| 1 | /* |
| 2 | * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved. |
| 3 | * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
| 4 | * |
| 5 | * This code is free software; you can redistribute it and/or modify it |
| 6 | * under the terms of the GNU General Public License version 2 only, as |
| 7 | * published by the Free Software Foundation. |
| 8 | * |
| 9 | * This code is distributed in the hope that it will be useful, but WITHOUT |
| 10 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| 11 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| 12 | * version 2 for more details (a copy is included in the LICENSE file that |
| 13 | * accompanied this code). |
| 14 | * |
| 15 | * You should have received a copy of the GNU General Public License version |
| 16 | * 2 along with this work; if not, write to the Free Software Foundation, |
| 17 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
| 18 | * |
| 19 | * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
| 20 | * or visit www.oracle.com if you need additional information or have any |
| 21 | * questions. |
| 22 | * |
| 23 | */ |
| 24 | |
| 25 | #include "precompiled.hpp" |
| 26 | #include "jvm.h" |
| 27 | #include "aot/aotLoader.hpp" |
| 28 | #include "classfile/stringTable.hpp" |
| 29 | #include "classfile/systemDictionary.hpp" |
| 30 | #include "classfile/vmSymbols.hpp" |
| 31 | #include "code/codeCache.hpp" |
| 32 | #include "code/compiledIC.hpp" |
| 33 | #include "code/icBuffer.hpp" |
| 34 | #include "code/compiledMethod.inline.hpp" |
| 35 | #include "code/scopeDesc.hpp" |
| 36 | #include "code/vtableStubs.hpp" |
| 37 | #include "compiler/abstractCompiler.hpp" |
| 38 | #include "compiler/compileBroker.hpp" |
| 39 | #include "compiler/disassembler.hpp" |
| 40 | #include "gc/shared/barrierSet.hpp" |
| 41 | #include "gc/shared/gcLocker.inline.hpp" |
| 42 | #include "interpreter/interpreter.hpp" |
| 43 | #include "interpreter/interpreterRuntime.hpp" |
| 44 | #include "jfr/jfrEvents.hpp" |
| 45 | #include "logging/log.hpp" |
| 46 | #include "memory/metaspaceShared.hpp" |
| 47 | #include "memory/resourceArea.hpp" |
| 48 | #include "memory/universe.hpp" |
| 49 | #include "oops/klass.hpp" |
| 50 | #include "oops/method.inline.hpp" |
| 51 | #include "oops/objArrayKlass.hpp" |
| 52 | #include "oops/oop.inline.hpp" |
| 53 | #include "prims/forte.hpp" |
| 54 | #include "prims/jvmtiExport.hpp" |
| 55 | #include "prims/methodHandles.hpp" |
| 56 | #include "prims/nativeLookup.hpp" |
| 57 | #include "runtime/arguments.hpp" |
| 58 | #include "runtime/atomic.hpp" |
| 59 | #include "runtime/biasedLocking.hpp" |
| 60 | #include "runtime/compilationPolicy.hpp" |
| 61 | #include "runtime/frame.inline.hpp" |
| 62 | #include "runtime/handles.inline.hpp" |
| 63 | #include "runtime/init.hpp" |
| 64 | #include "runtime/interfaceSupport.inline.hpp" |
| 65 | #include "runtime/java.hpp" |
| 66 | #include "runtime/javaCalls.hpp" |
| 67 | #include "runtime/sharedRuntime.hpp" |
| 68 | #include "runtime/stubRoutines.hpp" |
| 69 | #include "runtime/vframe.inline.hpp" |
| 70 | #include "runtime/vframeArray.hpp" |
| 71 | #include "utilities/copy.hpp" |
| 72 | #include "utilities/dtrace.hpp" |
| 73 | #include "utilities/events.hpp" |
| 74 | #include "utilities/hashtable.inline.hpp" |
| 75 | #include "utilities/macros.hpp" |
| 76 | #include "utilities/xmlstream.hpp" |
| 77 | #ifdef COMPILER1 |
| 78 | #include "c1/c1_Runtime1.hpp" |
| 79 | #endif |
| 80 | |
| 81 | // Shared stub locations |
| 82 | RuntimeStub* SharedRuntime::_wrong_method_blob; |
| 83 | RuntimeStub* SharedRuntime::_wrong_method_abstract_blob; |
| 84 | RuntimeStub* SharedRuntime::_ic_miss_blob; |
| 85 | RuntimeStub* SharedRuntime::_resolve_opt_virtual_call_blob; |
| 86 | RuntimeStub* SharedRuntime::_resolve_virtual_call_blob; |
| 87 | RuntimeStub* SharedRuntime::_resolve_static_call_blob; |
| 88 | address SharedRuntime::_resolve_static_call_entry; |
| 89 | |
| 90 | DeoptimizationBlob* SharedRuntime::_deopt_blob; |
| 91 | SafepointBlob* SharedRuntime::_polling_page_vectors_safepoint_handler_blob; |
| 92 | SafepointBlob* SharedRuntime::_polling_page_safepoint_handler_blob; |
| 93 | SafepointBlob* SharedRuntime::_polling_page_return_handler_blob; |
| 94 | |
| 95 | #ifdef COMPILER2 |
| 96 | UncommonTrapBlob* SharedRuntime::_uncommon_trap_blob; |
| 97 | #endif // COMPILER2 |
| 98 | |
| 99 | |
| 100 | //----------------------------generate_stubs----------------------------------- |
| 101 | void SharedRuntime::generate_stubs() { |
| 102 | _wrong_method_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method), "wrong_method_stub" ); |
| 103 | _wrong_method_abstract_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_abstract), "wrong_method_abstract_stub" ); |
| 104 | _ic_miss_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss), "ic_miss_stub" ); |
| 105 | _resolve_opt_virtual_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C), "resolve_opt_virtual_call" ); |
| 106 | _resolve_virtual_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C), "resolve_virtual_call" ); |
| 107 | _resolve_static_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C), "resolve_static_call" ); |
| 108 | _resolve_static_call_entry = _resolve_static_call_blob->entry_point(); |
| 109 | |
| 110 | #if COMPILER2_OR_JVMCI |
| 111 | // Vectors are generated only by C2 and JVMCI. |
| 112 | bool support_wide = is_wide_vector(MaxVectorSize); |
| 113 | if (support_wide) { |
| 114 | _polling_page_vectors_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_VECTOR_LOOP); |
| 115 | } |
| 116 | #endif // COMPILER2_OR_JVMCI |
| 117 | _polling_page_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_LOOP); |
| 118 | _polling_page_return_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_RETURN); |
| 119 | |
| 120 | generate_deopt_blob(); |
| 121 | |
| 122 | #ifdef COMPILER2 |
| 123 | generate_uncommon_trap_blob(); |
| 124 | #endif // COMPILER2 |
| 125 | } |
| 126 | |
| 127 | #include <math.h> |
| 128 | |
| 129 | // Implementation of SharedRuntime |
| 130 | |
| 131 | #ifndef PRODUCT |
| 132 | // For statistics |
| 133 | int SharedRuntime::_ic_miss_ctr = 0; |
| 134 | int SharedRuntime::_wrong_method_ctr = 0; |
| 135 | int SharedRuntime::_resolve_static_ctr = 0; |
| 136 | int SharedRuntime::_resolve_virtual_ctr = 0; |
| 137 | int SharedRuntime::_resolve_opt_virtual_ctr = 0; |
| 138 | int SharedRuntime::_implicit_null_throws = 0; |
| 139 | int SharedRuntime::_implicit_div0_throws = 0; |
| 140 | int SharedRuntime::_throw_null_ctr = 0; |
| 141 | |
| 142 | int SharedRuntime::_nof_normal_calls = 0; |
| 143 | int SharedRuntime::_nof_optimized_calls = 0; |
| 144 | int SharedRuntime::_nof_inlined_calls = 0; |
| 145 | int SharedRuntime::_nof_megamorphic_calls = 0; |
| 146 | int SharedRuntime::_nof_static_calls = 0; |
| 147 | int SharedRuntime::_nof_inlined_static_calls = 0; |
| 148 | int SharedRuntime::_nof_interface_calls = 0; |
| 149 | int SharedRuntime::_nof_optimized_interface_calls = 0; |
| 150 | int SharedRuntime::_nof_inlined_interface_calls = 0; |
| 151 | int SharedRuntime::_nof_megamorphic_interface_calls = 0; |
| 152 | int SharedRuntime::_nof_removable_exceptions = 0; |
| 153 | |
| 154 | int SharedRuntime::_new_instance_ctr=0; |
| 155 | int SharedRuntime::_new_array_ctr=0; |
| 156 | int SharedRuntime::_multi1_ctr=0; |
| 157 | int SharedRuntime::_multi2_ctr=0; |
| 158 | int SharedRuntime::_multi3_ctr=0; |
| 159 | int SharedRuntime::_multi4_ctr=0; |
| 160 | int SharedRuntime::_multi5_ctr=0; |
| 161 | int SharedRuntime::_mon_enter_stub_ctr=0; |
| 162 | int SharedRuntime::_mon_exit_stub_ctr=0; |
| 163 | int SharedRuntime::_mon_enter_ctr=0; |
| 164 | int SharedRuntime::_mon_exit_ctr=0; |
| 165 | int SharedRuntime::_partial_subtype_ctr=0; |
| 166 | int SharedRuntime::_jbyte_array_copy_ctr=0; |
| 167 | int SharedRuntime::_jshort_array_copy_ctr=0; |
| 168 | int SharedRuntime::_jint_array_copy_ctr=0; |
| 169 | int SharedRuntime::_jlong_array_copy_ctr=0; |
| 170 | int SharedRuntime::_oop_array_copy_ctr=0; |
| 171 | int SharedRuntime::_checkcast_array_copy_ctr=0; |
| 172 | int SharedRuntime::_unsafe_array_copy_ctr=0; |
| 173 | int SharedRuntime::_generic_array_copy_ctr=0; |
| 174 | int SharedRuntime::_slow_array_copy_ctr=0; |
| 175 | int SharedRuntime::_find_handler_ctr=0; |
| 176 | int SharedRuntime::_rethrow_ctr=0; |
| 177 | |
| 178 | int SharedRuntime::_ICmiss_index = 0; |
| 179 | int SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count]; |
| 180 | address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count]; |
| 181 | |
| 182 | |
| 183 | void SharedRuntime::trace_ic_miss(address at) { |
| 184 | for (int i = 0; i < _ICmiss_index; i++) { |
| 185 | if (_ICmiss_at[i] == at) { |
| 186 | _ICmiss_count[i]++; |
| 187 | return; |
| 188 | } |
| 189 | } |
| 190 | int index = _ICmiss_index++; |
| 191 | if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1; |
| 192 | _ICmiss_at[index] = at; |
| 193 | _ICmiss_count[index] = 1; |
| 194 | } |
| 195 | |
| 196 | void SharedRuntime::print_ic_miss_histogram() { |
| 197 | if (ICMissHistogram) { |
| 198 | tty->print_cr("IC Miss Histogram:" ); |
| 199 | int tot_misses = 0; |
| 200 | for (int i = 0; i < _ICmiss_index; i++) { |
| 201 | tty->print_cr(" at: " INTPTR_FORMAT " nof: %d" , p2i(_ICmiss_at[i]), _ICmiss_count[i]); |
| 202 | tot_misses += _ICmiss_count[i]; |
| 203 | } |
| 204 | tty->print_cr("Total IC misses: %7d" , tot_misses); |
| 205 | } |
| 206 | } |
| 207 | #endif // PRODUCT |
| 208 | |
| 209 | |
| 210 | JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x)) |
| 211 | return x * y; |
| 212 | JRT_END |
| 213 | |
| 214 | |
| 215 | JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x)) |
| 216 | if (x == min_jlong && y == CONST64(-1)) { |
| 217 | return x; |
| 218 | } else { |
| 219 | return x / y; |
| 220 | } |
| 221 | JRT_END |
| 222 | |
| 223 | |
| 224 | JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x)) |
| 225 | if (x == min_jlong && y == CONST64(-1)) { |
| 226 | return 0; |
| 227 | } else { |
| 228 | return x % y; |
| 229 | } |
| 230 | JRT_END |
| 231 | |
| 232 | |
| 233 | const juint float_sign_mask = 0x7FFFFFFF; |
| 234 | const juint float_infinity = 0x7F800000; |
| 235 | const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF); |
| 236 | const julong double_infinity = CONST64(0x7FF0000000000000); |
| 237 | |
| 238 | JRT_LEAF(jfloat, SharedRuntime::frem(jfloat x, jfloat y)) |
| 239 | #ifdef _WIN64 |
| 240 | // 64-bit Windows on amd64 returns the wrong values for |
| 241 | // infinity operands. |
| 242 | union { jfloat f; juint i; } xbits, ybits; |
| 243 | xbits.f = x; |
| 244 | ybits.f = y; |
| 245 | // x Mod Infinity == x unless x is infinity |
| 246 | if (((xbits.i & float_sign_mask) != float_infinity) && |
| 247 | ((ybits.i & float_sign_mask) == float_infinity) ) { |
| 248 | return x; |
| 249 | } |
| 250 | return ((jfloat)fmod_winx64((double)x, (double)y)); |
| 251 | #else |
| 252 | return ((jfloat)fmod((double)x,(double)y)); |
| 253 | #endif |
| 254 | JRT_END |
| 255 | |
| 256 | |
| 257 | JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y)) |
| 258 | #ifdef _WIN64 |
| 259 | union { jdouble d; julong l; } xbits, ybits; |
| 260 | xbits.d = x; |
| 261 | ybits.d = y; |
| 262 | // x Mod Infinity == x unless x is infinity |
| 263 | if (((xbits.l & double_sign_mask) != double_infinity) && |
| 264 | ((ybits.l & double_sign_mask) == double_infinity) ) { |
| 265 | return x; |
| 266 | } |
| 267 | return ((jdouble)fmod_winx64((double)x, (double)y)); |
| 268 | #else |
| 269 | return ((jdouble)fmod((double)x,(double)y)); |
| 270 | #endif |
| 271 | JRT_END |
| 272 | |
| 273 | #ifdef __SOFTFP__ |
| 274 | JRT_LEAF(jfloat, SharedRuntime::fadd(jfloat x, jfloat y)) |
| 275 | return x + y; |
| 276 | JRT_END |
| 277 | |
| 278 | JRT_LEAF(jfloat, SharedRuntime::fsub(jfloat x, jfloat y)) |
| 279 | return x - y; |
| 280 | JRT_END |
| 281 | |
