1/*
2 * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "jvm.h"
27#include "aot/aotLoader.hpp"
28#include "classfile/stringTable.hpp"
29#include "classfile/systemDictionary.hpp"
30#include "classfile/vmSymbols.hpp"
31#include "code/codeCache.hpp"
32#include "code/compiledIC.hpp"
33#include "code/icBuffer.hpp"
34#include "code/compiledMethod.inline.hpp"
35#include "code/scopeDesc.hpp"
36#include "code/vtableStubs.hpp"
37#include "compiler/abstractCompiler.hpp"
38#include "compiler/compileBroker.hpp"
39#include "compiler/disassembler.hpp"
40#include "gc/shared/barrierSet.hpp"
41#include "gc/shared/gcLocker.inline.hpp"
42#include "interpreter/interpreter.hpp"
43#include "interpreter/interpreterRuntime.hpp"
44#include "jfr/jfrEvents.hpp"
45#include "logging/log.hpp"
46#include "memory/metaspaceShared.hpp"
47#include "memory/resourceArea.hpp"
48#include "memory/universe.hpp"
49#include "oops/klass.hpp"
50#include "oops/method.inline.hpp"
51#include "oops/objArrayKlass.hpp"
52#include "oops/oop.inline.hpp"
53#include "prims/forte.hpp"
54#include "prims/jvmtiExport.hpp"
55#include "prims/methodHandles.hpp"
56#include "prims/nativeLookup.hpp"
57#include "runtime/arguments.hpp"
58#include "runtime/atomic.hpp"
59#include "runtime/biasedLocking.hpp"
60#include "runtime/compilationPolicy.hpp"
61#include "runtime/frame.inline.hpp"
62#include "runtime/handles.inline.hpp"
63#include "runtime/init.hpp"
64#include "runtime/interfaceSupport.inline.hpp"
65#include "runtime/java.hpp"
66#include "runtime/javaCalls.hpp"
67#include "runtime/sharedRuntime.hpp"
68#include "runtime/stubRoutines.hpp"
69#include "runtime/vframe.inline.hpp"
70#include "runtime/vframeArray.hpp"
71#include "utilities/copy.hpp"
72#include "utilities/dtrace.hpp"
73#include "utilities/events.hpp"
74#include "utilities/hashtable.inline.hpp"
75#include "utilities/macros.hpp"
76#include "utilities/xmlstream.hpp"
77#ifdef COMPILER1
78#include "c1/c1_Runtime1.hpp"
79#endif
80
81// Shared stub locations
82RuntimeStub* SharedRuntime::_wrong_method_blob;
83RuntimeStub* SharedRuntime::_wrong_method_abstract_blob;
84RuntimeStub* SharedRuntime::_ic_miss_blob;
85RuntimeStub* SharedRuntime::_resolve_opt_virtual_call_blob;
86RuntimeStub* SharedRuntime::_resolve_virtual_call_blob;
87RuntimeStub* SharedRuntime::_resolve_static_call_blob;
88address SharedRuntime::_resolve_static_call_entry;
89
90DeoptimizationBlob* SharedRuntime::_deopt_blob;
91SafepointBlob* SharedRuntime::_polling_page_vectors_safepoint_handler_blob;
92SafepointBlob* SharedRuntime::_polling_page_safepoint_handler_blob;
93SafepointBlob* SharedRuntime::_polling_page_return_handler_blob;
94
95#ifdef COMPILER2
96UncommonTrapBlob* SharedRuntime::_uncommon_trap_blob;
97#endif // COMPILER2
98
99
100//----------------------------generate_stubs-----------------------------------
101void SharedRuntime::generate_stubs() {
102 _wrong_method_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method), "wrong_method_stub");
103 _wrong_method_abstract_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_abstract), "wrong_method_abstract_stub");
104 _ic_miss_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss), "ic_miss_stub");
105 _resolve_opt_virtual_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C), "resolve_opt_virtual_call");
106 _resolve_virtual_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C), "resolve_virtual_call");
107 _resolve_static_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C), "resolve_static_call");
108 _resolve_static_call_entry = _resolve_static_call_blob->entry_point();
109
110#if COMPILER2_OR_JVMCI
111 // Vectors are generated only by C2 and JVMCI.
112 bool support_wide = is_wide_vector(MaxVectorSize);
113 if (support_wide) {
114 _polling_page_vectors_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_VECTOR_LOOP);
115 }
116#endif // COMPILER2_OR_JVMCI
117 _polling_page_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_LOOP);
118 _polling_page_return_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_RETURN);
119
120 generate_deopt_blob();
121
122#ifdef COMPILER2
123 generate_uncommon_trap_blob();
124#endif // COMPILER2
125}
126
127#include <math.h>
128
129// Implementation of SharedRuntime
130
131#ifndef PRODUCT
132// For statistics
133int SharedRuntime::_ic_miss_ctr = 0;
134int SharedRuntime::_wrong_method_ctr = 0;
135int SharedRuntime::_resolve_static_ctr = 0;
136int SharedRuntime::_resolve_virtual_ctr = 0;
137int SharedRuntime::_resolve_opt_virtual_ctr = 0;
138int SharedRuntime::_implicit_null_throws = 0;
139int SharedRuntime::_implicit_div0_throws = 0;
140int SharedRuntime::_throw_null_ctr = 0;
141
142int SharedRuntime::_nof_normal_calls = 0;
143int SharedRuntime::_nof_optimized_calls = 0;
144int SharedRuntime::_nof_inlined_calls = 0;
145int SharedRuntime::_nof_megamorphic_calls = 0;
146int SharedRuntime::_nof_static_calls = 0;
147int SharedRuntime::_nof_inlined_static_calls = 0;
148int SharedRuntime::_nof_interface_calls = 0;
149int SharedRuntime::_nof_optimized_interface_calls = 0;
150int SharedRuntime::_nof_inlined_interface_calls = 0;
151int SharedRuntime::_nof_megamorphic_interface_calls = 0;
152int SharedRuntime::_nof_removable_exceptions = 0;
153
154int SharedRuntime::_new_instance_ctr=0;
155int SharedRuntime::_new_array_ctr=0;
156int SharedRuntime::_multi1_ctr=0;
157int SharedRuntime::_multi2_ctr=0;
158int SharedRuntime::_multi3_ctr=0;
159int SharedRuntime::_multi4_ctr=0;
160int SharedRuntime::_multi5_ctr=0;
161int SharedRuntime::_mon_enter_stub_ctr=0;
162int SharedRuntime::_mon_exit_stub_ctr=0;
163int SharedRuntime::_mon_enter_ctr=0;
164int SharedRuntime::_mon_exit_ctr=0;
165int SharedRuntime::_partial_subtype_ctr=0;
166int SharedRuntime::_jbyte_array_copy_ctr=0;
167int SharedRuntime::_jshort_array_copy_ctr=0;
168int SharedRuntime::_jint_array_copy_ctr=0;
169int SharedRuntime::_jlong_array_copy_ctr=0;
170int SharedRuntime::_oop_array_copy_ctr=0;
171int SharedRuntime::_checkcast_array_copy_ctr=0;
172int SharedRuntime::_unsafe_array_copy_ctr=0;
173int SharedRuntime::_generic_array_copy_ctr=0;
174int SharedRuntime::_slow_array_copy_ctr=0;
175int SharedRuntime::_find_handler_ctr=0;
176int SharedRuntime::_rethrow_ctr=0;
177
178int SharedRuntime::_ICmiss_index = 0;
179int SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count];
180address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count];
181
182
183void SharedRuntime::trace_ic_miss(address at) {
184 for (int i = 0; i < _ICmiss_index; i++) {
185 if (_ICmiss_at[i] == at) {
186 _ICmiss_count[i]++;
187 return;
188 }
189 }
190 int index = _ICmiss_index++;
191 if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1;
192 _ICmiss_at[index] = at;
193 _ICmiss_count[index] = 1;
194}
195
196void SharedRuntime::print_ic_miss_histogram() {
197 if (ICMissHistogram) {
198 tty->print_cr("IC Miss Histogram:");
199 int tot_misses = 0;
200 for (int i = 0; i < _ICmiss_index; i++) {
201 tty->print_cr(" at: " INTPTR_FORMAT " nof: %d", p2i(_ICmiss_at[i]), _ICmiss_count[i]);
202 tot_misses += _ICmiss_count[i];
203 }
204 tty->print_cr("Total IC misses: %7d", tot_misses);
205 }
206}
207#endif // PRODUCT
208
209
210JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x))
211 return x * y;
212JRT_END
213
214
215JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x))
216 if (x == min_jlong && y == CONST64(-1)) {
217 return x;
218 } else {
219 return x / y;
220 }
221JRT_END
222
223
224JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x))
225 if (x == min_jlong && y == CONST64(-1)) {
226 return 0;
227 } else {
228 return x % y;
229 }
230JRT_END
231
232
233const juint float_sign_mask = 0x7FFFFFFF;
234const juint float_infinity = 0x7F800000;
235const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF);
236const julong double_infinity = CONST64(0x7FF0000000000000);
237
238JRT_LEAF(jfloat, SharedRuntime::frem(jfloat x, jfloat y))
239#ifdef _WIN64
240 // 64-bit Windows on amd64 returns the wrong values for
241 // infinity operands.
242 union { jfloat f; juint i; } xbits, ybits;
243 xbits.f = x;
244 ybits.f = y;
245 // x Mod Infinity == x unless x is infinity
246 if (((xbits.i & float_sign_mask) != float_infinity) &&
247 ((ybits.i & float_sign_mask) == float_infinity) ) {
248 return x;
249 }
250 return ((jfloat)fmod_winx64((double)x, (double)y));
251#else
252 return ((jfloat)fmod((double)x,(double)y));
253#endif
254JRT_END
255
256
257JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y))
258#ifdef _WIN64
259 union { jdouble d; julong l; } xbits, ybits;
260 xbits.d = x;
261 ybits.d = y;
262 // x Mod Infinity == x unless x is infinity
263 if (((xbits.l & double_sign_mask) != double_infinity) &&
264 ((ybits.l & double_sign_mask) == double_infinity) ) {
265 return x;
266 }
267 return ((jdouble)fmod_winx64((double)x, (double)y));
268#else
269 return ((jdouble)fmod((double)x,(double)y));
270#endif
271JRT_END
272
273#ifdef __SOFTFP__
274JRT_LEAF(jfloat, SharedRuntime::fadd(jfloat x, jfloat y))
275 return x + y;
276JRT_END
277
278JRT_LEAF(jfloat, SharedRuntime::fsub(jfloat x, jfloat y))
279 return x - y;
280JRT_END
281
282JRT_LEAF(jfloat, SharedRuntime::fmul(jfloat x, jfloat y))
283 return x * y;
284JRT_END
285
286JRT_LEAF(jfloat, SharedRuntime::fdiv(jfloat x, jfloat y))
287 return x / y;
288JRT_END
289
290JRT_LEAF(jdouble, SharedRuntime::dadd(jdouble x, jdouble y))
291 return x + y;
292JRT_END
293
294JRT_LEAF(jdouble, SharedRuntime::dsub(jdouble x, jdouble y))
295 return x - y;
296JRT_END
297
298JRT_LEAF(jdouble, SharedRuntime::dmul(jdouble x, jdouble y))
299 return x * y;
300JRT_END
301
302JRT_LEAF(jdouble, SharedRuntime::ddiv(jdouble x, jdouble y))
303 return x / y;
304JRT_END
305
306JRT_LEAF(jfloat, SharedRuntime::i2f(jint x))
307 return (jfloat)x;
308JRT_END
309
310JRT_LEAF(jdouble, SharedRuntime::i2d(jint x))
311 return (jdouble)x;
312JRT_END
313
314JRT_LEAF(jdouble, SharedRuntime::f2d(jfloat x))
315 return (jdouble)x;
316JRT_END
317
318JRT_LEAF(int, SharedRuntime::fcmpl(float x, float y))
319 return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan*/
320JRT_END
321
322JRT_LEAF(int, SharedRuntime::fcmpg(float x, float y))
323 return x<y ? -1 : (x==y ? 0 : 1); /* x>y or is_nan */
324JRT_END
325
326JRT_LEAF(int, SharedRuntime::dcmpl(double x, double y))
327 return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan */
328JRT_END
329
330JRT_LEAF(int, SharedRuntime::dcmpg(double x, double y))
331 return x<y ? -1 : (x==y ? 0 : 1); /* x>y or is_nan */
332JRT_END
333
334// Functions to return the opposite of the aeabi functions for nan.
335JRT_LEAF(int, SharedRuntime::unordered_fcmplt(float x, float y))
336 return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
337JRT_END
338
339JRT_LEAF(int, SharedRuntime::unordered_dcmplt(double x, double y))
340 return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
341JRT_END
342
343JRT_LEAF(int, SharedRuntime::unordered_fcmple(float x, float y))
344 return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
345JRT_END
346
347JRT_LEAF(int, SharedRuntime::unordered_dcmple(double x, double y))
348 return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
349JRT_END
350
351JRT_LEAF(int, SharedRuntime::unordered_fcmpge(float x, float y))
352 return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
353JRT_END
354
355JRT_LEAF(int, SharedRuntime::unordered_dcmpge(double x, double y))
356 return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
357JRT_END
358
359JRT_LEAF(int, SharedRuntime::unordered_fcmpgt(float x, float y))
360 return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
361JRT_END
362
363JRT_LEAF(int, SharedRuntime::unordered_dcmpgt(double x, double y))
364 return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
365JRT_END
366
367// Intrinsics make gcc generate code for these.
368float SharedRuntime::fneg(float f) {
369 return -f;
370}
371
372double SharedRuntime::dneg(double f) {
373 return -f;
374}
375
376#endif // __SOFTFP__
377
378#if defined(__SOFTFP__) || defined(E500V2)
379// Intrinsics make gcc generate code for these.
380double SharedRuntime::dabs(double f) {
381 return (f <= (double)0.0) ? (double)0.0 - f : f;
382}
383
384#endif
385
386#if defined(__SOFTFP__) || defined(PPC)
387double SharedRuntime::dsqrt(double f) {
388 return sqrt(f);
389}
390#endif
391
392JRT_LEAF(jint, SharedRuntime::f2i(jfloat x))
393 if (g_isnan(x))
394 return 0;
395 if (x >= (jfloat) max_jint)
396 return max_jint;
397 if (x <= (jfloat) min_jint)
398 return min_jint;
399 return (jint) x;
400JRT_END
401
402
403JRT_LEAF(jlong, SharedRuntime::f2l(jfloat x))
404 if (g_isnan(x))
405 return 0;
406 if (x >= (jfloat) max_jlong)
407 return max_jlong;
408 if (x <= (jfloat) min_jlong)
409 return min_jlong;
410 return (jlong) x;
411JRT_END
412
413
414JRT_LEAF(jint, SharedRuntime::d2i(jdouble x))
415 if (g_isnan(x))
416 return 0;
417 if (x >= (jdouble) max_jint)
418 return max_jint;
419 if (x <= (jdouble) min_jint)
420 return min_jint;
421 return (jint) x;
422JRT_END
423
424
425JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x))
426 if (g_isnan(x))
427 return 0;
428 if (x >= (jdouble) max_jlong)
429 return max_jlong;
430 if (x <= (jdouble) min_jlong)
431 return min_jlong;
432 return (jlong) x;
433JRT_END
434
435
436JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x))
437 return (jfloat)x;
438JRT_END
439
440
441JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x))
442 return (jfloat)x;
443JRT_END
444
445
446JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x))
447 return (jdouble)x;
448JRT_END
449
450// Exception handling across interpreter/compiler boundaries
451//
452// exception_handler_for_return_address(...) returns the continuation address.
453// The continuation address is the entry point of the exception handler of the
454// previous frame depending on the return address.
455
456address SharedRuntime::raw_exception_handler_for_return_address(JavaThread* thread, address return_address) {
457 assert(frame::verify_return_pc(return_address), "must be a return address: " INTPTR_FORMAT, p2i(return_address));
458 assert(thread->frames_to_pop_failed_realloc() == 0 || Interpreter::contains(return_address), "missed frames to pop?");
459
460 // Reset method handle flag.
461 thread->set_is_method_handle_return(false);
462
463#if INCLUDE_JVMCI
464 // JVMCI's ExceptionHandlerStub expects the thread local exception PC to be clear
465 // and other exception handler continuations do not read it
466 thread->set_exception_pc(NULL);
467#endif // INCLUDE_JVMCI
468
469 // The fastest case first
470 CodeBlob* blob = CodeCache::find_blob(return_address);
471 CompiledMethod* nm = (blob != NULL) ? blob->as_compiled_method_or_null() : NULL;
472 if (nm != NULL) {
473 // Set flag if return address is a method handle call site.
