1 | /* |
2 | * Copyright (c) 2003, 2019, Oracle and/or its affiliates. All rights reserved. |
3 | * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
4 | * |
5 | * This code is free software; you can redistribute it and/or modify it |
6 | * under the terms of the GNU General Public License version 2 only, as |
7 | * published by the Free Software Foundation. |
8 | * |
9 | * This code is distributed in the hope that it will be useful, but WITHOUT |
10 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
11 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
12 | * version 2 for more details (a copy is included in the LICENSE file that |
13 | * accompanied this code). |
14 | * |
15 | * You should have received a copy of the GNU General Public License version |
16 | * 2 along with this work; if not, write to the Free Software Foundation, |
17 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
18 | * |
19 | * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
20 | * or visit www.oracle.com if you need additional information or have any |
21 | * questions. |
22 | * |
23 | */ |
24 | |
25 | #include "precompiled.hpp" |
26 | #include "classfile/classLoaderDataGraph.hpp" |
27 | #include "classfile/javaClasses.inline.hpp" |
28 | #include "classfile/symbolTable.hpp" |
29 | #include "classfile/systemDictionary.hpp" |
30 | #include "classfile/vmSymbols.hpp" |
31 | #include "jvmtifiles/jvmtiEnv.hpp" |
32 | #include "logging/log.hpp" |
33 | #include "memory/allocation.inline.hpp" |
34 | #include "memory/resourceArea.hpp" |
35 | #include "memory/universe.hpp" |
36 | #include "oops/access.inline.hpp" |
37 | #include "oops/arrayOop.inline.hpp" |
38 | #include "oops/constantPool.inline.hpp" |
39 | #include "oops/instanceMirrorKlass.hpp" |
40 | #include "oops/objArrayKlass.hpp" |
41 | #include "oops/objArrayOop.inline.hpp" |
42 | #include "oops/oop.inline.hpp" |
43 | #include "oops/typeArrayOop.inline.hpp" |
44 | #include "prims/jvmtiEventController.hpp" |
45 | #include "prims/jvmtiEventController.inline.hpp" |
46 | #include "prims/jvmtiExport.hpp" |
47 | #include "prims/jvmtiImpl.hpp" |
48 | #include "prims/jvmtiTagMap.hpp" |
49 | #include "runtime/biasedLocking.hpp" |
50 | #include "runtime/frame.inline.hpp" |
51 | #include "runtime/handles.inline.hpp" |
52 | #include "runtime/javaCalls.hpp" |
53 | #include "runtime/jniHandles.inline.hpp" |
54 | #include "runtime/mutex.hpp" |
55 | #include "runtime/mutexLocker.hpp" |
56 | #include "runtime/reflectionUtils.hpp" |
57 | #include "runtime/thread.inline.hpp" |
58 | #include "runtime/threadSMR.hpp" |
59 | #include "runtime/vframe.hpp" |
60 | #include "runtime/vmThread.hpp" |
61 | #include "runtime/vmOperations.hpp" |
62 | #include "utilities/macros.hpp" |
63 | #if INCLUDE_ZGC |
64 | #include "gc/z/zGlobals.hpp" |
65 | #endif |
66 | #if INCLUDE_JVMCI |
67 | #include "jvmci/jvmci.hpp" |
68 | #endif |
69 | |
70 | // JvmtiTagHashmapEntry |
71 | // |
72 | // Each entry encapsulates a reference to the tagged object |
73 | // and the tag value. In addition an entry includes a next pointer which |
74 | // is used to chain entries together. |
75 | |
76 | class JvmtiTagHashmapEntry : public CHeapObj<mtInternal> { |
77 | private: |
78 | friend class JvmtiTagMap; |
79 | |
80 | oop _object; // tagged object |
81 | jlong _tag; // the tag |
82 | JvmtiTagHashmapEntry* _next; // next on the list |
83 | |
84 | inline void init(oop object, jlong tag) { |
85 | _object = object; |
86 | _tag = tag; |
87 | _next = NULL; |
88 | } |
89 | |
90 | // constructor |
91 | JvmtiTagHashmapEntry(oop object, jlong tag) { init(object, tag); } |
92 | |
93 | public: |
94 | |
95 | // accessor methods |
96 | inline oop* object_addr() { return &_object; } |
97 | inline oop object() { return NativeAccess<ON_PHANTOM_OOP_REF>::oop_load(object_addr()); } |
98 | // Peek at the object without keeping it alive. The returned object must be |
99 | // kept alive using a normal access if it leaks out of a thread transition from VM. |
100 | inline oop object_peek() { |
101 | return NativeAccess<ON_PHANTOM_OOP_REF | AS_NO_KEEPALIVE>::oop_load(object_addr()); |
102 | } |
103 | inline jlong tag() const { return _tag; } |
104 | |
105 | inline void set_tag(jlong tag) { |
106 | assert(tag != 0, "can't be zero" ); |
107 | _tag = tag; |
108 | } |
109 | |
110 | inline bool equals(oop object) { |
111 | return oopDesc::equals(object, object_peek()); |
112 | } |
113 | |
114 | inline JvmtiTagHashmapEntry* next() const { return _next; } |
115 | inline void set_next(JvmtiTagHashmapEntry* next) { _next = next; } |
116 | }; |
117 | |
118 | |
119 | // JvmtiTagHashmap |
120 | // |
121 | // A hashmap is essentially a table of pointers to entries. Entries |
122 | // are hashed to a location, or position in the table, and then |
123 | // chained from that location. The "key" for hashing is address of |
124 | // the object, or oop. The "value" is the tag value. |
125 | // |
126 | // A hashmap maintains a count of the number entries in the hashmap |
127 | // and resizes if the number of entries exceeds a given threshold. |
128 | // The threshold is specified as a percentage of the size - for |
129 | // example a threshold of 0.75 will trigger the hashmap to resize |
130 | // if the number of entries is >75% of table size. |
131 | // |
132 | // A hashmap provides functions for adding, removing, and finding |
133 | // entries. It also provides a function to iterate over all entries |
134 | // in the hashmap. |
135 | |
136 | class JvmtiTagHashmap : public CHeapObj<mtInternal> { |
137 | private: |
138 | friend class JvmtiTagMap; |
139 | |
140 | enum { |
141 | small_trace_threshold = 10000, // threshold for tracing |
142 | medium_trace_threshold = 100000, |
143 | large_trace_threshold = 1000000, |
144 | initial_trace_threshold = small_trace_threshold |
145 | }; |
146 | |
147 | static int _sizes[]; // array of possible hashmap sizes |
148 | int _size; // actual size of the table |
149 | int _size_index; // index into size table |
150 | |
151 | int _entry_count; // number of entries in the hashmap |
152 | |
153 | float _load_factor; // load factor as a % of the size |
154 | int _resize_threshold; // computed threshold to trigger resizing. |
155 | bool _resizing_enabled; // indicates if hashmap can resize |
156 | |
157 | int _trace_threshold; // threshold for trace messages |
158 | |
159 | JvmtiTagHashmapEntry** _table; // the table of entries. |
160 | |
161 | // private accessors |
162 | int resize_threshold() const { return _resize_threshold; } |
163 | int trace_threshold() const { return _trace_threshold; } |
164 | |
165 | // initialize the hashmap |
166 | void init(int size_index=0, float load_factor=4.0f) { |
167 | int initial_size = _sizes[size_index]; |
168 | _size_index = size_index; |
169 | _size = initial_size; |
170 | _entry_count = 0; |
171 | _trace_threshold = initial_trace_threshold; |
172 | _load_factor = load_factor; |
173 | _resize_threshold = (int)(_load_factor * _size); |
174 | _resizing_enabled = true; |
175 | size_t s = initial_size * sizeof(JvmtiTagHashmapEntry*); |
176 | _table = (JvmtiTagHashmapEntry**)os::malloc(s, mtInternal); |
177 | if (_table == NULL) { |
178 | vm_exit_out_of_memory(s, OOM_MALLOC_ERROR, |
179 | "unable to allocate initial hashtable for jvmti object tags" ); |
180 | } |
181 | for (int i=0; i<initial_size; i++) { |
182 | _table[i] = NULL; |
183 | } |
184 | } |
185 | |
186 | // hash a given key (oop) with the specified size |
187 | static unsigned int hash(oop key, int size) { |
188 | const oop obj = Access<>::resolve(key); |
189 | const unsigned int hash = Universe::heap()->hash_oop(obj); |
190 | return hash % size; |
191 | } |
192 | |
193 | // hash a given key (oop) |
194 | unsigned int hash(oop key) { |
195 | return hash(key, _size); |
196 | } |
197 | |
198 | // resize the hashmap - allocates a large table and re-hashes |
199 | // all entries into the new table. |
200 | void resize() { |
201 | int new_size_index = _size_index+1; |
202 | int new_size = _sizes[new_size_index]; |
203 | if (new_size < 0) { |
204 | // hashmap already at maximum capacity |
205 | return; |
206 | } |
207 | |
208 | // allocate new table |
209 | size_t s = new_size * sizeof(JvmtiTagHashmapEntry*); |
210 | JvmtiTagHashmapEntry** new_table = (JvmtiTagHashmapEntry**)os::malloc(s, mtInternal); |
211 | if (new_table == NULL) { |
212 | warning("unable to allocate larger hashtable for jvmti object tags" ); |
213 | set_resizing_enabled(false); |
214 | return; |
215 | } |
216 | |
217 | // initialize new table |
218 | int i; |
219 | for (i=0; i<new_size; i++) { |
220 | new_table[i] = NULL; |
221 | } |
222 | |
223 | // rehash all entries into the new table |
224 | for (i=0; i<_size; i++) { |
225 | JvmtiTagHashmapEntry* entry = _table[i]; |
226 | while (entry != NULL) { |
227 | JvmtiTagHashmapEntry* next = entry->next(); |
228 | oop key = entry->object_peek(); |
229 | assert(key != NULL, "jni weak reference cleared!!" ); |
230 | unsigned int h = hash(key, new_size); |
231 | JvmtiTagHashmapEntry* anchor = new_table[h]; |
232 | if (anchor == NULL) { |
233 | new_table[h] = entry; |
234 | entry->set_next(NULL); |
235 | } else { |
236 | entry->set_next(anchor); |
237 | new_table[h] = entry; |
238 | } |
239 | entry = next; |
240 | } |
241 | } |
242 | |
243 | // free old table and update settings. |
244 | os::free((void*)_table); |
245 | _table = new_table; |
246 | _size_index = new_size_index; |
247 | _size = new_size; |
248 | |
249 | // compute new resize threshold |
250 | _resize_threshold = (int)(_load_factor * _size); |
251 | } |
252 | |
253 | |
254 | // internal remove function - remove an entry at a given position in the |
255 | // table. |
256 | inline void remove(JvmtiTagHashmapEntry* prev, int pos, JvmtiTagHashmapEntry* entry) { |
257 | assert(pos >= 0 && pos < _size, "out of range" ); |
258 | if (prev == NULL) { |
259 | _table[pos] = entry->next(); |
260 | } else { |
261 | prev->set_next(entry->next()); |
262 | } |
263 | assert(_entry_count > 0, "checking" ); |
264 | _entry_count--; |
265 | } |
266 | |
267 | // resizing switch |
268 | bool is_resizing_enabled() const { return _resizing_enabled; } |
269 | void set_resizing_enabled(bool enable) { _resizing_enabled = enable; } |
270 | |
271 | // debugging |
272 | void print_memory_usage(); |
273 | void compute_next_trace_threshold(); |
274 | |
275 | public: |
276 | |
277 | // create a JvmtiTagHashmap of a preferred size and optionally a load factor. |
278 | // The preferred size is rounded down to an actual size. |
279 | JvmtiTagHashmap(int size, float load_factor=0.0f) { |
280 | int i=0; |
281 | while (_sizes[i] < size) { |
282 | if (_sizes[i] < 0) { |
283 | assert(i > 0, "sanity check" ); |
284 | i--; |
285 | break; |
286 | } |
287 | i++; |
288 | } |
289 | |
290 | // if a load factor is specified then use it, otherwise use default |
291 | if (load_factor > 0.01f) { |
292 | init(i, load_factor); |
293 | } else { |
294 | init(i); |
295 | } |
296 | } |
297 | |
298 | // create a JvmtiTagHashmap with default settings |
299 | JvmtiTagHashmap() { |
300 | init(); |
301 | } |
302 | |
303 | // release table when JvmtiTagHashmap destroyed |
304 | ~JvmtiTagHashmap() { |
305 | if (_table != NULL) { |
306 | os::free((void*)_table); |
307 | _table = NULL; |
308 | } |
309 | } |
310 | |
311 | // accessors |
312 | int size() const { return _size; } |
313 | JvmtiTagHashmapEntry** table() const { return _table; } |
314 | int entry_count() const { return _entry_count; } |
315 | |
316 | // find an entry in the hashmap, returns NULL if not found. |
317 | inline JvmtiTagHashmapEntry* find(oop key) { |
318 | unsigned int h = hash(key); |
319 | JvmtiTagHashmapEntry* entry = _table[h]; |
320 | while (entry != NULL) { |
321 | if (entry->equals(key)) { |
322 | return entry; |
323 | } |
324 | entry = entry->next(); |
325 | } |
326 | return NULL; |
327 | } |
328 | |
329 | |
330 | // add a new entry to hashmap |
331 | inline void add(oop key, JvmtiTagHashmapEntry* entry) { |
332 | assert(key != NULL, "checking" ); |
333 | assert(find(key) == NULL, "duplicate detected" ); |
334 | unsigned int h = hash(key); |
335 | JvmtiTagHashmapEntry* anchor = _table[h]; |
336 | if (anchor == NULL) { |
337 | _table[h] = entry; |
338 | entry->set_next(NULL); |
339 | } else { |
340 | entry->set_next(anchor); |
341 | _table[h] = entry; |
342 | } |
343 | |
344 | _entry_count++; |
345 | if (log_is_enabled(Debug, jvmti, objecttagging) && entry_count() >= trace_threshold()) { |
346 | print_memory_usage(); |
347 | compute_next_trace_threshold(); |
348 | } |
349 | |
350 | // if the number of entries exceed the threshold then resize |
351 | if (entry_count() > resize_threshold() && is_resizing_enabled()) { |
352 | resize(); |
353 | } |
354 | } |
355 | |
356 | // remove an entry with the given key. |
357 | inline JvmtiTagHashmapEntry* remove(oop key) { |
358 | unsigned int h = hash(key); |
359 | JvmtiTagHashmapEntry* entry = _table[h]; |
360 | JvmtiTagHashmapEntry* prev = NULL; |
361 | while (entry != NULL) { |
362 | if (entry->equals(key)) { |
363 | break; |
364 | } |
365 | prev = entry; |
366 | entry = entry->next(); |
367 | } |
368 | if (entry != NULL) { |
369 | remove(prev, h, entry); |
370 | } |
371 | return entry; |
372 | } |
373 | |
374 | // iterate over all entries in the hashmap |
375 | void entry_iterate(JvmtiTagHashmapEntryClosure* closure); |
376 | }; |
377 | |
378 | // possible hashmap sizes - odd primes that roughly double in size. |
379 | // To avoid excessive resizing the odd primes from 4801-76831 and |
380 | // 76831-307261 have been removed. The list must be terminated by -1. |
381 | int JvmtiTagHashmap::_sizes[] = { 4801, 76831, 307261, 614563, 1228891, |
382 | 2457733, 4915219, 9830479, 19660831, 39321619, 78643219, -1 }; |
383 | |
384 | |
385 | // A supporting class for iterating over all entries in Hashmap |
386 | class JvmtiTagHashmapEntryClosure { |
387 | public: |
388 | virtual void do_entry(JvmtiTagHashmapEntry* entry) = 0; |
389 | }; |
390 | |
391 | |
392 | // iterate over all entries in the hashmap |
393 | void JvmtiTagHashmap::entry_iterate(JvmtiTagHashmapEntryClosure* closure) { |
394 | for (int i=0; i<_size; i++) { |
395 | JvmtiTagHashmapEntry* entry = _table[i]; |
396 | JvmtiTagHashmapEntry* prev = NULL; |
397 | while (entry != NULL) { |
398 | // obtain the next entry before invoking do_entry - this is |
399 | // necessary because do_entry may remove the entry from the |
400 | // hashmap. |
401 | JvmtiTagHashmapEntry* next = entry->next(); |
402 | closure->do_entry(entry); |
403 | entry = next; |
404 | } |
405 | } |
406 | } |
407 | |
408 | // debugging |
409 | void JvmtiTagHashmap::print_memory_usage() { |
410 | intptr_t p = (intptr_t)this; |
411 | tty->print("[JvmtiTagHashmap @ " INTPTR_FORMAT, p); |
412 | |
413 | // table + entries in KB |
414 | int hashmap_usage = (size()*sizeof(JvmtiTagHashmapEntry*) + |
415 | entry_count()*sizeof(JvmtiTagHashmapEntry))/K; |
416 | |
417 | int weak_globals_usage = (int)(JNIHandles::weak_global_handle_memory_usage()/K); |
418 | tty->print_cr(", %d entries (%d KB) <JNI weak globals: %d KB>]" , |
419 | entry_count(), hashmap_usage, weak_globals_usage); |
420 | } |
421 | |
422 | // compute threshold for the next trace message |
423 | void JvmtiTagHashmap::compute_next_trace_threshold() { |
424 | _trace_threshold = entry_count(); |
425 | if (trace_threshold() < medium_trace_threshold) { |
426 | _trace_threshold += small_trace_threshold; |
427 | } else { |
428 | if (trace_threshold() < large_trace_threshold) { |
429 | _trace_threshold += medium_trace_threshold; |
430 | } else { |
431 | _trace_threshold += large_trace_threshold; |
432 | } |
433 | } |
434 | } |
435 | |
436 | // create a JvmtiTagMap |
437 | JvmtiTagMap::JvmtiTagMap(JvmtiEnv* env) : |
438 | _env(env), |
439 | _lock(Mutex::nonleaf+2, "JvmtiTagMap._lock" , false), |
440 | _free_entries(NULL), |
441 | _free_entries_count(0) |
442 | { |
443 | assert(JvmtiThreadState_lock->is_locked(), "sanity check" ); |