| 282 | JRT_LEAF(jfloat, SharedRuntime::fmul(jfloat x, jfloat y)) |
| 283 | return x * y; |
| 284 | JRT_END |
| 285 | |
| 286 | JRT_LEAF(jfloat, SharedRuntime::fdiv(jfloat x, jfloat y)) |
| 287 | return x / y; |
| 288 | JRT_END |
| 289 | |
| 290 | JRT_LEAF(jdouble, SharedRuntime::dadd(jdouble x, jdouble y)) |
| 291 | return x + y; |
| 292 | JRT_END |
| 293 | |
| 294 | JRT_LEAF(jdouble, SharedRuntime::dsub(jdouble x, jdouble y)) |
| 295 | return x - y; |
| 296 | JRT_END |
| 297 | |
| 298 | JRT_LEAF(jdouble, SharedRuntime::dmul(jdouble x, jdouble y)) |
| 299 | return x * y; |
| 300 | JRT_END |
| 301 | |
| 302 | JRT_LEAF(jdouble, SharedRuntime::ddiv(jdouble x, jdouble y)) |
| 303 | return x / y; |
| 304 | JRT_END |
| 305 | |
| 306 | JRT_LEAF(jfloat, SharedRuntime::i2f(jint x)) |
| 307 | return (jfloat)x; |
| 308 | JRT_END |
| 309 | |
| 310 | JRT_LEAF(jdouble, SharedRuntime::i2d(jint x)) |
| 311 | return (jdouble)x; |
| 312 | JRT_END |
| 313 | |
| 314 | JRT_LEAF(jdouble, SharedRuntime::f2d(jfloat x)) |
| 315 | return (jdouble)x; |
| 316 | JRT_END |
| 317 | |
| 318 | JRT_LEAF(int, SharedRuntime::fcmpl(float x, float y)) |
| 319 | return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan*/ |
| 320 | JRT_END |
| 321 | |
| 322 | JRT_LEAF(int, SharedRuntime::fcmpg(float x, float y)) |
| 323 | return x<y ? -1 : (x==y ? 0 : 1); /* x>y or is_nan */ |
| 324 | JRT_END |
| 325 | |
| 326 | JRT_LEAF(int, SharedRuntime::dcmpl(double x, double y)) |
| 327 | return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan */ |
| 328 | JRT_END |
| 329 | |
| 330 | JRT_LEAF(int, SharedRuntime::dcmpg(double x, double y)) |
| 331 | return x<y ? -1 : (x==y ? 0 : 1); /* x>y or is_nan */ |
| 332 | JRT_END |
| 333 | |
| 334 | // Functions to return the opposite of the aeabi functions for nan. |
| 335 | JRT_LEAF(int, SharedRuntime::unordered_fcmplt(float x, float y)) |
| 336 | return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); |
| 337 | JRT_END |
| 338 | |
| 339 | JRT_LEAF(int, SharedRuntime::unordered_dcmplt(double x, double y)) |
| 340 | return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); |
| 341 | JRT_END |
| 342 | |
| 343 | JRT_LEAF(int, SharedRuntime::unordered_fcmple(float x, float y)) |
| 344 | return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); |
| 345 | JRT_END |
| 346 | |
| 347 | JRT_LEAF(int, SharedRuntime::unordered_dcmple(double x, double y)) |
| 348 | return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); |
| 349 | JRT_END |
| 350 | |
| 351 | JRT_LEAF(int, SharedRuntime::unordered_fcmpge(float x, float y)) |
| 352 | return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); |
| 353 | JRT_END |
| 354 | |
| 355 | JRT_LEAF(int, SharedRuntime::unordered_dcmpge(double x, double y)) |
| 356 | return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); |
| 357 | JRT_END |
| 358 | |
| 359 | JRT_LEAF(int, SharedRuntime::unordered_fcmpgt(float x, float y)) |
| 360 | return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); |
| 361 | JRT_END |
| 362 | |
| 363 | JRT_LEAF(int, SharedRuntime::unordered_dcmpgt(double x, double y)) |
| 364 | return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); |
| 365 | JRT_END |
| 366 | |
| 367 | // Intrinsics make gcc generate code for these. |
| 368 | float SharedRuntime::fneg(float f) { |
| 369 | return -f; |
| 370 | } |
| 371 | |
| 372 | double SharedRuntime::dneg(double f) { |
| 373 | return -f; |
| 374 | } |
| 375 | |
| 376 | #endif // __SOFTFP__ |
| 377 | |
| 378 | #if defined(__SOFTFP__) || defined(E500V2) |
| 379 | // Intrinsics make gcc generate code for these. |
| 380 | double SharedRuntime::dabs(double f) { |
| 381 | return (f <= (double)0.0) ? (double)0.0 - f : f; |
| 382 | } |
| 383 | |
| 384 | #endif |
| 385 | |
| 386 | #if defined(__SOFTFP__) || defined(PPC) |
| 387 | double SharedRuntime::dsqrt(double f) { |
| 388 | return sqrt(f); |
| 389 | } |
| 390 | #endif |
| 391 | |
| 392 | JRT_LEAF(jint, SharedRuntime::f2i(jfloat x)) |
| 393 | if (g_isnan(x)) |
| 394 | return 0; |
| 395 | if (x >= (jfloat) max_jint) |
| 396 | return max_jint; |
| 397 | if (x <= (jfloat) min_jint) |
| 398 | return min_jint; |
| 399 | return (jint) x; |
| 400 | JRT_END |
| 401 | |
| 402 | |
| 403 | JRT_LEAF(jlong, SharedRuntime::f2l(jfloat x)) |
| 404 | if (g_isnan(x)) |
| 405 | return 0; |
| 406 | if (x >= (jfloat) max_jlong) |
| 407 | return max_jlong; |
| 408 | if (x <= (jfloat) min_jlong) |
| 409 | return min_jlong; |
| 410 | return (jlong) x; |
| 411 | JRT_END |
| 412 | |
| 413 | |
| 414 | JRT_LEAF(jint, SharedRuntime::d2i(jdouble x)) |
| 415 | if (g_isnan(x)) |
| 416 | return 0; |
| 417 | if (x >= (jdouble) max_jint) |
| 418 | return max_jint; |
| 419 | if (x <= (jdouble) min_jint) |
| 420 | return min_jint; |
| 421 | return (jint) x; |
| 422 | JRT_END |
| 423 | |
| 424 | |
| 425 | JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x)) |
| 426 | if (g_isnan(x)) |
| 427 | return 0; |
| 428 | if (x >= (jdouble) max_jlong) |
| 429 | return max_jlong; |
| 430 | if (x <= (jdouble) min_jlong) |
| 431 | return min_jlong; |
| 432 | return (jlong) x; |
| 433 | JRT_END |
| 434 | |
| 435 | |
| 436 | JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x)) |
| 437 | return (jfloat)x; |
| 438 | JRT_END |
| 439 | |
| 440 | |
| 441 | JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x)) |
| 442 | return (jfloat)x; |
| 443 | JRT_END |
| 444 | |
| 445 | |
| 446 | JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x)) |
| 447 | return (jdouble)x; |
| 448 | JRT_END |
| 449 | |
| 450 | // Exception handling across interpreter/compiler boundaries |
| 451 | // |
| 452 | // exception_handler_for_return_address(...) returns the continuation address. |
| 453 | // The continuation address is the entry point of the exception handler of the |
| 454 | // previous frame depending on the return address. |
| 455 | |
| 456 | address SharedRuntime::raw_exception_handler_for_return_address(JavaThread* thread, address return_address) { |
| 457 | assert(frame::verify_return_pc(return_address), "must be a return address: " INTPTR_FORMAT, p2i(return_address)); |
| 458 | assert(thread->frames_to_pop_failed_realloc() == 0 || Interpreter::contains(return_address), "missed frames to pop?" ); |
| 459 | |
| 460 | // Reset method handle flag. |
| 461 | thread->set_is_method_handle_return(false); |
| 462 | |
| 463 | #if INCLUDE_JVMCI |
| 464 | // JVMCI's ExceptionHandlerStub expects the thread local exception PC to be clear |
| 465 | // and other exception handler continuations do not read it |
| 466 | thread->set_exception_pc(NULL); |
| 467 | #endif // INCLUDE_JVMCI |
| 468 | |
| 469 | // The fastest case first |
| 470 | CodeBlob* blob = CodeCache::find_blob(return_address); |
| 471 | CompiledMethod* nm = (blob != NULL) ? blob->as_compiled_method_or_null() : NULL; |
| 472 | if (nm != NULL) { |
| 473 | // Set flag if return address is a method handle call site. |
| 474 | thread->set_is_method_handle_return(nm->is_method_handle_return(return_address)); |
| 475 | // native nmethods don't have exception handlers |
| 476 | assert(!nm->is_native_method(), "no exception handler" ); |
| 477 | assert(nm->header_begin() != nm->exception_begin(), "no exception handler" ); |
| 478 | if (nm->is_deopt_pc(return_address)) { |
| 479 | // If we come here because of a stack overflow, the stack may be |
| 480 | // unguarded. Reguard the stack otherwise if we return to the |
| 481 | // deopt blob and the stack bang causes a stack overflow we |
| 482 | // crash. |
| 483 | bool guard_pages_enabled = thread->stack_guards_enabled(); |
| 484 | if (!guard_pages_enabled) guard_pages_enabled = thread->reguard_stack(); |
| 485 | if (thread->reserved_stack_activation() != thread->stack_base()) { |
| 486 | thread->set_reserved_stack_activation(thread->stack_base()); |
| 487 | } |
| 488 | assert(guard_pages_enabled, "stack banging in deopt blob may cause crash" ); |
| 489 | return SharedRuntime::deopt_blob()->unpack_with_exception(); |
| 490 | } else { |
| 491 | return nm->exception_begin(); |
| 492 | } |
| 493 | } |
| 494 | |
| 495 | // Entry code |
| 496 | if (StubRoutines::returns_to_call_stub(return_address)) { |
| 497 | return StubRoutines::catch_exception_entry(); |
| 498 | } |
| 499 | // Interpreted code |
| 500 | if (Interpreter::contains(return_address)) { |
| 501 | return Interpreter::rethrow_exception_entry(); |
| 502 | } |
| 503 | |
| 504 | guarantee(blob == NULL || !blob->is_runtime_stub(), "caller should have skipped stub" ); |
| 505 | guarantee(!VtableStubs::contains(return_address), "NULL exceptions in vtables should have been handled already!" ); |
| 506 | |
| 507 | #ifndef PRODUCT |
| 508 | { ResourceMark rm; |
| 509 | tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:" , p2i(return_address)); |
| 510 | tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here" ); |
| 511 | tty->print_cr("b) other problem" ); |
| 512 | } |
| 513 | #endif // PRODUCT |
| 514 | |
| 515 | ShouldNotReachHere(); |
| 516 | return NULL; |
| 517 | } |
| 518 | |
| 519 | |
| 520 | JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(JavaThread* thread, address return_address)) |
| 521 | return raw_exception_handler_for_return_address(thread, return_address); |
| 522 | JRT_END |
| 523 | |
| 524 | |
| 525 | address SharedRuntime::get_poll_stub(address pc) { |
| 526 | address stub; |
| 527 | // Look up the code blob |
| 528 | CodeBlob *cb = CodeCache::find_blob(pc); |
| 529 | |
| 530 | // Should be an nmethod |
| 531 | guarantee(cb != NULL && cb->is_compiled(), "safepoint polling: pc must refer to an nmethod" ); |
| 532 | |
| 533 | // Look up the relocation information |
| 534 | assert(((CompiledMethod*)cb)->is_at_poll_or_poll_return(pc), |
| 535 | "safepoint polling: type must be poll" ); |
| 536 | |
| 537 | #ifdef ASSERT |
| 538 | if (!((NativeInstruction*)pc)->is_safepoint_poll()) { |
| 539 | tty->print_cr("bad pc: " PTR_FORMAT, p2i(pc)); |
| 540 | Disassembler::decode(cb); |
| 541 | fatal("Only polling locations are used for safepoint" ); |
| 542 | } |
| 543 | #endif |
| 544 | |
| 545 | bool at_poll_return = ((CompiledMethod*)cb)->is_at_poll_return(pc); |
| 546 | bool has_wide_vectors = ((CompiledMethod*)cb)->has_wide_vectors(); |
| 547 | if (at_poll_return) { |
| 548 | assert(SharedRuntime::polling_page_return_handler_blob() != NULL, |
| 549 | "polling page return stub not created yet" ); |
| 550 | stub = SharedRuntime::polling_page_return_handler_blob()->entry_point(); |
| 551 | } else if (has_wide_vectors) { |
| 552 | assert(SharedRuntime::polling_page_vectors_safepoint_handler_blob() != NULL, |
| 553 | "polling page vectors safepoint stub not created yet" ); |
| 554 | stub = SharedRuntime::polling_page_vectors_safepoint_handler_blob()->entry_point(); |
| 555 | } else { |
| 556 | assert(SharedRuntime::polling_page_safepoint_handler_blob() != NULL, |
| 557 | "polling page safepoint stub not created yet" ); |
| 558 | stub = SharedRuntime::polling_page_safepoint_handler_blob()->entry_point(); |
| 559 | } |
| 560 | log_debug(safepoint)("... found polling page %s exception at pc = " |
| 561 | INTPTR_FORMAT ", stub =" INTPTR_FORMAT, |
| 562 | at_poll_return ? "return" : "loop" , |
| 563 | (intptr_t)pc, (intptr_t)stub); |
| 564 | return stub; |
| 565 | } |
| 566 | |
| 567 | |
| 568 | oop SharedRuntime::retrieve_receiver( Symbol* sig, frame caller ) { |
| 569 | assert(caller.is_interpreted_frame(), "" ); |
| 570 | int args_size = ArgumentSizeComputer(sig).size() + 1; |
| 571 | assert(args_size <= caller.interpreter_frame_expression_stack_size(), "receiver must be on interpreter stack" ); |
| 572 | oop result = cast_to_oop(*caller.interpreter_frame_tos_at(args_size - 1)); |
| 573 | assert(Universe::heap()->is_in(result) && oopDesc::is_oop(result), "receiver must be an oop" ); |
| 574 | return result; |
| 575 | } |
| 576 | |
| 577 | |
| 578 | void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Handle h_exception) { |