474 thread->set_is_method_handle_return(nm->is_method_handle_return(return_address));
475 // native nmethods don't have exception handlers
476 assert(!nm->is_native_method(), "no exception handler");
477 assert(nm->header_begin() != nm->exception_begin(), "no exception handler");
478 if (nm->is_deopt_pc(return_address)) {
479 // If we come here because of a stack overflow, the stack may be
480 // unguarded. Reguard the stack otherwise if we return to the
481 // deopt blob and the stack bang causes a stack overflow we
482 // crash.
483 bool guard_pages_enabled = thread->stack_guards_enabled();
484 if (!guard_pages_enabled) guard_pages_enabled = thread->reguard_stack();
485 if (thread->reserved_stack_activation() != thread->stack_base()) {
486 thread->set_reserved_stack_activation(thread->stack_base());
487 }
488 assert(guard_pages_enabled, "stack banging in deopt blob may cause crash");
489 return SharedRuntime::deopt_blob()->unpack_with_exception();
490 } else {
491 return nm->exception_begin();
492 }
493 }
494
495 // Entry code
496 if (StubRoutines::returns_to_call_stub(return_address)) {
497 return StubRoutines::catch_exception_entry();
498 }
499 // Interpreted code
500 if (Interpreter::contains(return_address)) {
501 return Interpreter::rethrow_exception_entry();
502 }
503
504 guarantee(blob == NULL || !blob->is_runtime_stub(), "caller should have skipped stub");
505 guarantee(!VtableStubs::contains(return_address), "NULL exceptions in vtables should have been handled already!");
506
507#ifndef PRODUCT
508 { ResourceMark rm;
509 tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", p2i(return_address));
510 tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here");
511 tty->print_cr("b) other problem");
512 }
513#endif // PRODUCT
514
515 ShouldNotReachHere();
516 return NULL;
517}
518
519
520JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(JavaThread* thread, address return_address))
521 return raw_exception_handler_for_return_address(thread, return_address);
522JRT_END
523
524
525address SharedRuntime::get_poll_stub(address pc) {
526 address stub;
527 // Look up the code blob
528 CodeBlob *cb = CodeCache::find_blob(pc);
529
530 // Should be an nmethod
531 guarantee(cb != NULL && cb->is_compiled(), "safepoint polling: pc must refer to an nmethod");
532
533 // Look up the relocation information
534 assert(((CompiledMethod*)cb)->is_at_poll_or_poll_return(pc),
535 "safepoint polling: type must be poll");
536
537#ifdef ASSERT
538 if (!((NativeInstruction*)pc)->is_safepoint_poll()) {
539 tty->print_cr("bad pc: " PTR_FORMAT, p2i(pc));
540 Disassembler::decode(cb);
541 fatal("Only polling locations are used for safepoint");
542 }
543#endif
544
545 bool at_poll_return = ((CompiledMethod*)cb)->is_at_poll_return(pc);
546 bool has_wide_vectors = ((CompiledMethod*)cb)->has_wide_vectors();
547 if (at_poll_return) {
548 assert(SharedRuntime::polling_page_return_handler_blob() != NULL,
549 "polling page return stub not created yet");
550 stub = SharedRuntime::polling_page_return_handler_blob()->entry_point();
551 } else if (has_wide_vectors) {
552 assert(SharedRuntime::polling_page_vectors_safepoint_handler_blob() != NULL,
553 "polling page vectors safepoint stub not created yet");
554 stub = SharedRuntime::polling_page_vectors_safepoint_handler_blob()->entry_point();
555 } else {
556 assert(SharedRuntime::polling_page_safepoint_handler_blob() != NULL,
557 "polling page safepoint stub not created yet");
558 stub = SharedRuntime::polling_page_safepoint_handler_blob()->entry_point();
559 }
560 log_debug(safepoint)("... found polling page %s exception at pc = "
561 INTPTR_FORMAT ", stub =" INTPTR_FORMAT,
562 at_poll_return ? "return" : "loop",
563 (intptr_t)pc, (intptr_t)stub);
564 return stub;
565}
566
567
568oop SharedRuntime::retrieve_receiver( Symbol* sig, frame caller ) {
569 assert(caller.is_interpreted_frame(), "");
570 int args_size = ArgumentSizeComputer(sig).size() + 1;
571 assert(args_size <= caller.interpreter_frame_expression_stack_size(), "receiver must be on interpreter stack");
572 oop result = cast_to_oop(*caller.interpreter_frame_tos_at(args_size - 1));
573 assert(Universe::heap()->is_in(result) && oopDesc::is_oop(result), "receiver must be an oop");
574 return result;
575}
576
577
578void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Handle h_exception) {
579 if (JvmtiExport::can_post_on_exceptions()) {
580 vframeStream vfst(thread, true);
581 methodHandle method = methodHandle(thread, vfst.method());
582 address bcp = method()->bcp_from(vfst.bci());
583 JvmtiExport::post_exception_throw(thread, method(), bcp, h_exception());
584 }
585 Exceptions::_throw(thread, __FILE__, __LINE__, h_exception);
586}
587
588void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Symbol* name, const char *message) {
589 Handle h_exception = Exceptions::new_exception(thread, name, message);
590 throw_and_post_jvmti_exception(thread, h_exception);
591}
592
593// The interpreter code to call this tracing function is only
594// called/generated when UL is on for redefine, class and has the right level
595// and tags. Since obsolete methods are never compiled, we don't have
596// to modify the compilers to generate calls to this function.
597//
598JRT_LEAF(int, SharedRuntime::rc_trace_method_entry(
599 JavaThread* thread, Method* method))
600 if (method->is_obsolete()) {
601 // We are calling an obsolete method, but this is not necessarily
602 // an error. Our method could have been redefined just after we
603 // fetched the Method* from the constant pool.
604 ResourceMark rm;
605 log_trace(redefine, class, obsolete)("calling obsolete method '%s'", method->name_and_sig_as_C_string());
606 }
607 return 0;
608JRT_END
609
610// ret_pc points into caller; we are returning caller's exception handler
611// for given exception
612address SharedRuntime::compute_compiled_exc_handler(CompiledMethod* cm, address ret_pc, Handle& exception,
613 bool force_unwind, bool top_frame_only, bool& recursive_exception_occurred) {
614 assert(cm != NULL, "must exist");
615 ResourceMark rm;
616
617#if INCLUDE_JVMCI
618 if (cm->is_compiled_by_jvmci()) {
619 // lookup exception handler for this pc
620 int catch_pco = ret_pc - cm->code_begin();
621 ExceptionHandlerTable table(cm);
622 HandlerTableEntry *t = table.entry_for(catch_pco, -1, 0);
623 if (t != NULL) {
624 return cm->code_begin() + t->pco();
625 } else {
626 return Deoptimization::deoptimize_for_missing_exception_handler(cm);
627 }
628 }
629#endif // INCLUDE_JVMCI
630
631 nmethod* nm = cm->as_nmethod();
632 ScopeDesc* sd = nm->scope_desc_at(ret_pc);
633 // determine handler bci, if any
634 EXCEPTION_MARK;
635
636 int handler_bci = -1;
637 int scope_depth = 0;
638 if (!force_unwind) {
639 int bci = sd->bci();
640 bool recursive_exception = false;
641 do {
642 bool skip_scope_increment = false;
643 // exception handler lookup
644 Klass* ek = exception->klass();
645 methodHandle mh(THREAD, sd->method());
646 handler_bci = Method::fast_exception_handler_bci_for(mh, ek, bci, THREAD);
647 if (HAS_PENDING_EXCEPTION) {
648 recursive_exception = true;
649 // We threw an exception while trying to find the exception handler.
650 // Transfer the new exception to the exception handle which will
651 // be set into thread local storage, and do another lookup for an
652 // exception handler for this exception, this time starting at the
653 // BCI of the exception handler which caused the exception to be
654 // thrown (bugs 4307310 and 4546590). Set "exception" reference
655 // argument to ensure that the correct exception is thrown (4870175).
656 recursive_exception_occurred = true;
657 exception = Handle(THREAD, PENDING_EXCEPTION);
658 CLEAR_PENDING_EXCEPTION;
659 if (handler_bci >= 0) {
660 bci = handler_bci;
661 handler_bci = -1;
662 skip_scope_increment = true;
663 }
664 }
665 else {
666 recursive_exception = false;
667 }
668 if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) {
669 sd = sd->sender();
670 if (sd != NULL) {
671 bci = sd->bci();
672 }
673 ++scope_depth;
674 }
675 } while (recursive_exception || (!top_frame_only && handler_bci < 0 && sd != NULL));
676 }
677
678 // found handling method => lookup exception handler
679 int catch_pco = ret_pc - nm->code_begin();
680
681 ExceptionHandlerTable table(nm);
682 HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth);
683 if (t == NULL && (nm->is_compiled_by_c1() || handler_bci != -1)) {
684 // Allow abbreviated catch tables. The idea is to allow a method
685 // to materialize its exceptions without committing to the exact
686 // routing of exceptions. In particular this is needed for adding
687 // a synthetic handler to unlock monitors when inlining
688 // synchronized methods since the unlock path isn't represented in
689 // the bytecodes.
690 t = table.entry_for(catch_pco, -1, 0);
691 }
692
693#ifdef COMPILER1
694 if (t == NULL && nm->is_compiled_by_c1()) {
695 assert(nm->unwind_handler_begin() != NULL, "");
696 return nm->unwind_handler_begin();
697 }
698#endif
699
700 if (t == NULL) {
701 ttyLocker ttyl;
702 tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d", p2i(ret_pc), handler_bci);
703 tty->print_cr(" Exception:");
704 exception->print();
705 tty->cr();
706 tty->print_cr(" Compiled exception table :");
707 table.print();
708 nm->print_code();
709 guarantee(false, "missing exception handler");
710 return NULL;
711 }
712
713 return nm->code_begin() + t->pco();
714}
715
716JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* thread))
717 // These errors occur only at call sites
718 throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_AbstractMethodError());
719JRT_END
720
721JRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* thread))
722 // These errors occur only at call sites
723 throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub");
724JRT_END
725
726JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* thread))
727 throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
728JRT_END
729
730JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* thread))
731 throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
732JRT_END
733
734JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* thread))
735 // This entry point is effectively only used for NullPointerExceptions which occur at inline
736 // cache sites (when the callee activation is not yet set up) so we are at a call site
737 throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
738JRT_END
739
740JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* thread))
741 throw_StackOverflowError_common(thread, false);
742JRT_END
743
744JRT_ENTRY(void, SharedRuntime::throw_delayed_StackOverflowError(JavaThread* thread))
745 throw_StackOverflowError_common(thread, true);
746JRT_END
747
748void SharedRuntime::throw_StackOverflowError_common(JavaThread* thread, bool delayed) {
749 // We avoid using the normal exception construction in this case because
750 // it performs an upcall to Java, and we're already out of stack space.
751 Thread* THREAD = thread;
752 Klass* k = SystemDictionary::StackOverflowError_klass();
753 oop exception_oop = InstanceKlass::cast(k)->allocate_instance(CHECK);
754 if (delayed) {
755 java_lang_Throwable::set_message(exception_oop,
756 Universe::delayed_stack_overflow_error_message());
757 }
758 Handle exception (thread, exception_oop);
759 if (StackTraceInThrowable) {
760 java_lang_Throwable::fill_in_stack_trace(exception);
761 }
762 // Increment counter for hs_err file reporting
763 Atomic::inc(&Exceptions::_stack_overflow_errors);
764 throw_and_post_jvmti_exception(thread, exception);
765}
766
767address SharedRuntime::continuation_for_implicit_exception(JavaThread* thread,
768 address pc,
769 ImplicitExceptionKind exception_kind)
770{
771 address target_pc = NULL;
772
773 if (Interpreter::contains(pc)) {
774#ifdef CC_INTERP
775 // C++ interpreter doesn't throw implicit exceptions
776 ShouldNotReachHere();
777#else
778 switch (exception_kind) {
779 case IMPLICIT_NULL: return Interpreter::throw_NullPointerException_entry();
780 case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry();
781 case STACK_OVERFLOW: return Interpreter::throw_StackOverflowError_entry();
782 default: ShouldNotReachHere();
783 }
784#endif // !CC_INTERP
785 } else {
786 switch (exception_kind) {
787 case STACK_OVERFLOW: {
788 // Stack overflow only occurs upon frame setup; the callee is
789 // going to be unwound. Dispatch to a shared runtime stub
790 // which will cause the StackOverflowError to be fabricated
791 // and processed.
792 // Stack overflow should never occur during deoptimization:
793 // the compiled method bangs the stack by as much as the
794 // interpreter would need in case of a deoptimization. The
795 // deoptimization blob and uncommon trap blob bang the stack
796 // in a debug VM to verify the correctness of the compiled
797 // method stack banging.
798 assert(thread->deopt_mark() == NULL, "no stack overflow from deopt blob/uncommon trap");
799 Events::log_exception(thread, "StackOverflowError at " INTPTR_FORMAT, p2i(pc));
800 return StubRoutines::throw_StackOverflowError_entry();
801 }
802
803 case IMPLICIT_NULL: {
804 if (VtableStubs::contains(pc)) {
805 // We haven't yet entered the callee frame. Fabricate an
806 // exception and begin dispatching it in the caller. Since
807 // the caller was at a call site, it's safe to destroy all
808 // caller-saved registers, as these entry points do.
809 VtableStub* vt_stub = VtableStubs::stub_containing(pc);
810
811 // If vt_stub is NULL, then return NULL to signal handler to report the SEGV error.
812 if (vt_stub == NULL) return NULL;
813
814 if (vt_stub->is_abstract_method_error(pc)) {
815 assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs");
816 Events::log_exception(thread, "AbstractMethodError at " INTPTR_FORMAT, p2i(pc));
817 // Instead of throwing the abstract method error here directly, we re-resolve
818 // and will throw the AbstractMethodError during resolve. As a result, we'll
819 // get a more detailed error message.
820 return SharedRuntime::get_handle_wrong_method_stub();
821 } else {
822 Events::log_exception(thread, "NullPointerException at vtable entry " INTPTR_FORMAT, p2i(pc));
823 // Assert that the signal comes from the expected location in stub code.
824 assert(vt_stub->is_null_pointer_exception(pc),
825 "obtained signal from unexpected location in stub code");
826 return StubRoutines::throw_NullPointerException_at_call_entry();
827 }
828 } else {
829 CodeBlob* cb = CodeCache::find_blob(pc);
830
831 // If code blob is NULL, then return NULL to signal handler to report the SEGV error.
832 if (cb == NULL) return NULL;
833
834 // Exception happened in CodeCache. Must be either:
835 // 1. Inline-cache check in C2I handler blob,
836 // 2. Inline-cache check in nmethod, or
837 // 3. Implicit null exception in nmethod
838
839 if (!cb->is_compiled()) {
840 bool is_in_blob = cb->is_adapter_blob() || cb->is_method_handles_adapter_blob();
841 if (!is_in_blob) {
842 // Allow normal crash reporting to handle this
843 return NULL;
844 }
845 Events::log_exception(thread, "NullPointerException in code blob at " INTPTR_FORMAT, p2i(pc));
846 // There is no handler here, so we will simply unwind.
847 return StubRoutines::throw_NullPointerException_at_call_entry();
848 }
849
850 // Otherwise, it's a compiled method. Consult its exception handlers.
851 CompiledMethod* cm = (CompiledMethod*)cb;
852 if (cm->inlinecache_check_contains(pc)) {
853 // exception happened inside inline-cache check code
854 // => the nmethod is not yet active (i.e., the frame
855 // is not set up yet) => use return address pushed by
856 // caller => don't push another return address
857 Events::log_exception(thread, "NullPointerException in IC check " INTPTR_FORMAT, p2i(pc));
858 return StubRoutines::throw_NullPointerException_at_call_entry();
859 }
860
861 if (cm->method()->is_method_handle_intrinsic()) {
862 // exception happened inside MH dispatch code, similar to a vtable stub
863 Events::log_exception(thread, "NullPointerException in MH adapter " INTPTR_FORMAT, p2i(pc));
864 return StubRoutines::throw_NullPointerException_at_call_entry();
865 }
866
867#ifndef PRODUCT
868 _implicit_null_throws++;
869#endif
870 target_pc = cm->continuation_for_implicit_null_exception(pc);
871 // If there's an unexpected fault, target_pc might be NULL,
872 // in which case we want to fall through into the normal
873 // error handling code.
