unrolled |
3310 | if (cl->is_main_loop() && (cl->unrolled_count() == 1)) { |
3311 | phase->insert_scalar_rced_post_loop(this, old_new); |
3312 | } |
3313 | } |
3314 | |
3315 | // Double loop body for unrolling. Adjust the minimum-trip test (will do |
3316 | // twice as many iterations as before) and the main body limit (only do |
3317 | // an even number of trips). If we are peeling, we might enable some RCE |
3318 | // and we'd rather unroll the post-RCE'd loop SO... do not unroll if |
3319 | // peeling. |
3320 | if (should_unroll && !should_peel) { |
3321 | if (SuperWordLoopUnrollAnalysis) { |
3322 | phase->insert_vector_post_loop(this, old_new); |
3323 | } |
3324 | phase->do_unroll(this, old_new, true); |
3325 | } |
3326 | |
3327 | // Adjust the pre-loop limits to align the main body iterations. |
3328 | if (should_align) { |
3329 | Unimplemented(); |
3330 | } |
3331 | } else { // Else we have an unchanged counted loop |
3332 | if (should_peel) { // Might want to peel but do nothing else |
3333 | if (phase->may_require_nodes(est_peeling)) { |
3334 | phase->do_peeling(this, old_new); |
3335 | } |
3336 | } |
3337 | } |
3338 | return true; |
3339 | } |
3340 | |
3341 | |
3342 | //============================================================================= |
3343 | //------------------------------iteration_split-------------------------------- |
3344 | bool IdealLoopTree::iteration_split(PhaseIdealLoop* phase, Node_List &old_new) { |
3345 | // Recursively iteration split nested loops |
3346 | if (_child && !_child->iteration_split(phase, old_new)) { |
3347 | return false; |
3348 | } |
3349 | |
3350 | // Clean out prior deadwood |
3351 | DCE_loop_body(); |
3352 | |
3353 | // Look for loop-exit tests with my 50/50 guesses from the Parsing stage. |
3354 | // Replace with a 1-in-10 exit guess. |
3355 | if (!is_root() && is_loop()) { |
3356 | adjust_loop_exit_prob(phase); |
3357 | } |
3358 | |
3359 | // Unrolling, RCE and peeling efforts, iff innermost loop. |
3360 | if (_allow_optimizations && is_innermost()) { |
3361 | if (!_has_call) { |
3362 | if (!iteration_split_impl(phase, old_new)) { |
3363 | return false; |
3364 | } |
3365 | } else { |
3366 | AutoNodeBudget node_budget(phase); |
3367 | if (policy_unswitching(phase)) { |
3368 | phase->do_unswitching(this, old_new); |
3369 | } |
3370 | } |
3371 | } |
3372 | |
3373 | // Minor offset re-organization to remove loop-fallout uses of |
3374 | // trip counter when there was no major reshaping. |
3375 | phase->reorg_offsets(this); |
3376 | |
3377 | if (_next && !_next->iteration_split(phase, old_new)) { |
3378 | return false; |
3379 | } |
3380 | return true; |
3381 | } |
3382 | |
3383 | |
3384 | //============================================================================= |
3385 | // Process all the loops in the loop tree and replace any fill |
3386 | // patterns with an intrinsic version. |
3387 | bool PhaseIdealLoop::do_intrinsify_fill() { |
3388 | bool changed = false; |
3389 | for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) { |
3390 | IdealLoopTree* lpt = iter.current(); |
3391 | changed |= intrinsify_fill(lpt); |
3392 | } |
3393 | return changed; |
3394 | } |
3395 | |
3396 | |
3397 | // Examine an inner loop looking for a a single store of an invariant |
3398 | // value in a unit stride loop, |
3399 | bool PhaseIdealLoop::match_fill_loop(IdealLoopTree* lpt, Node*& store, Node*& store_value, |
3400 | Node*& shift, Node*& con) { |
3401 | const char* msg = NULL; |
3402 | Node* msg_node = NULL; |
3403 | |
3404 | store_value = NULL; |
3405 | con = NULL; |
3406 | shift = NULL; |