| 579 | if (JvmtiExport::can_post_on_exceptions()) { |
| 580 | vframeStream vfst(thread, true); |
| 581 | methodHandle method = methodHandle(thread, vfst.method()); |
| 582 | address bcp = method()->bcp_from(vfst.bci()); |
| 583 | JvmtiExport::post_exception_throw(thread, method(), bcp, h_exception()); |
| 584 | } |
| 585 | Exceptions::_throw(thread, __FILE__, __LINE__, h_exception); |
| 586 | } |
| 587 | |
| 588 | void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Symbol* name, const char *message) { |
| 589 | Handle h_exception = Exceptions::new_exception(thread, name, message); |
| 590 | throw_and_post_jvmti_exception(thread, h_exception); |
| 591 | } |
| 592 | |
| 593 | // The interpreter code to call this tracing function is only |
| 594 | // called/generated when UL is on for redefine, class and has the right level |
| 595 | // and tags. Since obsolete methods are never compiled, we don't have |
| 596 | // to modify the compilers to generate calls to this function. |
| 597 | // |
| 598 | JRT_LEAF(int, SharedRuntime::rc_trace_method_entry( |
| 599 | JavaThread* thread, Method* method)) |
| 600 | if (method->is_obsolete()) { |
| 601 | // We are calling an obsolete method, but this is not necessarily |
| 602 | // an error. Our method could have been redefined just after we |
| 603 | // fetched the Method* from the constant pool. |
| 604 | ResourceMark rm; |
| 605 | log_trace(redefine, class, obsolete)("calling obsolete method '%s'" , method->name_and_sig_as_C_string()); |
| 606 | } |
| 607 | return 0; |
| 608 | JRT_END |
| 609 | |
| 610 | // ret_pc points into caller; we are returning caller's exception handler |
| 611 | // for given exception |
| 612 | address SharedRuntime::compute_compiled_exc_handler(CompiledMethod* cm, address ret_pc, Handle& exception, |
| 613 | bool force_unwind, bool top_frame_only, bool& recursive_exception_occurred) { |
| 614 | assert(cm != NULL, "must exist" ); |
| 615 | ResourceMark rm; |
| 616 | |
| 617 | #if INCLUDE_JVMCI |
| 618 | if (cm->is_compiled_by_jvmci()) { |
| 619 | // lookup exception handler for this pc |
| 620 | int catch_pco = ret_pc - cm->code_begin(); |
| 621 | ExceptionHandlerTable table(cm); |
| 622 | HandlerTableEntry *t = table.entry_for(catch_pco, -1, 0); |
| 623 | if (t != NULL) { |
| 624 | return cm->code_begin() + t->pco(); |
| 625 | } else { |
| 626 | return Deoptimization::deoptimize_for_missing_exception_handler(cm); |
| 627 | } |
| 628 | } |
| 629 | #endif // INCLUDE_JVMCI |
| 630 | |
| 631 | nmethod* nm = cm->as_nmethod(); |
| 632 | ScopeDesc* sd = nm->scope_desc_at(ret_pc); |
| 633 | // determine handler bci, if any |
| 634 | EXCEPTION_MARK; |
| 635 | |
| 636 | int handler_bci = -1; |
| 637 | int scope_depth = 0; |
| 638 | if (!force_unwind) { |
| 639 | int bci = sd->bci(); |
| 640 | bool recursive_exception = false; |
| 641 | do { |
| 642 | bool skip_scope_increment = false; |
| 643 | // exception handler lookup |
| 644 | Klass* ek = exception->klass(); |
| 645 | methodHandle mh(THREAD, sd->method()); |
| 646 | handler_bci = Method::fast_exception_handler_bci_for(mh, ek, bci, THREAD); |
| 647 | if (HAS_PENDING_EXCEPTION) { |
| 648 | recursive_exception = true; |
| 649 | // We threw an exception while trying to find the exception handler. |
| 650 | // Transfer the new exception to the exception handle which will |
| 651 | // be set into thread local storage, and do another lookup for an |
| 652 | // exception handler for this exception, this time starting at the |
| 653 | // BCI of the exception handler which caused the exception to be |
| 654 | // thrown (bugs 4307310 and 4546590). Set "exception" reference |
| 655 | // argument to ensure that the correct exception is thrown (4870175). |
| 656 | recursive_exception_occurred = true; |
| 657 | exception = Handle(THREAD, PENDING_EXCEPTION); |
| 658 | CLEAR_PENDING_EXCEPTION; |
| 659 | if (handler_bci >= 0) { |
| 660 | bci = handler_bci; |
| 661 | handler_bci = -1; |
| 662 | skip_scope_increment = true; |
| 663 | } |
| 664 | } |
| 665 | else { |
| 666 | recursive_exception = false; |
| 667 | } |
| 668 | if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) { |
| 669 | sd = sd->sender(); |
| 670 | if (sd != NULL) { |
| 671 | bci = sd->bci(); |
| 672 | } |
| 673 | ++scope_depth; |
| 674 | } |
| 675 | } while (recursive_exception || (!top_frame_only && handler_bci < 0 && sd != NULL)); |
| 676 | } |
| 677 | |
| 678 | // found handling method => lookup exception handler |
| 679 | int catch_pco = ret_pc - nm->code_begin(); |
| 680 | |
| 681 | ExceptionHandlerTable table(nm); |
| 682 | HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth); |
| 683 | if (t == NULL && (nm->is_compiled_by_c1() || handler_bci != -1)) { |
| 684 | // Allow abbreviated catch tables. The idea is to allow a method |
| 685 | // to materialize its exceptions without committing to the exact |
| 686 | // routing of exceptions. In particular this is needed for adding |
| 687 | // a synthetic handler to unlock monitors when inlining |
| 688 | // synchronized methods since the unlock path isn't represented in |
| 689 | // the bytecodes. |
| 690 | t = table.entry_for(catch_pco, -1, 0); |
| 691 | } |
| 692 | |
| 693 | #ifdef COMPILER1 |
| 694 | if (t == NULL && nm->is_compiled_by_c1()) { |
| 695 | assert(nm->unwind_handler_begin() != NULL, "" ); |
| 696 | return nm->unwind_handler_begin(); |
| 697 | } |
| 698 | #endif |
| 699 | |
| 700 | if (t == NULL) { |
| 701 | ttyLocker ttyl; |
| 702 | tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d" , p2i(ret_pc), handler_bci); |
| 703 | tty->print_cr(" Exception:" ); |
| 704 | exception->print(); |
| 705 | tty->cr(); |
| 706 | tty->print_cr(" Compiled exception table :" ); |
| 707 | table.print(); |
| 708 | nm->print_code(); |
| 709 | guarantee(false, "missing exception handler" ); |
| 710 | return NULL; |
| 711 | } |
| 712 | |
| 713 | return nm->code_begin() + t->pco(); |
| 714 | } |
| 715 | |
| 716 | JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* thread)) |
| 717 | // These errors occur only at call sites |
| 718 | throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_AbstractMethodError()); |
| 719 | JRT_END |
| 720 | |
| 721 | JRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* thread)) |
| 722 | // These errors occur only at call sites |
| 723 | throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub" ); |
| 724 | JRT_END |
| 725 | |
| 726 | JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* thread)) |
| 727 | throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero" ); |
| 728 | JRT_END |
| 729 | |
| 730 | JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* thread)) |
| 731 | throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException()); |
| 732 | JRT_END |
| 733 | |
| 734 | JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* thread)) |
| 735 | // This entry point is effectively only used for NullPointerExceptions which occur at inline |
| 736 | // cache sites (when the callee activation is not yet set up) so we are at a call site |
| 737 | throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException()); |
| 738 | JRT_END |
| 739 | |
| 740 | JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* thread)) |
| 741 | throw_StackOverflowError_common(thread, false); |
| 742 | JRT_END |
| 743 | |
| 744 | JRT_ENTRY(void, SharedRuntime::throw_delayed_StackOverflowError(JavaThread* thread)) |
| 745 | throw_StackOverflowError_common(thread, true); |
| 746 | JRT_END |
| 747 | |
| 748 | void SharedRuntime::throw_StackOverflowError_common(JavaThread* thread, bool delayed) { |
| 749 | // We avoid using the normal exception construction in this case because |
| 750 | // it performs an upcall to Java, and we're already out of stack space. |
| 751 | Thread* THREAD = thread; |
| 752 | Klass* k = SystemDictionary::StackOverflowError_klass(); |
| 753 | oop exception_oop = InstanceKlass::cast(k)->allocate_instance(CHECK); |
| 754 | if (delayed) { |
| 755 | java_lang_Throwable::set_message(exception_oop, |
| 756 | Universe::delayed_stack_overflow_error_message()); |
| 757 | } |
| 758 | Handle exception (thread, exception_oop); |
| 759 | if (StackTraceInThrowable) { |
| 760 | java_lang_Throwable::fill_in_stack_trace(exception); |
| 761 | } |
| 762 | // Increment counter for hs_err file reporting |
| 763 | Atomic::inc(&Exceptions::_stack_overflow_errors); |
| 764 | throw_and_post_jvmti_exception(thread, exception); |
| 765 | } |
| 766 | |
| 767 | address SharedRuntime::continuation_for_implicit_exception(JavaThread* thread, |
| 768 | address pc, |
| 769 | ImplicitExceptionKind exception_kind) |
| 770 | { |
| 771 | address target_pc = NULL; |
| 772 | |
| 773 | if (Interpreter::contains(pc)) { |
| 774 | #ifdef CC_INTERP |
| 775 | // C++ interpreter doesn't throw implicit exceptions |
| 776 | ShouldNotReachHere(); |
| 777 | #else |
| 778 | switch (exception_kind) { |
| 779 | case IMPLICIT_NULL: return Interpreter::throw_NullPointerException_entry(); |
| 780 | case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry(); |
| 781 | case STACK_OVERFLOW: return Interpreter::throw_StackOverflowError_entry(); |
| 782 | default: ShouldNotReachHere(); |
| 783 | } |
| 784 | #endif // !CC_INTERP |
| 785 | } else { |
| 786 | switch (exception_kind) { |
| 787 | case STACK_OVERFLOW: { |
| 788 | // Stack overflow only occurs upon frame setup; the callee is |
| 789 | // going to be unwound. Dispatch to a shared runtime stub |
| 790 | // which will cause the StackOverflowError to be fabricated |
| 791 | // and processed. |
| 792 | // Stack overflow should never occur during deoptimization: |
| 793 | // the compiled method bangs the stack by as much as the |
| 794 | // interpreter would need in case of a deoptimization. The |
| 795 | // deoptimization blob and uncommon trap blob bang the stack |
| 796 | // in a debug VM to verify the correctness of the compiled |
| 797 | // method stack banging. |
| 798 | assert(thread->deopt_mark() == NULL, "no stack overflow from deopt blob/uncommon trap" ); |
| 799 | Events::log_exception(thread, "StackOverflowError at " INTPTR_FORMAT, p2i(pc)); |
| 800 | return StubRoutines::throw_StackOverflowError_entry(); |
| 801 | } |
| 802 | |
| 803 | case IMPLICIT_NULL: { |
| 804 | if (VtableStubs::contains(pc)) { |
| 805 | // We haven't yet entered the callee frame. Fabricate an |
| 806 | // exception and begin dispatching it in the caller. Since |
| 807 | // the caller was at a call site, it's safe to destroy all |
| 808 | // caller-saved registers, as these entry points do. |
| 809 | VtableStub* vt_stub = VtableStubs::stub_containing(pc); |
| 810 | |
| 811 | // If vt_stub is NULL, then return NULL to signal handler to report the SEGV error. |
| 812 | if (vt_stub == NULL) return NULL; |
| 813 | |
| 814 | if (vt_stub->is_abstract_method_error(pc)) { |
| 815 | assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs" ); |
| 816 | Events::log_exception(thread, "AbstractMethodError at " INTPTR_FORMAT, p2i(pc)); |
| 817 | // Instead of throwing the abstract method error here directly, we re-resolve |
| 818 | // and will throw the AbstractMethodError during resolve. As a result, we'll |
| 819 | // get a more detailed error message. |
| 820 | return SharedRuntime::get_handle_wrong_method_stub(); |
| 821 | } else { |
| 822 | Events::log_exception(thread, "NullPointerException at vtable entry " INTPTR_FORMAT, p2i(pc)); |
| 823 | // Assert that the signal comes from the expected location in stub code. |
| 824 | assert(vt_stub->is_null_pointer_exception(pc), |
| 825 | "obtained signal from unexpected location in stub code" ); |
| 826 | return StubRoutines::throw_NullPointerException_at_call_entry(); |
| 827 | } |
| 828 | } else { |
| 829 | CodeBlob* cb = CodeCache::find_blob(pc); |
| 830 | |
| 831 | // If code blob is NULL, then return NULL to signal handler to report the SEGV error. |
| 832 | if (cb == NULL) return NULL; |