874 }
875
876 break; // fall through
877 }
878
879
880 case IMPLICIT_DIVIDE_BY_ZERO: {
881 CompiledMethod* cm = CodeCache::find_compiled(pc);
882 guarantee(cm != NULL, "must have containing compiled method for implicit division-by-zero exceptions");
883#ifndef PRODUCT
884 _implicit_div0_throws++;
885#endif
886 target_pc = cm->continuation_for_implicit_div0_exception(pc);
887 // If there's an unexpected fault, target_pc might be NULL,
888 // in which case we want to fall through into the normal
889 // error handling code.
890 break; // fall through
891 }
892
893 default: ShouldNotReachHere();
894 }
895
896 assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind");
897
898 if (exception_kind == IMPLICIT_NULL) {
899#ifndef PRODUCT
900 // for AbortVMOnException flag
901 Exceptions::debug_check_abort("java.lang.NullPointerException");
902#endif //PRODUCT
903 Events::log_exception(thread, "Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc));
904 } else {
905#ifndef PRODUCT
906 // for AbortVMOnException flag
907 Exceptions::debug_check_abort("java.lang.ArithmeticException");
908#endif //PRODUCT
909 Events::log_exception(thread, "Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc));
910 }
911 return target_pc;
912 }
913
914 ShouldNotReachHere();
915 return NULL;
916}
917
918
919/**
920 * Throws an java/lang/UnsatisfiedLinkError. The address of this method is
921 * installed in the native function entry of all native Java methods before
922 * they get linked to their actual native methods.
923 *
924 * \note
925 * This method actually never gets called! The reason is because
926 * the interpreter's native entries call NativeLookup::lookup() which
927 * throws the exception when the lookup fails. The exception is then
928 * caught and forwarded on the return from NativeLookup::lookup() call
929 * before the call to the native function. This might change in the future.
930 */
931JNI_ENTRY(void*, throw_unsatisfied_link_error(JNIEnv* env, ...))
932{
933 // We return a bad value here to make sure that the exception is
934 // forwarded before we look at the return value.
935 THROW_(vmSymbols::java_lang_UnsatisfiedLinkError(), (void*)badAddress);
936}
937JNI_END
938
939address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() {
940 return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error);
941}
942
943JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* thread, oopDesc* obj))
944#if INCLUDE_JVMCI
945 if (!obj->klass()->has_finalizer()) {
946 return;
947 }
948#endif // INCLUDE_JVMCI
949 assert(oopDesc::is_oop(obj), "must be a valid oop");
950 assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
951 InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
952JRT_END
953
954
955jlong SharedRuntime::get_java_tid(Thread* thread) {
956 if (thread != NULL) {
957 if (thread->is_Java_thread()) {
958 oop obj = ((JavaThread*)thread)->threadObj();
959 return (obj == NULL) ? 0 : java_lang_Thread::thread_id(obj);
960 }
961 }
962 return 0;
963}
964
965/**
966 * This function ought to be a void function, but cannot be because
967 * it gets turned into a tail-call on sparc, which runs into dtrace bug
968 * 6254741. Once that is fixed we can remove the dummy return value.
969 */
970int SharedRuntime::dtrace_object_alloc(oopDesc* o, int size) {
971 return dtrace_object_alloc_base(Thread::current(), o, size);
972}
973
974int SharedRuntime::dtrace_object_alloc_base(Thread* thread, oopDesc* o, int size) {
975 assert(DTraceAllocProbes, "wrong call");
976 Klass* klass = o->klass();
977 Symbol* name = klass->name();
978 HOTSPOT_OBJECT_ALLOC(
979 get_java_tid(thread),
980 (char *) name->bytes(), name->utf8_length(), size * HeapWordSize);
981 return 0;
982}
983
984JRT_LEAF(int, SharedRuntime::dtrace_method_entry(
985 JavaThread* thread, Method* method))
986 assert(DTraceMethodProbes, "wrong call");
987 Symbol* kname = method->klass_name();
988 Symbol* name = method->name();
989 Symbol* sig = method->signature();
990 HOTSPOT_METHOD_ENTRY(
991 get_java_tid(thread),
992 (char *) kname->bytes(), kname->utf8_length(),
993 (char *) name->bytes(), name->utf8_length(),
994 (char *) sig->bytes(), sig->utf8_length());
995 return 0;
996JRT_END
997
998JRT_LEAF(int, SharedRuntime::dtrace_method_exit(
999 JavaThread* thread, Method* method))
1000 assert(DTraceMethodProbes, "wrong call");
1001 Symbol* kname = method->klass_name();
1002 Symbol* name = method->name();
1003 Symbol* sig = method->signature();
1004 HOTSPOT_METHOD_RETURN(
1005 get_java_tid(thread),
1006 (char *) kname->bytes(), kname->utf8_length(),
1007 (char *) name->bytes(), name->utf8_length(),
1008 (char *) sig->bytes(), sig->utf8_length());
1009 return 0;
1010JRT_END
1011
1012
1013// Finds receiver, CallInfo (i.e. receiver method), and calling bytecode)
1014// for a call current in progress, i.e., arguments has been pushed on stack
1015// put callee has not been invoked yet. Used by: resolve virtual/static,
1016// vtable updates, etc. Caller frame must be compiled.
1017Handle SharedRuntime::find_callee_info(JavaThread* thread, Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) {
1018 ResourceMark rm(THREAD);
1019
1020 // last java frame on stack (which includes native call frames)
1021 vframeStream vfst(thread, true); // Do not skip and javaCalls
1022
1023 return find_callee_info_helper(thread, vfst, bc, callinfo, THREAD);
1024}
1025
1026methodHandle SharedRuntime::extract_attached_method(vframeStream& vfst) {
1027 CompiledMethod* caller = vfst.nm();
1028
1029 nmethodLocker caller_lock(caller);
1030
1031 address pc = vfst.frame_pc();
1032 { // Get call instruction under lock because another thread may be busy patching it.
1033 CompiledICLocker ic_locker(caller);
1034 return caller->attached_method_before_pc(pc);
1035 }
1036 return NULL;
1037}
1038
1039// Finds receiver, CallInfo (i.e. receiver method), and calling bytecode
1040// for a call current in progress, i.e., arguments has been pushed on stack
1041// but callee has not been invoked yet. Caller frame must be compiled.
1042Handle SharedRuntime::find_callee_info_helper(JavaThread* thread,
1043 vframeStream& vfst,
1044 Bytecodes::Code& bc,
1045 CallInfo& callinfo, TRAPS) {
1046 Handle receiver;
1047 Handle nullHandle; //create a handy null handle for exception returns
1048
1049 assert(!vfst.at_end(), "Java frame must exist");
1050
1051 // Find caller and bci from vframe
1052 methodHandle caller(THREAD, vfst.method());
1053 int bci = vfst.bci();
1054
1055 Bytecode_invoke bytecode(caller, bci);
1056 int bytecode_index = bytecode.index();
1057 bc = bytecode.invoke_code();
1058
1059 methodHandle attached_method = extract_attached_method(vfst);
1060 if (attached_method.not_null()) {
1061 methodHandle callee = bytecode.static_target(CHECK_NH);
1062 vmIntrinsics::ID id = callee->intrinsic_id();
1063 // When VM replaces MH.invokeBasic/linkTo* call with a direct/virtual call,
1064 // it attaches statically resolved method to the call site.
1065 if (MethodHandles::is_signature_polymorphic(id) &&
1066 MethodHandles::is_signature_polymorphic_intrinsic(id)) {
1067 bc = MethodHandles::signature_polymorphic_intrinsic_bytecode(id);
1068
1069 // Adjust invocation mode according to the attached method.
1070 switch (bc) {
1071 case Bytecodes::_invokevirtual:
1072 if (attached_method->method_holder()->is_interface()) {
1073 bc = Bytecodes::_invokeinterface;
1074 }
1075 break;
1076 case Bytecodes::_invokeinterface:
1077 if (!attached_method->method_holder()->is_interface()) {
1078 bc = Bytecodes::_invokevirtual;
1079 }
1080 break;
1081 case Bytecodes::_invokehandle:
1082 if (!MethodHandles::is_signature_polymorphic_method(attached_method())) {
1083 bc = attached_method->is_static() ? Bytecodes::_invokestatic
1084 : Bytecodes::_invokevirtual;
1085 }
1086 break;
1087 default:
1088 break;
1089 }
1090 }
1091 }
1092
1093 assert(bc != Bytecodes::_illegal, "not initialized");
1094
1095 bool has_receiver = bc != Bytecodes::_invokestatic &&
1096 bc != Bytecodes::_invokedynamic &&
1097 bc != Bytecodes::_invokehandle;
1098
1099 // Find receiver for non-static call
1100 if (has_receiver) {
1101 // This register map must be update since we need to find the receiver for
1102 // compiled frames. The receiver might be in a register.
1103 RegisterMap reg_map2(thread);
1104 frame stubFrame = thread->last_frame();
1105 // Caller-frame is a compiled frame
1106 frame callerFrame = stubFrame.sender(&reg_map2);
1107
1108 if (attached_method.is_null()) {
1109 methodHandle callee = bytecode.static_target(CHECK_NH);
1110 if (callee.is_null()) {
1111 THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle);
1112 }
1113 }
1114
1115 // Retrieve from a compiled argument list
1116 receiver = Handle(THREAD, callerFrame.retrieve_receiver(&reg_map2));
1117
1118 if (receiver.is_null()) {
1119 THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle);
1120 }
1121 }
1122
1123 // Resolve method
1124 if (attached_method.not_null()) {
1125 // Parameterized by attached method.
1126 LinkResolver::resolve_invoke(callinfo, receiver, attached_method, bc, CHECK_NH);
1127 } else {
1128 // Parameterized by bytecode.
1129 constantPoolHandle constants(THREAD, caller->constants());
1130 LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_NH);
1131 }
1132
1133#ifdef ASSERT
1134 // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls
1135 if (has_receiver) {
1136 assert(receiver.not_null(), "should have thrown exception");
1137 Klass* receiver_klass = receiver->klass();
1138 Klass* rk = NULL;
1139 if (attached_method.not_null()) {
1140 // In case there's resolved method attached, use its holder during the check.
1141 rk = attached_method->method_holder();
1142 } else {
1143 // Klass is already loaded.
1144 constantPoolHandle constants(THREAD, caller->constants());
1145 rk = constants->klass_ref_at(bytecode_index, CHECK_NH);
1146 }
1147 Klass* static_receiver_klass = rk;
1148 methodHandle callee = callinfo.selected_method();
1149 assert(receiver_klass->is_subtype_of(static_receiver_klass),
1150 "actual receiver must be subclass of static receiver klass");
1151 if (receiver_klass->is_instance_klass()) {
1152 if (InstanceKlass::cast(receiver_klass)->is_not_initialized()) {
1153 tty->print_cr("ERROR: Klass not yet initialized!!");
1154 receiver_klass->print();
1155 }
1156 assert(!InstanceKlass::cast(receiver_klass)->is_not_initialized(), "receiver_klass must be initialized");
1157 }
1158 }
1159#endif
1160
1161 return receiver;
1162}
1163
1164methodHandle SharedRuntime::find_callee_method(JavaThread* thread, TRAPS) {
1165 ResourceMark rm(THREAD);
1166 // We need first to check if any Java activations (compiled, interpreted)
1167 // exist on the stack since last JavaCall. If not, we need
1168 // to get the target method from the JavaCall wrapper.
1169 vframeStream vfst(thread, true); // Do not skip any javaCalls
1170 methodHandle callee_method;
1171 if (vfst.at_end()) {
1172 // No Java frames were found on stack since we did the JavaCall.
1173 // Hence the stack can only contain an entry_frame. We need to
1174 // find the target method from the stub frame.
1175 RegisterMap reg_map(thread, false);
1176 frame fr = thread->last_frame();
1177 assert(fr.is_runtime_frame(), "must be a runtimeStub");
1178 fr = fr.sender(&reg_map);
1179 assert(fr.is_entry_frame(), "must be");
1180 // fr is now pointing to the entry frame.
1181 callee_method = methodHandle(THREAD, fr.entry_frame_call_wrapper()->callee_method());
1182 } else {
1183 Bytecodes::Code bc;
1184 CallInfo callinfo;
1185 find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(methodHandle()));
1186 callee_method = callinfo.selected_method();
1187 }
1188 assert(callee_method()->is_method(), "must be");
1189 return callee_method;
1190}
1191
1192// Resolves a call.
1193methodHandle SharedRuntime::resolve_helper(JavaThread *thread,
1194 bool is_virtual,
1195 bool is_optimized, TRAPS) {
1196 methodHandle callee_method;
1197 callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
1198 if (JvmtiExport::can_hotswap_or_post_breakpoint()) {
1199 int retry_count = 0;
1200 while (!HAS_PENDING_EXCEPTION && callee_method->is_old() &&
1201 callee_method->method_holder() != SystemDictionary::Object_klass()) {
1202 // If has a pending exception then there is no need to re-try to
1203 // resolve this method.
1204 // If the method has been redefined, we need to try again.
1205 // Hack: we have no way to update the vtables of arrays, so don't
1206 // require that java.lang.Object has been updated.
1207
1208 // It is very unlikely that method is redefined more than 100 times
1209 // in the middle of resolve. If it is looping here more than 100 times
1210 // means then there could be a bug here.
1211 guarantee((retry_count++ < 100),
1212 "Could not resolve to latest version of redefined method");
1213 // method is redefined in the middle of resolve so re-try.
1214 callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
1215 }
1216 }
1217 return callee_method;
1218}
1219
1220// This fails if resolution required refilling of IC stubs
1221bool SharedRuntime::resolve_sub_helper_internal(methodHandle callee_method, const frame& caller_frame,
1222 CompiledMethod* caller_nm, bool is_virtual, bool is_optimized,
1223 Handle receiver, CallInfo& call_info, Bytecodes::Code invoke_code, TRAPS) {
1224 StaticCallInfo static_call_info;
1225 CompiledICInfo virtual_call_info;
1226
1227 // Make sure the callee nmethod does not get deoptimized and removed before
1228 // we are done patching the code.
1229 CompiledMethod* callee = callee_method->code();
1230
1231 if (callee != NULL) {
1232 assert(callee->is_compiled(), "must be nmethod for patching");
1233 }
1234
1235 if (callee != NULL && !callee->is_in_use()) {
1236 // Patch call site to C2I adapter if callee nmethod is deoptimized or unloaded.
1237 callee = NULL;
1238 }
1239 nmethodLocker nl_callee(callee);
1240#ifdef ASSERT
1241 address dest_entry_point = callee == NULL ? 0 : callee->entry_point(); // used below
1242#endif
1243
1244 bool is_nmethod = caller_nm->is_nmethod();
1245
1246 if (is_virtual) {
1247 assert(receiver.not_null() || invoke_code == Bytecodes::_invokehandle, "sanity check");
1248 bool static_bound = call_info.resolved_method()->can_be_statically_bound();
1249 Klass* klass = invoke_code == Bytecodes::_invokehandle ? NULL : receiver->klass();
1250 CompiledIC::compute_monomorphic_entry(callee_method, klass,
1251 is_optimized, static_bound, is_nmethod, virtual_call_info,
1252 CHECK_false);
1253 } else {
1254 // static call
1255 CompiledStaticCall::compute_entry(callee_method, is_nmethod, static_call_info);
1256 }
1257
1258 // grab lock, check for deoptimization and potentially patch caller
1259 {
1260 CompiledICLocker ml(caller_nm);
1261
1262 // Lock blocks for safepoint during which both nmethods can change state.
1263
1264 // Now that we are ready to patch if the Method* was redefined then
1265 // don't update call site and let the caller retry.
1266 // Don't update call site if callee nmethod was unloaded or deoptimized.
1267 // Don't update call site if callee nmethod was replaced by an other nmethod
1268 // which may happen when multiply alive nmethod (tiered compilation)
1269 // will be supported.
1270 if (!callee_method->is_old() &&
1271 (callee == NULL || (callee->is_in_use() && callee_method->code() == callee))) {
1272#ifdef ASSERT
1273 // We must not try to patch to jump to an already unloaded method.
1274 if (dest_entry_point != 0) {
1275 CodeBlob* cb = CodeCache::find_blob(dest_entry_point);
1276 assert((cb != NULL) && cb->is_compiled() && (((CompiledMethod*)cb) == callee),
1277 "should not call unloaded nmethod");
1278 }
1279#endif
1280 if (is_virtual) {
1281 CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc());
1282 if (inline_cache->is_clean()) {
1283 if (!inline_cache->set_to_monomorphic(virtual_call_info)) {
1284 return false;
1285 }
1286 }
1287 } else {
1288 if (VM_Version::supports_fast_class_init_checks() &&
1289 invoke_code == Bytecodes::_invokestatic &&
1290 callee_method->needs_clinit_barrier() &&
1291 callee != NULL && (callee->is_compiled_by_jvmci() || callee->is_aot())) {
1292 return true; // skip patching for JVMCI or AOT code
1293 }
1294 CompiledStaticCall* ssc = caller_nm->compiledStaticCall_before(caller_frame.pc());
1295 if (ssc->is_clean()) ssc->set(static_call_info);
1296 }
1297 }
1298 } // unlock CompiledICLocker
1299 return true;
1300}
1301
1302// Resolves a call. The compilers generate code for calls that go here
1303// and are patched with the real destination of the call.