444 | assert(((JvmtiEnvBase *)env)->tag_map() == NULL, "tag map already exists for environment" ); |
445 | |
446 | _hashmap = new JvmtiTagHashmap(); |
447 | |
448 | // finally add us to the environment |
449 | ((JvmtiEnvBase *)env)->release_set_tag_map(this); |
450 | } |
451 | |
452 | |
453 | // destroy a JvmtiTagMap |
454 | JvmtiTagMap::~JvmtiTagMap() { |
455 | |
456 | // no lock acquired as we assume the enclosing environment is |
457 | // also being destroryed. |
458 | ((JvmtiEnvBase *)_env)->set_tag_map(NULL); |
459 | |
460 | JvmtiTagHashmapEntry** table = _hashmap->table(); |
461 | for (int j = 0; j < _hashmap->size(); j++) { |
462 | JvmtiTagHashmapEntry* entry = table[j]; |
463 | while (entry != NULL) { |
464 | JvmtiTagHashmapEntry* next = entry->next(); |
465 | delete entry; |
466 | entry = next; |
467 | } |
468 | } |
469 | |
470 | // finally destroy the hashmap |
471 | delete _hashmap; |
472 | _hashmap = NULL; |
473 | |
474 | // remove any entries on the free list |
475 | JvmtiTagHashmapEntry* entry = _free_entries; |
476 | while (entry != NULL) { |
477 | JvmtiTagHashmapEntry* next = entry->next(); |
478 | delete entry; |
479 | entry = next; |
480 | } |
481 | _free_entries = NULL; |
482 | } |
483 | |
484 | // create a hashmap entry |
485 | // - if there's an entry on the (per-environment) free list then this |
486 | // is returned. Otherwise an new entry is allocated. |
487 | JvmtiTagHashmapEntry* JvmtiTagMap::create_entry(oop ref, jlong tag) { |
488 | assert(Thread::current()->is_VM_thread() || is_locked(), "checking" ); |
489 | JvmtiTagHashmapEntry* entry; |
490 | if (_free_entries == NULL) { |
491 | entry = new JvmtiTagHashmapEntry(ref, tag); |
492 | } else { |
493 | assert(_free_entries_count > 0, "mismatched _free_entries_count" ); |
494 | _free_entries_count--; |
495 | entry = _free_entries; |
496 | _free_entries = entry->next(); |
497 | entry->init(ref, tag); |
498 | } |
499 | return entry; |
500 | } |
501 | |
502 | // destroy an entry by returning it to the free list |
503 | void JvmtiTagMap::destroy_entry(JvmtiTagHashmapEntry* entry) { |
504 | assert(SafepointSynchronize::is_at_safepoint() || is_locked(), "checking" ); |
505 | // limit the size of the free list |
506 | if (_free_entries_count >= max_free_entries) { |
507 | delete entry; |
508 | } else { |
509 | entry->set_next(_free_entries); |
510 | _free_entries = entry; |
511 | _free_entries_count++; |
512 | } |
513 | } |
514 | |
515 | // returns the tag map for the given environments. If the tag map |
516 | // doesn't exist then it is created. |
517 | JvmtiTagMap* JvmtiTagMap::tag_map_for(JvmtiEnv* env) { |
518 | JvmtiTagMap* tag_map = ((JvmtiEnvBase*)env)->tag_map_acquire(); |
519 | if (tag_map == NULL) { |
520 | MutexLocker mu(JvmtiThreadState_lock); |
521 | tag_map = ((JvmtiEnvBase*)env)->tag_map(); |
522 | if (tag_map == NULL) { |
523 | tag_map = new JvmtiTagMap(env); |
524 | } |
525 | } else { |
526 | CHECK_UNHANDLED_OOPS_ONLY(Thread::current()->clear_unhandled_oops()); |
527 | } |
528 | return tag_map; |
529 | } |
530 | |
531 | // iterate over all entries in the tag map. |
532 | void JvmtiTagMap::entry_iterate(JvmtiTagHashmapEntryClosure* closure) { |
533 | hashmap()->entry_iterate(closure); |
534 | } |
535 | |
536 | // returns true if the hashmaps are empty |
537 | bool JvmtiTagMap::is_empty() { |
538 | assert(SafepointSynchronize::is_at_safepoint() || is_locked(), "checking" ); |
539 | return hashmap()->entry_count() == 0; |
540 | } |
541 | |
542 | |
543 | // Return the tag value for an object, or 0 if the object is |
544 | // not tagged |
545 | // |
546 | static inline jlong tag_for(JvmtiTagMap* tag_map, oop o) { |
547 | JvmtiTagHashmapEntry* entry = tag_map->hashmap()->find(o); |
548 | if (entry == NULL) { |
549 | return 0; |
550 | } else { |
551 | return entry->tag(); |
552 | } |
553 | } |
554 | |
555 | |
556 | // A CallbackWrapper is a support class for querying and tagging an object |
557 | // around a callback to a profiler. The constructor does pre-callback |
558 | // work to get the tag value, klass tag value, ... and the destructor |
559 | // does the post-callback work of tagging or untagging the object. |
560 | // |
561 | // { |
562 | // CallbackWrapper wrapper(tag_map, o); |
563 | // |
564 | // (*callback)(wrapper.klass_tag(), wrapper.obj_size(), wrapper.obj_tag_p(), ...) |
565 | // |
566 | // } // wrapper goes out of scope here which results in the destructor |
567 | // checking to see if the object has been tagged, untagged, or the |
568 | // tag value has changed. |
569 | // |
570 | class CallbackWrapper : public StackObj { |
571 | private: |
572 | JvmtiTagMap* _tag_map; |
573 | JvmtiTagHashmap* _hashmap; |
574 | JvmtiTagHashmapEntry* _entry; |
575 | oop _o; |
576 | jlong _obj_size; |
577 | jlong _obj_tag; |
578 | jlong _klass_tag; |
579 | |
580 | protected: |
581 | JvmtiTagMap* tag_map() const { return _tag_map; } |
582 | |
583 | // invoked post-callback to tag, untag, or update the tag of an object |
584 | void inline post_callback_tag_update(oop o, JvmtiTagHashmap* hashmap, |
585 | JvmtiTagHashmapEntry* entry, jlong obj_tag); |
586 | public: |
587 | CallbackWrapper(JvmtiTagMap* tag_map, oop o) { |
588 | assert(Thread::current()->is_VM_thread() || tag_map->is_locked(), |
589 | "MT unsafe or must be VM thread" ); |
590 | |
591 | // object to tag |
592 | _o = o; |
593 | |
594 | // object size |
595 | _obj_size = (jlong)_o->size() * wordSize; |
596 | |
597 | // record the context |
598 | _tag_map = tag_map; |
599 | _hashmap = tag_map->hashmap(); |
600 | _entry = _hashmap->find(_o); |
601 | |
602 | // get object tag |
603 | _obj_tag = (_entry == NULL) ? 0 : _entry->tag(); |
604 | |
605 | // get the class and the class's tag value |
606 | assert(SystemDictionary::Class_klass()->is_mirror_instance_klass(), "Is not?" ); |
607 | |
608 | _klass_tag = tag_for(tag_map, _o->klass()->java_mirror()); |
609 | } |
610 | |
611 | ~CallbackWrapper() { |
612 | post_callback_tag_update(_o, _hashmap, _entry, _obj_tag); |
613 | } |
614 | |
615 | inline jlong* obj_tag_p() { return &_obj_tag; } |
616 | inline jlong obj_size() const { return _obj_size; } |
617 | inline jlong obj_tag() const { return _obj_tag; } |
618 | inline jlong klass_tag() const { return _klass_tag; } |
619 | }; |
620 | |
621 | |
622 | |
623 | // callback post-callback to tag, untag, or update the tag of an object |
624 | void inline CallbackWrapper::post_callback_tag_update(oop o, |
625 | JvmtiTagHashmap* hashmap, |
626 | JvmtiTagHashmapEntry* entry, |
627 | jlong obj_tag) { |
628 | if (entry == NULL) { |
629 | if (obj_tag != 0) { |
630 | // callback has tagged the object |
631 | assert(Thread::current()->is_VM_thread(), "must be VMThread" ); |
632 | entry = tag_map()->create_entry(o, obj_tag); |
633 | hashmap->add(o, entry); |
634 | } |
635 | } else { |
636 | // object was previously tagged - the callback may have untagged |
637 | // the object or changed the tag value |
638 | if (obj_tag == 0) { |
639 | |
640 | JvmtiTagHashmapEntry* entry_removed = hashmap->remove(o); |
641 | assert(entry_removed == entry, "checking" ); |
642 | tag_map()->destroy_entry(entry); |
643 | |
644 | } else { |
645 | if (obj_tag != entry->tag()) { |
646 | entry->set_tag(obj_tag); |
647 | } |
648 | } |
649 | } |
650 | } |
651 | |
652 | // An extended CallbackWrapper used when reporting an object reference |
653 | // to the agent. |
654 | // |
655 | // { |
656 | // TwoOopCallbackWrapper wrapper(tag_map, referrer, o); |
657 | // |
658 | // (*callback)(wrapper.klass_tag(), |
659 | // wrapper.obj_size(), |
660 | // wrapper.obj_tag_p() |
661 | // wrapper.referrer_tag_p(), ...) |
662 | // |
663 | // } // wrapper goes out of scope here which results in the destructor |
664 | // checking to see if the referrer object has been tagged, untagged, |
665 | // or the tag value has changed. |
666 | // |
667 | class TwoOopCallbackWrapper : public CallbackWrapper { |
668 | private: |
669 | bool _is_reference_to_self; |
670 | JvmtiTagHashmap* _referrer_hashmap; |
671 | JvmtiTagHashmapEntry* _referrer_entry; |
672 | oop _referrer; |
673 | jlong _referrer_obj_tag; |
674 | jlong _referrer_klass_tag; |
675 | jlong* _referrer_tag_p; |
676 | |
677 | bool is_reference_to_self() const { return _is_reference_to_self; } |
678 | |
679 | public: |
680 | TwoOopCallbackWrapper(JvmtiTagMap* tag_map, oop referrer, oop o) : |
681 | CallbackWrapper(tag_map, o) |
682 | { |
683 | // self reference needs to be handled in a special way |
684 | _is_reference_to_self = (referrer == o); |
685 | |
686 | if (_is_reference_to_self) { |
687 | _referrer_klass_tag = klass_tag(); |
688 | _referrer_tag_p = obj_tag_p(); |
689 | } else { |
690 | _referrer = referrer; |
691 | // record the context |
692 | _referrer_hashmap = tag_map->hashmap(); |
693 | _referrer_entry = _referrer_hashmap->find(_referrer); |
694 | |
695 | // get object tag |
696 | _referrer_obj_tag = (_referrer_entry == NULL) ? 0 : _referrer_entry->tag(); |
697 | _referrer_tag_p = &_referrer_obj_tag; |
698 | |
699 | // get referrer class tag. |
700 | _referrer_klass_tag = tag_for(tag_map, _referrer->klass()->java_mirror()); |
701 | } |
702 | } |
703 | |
704 | ~TwoOopCallbackWrapper() { |
705 | if (!is_reference_to_self()){ |
706 | post_callback_tag_update(_referrer, |
707 | _referrer_hashmap, |
708 | _referrer_entry, |
709 | _referrer_obj_tag); |
710 | } |
711 | } |
712 | |
713 | // address of referrer tag |
714 | // (for a self reference this will return the same thing as obj_tag_p()) |
715 | inline jlong* referrer_tag_p() { return _referrer_tag_p; } |
716 | |
717 | // referrer's class tag |
718 | inline jlong referrer_klass_tag() { return _referrer_klass_tag; } |
719 | }; |
720 | |
721 | // tag an object |
722 | // |
723 | // This function is performance critical. If many threads attempt to tag objects |
724 | // around the same time then it's possible that the Mutex associated with the |
725 | // tag map will be a hot lock. |
726 | void JvmtiTagMap::set_tag(jobject object, jlong tag) { |
727 | MutexLocker ml(lock()); |
728 | |
729 | // resolve the object |
730 | oop o = JNIHandles::resolve_non_null(object); |
731 | |
732 | // see if the object is already tagged |
733 | JvmtiTagHashmap* hashmap = _hashmap; |
734 | JvmtiTagHashmapEntry* entry = hashmap->find(o); |
735 | |
736 | // if the object is not already tagged then we tag it |
737 | if (entry == NULL) { |
738 | if (tag != 0) { |
739 | entry = create_entry(o, tag); |
740 | hashmap->add(o, entry); |
741 | } else { |
742 | // no-op |
743 | } |
744 | } else { |
745 | // if the object is already tagged then we either update |
746 | // the tag (if a new tag value has been provided) |
747 | // or remove the object if the new tag value is 0. |
748 | if (tag == 0) { |
749 | hashmap->remove(o); |
750 | destroy_entry(entry); |
751 | } else { |
752 | entry->set_tag(tag); |
753 | } |
754 | } |
755 | } |
756 | |
757 | // get the tag for an object |
758 | jlong JvmtiTagMap::get_tag(jobject object) { |
759 | MutexLocker ml(lock()); |
760 | |
761 | // resolve the object |
762 | oop o = JNIHandles::resolve_non_null(object); |
763 | |
764 | return tag_for(this, o); |
765 | } |
766 | |
767 | |
768 | // Helper class used to describe the static or instance fields of a class. |
769 | // For each field it holds the field index (as defined by the JVMTI specification), |
770 | // the field type, and the offset. |
771 | |
772 | class ClassFieldDescriptor: public CHeapObj<mtInternal> { |
773 | private: |
774 | int _field_index; |
775 | int _field_offset; |
776 | char _field_type; |
777 | public: |
778 | ClassFieldDescriptor(int index, char type, int offset) : |
779 | _field_index(index), _field_offset(offset), _field_type(type) { |
780 | } |
781 | int field_index() const { return _field_index; } |
782 | char field_type() const { return _field_type; } |
783 | int field_offset() const { return _field_offset; } |
784 | }; |
785 | |
786 | class ClassFieldMap: public CHeapObj<mtInternal> { |
787 | private: |
788 | enum { |
789 | initial_field_count = 5 |
790 | }; |
791 | |
792 | // list of field descriptors |
793 | GrowableArray<ClassFieldDescriptor*>* _fields; |
794 | |
795 | // constructor |
796 | ClassFieldMap(); |
797 | |
798 | // add a field |
799 | void add(int index, char type, int offset); |
800 | |
801 | // returns the field count for the given class |
802 | static int compute_field_count(InstanceKlass* ik); |
803 | |
804 | public: |
805 | ~ClassFieldMap(); |
806 | |
807 | // access |
808 | int field_count() { return _fields->length(); } |
809 | ClassFieldDescriptor* field_at(int i) { return _fields->at(i); } |
810 | |
811 | // functions to create maps of static or instance fields |
812 | static ClassFieldMap* create_map_of_static_fields(Klass* k); |
813 | static ClassFieldMap* create_map_of_instance_fields(oop obj); |
814 | }; |
815 | |
816 | ClassFieldMap::ClassFieldMap() { |
817 | _fields = new (ResourceObj::C_HEAP, mtInternal) |
818 | GrowableArray<ClassFieldDescriptor*>(initial_field_count, true); |
819 | } |
820 | |
821 | ClassFieldMap::~ClassFieldMap() { |
822 | for (int i=0; i<_fields->length(); i++) { |
823 | delete _fields->at(i); |
824 | } |
825 | delete _fields; |
826 | } |
827 | |
828 | void ClassFieldMap::add(int index, char type, int offset) { |
829 | ClassFieldDescriptor* field = new ClassFieldDescriptor(index, type, offset); |
830 | _fields->append(field); |
831 | } |
832 | |
833 | // Returns a heap allocated ClassFieldMap to describe the static fields |
834 | // of the given class. |
835 | // |
836 | ClassFieldMap* ClassFieldMap::create_map_of_static_fields(Klass* k) { |
837 | HandleMark hm; |
838 | InstanceKlass* ik = InstanceKlass::cast(k); |
839 | |
840 | // create the field map |
841 | ClassFieldMap* field_map = new ClassFieldMap(); |
842 | |
843 | FilteredFieldStream f(ik, false, false); |
844 | int max_field_index = f.field_count()-1; |
845 | |
846 | int index = 0; |
847 | for (FilteredFieldStream fld(ik, true, true); !fld.eos(); fld.next(), index++) { |
848 | // ignore instance fields |
849 | if (!fld.access_flags().is_static()) { |
850 | continue; |
851 | } |
852 | field_map->add(max_field_index - index, fld.signature()->char_at(0), fld.offset()); |
853 | } |
854 | return field_map; |
855 | } |
856 | |
857 | // Returns a heap allocated ClassFieldMap to describe the instance fields |
858 | // of the given class. All instance fields are included (this means public |
859 | // and private fields declared in superclasses and superinterfaces too). |
860 | // |
861 | ClassFieldMap* ClassFieldMap::create_map_of_instance_fields(oop obj) { |
862 | HandleMark hm; |
863 | InstanceKlass* ik = InstanceKlass::cast(obj->klass()); |
864 | |
865 | // create the field map |
866 | ClassFieldMap* field_map = new ClassFieldMap(); |
867 | |
868 | FilteredFieldStream f(ik, false, false); |
869 | |
870 | int max_field_index = f.field_count()-1; |
871 | |
872 | int index = 0; |
873 | for (FilteredFieldStream fld(ik, false, false); !fld.eos(); fld.next(), index++) { |
874 | // ignore static fields |
875 | if (fld.access_flags().is_static()) { |
876 | continue; |
877 | } |
878 | field_map->add(max_field_index - index, fld.signature()->char_at(0), fld.offset()); |
879 | } |
880 | |
881 | return field_map; |
882 | } |
883 | |
884 | // Helper class used to cache a ClassFileMap for the instance fields of |
885 | // a cache. A JvmtiCachedClassFieldMap can be cached by an InstanceKlass during |
886 | // heap iteration and avoid creating a field map for each object in the heap |
887 | // (only need to create the map when the first instance of a class is encountered). |
888 | // |
889 | class JvmtiCachedClassFieldMap : public CHeapObj<mtInternal> { |
890 | private: |
891 | enum { |
892 | initial_class_count = 200 |
893 | }; |
894 | ClassFieldMap* _field_map; |
895 | |
896 | ClassFieldMap* field_map() const { return _field_map; } |
897 | |
898 | JvmtiCachedClassFieldMap(ClassFieldMap* field_map); |