| 833 | |
| 834 | // Exception happened in CodeCache. Must be either: |
| 835 | // 1. Inline-cache check in C2I handler blob, |
| 836 | // 2. Inline-cache check in nmethod, or |
| 837 | // 3. Implicit null exception in nmethod |
| 838 | |
| 839 | if (!cb->is_compiled()) { |
| 840 | bool is_in_blob = cb->is_adapter_blob() || cb->is_method_handles_adapter_blob(); |
| 841 | if (!is_in_blob) { |
| 842 | // Allow normal crash reporting to handle this |
| 843 | return NULL; |
| 844 | } |
| 845 | Events::log_exception(thread, "NullPointerException in code blob at " INTPTR_FORMAT, p2i(pc)); |
| 846 | // There is no handler here, so we will simply unwind. |
| 847 | return StubRoutines::throw_NullPointerException_at_call_entry(); |
| 848 | } |
| 849 | |
| 850 | // Otherwise, it's a compiled method. Consult its exception handlers. |
| 851 | CompiledMethod* cm = (CompiledMethod*)cb; |
| 852 | if (cm->inlinecache_check_contains(pc)) { |
| 853 | // exception happened inside inline-cache check code |
| 854 | // => the nmethod is not yet active (i.e., the frame |
| 855 | // is not set up yet) => use return address pushed by |
| 856 | // caller => don't push another return address |
| 857 | Events::log_exception(thread, "NullPointerException in IC check " INTPTR_FORMAT, p2i(pc)); |
| 858 | return StubRoutines::throw_NullPointerException_at_call_entry(); |
| 859 | } |
| 860 | |
| 861 | if (cm->method()->is_method_handle_intrinsic()) { |
| 862 | // exception happened inside MH dispatch code, similar to a vtable stub |
| 863 | Events::log_exception(thread, "NullPointerException in MH adapter " INTPTR_FORMAT, p2i(pc)); |
| 864 | return StubRoutines::throw_NullPointerException_at_call_entry(); |
| 865 | } |
| 866 | |
| 867 | #ifndef PRODUCT |
| 868 | _implicit_null_throws++; |
| 869 | #endif |
| 870 | target_pc = cm->continuation_for_implicit_null_exception(pc); |
| 871 | // If there's an unexpected fault, target_pc might be NULL, |
| 872 | // in which case we want to fall through into the normal |
| 873 | // error handling code. |
| 874 | } |
| 875 | |
| 876 | break; // fall through |
| 877 | } |
| 878 | |
| 879 | |
| 880 | case IMPLICIT_DIVIDE_BY_ZERO: { |
| 881 | CompiledMethod* cm = CodeCache::find_compiled(pc); |
| 882 | guarantee(cm != NULL, "must have containing compiled method for implicit division-by-zero exceptions" ); |
| 883 | #ifndef PRODUCT |
| 884 | _implicit_div0_throws++; |
| 885 | #endif |
| 886 | target_pc = cm->continuation_for_implicit_div0_exception(pc); |
| 887 | // If there's an unexpected fault, target_pc might be NULL, |
| 888 | // in which case we want to fall through into the normal |
| 889 | // error handling code. |
| 890 | break; // fall through |
| 891 | } |
| 892 | |
| 893 | default: ShouldNotReachHere(); |
| 894 | } |
| 895 | |
| 896 | assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind" ); |
| 897 | |
| 898 | if (exception_kind == IMPLICIT_NULL) { |
| 899 | #ifndef PRODUCT |
| 900 | // for AbortVMOnException flag |
| 901 | Exceptions::debug_check_abort("java.lang.NullPointerException" ); |
| 902 | #endif //PRODUCT |
| 903 | Events::log_exception(thread, "Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc)); |
| 904 | } else { |
| 905 | #ifndef PRODUCT |
| 906 | // for AbortVMOnException flag |
| 907 | Exceptions::debug_check_abort("java.lang.ArithmeticException" ); |
| 908 | #endif //PRODUCT |
| 909 | Events::log_exception(thread, "Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc)); |
| 910 | } |
| 911 | return target_pc; |
| 912 | } |
| 913 | |
| 914 | ShouldNotReachHere(); |
| 915 | return NULL; |
| 916 | } |
| 917 | |
| 918 | |
| 919 | /** |
| 920 | * Throws an java/lang/UnsatisfiedLinkError. The address of this method is |
| 921 | * installed in the native function entry of all native Java methods before |
| 922 | * they get linked to their actual native methods. |
| 923 | * |
| 924 | * \note |
| 925 | * This method actually never gets called! The reason is because |
| 926 | * the interpreter's native entries call NativeLookup::lookup() which |
| 927 | * throws the exception when the lookup fails. The exception is then |
| 928 | * caught and forwarded on the return from NativeLookup::lookup() call |
| 929 | * before the call to the native function. This might change in the future. |
| 930 | */ |
| 931 | JNI_ENTRY(void*, throw_unsatisfied_link_error(JNIEnv* env, ...)) |
| 932 | { |
| 933 | // We return a bad value here to make sure that the exception is |
| 934 | // forwarded before we look at the return value. |
| 935 | THROW_(vmSymbols::java_lang_UnsatisfiedLinkError(), (void*)badAddress); |
| 936 | } |
| 937 | JNI_END |
| 938 | |
| 939 | address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() { |
| 940 | return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error); |
| 941 | } |
| 942 | |
| 943 | JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* thread, oopDesc* obj)) |
| 944 | #if INCLUDE_JVMCI |
| 945 | if (!obj->klass()->has_finalizer()) { |
| 946 | return; |
| 947 | } |
| 948 | #endif // INCLUDE_JVMCI |
| 949 | assert(oopDesc::is_oop(obj), "must be a valid oop" ); |
| 950 | assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise" ); |
| 951 | InstanceKlass::register_finalizer(instanceOop(obj), CHECK); |
| 952 | JRT_END |
| 953 | |
| 954 | |
| 955 | jlong SharedRuntime::get_java_tid(Thread* thread) { |
| 956 | if (thread != NULL) { |
| 957 | if (thread->is_Java_thread()) { |
| 958 | oop obj = ((JavaThread*)thread)->threadObj(); |
| 959 | return (obj == NULL) ? 0 : java_lang_Thread::thread_id(obj); |
| 960 | } |
| 961 | } |
| 962 | return 0; |
| 963 | } |
| 964 | |
| 965 | /** |
| 966 | * This function ought to be a void function, but cannot be because |
| 967 | * it gets turned into a tail-call on sparc, which runs into dtrace bug |
| 968 | * 6254741. Once that is fixed we can remove the dummy return value. |
| 969 | */ |
| 970 | int SharedRuntime::dtrace_object_alloc(oopDesc* o, int size) { |
| 971 | return dtrace_object_alloc_base(Thread::current(), o, size); |
| 972 | } |
| 973 | |
| 974 | int SharedRuntime::dtrace_object_alloc_base(Thread* thread, oopDesc* o, int size) { |
| 975 | assert(DTraceAllocProbes, "wrong call" ); |
| 976 | Klass* klass = o->klass(); |
| 977 | Symbol* name = klass->name(); |
| 978 | HOTSPOT_OBJECT_ALLOC( |
| 979 | get_java_tid(thread), |
| 980 | (char *) name->bytes(), name->utf8_length(), size * HeapWordSize); |
| 981 | return 0; |
| 982 | } |
| 983 | |
| 984 | JRT_LEAF(int, SharedRuntime::dtrace_method_entry( |
| 985 | JavaThread* thread, Method* method)) |
| 986 | assert(DTraceMethodProbes, "wrong call" ); |
| 987 | Symbol* kname = method->klass_name(); |
| 988 | Symbol* name = method->name(); |
| 989 | Symbol* sig = method->signature(); |
| 990 | HOTSPOT_METHOD_ENTRY( |
| 991 | get_java_tid(thread), |
| 992 | (char *) kname->bytes(), kname->utf8_length(), |
| 993 | (char *) name->bytes(), name->utf8_length(), |
| 994 | (char *) sig->bytes(), sig->utf8_length()); |
| 995 | return 0; |
| 996 | JRT_END |
| 997 | |
| 998 | JRT_LEAF(int, SharedRuntime::dtrace_method_exit( |
| 999 | JavaThread* thread, Method* method)) |
| 1000 | assert(DTraceMethodProbes, "wrong call" ); |
| 1001 | Symbol* kname = method->klass_name(); |
| 1002 | Symbol* name = method->name(); |
| 1003 | Symbol* sig = method->signature(); |
| 1004 | HOTSPOT_METHOD_RETURN( |
| 1005 | get_java_tid(thread), |
| 1006 | (char *) kname->bytes(), kname->utf8_length(), |
| 1007 | (char *) name->bytes(), name->utf8_length(), |
| 1008 | (char *) sig->bytes(), sig->utf8_length()); |
| 1009 | return 0; |
| 1010 | JRT_END |
| 1011 | |
| 1012 | |
| 1013 | // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode) |
| 1014 | // for a call current in progress, i.e., arguments has been pushed on stack |
| 1015 | // put callee has not been invoked yet. Used by: resolve virtual/static, |
| 1016 | // vtable updates, etc. Caller frame must be compiled. |
| 1017 | Handle SharedRuntime::find_callee_info(JavaThread* thread, Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) { |
| 1018 | ResourceMark rm(THREAD); |
| 1019 | |
| 1020 | // last java frame on stack (which includes native call frames) |
| 1021 | vframeStream vfst(thread, true); // Do not skip and javaCalls |
| 1022 | |
| 1023 | return find_callee_info_helper(thread, vfst, bc, callinfo, THREAD); |
| 1024 | } |
| 1025 | |
| 1026 | methodHandle SharedRuntime::(vframeStream& vfst) { |
| 1027 | CompiledMethod* caller = vfst.nm(); |
| 1028 | |
| 1029 | nmethodLocker caller_lock(caller); |
| 1030 | |
| 1031 | address pc = vfst.frame_pc(); |
| 1032 | { // Get call instruction under lock because another thread may be busy patching it. |
| 1033 | CompiledICLocker ic_locker(caller); |
| 1034 | return caller->attached_method_before_pc(pc); |
| 1035 | } |
| 1036 | return NULL; |
| 1037 | } |
| 1038 | |
| 1039 | // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode |
| 1040 | // for a call current in progress, i.e., arguments has been pushed on stack |
| 1041 | // but callee has not been invoked yet. Caller frame must be compiled. |
| 1042 | Handle SharedRuntime::find_callee_info_helper(JavaThread* thread, |
| 1043 | vframeStream& vfst, |
| 1044 | Bytecodes::Code& bc, |
| 1045 | CallInfo& callinfo, TRAPS) { |
| 1046 | Handle receiver; |
| 1047 | Handle nullHandle; //create a handy null handle for exception returns |
| 1048 | |
| 1049 | assert(!vfst.at_end(), "Java frame must exist" ); |
| 1050 | |
| 1051 | // Find caller and bci from vframe |
| 1052 | methodHandle caller(THREAD, vfst.method()); |
| 1053 | int bci = vfst.bci(); |
| 1054 | |
| 1055 | Bytecode_invoke bytecode(caller, bci); |
| 1056 | int bytecode_index = bytecode.index(); |
| 1057 | bc = bytecode.invoke_code(); |
| 1058 | |
| 1059 | methodHandle attached_method = extract_attached_method(vfst); |
| 1060 | if (attached_method.not_null()) { |
| 1061 | methodHandle callee = bytecode.static_target(CHECK_NH); |
| 1062 | vmIntrinsics::ID id = callee->intrinsic_id(); |
| 1063 | // When VM replaces MH.invokeBasic/linkTo* call with a direct/virtual call, |
| 1064 | // it attaches statically resolved method to the call site. |
| 1065 | if (MethodHandles::is_signature_polymorphic(id) && |
| 1066 | MethodHandles::is_signature_polymorphic_intrinsic(id)) { |
| 1067 | bc = MethodHandles::signature_polymorphic_intrinsic_bytecode(id); |
| 1068 | |
| 1069 | // Adjust invocation mode according to the attached method. |
| 1070 | switch (bc) { |
| 1071 | case Bytecodes::_invokevirtual: |
| 1072 | if (attached_method->method_holder()->is_interface()) { |
| 1073 | bc = Bytecodes::_invokeinterface; |
| 1074 | } |
| 1075 | break; |
| 1076 | case Bytecodes::_invokeinterface: |
| 1077 | if (!attached_method->method_holder()->is_interface()) { |
| 1078 | bc = Bytecodes::_invokevirtual; |
| 1079 | } |
| 1080 | break; |
| 1081 | case Bytecodes::_invokehandle: |
| 1082 | if (!MethodHandles::is_signature_polymorphic_method(attached_method())) { |
| 1083 | bc = attached_method->is_static() ? Bytecodes::_invokestatic |
| 1084 | : Bytecodes::_invokevirtual; |
| 1085 | } |
| 1086 | break; |
| 1087 | default: |
| 1088 | break; |
| 1089 | } |
| 1090 | } |
| 1091 | } |
| 1092 | |
| 1093 | assert(bc != Bytecodes::_illegal, "not initialized" ); |
| 1094 | |
| 1095 | bool has_receiver = bc != Bytecodes::_invokestatic && |
| 1096 | bc != Bytecodes::_invokedynamic && |
| 1097 | bc != Bytecodes::_invokehandle; |
| 1098 | |
| 1099 | // Find receiver for non-static call |
| 1100 | if (has_receiver) { |
| 1101 | // This register map must be update since we need to find the receiver for |
| 1102 | // compiled frames. The receiver might be in a register. |
| 1103 | RegisterMap reg_map2(thread); |
| 1104 | frame stubFrame = thread->last_frame(); |
| 1105 | // Caller-frame is a compiled frame |
| 1106 | frame callerFrame = stubFrame.sender(®_map2); |
| 1107 | |
| 1108 | if (attached_method.is_null()) { |