3407 | |
3408 | // Process the loop looking for stores. If there are multiple |
3409 | // stores or extra control flow give at this point. |
3410 | CountedLoopNode* head = lpt->_head->as_CountedLoop(); |
3411 | for (uint i = 0; msg == NULL && i < lpt->_body.size(); i++) { |
3412 | Node* n = lpt->_body.at(i); |
3413 | if (n->outcnt() == 0) continue; // Ignore dead |
3414 | if (n->is_Store()) { |
3415 | if (store != NULL) { |
3416 | msg = "multiple stores" ; |
3417 | break; |
3418 | } |
3419 | int opc = n->Opcode(); |
3420 | if (opc == Op_StoreP || opc == Op_StoreN || opc == Op_StoreNKlass || opc == Op_StoreCM) { |
3421 | msg = "oop fills not handled" ; |
3422 | break; |
3423 | } |
3424 | Node* value = n->in(MemNode::ValueIn); |
3425 | if (!lpt->is_invariant(value)) { |
3426 | msg = "variant store value" ; |
3427 | } else if (!_igvn.type(n->in(MemNode::Address))->isa_aryptr()) { |
3428 | msg = "not array address" ; |
3429 | } |
3430 | store = n; |
3431 | store_value = value; |
3432 | } else if (n->is_If() && n != head->loopexit_or_null()) { |
3433 | msg = "extra control flow" ; |
3434 | msg_node = n; |
3435 | } |
3436 | } |
3437 | |
3438 | if (store == NULL) { |
3439 | // No store in loop |
3440 | return false; |
3441 | } |
3442 | |
3443 | if (msg == NULL && head->stride_con() != 1) { |
3444 | // could handle negative strides too |
3445 | if (head->stride_con() < 0) { |
3446 | msg = "negative stride" ; |
3447 | } else { |
3448 | msg = "non-unit stride" ; |
3449 | } |
3450 | } |
3451 | |
3452 | if (msg == NULL && !store->in(MemNode::Address)->is_AddP()) { |
3453 | msg = "can't handle store address" ; |
3454 | msg_node = store->in(MemNode::Address); |
3455 | } |
3456 | |
3457 | if (msg == NULL && |
3458 | (!store->in(MemNode::Memory)->is_Phi() || |
3459 | store->in(MemNode::Memory)->in(LoopNode::LoopBackControl) != store)) { |
3460 | msg = "store memory isn't proper phi" ; |
3461 | msg_node = store->in(MemNode::Memory); |
3462 | } |
3463 | |
3464 | // Make sure there is an appropriate fill routine |
3465 | BasicType t = store->as_Mem()->memory_type(); |
3466 | const char* fill_name; |
3467 | if (msg == NULL && |
3468 | StubRoutines::select_fill_function(t, false, fill_name) == NULL) { |
3469 | msg = "unsupported store" ; |
3470 | msg_node = store; |
3471 | } |
3472 | |
3473 | if (msg != NULL) { |
3474 | #ifndef PRODUCT |
3475 | if (TraceOptimizeFill) { |
3476 | tty->print_cr("not fill intrinsic candidate: %s" , msg); |
3477 | if (msg_node != NULL) msg_node->dump(); |
3478 | } |
3479 | #endif |
3480 | return false; |
3481 | } |
3482 | |
3483 | // Make sure the address expression can be handled. It should be |
3484 | // head->phi * elsize + con. head->phi might have a ConvI2L(CastII()). |
3485 | Node* elements[4]; |
3486 | Node* cast = NULL; |
3487 | Node* conv = NULL; |
3488 | bool found_index = false; |
3489 | int count = store->in(MemNode::Address)->as_AddP()->unpack_offsets(elements, ARRAY_SIZE(elements)); |
3490 | for (int e = 0; e < count; e++) { |
3491 | Node* n = elements[e]; |
3492 | if (n->is_Con() && con == NULL) { |
3493 | con = n; |
3494 | } else if (n->Opcode() == Op_LShiftX && shift == NULL) { |
3495 | Node* value = n->in(1); |
3496 | #ifdef _LP64 |
3497 | if (value->Opcode() == Op_ConvI2L) { |
3498 | conv = value; |
3499 | value = value->in(1); |
3500 | } |
3501 | if (value->Opcode() == Op_CastII && |
3502 | value->as_CastII()->has_range_check()) { |
3503 | // Skip range check dependent CastII nodes |
3504 | cast = value; |
3505 | value = value->in(1); |
3506 | } |
3507 | #endif |
3508 | if (value != head->phi()) { |