899 | ~JvmtiCachedClassFieldMap(); |
900 | |
901 | static GrowableArray<InstanceKlass*>* _class_list; |
902 | static void add_to_class_list(InstanceKlass* ik); |
903 | |
904 | public: |
905 | // returns the field map for a given object (returning map cached |
906 | // by InstanceKlass if possible |
907 | static ClassFieldMap* get_map_of_instance_fields(oop obj); |
908 | |
909 | // removes the field map from all instanceKlasses - should be |
910 | // called before VM operation completes |
911 | static void clear_cache(); |
912 | |
913 | // returns the number of ClassFieldMap cached by instanceKlasses |
914 | static int cached_field_map_count(); |
915 | }; |
916 | |
917 | GrowableArray<InstanceKlass*>* JvmtiCachedClassFieldMap::_class_list; |
918 | |
919 | JvmtiCachedClassFieldMap::JvmtiCachedClassFieldMap(ClassFieldMap* field_map) { |
920 | _field_map = field_map; |
921 | } |
922 | |
923 | JvmtiCachedClassFieldMap::~JvmtiCachedClassFieldMap() { |
924 | if (_field_map != NULL) { |
925 | delete _field_map; |
926 | } |
927 | } |
928 | |
929 | // Marker class to ensure that the class file map cache is only used in a defined |
930 | // scope. |
931 | class ClassFieldMapCacheMark : public StackObj { |
932 | private: |
933 | static bool _is_active; |
934 | public: |
935 | ClassFieldMapCacheMark() { |
936 | assert(Thread::current()->is_VM_thread(), "must be VMThread" ); |
937 | assert(JvmtiCachedClassFieldMap::cached_field_map_count() == 0, "cache not empty" ); |
938 | assert(!_is_active, "ClassFieldMapCacheMark cannot be nested" ); |
939 | _is_active = true; |
940 | } |
941 | ~ClassFieldMapCacheMark() { |
942 | JvmtiCachedClassFieldMap::clear_cache(); |
943 | _is_active = false; |
944 | } |
945 | static bool is_active() { return _is_active; } |
946 | }; |
947 | |
948 | bool ClassFieldMapCacheMark::_is_active; |
949 | |
950 | |
951 | // record that the given InstanceKlass is caching a field map |
952 | void JvmtiCachedClassFieldMap::add_to_class_list(InstanceKlass* ik) { |
953 | if (_class_list == NULL) { |
954 | _class_list = new (ResourceObj::C_HEAP, mtInternal) |
955 | GrowableArray<InstanceKlass*>(initial_class_count, true); |
956 | } |
957 | _class_list->push(ik); |
958 | } |
959 | |
960 | // returns the instance field map for the given object |
961 | // (returns field map cached by the InstanceKlass if possible) |
962 | ClassFieldMap* JvmtiCachedClassFieldMap::get_map_of_instance_fields(oop obj) { |
963 | assert(Thread::current()->is_VM_thread(), "must be VMThread" ); |
964 | assert(ClassFieldMapCacheMark::is_active(), "ClassFieldMapCacheMark not active" ); |
965 | |
966 | Klass* k = obj->klass(); |
967 | InstanceKlass* ik = InstanceKlass::cast(k); |
968 | |
969 | // return cached map if possible |
970 | JvmtiCachedClassFieldMap* cached_map = ik->jvmti_cached_class_field_map(); |
971 | if (cached_map != NULL) { |
972 | assert(cached_map->field_map() != NULL, "missing field list" ); |
973 | return cached_map->field_map(); |
974 | } else { |
975 | ClassFieldMap* field_map = ClassFieldMap::create_map_of_instance_fields(obj); |
976 | cached_map = new JvmtiCachedClassFieldMap(field_map); |
977 | ik->set_jvmti_cached_class_field_map(cached_map); |
978 | add_to_class_list(ik); |
979 | return field_map; |
980 | } |
981 | } |
982 | |
983 | // remove the fields maps cached from all instanceKlasses |
984 | void JvmtiCachedClassFieldMap::clear_cache() { |
985 | assert(Thread::current()->is_VM_thread(), "must be VMThread" ); |
986 | if (_class_list != NULL) { |
987 | for (int i = 0; i < _class_list->length(); i++) { |
988 | InstanceKlass* ik = _class_list->at(i); |
989 | JvmtiCachedClassFieldMap* cached_map = ik->jvmti_cached_class_field_map(); |
990 | assert(cached_map != NULL, "should not be NULL" ); |
991 | ik->set_jvmti_cached_class_field_map(NULL); |
992 | delete cached_map; // deletes the encapsulated field map |
993 | } |
994 | delete _class_list; |
995 | _class_list = NULL; |
996 | } |
997 | } |
998 | |
999 | // returns the number of ClassFieldMap cached by instanceKlasses |
1000 | int JvmtiCachedClassFieldMap::cached_field_map_count() { |
1001 | return (_class_list == NULL) ? 0 : _class_list->length(); |
1002 | } |
1003 | |
1004 | // helper function to indicate if an object is filtered by its tag or class tag |
1005 | static inline bool is_filtered_by_heap_filter(jlong obj_tag, |
1006 | jlong klass_tag, |
1007 | int heap_filter) { |
1008 | // apply the heap filter |
1009 | if (obj_tag != 0) { |
1010 | // filter out tagged objects |
1011 | if (heap_filter & JVMTI_HEAP_FILTER_TAGGED) return true; |
1012 | } else { |
1013 | // filter out untagged objects |
1014 | if (heap_filter & JVMTI_HEAP_FILTER_UNTAGGED) return true; |
1015 | } |
1016 | if (klass_tag != 0) { |
1017 | // filter out objects with tagged classes |
1018 | if (heap_filter & JVMTI_HEAP_FILTER_CLASS_TAGGED) return true; |
1019 | } else { |
1020 | // filter out objects with untagged classes. |
1021 | if (heap_filter & JVMTI_HEAP_FILTER_CLASS_UNTAGGED) return true; |
1022 | } |
1023 | return false; |
1024 | } |
1025 | |
1026 | // helper function to indicate if an object is filtered by a klass filter |
1027 | static inline bool is_filtered_by_klass_filter(oop obj, Klass* klass_filter) { |
1028 | if (klass_filter != NULL) { |
1029 | if (obj->klass() != klass_filter) { |
1030 | return true; |
1031 | } |
1032 | } |
1033 | return false; |
1034 | } |
1035 | |
1036 | // helper function to tell if a field is a primitive field or not |
1037 | static inline bool is_primitive_field_type(char type) { |
1038 | return (type != 'L' && type != '['); |
1039 | } |
1040 | |
1041 | // helper function to copy the value from location addr to jvalue. |
1042 | static inline void copy_to_jvalue(jvalue *v, address addr, jvmtiPrimitiveType value_type) { |
1043 | switch (value_type) { |
1044 | case JVMTI_PRIMITIVE_TYPE_BOOLEAN : { v->z = *(jboolean*)addr; break; } |
1045 | case JVMTI_PRIMITIVE_TYPE_BYTE : { v->b = *(jbyte*)addr; break; } |
1046 | case JVMTI_PRIMITIVE_TYPE_CHAR : { v->c = *(jchar*)addr; break; } |
1047 | case JVMTI_PRIMITIVE_TYPE_SHORT : { v->s = *(jshort*)addr; break; } |
1048 | case JVMTI_PRIMITIVE_TYPE_INT : { v->i = *(jint*)addr; break; } |
1049 | case JVMTI_PRIMITIVE_TYPE_LONG : { v->j = *(jlong*)addr; break; } |
1050 | case JVMTI_PRIMITIVE_TYPE_FLOAT : { v->f = *(jfloat*)addr; break; } |
1051 | case JVMTI_PRIMITIVE_TYPE_DOUBLE : { v->d = *(jdouble*)addr; break; } |
1052 | default: ShouldNotReachHere(); |
1053 | } |
1054 | } |
1055 | |
1056 | // helper function to invoke string primitive value callback |
1057 | // returns visit control flags |
1058 | static jint invoke_string_value_callback(jvmtiStringPrimitiveValueCallback cb, |
1059 | CallbackWrapper* wrapper, |
1060 | oop str, |
1061 | void* user_data) |
1062 | { |
1063 | assert(str->klass() == SystemDictionary::String_klass(), "not a string" ); |
1064 | |
1065 | typeArrayOop s_value = java_lang_String::value(str); |
1066 | |
1067 | // JDK-6584008: the value field may be null if a String instance is |
1068 | // partially constructed. |
1069 | if (s_value == NULL) { |
1070 | return 0; |
1071 | } |
1072 | // get the string value and length |
1073 | // (string value may be offset from the base) |
1074 | int s_len = java_lang_String::length(str); |
1075 | bool is_latin1 = java_lang_String::is_latin1(str); |
1076 | jchar* value; |
1077 | if (s_len > 0) { |
1078 | if (!is_latin1) { |
1079 | value = s_value->char_at_addr(0); |
1080 | } else { |
1081 | // Inflate latin1 encoded string to UTF16 |
1082 | jchar* buf = NEW_C_HEAP_ARRAY(jchar, s_len, mtInternal); |
1083 | for (int i = 0; i < s_len; i++) { |
1084 | buf[i] = ((jchar) s_value->byte_at(i)) & 0xff; |
1085 | } |
1086 | value = &buf[0]; |
1087 | } |
1088 | } else { |
1089 | // Don't use char_at_addr(0) if length is 0 |
1090 | value = (jchar*) s_value->base(T_CHAR); |
1091 | } |
1092 | |
1093 | // invoke the callback |
1094 | jint res = (*cb)(wrapper->klass_tag(), |
1095 | wrapper->obj_size(), |
1096 | wrapper->obj_tag_p(), |
1097 | value, |
1098 | (jint)s_len, |
1099 | user_data); |
1100 | |
1101 | if (is_latin1 && s_len > 0) { |
1102 | FREE_C_HEAP_ARRAY(jchar, value); |
1103 | } |
1104 | return res; |
1105 | } |
1106 | |
1107 | // helper function to invoke string primitive value callback |
1108 | // returns visit control flags |
1109 | static jint invoke_array_primitive_value_callback(jvmtiArrayPrimitiveValueCallback cb, |
1110 | CallbackWrapper* wrapper, |
1111 | oop obj, |
1112 | void* user_data) |
1113 | { |
1114 | assert(obj->is_typeArray(), "not a primitive array" ); |
1115 | |
1116 | // get base address of first element |
1117 | typeArrayOop array = typeArrayOop(obj); |
1118 | BasicType type = TypeArrayKlass::cast(array->klass())->element_type(); |
1119 | void* elements = array->base(type); |
1120 | |
1121 | // jvmtiPrimitiveType is defined so this mapping is always correct |
1122 | jvmtiPrimitiveType elem_type = (jvmtiPrimitiveType)type2char(type); |
1123 | |
1124 | return (*cb)(wrapper->klass_tag(), |
1125 | wrapper->obj_size(), |
1126 | wrapper->obj_tag_p(), |
1127 | (jint)array->length(), |
1128 | elem_type, |
1129 | elements, |
1130 | user_data); |
1131 | } |
1132 | |
1133 | // helper function to invoke the primitive field callback for all static fields |
1134 | // of a given class |
1135 | static jint invoke_primitive_field_callback_for_static_fields |
1136 | (CallbackWrapper* wrapper, |
1137 | oop obj, |
1138 | jvmtiPrimitiveFieldCallback cb, |
1139 | void* user_data) |
1140 | { |
1141 | // for static fields only the index will be set |
1142 | static jvmtiHeapReferenceInfo reference_info = { 0 }; |
1143 | |
1144 | assert(obj->klass() == SystemDictionary::Class_klass(), "not a class" ); |
1145 | if (java_lang_Class::is_primitive(obj)) { |
1146 | return 0; |
1147 | } |
1148 | Klass* klass = java_lang_Class::as_Klass(obj); |
1149 | |
1150 | // ignore classes for object and type arrays |
1151 | if (!klass->is_instance_klass()) { |
1152 | return 0; |
1153 | } |
1154 | |
1155 | // ignore classes which aren't linked yet |
1156 | InstanceKlass* ik = InstanceKlass::cast(klass); |
1157 | if (!ik->is_linked()) { |
1158 | return 0; |
1159 | } |
1160 | |
1161 | // get the field map |
1162 | ClassFieldMap* field_map = ClassFieldMap::create_map_of_static_fields(klass); |
1163 | |
1164 | // invoke the callback for each static primitive field |
1165 | for (int i=0; i<field_map->field_count(); i++) { |
1166 | ClassFieldDescriptor* field = field_map->field_at(i); |
1167 | |
1168 | // ignore non-primitive fields |
1169 | char type = field->field_type(); |
1170 | if (!is_primitive_field_type(type)) { |
1171 | continue; |
1172 | } |
1173 | // one-to-one mapping |
1174 | jvmtiPrimitiveType value_type = (jvmtiPrimitiveType)type; |
1175 | |
1176 | // get offset and field value |
1177 | int offset = field->field_offset(); |
1178 | address addr = (address)klass->java_mirror() + offset; |
1179 | jvalue value; |
1180 | copy_to_jvalue(&value, addr, value_type); |
1181 | |
1182 | // field index |
1183 | reference_info.field.index = field->field_index(); |
1184 | |
1185 | // invoke the callback |
1186 | jint res = (*cb)(JVMTI_HEAP_REFERENCE_STATIC_FIELD, |
1187 | &reference_info, |
1188 | wrapper->klass_tag(), |
1189 | wrapper->obj_tag_p(), |
1190 | value, |
1191 | value_type, |
1192 | user_data); |
1193 | if (res & JVMTI_VISIT_ABORT) { |
1194 | delete field_map; |
1195 | return res; |
1196 | } |
1197 | } |
1198 | |
1199 | delete field_map; |
1200 | return 0; |
1201 | } |
1202 | |
1203 | // helper function to invoke the primitive field callback for all instance fields |
1204 | // of a given object |
1205 | static jint invoke_primitive_field_callback_for_instance_fields( |
1206 | CallbackWrapper* wrapper, |
1207 | oop obj, |
1208 | jvmtiPrimitiveFieldCallback cb, |
1209 | void* user_data) |
1210 | { |
1211 | // for instance fields only the index will be set |
1212 | static jvmtiHeapReferenceInfo reference_info = { 0 }; |
1213 | |
1214 | // get the map of the instance fields |
1215 | ClassFieldMap* fields = JvmtiCachedClassFieldMap::get_map_of_instance_fields(obj); |
1216 | |
1217 | // invoke the callback for each instance primitive field |
1218 | for (int i=0; i<fields->field_count(); i++) { |
1219 | ClassFieldDescriptor* field = fields->field_at(i); |
1220 | |
1221 | // ignore non-primitive fields |
1222 | char type = field->field_type(); |
1223 | if (!is_primitive_field_type(type)) { |
1224 | continue; |
1225 | } |
1226 | // one-to-one mapping |
1227 | jvmtiPrimitiveType value_type = (jvmtiPrimitiveType)type; |
1228 | |
1229 | // get offset and field value |
1230 | int offset = field->field_offset(); |
1231 | address addr = (address)obj + offset; |
1232 | jvalue value; |
1233 | copy_to_jvalue(&value, addr, value_type); |
1234 | |
1235 | // field index |
1236 | reference_info.field.index = field->field_index(); |
1237 | |
1238 | // invoke the callback |
1239 | jint res = (*cb)(JVMTI_HEAP_REFERENCE_FIELD, |
1240 | &reference_info, |
1241 | wrapper->klass_tag(), |
1242 | wrapper->obj_tag_p(), |
1243 | value, |
1244 | value_type, |
1245 | user_data); |
1246 | if (res & JVMTI_VISIT_ABORT) { |
1247 | return res; |
1248 | } |
1249 | } |
1250 | return 0; |
1251 | } |
1252 | |
1253 | |
1254 | // VM operation to iterate over all objects in the heap (both reachable |
1255 | // and unreachable) |
1256 | class VM_HeapIterateOperation: public VM_Operation { |
1257 | private: |
1258 | ObjectClosure* _blk; |
1259 | public: |
1260 | VM_HeapIterateOperation(ObjectClosure* blk) { _blk = blk; } |
1261 | |
1262 | VMOp_Type type() const { return VMOp_HeapIterateOperation; } |
1263 | void doit() { |
1264 | // allows class files maps to be cached during iteration |
1265 | ClassFieldMapCacheMark cm; |
1266 | |
1267 | // make sure that heap is parsable (fills TLABs with filler objects) |
1268 | Universe::heap()->ensure_parsability(false); // no need to retire TLABs |
1269 | |
1270 | // Verify heap before iteration - if the heap gets corrupted then |
1271 | // JVMTI's IterateOverHeap will crash. |
1272 | if (VerifyBeforeIteration) { |
1273 | Universe::verify(); |
1274 | } |
1275 | |
1276 | // do the iteration |
1277 | // If this operation encounters a bad object when using CMS, |
1278 | // consider using safe_object_iterate() which avoids perm gen |
1279 | // objects that may contain bad references. |
1280 | Universe::heap()->object_iterate(_blk); |
1281 | } |
1282 | |
1283 | }; |
1284 | |
1285 | |
1286 | // An ObjectClosure used to support the deprecated IterateOverHeap and |
1287 | // IterateOverInstancesOfClass functions |
1288 | class IterateOverHeapObjectClosure: public ObjectClosure { |
1289 | private: |
1290 | JvmtiTagMap* _tag_map; |
1291 | Klass* _klass; |
1292 | jvmtiHeapObjectFilter _object_filter; |
1293 | jvmtiHeapObjectCallback _heap_object_callback; |
1294 | const void* _user_data; |
1295 | |
1296 | // accessors |
1297 | JvmtiTagMap* tag_map() const { return _tag_map; } |
1298 | jvmtiHeapObjectFilter object_filter() const { return _object_filter; } |
1299 | jvmtiHeapObjectCallback object_callback() const { return _heap_object_callback; } |
1300 | Klass* klass() const { return _klass; } |
1301 | const void* user_data() const { return _user_data; } |
1302 | |
1303 | // indicates if iteration has been aborted |
1304 | bool _iteration_aborted; |
1305 | bool is_iteration_aborted() const { return _iteration_aborted; } |
1306 | void set_iteration_aborted(bool aborted) { _iteration_aborted = aborted; } |
1307 | |
1308 | public: |
1309 | IterateOverHeapObjectClosure(JvmtiTagMap* tag_map, |
1310 | Klass* klass, |
1311 | jvmtiHeapObjectFilter object_filter, |
1312 | jvmtiHeapObjectCallback heap_object_callback, |
1313 | const void* user_data) : |
1314 | _tag_map(tag_map), |
1315 | _klass(klass), |
1316 | _object_filter(object_filter), |
1317 | _heap_object_callback(heap_object_callback), |
1318 | _user_data(user_data), |
1319 | _iteration_aborted(false) |