| 1109 | methodHandle callee = bytecode.static_target(CHECK_NH); |
| 1110 | if (callee.is_null()) { |
| 1111 | THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle); |
| 1112 | } |
| 1113 | } |
| 1114 | |
| 1115 | // Retrieve from a compiled argument list |
| 1116 | receiver = Handle(THREAD, callerFrame.retrieve_receiver(®_map2)); |
| 1117 | |
| 1118 | if (receiver.is_null()) { |
| 1119 | THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle); |
| 1120 | } |
| 1121 | } |
| 1122 | |
| 1123 | // Resolve method |
| 1124 | if (attached_method.not_null()) { |
| 1125 | // Parameterized by attached method. |
| 1126 | LinkResolver::resolve_invoke(callinfo, receiver, attached_method, bc, CHECK_NH); |
| 1127 | } else { |
| 1128 | // Parameterized by bytecode. |
| 1129 | constantPoolHandle constants(THREAD, caller->constants()); |
| 1130 | LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_NH); |
| 1131 | } |
| 1132 | |
| 1133 | #ifdef ASSERT |
| 1134 | // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls |
| 1135 | if (has_receiver) { |
| 1136 | assert(receiver.not_null(), "should have thrown exception" ); |
| 1137 | Klass* receiver_klass = receiver->klass(); |
| 1138 | Klass* rk = NULL; |
| 1139 | if (attached_method.not_null()) { |
| 1140 | // In case there's resolved method attached, use its holder during the check. |
| 1141 | rk = attached_method->method_holder(); |
| 1142 | } else { |
| 1143 | // Klass is already loaded. |
| 1144 | constantPoolHandle constants(THREAD, caller->constants()); |
| 1145 | rk = constants->klass_ref_at(bytecode_index, CHECK_NH); |
| 1146 | } |
| 1147 | Klass* static_receiver_klass = rk; |
| 1148 | methodHandle callee = callinfo.selected_method(); |
| 1149 | assert(receiver_klass->is_subtype_of(static_receiver_klass), |
| 1150 | "actual receiver must be subclass of static receiver klass" ); |
| 1151 | if (receiver_klass->is_instance_klass()) { |
| 1152 | if (InstanceKlass::cast(receiver_klass)->is_not_initialized()) { |
| 1153 | tty->print_cr("ERROR: Klass not yet initialized!!" ); |
| 1154 | receiver_klass->print(); |
| 1155 | } |
| 1156 | assert(!InstanceKlass::cast(receiver_klass)->is_not_initialized(), "receiver_klass must be initialized" ); |
| 1157 | } |
| 1158 | } |
| 1159 | #endif |
| 1160 | |
| 1161 | return receiver; |
| 1162 | } |
| 1163 | |
| 1164 | methodHandle SharedRuntime::find_callee_method(JavaThread* thread, TRAPS) { |
| 1165 | ResourceMark rm(THREAD); |
| 1166 | // We need first to check if any Java activations (compiled, interpreted) |
| 1167 | // exist on the stack since last JavaCall. If not, we need |
| 1168 | // to get the target method from the JavaCall wrapper. |
| 1169 | vframeStream vfst(thread, true); // Do not skip any javaCalls |
| 1170 | methodHandle callee_method; |
| 1171 | if (vfst.at_end()) { |
| 1172 | // No Java frames were found on stack since we did the JavaCall. |
| 1173 | // Hence the stack can only contain an entry_frame. We need to |
| 1174 | // find the target method from the stub frame. |
| 1175 | RegisterMap reg_map(thread, false); |
| 1176 | frame fr = thread->last_frame(); |
| 1177 | assert(fr.is_runtime_frame(), "must be a runtimeStub" ); |
| 1178 | fr = fr.sender(®_map); |
| 1179 | assert(fr.is_entry_frame(), "must be" ); |
| 1180 | // fr is now pointing to the entry frame. |
| 1181 | callee_method = methodHandle(THREAD, fr.entry_frame_call_wrapper()->callee_method()); |
| 1182 | } else { |
| 1183 | Bytecodes::Code bc; |
| 1184 | CallInfo callinfo; |
| 1185 | find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(methodHandle())); |
| 1186 | callee_method = callinfo.selected_method(); |
| 1187 | } |
| 1188 | assert(callee_method()->is_method(), "must be" ); |
| 1189 | return callee_method; |
| 1190 | } |
| 1191 | |
| 1192 | // Resolves a call. |
| 1193 | methodHandle SharedRuntime::resolve_helper(JavaThread *thread, |
| 1194 | bool is_virtual, |
| 1195 | bool is_optimized, TRAPS) { |
| 1196 | methodHandle callee_method; |
| 1197 | callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD); |
| 1198 | if (JvmtiExport::can_hotswap_or_post_breakpoint()) { |
| 1199 | int retry_count = 0; |
| 1200 | while (!HAS_PENDING_EXCEPTION && callee_method->is_old() && |
| 1201 | callee_method->method_holder() != SystemDictionary::Object_klass()) { |
| 1202 | // If has a pending exception then there is no need to re-try to |
| 1203 | // resolve this method. |
| 1204 | // If the method has been redefined, we need to try again. |
| 1205 | // Hack: we have no way to update the vtables of arrays, so don't |
| 1206 | // require that java.lang.Object has been updated. |
| 1207 | |
| 1208 | // It is very unlikely that method is redefined more than 100 times |
| 1209 | // in the middle of resolve. If it is looping here more than 100 times |
| 1210 | // means then there could be a bug here. |
| 1211 | guarantee((retry_count++ < 100), |
| 1212 | "Could not resolve to latest version of redefined method" ); |
| 1213 | // method is redefined in the middle of resolve so re-try. |
| 1214 | callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD); |
| 1215 | } |
| 1216 | } |
| 1217 | return callee_method; |
| 1218 | } |
| 1219 | |
| 1220 | // This fails if resolution required refilling of IC stubs |
| 1221 | bool SharedRuntime::resolve_sub_helper_internal(methodHandle callee_method, const frame& caller_frame, |
| 1222 | CompiledMethod* caller_nm, bool is_virtual, bool is_optimized, |
| 1223 | Handle receiver, CallInfo& call_info, Bytecodes::Code invoke_code, TRAPS) { |
| 1224 | StaticCallInfo static_call_info; |
| 1225 | CompiledICInfo virtual_call_info; |
| 1226 | |
| 1227 | // Make sure the callee nmethod does not get deoptimized and removed before |
| 1228 | // we are done patching the code. |
| 1229 | CompiledMethod* callee = callee_method->code(); |
| 1230 | |
| 1231 | if (callee != NULL) { |
| 1232 | assert(callee->is_compiled(), "must be nmethod for patching" ); |
| 1233 | } |
| 1234 | |
| 1235 | if (callee != NULL && !callee->is_in_use()) { |
| 1236 | // Patch call site to C2I adapter if callee nmethod is deoptimized or unloaded. |
| 1237 | callee = NULL; |
| 1238 | } |
| 1239 | nmethodLocker nl_callee(callee); |
| 1240 | #ifdef ASSERT |
| 1241 | address dest_entry_point = callee == NULL ? 0 : callee->entry_point(); // used below |
| 1242 | #endif |
| 1243 | |
| 1244 | bool is_nmethod = caller_nm->is_nmethod(); |
| 1245 | |
| 1246 | if (is_virtual) { |
| 1247 | assert(receiver.not_null() || invoke_code == Bytecodes::_invokehandle, "sanity check" ); |
| 1248 | bool static_bound = call_info.resolved_method()->can_be_statically_bound(); |
| 1249 | Klass* klass = invoke_code == Bytecodes::_invokehandle ? NULL : receiver->klass(); |
| 1250 | CompiledIC::compute_monomorphic_entry(callee_method, klass, |
| 1251 | is_optimized, static_bound, is_nmethod, virtual_call_info, |
| 1252 | CHECK_false); |
| 1253 | } else { |
| 1254 | // static call |
| 1255 | CompiledStaticCall::compute_entry(callee_method, is_nmethod, static_call_info); |
| 1256 | } |
| 1257 | |
| 1258 | // grab lock, check for deoptimization and potentially patch caller |
| 1259 | { |
| 1260 | CompiledICLocker ml(caller_nm); |
| 1261 | |
| 1262 | // Lock blocks for safepoint during which both nmethods can change state. |
| 1263 | |
| 1264 | // Now that we are ready to patch if the Method* was redefined then |
| 1265 | // don't update call site and let the caller retry. |
| 1266 | // Don't update call site if callee nmethod was unloaded or deoptimized. |
| 1267 | // Don't update call site if callee nmethod was replaced by an other nmethod |
| 1268 | // which may happen when multiply alive nmethod (tiered compilation) |
| 1269 | // will be supported. |
| 1270 | if (!callee_method->is_old() && |
| 1271 | (callee == NULL || (callee->is_in_use() && callee_method->code() == callee))) { |
| 1272 | #ifdef ASSERT |
| 1273 | // We must not try to patch to jump to an already unloaded method. |
| 1274 | if (dest_entry_point != 0) { |
| 1275 | CodeBlob* cb = CodeCache::find_blob(dest_entry_point); |
| 1276 | assert((cb != NULL) && cb->is_compiled() && (((CompiledMethod*)cb) == callee), |
| 1277 | "should not call unloaded nmethod" ); |
| 1278 | } |
| 1279 | #endif |
| 1280 | if (is_virtual) { |
| 1281 | CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc()); |
| 1282 | if (inline_cache->is_clean()) { |
| 1283 | if (!inline_cache->set_to_monomorphic(virtual_call_info)) { |
| 1284 | return false; |
| 1285 | } |
| 1286 | } |
| 1287 | } else { |
| 1288 | if (VM_Version::supports_fast_class_init_checks() && |
| 1289 | invoke_code == Bytecodes::_invokestatic && |
| 1290 | callee_method->needs_clinit_barrier() && |
| 1291 | callee != NULL && (callee->is_compiled_by_jvmci() || callee->is_aot())) { |
| 1292 | return true; // skip patching for JVMCI or AOT code |
| 1293 | } |
| 1294 | CompiledStaticCall* ssc = caller_nm->compiledStaticCall_before(caller_frame.pc()); |
| 1295 | if (ssc->is_clean()) ssc->set(static_call_info); |
| 1296 | } |
| 1297 | } |
| 1298 | } // unlock CompiledICLocker |
| 1299 | return true; |
| 1300 | } |
| 1301 | |
| 1302 | // Resolves a call. The compilers generate code for calls that go here |
| 1303 | // and are patched with the real destination of the call. |
| 1304 | methodHandle SharedRuntime::resolve_sub_helper(JavaThread *thread, |
| 1305 | bool is_virtual, |
| 1306 | bool is_optimized, TRAPS) { |
| 1307 | |
| 1308 | ResourceMark rm(thread); |
| 1309 | RegisterMap cbl_map(thread, false); |
| 1310 | frame caller_frame = thread->last_frame().sender(&cbl_map); |
| 1311 | |
| 1312 | CodeBlob* caller_cb = caller_frame.cb(); |
| 1313 | guarantee(caller_cb != NULL && caller_cb->is_compiled(), "must be called from compiled method" ); |
| 1314 | CompiledMethod* caller_nm = caller_cb->as_compiled_method_or_null(); |
| 1315 | |
| 1316 | // make sure caller is not getting deoptimized |
| 1317 | // and removed before we are done with it. |
| 1318 | // CLEANUP - with lazy deopt shouldn't need this lock |
| 1319 | nmethodLocker caller_lock(caller_nm); |
| 1320 | |
| 1321 | // determine call info & receiver |
| 1322 | // note: a) receiver is NULL for static calls |
| 1323 | // b) an exception is thrown if receiver is NULL for non-static calls |
| 1324 | CallInfo call_info; |
| 1325 | Bytecodes::Code invoke_code = Bytecodes::_illegal; |
| 1326 | Handle receiver = find_callee_info(thread, invoke_code, |
| 1327 | call_info, CHECK_(methodHandle())); |
| 1328 | methodHandle callee_method = call_info.selected_method(); |
| 1329 | |
| 1330 | assert((!is_virtual && invoke_code == Bytecodes::_invokestatic ) || |
| 1331 | (!is_virtual && invoke_code == Bytecodes::_invokespecial) || |
| 1332 | (!is_virtual && invoke_code == Bytecodes::_invokehandle ) || |
| 1333 | (!is_virtual && invoke_code == Bytecodes::_invokedynamic) || |
| 1334 | ( is_virtual && invoke_code != Bytecodes::_invokestatic ), "inconsistent bytecode" ); |
| 1335 | |
| 1336 | assert(caller_nm->is_alive() && !caller_nm->is_unloading(), "It should be alive" ); |
| 1337 | |
| 1338 | #ifndef PRODUCT |
| 1339 | // tracing/debugging/statistics |
| 1340 | int *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) : |
| 1341 | (is_virtual) ? (&_resolve_virtual_ctr) : |
| 1342 | (&_resolve_static_ctr); |
| 1343 | Atomic::inc(addr); |
| 1344 | |
| 1345 | if (TraceCallFixup) { |
| 1346 | ResourceMark rm(thread); |
| 1347 | tty->print("resolving %s%s (%s) call to" , |
| 1348 | (is_optimized) ? "optimized " : "" , (is_virtual) ? "virtual" : "static" , |
| 1349 | Bytecodes::name(invoke_code)); |
| 1350 | callee_method->print_short_name(tty); |
| 1351 | tty->print_cr(" at pc: " INTPTR_FORMAT " to code: " INTPTR_FORMAT, |
| 1352 | p2i(caller_frame.pc()), p2i(callee_method->code())); |
| 1353 | } |
| 1354 | #endif |
| 1355 | |
| 1356 | if (invoke_code == Bytecodes::_invokestatic) { |