3509 | msg = "unhandled shift in address" ; |
3510 | } else { |
3511 | if (type2aelembytes(store->as_Mem()->memory_type(), true) != (1 << n->in(2)->get_int())) { |
3512 | msg = "scale doesn't match" ; |
3513 | } else { |
3514 | found_index = true; |
3515 | shift = n; |
3516 | } |
3517 | } |
3518 | } else if (n->Opcode() == Op_ConvI2L && conv == NULL) { |
3519 | conv = n; |
3520 | n = n->in(1); |
3521 | if (n->Opcode() == Op_CastII && |
3522 | n->as_CastII()->has_range_check()) { |
3523 | // Skip range check dependent CastII nodes |
3524 | cast = n; |
3525 | n = n->in(1); |
3526 | } |
3527 | if (n == head->phi()) { |
3528 | found_index = true; |
3529 | } else { |
3530 | msg = "unhandled input to ConvI2L" ; |
3531 | } |
3532 | } else if (n == head->phi()) { |
3533 | // no shift, check below for allowed cases |
3534 | found_index = true; |
3535 | } else { |
3536 | msg = "unhandled node in address" ; |
3537 | msg_node = n; |
3538 | } |
3539 | } |
3540 | |
3541 | if (count == -1) { |
3542 | msg = "malformed address expression" ; |
3543 | msg_node = store; |
3544 | } |
3545 | |
3546 | if (!found_index) { |
3547 | msg = "missing use of index" ; |
3548 | } |
3549 | |
3550 | // byte sized items won't have a shift |
3551 | if (msg == NULL && shift == NULL && t != T_BYTE && t != T_BOOLEAN) { |
3552 | msg = "can't find shift" ; |
3553 | msg_node = store; |
3554 | } |
3555 | |
3556 | if (msg != NULL) { |
3557 | #ifndef PRODUCT |
3558 | if (TraceOptimizeFill) { |
3559 | tty->print_cr("not fill intrinsic: %s" , msg); |
3560 | if (msg_node != NULL) msg_node->dump(); |
3561 | } |
3562 | #endif |
3563 | return false; |
3564 | } |
3565 | |
3566 | // No make sure all the other nodes in the loop can be handled |
3567 | VectorSet ok(Thread::current()->resource_area()); |
3568 | |
3569 | // store related values are ok |
3570 | ok.set(store->_idx); |
3571 | ok.set(store->in(MemNode::Memory)->_idx); |
3572 | |
3573 | CountedLoopEndNode* loop_exit = head->loopexit(); |
3574 | |
3575 | // Loop structure is ok |
3576 | ok.set(head->_idx); |
3577 | ok.set(loop_exit->_idx); |
3578 | ok.set(head->phi()->_idx); |
3579 | ok.set(head->incr()->_idx); |
3580 | ok.set(loop_exit->cmp_node()->_idx); |
3581 | ok.set(loop_exit->in(1)->_idx); |
3582 | |
3583 | // Address elements are ok |
3584 | if (con) ok.set(con->_idx); |
3585 | if (shift) ok.set(shift->_idx); |
3586 | if (cast) ok.set(cast->_idx); |
3587 | if (conv) ok.set(conv->_idx); |
3588 | |
3589 | for (uint i = 0; msg == NULL && i < lpt->_body.size(); i++) { |
3590 | Node* n = lpt->_body.at(i); |
3591 | if (n->outcnt() == 0) continue; // Ignore dead |
3592 | if (ok.test(n->_idx)) continue; |
3593 | // Backedge projection is ok |
3594 | if (n->is_IfTrue() && n->in(0) == loop_exit) continue; |
3595 | if (!n->is_AddP()) { |
3596 | msg = "unhandled node" ; |
3597 | msg_node = n; |
3598 | break; |
3599 | } |
3600 | } |
3601 | |
3602 | // Make sure no unexpected values are used outside the loop |
3603 | for (uint i = 0; msg == NULL && i < lpt->_body.size(); i++) { |
3604 | Node* n = lpt->_body.at(i); |
3605 | // These values can be replaced with other nodes if they are used |
3606 | // outside the loop. |
3607 | if (n == store || n == loop_exit || n == head->incr() || n == store->in(MemNode::Memory)) continue; |
3608 | for (SimpleDUIterator iter(n); iter.has_next(); iter.next()) { |
3609 | Node* use = iter.get(); |
3610 | if (!lpt->_body.contains(use)) { |
3611 | msg = "node is used outside loop" ; |
3612 | // lpt->_body.dump(); |
3613 | msg_node = n; |
3614 | break; |
3615 | } |
3616 | } |
3617 | } |
3618 | |
3619 | #ifdef ASSERT |