1320 | { |
1321 | } |
1322 | |
1323 | void do_object(oop o); |
1324 | }; |
1325 | |
1326 | // invoked for each object in the heap |
1327 | void IterateOverHeapObjectClosure::do_object(oop o) { |
1328 | // check if iteration has been halted |
1329 | if (is_iteration_aborted()) return; |
1330 | |
1331 | // instanceof check when filtering by klass |
1332 | if (klass() != NULL && !o->is_a(klass())) { |
1333 | return; |
1334 | } |
1335 | // prepare for the calllback |
1336 | CallbackWrapper wrapper(tag_map(), o); |
1337 | |
1338 | // if the object is tagged and we're only interested in untagged objects |
1339 | // then don't invoke the callback. Similiarly, if the object is untagged |
1340 | // and we're only interested in tagged objects we skip the callback. |
1341 | if (wrapper.obj_tag() != 0) { |
1342 | if (object_filter() == JVMTI_HEAP_OBJECT_UNTAGGED) return; |
1343 | } else { |
1344 | if (object_filter() == JVMTI_HEAP_OBJECT_TAGGED) return; |
1345 | } |
1346 | |
1347 | // invoke the agent's callback |
1348 | jvmtiIterationControl control = (*object_callback())(wrapper.klass_tag(), |
1349 | wrapper.obj_size(), |
1350 | wrapper.obj_tag_p(), |
1351 | (void*)user_data()); |
1352 | if (control == JVMTI_ITERATION_ABORT) { |
1353 | set_iteration_aborted(true); |
1354 | } |
1355 | } |
1356 | |
1357 | // An ObjectClosure used to support the IterateThroughHeap function |
1358 | class IterateThroughHeapObjectClosure: public ObjectClosure { |
1359 | private: |
1360 | JvmtiTagMap* _tag_map; |
1361 | Klass* _klass; |
1362 | int _heap_filter; |
1363 | const jvmtiHeapCallbacks* _callbacks; |
1364 | const void* _user_data; |
1365 | |
1366 | // accessor functions |
1367 | JvmtiTagMap* tag_map() const { return _tag_map; } |
1368 | int heap_filter() const { return _heap_filter; } |
1369 | const jvmtiHeapCallbacks* callbacks() const { return _callbacks; } |
1370 | Klass* klass() const { return _klass; } |
1371 | const void* user_data() const { return _user_data; } |
1372 | |
1373 | // indicates if the iteration has been aborted |
1374 | bool _iteration_aborted; |
1375 | bool is_iteration_aborted() const { return _iteration_aborted; } |
1376 | |
1377 | // used to check the visit control flags. If the abort flag is set |
1378 | // then we set the iteration aborted flag so that the iteration completes |
1379 | // without processing any further objects |
1380 | bool check_flags_for_abort(jint flags) { |
1381 | bool is_abort = (flags & JVMTI_VISIT_ABORT) != 0; |
1382 | if (is_abort) { |
1383 | _iteration_aborted = true; |
1384 | } |
1385 | return is_abort; |
1386 | } |
1387 | |
1388 | public: |
1389 | IterateThroughHeapObjectClosure(JvmtiTagMap* tag_map, |
1390 | Klass* klass, |
1391 | int heap_filter, |
1392 | const jvmtiHeapCallbacks* heap_callbacks, |
1393 | const void* user_data) : |
1394 | _tag_map(tag_map), |
1395 | _klass(klass), |
1396 | _heap_filter(heap_filter), |
1397 | _callbacks(heap_callbacks), |
1398 | _user_data(user_data), |
1399 | _iteration_aborted(false) |
1400 | { |
1401 | } |
1402 | |
1403 | void do_object(oop o); |
1404 | }; |
1405 | |
1406 | // invoked for each object in the heap |
1407 | void IterateThroughHeapObjectClosure::do_object(oop obj) { |
1408 | // check if iteration has been halted |
1409 | if (is_iteration_aborted()) return; |
1410 | |
1411 | // apply class filter |
1412 | if (is_filtered_by_klass_filter(obj, klass())) return; |
1413 | |
1414 | // prepare for callback |
1415 | CallbackWrapper wrapper(tag_map(), obj); |
1416 | |
1417 | // check if filtered by the heap filter |
1418 | if (is_filtered_by_heap_filter(wrapper.obj_tag(), wrapper.klass_tag(), heap_filter())) { |
1419 | return; |
1420 | } |
1421 | |
1422 | // for arrays we need the length, otherwise -1 |
1423 | bool is_array = obj->is_array(); |
1424 | int len = is_array ? arrayOop(obj)->length() : -1; |
1425 | |
1426 | // invoke the object callback (if callback is provided) |
1427 | if (callbacks()->heap_iteration_callback != NULL) { |
1428 | jvmtiHeapIterationCallback cb = callbacks()->heap_iteration_callback; |
1429 | jint res = (*cb)(wrapper.klass_tag(), |
1430 | wrapper.obj_size(), |
1431 | wrapper.obj_tag_p(), |
1432 | (jint)len, |
1433 | (void*)user_data()); |
1434 | if (check_flags_for_abort(res)) return; |
1435 | } |
1436 | |
1437 | // for objects and classes we report primitive fields if callback provided |
1438 | if (callbacks()->primitive_field_callback != NULL && obj->is_instance()) { |
1439 | jint res; |
1440 | jvmtiPrimitiveFieldCallback cb = callbacks()->primitive_field_callback; |
1441 | if (obj->klass() == SystemDictionary::Class_klass()) { |
1442 | res = invoke_primitive_field_callback_for_static_fields(&wrapper, |
1443 | obj, |
1444 | cb, |
1445 | (void*)user_data()); |
1446 | } else { |
1447 | res = invoke_primitive_field_callback_for_instance_fields(&wrapper, |
1448 | obj, |
1449 | cb, |
1450 | (void*)user_data()); |
1451 | } |
1452 | if (check_flags_for_abort(res)) return; |
1453 | } |
1454 | |
1455 | // string callback |
1456 | if (!is_array && |
1457 | callbacks()->string_primitive_value_callback != NULL && |
1458 | obj->klass() == SystemDictionary::String_klass()) { |
1459 | jint res = invoke_string_value_callback( |
1460 | callbacks()->string_primitive_value_callback, |
1461 | &wrapper, |
1462 | obj, |
1463 | (void*)user_data() ); |
1464 | if (check_flags_for_abort(res)) return; |
1465 | } |
1466 | |
1467 | // array callback |
1468 | if (is_array && |
1469 | callbacks()->array_primitive_value_callback != NULL && |
1470 | obj->is_typeArray()) { |
1471 | jint res = invoke_array_primitive_value_callback( |
1472 | callbacks()->array_primitive_value_callback, |
1473 | &wrapper, |
1474 | obj, |
1475 | (void*)user_data() ); |
1476 | if (check_flags_for_abort(res)) return; |
1477 | } |
1478 | }; |
1479 | |
1480 | |
1481 | // Deprecated function to iterate over all objects in the heap |
1482 | void JvmtiTagMap::iterate_over_heap(jvmtiHeapObjectFilter object_filter, |
1483 | Klass* klass, |
1484 | jvmtiHeapObjectCallback heap_object_callback, |
1485 | const void* user_data) |
1486 | { |
1487 | MutexLocker ml(Heap_lock); |
1488 | IterateOverHeapObjectClosure blk(this, |
1489 | klass, |
1490 | object_filter, |
1491 | heap_object_callback, |
1492 | user_data); |
1493 | VM_HeapIterateOperation op(&blk); |
1494 | VMThread::execute(&op); |
1495 | } |
1496 | |
1497 | |
1498 | // Iterates over all objects in the heap |
1499 | void JvmtiTagMap::iterate_through_heap(jint heap_filter, |
1500 | Klass* klass, |
1501 | const jvmtiHeapCallbacks* callbacks, |
1502 | const void* user_data) |
1503 | { |
1504 | MutexLocker ml(Heap_lock); |
1505 | IterateThroughHeapObjectClosure blk(this, |
1506 | klass, |
1507 | heap_filter, |
1508 | callbacks, |
1509 | user_data); |
1510 | VM_HeapIterateOperation op(&blk); |
1511 | VMThread::execute(&op); |
1512 | } |
1513 | |
1514 | // support class for get_objects_with_tags |
1515 | |
1516 | class TagObjectCollector : public JvmtiTagHashmapEntryClosure { |
1517 | private: |
1518 | JvmtiEnv* _env; |
1519 | jlong* _tags; |
1520 | jint _tag_count; |
1521 | |
1522 | GrowableArray<jobject>* _object_results; // collected objects (JNI weak refs) |
1523 | GrowableArray<uint64_t>* _tag_results; // collected tags |
1524 | |
1525 | public: |
1526 | TagObjectCollector(JvmtiEnv* env, const jlong* tags, jint tag_count) { |
1527 | _env = env; |
1528 | _tags = (jlong*)tags; |
1529 | _tag_count = tag_count; |
1530 | _object_results = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<jobject>(1,true); |
1531 | _tag_results = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<uint64_t>(1,true); |
1532 | } |
1533 | |
1534 | ~TagObjectCollector() { |
1535 | delete _object_results; |
1536 | delete _tag_results; |
1537 | } |
1538 | |
1539 | // for each tagged object check if the tag value matches |
1540 | // - if it matches then we create a JNI local reference to the object |
1541 | // and record the reference and tag value. |
1542 | // |
1543 | void do_entry(JvmtiTagHashmapEntry* entry) { |
1544 | for (int i=0; i<_tag_count; i++) { |
1545 | if (_tags[i] == entry->tag()) { |
1546 | // The reference in this tag map could be the only (implicitly weak) |
1547 | // reference to that object. If we hand it out, we need to keep it live wrt |
1548 | // SATB marking similar to other j.l.ref.Reference referents. This is |
1549 | // achieved by using a phantom load in the object() accessor. |
1550 | oop o = entry->object(); |
1551 | assert(o != NULL && Universe::heap()->is_in_reserved(o), "sanity check" ); |
1552 | jobject ref = JNIHandles::make_local(JavaThread::current(), o); |
1553 | _object_results->append(ref); |
1554 | _tag_results->append((uint64_t)entry->tag()); |
1555 | } |
1556 | } |
1557 | } |
1558 | |
1559 | // return the results from the collection |
1560 | // |
1561 | jvmtiError result(jint* count_ptr, jobject** object_result_ptr, jlong** tag_result_ptr) { |
1562 | jvmtiError error; |
1563 | int count = _object_results->length(); |
1564 | assert(count >= 0, "sanity check" ); |
1565 | |
1566 | // if object_result_ptr is not NULL then allocate the result and copy |
1567 | // in the object references. |
1568 | if (object_result_ptr != NULL) { |
1569 | error = _env->Allocate(count * sizeof(jobject), (unsigned char**)object_result_ptr); |
1570 | if (error != JVMTI_ERROR_NONE) { |
1571 | return error; |
1572 | } |
1573 | for (int i=0; i<count; i++) { |
1574 | (*object_result_ptr)[i] = _object_results->at(i); |
1575 | } |
1576 | } |
1577 | |
1578 | // if tag_result_ptr is not NULL then allocate the result and copy |
1579 | // in the tag values. |
1580 | if (tag_result_ptr != NULL) { |
1581 | error = _env->Allocate(count * sizeof(jlong), (unsigned char**)tag_result_ptr); |
1582 | if (error != JVMTI_ERROR_NONE) { |
1583 | if (object_result_ptr != NULL) { |
1584 | _env->Deallocate((unsigned char*)object_result_ptr); |
1585 | } |
1586 | return error; |
1587 | } |
1588 | for (int i=0; i<count; i++) { |
1589 | (*tag_result_ptr)[i] = (jlong)_tag_results->at(i); |
1590 | } |
1591 | } |
1592 | |
1593 | *count_ptr = count; |
1594 | return JVMTI_ERROR_NONE; |
1595 | } |
1596 | }; |
1597 | |
1598 | // return the list of objects with the specified tags |
1599 | jvmtiError JvmtiTagMap::get_objects_with_tags(const jlong* tags, |
1600 | jint count, jint* count_ptr, jobject** object_result_ptr, jlong** tag_result_ptr) { |
1601 | |
1602 | TagObjectCollector collector(env(), tags, count); |
1603 | { |
1604 | // iterate over all tagged objects |
1605 | MutexLocker ml(lock()); |
1606 | entry_iterate(&collector); |
1607 | } |
1608 | return collector.result(count_ptr, object_result_ptr, tag_result_ptr); |
1609 | } |
1610 | |
1611 | |
1612 | // ObjectMarker is used to support the marking objects when walking the |
1613 | // heap. |
1614 | // |
1615 | // This implementation uses the existing mark bits in an object for |
1616 | // marking. Objects that are marked must later have their headers restored. |
1617 | // As most objects are unlocked and don't have their identity hash computed |
1618 | // we don't have to save their headers. Instead we save the headers that |
1619 | // are "interesting". Later when the headers are restored this implementation |
1620 | // restores all headers to their initial value and then restores the few |
1621 | // objects that had interesting headers. |
1622 | // |
1623 | // Future work: This implementation currently uses growable arrays to save |
1624 | // the oop and header of interesting objects. As an optimization we could |
1625 | // use the same technique as the GC and make use of the unused area |
1626 | // between top() and end(). |
1627 | // |
1628 | |
1629 | // An ObjectClosure used to restore the mark bits of an object |
1630 | class : public ObjectClosure { |
1631 | public: |
1632 | void (oop o) { |
1633 | if (o != NULL) { |
1634 | markOop mark = o->mark(); |
1635 | if (mark->is_marked()) { |
1636 | o->init_mark(); |
1637 | } |
1638 | } |
1639 | } |
1640 | }; |
1641 | |
1642 | // ObjectMarker provides the mark and visited functions |
1643 | class ObjectMarker : AllStatic { |
1644 | private: |
1645 | // saved headers |
1646 | static GrowableArray<oop>* _saved_oop_stack; |
1647 | static GrowableArray<markOop>* _saved_mark_stack; |
1648 | static bool _needs_reset; // do we need to reset mark bits? |
1649 | |
1650 | public: |
1651 | static void init(); // initialize |
1652 | static void done(); // clean-up |
1653 | |
1654 | static inline void mark(oop o); // mark an object |
1655 | static inline bool visited(oop o); // check if object has been visited |
1656 | |
1657 | static inline bool needs_reset() { return _needs_reset; } |
1658 | static inline void set_needs_reset(bool v) { _needs_reset = v; } |
1659 | }; |
1660 | |
1661 | GrowableArray<oop>* ObjectMarker::_saved_oop_stack = NULL; |
1662 | GrowableArray<markOop>* ObjectMarker::_saved_mark_stack = NULL; |
1663 | bool ObjectMarker::_needs_reset = true; // need to reset mark bits by default |
1664 | |
1665 | // initialize ObjectMarker - prepares for object marking |
1666 | void ObjectMarker::init() { |
1667 | assert(Thread::current()->is_VM_thread(), "must be VMThread" ); |
1668 | |
1669 | // prepare heap for iteration |
1670 | Universe::heap()->ensure_parsability(false); // no need to retire TLABs |
1671 | |
1672 | // create stacks for interesting headers |
1673 | _saved_mark_stack = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<markOop>(4000, true); |
1674 | _saved_oop_stack = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<oop>(4000, true); |
1675 | |
1676 | if (UseBiasedLocking) { |
1677 | BiasedLocking::preserve_marks(); |
1678 | } |
1679 | } |
1680 | |
1681 | // Object marking is done so restore object headers |
1682 | void ObjectMarker::done() { |
1683 | // iterate over all objects and restore the mark bits to |
1684 | // their initial value |
1685 | RestoreMarksClosure blk; |
1686 | if (needs_reset()) { |
1687 | Universe::heap()->object_iterate(&blk); |
1688 | } else { |
1689 | // We don't need to reset mark bits on this call, but reset the |
1690 | // flag to the default for the next call. |
1691 | set_needs_reset(true); |
1692 | } |
1693 | |
1694 | // now restore the interesting headers |
1695 | for (int i = 0; i < _saved_oop_stack->length(); i++) { |
1696 | oop o = _saved_oop_stack->at(i); |
1697 | markOop mark = _saved_mark_stack->at(i); |
1698 | o->set_mark(mark); |
1699 | } |
1700 | |
1701 | if (UseBiasedLocking) { |
1702 | BiasedLocking::restore_marks(); |
1703 | } |
1704 | |
1705 | // free the stacks |
1706 | delete _saved_oop_stack; |
1707 | delete _saved_mark_stack; |
1708 | } |
1709 | |
1710 | // mark an object |
1711 | inline void ObjectMarker::mark(oop o) { |
1712 | assert(Universe::heap()->is_in(o), "sanity check" ); |
1713 | assert(!o->mark()->is_marked(), "should only mark an object once" ); |
1714 | |
1715 | // object's mark word |
1716 | markOop mark = o->mark(); |
1717 | |
1718 | if (mark->must_be_preserved(o)) { |
1719 | _saved_mark_stack->push(mark); |
1720 | _saved_oop_stack->push(o); |
1721 | } |
1722 | |
1723 | // mark the object |
1724 | o->set_mark(markOopDesc::prototype()->set_marked()); |
1725 | } |
1726 | |
1727 | // return true if object is marked |
1728 | inline bool ObjectMarker::visited(oop o) { |
1729 | return o->mark()->is_marked(); |
1730 | } |
1731 | |
1732 | // Stack allocated class to help ensure that ObjectMarker is used |
1733 | // correctly. Constructor initializes ObjectMarker, destructor calls |
1734 | // ObjectMarker's done() function to restore object headers. |
1735 | class ObjectMarkerController : public StackObj { |
1736 | public: |
1737 | ObjectMarkerController() { |
1738 | ObjectMarker::init(); |
1739 | } |
1740 | ~ObjectMarkerController() { |
1741 | ObjectMarker::done(); |
1742 | } |
1743 | }; |
1744 | |
1745 | |
1746 | // helper to map a jvmtiHeapReferenceKind to an old style jvmtiHeapRootKind |
1747 | // (not performance critical as only used for roots) |