| 1357 | assert(callee_method->method_holder()->is_initialized() || |
| 1358 | callee_method->method_holder()->is_reentrant_initialization(thread), |
| 1359 | "invalid class initialization state for invoke_static" ); |
| 1360 | if (!VM_Version::supports_fast_class_init_checks() && callee_method->needs_clinit_barrier()) { |
| 1361 | // In order to keep class initialization check, do not patch call |
| 1362 | // site for static call when the class is not fully initialized. |
| 1363 | // Proper check is enforced by call site re-resolution on every invocation. |
| 1364 | // |
| 1365 | // When fast class initialization checks are supported (VM_Version::supports_fast_class_init_checks() == true), |
| 1366 | // explicit class initialization check is put in nmethod entry (VEP). |
| 1367 | assert(callee_method->method_holder()->is_linked(), "must be" ); |
| 1368 | return callee_method; |
| 1369 | } |
| 1370 | } |
| 1371 | |
| 1372 | // JSR 292 key invariant: |
| 1373 | // If the resolved method is a MethodHandle invoke target, the call |
| 1374 | // site must be a MethodHandle call site, because the lambda form might tail-call |
| 1375 | // leaving the stack in a state unknown to either caller or callee |
| 1376 | // TODO detune for now but we might need it again |
| 1377 | // assert(!callee_method->is_compiled_lambda_form() || |
| 1378 | // caller_nm->is_method_handle_return(caller_frame.pc()), "must be MH call site"); |
| 1379 | |
| 1380 | // Compute entry points. This might require generation of C2I converter |
| 1381 | // frames, so we cannot be holding any locks here. Furthermore, the |
| 1382 | // computation of the entry points is independent of patching the call. We |
| 1383 | // always return the entry-point, but we only patch the stub if the call has |
| 1384 | // not been deoptimized. Return values: For a virtual call this is an |
| 1385 | // (cached_oop, destination address) pair. For a static call/optimized |
| 1386 | // virtual this is just a destination address. |
| 1387 | |
| 1388 | // Patching IC caches may fail if we run out if transition stubs. |
| 1389 | // We refill the ic stubs then and try again. |
| 1390 | for (;;) { |
| 1391 | ICRefillVerifier ic_refill_verifier; |
| 1392 | bool successful = resolve_sub_helper_internal(callee_method, caller_frame, caller_nm, |
| 1393 | is_virtual, is_optimized, receiver, |
| 1394 | call_info, invoke_code, CHECK_(methodHandle())); |
| 1395 | if (successful) { |
| 1396 | return callee_method; |
| 1397 | } else { |
| 1398 | InlineCacheBuffer::refill_ic_stubs(); |
| 1399 | } |
| 1400 | } |
| 1401 | |
| 1402 | } |
| 1403 | |
| 1404 | |
| 1405 | // Inline caches exist only in compiled code |
| 1406 | JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* thread)) |
| 1407 | #ifdef ASSERT |
| 1408 | RegisterMap reg_map(thread, false); |
| 1409 | frame stub_frame = thread->last_frame(); |
| 1410 | assert(stub_frame.is_runtime_frame(), "sanity check" ); |
| 1411 | frame caller_frame = stub_frame.sender(®_map); |
| 1412 | assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame(), "unexpected frame" ); |
| 1413 | #endif /* ASSERT */ |
| 1414 | |
| 1415 | methodHandle callee_method; |
| 1416 | JRT_BLOCK |
| 1417 | callee_method = SharedRuntime::handle_ic_miss_helper(thread, CHECK_NULL); |
| 1418 | // Return Method* through TLS |
| 1419 | thread->set_vm_result_2(callee_method()); |
| 1420 | JRT_BLOCK_END |
| 1421 | // return compiled code entry point after potential safepoints |
| 1422 | assert(callee_method->verified_code_entry() != NULL, " Jump to zero!" ); |
| 1423 | return callee_method->verified_code_entry(); |
| 1424 | JRT_END |
| 1425 | |
| 1426 | |
| 1427 | // Handle call site that has been made non-entrant |
| 1428 | JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* thread)) |
| 1429 | // 6243940 We might end up in here if the callee is deoptimized |
| 1430 | // as we race to call it. We don't want to take a safepoint if |
| 1431 | // the caller was interpreted because the caller frame will look |
| 1432 | // interpreted to the stack walkers and arguments are now |
| 1433 | // "compiled" so it is much better to make this transition |
| 1434 | // invisible to the stack walking code. The i2c path will |
| 1435 | // place the callee method in the callee_target. It is stashed |
| 1436 | // there because if we try and find the callee by normal means a |
| 1437 | // safepoint is possible and have trouble gc'ing the compiled args. |
| 1438 | RegisterMap reg_map(thread, false); |
| 1439 | frame stub_frame = thread->last_frame(); |
| 1440 | assert(stub_frame.is_runtime_frame(), "sanity check" ); |
| 1441 | frame caller_frame = stub_frame.sender(®_map); |
| 1442 | |
| 1443 | if (caller_frame.is_interpreted_frame() || |
| 1444 | caller_frame.is_entry_frame()) { |
| 1445 | Method* callee = thread->callee_target(); |
| 1446 | guarantee(callee != NULL && callee->is_method(), "bad handshake" ); |
| 1447 | thread->set_vm_result_2(callee); |
| 1448 | thread->set_callee_target(NULL); |
| 1449 | return callee->get_c2i_entry(); |
| 1450 | } |
| 1451 | |
| 1452 | // Must be compiled to compiled path which is safe to stackwalk |
| 1453 | methodHandle callee_method; |
| 1454 | JRT_BLOCK |
| 1455 | // Force resolving of caller (if we called from compiled frame) |
| 1456 | callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_NULL); |
| 1457 | thread->set_vm_result_2(callee_method()); |
| 1458 | JRT_BLOCK_END |
| 1459 | // return compiled code entry point after potential safepoints |
| 1460 | assert(callee_method->verified_code_entry() != NULL, " Jump to zero!" ); |
| 1461 | return callee_method->verified_code_entry(); |
| 1462 | JRT_END |
| 1463 | |
| 1464 | // Handle abstract method call |
| 1465 | JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_abstract(JavaThread* thread)) |
| 1466 | // Verbose error message for AbstractMethodError. |
| 1467 | // Get the called method from the invoke bytecode. |
| 1468 | vframeStream vfst(thread, true); |
| 1469 | assert(!vfst.at_end(), "Java frame must exist" ); |
| 1470 | methodHandle caller(vfst.method()); |
| 1471 | Bytecode_invoke invoke(caller, vfst.bci()); |
| 1472 | DEBUG_ONLY( invoke.verify(); ) |
| 1473 | |
| 1474 | // Find the compiled caller frame. |
| 1475 | RegisterMap reg_map(thread); |
| 1476 | frame stubFrame = thread->last_frame(); |
| 1477 | assert(stubFrame.is_runtime_frame(), "must be" ); |
| 1478 | frame callerFrame = stubFrame.sender(®_map); |
| 1479 | assert(callerFrame.is_compiled_frame(), "must be" ); |
| 1480 | |
| 1481 | // Install exception and return forward entry. |
| 1482 | address res = StubRoutines::throw_AbstractMethodError_entry(); |
| 1483 | JRT_BLOCK |
| 1484 | methodHandle callee = invoke.static_target(thread); |
| 1485 | if (!callee.is_null()) { |
| 1486 | oop recv = callerFrame.retrieve_receiver(®_map); |
| 1487 | Klass *recv_klass = (recv != NULL) ? recv->klass() : NULL; |
| 1488 | LinkResolver::throw_abstract_method_error(callee, recv_klass, thread); |
| 1489 | res = StubRoutines::forward_exception_entry(); |
| 1490 | } |
| 1491 | JRT_BLOCK_END |
| 1492 | return res; |
| 1493 | JRT_END |
| 1494 | |
| 1495 | |
| 1496 | // resolve a static call and patch code |
| 1497 | JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread *thread )) |
| 1498 | methodHandle callee_method; |
| 1499 | JRT_BLOCK |
| 1500 | callee_method = SharedRuntime::resolve_helper(thread, false, false, CHECK_NULL); |
| 1501 | thread->set_vm_result_2(callee_method()); |
| 1502 | JRT_BLOCK_END |
| 1503 | // return compiled code entry point after potential safepoints |
| 1504 | assert(callee_method->verified_code_entry() != NULL, " Jump to zero!" ); |
| 1505 | return callee_method->verified_code_entry(); |
| 1506 | JRT_END |
| 1507 | |
| 1508 | |
| 1509 | // resolve virtual call and update inline cache to monomorphic |
| 1510 | JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread *thread )) |
| 1511 | methodHandle callee_method; |
| 1512 | JRT_BLOCK |
| 1513 | callee_method = SharedRuntime::resolve_helper(thread, true, false, CHECK_NULL); |
| 1514 | thread->set_vm_result_2(callee_method()); |
| 1515 | JRT_BLOCK_END |
| 1516 | // return compiled code entry point after potential safepoints |
| 1517 | assert(callee_method->verified_code_entry() != NULL, " Jump to zero!" ); |
| 1518 | return callee_method->verified_code_entry(); |
| 1519 | JRT_END |
| 1520 | |
| 1521 | |
| 1522 | // Resolve a virtual call that can be statically bound (e.g., always |
| 1523 | // monomorphic, so it has no inline cache). Patch code to resolved target. |
| 1524 | JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread *thread)) |
| 1525 | methodHandle callee_method; |
| 1526 | JRT_BLOCK |
| 1527 | callee_method = SharedRuntime::resolve_helper(thread, true, true, CHECK_NULL); |
| 1528 | thread->set_vm_result_2(callee_method()); |
| 1529 | JRT_BLOCK_END |
| 1530 | // return compiled code entry point after potential safepoints |
| 1531 | assert(callee_method->verified_code_entry() != NULL, " Jump to zero!" ); |
| 1532 | return callee_method->verified_code_entry(); |
| 1533 | JRT_END |
| 1534 | |
| 1535 | // The handle_ic_miss_helper_internal function returns false if it failed due |
| 1536 | // to either running out of vtable stubs or ic stubs due to IC transitions |
| 1537 | // to transitional states. The needs_ic_stub_refill value will be set if |
| 1538 | // the failure was due to running out of IC stubs, in which case handle_ic_miss_helper |
| 1539 | // refills the IC stubs and tries again. |
| 1540 | bool SharedRuntime::handle_ic_miss_helper_internal(Handle receiver, CompiledMethod* caller_nm, |
| 1541 | const frame& caller_frame, methodHandle callee_method, |
| 1542 | Bytecodes::Code bc, CallInfo& call_info, |
| 1543 | bool& needs_ic_stub_refill, TRAPS) { |
| 1544 | CompiledICLocker ml(caller_nm); |
| 1545 | CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc()); |
| 1546 | bool should_be_mono = false; |
| 1547 | if (inline_cache->is_optimized()) { |
| 1548 | if (TraceCallFixup) { |
| 1549 | ResourceMark rm(THREAD); |
| 1550 | tty->print("OPTIMIZED IC miss (%s) call to" , Bytecodes::name(bc)); |
| 1551 | callee_method->print_short_name(tty); |
| 1552 | tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code())); |
| 1553 | } |
| 1554 | should_be_mono = true; |
| 1555 | } else if (inline_cache->is_icholder_call()) { |
| 1556 | CompiledICHolder* ic_oop = inline_cache->cached_icholder(); |
| 1557 | if (ic_oop != NULL) { |
| 1558 | if (!ic_oop->is_loader_alive()) { |
| 1559 | // Deferred IC cleaning due to concurrent class unloading |
| 1560 | if (!inline_cache->set_to_clean()) { |
| 1561 | needs_ic_stub_refill = true; |
| 1562 | return false; |
| 1563 | } |
| 1564 | } else if (receiver()->klass() == ic_oop->holder_klass()) { |
| 1565 | // This isn't a real miss. We must have seen that compiled code |
| 1566 | // is now available and we want the call site converted to a |
| 1567 | // monomorphic compiled call site. |
| 1568 | // We can't assert for callee_method->code() != NULL because it |
| 1569 | // could have been deoptimized in the meantime |
| 1570 | if (TraceCallFixup) { |
| 1571 | ResourceMark rm(THREAD); |
| 1572 | tty->print("FALSE IC miss (%s) converting to compiled call to" , Bytecodes::name(bc)); |
| 1573 | callee_method->print_short_name(tty); |
| 1574 | tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code())); |
| 1575 | } |
| 1576 | should_be_mono = true; |
| 1577 | } |
| 1578 | } |
| 1579 | } |
| 1580 | |
| 1581 | if (should_be_mono) { |
| 1582 | // We have a path that was monomorphic but was going interpreted |
| 1583 | // and now we have (or had) a compiled entry. We correct the IC |
| 1584 | // by using a new icBuffer. |
| 1585 | CompiledICInfo info; |
| 1586 | Klass* receiver_klass = receiver()->klass(); |
| 1587 | inline_cache->compute_monomorphic_entry(callee_method, |
| 1588 | receiver_klass, |