1304methodHandle SharedRuntime::resolve_sub_helper(JavaThread *thread,
1305 bool is_virtual,
1306 bool is_optimized, TRAPS) {
1307
1308 ResourceMark rm(thread);
1309 RegisterMap cbl_map(thread, false);
1310 frame caller_frame = thread->last_frame().sender(&cbl_map);
1311
1312 CodeBlob* caller_cb = caller_frame.cb();
1313 guarantee(caller_cb != NULL && caller_cb->is_compiled(), "must be called from compiled method");
1314 CompiledMethod* caller_nm = caller_cb->as_compiled_method_or_null();
1315
1316 // make sure caller is not getting deoptimized
1317 // and removed before we are done with it.
1318 // CLEANUP - with lazy deopt shouldn't need this lock
1319 nmethodLocker caller_lock(caller_nm);
1320
1321 // determine call info & receiver
1322 // note: a) receiver is NULL for static calls
1323 // b) an exception is thrown if receiver is NULL for non-static calls
1324 CallInfo call_info;
1325 Bytecodes::Code invoke_code = Bytecodes::_illegal;
1326 Handle receiver = find_callee_info(thread, invoke_code,
1327 call_info, CHECK_(methodHandle()));
1328 methodHandle callee_method = call_info.selected_method();
1329
1330 assert((!is_virtual && invoke_code == Bytecodes::_invokestatic ) ||
1331 (!is_virtual && invoke_code == Bytecodes::_invokespecial) ||
1332 (!is_virtual && invoke_code == Bytecodes::_invokehandle ) ||
1333 (!is_virtual && invoke_code == Bytecodes::_invokedynamic) ||
1334 ( is_virtual && invoke_code != Bytecodes::_invokestatic ), "inconsistent bytecode");
1335
1336 assert(caller_nm->is_alive() && !caller_nm->is_unloading(), "It should be alive");
1337
1338#ifndef PRODUCT
1339 // tracing/debugging/statistics
1340 int *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) :
1341 (is_virtual) ? (&_resolve_virtual_ctr) :
1342 (&_resolve_static_ctr);
1343 Atomic::inc(addr);
1344
1345 if (TraceCallFixup) {
1346 ResourceMark rm(thread);
1347 tty->print("resolving %s%s (%s) call to",
1348 (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static",
1349 Bytecodes::name(invoke_code));
1350 callee_method->print_short_name(tty);
1351 tty->print_cr(" at pc: " INTPTR_FORMAT " to code: " INTPTR_FORMAT,
1352 p2i(caller_frame.pc()), p2i(callee_method->code()));
1353 }
1354#endif
1355
1356 if (invoke_code == Bytecodes::_invokestatic) {
1357 assert(callee_method->method_holder()->is_initialized() ||
1358 callee_method->method_holder()->is_reentrant_initialization(thread),
1359 "invalid class initialization state for invoke_static");
1360 if (!VM_Version::supports_fast_class_init_checks() && callee_method->needs_clinit_barrier()) {
1361 // In order to keep class initialization check, do not patch call
1362 // site for static call when the class is not fully initialized.
1363 // Proper check is enforced by call site re-resolution on every invocation.
1364 //
1365 // When fast class initialization checks are supported (VM_Version::supports_fast_class_init_checks() == true),
1366 // explicit class initialization check is put in nmethod entry (VEP).
1367 assert(callee_method->method_holder()->is_linked(), "must be");
1368 return callee_method;
1369 }
1370 }
1371
1372 // JSR 292 key invariant:
1373 // If the resolved method is a MethodHandle invoke target, the call
1374 // site must be a MethodHandle call site, because the lambda form might tail-call
1375 // leaving the stack in a state unknown to either caller or callee
1376 // TODO detune for now but we might need it again
1377// assert(!callee_method->is_compiled_lambda_form() ||
1378// caller_nm->is_method_handle_return(caller_frame.pc()), "must be MH call site");
1379
1380 // Compute entry points. This might require generation of C2I converter
1381 // frames, so we cannot be holding any locks here. Furthermore, the
1382 // computation of the entry points is independent of patching the call. We
1383 // always return the entry-point, but we only patch the stub if the call has
1384 // not been deoptimized. Return values: For a virtual call this is an
1385 // (cached_oop, destination address) pair. For a static call/optimized
1386 // virtual this is just a destination address.
1387
1388 // Patching IC caches may fail if we run out if transition stubs.
1389 // We refill the ic stubs then and try again.
1390 for (;;) {
1391 ICRefillVerifier ic_refill_verifier;
1392 bool successful = resolve_sub_helper_internal(callee_method, caller_frame, caller_nm,
1393 is_virtual, is_optimized, receiver,
1394 call_info, invoke_code, CHECK_(methodHandle()));
1395 if (successful) {
1396 return callee_method;
1397 } else {
1398 InlineCacheBuffer::refill_ic_stubs();
1399 }
1400 }
1401
1402}
1403
1404
1405// Inline caches exist only in compiled code
1406JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* thread))
1407#ifdef ASSERT
1408 RegisterMap reg_map(thread, false);
1409 frame stub_frame = thread->last_frame();
1410 assert(stub_frame.is_runtime_frame(), "sanity check");
1411 frame caller_frame = stub_frame.sender(&reg_map);
1412 assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame(), "unexpected frame");
1413#endif /* ASSERT */
1414
1415 methodHandle callee_method;
1416 JRT_BLOCK
1417 callee_method = SharedRuntime::handle_ic_miss_helper(thread, CHECK_NULL);
1418 // Return Method* through TLS
1419 thread->set_vm_result_2(callee_method());
1420 JRT_BLOCK_END
1421 // return compiled code entry point after potential safepoints
1422 assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1423 return callee_method->verified_code_entry();
1424JRT_END
1425
1426
1427// Handle call site that has been made non-entrant
1428JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* thread))
1429 // 6243940 We might end up in here if the callee is deoptimized
1430 // as we race to call it. We don't want to take a safepoint if
1431 // the caller was interpreted because the caller frame will look
1432 // interpreted to the stack walkers and arguments are now
1433 // "compiled" so it is much better to make this transition
1434 // invisible to the stack walking code. The i2c path will
1435 // place the callee method in the callee_target. It is stashed
1436 // there because if we try and find the callee by normal means a
1437 // safepoint is possible and have trouble gc'ing the compiled args.
1438 RegisterMap reg_map(thread, false);
1439 frame stub_frame = thread->last_frame();
1440 assert(stub_frame.is_runtime_frame(), "sanity check");
1441 frame caller_frame = stub_frame.sender(&reg_map);
1442
1443 if (caller_frame.is_interpreted_frame() ||
1444 caller_frame.is_entry_frame()) {
1445 Method* callee = thread->callee_target();
1446 guarantee(callee != NULL && callee->is_method(), "bad handshake");
1447 thread->set_vm_result_2(callee);
1448 thread->set_callee_target(NULL);
1449 return callee->get_c2i_entry();
1450 }
1451
1452 // Must be compiled to compiled path which is safe to stackwalk
1453 methodHandle callee_method;
1454 JRT_BLOCK
1455 // Force resolving of caller (if we called from compiled frame)
1456 callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_NULL);
1457 thread->set_vm_result_2(callee_method());
1458 JRT_BLOCK_END
1459 // return compiled code entry point after potential safepoints
1460 assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1461 return callee_method->verified_code_entry();
1462JRT_END
1463
1464// Handle abstract method call
1465JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_abstract(JavaThread* thread))
1466 // Verbose error message for AbstractMethodError.
1467 // Get the called method from the invoke bytecode.
1468 vframeStream vfst(thread, true);
1469 assert(!vfst.at_end(), "Java frame must exist");
1470 methodHandle caller(vfst.method());
1471 Bytecode_invoke invoke(caller, vfst.bci());
1472 DEBUG_ONLY( invoke.verify(); )
1473
1474 // Find the compiled caller frame.
1475 RegisterMap reg_map(thread);
1476 frame stubFrame = thread->last_frame();
1477 assert(stubFrame.is_runtime_frame(), "must be");
1478 frame callerFrame = stubFrame.sender(&reg_map);
1479 assert(callerFrame.is_compiled_frame(), "must be");
1480
1481 // Install exception and return forward entry.
1482 address res = StubRoutines::throw_AbstractMethodError_entry();
1483 JRT_BLOCK
1484 methodHandle callee = invoke.static_target(thread);
1485 if (!callee.is_null()) {
1486 oop recv = callerFrame.retrieve_receiver(&reg_map);
1487 Klass *recv_klass = (recv != NULL) ? recv->klass() : NULL;
1488 LinkResolver::throw_abstract_method_error(callee, recv_klass, thread);
1489 res = StubRoutines::forward_exception_entry();
1490 }
1491 JRT_BLOCK_END
1492 return res;
1493JRT_END
1494
1495
1496// resolve a static call and patch code
1497JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread *thread ))
1498 methodHandle callee_method;
1499 JRT_BLOCK
1500 callee_method = SharedRuntime::resolve_helper(thread, false, false, CHECK_NULL);
1501 thread->set_vm_result_2(callee_method());
1502 JRT_BLOCK_END
1503 // return compiled code entry point after potential safepoints
1504 assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1505 return callee_method->verified_code_entry();
1506JRT_END
1507
1508
1509// resolve virtual call and update inline cache to monomorphic
1510JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread *thread ))
1511 methodHandle callee_method;
1512 JRT_BLOCK
1513 callee_method = SharedRuntime::resolve_helper(thread, true, false, CHECK_NULL);
1514 thread->set_vm_result_2(callee_method());
1515 JRT_BLOCK_END
1516 // return compiled code entry point after potential safepoints
1517 assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1518 return callee_method->verified_code_entry();
1519JRT_END
1520
1521
1522// Resolve a virtual call that can be statically bound (e.g., always
1523// monomorphic, so it has no inline cache). Patch code to resolved target.
1524JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread *thread))
1525 methodHandle callee_method;
1526 JRT_BLOCK
1527 callee_method = SharedRuntime::resolve_helper(thread, true, true, CHECK_NULL);
1528 thread->set_vm_result_2(callee_method());
1529 JRT_BLOCK_END
1530 // return compiled code entry point after potential safepoints
1531 assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1532 return callee_method->verified_code_entry();
1533JRT_END
1534
1535// The handle_ic_miss_helper_internal function returns false if it failed due
1536// to either running out of vtable stubs or ic stubs due to IC transitions
1537// to transitional states. The needs_ic_stub_refill value will be set if
1538// the failure was due to running out of IC stubs, in which case handle_ic_miss_helper
1539// refills the IC stubs and tries again.
1540bool SharedRuntime::handle_ic_miss_helper_internal(Handle receiver, CompiledMethod* caller_nm,
1541 const frame& caller_frame, methodHandle callee_method,
1542 Bytecodes::Code bc, CallInfo& call_info,
1543 bool& needs_ic_stub_refill, TRAPS) {
1544 CompiledICLocker ml(caller_nm);
1545 CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc());
1546 bool should_be_mono = false;
1547 if (inline_cache->is_optimized()) {
1548 if (TraceCallFixup) {
1549 ResourceMark rm(THREAD);
1550 tty->print("OPTIMIZED IC miss (%s) call to", Bytecodes::name(bc));
1551 callee_method->print_short_name(tty);
1552 tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1553 }
1554 should_be_mono = true;
1555 } else if (inline_cache->is_icholder_call()) {
1556 CompiledICHolder* ic_oop = inline_cache->cached_icholder();
1557 if (ic_oop != NULL) {
1558 if (!ic_oop->is_loader_alive()) {
1559 // Deferred IC cleaning due to concurrent class unloading
1560 if (!inline_cache->set_to_clean()) {
1561 needs_ic_stub_refill = true;
1562 return false;
1563 }
1564 } else if (receiver()->klass() == ic_oop->holder_klass()) {
1565 // This isn't a real miss. We must have seen that compiled code
1566 // is now available and we want the call site converted to a
1567 // monomorphic compiled call site.
1568 // We can't assert for callee_method->code() != NULL because it
1569 // could have been deoptimized in the meantime
1570 if (TraceCallFixup) {
1571 ResourceMark rm(THREAD);
1572 tty->print("FALSE IC miss (%s) converting to compiled call to", Bytecodes::name(bc));
1573 callee_method->print_short_name(tty);
1574 tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1575 }
1576 should_be_mono = true;
1577 }
1578 }
1579 }
1580
1581 if (should_be_mono) {
1582 // We have a path that was monomorphic but was going interpreted
1583 // and now we have (or had) a compiled entry. We correct the IC
1584 // by using a new icBuffer.
1585 CompiledICInfo info;
1586 Klass* receiver_klass = receiver()->klass();
1587 inline_cache->compute_monomorphic_entry(callee_method,
1588 receiver_klass,
1589 inline_cache->is_optimized(),
1590 false, caller_nm->is_nmethod(),
1591 info, CHECK_false);
1592 if (!inline_cache->set_to_monomorphic(info)) {
1593 needs_ic_stub_refill = true;
1594 return false;
1595 }
1596 } else if (!inline_cache->is_megamorphic() && !inline_cache->is_clean()) {
1597 // Potential change to megamorphic
1598
1599 bool successful = inline_cache->set_to_megamorphic(&call_info, bc, needs_ic_stub_refill, CHECK_false);
1600 if (needs_ic_stub_refill) {
1601 return false;
1602 }
1603 if (!successful) {
1604 if (!inline_cache->set_to_clean()) {
1605 needs_ic_stub_refill = true;
1606 return false;
1607 }
1608 }
1609 } else {
1610 // Either clean or megamorphic
1611 }
1612 return true;
1613}
1614
1615methodHandle SharedRuntime::handle_ic_miss_helper(JavaThread *thread, TRAPS) {
1616 ResourceMark rm(thread);
1617 CallInfo call_info;
1618 Bytecodes::Code bc;
1619
1620 // receiver is NULL for static calls. An exception is thrown for NULL
1621 // receivers for non-static calls
1622 Handle receiver = find_callee_info(thread, bc, call_info,
1623 CHECK_(methodHandle()));
1624 // Compiler1 can produce virtual call sites that can actually be statically bound
1625 // If we fell thru to below we would think that the site was going megamorphic
1626 // when in fact the site can never miss. Worse because we'd think it was megamorphic
1627 // we'd try and do a vtable dispatch however methods that can be statically bound
1628 // don't have vtable entries (vtable_index < 0) and we'd blow up. So we force a
1629 // reresolution of the call site (as if we did a handle_wrong_method and not an
1630 // plain ic_miss) and the site will be converted to an optimized virtual call site
1631 // never to miss again. I don't believe C2 will produce code like this but if it
1632 // did this would still be the correct thing to do for it too, hence no ifdef.
1633 //
1634 if (call_info.resolved_method()->can_be_statically_bound()) {
1635 methodHandle callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_(methodHandle()));
1636 if (TraceCallFixup) {
1637 RegisterMap reg_map(thread, false);
1638 frame caller_frame = thread->last_frame().sender(&reg_map);
1639 ResourceMark rm(thread);
1640 tty->print("converting IC miss to reresolve (%s) call to", Bytecodes::name(bc));
1641 callee_method->print_short_name(tty);
1642 tty->print_cr(" from pc: " INTPTR_FORMAT, p2i(caller_frame.pc()));
1643 tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1644 }
1645 return callee_method;
1646 }
1647
1648 methodHandle callee_method = call_info.selected_method();
1649
1650#ifndef PRODUCT
1651 Atomic::inc(&_ic_miss_ctr);
1652
1653 // Statistics & Tracing
1654 if (TraceCallFixup) {
1655 ResourceMark rm(thread);
1656 tty->print("IC miss (%s) call to", Bytecodes::name(bc));
1657 callee_method->print_short_name(tty);
1658 tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1659 }
1660
1661 if (ICMissHistogram) {
1662 MutexLocker m(VMStatistic_lock);
1663 RegisterMap reg_map(thread, false);
1664 frame f = thread->last_frame().real_sender(&reg_map);// skip runtime stub
1665 // produce statistics under the lock
1666 trace_ic_miss(f.pc());
1667 }
1668#endif
1669
1670 // install an event collector so that when a vtable stub is created the
1671 // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The
1672 // event can't be posted when the stub is created as locks are held
1673 // - instead the event will be deferred until the event collector goes
1674 // out of scope.