1748 | static jvmtiHeapRootKind toJvmtiHeapRootKind(jvmtiHeapReferenceKind kind) { |
1749 | switch (kind) { |
1750 | case JVMTI_HEAP_REFERENCE_JNI_GLOBAL: return JVMTI_HEAP_ROOT_JNI_GLOBAL; |
1751 | case JVMTI_HEAP_REFERENCE_SYSTEM_CLASS: return JVMTI_HEAP_ROOT_SYSTEM_CLASS; |
1752 | case JVMTI_HEAP_REFERENCE_MONITOR: return JVMTI_HEAP_ROOT_MONITOR; |
1753 | case JVMTI_HEAP_REFERENCE_STACK_LOCAL: return JVMTI_HEAP_ROOT_STACK_LOCAL; |
1754 | case JVMTI_HEAP_REFERENCE_JNI_LOCAL: return JVMTI_HEAP_ROOT_JNI_LOCAL; |
1755 | case JVMTI_HEAP_REFERENCE_THREAD: return JVMTI_HEAP_ROOT_THREAD; |
1756 | case JVMTI_HEAP_REFERENCE_OTHER: return JVMTI_HEAP_ROOT_OTHER; |
1757 | default: ShouldNotReachHere(); return JVMTI_HEAP_ROOT_OTHER; |
1758 | } |
1759 | } |
1760 | |
1761 | // Base class for all heap walk contexts. The base class maintains a flag |
1762 | // to indicate if the context is valid or not. |
1763 | class HeapWalkContext { |
1764 | private: |
1765 | bool _valid; |
1766 | public: |
1767 | HeapWalkContext(bool valid) { _valid = valid; } |
1768 | void invalidate() { _valid = false; } |
1769 | bool is_valid() const { return _valid; } |
1770 | }; |
1771 | |
1772 | // A basic heap walk context for the deprecated heap walking functions. |
1773 | // The context for a basic heap walk are the callbacks and fields used by |
1774 | // the referrer caching scheme. |
1775 | class BasicHeapWalkContext: public HeapWalkContext { |
1776 | private: |
1777 | jvmtiHeapRootCallback _heap_root_callback; |
1778 | jvmtiStackReferenceCallback _stack_ref_callback; |
1779 | jvmtiObjectReferenceCallback _object_ref_callback; |
1780 | |
1781 | // used for caching |
1782 | oop _last_referrer; |
1783 | jlong _last_referrer_tag; |
1784 | |
1785 | public: |
1786 | BasicHeapWalkContext() : HeapWalkContext(false) { } |
1787 | |
1788 | BasicHeapWalkContext(jvmtiHeapRootCallback heap_root_callback, |
1789 | jvmtiStackReferenceCallback stack_ref_callback, |
1790 | jvmtiObjectReferenceCallback object_ref_callback) : |
1791 | HeapWalkContext(true), |
1792 | _heap_root_callback(heap_root_callback), |
1793 | _stack_ref_callback(stack_ref_callback), |
1794 | _object_ref_callback(object_ref_callback), |
1795 | _last_referrer(NULL), |
1796 | _last_referrer_tag(0) { |
1797 | } |
1798 | |
1799 | // accessors |
1800 | jvmtiHeapRootCallback heap_root_callback() const { return _heap_root_callback; } |
1801 | jvmtiStackReferenceCallback stack_ref_callback() const { return _stack_ref_callback; } |
1802 | jvmtiObjectReferenceCallback object_ref_callback() const { return _object_ref_callback; } |
1803 | |
1804 | oop last_referrer() const { return _last_referrer; } |
1805 | void set_last_referrer(oop referrer) { _last_referrer = referrer; } |
1806 | jlong last_referrer_tag() const { return _last_referrer_tag; } |
1807 | void set_last_referrer_tag(jlong value) { _last_referrer_tag = value; } |
1808 | }; |
1809 | |
1810 | // The advanced heap walk context for the FollowReferences functions. |
1811 | // The context is the callbacks, and the fields used for filtering. |
1812 | class AdvancedHeapWalkContext: public HeapWalkContext { |
1813 | private: |
1814 | jint _heap_filter; |
1815 | Klass* _klass_filter; |
1816 | const jvmtiHeapCallbacks* _heap_callbacks; |
1817 | |
1818 | public: |
1819 | AdvancedHeapWalkContext() : HeapWalkContext(false) { } |
1820 | |
1821 | AdvancedHeapWalkContext(jint heap_filter, |
1822 | Klass* klass_filter, |
1823 | const jvmtiHeapCallbacks* heap_callbacks) : |
1824 | HeapWalkContext(true), |
1825 | _heap_filter(heap_filter), |
1826 | _klass_filter(klass_filter), |
1827 | _heap_callbacks(heap_callbacks) { |
1828 | } |
1829 | |
1830 | // accessors |
1831 | jint heap_filter() const { return _heap_filter; } |
1832 | Klass* klass_filter() const { return _klass_filter; } |
1833 | |
1834 | const jvmtiHeapReferenceCallback heap_reference_callback() const { |
1835 | return _heap_callbacks->heap_reference_callback; |
1836 | }; |
1837 | const jvmtiPrimitiveFieldCallback primitive_field_callback() const { |
1838 | return _heap_callbacks->primitive_field_callback; |
1839 | } |
1840 | const jvmtiArrayPrimitiveValueCallback array_primitive_value_callback() const { |
1841 | return _heap_callbacks->array_primitive_value_callback; |
1842 | } |
1843 | const jvmtiStringPrimitiveValueCallback string_primitive_value_callback() const { |
1844 | return _heap_callbacks->string_primitive_value_callback; |
1845 | } |
1846 | }; |
1847 | |
1848 | // The CallbackInvoker is a class with static functions that the heap walk can call |
1849 | // into to invoke callbacks. It works in one of two modes. The "basic" mode is |
1850 | // used for the deprecated IterateOverReachableObjects functions. The "advanced" |
1851 | // mode is for the newer FollowReferences function which supports a lot of |
1852 | // additional callbacks. |
1853 | class CallbackInvoker : AllStatic { |
1854 | private: |
1855 | // heap walk styles |
1856 | enum { basic, advanced }; |
1857 | static int _heap_walk_type; |
1858 | static bool is_basic_heap_walk() { return _heap_walk_type == basic; } |
1859 | static bool is_advanced_heap_walk() { return _heap_walk_type == advanced; } |
1860 | |
1861 | // context for basic style heap walk |
1862 | static BasicHeapWalkContext _basic_context; |
1863 | static BasicHeapWalkContext* basic_context() { |
1864 | assert(_basic_context.is_valid(), "invalid" ); |
1865 | return &_basic_context; |
1866 | } |
1867 | |
1868 | // context for advanced style heap walk |
1869 | static AdvancedHeapWalkContext _advanced_context; |
1870 | static AdvancedHeapWalkContext* advanced_context() { |
1871 | assert(_advanced_context.is_valid(), "invalid" ); |
1872 | return &_advanced_context; |
1873 | } |
1874 | |
1875 | // context needed for all heap walks |
1876 | static JvmtiTagMap* _tag_map; |
1877 | static const void* _user_data; |
1878 | static GrowableArray<oop>* _visit_stack; |
1879 | |
1880 | // accessors |
1881 | static JvmtiTagMap* tag_map() { return _tag_map; } |
1882 | static const void* user_data() { return _user_data; } |
1883 | static GrowableArray<oop>* visit_stack() { return _visit_stack; } |
1884 | |
1885 | // if the object hasn't been visited then push it onto the visit stack |
1886 | // so that it will be visited later |
1887 | static inline bool check_for_visit(oop obj) { |
1888 | if (!ObjectMarker::visited(obj)) visit_stack()->push(obj); |
1889 | return true; |
1890 | } |
1891 | |
1892 | // invoke basic style callbacks |
1893 | static inline bool invoke_basic_heap_root_callback |
1894 | (jvmtiHeapRootKind root_kind, oop obj); |
1895 | static inline bool invoke_basic_stack_ref_callback |
1896 | (jvmtiHeapRootKind root_kind, jlong thread_tag, jint depth, jmethodID method, |
1897 | int slot, oop obj); |
1898 | static inline bool invoke_basic_object_reference_callback |
1899 | (jvmtiObjectReferenceKind ref_kind, oop referrer, oop referree, jint index); |
1900 | |
1901 | // invoke advanced style callbacks |
1902 | static inline bool invoke_advanced_heap_root_callback |
1903 | (jvmtiHeapReferenceKind ref_kind, oop obj); |
1904 | static inline bool invoke_advanced_stack_ref_callback |
1905 | (jvmtiHeapReferenceKind ref_kind, jlong thread_tag, jlong tid, int depth, |
1906 | jmethodID method, jlocation bci, jint slot, oop obj); |
1907 | static inline bool invoke_advanced_object_reference_callback |
1908 | (jvmtiHeapReferenceKind ref_kind, oop referrer, oop referree, jint index); |
1909 | |
1910 | // used to report the value of primitive fields |
1911 | static inline bool report_primitive_field |
1912 | (jvmtiHeapReferenceKind ref_kind, oop obj, jint index, address addr, char type); |
1913 | |
1914 | public: |
1915 | // initialize for basic mode |
1916 | static void initialize_for_basic_heap_walk(JvmtiTagMap* tag_map, |
1917 | GrowableArray<oop>* visit_stack, |
1918 | const void* user_data, |
1919 | BasicHeapWalkContext context); |
1920 | |
1921 | // initialize for advanced mode |
1922 | static void initialize_for_advanced_heap_walk(JvmtiTagMap* tag_map, |
1923 | GrowableArray<oop>* visit_stack, |
1924 | const void* user_data, |
1925 | AdvancedHeapWalkContext context); |
1926 | |
1927 | // functions to report roots |
1928 | static inline bool report_simple_root(jvmtiHeapReferenceKind kind, oop o); |
1929 | static inline bool report_jni_local_root(jlong thread_tag, jlong tid, jint depth, |
1930 | jmethodID m, oop o); |
1931 | static inline bool report_stack_ref_root(jlong thread_tag, jlong tid, jint depth, |
1932 | jmethodID method, jlocation bci, jint slot, oop o); |
1933 | |
1934 | // functions to report references |
1935 | static inline bool report_array_element_reference(oop referrer, oop referree, jint index); |
1936 | static inline bool report_class_reference(oop referrer, oop referree); |
1937 | static inline bool report_class_loader_reference(oop referrer, oop referree); |
1938 | static inline bool report_signers_reference(oop referrer, oop referree); |
1939 | static inline bool report_protection_domain_reference(oop referrer, oop referree); |
1940 | static inline bool report_superclass_reference(oop referrer, oop referree); |
1941 | static inline bool report_interface_reference(oop referrer, oop referree); |
1942 | static inline bool report_static_field_reference(oop referrer, oop referree, jint slot); |
1943 | static inline bool report_field_reference(oop referrer, oop referree, jint slot); |
1944 | static inline bool report_constant_pool_reference(oop referrer, oop referree, jint index); |
1945 | static inline bool report_primitive_array_values(oop array); |
1946 | static inline bool report_string_value(oop str); |
1947 | static inline bool report_primitive_instance_field(oop o, jint index, address value, char type); |
1948 | static inline bool report_primitive_static_field(oop o, jint index, address value, char type); |
1949 | }; |
1950 | |
1951 | // statics |
1952 | int CallbackInvoker::_heap_walk_type; |
1953 | BasicHeapWalkContext CallbackInvoker::_basic_context; |
1954 | AdvancedHeapWalkContext CallbackInvoker::_advanced_context; |
1955 | JvmtiTagMap* CallbackInvoker::_tag_map; |
1956 | const void* CallbackInvoker::_user_data; |
1957 | GrowableArray<oop>* CallbackInvoker::_visit_stack; |
1958 | |
1959 | // initialize for basic heap walk (IterateOverReachableObjects et al) |
1960 | void CallbackInvoker::initialize_for_basic_heap_walk(JvmtiTagMap* tag_map, |
1961 | GrowableArray<oop>* visit_stack, |
1962 | const void* user_data, |
1963 | BasicHeapWalkContext context) { |
1964 | _tag_map = tag_map; |
1965 | _visit_stack = visit_stack; |
1966 | _user_data = user_data; |
1967 | _basic_context = context; |
1968 | _advanced_context.invalidate(); // will trigger assertion if used |
1969 | _heap_walk_type = basic; |
1970 | } |
1971 | |
1972 | // initialize for advanced heap walk (FollowReferences) |
1973 | void CallbackInvoker::initialize_for_advanced_heap_walk(JvmtiTagMap* tag_map, |
1974 | GrowableArray<oop>* visit_stack, |
1975 | const void* user_data, |
1976 | AdvancedHeapWalkContext context) { |
1977 | _tag_map = tag_map; |
1978 | _visit_stack = visit_stack; |
1979 | _user_data = user_data; |
1980 | _advanced_context = context; |
1981 | _basic_context.invalidate(); // will trigger assertion if used |
1982 | _heap_walk_type = advanced; |
1983 | } |
1984 | |
1985 | |
1986 | // invoke basic style heap root callback |
1987 | inline bool CallbackInvoker::invoke_basic_heap_root_callback(jvmtiHeapRootKind root_kind, oop obj) { |
1988 | // if we heap roots should be reported |
1989 | jvmtiHeapRootCallback cb = basic_context()->heap_root_callback(); |
1990 | if (cb == NULL) { |
1991 | return check_for_visit(obj); |
1992 | } |
1993 | |
1994 | CallbackWrapper wrapper(tag_map(), obj); |
1995 | jvmtiIterationControl control = (*cb)(root_kind, |
1996 | wrapper.klass_tag(), |
1997 | wrapper.obj_size(), |
1998 | wrapper.obj_tag_p(), |
1999 | (void*)user_data()); |
2000 | // push root to visit stack when following references |
2001 | if (control == JVMTI_ITERATION_CONTINUE && |
2002 | basic_context()->object_ref_callback() != NULL) { |
2003 | visit_stack()->push(obj); |
2004 | } |
2005 | return control != JVMTI_ITERATION_ABORT; |
2006 | } |
2007 | |
2008 | // invoke basic style stack ref callback |
2009 | inline bool CallbackInvoker::invoke_basic_stack_ref_callback(jvmtiHeapRootKind root_kind, |
2010 | jlong thread_tag, |
2011 | jint depth, |
2012 | jmethodID method, |
2013 | int slot, |
2014 | oop obj) { |
2015 | // if we stack refs should be reported |
2016 | jvmtiStackReferenceCallback cb = basic_context()->stack_ref_callback(); |
2017 | if (cb == NULL) { |
2018 | return check_for_visit(obj); |
2019 | } |
2020 | |
2021 | CallbackWrapper wrapper(tag_map(), obj); |
2022 | jvmtiIterationControl control = (*cb)(root_kind, |
2023 | wrapper.klass_tag(), |
2024 | wrapper.obj_size(), |
2025 | wrapper.obj_tag_p(), |
2026 | thread_tag, |
2027 | depth, |
2028 | method, |
2029 | slot, |
2030 | (void*)user_data()); |
2031 | // push root to visit stack when following references |
2032 | if (control == JVMTI_ITERATION_CONTINUE && |
2033 | basic_context()->object_ref_callback() != NULL) { |
2034 | visit_stack()->push(obj); |
2035 | } |
2036 | return control != JVMTI_ITERATION_ABORT; |
2037 | } |
2038 | |
2039 | // invoke basic style object reference callback |
2040 | inline bool CallbackInvoker::invoke_basic_object_reference_callback(jvmtiObjectReferenceKind ref_kind, |
2041 | oop referrer, |
2042 | oop referree, |
2043 | jint index) { |
2044 | |
2045 | BasicHeapWalkContext* context = basic_context(); |
2046 | |
2047 | // callback requires the referrer's tag. If it's the same referrer |
2048 | // as the last call then we use the cached value. |
2049 | jlong referrer_tag; |
2050 | if (referrer == context->last_referrer()) { |
2051 | referrer_tag = context->last_referrer_tag(); |
2052 | } else { |
2053 | referrer_tag = tag_for(tag_map(), referrer); |
2054 | } |
2055 | |
2056 | // do the callback |
2057 | CallbackWrapper wrapper(tag_map(), referree); |
2058 | jvmtiObjectReferenceCallback cb = context->object_ref_callback(); |
2059 | jvmtiIterationControl control = (*cb)(ref_kind, |
2060 | wrapper.klass_tag(), |
2061 | wrapper.obj_size(), |
2062 | wrapper.obj_tag_p(), |
2063 | referrer_tag, |
2064 | index, |
2065 | (void*)user_data()); |
2066 | |
2067 | // record referrer and referrer tag. For self-references record the |
2068 | // tag value from the callback as this might differ from referrer_tag. |
2069 | context->set_last_referrer(referrer); |
2070 | if (referrer == referree) { |
2071 | context->set_last_referrer_tag(*wrapper.obj_tag_p()); |
2072 | } else { |
2073 | context->set_last_referrer_tag(referrer_tag); |
2074 | } |
2075 | |
2076 | if (control == JVMTI_ITERATION_CONTINUE) { |
2077 | return check_for_visit(referree); |
2078 | } else { |
2079 | return control != JVMTI_ITERATION_ABORT; |
2080 | } |
2081 | } |
2082 | |
2083 | // invoke advanced style heap root callback |
2084 | inline bool CallbackInvoker::invoke_advanced_heap_root_callback(jvmtiHeapReferenceKind ref_kind, |
2085 | oop obj) { |
2086 | AdvancedHeapWalkContext* context = advanced_context(); |
2087 | |
2088 | // check that callback is provided |
2089 | jvmtiHeapReferenceCallback cb = context->heap_reference_callback(); |
2090 | if (cb == NULL) { |
2091 | return check_for_visit(obj); |
2092 | } |
2093 | |
2094 | // apply class filter |
2095 | if (is_filtered_by_klass_filter(obj, context->klass_filter())) { |
2096 | return check_for_visit(obj); |
2097 | } |
2098 | |
2099 | // setup the callback wrapper |
2100 | CallbackWrapper wrapper(tag_map(), obj); |
2101 | |
2102 | // apply tag filter |
2103 | if (is_filtered_by_heap_filter(wrapper.obj_tag(), |
2104 | wrapper.klass_tag(), |
2105 | context->heap_filter())) { |
2106 | return check_for_visit(obj); |
2107 | } |
2108 | |
2109 | // for arrays we need the length, otherwise -1 |