| 1589 | inline_cache->is_optimized(), |
| 1590 | false, caller_nm->is_nmethod(), |
| 1591 | info, CHECK_false); |
| 1592 | if (!inline_cache->set_to_monomorphic(info)) { |
| 1593 | needs_ic_stub_refill = true; |
| 1594 | return false; |
| 1595 | } |
| 1596 | } else if (!inline_cache->is_megamorphic() && !inline_cache->is_clean()) { |
| 1597 | // Potential change to megamorphic |
| 1598 | |
| 1599 | bool successful = inline_cache->set_to_megamorphic(&call_info, bc, needs_ic_stub_refill, CHECK_false); |
| 1600 | if (needs_ic_stub_refill) { |
| 1601 | return false; |
| 1602 | } |
| 1603 | if (!successful) { |
| 1604 | if (!inline_cache->set_to_clean()) { |
| 1605 | needs_ic_stub_refill = true; |
| 1606 | return false; |
| 1607 | } |
| 1608 | } |
| 1609 | } else { |
| 1610 | // Either clean or megamorphic |
| 1611 | } |
| 1612 | return true; |
| 1613 | } |
| 1614 | |
| 1615 | methodHandle SharedRuntime::handle_ic_miss_helper(JavaThread *thread, TRAPS) { |
| 1616 | ResourceMark rm(thread); |
| 1617 | CallInfo call_info; |
| 1618 | Bytecodes::Code bc; |
| 1619 | |
| 1620 | // receiver is NULL for static calls. An exception is thrown for NULL |
| 1621 | // receivers for non-static calls |
| 1622 | Handle receiver = find_callee_info(thread, bc, call_info, |
| 1623 | CHECK_(methodHandle())); |
| 1624 | // Compiler1 can produce virtual call sites that can actually be statically bound |
| 1625 | // If we fell thru to below we would think that the site was going megamorphic |
| 1626 | // when in fact the site can never miss. Worse because we'd think it was megamorphic |
| 1627 | // we'd try and do a vtable dispatch however methods that can be statically bound |
| 1628 | // don't have vtable entries (vtable_index < 0) and we'd blow up. So we force a |
| 1629 | // reresolution of the call site (as if we did a handle_wrong_method and not an |
| 1630 | // plain ic_miss) and the site will be converted to an optimized virtual call site |
| 1631 | // never to miss again. I don't believe C2 will produce code like this but if it |
| 1632 | // did this would still be the correct thing to do for it too, hence no ifdef. |
| 1633 | // |
| 1634 | if (call_info.resolved_method()->can_be_statically_bound()) { |
| 1635 | methodHandle callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_(methodHandle())); |
| 1636 | if (TraceCallFixup) { |
| 1637 | RegisterMap reg_map(thread, false); |
| 1638 | frame caller_frame = thread->last_frame().sender(®_map); |
| 1639 | ResourceMark rm(thread); |
| 1640 | tty->print("converting IC miss to reresolve (%s) call to" , Bytecodes::name(bc)); |
| 1641 | callee_method->print_short_name(tty); |
| 1642 | tty->print_cr(" from pc: " INTPTR_FORMAT, p2i(caller_frame.pc())); |
| 1643 | tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code())); |
| 1644 | } |
| 1645 | return callee_method; |
| 1646 | } |
| 1647 | |
| 1648 | methodHandle callee_method = call_info.selected_method(); |
| 1649 | |
| 1650 | #ifndef PRODUCT |
| 1651 | Atomic::inc(&_ic_miss_ctr); |
| 1652 | |
| 1653 | // Statistics & Tracing |
| 1654 | if (TraceCallFixup) { |
| 1655 | ResourceMark rm(thread); |
| 1656 | tty->print("IC miss (%s) call to" , Bytecodes::name(bc)); |
| 1657 | callee_method->print_short_name(tty); |
| 1658 | tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code())); |
| 1659 | } |
| 1660 | |
| 1661 | if (ICMissHistogram) { |
| 1662 | MutexLocker m(VMStatistic_lock); |
| 1663 | RegisterMap reg_map(thread, false); |
| 1664 | frame f = thread->last_frame().real_sender(®_map);// skip runtime stub |
| 1665 | // produce statistics under the lock |
| 1666 | trace_ic_miss(f.pc()); |
| 1667 | } |
| 1668 | #endif |
| 1669 | |
| 1670 | // install an event collector so that when a vtable stub is created the |
| 1671 | // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The |
| 1672 | // event can't be posted when the stub is created as locks are held |
| 1673 | // - instead the event will be deferred until the event collector goes |
| 1674 | // out of scope. |
| 1675 | JvmtiDynamicCodeEventCollector event_collector; |
| 1676 | |
| 1677 | // Update inline cache to megamorphic. Skip update if we are called from interpreted. |
| 1678 | // Transitioning IC caches may require transition stubs. If we run out |
| 1679 | // of transition stubs, we have to drop locks and perform a safepoint |
| 1680 | // that refills them. |
| 1681 | RegisterMap reg_map(thread, false); |
| 1682 | frame caller_frame = thread->last_frame().sender(®_map); |
| 1683 | CodeBlob* cb = caller_frame.cb(); |
| 1684 | CompiledMethod* caller_nm = cb->as_compiled_method(); |
| 1685 | |
| 1686 | for (;;) { |
| 1687 | ICRefillVerifier ic_refill_verifier; |
| 1688 | bool needs_ic_stub_refill = false; |
| 1689 | bool successful = handle_ic_miss_helper_internal(receiver, caller_nm, caller_frame, callee_method, |
| 1690 | bc, call_info, needs_ic_stub_refill, CHECK_(methodHandle())); |
| 1691 | if (successful || !needs_ic_stub_refill) { |
| 1692 | return callee_method; |
| 1693 | } else { |
| 1694 | InlineCacheBuffer::refill_ic_stubs(); |
| 1695 | } |
| 1696 | } |
| 1697 | } |
| 1698 | |
| 1699 | static bool clear_ic_at_addr(CompiledMethod* caller_nm, address call_addr, bool is_static_call) { |
| 1700 | CompiledICLocker ml(caller_nm); |
| 1701 | if (is_static_call) { |
| 1702 | CompiledStaticCall* ssc = caller_nm->compiledStaticCall_at(call_addr); |
| 1703 | if (!ssc->is_clean()) { |
| 1704 | return ssc->set_to_clean(); |
| 1705 | } |
| 1706 | } else { |
| 1707 | // compiled, dispatched call (which used to call an interpreted method) |
| 1708 | CompiledIC* inline_cache = CompiledIC_at(caller_nm, call_addr); |
| 1709 | if (!inline_cache->is_clean()) { |
| 1710 | return inline_cache->set_to_clean(); |
| 1711 | } |
| 1712 | } |
| 1713 | return true; |
| 1714 | } |
| 1715 | |
| 1716 | // |
| 1717 | // Resets a call-site in compiled code so it will get resolved again. |
| 1718 | // This routines handles both virtual call sites, optimized virtual call |
| 1719 | // sites, and static call sites. Typically used to change a call sites |
| 1720 | // destination from compiled to interpreted. |
| 1721 | // |
| 1722 | methodHandle SharedRuntime::reresolve_call_site(JavaThread *thread, TRAPS) { |
| 1723 | ResourceMark rm(thread); |
| 1724 | RegisterMap reg_map(thread, false); |
| 1725 | frame stub_frame = thread->last_frame(); |
| 1726 | assert(stub_frame.is_runtime_frame(), "must be a runtimeStub" ); |
| 1727 | frame caller = stub_frame.sender(®_map); |
| 1728 | |
| 1729 | // Do nothing if the frame isn't a live compiled frame. |
| 1730 | // nmethod could be deoptimized by the time we get here |
| 1731 | // so no update to the caller is needed. |
| 1732 | |
| 1733 | if (caller.is_compiled_frame() && !caller.is_deoptimized_frame()) { |
| 1734 | |
| 1735 | address pc = caller.pc(); |
| 1736 | |
| 1737 | // Check for static or virtual call |
| 1738 | bool is_static_call = false; |
| 1739 | CompiledMethod* caller_nm = CodeCache::find_compiled(pc); |
| 1740 | |
| 1741 | // Default call_addr is the location of the "basic" call. |
| 1742 | // Determine the address of the call we a reresolving. With |
| 1743 | // Inline Caches we will always find a recognizable call. |
| 1744 | // With Inline Caches disabled we may or may not find a |
| 1745 | // recognizable call. We will always find a call for static |
| 1746 | // calls and for optimized virtual calls. For vanilla virtual |
| 1747 | // calls it depends on the state of the UseInlineCaches switch. |
| 1748 | // |
| 1749 | // With Inline Caches disabled we can get here for a virtual call |
| 1750 | // for two reasons: |
| 1751 | // 1 - calling an abstract method. The vtable for abstract methods |
| 1752 | // will run us thru handle_wrong_method and we will eventually |
| 1753 | // end up in the interpreter to throw the ame. |
| 1754 | // 2 - a racing deoptimization. We could be doing a vanilla vtable |
| 1755 | // call and between the time we fetch the entry address and |
| 1756 | // we jump to it the target gets deoptimized. Similar to 1 |
| 1757 | // we will wind up in the interprter (thru a c2i with c2). |
| 1758 | // |
| 1759 | address call_addr = NULL; |
| 1760 | { |
| 1761 | // Get call instruction under lock because another thread may be |
| 1762 | // busy patching it. |
| 1763 | CompiledICLocker ml(caller_nm); |
| 1764 | // Location of call instruction |
| 1765 | call_addr = caller_nm->call_instruction_address(pc); |
| 1766 | } |
| 1767 | // Make sure nmethod doesn't get deoptimized and removed until |
| 1768 | // this is done with it. |
| 1769 | // CLEANUP - with lazy deopt shouldn't need this lock |
| 1770 | nmethodLocker nmlock(caller_nm); |
| 1771 | |
| 1772 | if (call_addr != NULL) { |
| 1773 | RelocIterator iter(caller_nm, call_addr, call_addr+1); |
| 1774 | int ret = iter.next(); // Get item |
| 1775 | if (ret) { |
| 1776 | assert(iter.addr() == call_addr, "must find call" ); |
| 1777 | if (iter.type() == relocInfo::static_call_type) { |
| 1778 | is_static_call = true; |
| 1779 | } else { |
| 1780 | assert(iter.type() == relocInfo::virtual_call_type || |
| 1781 | iter.type() == relocInfo::opt_virtual_call_type |
| 1782 | , "unexpected relocInfo. type" ); |
| 1783 | } |
| 1784 | } else { |
| 1785 | assert(!UseInlineCaches, "relocation info. must exist for this address" ); |
| 1786 | } |
| 1787 | |
| 1788 | // Cleaning the inline cache will force a new resolve. This is more robust |
| 1789 | // than directly setting it to the new destination, since resolving of calls |
| 1790 | // is always done through the same code path. (experience shows that it |
| 1791 | // leads to very hard to track down bugs, if an inline cache gets updated |
| 1792 | // to a wrong method). It should not be performance critical, since the |
| 1793 | // resolve is only done once. |
| 1794 | |
| 1795 | for (;;) { |
| 1796 | ICRefillVerifier ic_refill_verifier; |
| 1797 | if (!clear_ic_at_addr(caller_nm, call_addr, is_static_call)) { |
| 1798 | InlineCacheBuffer::refill_ic_stubs(); |
| 1799 | } else { |
| 1800 | break; |
| 1801 | } |
| 1802 | } |
| 1803 | } |
| 1804 | } |
| 1805 | |
| 1806 | methodHandle callee_method = find_callee_method(thread, CHECK_(methodHandle())); |
| 1807 | |
| 1808 | |
| 1809 | #ifndef PRODUCT |
| 1810 | Atomic::inc(&_wrong_method_ctr); |
| 1811 | |
| 1812 | if (TraceCallFixup) { |
| 1813 | ResourceMark rm(thread); |
| 1814 | tty->print("handle_wrong_method reresolving call to" ); |
| 1815 | callee_method->print_short_name(tty); |
| 1816 | tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code())); |
| 1817 | } |
| 1818 | #endif |
| 1819 | |
| 1820 | return callee_method; |
| 1821 | } |
| 1822 | |
| 1823 | address SharedRuntime::handle_unsafe_access(JavaThread* thread, address next_pc) { |
| 1824 | // The faulting unsafe accesses should be changed to throw the error |
| 1825 | // synchronously instead. Meanwhile the faulting instruction will be |
| 1826 | // skipped over (effectively turning it into a no-op) and an |
| 1827 | // asynchronous exception will be raised which the thread will |
| 1828 | // handle at a later point. If the instruction is a load it will |
| 1829 | // return garbage. |
| 1830 | |
| 1831 | // Request an async exception. |
| 1832 | thread->set_pending_unsafe_access_error(); |
| 1833 | |
| 1834 | // Return address of next instruction to execute. |
| 1835 | return next_pc; |
| 1836 | } |
| 1837 | |
| 1838 | #ifdef ASSERT |
| 1839 | void SharedRuntime::check_member_name_argument_is_last_argument(const methodHandle& method, |
| 1840 | const BasicType* sig_bt, |
| 1841 | const VMRegPair* regs) { |
| 1842 | ResourceMark rm; |
| 1843 | const int total_args_passed = method->size_of_parameters(); |
| 1844 | const VMRegPair* regs_with_member_name = regs; |
| 1845 | VMRegPair* regs_without_member_name = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed - 1); |
| 1846 | |