1675 JvmtiDynamicCodeEventCollector event_collector;
1676
1677 // Update inline cache to megamorphic. Skip update if we are called from interpreted.
1678 // Transitioning IC caches may require transition stubs. If we run out
1679 // of transition stubs, we have to drop locks and perform a safepoint
1680 // that refills them.
1681 RegisterMap reg_map(thread, false);
1682 frame caller_frame = thread->last_frame().sender(&reg_map);
1683 CodeBlob* cb = caller_frame.cb();
1684 CompiledMethod* caller_nm = cb->as_compiled_method();
1685
1686 for (;;) {
1687 ICRefillVerifier ic_refill_verifier;
1688 bool needs_ic_stub_refill = false;
1689 bool successful = handle_ic_miss_helper_internal(receiver, caller_nm, caller_frame, callee_method,
1690 bc, call_info, needs_ic_stub_refill, CHECK_(methodHandle()));
1691 if (successful || !needs_ic_stub_refill) {
1692 return callee_method;
1693 } else {
1694 InlineCacheBuffer::refill_ic_stubs();
1695 }
1696 }
1697}
1698
1699static bool clear_ic_at_addr(CompiledMethod* caller_nm, address call_addr, bool is_static_call) {
1700 CompiledICLocker ml(caller_nm);
1701 if (is_static_call) {
1702 CompiledStaticCall* ssc = caller_nm->compiledStaticCall_at(call_addr);
1703 if (!ssc->is_clean()) {
1704 return ssc->set_to_clean();
1705 }
1706 } else {
1707 // compiled, dispatched call (which used to call an interpreted method)
1708 CompiledIC* inline_cache = CompiledIC_at(caller_nm, call_addr);
1709 if (!inline_cache->is_clean()) {
1710 return inline_cache->set_to_clean();
1711 }
1712 }
1713 return true;
1714}
1715
1716//
1717// Resets a call-site in compiled code so it will get resolved again.
1718// This routines handles both virtual call sites, optimized virtual call
1719// sites, and static call sites. Typically used to change a call sites
1720// destination from compiled to interpreted.
1721//
1722methodHandle SharedRuntime::reresolve_call_site(JavaThread *thread, TRAPS) {
1723 ResourceMark rm(thread);
1724 RegisterMap reg_map(thread, false);
1725 frame stub_frame = thread->last_frame();
1726 assert(stub_frame.is_runtime_frame(), "must be a runtimeStub");
1727 frame caller = stub_frame.sender(&reg_map);
1728
1729 // Do nothing if the frame isn't a live compiled frame.
1730 // nmethod could be deoptimized by the time we get here
1731 // so no update to the caller is needed.
1732
1733 if (caller.is_compiled_frame() && !caller.is_deoptimized_frame()) {
1734
1735 address pc = caller.pc();
1736
1737 // Check for static or virtual call
1738 bool is_static_call = false;
1739 CompiledMethod* caller_nm = CodeCache::find_compiled(pc);
1740
1741 // Default call_addr is the location of the "basic" call.
1742 // Determine the address of the call we a reresolving. With
1743 // Inline Caches we will always find a recognizable call.
1744 // With Inline Caches disabled we may or may not find a
1745 // recognizable call. We will always find a call for static
1746 // calls and for optimized virtual calls. For vanilla virtual
1747 // calls it depends on the state of the UseInlineCaches switch.
1748 //
1749 // With Inline Caches disabled we can get here for a virtual call
1750 // for two reasons:
1751 // 1 - calling an abstract method. The vtable for abstract methods
1752 // will run us thru handle_wrong_method and we will eventually
1753 // end up in the interpreter to throw the ame.
1754 // 2 - a racing deoptimization. We could be doing a vanilla vtable
1755 // call and between the time we fetch the entry address and
1756 // we jump to it the target gets deoptimized. Similar to 1
1757 // we will wind up in the interprter (thru a c2i with c2).
1758 //
1759 address call_addr = NULL;
1760 {
1761 // Get call instruction under lock because another thread may be
1762 // busy patching it.
1763 CompiledICLocker ml(caller_nm);
1764 // Location of call instruction
1765 call_addr = caller_nm->call_instruction_address(pc);
1766 }
1767 // Make sure nmethod doesn't get deoptimized and removed until
1768 // this is done with it.
1769 // CLEANUP - with lazy deopt shouldn't need this lock
1770 nmethodLocker nmlock(caller_nm);
1771
1772 if (call_addr != NULL) {
1773 RelocIterator iter(caller_nm, call_addr, call_addr+1);
1774 int ret = iter.next(); // Get item
1775 if (ret) {
1776 assert(iter.addr() == call_addr, "must find call");
1777 if (iter.type() == relocInfo::static_call_type) {
1778 is_static_call = true;
1779 } else {
1780 assert(iter.type() == relocInfo::virtual_call_type ||
1781 iter.type() == relocInfo::opt_virtual_call_type
1782 , "unexpected relocInfo. type");
1783 }
1784 } else {
1785 assert(!UseInlineCaches, "relocation info. must exist for this address");
1786 }
1787
1788 // Cleaning the inline cache will force a new resolve. This is more robust
1789 // than directly setting it to the new destination, since resolving of calls
1790 // is always done through the same code path. (experience shows that it
1791 // leads to very hard to track down bugs, if an inline cache gets updated
1792 // to a wrong method). It should not be performance critical, since the
1793 // resolve is only done once.
1794
1795 for (;;) {
1796 ICRefillVerifier ic_refill_verifier;
1797 if (!clear_ic_at_addr(caller_nm, call_addr, is_static_call)) {
1798 InlineCacheBuffer::refill_ic_stubs();
1799 } else {
1800 break;
1801 }
1802 }
1803 }
1804 }
1805
1806 methodHandle callee_method = find_callee_method(thread, CHECK_(methodHandle()));
1807
1808
1809#ifndef PRODUCT
1810 Atomic::inc(&_wrong_method_ctr);
1811
1812 if (TraceCallFixup) {
1813 ResourceMark rm(thread);
1814 tty->print("handle_wrong_method reresolving call to");
1815 callee_method->print_short_name(tty);
1816 tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1817 }
1818#endif
1819
1820 return callee_method;
1821}
1822
1823address SharedRuntime::handle_unsafe_access(JavaThread* thread, address next_pc) {
1824 // The faulting unsafe accesses should be changed to throw the error
1825 // synchronously instead. Meanwhile the faulting instruction will be
1826 // skipped over (effectively turning it into a no-op) and an
1827 // asynchronous exception will be raised which the thread will
1828 // handle at a later point. If the instruction is a load it will
1829 // return garbage.
1830
1831 // Request an async exception.
1832 thread->set_pending_unsafe_access_error();
1833
1834 // Return address of next instruction to execute.
1835 return next_pc;
1836}
1837
1838#ifdef ASSERT
1839void SharedRuntime::check_member_name_argument_is_last_argument(const methodHandle& method,
1840 const BasicType* sig_bt,
1841 const VMRegPair* regs) {
1842 ResourceMark rm;
1843 const int total_args_passed = method->size_of_parameters();
1844 const VMRegPair* regs_with_member_name = regs;
1845 VMRegPair* regs_without_member_name = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed - 1);
1846
1847 const int member_arg_pos = total_args_passed - 1;
1848 assert(member_arg_pos >= 0 && member_arg_pos < total_args_passed, "oob");
1849 assert(sig_bt[member_arg_pos] == T_OBJECT, "dispatch argument must be an object");
1850
1851 const bool is_outgoing = method->is_method_handle_intrinsic();
1852 int comp_args_on_stack = java_calling_convention(sig_bt, regs_without_member_name, total_args_passed - 1, is_outgoing);
1853
1854 for (int i = 0; i < member_arg_pos; i++) {
1855 VMReg a = regs_with_member_name[i].first();
1856 VMReg b = regs_without_member_name[i].first();
1857 assert(a->value() == b->value(), "register allocation mismatch: a=" INTX_FORMAT ", b=" INTX_FORMAT, a->value(), b->value());
1858 }
1859 assert(regs_with_member_name[member_arg_pos].first()->is_valid(), "bad member arg");
1860}
1861#endif
1862
1863bool SharedRuntime::should_fixup_call_destination(address destination, address entry_point, address caller_pc, Method* moop, CodeBlob* cb) {
1864 if (destination != entry_point) {
1865 CodeBlob* callee = CodeCache::find_blob(destination);
1866 // callee == cb seems weird. It means calling interpreter thru stub.
1867 if (callee != NULL && (callee == cb || callee->is_adapter_blob())) {
1868 // static call or optimized virtual
1869 if (TraceCallFixup) {
1870 tty->print("fixup callsite at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc));
1871 moop->print_short_name(tty);
1872 tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point));
1873 }
1874 return true;
1875 } else {
1876 if (TraceCallFixup) {
1877 tty->print("failed to fixup callsite at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc));
1878 moop->print_short_name(tty);
1879 tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point));
1880 }
1881 // assert is too strong could also be resolve destinations.
1882 // assert(InlineCacheBuffer::contains(destination) || VtableStubs::contains(destination), "must be");
1883 }
1884 } else {
1885 if (TraceCallFixup) {
1886 tty->print("already patched callsite at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc));
1887 moop->print_short_name(tty);
1888 tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point));
1889 }
1890 }
1891 return false;
1892}
1893
1894// ---------------------------------------------------------------------------
1895// We are calling the interpreter via a c2i. Normally this would mean that
1896// we were called by a compiled method. However we could have lost a race
1897// where we went int -> i2c -> c2i and so the caller could in fact be
1898// interpreted. If the caller is compiled we attempt to patch the caller
1899// so he no longer calls into the interpreter.
1900JRT_LEAF(void, SharedRuntime::fixup_callers_callsite(Method* method, address caller_pc))
1901 Method* moop(method);
1902
1903 address entry_point = moop->from_compiled_entry_no_trampoline();
1904
1905 // It's possible that deoptimization can occur at a call site which hasn't
1906 // been resolved yet, in which case this function will be called from
1907 // an nmethod that has been patched for deopt and we can ignore the
1908 // request for a fixup.
1909 // Also it is possible that we lost a race in that from_compiled_entry
1910 // is now back to the i2c in that case we don't need to patch and if
1911 // we did we'd leap into space because the callsite needs to use
1912 // "to interpreter" stub in order to load up the Method*. Don't
1913 // ask me how I know this...
1914
1915 CodeBlob* cb = CodeCache::find_blob(caller_pc);
1916 if (cb == NULL || !cb->is_compiled() || entry_point == moop->get_c2i_entry()) {
1917 return;
1918 }
1919
1920 // The check above makes sure this is a nmethod.
1921 CompiledMethod* nm = cb->as_compiled_method_or_null();
1922 assert(nm, "must be");
1923
1924 // Get the return PC for the passed caller PC.
1925 address return_pc = caller_pc + frame::pc_return_offset;
1926
1927 // There is a benign race here. We could be attempting to patch to a compiled
1928 // entry point at the same time the callee is being deoptimized. If that is
1929 // the case then entry_point may in fact point to a c2i and we'd patch the
1930 // call site with the same old data. clear_code will set code() to NULL
1931 // at the end of it. If we happen to see that NULL then we can skip trying
1932 // to patch. If we hit the window where the callee has a c2i in the
1933 // from_compiled_entry and the NULL isn't present yet then we lose the race
1934 // and patch the code with the same old data. Asi es la vida.
1935
1936 if (moop->code() == NULL) return;
1937
1938 if (nm->is_in_use()) {
1939 // Expect to find a native call there (unless it was no-inline cache vtable dispatch)
1940 CompiledICLocker ic_locker(nm);
1941 if (NativeCall::is_call_before(return_pc)) {
1942 ResourceMark mark;
1943 NativeCallWrapper* call = nm->call_wrapper_before(return_pc);
1944 //
1945 // bug 6281185. We might get here after resolving a call site to a vanilla
1946 // virtual call. Because the resolvee uses the verified entry it may then
1947 // see compiled code and attempt to patch the site by calling us. This would
1948 // then incorrectly convert the call site to optimized and its downhill from
1949 // there. If you're lucky you'll get the assert in the bugid, if not you've
1950 // just made a call site that could be megamorphic into a monomorphic site
1951 // for the rest of its life! Just another racing bug in the life of
1952 // fixup_callers_callsite ...
1953 //
1954 RelocIterator iter(nm, call->instruction_address(), call->next_instruction_address());
1955 iter.next();
1956 assert(iter.has_current(), "must have a reloc at java call site");
1957 relocInfo::relocType typ = iter.reloc()->type();
1958 if (typ != relocInfo::static_call_type &&
1959 typ != relocInfo::opt_virtual_call_type &&
1960 typ != relocInfo::static_stub_type) {
1961 return;
1962 }
1963 address destination = call->destination();
1964 if (should_fixup_call_destination(destination, entry_point, caller_pc, moop, cb)) {
1965 call->set_destination_mt_safe(entry_point);
1966 }
1967 }
1968 }
1969JRT_END
1970
1971
1972// same as JVM_Arraycopy, but called directly from compiled code
1973JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src, jint src_pos,
1974 oopDesc* dest, jint dest_pos,
1975 jint length,
1976 JavaThread* thread)) {
1977#ifndef PRODUCT
1978 _slow_array_copy_ctr++;
1979#endif
1980 // Check if we have null pointers
1981 if (src == NULL || dest == NULL) {
1982 THROW(vmSymbols::java_lang_NullPointerException());
1983 }
1984 // Do the copy. The casts to arrayOop are necessary to the copy_array API,
1985 // even though the copy_array API also performs dynamic checks to ensure
1986 // that src and dest are truly arrays (and are conformable).
1987 // The copy_array mechanism is awkward and could be removed, but
1988 // the compilers don't call this function except as a last resort,
1989 // so it probably doesn't matter.
1990 src->klass()->copy_array((arrayOopDesc*)src, src_pos,
1991 (arrayOopDesc*)dest, dest_pos,
1992 length, thread);
1993}
1994JRT_END
1995
1996// The caller of generate_class_cast_message() (or one of its callers)
1997// must use a ResourceMark in order to correctly free the result.
1998char* SharedRuntime::generate_class_cast_message(
1999 JavaThread* thread, Klass* caster_klass) {
2000
2001 // Get target class name from the checkcast instruction
2002 vframeStream vfst(thread, true);
2003 assert(!vfst.at_end(), "Java frame must exist");
2004 Bytecode_checkcast cc(vfst.method(), vfst.method()->bcp_from(vfst.bci()));
2005 constantPoolHandle cpool(thread, vfst.method()->constants());
2006 Klass* target_klass = ConstantPool::klass_at_if_loaded(cpool, cc.index());
2007 Symbol* target_klass_name = NULL;
2008 if (target_klass == NULL) {
2009 // This klass should be resolved, but just in case, get the name in the klass slot.
2010 target_klass_name = cpool->klass_name_at(cc.index());
2011 }
2012 return generate_class_cast_message(caster_klass, target_klass, target_klass_name);
2013}
2014
2015
2016// The caller of generate_class_cast_message() (or one of its callers)
2017// must use a ResourceMark in order to correctly free the result.
2018char* SharedRuntime::generate_class_cast_message(
2019 Klass* caster_klass, Klass* target_klass, Symbol* target_klass_name) {
2020 const char* caster_name = caster_klass->external_name();
2021
2022 assert(target_klass != NULL || target_klass_name != NULL, "one must be provided");
2023 const char* target_name = target_klass == NULL ? target_klass_name->as_C_string() :
2024 target_klass->external_name();
2025
2026 size_t msglen = strlen(caster_name) + strlen("class ") + strlen(" cannot be cast to class ") + strlen(target_name) + 1;
2027
2028 const char* caster_klass_description = "";
2029 const char* target_klass_description = "";
2030 const char* klass_separator = "";
2031 if (target_klass != NULL && caster_klass->module() == target_klass->module()) {
2032 caster_klass_description = caster_klass->joint_in_module_of_loader(target_klass);
2033 } else {
2034 caster_klass_description = caster_klass->class_in_module_of_loader();
2035 target_klass_description = (target_klass != NULL) ? target_klass->class_in_module_of_loader() : "";
2036 klass_separator = (target_klass != NULL) ? "; " : "";
2037 }
2038
2039 // add 3 for parenthesis and preceeding space
2040 msglen += strlen(caster_klass_description) + strlen(target_klass_description) + strlen(klass_separator) + 3;
2041
2042 char* message = NEW_RESOURCE_ARRAY_RETURN_NULL(char, msglen);
2043 if (message == NULL) {
2044 // Shouldn't happen, but don't cause even more problems if it does
2045 message = const_cast<char*>(caster_klass->external_name());
2046 } else {
2047 jio_snprintf(message,
2048 msglen,
2049 "class %s cannot be cast to class %s (%s%s%s)",
2050 caster_name,
2051 target_name,
2052 caster_klass_description,
2053 klass_separator,
2054 target_klass_description
2055 );
2056 }
2057 return message;
2058}
2059
2060JRT_LEAF(void, SharedRuntime::reguard_yellow_pages())
2061 (void) JavaThread::current()->reguard_stack();
2062JRT_END
2063
2064
2065// Handles the uncommon case in locking, i.e., contention or an inflated lock.