2110 | jint len = (jint)(obj->is_array() ? arrayOop(obj)->length() : -1); |
2111 | |
2112 | // invoke the callback |
2113 | jint res = (*cb)(ref_kind, |
2114 | NULL, // referrer info |
2115 | wrapper.klass_tag(), |
2116 | 0, // referrer_class_tag is 0 for heap root |
2117 | wrapper.obj_size(), |
2118 | wrapper.obj_tag_p(), |
2119 | NULL, // referrer_tag_p |
2120 | len, |
2121 | (void*)user_data()); |
2122 | if (res & JVMTI_VISIT_ABORT) { |
2123 | return false;// referrer class tag |
2124 | } |
2125 | if (res & JVMTI_VISIT_OBJECTS) { |
2126 | check_for_visit(obj); |
2127 | } |
2128 | return true; |
2129 | } |
2130 | |
2131 | // report a reference from a thread stack to an object |
2132 | inline bool CallbackInvoker::invoke_advanced_stack_ref_callback(jvmtiHeapReferenceKind ref_kind, |
2133 | jlong thread_tag, |
2134 | jlong tid, |
2135 | int depth, |
2136 | jmethodID method, |
2137 | jlocation bci, |
2138 | jint slot, |
2139 | oop obj) { |
2140 | AdvancedHeapWalkContext* context = advanced_context(); |
2141 | |
2142 | // check that callback is provider |
2143 | jvmtiHeapReferenceCallback cb = context->heap_reference_callback(); |
2144 | if (cb == NULL) { |
2145 | return check_for_visit(obj); |
2146 | } |
2147 | |
2148 | // apply class filter |
2149 | if (is_filtered_by_klass_filter(obj, context->klass_filter())) { |
2150 | return check_for_visit(obj); |
2151 | } |
2152 | |
2153 | // setup the callback wrapper |
2154 | CallbackWrapper wrapper(tag_map(), obj); |
2155 | |
2156 | // apply tag filter |
2157 | if (is_filtered_by_heap_filter(wrapper.obj_tag(), |
2158 | wrapper.klass_tag(), |
2159 | context->heap_filter())) { |
2160 | return check_for_visit(obj); |
2161 | } |
2162 | |
2163 | // setup the referrer info |
2164 | jvmtiHeapReferenceInfo reference_info; |
2165 | reference_info.stack_local.thread_tag = thread_tag; |
2166 | reference_info.stack_local.thread_id = tid; |
2167 | reference_info.stack_local.depth = depth; |
2168 | reference_info.stack_local.method = method; |
2169 | reference_info.stack_local.location = bci; |
2170 | reference_info.stack_local.slot = slot; |
2171 | |
2172 | // for arrays we need the length, otherwise -1 |
2173 | jint len = (jint)(obj->is_array() ? arrayOop(obj)->length() : -1); |
2174 | |
2175 | // call into the agent |
2176 | int res = (*cb)(ref_kind, |
2177 | &reference_info, |
2178 | wrapper.klass_tag(), |
2179 | 0, // referrer_class_tag is 0 for heap root (stack) |
2180 | wrapper.obj_size(), |
2181 | wrapper.obj_tag_p(), |
2182 | NULL, // referrer_tag is 0 for root |
2183 | len, |
2184 | (void*)user_data()); |
2185 | |
2186 | if (res & JVMTI_VISIT_ABORT) { |
2187 | return false; |
2188 | } |
2189 | if (res & JVMTI_VISIT_OBJECTS) { |
2190 | check_for_visit(obj); |
2191 | } |
2192 | return true; |
2193 | } |
2194 | |
2195 | // This mask is used to pass reference_info to a jvmtiHeapReferenceCallback |
2196 | // only for ref_kinds defined by the JVM TI spec. Otherwise, NULL is passed. |
2197 | #define REF_INFO_MASK ((1 << JVMTI_HEAP_REFERENCE_FIELD) \ |
2198 | | (1 << JVMTI_HEAP_REFERENCE_STATIC_FIELD) \ |
2199 | | (1 << JVMTI_HEAP_REFERENCE_ARRAY_ELEMENT) \ |
2200 | | (1 << JVMTI_HEAP_REFERENCE_CONSTANT_POOL) \ |
2201 | | (1 << JVMTI_HEAP_REFERENCE_STACK_LOCAL) \ |
2202 | | (1 << JVMTI_HEAP_REFERENCE_JNI_LOCAL)) |
2203 | |
2204 | // invoke the object reference callback to report a reference |
2205 | inline bool CallbackInvoker::invoke_advanced_object_reference_callback(jvmtiHeapReferenceKind ref_kind, |
2206 | oop referrer, |
2207 | oop obj, |
2208 | jint index) |
2209 | { |
2210 | // field index is only valid field in reference_info |
2211 | static jvmtiHeapReferenceInfo reference_info = { 0 }; |
2212 | |
2213 | AdvancedHeapWalkContext* context = advanced_context(); |
2214 | |
2215 | // check that callback is provider |
2216 | jvmtiHeapReferenceCallback cb = context->heap_reference_callback(); |
2217 | if (cb == NULL) { |
2218 | return check_for_visit(obj); |
2219 | } |
2220 | |
2221 | // apply class filter |
2222 | if (is_filtered_by_klass_filter(obj, context->klass_filter())) { |
2223 | return check_for_visit(obj); |
2224 | } |
2225 | |
2226 | // setup the callback wrapper |
2227 | TwoOopCallbackWrapper wrapper(tag_map(), referrer, obj); |
2228 | |
2229 | // apply tag filter |
2230 | if (is_filtered_by_heap_filter(wrapper.obj_tag(), |
2231 | wrapper.klass_tag(), |
2232 | context->heap_filter())) { |
2233 | return check_for_visit(obj); |
2234 | } |
2235 | |
2236 | // field index is only valid field in reference_info |
2237 | reference_info.field.index = index; |
2238 | |
2239 | // for arrays we need the length, otherwise -1 |
2240 | jint len = (jint)(obj->is_array() ? arrayOop(obj)->length() : -1); |
2241 | |
2242 | // invoke the callback |
2243 | int res = (*cb)(ref_kind, |
2244 | (REF_INFO_MASK & (1 << ref_kind)) ? &reference_info : NULL, |
2245 | wrapper.klass_tag(), |
2246 | wrapper.referrer_klass_tag(), |
2247 | wrapper.obj_size(), |
2248 | wrapper.obj_tag_p(), |
2249 | wrapper.referrer_tag_p(), |
2250 | len, |
2251 | (void*)user_data()); |
2252 | |
2253 | if (res & JVMTI_VISIT_ABORT) { |
2254 | return false; |
2255 | } |
2256 | if (res & JVMTI_VISIT_OBJECTS) { |
2257 | check_for_visit(obj); |
2258 | } |
2259 | return true; |
2260 | } |
2261 | |
2262 | // report a "simple root" |
2263 | inline bool CallbackInvoker::report_simple_root(jvmtiHeapReferenceKind kind, oop obj) { |
2264 | assert(kind != JVMTI_HEAP_REFERENCE_STACK_LOCAL && |
2265 | kind != JVMTI_HEAP_REFERENCE_JNI_LOCAL, "not a simple root" ); |
2266 | |
2267 | if (is_basic_heap_walk()) { |
2268 | // map to old style root kind |
2269 | jvmtiHeapRootKind root_kind = toJvmtiHeapRootKind(kind); |
2270 | return invoke_basic_heap_root_callback(root_kind, obj); |
2271 | } else { |
2272 | assert(is_advanced_heap_walk(), "wrong heap walk type" ); |
2273 | return invoke_advanced_heap_root_callback(kind, obj); |
2274 | } |
2275 | } |
2276 | |
2277 | |
2278 | // invoke the primitive array values |
2279 | inline bool CallbackInvoker::report_primitive_array_values(oop obj) { |
2280 | assert(obj->is_typeArray(), "not a primitive array" ); |
2281 | |
2282 | AdvancedHeapWalkContext* context = advanced_context(); |
2283 | assert(context->array_primitive_value_callback() != NULL, "no callback" ); |
2284 | |
2285 | // apply class filter |
2286 | if (is_filtered_by_klass_filter(obj, context->klass_filter())) { |
2287 | return true; |
2288 | } |
2289 | |
2290 | CallbackWrapper wrapper(tag_map(), obj); |
2291 | |
2292 | // apply tag filter |
2293 | if (is_filtered_by_heap_filter(wrapper.obj_tag(), |
2294 | wrapper.klass_tag(), |
2295 | context->heap_filter())) { |
2296 | return true; |
2297 | } |
2298 | |
2299 | // invoke the callback |
2300 | int res = invoke_array_primitive_value_callback(context->array_primitive_value_callback(), |
2301 | &wrapper, |
2302 | obj, |
2303 | (void*)user_data()); |
2304 | return (!(res & JVMTI_VISIT_ABORT)); |
2305 | } |
2306 | |
2307 | // invoke the string value callback |
2308 | inline bool CallbackInvoker::report_string_value(oop str) { |
2309 | assert(str->klass() == SystemDictionary::String_klass(), "not a string" ); |
2310 | |
2311 | AdvancedHeapWalkContext* context = advanced_context(); |
2312 | assert(context->string_primitive_value_callback() != NULL, "no callback" ); |
2313 | |
2314 | // apply class filter |
2315 | if (is_filtered_by_klass_filter(str, context->klass_filter())) { |
2316 | return true; |
2317 | } |
2318 | |
2319 | CallbackWrapper wrapper(tag_map(), str); |
2320 | |
2321 | // apply tag filter |
2322 | if (is_filtered_by_heap_filter(wrapper.obj_tag(), |
2323 | wrapper.klass_tag(), |
2324 | context->heap_filter())) { |
2325 | return true; |
2326 | } |
2327 | |
2328 | // invoke the callback |
2329 | int res = invoke_string_value_callback(context->string_primitive_value_callback(), |
2330 | &wrapper, |
2331 | str, |
2332 | (void*)user_data()); |
2333 | return (!(res & JVMTI_VISIT_ABORT)); |
2334 | } |
2335 | |
2336 | // invoke the primitive field callback |
2337 | inline bool CallbackInvoker::report_primitive_field(jvmtiHeapReferenceKind ref_kind, |
2338 | oop obj, |
2339 | jint index, |
2340 | address addr, |
2341 | char type) |
2342 | { |
2343 | // for primitive fields only the index will be set |
2344 | static jvmtiHeapReferenceInfo reference_info = { 0 }; |
2345 | |
2346 | AdvancedHeapWalkContext* context = advanced_context(); |
2347 | assert(context->primitive_field_callback() != NULL, "no callback" ); |
2348 | |
2349 | // apply class filter |
2350 | if (is_filtered_by_klass_filter(obj, context->klass_filter())) { |
2351 | return true; |
2352 | } |
2353 | |
2354 | CallbackWrapper wrapper(tag_map(), obj); |
2355 | |
2356 | // apply tag filter |
2357 | if (is_filtered_by_heap_filter(wrapper.obj_tag(), |
2358 | wrapper.klass_tag(), |
2359 | context->heap_filter())) { |
2360 | return true; |
2361 | } |
2362 | |
2363 | // the field index in the referrer |
2364 | reference_info.field.index = index; |
2365 | |
2366 | // map the type |
2367 | jvmtiPrimitiveType value_type = (jvmtiPrimitiveType)type; |
2368 | |
2369 | // setup the jvalue |
2370 | jvalue value; |
2371 | copy_to_jvalue(&value, addr, value_type); |
2372 | |
2373 | jvmtiPrimitiveFieldCallback cb = context->primitive_field_callback(); |
2374 | int res = (*cb)(ref_kind, |
2375 | &reference_info, |
2376 | wrapper.klass_tag(), |
2377 | wrapper.obj_tag_p(), |
2378 | value, |
2379 | value_type, |
2380 | (void*)user_data()); |
2381 | return (!(res & JVMTI_VISIT_ABORT)); |
2382 | } |
2383 | |
2384 | |
2385 | // instance field |
2386 | inline bool CallbackInvoker::report_primitive_instance_field(oop obj, |
2387 | jint index, |
2388 | address value, |
2389 | char type) { |
2390 | return report_primitive_field(JVMTI_HEAP_REFERENCE_FIELD, |
2391 | obj, |
2392 | index, |
2393 | value, |
2394 | type); |
2395 | } |
2396 | |
2397 | // static field |
2398 | inline bool CallbackInvoker::report_primitive_static_field(oop obj, |
2399 | jint index, |
2400 | address value, |
2401 | char type) { |
2402 | return report_primitive_field(JVMTI_HEAP_REFERENCE_STATIC_FIELD, |
2403 | obj, |
2404 | index, |
2405 | value, |
2406 | type); |
2407 | } |
2408 | |
2409 | // report a JNI local (root object) to the profiler |
2410 | inline bool CallbackInvoker::report_jni_local_root(jlong thread_tag, jlong tid, jint depth, jmethodID m, oop obj) { |
2411 | if (is_basic_heap_walk()) { |
2412 | return invoke_basic_stack_ref_callback(JVMTI_HEAP_ROOT_JNI_LOCAL, |
2413 | thread_tag, |
2414 | depth, |
2415 | m, |
2416 | -1, |
2417 | obj); |
2418 | } else { |
2419 | return invoke_advanced_stack_ref_callback(JVMTI_HEAP_REFERENCE_JNI_LOCAL, |
2420 | thread_tag, tid, |
2421 | depth, |
2422 | m, |
2423 | (jlocation)-1, |
2424 | -1, |
2425 | obj); |
2426 | } |
2427 | } |
2428 | |
2429 | |
2430 | // report a local (stack reference, root object) |
2431 | inline bool CallbackInvoker::report_stack_ref_root(jlong thread_tag, |
2432 | jlong tid, |
2433 | jint depth, |
2434 | jmethodID method, |
2435 | jlocation bci, |
2436 | jint slot, |
2437 | oop obj) { |
2438 | if (is_basic_heap_walk()) { |
2439 | return invoke_basic_stack_ref_callback(JVMTI_HEAP_ROOT_STACK_LOCAL, |
2440 | thread_tag, |
2441 | depth, |
2442 | method, |
2443 | slot, |
2444 | obj); |
2445 | } else { |
2446 | return invoke_advanced_stack_ref_callback(JVMTI_HEAP_REFERENCE_STACK_LOCAL, |
2447 | thread_tag, |
2448 | tid, |
2449 | depth, |
2450 | method, |
2451 | bci, |
2452 | slot, |
2453 | obj); |
2454 | } |
2455 | } |
2456 | |
2457 | // report an object referencing a class. |
2458 | inline bool CallbackInvoker::report_class_reference(oop referrer, oop referree) { |
2459 | if (is_basic_heap_walk()) { |
2460 | return invoke_basic_object_reference_callback(JVMTI_REFERENCE_CLASS, referrer, referree, -1); |
2461 | } else { |
2462 | return invoke_advanced_object_reference_callback(JVMTI_HEAP_REFERENCE_CLASS, referrer, referree, -1); |
2463 | } |
2464 | } |
2465 | |
2466 | // report a class referencing its class loader. |
2467 | inline bool CallbackInvoker::report_class_loader_reference(oop referrer, oop referree) { |
2468 | if (is_basic_heap_walk()) { |
2469 | return invoke_basic_object_reference_callback(JVMTI_REFERENCE_CLASS_LOADER, referrer, referree, -1); |
2470 | } else { |
2471 | return invoke_advanced_object_reference_callback(JVMTI_HEAP_REFERENCE_CLASS_LOADER, referrer, referree, -1); |
2472 | } |
2473 | } |
2474 | |
2475 | // report a class referencing its signers. |
2476 | inline bool CallbackInvoker::report_signers_reference(oop referrer, oop referree) { |
2477 | if (is_basic_heap_walk()) { |
2478 | return invoke_basic_object_reference_callback(JVMTI_REFERENCE_SIGNERS, referrer, referree, -1); |
2479 | } else { |
2480 | return invoke_advanced_object_reference_callback(JVMTI_HEAP_REFERENCE_SIGNERS, referrer, referree, -1); |
2481 | } |
2482 | } |
2483 | |
2484 | // report a class referencing its protection domain.. |
2485 | inline bool CallbackInvoker::report_protection_domain_reference(oop referrer, oop referree) { |
2486 | if (is_basic_heap_walk()) { |
2487 | return invoke_basic_object_reference_callback(JVMTI_REFERENCE_PROTECTION_DOMAIN, referrer, referree, -1); |
2488 | } else { |
2489 | return invoke_advanced_object_reference_callback(JVMTI_HEAP_REFERENCE_PROTECTION_DOMAIN, referrer, referree, -1); |
2490 | } |
2491 | } |
2492 | |
2493 | // report a class referencing its superclass. |
2494 | inline bool CallbackInvoker::report_superclass_reference(oop referrer, oop referree) { |
2495 | if (is_basic_heap_walk()) { |
2496 | // Send this to be consistent with past implementation |
2497 | return invoke_basic_object_reference_callback(JVMTI_REFERENCE_CLASS, referrer, referree, -1); |
2498 | } else { |
2499 | return invoke_advanced_object_reference_callback(JVMTI_HEAP_REFERENCE_SUPERCLASS, referrer, referree, -1); |
2500 | } |
2501 | } |
2502 | |
2503 | // report a class referencing one of its interfaces. |
2504 | inline bool CallbackInvoker::report_interface_reference(oop referrer, oop referree) { |
2505 | if (is_basic_heap_walk()) { |
2506 | return invoke_basic_object_reference_callback(JVMTI_REFERENCE_INTERFACE, referrer, referree, -1); |
2507 | } else { |
2508 | return invoke_advanced_object_reference_callback(JVMTI_HEAP_REFERENCE_INTERFACE, referrer, referree, -1); |
2509 | } |
2510 | } |
2511 | |
2512 | // report a class referencing one of its static fields. |
2513 | inline bool CallbackInvoker::report_static_field_reference(oop referrer, oop referree, jint slot) { |
2514 | if (is_basic_heap_walk()) { |
2515 | return invoke_basic_object_reference_callback(JVMTI_REFERENCE_STATIC_FIELD, referrer, referree, slot); |
2516 | } else { |
2517 | return invoke_advanced_object_reference_callback(JVMTI_HEAP_REFERENCE_STATIC_FIELD, referrer, referree, slot); |
2518 | } |
2519 | } |
2520 | |
2521 | // report an array referencing an element object |
2522 | inline bool CallbackInvoker::report_array_element_reference(oop referrer, oop referree, jint index) { |
2523 | if (is_basic_heap_walk()) { |
2524 | return invoke_basic_object_reference_callback(JVMTI_REFERENCE_ARRAY_ELEMENT, referrer, referree, index); |
2525 | } else { |
2526 | return invoke_advanced_object_reference_callback(JVMTI_HEAP_REFERENCE_ARRAY_ELEMENT, referrer, referree, index); |
2527 | } |
2528 | } |
2529 | |
2530 | // report an object referencing an instance field object |
2531 | inline bool CallbackInvoker::report_field_reference(oop referrer, oop referree, jint slot) { |
2532 | if (is_basic_heap_walk()) { |
2533 | return invoke_basic_object_reference_callback(JVMTI_REFERENCE_FIELD, referrer, referree, slot); |
2534 | } else { |
2535 | return invoke_advanced_object_reference_callback(JVMTI_HEAP_REFERENCE_FIELD, referrer, referree, slot); |
2536 | } |
2537 | } |
2538 | |
2539 | // report an array referencing an element object |
2540 | inline bool CallbackInvoker::report_constant_pool_reference(oop referrer, oop referree, jint index) { |