3620 | if (TraceOptimizeFill) { |
3621 | if (msg != NULL) { |
3622 | tty->print_cr("no fill intrinsic: %s" , msg); |
3623 | if (msg_node != NULL) msg_node->dump(); |
3624 | } else { |
3625 | tty->print_cr("fill intrinsic for:" ); |
3626 | } |
3627 | store->dump(); |
3628 | if (Verbose) { |
3629 | lpt->_body.dump(); |
3630 | } |
3631 | } |
3632 | #endif |
3633 | |
3634 | return msg == NULL; |
3635 | } |
3636 | |
3637 | |
3638 | |
3639 | bool PhaseIdealLoop::intrinsify_fill(IdealLoopTree* lpt) { |
3640 | // Only for counted inner loops |
3641 | if (!lpt->is_counted() || !lpt->is_innermost()) { |
3642 | return false; |
3643 | } |
3644 | |
3645 | // Must have constant stride |
3646 | CountedLoopNode* head = lpt->_head->as_CountedLoop(); |
3647 | if (!head->is_valid_counted_loop() || !head->is_normal_loop()) { |
3648 | return false; |
3649 | } |
3650 | |
3651 | head->verify_strip_mined(1); |
3652 | |
3653 | // Check that the body only contains a store of a loop invariant |
3654 | // value that is indexed by the loop phi. |
3655 | Node* store = NULL; |
3656 | Node* store_value = NULL; |
3657 | Node* shift = NULL; |
3658 | Node* offset = NULL; |
3659 | if (!match_fill_loop(lpt, store, store_value, shift, offset)) { |
3660 | return false; |
3661 | } |
3662 | |
3663 | Node* exit = head->loopexit()->proj_out_or_null(0); |
3664 | if (exit == NULL) { |
3665 | return false; |
3666 | } |
3667 | |
3668 | #ifndef PRODUCT |
3669 | if (TraceLoopOpts) { |
3670 | tty->print("ArrayFill " ); |
3671 | lpt->dump_head(); |
3672 | } |
3673 | #endif |
3674 | |
3675 | // Now replace the whole loop body by a call to a fill routine that |
3676 | // covers the same region as the loop. |
3677 | Node* base = store->in(MemNode::Address)->as_AddP()->in(AddPNode::Base); |
3678 | |
3679 | // Build an expression for the beginning of the copy region |
3680 | Node* index = head->init_trip(); |
3681 | #ifdef _LP64 |
3682 | index = new ConvI2LNode(index); |
3683 | _igvn.register_new_node_with_optimizer(index); |
3684 | #endif |
3685 | if (shift != NULL) { |
3686 | // byte arrays don't require a shift but others do. |
3687 | index = new LShiftXNode(index, shift->in(2)); |
3688 | _igvn.register_new_node_with_optimizer(index); |
3689 | } |
3690 | index = new AddPNode(base, base, index); |
3691 | _igvn.register_new_node_with_optimizer(index); |
3692 | Node* from = new AddPNode(base, index, offset); |
3693 | _igvn.register_new_node_with_optimizer(from); |
3694 | // Compute the number of elements to copy |
3695 | Node* len = new SubINode(head->limit(), head->init_trip()); |
3696 | _igvn.register_new_node_with_optimizer(len); |
3697 | |
3698 | BasicType t = store->as_Mem()->memory_type(); |
3699 | bool aligned = false; |
3700 | if (offset != NULL && head->init_trip()->is_Con()) { |
3701 | int element_size = type2aelembytes(t); |
3702 | aligned = (offset->find_intptr_t_type()->get_con() + head->init_trip()->get_int() * element_size) % HeapWordSize == 0; |
3703 | } |
3704 | |
3705 | // Build a call to the fill routine |
3706 | const char* fill_name; |
3707 | address fill = StubRoutines::select_fill_function(t, aligned, fill_name); |
3708 | assert(fill != NULL, "what?" ); |
3709 | |
3710 | // Convert float/double to int/long for fill routines |
3711 | if (t == T_FLOAT) { |
3712 | store_value = new MoveF2INode(store_value); |
3713 | _igvn.register_new_node_with_optimizer(store_value); |
3714 | } else if (t == T_DOUBLE) { |
3715 | store_value = new MoveD2LNode(store_value); |
3716 | _igvn.register_new_node_with_optimizer(store_value); |
3717 | } |
3718 | |
3719 | Node* mem_phi = store->in(MemNode::Memory); |