2066JRT_BLOCK_ENTRY(void, SharedRuntime::complete_monitor_locking_C(oopDesc* _obj, BasicLock* lock, JavaThread* thread))
2067 if (!SafepointSynchronize::is_synchronizing()) {
2068 // Only try quick_enter() if we're not trying to reach a safepoint
2069 // so that the calling thread reaches the safepoint more quickly.
2070 if (ObjectSynchronizer::quick_enter(_obj, thread, lock)) return;
2071 }
2072 // NO_ASYNC required because an async exception on the state transition destructor
2073 // would leave you with the lock held and it would never be released.
2074 // The normal monitorenter NullPointerException is thrown without acquiring a lock
2075 // and the model is that an exception implies the method failed.
2076 JRT_BLOCK_NO_ASYNC
2077 oop obj(_obj);
2078 if (PrintBiasedLockingStatistics) {
2079 Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
2080 }
2081 Handle h_obj(THREAD, obj);
2082 if (UseBiasedLocking) {
2083 // Retry fast entry if bias is revoked to avoid unnecessary inflation
2084 ObjectSynchronizer::fast_enter(h_obj, lock, true, CHECK);
2085 } else {
2086 ObjectSynchronizer::slow_enter(h_obj, lock, CHECK);
2087 }
2088 assert(!HAS_PENDING_EXCEPTION, "Should have no exception here");
2089 JRT_BLOCK_END
2090JRT_END
2091
2092// Handles the uncommon cases of monitor unlocking in compiled code
2093JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* _obj, BasicLock* lock, JavaThread * THREAD))
2094 oop obj(_obj);
2095 assert(JavaThread::current() == THREAD, "invariant");
2096 // I'm not convinced we need the code contained by MIGHT_HAVE_PENDING anymore
2097 // testing was unable to ever fire the assert that guarded it so I have removed it.
2098 assert(!HAS_PENDING_EXCEPTION, "Do we need code below anymore?");
2099#undef MIGHT_HAVE_PENDING
2100#ifdef MIGHT_HAVE_PENDING
2101 // Save and restore any pending_exception around the exception mark.
2102 // While the slow_exit must not throw an exception, we could come into
2103 // this routine with one set.
2104 oop pending_excep = NULL;
2105 const char* pending_file;
2106 int pending_line;
2107 if (HAS_PENDING_EXCEPTION) {
2108 pending_excep = PENDING_EXCEPTION;
2109 pending_file = THREAD->exception_file();
2110 pending_line = THREAD->exception_line();
2111 CLEAR_PENDING_EXCEPTION;
2112 }
2113#endif /* MIGHT_HAVE_PENDING */
2114
2115 {
2116 // Exit must be non-blocking, and therefore no exceptions can be thrown.
2117 EXCEPTION_MARK;
2118 ObjectSynchronizer::slow_exit(obj, lock, THREAD);
2119 }
2120
2121#ifdef MIGHT_HAVE_PENDING
2122 if (pending_excep != NULL) {
2123 THREAD->set_pending_exception(pending_excep, pending_file, pending_line);
2124 }
2125#endif /* MIGHT_HAVE_PENDING */
2126JRT_END
2127
2128#ifndef PRODUCT
2129
2130void SharedRuntime::print_statistics() {
2131 ttyLocker ttyl;
2132 if (xtty != NULL) xtty->head("statistics type='SharedRuntime'");
2133
2134 if (_throw_null_ctr) tty->print_cr("%5d implicit null throw", _throw_null_ctr);
2135
2136 SharedRuntime::print_ic_miss_histogram();
2137
2138 if (CountRemovableExceptions) {
2139 if (_nof_removable_exceptions > 0) {
2140 Unimplemented(); // this counter is not yet incremented
2141 tty->print_cr("Removable exceptions: %d", _nof_removable_exceptions);
2142 }
2143 }
2144
2145 // Dump the JRT_ENTRY counters
2146 if (_new_instance_ctr) tty->print_cr("%5d new instance requires GC", _new_instance_ctr);
2147 if (_new_array_ctr) tty->print_cr("%5d new array requires GC", _new_array_ctr);
2148 if (_multi1_ctr) tty->print_cr("%5d multianewarray 1 dim", _multi1_ctr);
2149 if (_multi2_ctr) tty->print_cr("%5d multianewarray 2 dim", _multi2_ctr);
2150 if (_multi3_ctr) tty->print_cr("%5d multianewarray 3 dim", _multi3_ctr);
2151 if (_multi4_ctr) tty->print_cr("%5d multianewarray 4 dim", _multi4_ctr);
2152 if (_multi5_ctr) tty->print_cr("%5d multianewarray 5 dim", _multi5_ctr);
2153
2154 tty->print_cr("%5d inline cache miss in compiled", _ic_miss_ctr);
2155 tty->print_cr("%5d wrong method", _wrong_method_ctr);
2156 tty->print_cr("%5d unresolved static call site", _resolve_static_ctr);
2157 tty->print_cr("%5d unresolved virtual call site", _resolve_virtual_ctr);
2158 tty->print_cr("%5d unresolved opt virtual call site", _resolve_opt_virtual_ctr);
2159
2160 if (_mon_enter_stub_ctr) tty->print_cr("%5d monitor enter stub", _mon_enter_stub_ctr);
2161 if (_mon_exit_stub_ctr) tty->print_cr("%5d monitor exit stub", _mon_exit_stub_ctr);
2162 if (_mon_enter_ctr) tty->print_cr("%5d monitor enter slow", _mon_enter_ctr);
2163 if (_mon_exit_ctr) tty->print_cr("%5d monitor exit slow", _mon_exit_ctr);
2164 if (_partial_subtype_ctr) tty->print_cr("%5d slow partial subtype", _partial_subtype_ctr);
2165 if (_jbyte_array_copy_ctr) tty->print_cr("%5d byte array copies", _jbyte_array_copy_ctr);
2166 if (_jshort_array_copy_ctr) tty->print_cr("%5d short array copies", _jshort_array_copy_ctr);
2167 if (_jint_array_copy_ctr) tty->print_cr("%5d int array copies", _jint_array_copy_ctr);
2168 if (_jlong_array_copy_ctr) tty->print_cr("%5d long array copies", _jlong_array_copy_ctr);
2169 if (_oop_array_copy_ctr) tty->print_cr("%5d oop array copies", _oop_array_copy_ctr);
2170 if (_checkcast_array_copy_ctr) tty->print_cr("%5d checkcast array copies", _checkcast_array_copy_ctr);
2171 if (_unsafe_array_copy_ctr) tty->print_cr("%5d unsafe array copies", _unsafe_array_copy_ctr);
2172 if (_generic_array_copy_ctr) tty->print_cr("%5d generic array copies", _generic_array_copy_ctr);
2173 if (_slow_array_copy_ctr) tty->print_cr("%5d slow array copies", _slow_array_copy_ctr);
2174 if (_find_handler_ctr) tty->print_cr("%5d find exception handler", _find_handler_ctr);
2175 if (_rethrow_ctr) tty->print_cr("%5d rethrow handler", _rethrow_ctr);
2176
2177 AdapterHandlerLibrary::print_statistics();
2178
2179 if (xtty != NULL) xtty->tail("statistics");
2180}
2181
2182inline double percent(int x, int y) {
2183 return 100.0 * x / MAX2(y, 1);
2184}
2185
2186class MethodArityHistogram {
2187 public:
2188 enum { MAX_ARITY = 256 };
2189 private:
2190 static int _arity_histogram[MAX_ARITY]; // histogram of #args
2191 static int _size_histogram[MAX_ARITY]; // histogram of arg size in words
2192 static int _max_arity; // max. arity seen
2193 static int _max_size; // max. arg size seen
2194
2195 static void add_method_to_histogram(nmethod* nm) {
2196 if (CompiledMethod::nmethod_access_is_safe(nm)) {
2197 Method* method = nm->method();
2198 ArgumentCount args(method->signature());
2199 int arity = args.size() + (method->is_static() ? 0 : 1);
2200 int argsize = method->size_of_parameters();
2201 arity = MIN2(arity, MAX_ARITY-1);
2202 argsize = MIN2(argsize, MAX_ARITY-1);
2203 int count = method->compiled_invocation_count();
2204 _arity_histogram[arity] += count;
2205 _size_histogram[argsize] += count;
2206 _max_arity = MAX2(_max_arity, arity);
2207 _max_size = MAX2(_max_size, argsize);
2208 }
2209 }
2210
2211 void print_histogram_helper(int n, int* histo, const char* name) {
2212 const int N = MIN2(5, n);
2213 tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
2214 double sum = 0;
2215 double weighted_sum = 0;
2216 int i;
2217 for (i = 0; i <= n; i++) { sum += histo[i]; weighted_sum += i*histo[i]; }
2218 double rest = sum;
2219 double percent = sum / 100;
2220 for (i = 0; i <= N; i++) {
2221 rest -= histo[i];
2222 tty->print_cr("%4d: %7d (%5.1f%%)", i, histo[i], histo[i] / percent);
2223 }
2224 tty->print_cr("rest: %7d (%5.1f%%))", (int)rest, rest / percent);
2225 tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n);
2226 }
2227
2228 void print_histogram() {
2229 tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
2230 print_histogram_helper(_max_arity, _arity_histogram, "arity");
2231 tty->print_cr("\nSame for parameter size (in words):");
2232 print_histogram_helper(_max_size, _size_histogram, "size");
2233 tty->cr();
2234 }
2235
2236 public:
2237 MethodArityHistogram() {
2238 MutexLocker mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
2239 _max_arity = _max_size = 0;
2240 for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram[i] = 0;
2241 CodeCache::nmethods_do(add_method_to_histogram);
2242 print_histogram();
2243 }
2244};
2245
2246int MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY];
2247int MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY];
2248int MethodArityHistogram::_max_arity;
2249int MethodArityHistogram::_max_size;
2250
2251void SharedRuntime::print_call_statistics(int comp_total) {
2252 tty->print_cr("Calls from compiled code:");
2253 int total = _nof_normal_calls + _nof_interface_calls + _nof_static_calls;
2254 int mono_c = _nof_normal_calls - _nof_optimized_calls - _nof_megamorphic_calls;
2255 int mono_i = _nof_interface_calls - _nof_optimized_interface_calls - _nof_megamorphic_interface_calls;
2256 tty->print_cr("\t%9d (%4.1f%%) total non-inlined ", total, percent(total, total));
2257 tty->print_cr("\t%9d (%4.1f%%) virtual calls ", _nof_normal_calls, percent(_nof_normal_calls, total));
2258 tty->print_cr("\t %9d (%3.0f%%) inlined ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls));
2259 tty->print_cr("\t %9d (%3.0f%%) optimized ", _nof_optimized_calls, percent(_nof_optimized_calls, _nof_normal_calls));
2260 tty->print_cr("\t %9d (%3.0f%%) monomorphic ", mono_c, percent(mono_c, _nof_normal_calls));
2261 tty->print_cr("\t %9d (%3.0f%%) megamorphic ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls));
2262 tty->print_cr("\t%9d (%4.1f%%) interface calls ", _nof_interface_calls, percent(_nof_interface_calls, total));
2263 tty->print_cr("\t %9d (%3.0f%%) inlined ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls));
2264 tty->print_cr("\t %9d (%3.0f%%) optimized ", _nof_optimized_interface_calls, percent(_nof_optimized_interface_calls, _nof_interface_calls));
2265 tty->print_cr("\t %9d (%3.0f%%) monomorphic ", mono_i, percent(mono_i, _nof_interface_calls));
2266 tty->print_cr("\t %9d (%3.0f%%) megamorphic ", _nof_megamorphic_interface_calls, percent(_nof_megamorphic_interface_calls, _nof_interface_calls));
2267 tty->print_cr("\t%9d (%4.1f%%) static/special calls", _nof_static_calls, percent(_nof_static_calls, total));
2268 tty->print_cr("\t %9d (%3.0f%%) inlined ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls));
2269 tty->cr();
2270 tty->print_cr("Note 1: counter updates are not MT-safe.");
2271 tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;");
2272 tty->print_cr(" %% in nested categories are relative to their category");
2273 tty->print_cr(" (and thus add up to more than 100%% with inlining)");
2274 tty->cr();
2275
2276 MethodArityHistogram h;
2277}
2278#endif
2279
2280
2281// A simple wrapper class around the calling convention information
2282// that allows sharing of adapters for the same calling convention.
2283class AdapterFingerPrint : public CHeapObj<mtCode> {
2284 private:
2285 enum {
2286 _basic_type_bits = 4,
2287 _basic_type_mask = right_n_bits(_basic_type_bits),
2288 _basic_types_per_int = BitsPerInt / _basic_type_bits,
2289 _compact_int_count = 3
2290 };
2291 // TO DO: Consider integrating this with a more global scheme for compressing signatures.
2292 // For now, 4 bits per components (plus T_VOID gaps after double/long) is not excessive.
2293
2294 union {
2295 int _compact[_compact_int_count];
2296 int* _fingerprint;
2297 } _value;
2298 int _length; // A negative length indicates the fingerprint is in the compact form,
2299 // Otherwise _value._fingerprint is the array.
2300
2301 // Remap BasicTypes that are handled equivalently by the adapters.
2302 // These are correct for the current system but someday it might be
2303 // necessary to make this mapping platform dependent.
2304 static int adapter_encoding(BasicType in) {
2305 switch (in) {
2306 case T_BOOLEAN:
2307 case T_BYTE:
2308 case T_SHORT:
2309 case T_CHAR:
2310 // There are all promoted to T_INT in the calling convention
2311 return T_INT;
2312
2313 case T_OBJECT:
2314 case T_ARRAY:
2315 // In other words, we assume that any register good enough for
2316 // an int or long is good enough for a managed pointer.
2317#ifdef _LP64
2318 return T_LONG;
2319#else
2320 return T_INT;
2321#endif
2322
2323 case T_INT:
2324 case T_LONG:
2325 case T_FLOAT:
2326 case T_DOUBLE:
2327 case T_VOID:
2328 return in;
2329
2330 default:
2331 ShouldNotReachHere();
2332 return T_CONFLICT;
2333 }
2334 }
2335
2336 public:
2337 AdapterFingerPrint(int total_args_passed, BasicType* sig_bt) {
2338 // The fingerprint is based on the BasicType signature encoded
2339 // into an array of ints with eight entries per int.
2340 int* ptr;
2341 int len = (total_args_passed + (_basic_types_per_int-1)) / _basic_types_per_int;
2342 if (len <= _compact_int_count) {
2343 assert(_compact_int_count == 3, "else change next line");
2344 _value._compact[0] = _value._compact[1] = _value._compact[2] = 0;
2345 // Storing the signature encoded as signed chars hits about 98%
2346 // of the time.