2541 | if (is_basic_heap_walk()) { |
2542 | return invoke_basic_object_reference_callback(JVMTI_REFERENCE_CONSTANT_POOL, referrer, referree, index); |
2543 | } else { |
2544 | return invoke_advanced_object_reference_callback(JVMTI_HEAP_REFERENCE_CONSTANT_POOL, referrer, referree, index); |
2545 | } |
2546 | } |
2547 | |
2548 | // A supporting closure used to process simple roots |
2549 | class SimpleRootsClosure : public OopClosure { |
2550 | private: |
2551 | jvmtiHeapReferenceKind _kind; |
2552 | bool _continue; |
2553 | |
2554 | jvmtiHeapReferenceKind root_kind() { return _kind; } |
2555 | |
2556 | public: |
2557 | void set_kind(jvmtiHeapReferenceKind kind) { |
2558 | _kind = kind; |
2559 | _continue = true; |
2560 | } |
2561 | |
2562 | inline bool stopped() { |
2563 | return !_continue; |
2564 | } |
2565 | |
2566 | void do_oop(oop* obj_p) { |
2567 | // iteration has terminated |
2568 | if (stopped()) { |
2569 | return; |
2570 | } |
2571 | |
2572 | oop o = NativeAccess<AS_NO_KEEPALIVE>::oop_load(obj_p); |
2573 | // ignore null |
2574 | if (o == NULL) { |
2575 | return; |
2576 | } |
2577 | |
2578 | assert(Universe::heap()->is_in_reserved(o), "should be impossible" ); |
2579 | |
2580 | jvmtiHeapReferenceKind kind = root_kind(); |
2581 | if (kind == JVMTI_HEAP_REFERENCE_SYSTEM_CLASS) { |
2582 | // SystemDictionary::oops_do reports the application |
2583 | // class loader as a root. We want this root to be reported as |
2584 | // a root kind of "OTHER" rather than "SYSTEM_CLASS". |
2585 | if (!o->is_instance() || !InstanceKlass::cast(o->klass())->is_mirror_instance_klass()) { |
2586 | kind = JVMTI_HEAP_REFERENCE_OTHER; |
2587 | } |
2588 | } |
2589 | |
2590 | // invoke the callback |
2591 | _continue = CallbackInvoker::report_simple_root(kind, o); |
2592 | |
2593 | } |
2594 | virtual void do_oop(narrowOop* obj_p) { ShouldNotReachHere(); } |
2595 | }; |
2596 | |
2597 | // A supporting closure used to process JNI locals |
2598 | class JNILocalRootsClosure : public OopClosure { |
2599 | private: |
2600 | jlong _thread_tag; |
2601 | jlong _tid; |
2602 | jint _depth; |
2603 | jmethodID _method; |
2604 | bool _continue; |
2605 | public: |
2606 | void set_context(jlong thread_tag, jlong tid, jint depth, jmethodID method) { |
2607 | _thread_tag = thread_tag; |
2608 | _tid = tid; |
2609 | _depth = depth; |
2610 | _method = method; |
2611 | _continue = true; |
2612 | } |
2613 | |
2614 | inline bool stopped() { |
2615 | return !_continue; |
2616 | } |
2617 | |
2618 | void do_oop(oop* obj_p) { |
2619 | // iteration has terminated |
2620 | if (stopped()) { |
2621 | return; |
2622 | } |
2623 | |
2624 | oop o = *obj_p; |
2625 | // ignore null |
2626 | if (o == NULL) { |
2627 | return; |
2628 | } |
2629 | |
2630 | // invoke the callback |
2631 | _continue = CallbackInvoker::report_jni_local_root(_thread_tag, _tid, _depth, _method, o); |
2632 | } |
2633 | virtual void do_oop(narrowOop* obj_p) { ShouldNotReachHere(); } |
2634 | }; |
2635 | |
2636 | |
2637 | // A VM operation to iterate over objects that are reachable from |
2638 | // a set of roots or an initial object. |
2639 | // |
2640 | // For VM_HeapWalkOperation the set of roots used is :- |
2641 | // |
2642 | // - All JNI global references |
2643 | // - All inflated monitors |
2644 | // - All classes loaded by the boot class loader (or all classes |
2645 | // in the event that class unloading is disabled) |
2646 | // - All java threads |
2647 | // - For each java thread then all locals and JNI local references |
2648 | // on the thread's execution stack |
2649 | // - All visible/explainable objects from Universes::oops_do |
2650 | // |
2651 | class VM_HeapWalkOperation: public VM_Operation { |
2652 | private: |
2653 | enum { |
2654 | initial_visit_stack_size = 4000 |
2655 | }; |
2656 | |
2657 | bool _is_advanced_heap_walk; // indicates FollowReferences |
2658 | JvmtiTagMap* _tag_map; |
2659 | Handle _initial_object; |
2660 | GrowableArray<oop>* _visit_stack; // the visit stack |
2661 | |
2662 | bool _collecting_heap_roots; // are we collecting roots |
2663 | bool _following_object_refs; // are we following object references |
2664 | |
2665 | bool _reporting_primitive_fields; // optional reporting |
2666 | bool _reporting_primitive_array_values; |
2667 | bool _reporting_string_values; |
2668 | |
2669 | GrowableArray<oop>* create_visit_stack() { |
2670 | return new (ResourceObj::C_HEAP, mtInternal) GrowableArray<oop>(initial_visit_stack_size, true); |
2671 | } |
2672 | |
2673 | // accessors |
2674 | bool is_advanced_heap_walk() const { return _is_advanced_heap_walk; } |
2675 | JvmtiTagMap* tag_map() const { return _tag_map; } |
2676 | Handle initial_object() const { return _initial_object; } |
2677 | |
2678 | bool is_following_references() const { return _following_object_refs; } |
2679 | |
2680 | bool is_reporting_primitive_fields() const { return _reporting_primitive_fields; } |
2681 | bool is_reporting_primitive_array_values() const { return _reporting_primitive_array_values; } |
2682 | bool is_reporting_string_values() const { return _reporting_string_values; } |
2683 | |
2684 | GrowableArray<oop>* visit_stack() const { return _visit_stack; } |
2685 | |
2686 | // iterate over the various object types |
2687 | inline bool iterate_over_array(oop o); |
2688 | inline bool iterate_over_type_array(oop o); |
2689 | inline bool iterate_over_class(oop o); |
2690 | inline bool iterate_over_object(oop o); |
2691 | |
2692 | // root collection |
2693 | inline bool collect_simple_roots(); |
2694 | inline bool collect_stack_roots(); |
2695 | inline bool collect_stack_roots(JavaThread* java_thread, JNILocalRootsClosure* blk); |
2696 | |
2697 | // visit an object |
2698 | inline bool visit(oop o); |
2699 | |
2700 | public: |
2701 | VM_HeapWalkOperation(JvmtiTagMap* tag_map, |
2702 | Handle initial_object, |
2703 | BasicHeapWalkContext callbacks, |
2704 | const void* user_data); |
2705 | |
2706 | VM_HeapWalkOperation(JvmtiTagMap* tag_map, |
2707 | Handle initial_object, |
2708 | AdvancedHeapWalkContext callbacks, |
2709 | const void* user_data); |
2710 | |
2711 | ~VM_HeapWalkOperation(); |
2712 | |
2713 | VMOp_Type type() const { return VMOp_HeapWalkOperation; } |
2714 | void doit(); |
2715 | }; |
2716 | |
2717 | |
2718 | VM_HeapWalkOperation::VM_HeapWalkOperation(JvmtiTagMap* tag_map, |
2719 | Handle initial_object, |
2720 | BasicHeapWalkContext callbacks, |
2721 | const void* user_data) { |
2722 | _is_advanced_heap_walk = false; |
2723 | _tag_map = tag_map; |
2724 | _initial_object = initial_object; |
2725 | _following_object_refs = (callbacks.object_ref_callback() != NULL); |
2726 | _reporting_primitive_fields = false; |
2727 | _reporting_primitive_array_values = false; |
2728 | _reporting_string_values = false; |
2729 | _visit_stack = create_visit_stack(); |
2730 | |
2731 | |
2732 | CallbackInvoker::initialize_for_basic_heap_walk(tag_map, _visit_stack, user_data, callbacks); |
2733 | } |
2734 | |
2735 | VM_HeapWalkOperation::VM_HeapWalkOperation(JvmtiTagMap* tag_map, |
2736 | Handle initial_object, |
2737 | AdvancedHeapWalkContext callbacks, |
2738 | const void* user_data) { |
2739 | _is_advanced_heap_walk = true; |
2740 | _tag_map = tag_map; |
2741 | _initial_object = initial_object; |
2742 | _following_object_refs = true; |
2743 | _reporting_primitive_fields = (callbacks.primitive_field_callback() != NULL);; |
2744 | _reporting_primitive_array_values = (callbacks.array_primitive_value_callback() != NULL);; |
2745 | _reporting_string_values = (callbacks.string_primitive_value_callback() != NULL);; |
2746 | _visit_stack = create_visit_stack(); |
2747 | |
2748 | CallbackInvoker::initialize_for_advanced_heap_walk(tag_map, _visit_stack, user_data, callbacks); |
2749 | } |
2750 | |
2751 | VM_HeapWalkOperation::~VM_HeapWalkOperation() { |
2752 | if (_following_object_refs) { |
2753 | assert(_visit_stack != NULL, "checking" ); |
2754 | delete _visit_stack; |
2755 | _visit_stack = NULL; |
2756 | } |
2757 | } |
2758 | |
2759 | // an array references its class and has a reference to |
2760 | // each element in the array |
2761 | inline bool VM_HeapWalkOperation::iterate_over_array(oop o) { |
2762 | objArrayOop array = objArrayOop(o); |
2763 | |
2764 | // array reference to its class |
2765 | oop mirror = ObjArrayKlass::cast(array->klass())->java_mirror(); |
2766 | if (!CallbackInvoker::report_class_reference(o, mirror)) { |
2767 | return false; |
2768 | } |
2769 | |
2770 | // iterate over the array and report each reference to a |
2771 | // non-null element |
2772 | for (int index=0; index<array->length(); index++) { |
2773 | oop elem = array->obj_at(index); |
2774 | if (elem == NULL) { |
2775 | continue; |
2776 | } |
2777 | |
2778 | // report the array reference o[index] = elem |
2779 | if (!CallbackInvoker::report_array_element_reference(o, elem, index)) { |
2780 | return false; |
2781 | } |
2782 | } |
2783 | return true; |
2784 | } |
2785 | |
2786 | // a type array references its class |
2787 | inline bool VM_HeapWalkOperation::iterate_over_type_array(oop o) { |
2788 | Klass* k = o->klass(); |
2789 | oop mirror = k->java_mirror(); |
2790 | if (!CallbackInvoker::report_class_reference(o, mirror)) { |
2791 | return false; |
2792 | } |
2793 | |
2794 | // report the array contents if required |
2795 | if (is_reporting_primitive_array_values()) { |
2796 | if (!CallbackInvoker::report_primitive_array_values(o)) { |
2797 | return false; |
2798 | } |
2799 | } |
2800 | return true; |
2801 | } |
2802 | |
2803 | #ifdef ASSERT |
2804 | // verify that a static oop field is in range |
2805 | static inline bool verify_static_oop(InstanceKlass* ik, |
2806 | oop mirror, int offset) { |
2807 | address obj_p = (address)mirror + offset; |
2808 | address start = (address)InstanceMirrorKlass::start_of_static_fields(mirror); |
2809 | address end = start + (java_lang_Class::static_oop_field_count(mirror) * heapOopSize); |
2810 | assert(end >= start, "sanity check" ); |
2811 | |
2812 | if (obj_p >= start && obj_p < end) { |
2813 | return true; |
2814 | } else { |
2815 | return false; |
2816 | } |
2817 | } |
2818 | #endif // #ifdef ASSERT |
2819 | |
2820 | // a class references its super class, interfaces, class loader, ... |
2821 | // and finally its static fields |
2822 | inline bool VM_HeapWalkOperation::iterate_over_class(oop java_class) { |
2823 | int i; |
2824 | Klass* klass = java_lang_Class::as_Klass(java_class); |
2825 | |
2826 | if (klass->is_instance_klass()) { |
2827 | InstanceKlass* ik = InstanceKlass::cast(klass); |
2828 | |
2829 | // Ignore the class if it hasn't been initialized yet |
2830 | if (!ik->is_linked()) { |
2831 | return true; |
2832 | } |
2833 | |
2834 | // get the java mirror |
2835 | oop mirror = klass->java_mirror(); |
2836 | |
2837 | // super (only if something more interesting than java.lang.Object) |
2838 | InstanceKlass* java_super = ik->java_super(); |
2839 | if (java_super != NULL && java_super != SystemDictionary::Object_klass()) { |
2840 | oop super = java_super->java_mirror(); |
2841 | if (!CallbackInvoker::report_superclass_reference(mirror, super)) { |
2842 | return false; |
2843 | } |
2844 | } |
2845 | |
2846 | // class loader |
2847 | oop cl = ik->class_loader(); |
2848 | if (cl != NULL) { |
2849 | if (!CallbackInvoker::report_class_loader_reference(mirror, cl)) { |
2850 | return false; |
2851 | } |
2852 | } |
2853 | |
2854 | // protection domain |
2855 | oop pd = ik->protection_domain(); |
2856 | if (pd != NULL) { |
2857 | if (!CallbackInvoker::report_protection_domain_reference(mirror, pd)) { |
2858 | return false; |
2859 | } |
2860 | } |
2861 | |
2862 | // signers |
2863 | oop signers = ik->signers(); |
2864 | if (signers != NULL) { |
2865 | if (!CallbackInvoker::report_signers_reference(mirror, signers)) { |
2866 | return false; |
2867 | } |
2868 | } |
2869 | |
2870 | // references from the constant pool |
2871 | { |
2872 | ConstantPool* pool = ik->constants(); |
2873 | for (int i = 1; i < pool->length(); i++) { |
2874 | constantTag tag = pool->tag_at(i).value(); |
2875 | if (tag.is_string() || tag.is_klass() || tag.is_unresolved_klass()) { |
2876 | oop entry; |
2877 | if (tag.is_string()) { |
2878 | entry = pool->resolved_string_at(i); |
2879 | // If the entry is non-null it is resolved. |
2880 | if (entry == NULL) { |
2881 | continue; |
2882 | } |
2883 | } else if (tag.is_klass()) { |
2884 | entry = pool->resolved_klass_at(i)->java_mirror(); |
2885 | } else { |
2886 | // Code generated by JIT and AOT compilers might not resolve constant |
2887 | // pool entries. Treat them as resolved if they are loaded. |
2888 | assert(tag.is_unresolved_klass(), "must be" ); |
2889 | constantPoolHandle cp(Thread::current(), pool); |
2890 | Klass* klass = ConstantPool::klass_at_if_loaded(cp, i); |
2891 | if (klass == NULL) { |
2892 | continue; |
2893 | } |
2894 | entry = klass->java_mirror(); |
2895 | } |
2896 | if (!CallbackInvoker::report_constant_pool_reference(mirror, entry, (jint)i)) { |
2897 | return false; |
2898 | } |
2899 | } |
2900 | } |
2901 | } |
2902 | |
2903 | // interfaces |
2904 | // (These will already have been reported as references from the constant pool |
2905 | // but are specified by IterateOverReachableObjects and must be reported). |
2906 | Array<InstanceKlass*>* interfaces = ik->local_interfaces(); |
2907 | for (i = 0; i < interfaces->length(); i++) { |
2908 | oop interf = interfaces->at(i)->java_mirror(); |
2909 | if (interf == NULL) { |
2910 | continue; |
2911 | } |
2912 | if (!CallbackInvoker::report_interface_reference(mirror, interf)) { |
2913 | return false; |
2914 | } |
2915 | } |
2916 | |
2917 | // iterate over the static fields |
2918 | |
2919 | ClassFieldMap* field_map = ClassFieldMap::create_map_of_static_fields(klass); |
2920 | for (i=0; i<field_map->field_count(); i++) { |
2921 | ClassFieldDescriptor* field = field_map->field_at(i); |
2922 | char type = field->field_type(); |
2923 | if (!is_primitive_field_type(type)) { |
2924 | oop fld_o = mirror->obj_field(field->field_offset()); |
2925 | assert(verify_static_oop(ik, mirror, field->field_offset()), "sanity check" ); |
2926 | if (fld_o != NULL) { |
2927 | int slot = field->field_index(); |
2928 | if (!CallbackInvoker::report_static_field_reference(mirror, fld_o, slot)) { |
2929 | delete field_map; |
2930 | return false; |
2931 | } |
2932 | } |
2933 | } else { |
2934 | if (is_reporting_primitive_fields()) { |
2935 | address addr = (address)mirror + field->field_offset(); |
2936 | int slot = field->field_index(); |
2937 | if (!CallbackInvoker::report_primitive_static_field(mirror, slot, addr, type)) { |
2938 | delete field_map; |
2939 | return false; |
2940 | } |
2941 | } |
2942 | } |
2943 | } |
2944 | delete field_map; |
2945 | |
2946 | return true; |
2947 | } |
2948 | |
2949 | return true; |
2950 | } |
2951 | |
2952 | // an object references a class and its instance fields |
2953 | // (static fields are ignored here as we report these as |
2954 | // references from the class). |
2955 | inline bool VM_HeapWalkOperation::iterate_over_object(oop o) { |
2956 | // reference to the class |
2957 | if (!CallbackInvoker::report_class_reference(o, o->klass()->java_mirror())) { |
2958 | return false; |
2959 | } |
2960 | |
2961 | // iterate over instance fields |
2962 | ClassFieldMap* field_map = JvmtiCachedClassFieldMap::get_map_of_instance_fields(o); |
2963 | for (int i=0; i<field_map->field_count(); i++) { |
2964 | ClassFieldDescriptor* field = field_map->field_at(i); |
2965 | char type = field->field_type(); |
2966 | if (!is_primitive_field_type(type)) { |
2967 | oop fld_o = o->obj_field(field->field_offset()); |
2968 | // ignore any objects that aren't visible to profiler |
2969 | if (fld_o != NULL) { |
2970 | assert(Universe::heap()->is_in_reserved(fld_o), "unsafe code should not " |
2971 | "have references to Klass* anymore" ); |
2972 | int slot = field->field_index(); |
2973 | if (!CallbackInvoker::report_field_reference(o, fld_o, slot)) { |