3720 | Node* result_ctrl; |
3721 | Node* result_mem; |
3722 | const TypeFunc* call_type = OptoRuntime::array_fill_Type(); |
3723 | CallLeafNode *call = new CallLeafNoFPNode(call_type, fill, |
3724 | fill_name, TypeAryPtr::get_array_body_type(t)); |
3725 | uint cnt = 0; |
3726 | call->init_req(TypeFunc::Parms + cnt++, from); |
3727 | call->init_req(TypeFunc::Parms + cnt++, store_value); |
3728 | #ifdef _LP64 |
3729 | len = new ConvI2LNode(len); |
3730 | _igvn.register_new_node_with_optimizer(len); |
3731 | #endif |
3732 | call->init_req(TypeFunc::Parms + cnt++, len); |
3733 | #ifdef _LP64 |
3734 | call->init_req(TypeFunc::Parms + cnt++, C->top()); |
3735 | #endif |
3736 | call->init_req(TypeFunc::Control, head->init_control()); |
3737 | call->init_req(TypeFunc::I_O, C->top()); // Does no I/O. |
3738 | call->init_req(TypeFunc::Memory, mem_phi->in(LoopNode::EntryControl)); |
3739 | call->init_req(TypeFunc::ReturnAdr, C->start()->proj_out_or_null(TypeFunc::ReturnAdr)); |
3740 | call->init_req(TypeFunc::FramePtr, C->start()->proj_out_or_null(TypeFunc::FramePtr)); |
3741 | _igvn.register_new_node_with_optimizer(call); |
3742 | result_ctrl = new ProjNode(call,TypeFunc::Control); |
3743 | _igvn.register_new_node_with_optimizer(result_ctrl); |
3744 | result_mem = new ProjNode(call,TypeFunc::Memory); |
3745 | _igvn.register_new_node_with_optimizer(result_mem); |
3746 | |
3747 | /* Disable following optimization until proper fix (add missing checks). |
3748 | |
3749 | // If this fill is tightly coupled to an allocation and overwrites |
3750 | // the whole body, allow it to take over the zeroing. |
3751 | AllocateNode* alloc = AllocateNode::Ideal_allocation(base, this); |
3752 | if (alloc != NULL && alloc->is_AllocateArray()) { |
3753 | Node* length = alloc->as_AllocateArray()->Ideal_length(); |
3754 | if (head->limit() == length && |
3755 | head->init_trip() == _igvn.intcon(0)) { |
3756 | if (TraceOptimizeFill) { |
3757 | tty->print_cr("Eliminated zeroing in allocation"); |
3758 | } |
3759 | alloc->maybe_set_complete(&_igvn); |
3760 | } else { |
3761 | #ifdef ASSERT |
3762 | if (TraceOptimizeFill) { |
3763 | tty->print_cr("filling array but bounds don't match"); |
3764 | alloc->dump(); |
3765 | head->init_trip()->dump(); |
3766 | head->limit()->dump(); |
3767 | length->dump(); |
3768 | } |
3769 | #endif |
3770 | } |
3771 | } |
3772 | */ |
3773 | |
3774 | if (head->is_strip_mined()) { |
3775 | // Inner strip mined loop goes away so get rid of outer strip |
3776 | // mined loop |
3777 | Node* outer_sfpt = head->outer_safepoint(); |
3778 | Node* in = outer_sfpt->in(0); |
3779 | Node* outer_out = head->outer_loop_exit(); |
3780 | lazy_replace(outer_out, in); |
3781 | _igvn.replace_input_of(outer_sfpt, 0, C->top()); |
3782 | } |
3783 | |
3784 | // Redirect the old control and memory edges that are outside the loop. |
3785 | // Sometimes the memory phi of the head is used as the outgoing |
3786 | // state of the loop. It's safe in this case to replace it with the |
3787 | // result_mem. |
3788 | _igvn.replace_node(store->in(MemNode::Memory), result_mem); |
3789 | lazy_replace(exit, result_ctrl); |
3790 | _igvn.replace_node(store, result_mem); |
3791 | // Any uses the increment outside of the loop become the loop limit. |
3792 | _igvn.replace_node(head->incr(), head->limit()); |
3793 | |
3794 | // Disconnect the head from the loop. |
3795 | for (uint i = 0; i < lpt->_body.size(); i++) { |
3796 | Node* n = lpt->_body.at(i); |
3797 | _igvn.replace_node(n, C->top()); |
3798 | } |
3799 | |
3800 | return true; |
3801 | } |
3802 | |