2347 _length = -len;
2348 ptr = _value._compact;
2349 } else {
2350 _length = len;
2351 _value._fingerprint = NEW_C_HEAP_ARRAY(int, _length, mtCode);
2352 ptr = _value._fingerprint;
2353 }
2354
2355 // Now pack the BasicTypes with 8 per int
2356 int sig_index = 0;
2357 for (int index = 0; index < len; index++) {
2358 int value = 0;
2359 for (int byte = 0; byte < _basic_types_per_int; byte++) {
2360 int bt = ((sig_index < total_args_passed)
2361 ? adapter_encoding(sig_bt[sig_index++])
2362 : 0);
2363 assert((bt & _basic_type_mask) == bt, "must fit in 4 bits");
2364 value = (value << _basic_type_bits) | bt;
2365 }
2366 ptr[index] = value;
2367 }
2368 }
2369
2370 ~AdapterFingerPrint() {
2371 if (_length > 0) {
2372 FREE_C_HEAP_ARRAY(int, _value._fingerprint);
2373 }
2374 }
2375
2376 int value(int index) {
2377 if (_length < 0) {
2378 return _value._compact[index];
2379 }
2380 return _value._fingerprint[index];
2381 }
2382 int length() {
2383 if (_length < 0) return -_length;
2384 return _length;
2385 }
2386
2387 bool is_compact() {
2388 return _length <= 0;
2389 }
2390
2391 unsigned int compute_hash() {
2392 int hash = 0;
2393 for (int i = 0; i < length(); i++) {
2394 int v = value(i);
2395 hash = (hash << 8) ^ v ^ (hash >> 5);
2396 }
2397 return (unsigned int)hash;
2398 }
2399
2400 const char* as_string() {
2401 stringStream st;
2402 st.print("0x");
2403 for (int i = 0; i < length(); i++) {
2404 st.print("%08x", value(i));
2405 }
2406 return st.as_string();
2407 }
2408
2409 bool equals(AdapterFingerPrint* other) {
2410 if (other->_length != _length) {
2411 return false;
2412 }
2413 if (_length < 0) {
2414 assert(_compact_int_count == 3, "else change next line");
2415 return _value._compact[0] == other->_value._compact[0] &&
2416 _value._compact[1] == other->_value._compact[1] &&
2417 _value._compact[2] == other->_value._compact[2];
2418 } else {
2419 for (int i = 0; i < _length; i++) {
2420 if (_value._fingerprint[i] != other->_value._fingerprint[i]) {
2421 return false;
2422 }
2423 }
2424 }
2425 return true;
2426 }
2427};
2428
2429
2430// A hashtable mapping from AdapterFingerPrints to AdapterHandlerEntries
2431class AdapterHandlerTable : public BasicHashtable<mtCode> {
2432 friend class AdapterHandlerTableIterator;
2433
2434 private:
2435
2436#ifndef PRODUCT
2437 static int _lookups; // number of calls to lookup
2438 static int _buckets; // number of buckets checked
2439 static int _equals; // number of buckets checked with matching hash
2440 static int _hits; // number of successful lookups
2441 static int _compact; // number of equals calls with compact signature
2442#endif
2443
2444 AdapterHandlerEntry* bucket(int i) {
2445 return (AdapterHandlerEntry*)BasicHashtable<mtCode>::bucket(i);
2446 }
2447
2448 public:
2449 AdapterHandlerTable()
2450 : BasicHashtable<mtCode>(293, (DumpSharedSpaces ? sizeof(CDSAdapterHandlerEntry) : sizeof(AdapterHandlerEntry))) { }
2451
2452 // Create a new entry suitable for insertion in the table
2453 AdapterHandlerEntry* new_entry(AdapterFingerPrint* fingerprint, address i2c_entry, address c2i_entry, address c2i_unverified_entry) {
2454 AdapterHandlerEntry* entry = (AdapterHandlerEntry*)BasicHashtable<mtCode>::new_entry(fingerprint->compute_hash());
2455 entry->init(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
2456 if (DumpSharedSpaces) {
2457 ((CDSAdapterHandlerEntry*)entry)->init();
2458 }
2459 return entry;
2460 }
2461
2462 // Insert an entry into the table
2463 void add(AdapterHandlerEntry* entry) {
2464 int index = hash_to_index(entry->hash());
2465 add_entry(index, entry);
2466 }
2467
2468 void free_entry(AdapterHandlerEntry* entry) {
2469 entry->deallocate();
2470 BasicHashtable<mtCode>::free_entry(entry);
2471 }
2472
2473 // Find a entry with the same fingerprint if it exists
2474 AdapterHandlerEntry* lookup(int total_args_passed, BasicType* sig_bt) {
2475 NOT_PRODUCT(_lookups++);
2476 AdapterFingerPrint fp(total_args_passed, sig_bt);
2477 unsigned int hash = fp.compute_hash();
2478 int index = hash_to_index(hash);
2479 for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2480 NOT_PRODUCT(_buckets++);
2481 if (e->hash() == hash) {
2482 NOT_PRODUCT(_equals++);
2483 if (fp.equals(e->fingerprint())) {
2484#ifndef PRODUCT
2485 if (fp.is_compact()) _compact++;
2486 _hits++;
2487#endif
2488 return e;
2489 }
2490 }
2491 }
2492 return NULL;
2493 }
2494
2495#ifndef PRODUCT
2496 void print_statistics() {
2497 ResourceMark rm;
2498 int longest = 0;
2499 int empty = 0;
2500 int total = 0;
2501 int nonempty = 0;
2502 for (int index = 0; index < table_size(); index++) {
2503 int count = 0;
2504 for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2505 count++;
2506 }
2507 if (count != 0) nonempty++;
2508 if (count == 0) empty++;
2509 if (count > longest) longest = count;
2510 total += count;
2511 }
2512 tty->print_cr("AdapterHandlerTable: empty %d longest %d total %d average %f",
2513 empty, longest, total, total / (double)nonempty);
2514 tty->print_cr("AdapterHandlerTable: lookups %d buckets %d equals %d hits %d compact %d",
2515 _lookups, _buckets, _equals, _hits, _compact);
2516 }
2517#endif
2518};
2519
2520
2521#ifndef PRODUCT
2522
2523int AdapterHandlerTable::_lookups;
2524int AdapterHandlerTable::_buckets;
2525int AdapterHandlerTable::_equals;
2526int AdapterHandlerTable::_hits;
2527int AdapterHandlerTable::_compact;
2528
2529#endif
2530
2531class AdapterHandlerTableIterator : public StackObj {
2532 private:
2533 AdapterHandlerTable* _table;
2534 int _index;
2535 AdapterHandlerEntry* _current;
2536
2537 void scan() {
2538 while (_index < _table->table_size()) {
2539 AdapterHandlerEntry* a = _table->bucket(_index);
2540 _index++;
2541 if (a != NULL) {
2542 _current = a;
2543 return;
2544 }
2545 }
2546 }
2547
2548 public:
2549 AdapterHandlerTableIterator(AdapterHandlerTable* table): _table(table), _index(0), _current(NULL) {
2550 scan();
2551 }
2552 bool has_next() {
2553 return _current != NULL;
2554 }
2555 AdapterHandlerEntry* next() {
2556 if (_current != NULL) {
2557 AdapterHandlerEntry* result = _current;
2558 _current = _current->next();
2559 if (_current == NULL) scan();
2560 return result;
2561 } else {
2562 return NULL;
2563 }
2564 }
2565};
2566
2567
2568// ---------------------------------------------------------------------------
2569// Implementation of AdapterHandlerLibrary
2570AdapterHandlerTable* AdapterHandlerLibrary::_adapters = NULL;
2571AdapterHandlerEntry* AdapterHandlerLibrary::_abstract_method_handler = NULL;
2572const int AdapterHandlerLibrary_size = 16*K;
2573BufferBlob* AdapterHandlerLibrary::_buffer = NULL;
2574
2575BufferBlob* AdapterHandlerLibrary::buffer_blob() {
2576 // Should be called only when AdapterHandlerLibrary_lock is active.
2577 if (_buffer == NULL) // Initialize lazily
2578 _buffer = BufferBlob::create("adapters", AdapterHandlerLibrary_size);
2579 return _buffer;
2580}
2581
2582extern "C" void unexpected_adapter_call() {
2583 ShouldNotCallThis();
2584}
2585
2586void AdapterHandlerLibrary::initialize() {
2587 if (_adapters != NULL) return;
2588 _adapters = new AdapterHandlerTable();
2589
2590 // Create a special handler for abstract methods. Abstract methods
2591 // are never compiled so an i2c entry is somewhat meaningless, but
2592 // throw AbstractMethodError just in case.
2593 // Pass wrong_method_abstract for the c2i transitions to return
2594 // AbstractMethodError for invalid invocations.
2595 address wrong_method_abstract = SharedRuntime::get_handle_wrong_method_abstract_stub();
2596 _abstract_method_handler = AdapterHandlerLibrary::new_entry(new AdapterFingerPrint(0, NULL),
2597 StubRoutines::throw_AbstractMethodError_entry(),
2598 wrong_method_abstract, wrong_method_abstract);
2599}
2600
2601AdapterHandlerEntry* AdapterHandlerLibrary::new_entry(AdapterFingerPrint* fingerprint,
2602 address i2c_entry,
2603 address c2i_entry,
2604 address c2i_unverified_entry) {
2605 return _adapters->new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
2606}
2607
2608AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter(const methodHandle& method) {
2609 AdapterHandlerEntry* entry = get_adapter0(method);
2610 if (method->is_shared()) {
2611 // See comments around Method::link_method()
2612 MutexLocker mu(AdapterHandlerLibrary_lock);
2613 if (method->adapter() == NULL) {
2614 method->update_adapter_trampoline(entry);
2615 }
2616 address trampoline = method->from_compiled_entry();
2617 if (*(int*)trampoline == 0) {
2618 CodeBuffer buffer(trampoline, (int)SharedRuntime::trampoline_size());
2619 MacroAssembler _masm(&buffer);
2620 SharedRuntime::generate_trampoline(&_masm, entry->get_c2i_entry());
2621 assert(*(int*)trampoline != 0, "Instruction(s) for trampoline must not be encoded as zeros.");
2622
2623 if (PrintInterpreter) {
2624 Disassembler::decode(buffer.insts_begin(), buffer.insts_end());
2625 }
2626 }
2627 }
2628
2629 return entry;
2630}
2631
2632AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter0(const methodHandle& method) {
2633 // Use customized signature handler. Need to lock around updates to
2634 // the AdapterHandlerTable (it is not safe for concurrent readers
2635 // and a single writer: this could be fixed if it becomes a
2636 // problem).
2637
2638 ResourceMark rm;
2639
2640 NOT_PRODUCT(int insts_size);
2641 AdapterBlob* new_adapter = NULL;
2642 AdapterHandlerEntry* entry = NULL;
2643 AdapterFingerPrint* fingerprint = NULL;
2644 {
2645 MutexLocker mu(AdapterHandlerLibrary_lock);
2646 // make sure data structure is initialized
2647 initialize();
2648
2649 if (method->is_abstract()) {
2650 return _abstract_method_handler;
2651 }
2652
2653 // Fill in the signature array, for the calling-convention call.
2654 int total_args_passed = method->size_of_parameters(); // All args on stack
2655
2656 BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
2657 VMRegPair* regs = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
2658 int i = 0;
2659 if (!method->is_static()) // Pass in receiver first
2660 sig_bt[i++] = T_OBJECT;
2661 for (SignatureStream ss(method->signature()); !ss.at_return_type(); ss.next()) {
2662 sig_bt[i++] = ss.type(); // Collect remaining bits of signature
2663 if (ss.type() == T_LONG || ss.type() == T_DOUBLE)
2664 sig_bt[i++] = T_VOID; // Longs & doubles take 2 Java slots
2665 }
2666 assert(i == total_args_passed, "");
2667
2668 // Lookup method signature's fingerprint
2669 entry = _adapters->lookup(total_args_passed, sig_bt);
2670
2671#ifdef ASSERT
2672 AdapterHandlerEntry* shared_entry = NULL;
2673 // Start adapter sharing verification only after the VM is booted.
2674 if (VerifyAdapterSharing && (entry != NULL)) {
2675 shared_entry = entry;
2676 entry = NULL;
2677 }
2678#endif
2679
2680 if (entry != NULL) {
2681 return entry;
2682 }
2683
2684 // Get a description of the compiled java calling convention and the largest used (VMReg) stack slot usage
2685 int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, false);
2686
2687 // Make a C heap allocated version of the fingerprint to store in the adapter
2688 fingerprint = new AdapterFingerPrint(total_args_passed, sig_bt);
2689
2690 // StubRoutines::code2() is initialized after this function can be called. As a result,
2691 // VerifyAdapterCalls and VerifyAdapterSharing can fail if we re-use code that generated
2692 // prior to StubRoutines::code2() being set. Checks refer to checks generated in an I2C
2693 // stub that ensure that an I2C stub is called from an interpreter frame.
2694 bool contains_all_checks = StubRoutines::code2() != NULL;
2695
2696 // Create I2C & C2I handlers
2697 BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache
2698 if (buf != NULL) {
2699 CodeBuffer buffer(buf);
2700 short buffer_locs[20];
2701 buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs,
2702 sizeof(buffer_locs)/sizeof(relocInfo));
2703
2704 MacroAssembler _masm(&buffer);
2705 entry = SharedRuntime::generate_i2c2i_adapters(&_masm,
2706 total_args_passed,
2707 comp_args_on_stack,
2708 sig_bt,
2709 regs,
2710 fingerprint);
2711#ifdef ASSERT
2712 if (VerifyAdapterSharing) {
2713 if (shared_entry != NULL) {
2714 assert(shared_entry->compare_code(buf->code_begin(), buffer.insts_size()), "code must match");
2715 // Release the one just created and return the original
2716 _adapters->free_entry(entry);
2717 return shared_entry;
2718 } else {
2719 entry->save_code(buf->code_begin(), buffer.insts_size());
2720 }
2721 }
2722#endif
2723
2724 new_adapter = AdapterBlob::create(&buffer);
2725 NOT_PRODUCT(insts_size = buffer.insts_size());
2726 }
2727 if (new_adapter == NULL) {
2728 // CodeCache is full, disable compilation
2729 // Ought to log this but compile log is only per compile thread
2730 // and we're some non descript Java thread.
2731 return NULL; // Out of CodeCache space
2732 }
2733 entry->relocate(new_adapter->content_begin());
2734#ifndef PRODUCT
2735 // debugging suppport
2736 if (PrintAdapterHandlers || PrintStubCode) {
2737 ttyLocker ttyl;
2738 entry->print_adapter_on(tty);
2739 tty->print_cr("i2c argument handler #%d for: %s %s %s (%d bytes generated)",
2740 _adapters->number_of_entries(), (method->is_static() ? "static" : "receiver"),
2741 method->signature()->as_C_string(), fingerprint->as_string(), insts_size);
2742 tty->print_cr("c2i argument handler starts at %p", entry->get_c2i_entry());
2743 if (Verbose || PrintStubCode) {
2744 address first_pc = entry->base_address();
2745 if (first_pc != NULL) {
2746 Disassembler::decode(first_pc, first_pc + insts_size);
2747 tty->cr();
2748 }
2749 }
2750 }
2751#endif
2752 // Add the entry only if the entry contains all required checks (see sharedRuntime_xxx.cpp)
2753 // The checks are inserted only if -XX:+VerifyAdapterCalls is specified.
2754 if (contains_all_checks || !VerifyAdapterCalls) {
2755 _adapters->add(entry);
2756 }
2757 }
2758 // Outside of the lock
2759 if (new_adapter != NULL) {
2760 char blob_id[256];
2761 jio_snprintf(blob_id,
2762 sizeof(blob_id),
2763 "%s(%s)@" PTR_FORMAT,
2764 new_adapter->name(),
2765 fingerprint->as_string(),
2766 new_adapter->content_begin());
2767 Forte::register_stub(blob_id, new_adapter->content_begin(), new_adapter->content_end());
2768
2769 if (JvmtiExport::should_post_dynamic_code_generated()) {
2770 JvmtiExport::post_dynamic_code_generated(blob_id, new_adapter->content_begin(), new_adapter->content_end());
2771 }
2772 }
2773 return entry;
2774}
2775
2776address AdapterHandlerEntry::base_address() {
2777 address base = _i2c_entry;
2778 if (base == NULL) base = _c2i_entry;
2779 assert(base <= _c2i_entry || _c2i_entry == NULL, "");
2780 assert(base <= _c2i_unverified_entry || _c2i_unverified_entry == NULL, "");
2781 return base;
2782}
2783
2784void AdapterHandlerEntry::relocate(address new_base) {
2785 address old_base = base_address();
2786 assert(old_base != NULL, "");
2787 ptrdiff_t delta = new_base - old_base;
2788 if (_i2c_entry != NULL)
2789 _i2c_entry += delta;
2790 if (_c2i_entry != NULL)
2791 _c2i_entry += delta;
2792 if (_c2i_unverified_entry != NULL)
2793 _c2i_unverified_entry += delta;
2794 assert(base_address() == new_base, "");
2795}
2796
2797
2798void AdapterHandlerEntry::deallocate() {
2799 delete _fingerprint;
2800#ifdef ASSERT
2801 if (_saved_code) FREE_C_HEAP_ARRAY(unsigned char, _saved_code);
2802#endif
2803}
2804
2805
2806#ifdef ASSERT
2807// Capture the code before relocation so that it can be compared
2808// against other versions. If the code is captured after relocation
2809// then relative instructions won't be equivalent.
2810void AdapterHandlerEntry::save_code(unsigned char* buffer, int length) {
2811 _saved_code = NEW_C_HEAP_ARRAY(unsigned char, length, mtCode);
2812 _saved_code_length = length;
2813 memcpy(_saved_code, buffer, length);
2814}
2815
2816
2817bool AdapterHandlerEntry::compare_code(unsigned char* buffer, int length) {
2818 if (length != _saved_code_length) {
2819 return false;
2820 }
2821
2822 return (memcmp(buffer, _saved_code, length) == 0) ? true : false;
2823}
2824#endif
2825
2826
2827/**
2828 * Create a native wrapper for this native method. The wrapper converts the
2829 * Java-compiled calling convention to the native convention, handles
2830 * arguments, and transitions to native. On return from the native we transition
2831 * back to java blocking if a safepoint is in progress.