2974 | return false; |
2975 | } |
2976 | } |
2977 | } else { |
2978 | if (is_reporting_primitive_fields()) { |
2979 | // primitive instance field |
2980 | address addr = (address)o + field->field_offset(); |
2981 | int slot = field->field_index(); |
2982 | if (!CallbackInvoker::report_primitive_instance_field(o, slot, addr, type)) { |
2983 | return false; |
2984 | } |
2985 | } |
2986 | } |
2987 | } |
2988 | |
2989 | // if the object is a java.lang.String |
2990 | if (is_reporting_string_values() && |
2991 | o->klass() == SystemDictionary::String_klass()) { |
2992 | if (!CallbackInvoker::report_string_value(o)) { |
2993 | return false; |
2994 | } |
2995 | } |
2996 | return true; |
2997 | } |
2998 | |
2999 | |
3000 | // Collects all simple (non-stack) roots except for threads; |
3001 | // threads are handled in collect_stack_roots() as an optimization. |
3002 | // if there's a heap root callback provided then the callback is |
3003 | // invoked for each simple root. |
3004 | // if an object reference callback is provided then all simple |
3005 | // roots are pushed onto the marking stack so that they can be |
3006 | // processed later |
3007 | // |
3008 | inline bool VM_HeapWalkOperation::collect_simple_roots() { |
3009 | SimpleRootsClosure blk; |
3010 | |
3011 | // JNI globals |
3012 | blk.set_kind(JVMTI_HEAP_REFERENCE_JNI_GLOBAL); |
3013 | JNIHandles::oops_do(&blk); |
3014 | if (blk.stopped()) { |
3015 | return false; |
3016 | } |
3017 | |
3018 | // Preloaded classes and loader from the system dictionary |
3019 | blk.set_kind(JVMTI_HEAP_REFERENCE_SYSTEM_CLASS); |
3020 | SystemDictionary::oops_do(&blk); |
3021 | CLDToOopClosure cld_closure(&blk, false); |
3022 | ClassLoaderDataGraph::always_strong_cld_do(&cld_closure); |
3023 | if (blk.stopped()) { |
3024 | return false; |
3025 | } |
3026 | |
3027 | // Inflated monitors |
3028 | blk.set_kind(JVMTI_HEAP_REFERENCE_MONITOR); |
3029 | ObjectSynchronizer::oops_do(&blk); |
3030 | if (blk.stopped()) { |
3031 | return false; |
3032 | } |
3033 | |
3034 | // threads are now handled in collect_stack_roots() |
3035 | |
3036 | // Other kinds of roots maintained by HotSpot |
3037 | // Many of these won't be visible but others (such as instances of important |
3038 | // exceptions) will be visible. |
3039 | blk.set_kind(JVMTI_HEAP_REFERENCE_OTHER); |
3040 | Universe::oops_do(&blk); |
3041 | if (blk.stopped()) { |
3042 | return false; |
3043 | } |
3044 | |
3045 | #if INCLUDE_JVMCI |
3046 | blk.set_kind(JVMTI_HEAP_REFERENCE_OTHER); |
3047 | JVMCI::oops_do(&blk); |
3048 | if (blk.stopped()) { |
3049 | return false; |
3050 | } |
3051 | #endif |
3052 | |
3053 | return true; |
3054 | } |
3055 | |
3056 | // Walk the stack of a given thread and find all references (locals |
3057 | // and JNI calls) and report these as stack references |
3058 | inline bool VM_HeapWalkOperation::collect_stack_roots(JavaThread* java_thread, |
3059 | JNILocalRootsClosure* blk) |
3060 | { |
3061 | oop threadObj = java_thread->threadObj(); |
3062 | assert(threadObj != NULL, "sanity check" ); |
3063 | |
3064 | // only need to get the thread's tag once per thread |
3065 | jlong thread_tag = tag_for(_tag_map, threadObj); |
3066 | |
3067 | // also need the thread id |
3068 | jlong tid = java_lang_Thread::thread_id(threadObj); |
3069 | |
3070 | |
3071 | if (java_thread->has_last_Java_frame()) { |
3072 | |
3073 | // vframes are resource allocated |
3074 | Thread* current_thread = Thread::current(); |
3075 | ResourceMark rm(current_thread); |
3076 | HandleMark hm(current_thread); |
3077 | |
3078 | RegisterMap reg_map(java_thread); |
3079 | frame f = java_thread->last_frame(); |
3080 | vframe* vf = vframe::new_vframe(&f, ®_map, java_thread); |
3081 | |
3082 | bool is_top_frame = true; |
3083 | int depth = 0; |
3084 | frame* last_entry_frame = NULL; |
3085 | |
3086 | while (vf != NULL) { |
3087 | if (vf->is_java_frame()) { |
3088 | |
3089 | // java frame (interpreted, compiled, ...) |
3090 | javaVFrame *jvf = javaVFrame::cast(vf); |
3091 | |
3092 | // the jmethodID |
3093 | jmethodID method = jvf->method()->jmethod_id(); |
3094 | |
3095 | if (!(jvf->method()->is_native())) { |
3096 | jlocation bci = (jlocation)jvf->bci(); |
3097 | StackValueCollection* locals = jvf->locals(); |
3098 | for (int slot=0; slot<locals->size(); slot++) { |
3099 | if (locals->at(slot)->type() == T_OBJECT) { |
3100 | oop o = locals->obj_at(slot)(); |
3101 | if (o == NULL) { |
3102 | continue; |
3103 | } |
3104 | |
3105 | // stack reference |
3106 | if (!CallbackInvoker::report_stack_ref_root(thread_tag, tid, depth, method, |
3107 | bci, slot, o)) { |
3108 | return false; |
3109 | } |
3110 | } |
3111 | } |
3112 | |
3113 | StackValueCollection* exprs = jvf->expressions(); |
3114 | for (int index=0; index < exprs->size(); index++) { |
3115 | if (exprs->at(index)->type() == T_OBJECT) { |
3116 | oop o = exprs->obj_at(index)(); |
3117 | if (o == NULL) { |
3118 | continue; |
3119 | } |
3120 | |
3121 | // stack reference |
3122 | if (!CallbackInvoker::report_stack_ref_root(thread_tag, tid, depth, method, |
3123 | bci, locals->size() + index, o)) { |
3124 | return false; |
3125 | } |
3126 | } |
3127 | } |
3128 | |
3129 | // Follow oops from compiled nmethod |
3130 | if (jvf->cb() != NULL && jvf->cb()->is_nmethod()) { |
3131 | blk->set_context(thread_tag, tid, depth, method); |
3132 | jvf->cb()->as_nmethod()->oops_do(blk); |
3133 | } |
3134 | } else { |
3135 | blk->set_context(thread_tag, tid, depth, method); |
3136 | if (is_top_frame) { |
3137 | // JNI locals for the top frame. |
3138 | java_thread->active_handles()->oops_do(blk); |
3139 | } else { |
3140 | if (last_entry_frame != NULL) { |
3141 | // JNI locals for the entry frame |
3142 | assert(last_entry_frame->is_entry_frame(), "checking" ); |
3143 | last_entry_frame->entry_frame_call_wrapper()->handles()->oops_do(blk); |
3144 | } |
3145 | } |
3146 | } |
3147 | last_entry_frame = NULL; |
3148 | depth++; |
3149 | } else { |
3150 | // externalVFrame - for an entry frame then we report the JNI locals |
3151 | // when we find the corresponding javaVFrame |
3152 | frame* fr = vf->frame_pointer(); |
3153 | assert(fr != NULL, "sanity check" ); |
3154 | if (fr->is_entry_frame()) { |
3155 | last_entry_frame = fr; |
3156 | } |
3157 | } |
3158 | |
3159 | vf = vf->sender(); |
3160 | is_top_frame = false; |
3161 | } |
3162 | } else { |
3163 | // no last java frame but there may be JNI locals |
3164 | blk->set_context(thread_tag, tid, 0, (jmethodID)NULL); |
3165 | java_thread->active_handles()->oops_do(blk); |
3166 | } |
3167 | return true; |
3168 | } |
3169 | |
3170 | |
3171 | // Collects the simple roots for all threads and collects all |
3172 | // stack roots - for each thread it walks the execution |
3173 | // stack to find all references and local JNI refs. |
3174 | inline bool VM_HeapWalkOperation::collect_stack_roots() { |
3175 | JNILocalRootsClosure blk; |
3176 | for (JavaThreadIteratorWithHandle jtiwh; JavaThread *thread = jtiwh.next(); ) { |
3177 | oop threadObj = thread->threadObj(); |
3178 | if (threadObj != NULL && !thread->is_exiting() && !thread->is_hidden_from_external_view()) { |
3179 | // Collect the simple root for this thread before we |
3180 | // collect its stack roots |
3181 | if (!CallbackInvoker::report_simple_root(JVMTI_HEAP_REFERENCE_THREAD, |
3182 | threadObj)) { |
3183 | return false; |
3184 | } |
3185 | if (!collect_stack_roots(thread, &blk)) { |
3186 | return false; |
3187 | } |
3188 | } |
3189 | } |
3190 | return true; |
3191 | } |
3192 | |
3193 | // visit an object |
3194 | // first mark the object as visited |
3195 | // second get all the outbound references from this object (in other words, all |
3196 | // the objects referenced by this object). |
3197 | // |
3198 | bool VM_HeapWalkOperation::visit(oop o) { |
3199 | // mark object as visited |
3200 | assert(!ObjectMarker::visited(o), "can't visit same object more than once" ); |
3201 | ObjectMarker::mark(o); |
3202 | |
3203 | // instance |
3204 | if (o->is_instance()) { |
3205 | if (o->klass() == SystemDictionary::Class_klass()) { |
3206 | if (!java_lang_Class::is_primitive(o)) { |
3207 | // a java.lang.Class |
3208 | return iterate_over_class(o); |
3209 | } |
3210 | } else { |
3211 | return iterate_over_object(o); |
3212 | } |
3213 | } |
3214 | |
3215 | // object array |
3216 | if (o->is_objArray()) { |
3217 | return iterate_over_array(o); |
3218 | } |
3219 | |
3220 | // type array |
3221 | if (o->is_typeArray()) { |
3222 | return iterate_over_type_array(o); |
3223 | } |
3224 | |
3225 | return true; |
3226 | } |
3227 | |
3228 | void VM_HeapWalkOperation::doit() { |
3229 | ResourceMark rm; |
3230 | ObjectMarkerController marker; |
3231 | ClassFieldMapCacheMark cm; |
3232 | |
3233 | assert(visit_stack()->is_empty(), "visit stack must be empty" ); |
3234 | |
3235 | // the heap walk starts with an initial object or the heap roots |
3236 | if (initial_object().is_null()) { |
3237 | // If either collect_stack_roots() or collect_simple_roots() |
3238 | // returns false at this point, then there are no mark bits |
3239 | // to reset. |
3240 | ObjectMarker::set_needs_reset(false); |
3241 | |
3242 | // Calling collect_stack_roots() before collect_simple_roots() |
3243 | // can result in a big performance boost for an agent that is |
3244 | // focused on analyzing references in the thread stacks. |
3245 | if (!collect_stack_roots()) return; |
3246 | |
3247 | if (!collect_simple_roots()) return; |
3248 | |
3249 | // no early return so enable heap traversal to reset the mark bits |
3250 | ObjectMarker::set_needs_reset(true); |
3251 | } else { |
3252 | visit_stack()->push(initial_object()()); |
3253 | } |
3254 | |
3255 | // object references required |
3256 | if (is_following_references()) { |
3257 | |
3258 | // visit each object until all reachable objects have been |
3259 | // visited or the callback asked to terminate the iteration. |
3260 | while (!visit_stack()->is_empty()) { |
3261 | oop o = visit_stack()->pop(); |
3262 | if (!ObjectMarker::visited(o)) { |
3263 | if (!visit(o)) { |
3264 | break; |
3265 | } |
3266 | } |
3267 | } |
3268 | } |
3269 | } |
3270 | |
3271 | // iterate over all objects that are reachable from a set of roots |
3272 | void JvmtiTagMap::iterate_over_reachable_objects(jvmtiHeapRootCallback heap_root_callback, |
3273 | jvmtiStackReferenceCallback stack_ref_callback, |
3274 | jvmtiObjectReferenceCallback object_ref_callback, |
3275 | const void* user_data) { |
3276 | MutexLocker ml(Heap_lock); |
3277 | BasicHeapWalkContext context(heap_root_callback, stack_ref_callback, object_ref_callback); |
3278 | VM_HeapWalkOperation op(this, Handle(), context, user_data); |
3279 | VMThread::execute(&op); |
3280 | } |
3281 | |
3282 | // iterate over all objects that are reachable from a given object |
3283 | void JvmtiTagMap::iterate_over_objects_reachable_from_object(jobject object, |
3284 | jvmtiObjectReferenceCallback object_ref_callback, |
3285 | const void* user_data) { |
3286 | oop obj = JNIHandles::resolve(object); |
3287 | Handle initial_object(Thread::current(), obj); |
3288 | |
3289 | MutexLocker ml(Heap_lock); |
3290 | BasicHeapWalkContext context(NULL, NULL, object_ref_callback); |
3291 | VM_HeapWalkOperation op(this, initial_object, context, user_data); |
3292 | VMThread::execute(&op); |
3293 | } |
3294 | |
3295 | // follow references from an initial object or the GC roots |
3296 | void JvmtiTagMap::follow_references(jint heap_filter, |
3297 | Klass* klass, |
3298 | jobject object, |
3299 | const jvmtiHeapCallbacks* callbacks, |
3300 | const void* user_data) |
3301 | { |
3302 | oop obj = JNIHandles::resolve(object); |
3303 | Handle initial_object(Thread::current(), obj); |
3304 | |
3305 | MutexLocker ml(Heap_lock); |
3306 | AdvancedHeapWalkContext context(heap_filter, klass, callbacks); |
3307 | VM_HeapWalkOperation op(this, initial_object, context, user_data); |
3308 | VMThread::execute(&op); |
3309 | } |
3310 | |
3311 | |
3312 | void JvmtiTagMap::weak_oops_do(BoolObjectClosure* is_alive, OopClosure* f) { |
3313 | // No locks during VM bring-up (0 threads) and no safepoints after main |
3314 | // thread creation and before VMThread creation (1 thread); initial GC |
3315 | // verification can happen in that window which gets to here. |
3316 | assert(Threads::number_of_threads() <= 1 || |
3317 | SafepointSynchronize::is_at_safepoint(), |
3318 | "must be executed at a safepoint" ); |
3319 | if (JvmtiEnv::environments_might_exist()) { |
3320 | JvmtiEnvIterator it; |
3321 | for (JvmtiEnvBase* env = it.first(); env != NULL; env = it.next(env)) { |
3322 | JvmtiTagMap* tag_map = env->tag_map_acquire(); |
3323 | if (tag_map != NULL && !tag_map->is_empty()) { |
3324 | tag_map->do_weak_oops(is_alive, f); |
3325 | } |
3326 | } |
3327 | } |
3328 | } |
3329 | |
3330 | void JvmtiTagMap::do_weak_oops(BoolObjectClosure* is_alive, OopClosure* f) { |
3331 | |
3332 | // does this environment have the OBJECT_FREE event enabled |
3333 | bool post_object_free = env()->is_enabled(JVMTI_EVENT_OBJECT_FREE); |
3334 | |
3335 | // counters used for trace message |
3336 | int freed = 0; |
3337 | int moved = 0; |
3338 | |
3339 | JvmtiTagHashmap* hashmap = this->hashmap(); |
3340 | |
3341 | // reenable sizing (if disabled) |
3342 | hashmap->set_resizing_enabled(true); |
3343 | |
3344 | // if the hashmap is empty then we can skip it |
3345 | if (hashmap->_entry_count == 0) { |
3346 | return; |
3347 | } |
3348 | |
3349 | // now iterate through each entry in the table |
3350 | |
3351 | JvmtiTagHashmapEntry** table = hashmap->table(); |
3352 | int size = hashmap->size(); |
3353 | |
3354 | JvmtiTagHashmapEntry* delayed_add = NULL; |
3355 | |
3356 | for (int pos = 0; pos < size; ++pos) { |
3357 | JvmtiTagHashmapEntry* entry = table[pos]; |
3358 | JvmtiTagHashmapEntry* prev = NULL; |
3359 | |
3360 | while (entry != NULL) { |
3361 | JvmtiTagHashmapEntry* next = entry->next(); |
3362 | |
3363 | // has object been GC'ed |
3364 | if (!is_alive->do_object_b(entry->object_peek())) { |
3365 | // grab the tag |
3366 | jlong tag = entry->tag(); |
3367 | guarantee(tag != 0, "checking" ); |
3368 | |
3369 | // remove GC'ed entry from hashmap and return the |
3370 | // entry to the free list |
3371 | hashmap->remove(prev, pos, entry); |
3372 | destroy_entry(entry); |
3373 | |
3374 | // post the event to the profiler |
3375 | if (post_object_free) { |
3376 | JvmtiExport::post_object_free(env(), tag); |
3377 | } |
3378 | |
3379 | ++freed; |
3380 | } else { |
3381 | f->do_oop(entry->object_addr()); |
3382 | oop new_oop = entry->object_peek(); |
3383 | |
3384 | // if the object has moved then re-hash it and move its |
3385 | // entry to its new location. |
3386 | unsigned int new_pos = JvmtiTagHashmap::hash(new_oop, size); |
3387 | if (new_pos != (unsigned int)pos) { |
3388 | if (prev == NULL) { |
3389 | table[pos] = next; |
3390 | } else { |
3391 | prev->set_next(next); |
3392 | } |
3393 | if (new_pos < (unsigned int)pos) { |
3394 | entry->set_next(table[new_pos]); |
3395 | table[new_pos] = entry; |
3396 | } else { |
3397 | // Delay adding this entry to it's new position as we'd end up |
3398 | // hitting it again during this iteration. |
3399 | entry->set_next(delayed_add); |
3400 | delayed_add = entry; |
3401 | } |
3402 | moved++; |
3403 | } else { |
3404 | // object didn't move |
3405 | prev = entry; |
3406 | } |
3407 | } |
3408 | |
3409 | entry = next; |
3410 | } |
3411 | } |
3412 | |
3413 | // Re-add all the entries which were kept aside |
3414 | while (delayed_add != NULL) { |
3415 | JvmtiTagHashmapEntry* next = delayed_add->next(); |
3416 | unsigned int pos = JvmtiTagHashmap::hash(delayed_add->object_peek(), size); |
3417 | delayed_add->set_next(table[pos]); |
3418 | table[pos] = delayed_add; |
3419 | delayed_add = next; |
3420 | } |
3421 | |
3422 | log_debug(jvmti, objecttagging)("(%d->%d, %d freed, %d total moves)" , |
3423 | hashmap->_entry_count + freed, hashmap->_entry_count, freed, moved); |
3424 | } |
3425 | |