2832 */
2833void AdapterHandlerLibrary::create_native_wrapper(const methodHandle& method) {
2834 ResourceMark rm;
2835 nmethod* nm = NULL;
2836
2837 assert(method->is_native(), "must be native");
2838 assert(method->is_method_handle_intrinsic() ||
2839 method->has_native_function(), "must have something valid to call!");
2840
2841 {
2842 // Perform the work while holding the lock, but perform any printing outside the lock
2843 MutexLocker mu(AdapterHandlerLibrary_lock);
2844 // See if somebody beat us to it
2845 if (method->code() != NULL) {
2846 return;
2847 }
2848
2849 const int compile_id = CompileBroker::assign_compile_id(method, CompileBroker::standard_entry_bci);
2850 assert(compile_id > 0, "Must generate native wrapper");
2851
2852
2853 ResourceMark rm;
2854 BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache
2855 if (buf != NULL) {
2856 CodeBuffer buffer(buf);
2857 double locs_buf[20];
2858 buffer.insts()->initialize_shared_locs((relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
2859 MacroAssembler _masm(&buffer);
2860
2861 // Fill in the signature array, for the calling-convention call.
2862 const int total_args_passed = method->size_of_parameters();
2863
2864 BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
2865 VMRegPair* regs = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
2866 int i=0;
2867 if (!method->is_static()) // Pass in receiver first
2868 sig_bt[i++] = T_OBJECT;
2869 SignatureStream ss(method->signature());
2870 for (; !ss.at_return_type(); ss.next()) {
2871 sig_bt[i++] = ss.type(); // Collect remaining bits of signature
2872 if (ss.type() == T_LONG || ss.type() == T_DOUBLE)
2873 sig_bt[i++] = T_VOID; // Longs & doubles take 2 Java slots
2874 }
2875 assert(i == total_args_passed, "");
2876 BasicType ret_type = ss.type();
2877
2878 // Now get the compiled-Java layout as input (or output) arguments.
2879 // NOTE: Stubs for compiled entry points of method handle intrinsics
2880 // are just trampolines so the argument registers must be outgoing ones.
2881 const bool is_outgoing = method->is_method_handle_intrinsic();
2882 int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, is_outgoing);
2883
2884 // Generate the compiled-to-native wrapper code
2885 nm = SharedRuntime::generate_native_wrapper(&_masm, method, compile_id, sig_bt, regs, ret_type);
2886
2887 if (nm != NULL) {
2888 method->set_code(method, nm);
2889
2890 DirectiveSet* directive = DirectivesStack::getDefaultDirective(CompileBroker::compiler(CompLevel_simple));
2891 if (directive->PrintAssemblyOption) {
2892 nm->print_code();
2893 }
2894 DirectivesStack::release(directive);
2895 }
2896 }
2897 } // Unlock AdapterHandlerLibrary_lock
2898
2899
2900 // Install the generated code.
2901 if (nm != NULL) {
2902 const char *msg = method->is_static() ? "(static)" : "";
2903 CompileTask::print_ul(nm, msg);
2904 if (PrintCompilation) {
2905 ttyLocker ttyl;
2906 CompileTask::print(tty, nm, msg);
2907 }
2908 nm->post_compiled_method_load_event();
2909 }
2910}
2911
2912JRT_ENTRY_NO_ASYNC(void, SharedRuntime::block_for_jni_critical(JavaThread* thread))
2913 assert(thread == JavaThread::current(), "must be");
2914 // The code is about to enter a JNI lazy critical native method and
2915 // _needs_gc is true, so if this thread is already in a critical
2916 // section then just return, otherwise this thread should block
2917 // until needs_gc has been cleared.
2918 if (thread->in_critical()) {
2919 return;
2920 }
2921 // Lock and unlock a critical section to give the system a chance to block
2922 GCLocker::lock_critical(thread);
2923 GCLocker::unlock_critical(thread);
2924JRT_END
2925
2926JRT_LEAF(oopDesc*, SharedRuntime::pin_object(JavaThread* thread, oopDesc* obj))
2927 assert(Universe::heap()->supports_object_pinning(), "Why we are here?");
2928 assert(obj != NULL, "Should not be null");
2929 oop o(obj);
2930 o = Universe::heap()->pin_object(thread, o);
2931 assert(o != NULL, "Should not be null");
2932 return o;
2933JRT_END
2934
2935JRT_LEAF(void, SharedRuntime::unpin_object(JavaThread* thread, oopDesc* obj))
2936 assert(Universe::heap()->supports_object_pinning(), "Why we are here?");
2937 assert(obj != NULL, "Should not be null");
2938 oop o(obj);
2939 Universe::heap()->unpin_object(thread, o);
2940JRT_END
2941
2942// -------------------------------------------------------------------------
2943// Java-Java calling convention
2944// (what you use when Java calls Java)
2945
2946//------------------------------name_for_receiver----------------------------------
2947// For a given signature, return the VMReg for parameter 0.
2948VMReg SharedRuntime::name_for_receiver() {
2949 VMRegPair regs;
2950 BasicType sig_bt = T_OBJECT;
2951 (void) java_calling_convention(&sig_bt, &regs, 1, true);
2952 // Return argument 0 register. In the LP64 build pointers
2953 // take 2 registers, but the VM wants only the 'main' name.
2954 return regs.first();
2955}
2956
2957VMRegPair *SharedRuntime::find_callee_arguments(Symbol* sig, bool has_receiver, bool has_appendix, int* arg_size) {
2958 // This method is returning a data structure allocating as a
2959 // ResourceObject, so do not put any ResourceMarks in here.
2960 char *s = sig->as_C_string();
2961 int len = (int)strlen(s);
2962 s++; len--; // Skip opening paren
2963
2964 BasicType *sig_bt = NEW_RESOURCE_ARRAY(BasicType, 256);
2965 VMRegPair *regs = NEW_RESOURCE_ARRAY(VMRegPair, 256);
2966 int cnt = 0;
2967 if (has_receiver) {
2968 sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature
2969 }
2970
2971 while (*s != ')') { // Find closing right paren
2972 switch (*s++) { // Switch on signature character
2973 case 'B': sig_bt[cnt++] = T_BYTE; break;
2974 case 'C': sig_bt[cnt++] = T_CHAR; break;
2975 case 'D': sig_bt[cnt++] = T_DOUBLE; sig_bt[cnt++] = T_VOID; break;
2976 case 'F': sig_bt[cnt++] = T_FLOAT; break;
2977 case 'I': sig_bt[cnt++] = T_INT; break;
2978 case 'J': sig_bt[cnt++] = T_LONG; sig_bt[cnt++] = T_VOID; break;
2979 case 'S': sig_bt[cnt++] = T_SHORT; break;
2980 case 'Z': sig_bt[cnt++] = T_BOOLEAN; break;
2981 case 'V': sig_bt[cnt++] = T_VOID; break;
2982 case 'L': // Oop
2983 while (*s++ != ';'); // Skip signature
2984 sig_bt[cnt++] = T_OBJECT;
2985 break;
2986 case '[': { // Array
2987 do { // Skip optional size
2988 while (*s >= '0' && *s <= '9') s++;
2989 } while (*s++ == '['); // Nested arrays?
2990 // Skip element type
2991 if (s[-1] == 'L')
2992 while (*s++ != ';'); // Skip signature
2993 sig_bt[cnt++] = T_ARRAY;
2994 break;
2995 }
2996 default : ShouldNotReachHere();
2997 }
2998 }
2999
3000 if (has_appendix) {
3001 sig_bt[cnt++] = T_OBJECT;
3002 }
3003
3004 assert(cnt < 256, "grow table size");
3005
3006 int comp_args_on_stack;
3007 comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt, true);
3008
3009 // the calling convention doesn't count out_preserve_stack_slots so
3010 // we must add that in to get "true" stack offsets.
3011
3012 if (comp_args_on_stack) {
3013 for (int i = 0; i < cnt; i++) {
3014 VMReg reg1 = regs[i].first();
3015 if (reg1->is_stack()) {
3016 // Yuck
3017 reg1 = reg1->bias(out_preserve_stack_slots());
3018 }
3019 VMReg reg2 = regs[i].second();
3020 if (reg2->is_stack()) {
3021 // Yuck
3022 reg2 = reg2->bias(out_preserve_stack_slots());
3023 }
3024 regs[i].set_pair(reg2, reg1);
3025 }
3026 }
3027
3028 // results
3029 *arg_size = cnt;
3030 return regs;
3031}
3032
3033// OSR Migration Code
3034//
3035// This code is used convert interpreter frames into compiled frames. It is
3036// called from very start of a compiled OSR nmethod. A temp array is
3037// allocated to hold the interesting bits of the interpreter frame. All
3038// active locks are inflated to allow them to move. The displaced headers and
3039// active interpreter locals are copied into the temp buffer. Then we return
3040// back to the compiled code. The compiled code then pops the current
3041// interpreter frame off the stack and pushes a new compiled frame. Then it
3042// copies the interpreter locals and displaced headers where it wants.
3043// Finally it calls back to free the temp buffer.
3044//
3045// All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed.
3046
3047JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *thread) )
3048
3049 //
3050 // This code is dependent on the memory layout of the interpreter local
3051 // array and the monitors. On all of our platforms the layout is identical
3052 // so this code is shared. If some platform lays the their arrays out
3053 // differently then this code could move to platform specific code or
3054 // the code here could be modified to copy items one at a time using
3055 // frame accessor methods and be platform independent.
3056
3057 frame fr = thread->last_frame();
3058 assert(fr.is_interpreted_frame(), "");
3059 assert(fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks");
3060
3061 // Figure out how many monitors are active.
3062 int active_monitor_count = 0;
3063 for (BasicObjectLock *kptr = fr.interpreter_frame_monitor_end();
3064 kptr < fr.interpreter_frame_monitor_begin();
3065 kptr = fr.next_monitor_in_interpreter_frame(kptr) ) {
3066 if (kptr->obj() != NULL) active_monitor_count++;
3067 }
3068
3069 // QQQ we could place number of active monitors in the array so that compiled code
3070 // could double check it.
3071
3072 Method* moop = fr.interpreter_frame_method();
3073 int max_locals = moop->max_locals();
3074 // Allocate temp buffer, 1 word per local & 2 per active monitor
3075 int buf_size_words = max_locals + active_monitor_count * BasicObjectLock::size();
3076 intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words, mtCode);
3077
3078 // Copy the locals. Order is preserved so that loading of longs works.
3079 // Since there's no GC I can copy the oops blindly.
3080 assert(sizeof(HeapWord)==sizeof(intptr_t), "fix this code");
3081 Copy::disjoint_words((HeapWord*)fr.interpreter_frame_local_at(max_locals-1),
3082 (HeapWord*)&buf[0],
3083 max_locals);
3084
3085 // Inflate locks. Copy the displaced headers. Be careful, there can be holes.
3086 int i = max_locals;
3087 for (BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end();
3088 kptr2 < fr.interpreter_frame_monitor_begin();
3089 kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) {
3090 if (kptr2->obj() != NULL) { // Avoid 'holes' in the monitor array
3091 BasicLock *lock = kptr2->lock();
3092 // Inflate so the displaced header becomes position-independent
3093 if (lock->displaced_header()->is_unlocked())
3094 ObjectSynchronizer::inflate_helper(kptr2->obj());
3095 // Now the displaced header is free to move
3096 buf[i++] = (intptr_t)lock->displaced_header();
3097 buf[i++] = cast_from_oop<intptr_t>(kptr2->obj());
3098 }
3099 }
3100 assert(i - max_locals == active_monitor_count*2, "found the expected number of monitors");
3101
3102 return buf;
3103JRT_END
3104
3105JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) )
3106 FREE_C_HEAP_ARRAY(intptr_t, buf);
3107JRT_END
3108
3109bool AdapterHandlerLibrary::contains(const CodeBlob* b) {
3110 AdapterHandlerTableIterator iter(_adapters);
3111 while (iter.has_next()) {
3112 AdapterHandlerEntry* a = iter.next();
3113 if (b == CodeCache::find_blob(a->get_i2c_entry())) return true;
3114 }
3115 return false;
3116}
3117
3118void AdapterHandlerLibrary::print_handler_on(outputStream* st, const CodeBlob* b) {
3119 AdapterHandlerTableIterator iter(_adapters);
3120 while (iter.has_next()) {
3121 AdapterHandlerEntry* a = iter.next();
3122 if (b == CodeCache::find_blob(a->get_i2c_entry())) {
3123 st->print("Adapter for signature: ");
3124 a->print_adapter_on(tty);
3125 return;
3126 }
3127 }
3128 assert(false, "Should have found handler");
3129}
3130
3131void AdapterHandlerEntry::print_adapter_on(outputStream* st) const {
3132 st->print_cr("AHE@" INTPTR_FORMAT ": %s i2c: " INTPTR_FORMAT " c2i: " INTPTR_FORMAT " c2iUV: " INTPTR_FORMAT,
3133 p2i(this), fingerprint()->as_string(),
3134 p2i(get_i2c_entry()), p2i(get_c2i_entry()), p2i(get_c2i_unverified_entry()));
3135
3136}
3137
3138#if INCLUDE_CDS
3139
3140void CDSAdapterHandlerEntry::init() {
3141 assert(DumpSharedSpaces, "used during dump time only");
3142 _c2i_entry_trampoline = (address)MetaspaceShared::misc_code_space_alloc(SharedRuntime::trampoline_size());
3143 _adapter_trampoline = (AdapterHandlerEntry**)MetaspaceShared::misc_code_space_alloc(sizeof(AdapterHandlerEntry*));
3144};
3145
3146#endif // INCLUDE_CDS
3147
3148
3149#ifndef PRODUCT
3150
3151void AdapterHandlerLibrary::print_statistics() {
3152 _adapters->print_statistics();
3153}
3154
3155#endif /* PRODUCT */
3156
3157JRT_LEAF(void, SharedRuntime::enable_stack_reserved_zone(JavaThread* thread))
3158 assert(thread->is_Java_thread(), "Only Java threads have a stack reserved zone");
3159 if (thread->stack_reserved_zone_disabled()) {
3160 thread->enable_stack_reserved_zone();
3161 }
3162 thread->set_reserved_stack_activation(thread->stack_base());
3163JRT_END
3164
3165frame SharedRuntime::look_for_reserved_stack_annotated_method(JavaThread* thread, frame fr) {
3166 ResourceMark rm(thread);
3167 frame activation;
3168 CompiledMethod* nm = NULL;
3169 int count = 1;
3170
3171 assert(fr.is_java_frame(), "Must start on Java frame");
3172
3173 while (true) {
3174 Method* method = NULL;
3175 bool found = false;
3176 if (fr.is_interpreted_frame()) {
3177 method = fr.interpreter_frame_method();
3178 if (method != NULL && method->has_reserved_stack_access()) {
3179 found = true;
3180 }
3181 } else {
3182 CodeBlob* cb = fr.cb();
3183 if (cb != NULL && cb->is_compiled()) {
3184 nm = cb->as_compiled_method();
3185 method = nm->method();
3186 // scope_desc_near() must be used, instead of scope_desc_at() because on
3187 // SPARC, the pcDesc can be on the delay slot after the call instruction.
3188 for (ScopeDesc *sd = nm->scope_desc_near(fr.pc()); sd != NULL; sd = sd->sender()) {
3189 method = sd->method();
3190 if (method != NULL && method->has_reserved_stack_access()) {
3191 found = true;
3192 }
3193 }
3194 }
3195 }
3196 if (found) {
3197 activation = fr;
3198 warning("Potentially dangerous stack overflow in "
3199 "ReservedStackAccess annotated method %s [%d]",
3200 method->name_and_sig_as_C_string(), count++);
3201 EventReservedStackActivation event;
3202 if (event.should_commit()) {
3203 event.set_method(method);
3204 event.commit();
3205 }
3206 }
3207 if (fr.is_first_java_frame()) {
3208 break;
3209 } else {
3210 fr = fr.java_sender();
3211 }
3212 }
3213 return activation;
3214}
3215
3216void SharedRuntime::on_slowpath_allocation_exit(JavaThread* thread) {
3217 // After any safepoint, just before going back to compiled code,
3218 // we inform the GC that we will be doing initializing writes to
3219 // this object in the future without emitting card-marks, so
3220 // GC may take any compensating steps.
3221
3222 oop new_obj = thread->vm_result();
3223 if (new_obj == NULL) return;
3224
3225 BarrierSet *bs = BarrierSet::barrier_set();
3226 bs->on_slowpath_allocation_exit(thread, new_obj);
3227}
3228