| 1847 | const int member_arg_pos = total_args_passed - 1; |
| 1848 | assert(member_arg_pos >= 0 && member_arg_pos < total_args_passed, "oob" ); |
| 1849 | assert(sig_bt[member_arg_pos] == T_OBJECT, "dispatch argument must be an object" ); |
| 1850 | |
| 1851 | const bool is_outgoing = method->is_method_handle_intrinsic(); |
| 1852 | int comp_args_on_stack = java_calling_convention(sig_bt, regs_without_member_name, total_args_passed - 1, is_outgoing); |
| 1853 | |
| 1854 | for (int i = 0; i < member_arg_pos; i++) { |
| 1855 | VMReg a = regs_with_member_name[i].first(); |
| 1856 | VMReg b = regs_without_member_name[i].first(); |
| 1857 | assert(a->value() == b->value(), "register allocation mismatch: a=" INTX_FORMAT ", b=" INTX_FORMAT, a->value(), b->value()); |
| 1858 | } |
| 1859 | assert(regs_with_member_name[member_arg_pos].first()->is_valid(), "bad member arg" ); |
| 1860 | } |
| 1861 | #endif |
| 1862 | |
| 1863 | bool SharedRuntime::should_fixup_call_destination(address destination, address entry_point, address caller_pc, Method* moop, CodeBlob* cb) { |
| 1864 | if (destination != entry_point) { |
| 1865 | CodeBlob* callee = CodeCache::find_blob(destination); |
| 1866 | // callee == cb seems weird. It means calling interpreter thru stub. |
| 1867 | if (callee != NULL && (callee == cb || callee->is_adapter_blob())) { |
| 1868 | // static call or optimized virtual |
| 1869 | if (TraceCallFixup) { |
| 1870 | tty->print("fixup callsite at " INTPTR_FORMAT " to compiled code for" , p2i(caller_pc)); |
| 1871 | moop->print_short_name(tty); |
| 1872 | tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point)); |
| 1873 | } |
| 1874 | return true; |
| 1875 | } else { |
| 1876 | if (TraceCallFixup) { |
| 1877 | tty->print("failed to fixup callsite at " INTPTR_FORMAT " to compiled code for" , p2i(caller_pc)); |
| 1878 | moop->print_short_name(tty); |
| 1879 | tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point)); |
| 1880 | } |
| 1881 | // assert is too strong could also be resolve destinations. |
| 1882 | // assert(InlineCacheBuffer::contains(destination) || VtableStubs::contains(destination), "must be"); |
| 1883 | } |
| 1884 | } else { |
| 1885 | if (TraceCallFixup) { |
| 1886 | tty->print("already patched callsite at " INTPTR_FORMAT " to compiled code for" , p2i(caller_pc)); |
| 1887 | moop->print_short_name(tty); |
| 1888 | tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point)); |
| 1889 | } |
| 1890 | } |
| 1891 | return false; |
| 1892 | } |
| 1893 | |
| 1894 | // --------------------------------------------------------------------------- |
| 1895 | // We are calling the interpreter via a c2i. Normally this would mean that |
| 1896 | // we were called by a compiled method. However we could have lost a race |
| 1897 | // where we went int -> i2c -> c2i and so the caller could in fact be |
| 1898 | // interpreted. If the caller is compiled we attempt to patch the caller |
| 1899 | // so he no longer calls into the interpreter. |
| 1900 | JRT_LEAF(void, SharedRuntime::fixup_callers_callsite(Method* method, address caller_pc)) |
| 1901 | Method* moop(method); |
| 1902 | |
| 1903 | address entry_point = moop->from_compiled_entry_no_trampoline(); |
| 1904 | |
| 1905 | // It's possible that deoptimization can occur at a call site which hasn't |
| 1906 | // been resolved yet, in which case this function will be called from |
| 1907 | // an nmethod that has been patched for deopt and we can ignore the |
| 1908 | // request for a fixup. |
| 1909 | // Also it is possible that we lost a race in that from_compiled_entry |
| 1910 | // is now back to the i2c in that case we don't need to patch and if |
| 1911 | // we did we'd leap into space because the callsite needs to use |
| 1912 | // "to interpreter" stub in order to load up the Method*. Don't |
| 1913 | // ask me how I know this... |
| 1914 | |
| 1915 | CodeBlob* cb = CodeCache::find_blob(caller_pc); |
| 1916 | if (cb == NULL || !cb->is_compiled() || entry_point == moop->get_c2i_entry()) { |
| 1917 | return; |
| 1918 | } |
| 1919 | |
| 1920 | // The check above makes sure this is a nmethod. |
| 1921 | CompiledMethod* nm = cb->as_compiled_method_or_null(); |
| 1922 | assert(nm, "must be" ); |
| 1923 | |
| 1924 | // Get the return PC for the passed caller PC. |
| 1925 | address return_pc = caller_pc + frame::pc_return_offset; |
| 1926 | |
| 1927 | // There is a benign race here. We could be attempting to patch to a compiled |
| 1928 | // entry point at the same time the callee is being deoptimized. If that is |
| 1929 | // the case then entry_point may in fact point to a c2i and we'd patch the |
| 1930 | // call site with the same old data. clear_code will set code() to NULL |
| 1931 | // at the end of it. If we happen to see that NULL then we can skip trying |
| 1932 | // to patch. If we hit the window where the callee has a c2i in the |
| 1933 | // from_compiled_entry and the NULL isn't present yet then we lose the race |
| 1934 | // and patch the code with the same old data. Asi es la vida. |
| 1935 | |
| 1936 | if (moop->code() == NULL) return; |
| 1937 | |
| 1938 | if (nm->is_in_use()) { |
| 1939 | // Expect to find a native call there (unless it was no-inline cache vtable dispatch) |
| 1940 | CompiledICLocker ic_locker(nm); |
| 1941 | if (NativeCall::is_call_before(return_pc)) { |
| 1942 | ResourceMark mark; |
| 1943 | NativeCallWrapper* call = nm->call_wrapper_before(return_pc); |
| 1944 | // |
| 1945 | // bug 6281185. We might get here after resolving a call site to a vanilla |
| 1946 | // virtual call. Because the resolvee uses the verified entry it may then |
| 1947 | // see compiled code and attempt to patch the site by calling us. This would |
| 1948 | // then incorrectly convert the call site to optimized and its downhill from |
| 1949 | // there. If you're lucky you'll get the assert in the bugid, if not you've |
| 1950 | // just made a call site that could be megamorphic into a monomorphic site |
| 1951 | // for the rest of its life! Just another racing bug in the life of |
| 1952 | // fixup_callers_callsite ... |
| 1953 | // |
| 1954 | RelocIterator iter(nm, call->instruction_address(), call->next_instruction_address()); |
| 1955 | iter.next(); |
| 1956 | assert(iter.has_current(), "must have a reloc at java call site" ); |
| 1957 | relocInfo::relocType typ = iter.reloc()->type(); |
| 1958 | if (typ != relocInfo::static_call_type && |
| 1959 | typ != relocInfo::opt_virtual_call_type && |
| 1960 | typ != relocInfo::static_stub_type) { |
| 1961 | return; |
| 1962 | } |
| 1963 | address destination = call->destination(); |
| 1964 | if (should_fixup_call_destination(destination, entry_point, caller_pc, moop, cb)) { |
| 1965 | call->set_destination_mt_safe(entry_point); |
| 1966 | } |
| 1967 | } |
| 1968 | } |
| 1969 | JRT_END |
| 1970 | |
| 1971 | |
| 1972 | // same as JVM_Arraycopy, but called directly from compiled code |
| 1973 | JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src, jint src_pos, |
| 1974 | oopDesc* dest, jint dest_pos, |
| 1975 | jint length, |
| 1976 | JavaThread* thread)) { |
| 1977 | #ifndef PRODUCT |
| 1978 | _slow_array_copy_ctr++; |
| 1979 | #endif |
| 1980 | // Check if we have null pointers |
| 1981 | if (src == NULL || dest == NULL) { |
| 1982 | THROW(vmSymbols::java_lang_NullPointerException()); |
| 1983 | } |
| 1984 | // Do the copy. The casts to arrayOop are necessary to the copy_array API, |
| 1985 | // even though the copy_array API also performs dynamic checks to ensure |
| 1986 | // that src and dest are truly arrays (and are conformable). |
| 1987 | // The copy_array mechanism is awkward and could be removed, but |
| 1988 | // the compilers don't call this function except as a last resort, |
| 1989 | // so it probably doesn't matter. |
| 1990 | src->klass()->copy_array((arrayOopDesc*)src, src_pos, |
| 1991 | (arrayOopDesc*)dest, dest_pos, |
| 1992 | length, thread); |
| 1993 | } |
| 1994 | JRT_END |
| 1995 | |
| 1996 | // The caller of generate_class_cast_message() (or one of its callers) |
| 1997 | // must use a ResourceMark in order to correctly free the result. |
| 1998 | char* SharedRuntime::generate_class_cast_message( |
| 1999 | JavaThread* thread, Klass* caster_klass) { |
| 2000 | |
| 2001 | // Get target class name from the checkcast instruction |
| 2002 | vframeStream vfst(thread, true); |
| 2003 | assert(!vfst.at_end(), "Java frame must exist" ); |
| 2004 | Bytecode_checkcast cc(vfst.method(), vfst.method()->bcp_from(vfst.bci())); |
| 2005 | constantPoolHandle cpool(thread, vfst.method()->constants()); |
| 2006 | Klass* target_klass = ConstantPool::klass_at_if_loaded(cpool, cc.index()); |
| 2007 | Symbol* target_klass_name = NULL; |
| 2008 | if (target_klass == NULL) { |
| 2009 | // This klass should be resolved, but just in case, get the name in the klass slot. |
| 2010 | target_klass_name = cpool->klass_name_at(cc.index()); |
| 2011 | } |
| 2012 | return generate_class_cast_message(caster_klass, target_klass, target_klass_name); |
| 2013 | } |
| 2014 | |
| 2015 | |
| 2016 | // The caller of generate_class_cast_message() (or one of its callers) |
| 2017 | // must use a ResourceMark in order to correctly free the result. |
| 2018 | char* SharedRuntime::generate_class_cast_message( |
| 2019 | Klass* caster_klass, Klass* target_klass, Symbol* target_klass_name) { |
| 2020 | const char* caster_name = caster_klass->external_name(); |
| 2021 | |
| 2022 | assert(target_klass != NULL || target_klass_name != NULL, "one must be provided" ); |
| 2023 | const char* target_name = target_klass == NULL ? target_klass_name->as_C_string() : |
| 2024 | target_klass->external_name(); |
| 2025 | |
| 2026 | size_t msglen = strlen(caster_name) + strlen("class " ) + strlen(" cannot be cast to class " ) + strlen(target_name) + 1; |
| 2027 | |
| 2028 | const char* caster_klass_description = "" ; |
| 2029 | const char* target_klass_description = "" ; |
| 2030 | const char* klass_separator = "" ; |
| 2031 | if (target_klass != NULL && caster_klass->module() == target_klass->module()) { |
| 2032 | caster_klass_description = caster_klass->joint_in_module_of_loader(target_klass); |
| 2033 | } else { |
| 2034 | caster_klass_description = caster_klass->class_in_module_of_loader(); |
| 2035 | target_klass_description = (target_klass != NULL) ? target_klass->class_in_module_of_loader() : "" ; |
| 2036 | klass_separator = (target_klass != NULL) ? "; " : "" ; |
| 2037 | } |
| 2038 | |
| 2039 | // add 3 for parenthesis and preceeding space |
| 2040 | msglen += strlen(caster_klass_description) + strlen(target_klass_description) + strlen(klass_separator) + 3; |
| 2041 | |
| 2042 | char* message = NEW_RESOURCE_ARRAY_RETURN_NULL(char, msglen); |
| 2043 | if (message == NULL) { |
| 2044 | // Shouldn't happen, but don't cause even more problems if it does |
| 2045 | message = const_cast<char*>(caster_klass->external_name()); |
| 2046 | } else { |
| 2047 | jio_snprintf(message, |
| 2048 | msglen, |
| 2049 | "class %s cannot be cast to class %s (%s%s%s)" , |
| 2050 | caster_name, |
| 2051 | target_name, |
| 2052 | caster_klass_description, |
| 2053 | klass_separator, |
| 2054 | target_klass_description |
| 2055 | ); |
| 2056 | } |
| 2057 | return message; |
| 2058 | } |
| 2059 | |
| 2060 | JRT_LEAF(void, SharedRuntime::reguard_yellow_pages()) |
| 2061 | (void) JavaThread::current()->reguard_stack(); |
| 2062 | JRT_END |
| 2063 | |
| 2064 | |
| 2065 | // Handles the uncommon case in locking, i.e., contention or an inflated lock. |
| 2066 | JRT_BLOCK_ENTRY(void, SharedRuntime::complete_monitor_locking_C(oopDesc* _obj, BasicLock* lock, JavaThread* thread)) |
| 2067 | if (!SafepointSynchronize::is_synchronizing()) { |
| 2068 | // Only try quick_enter() if we're not trying to reach a safepoint |
| 2069 | // so that the calling thread reaches the safepoint more quickly. |
| 2070 | if (ObjectSynchronizer::quick_enter(_obj, thread, lock)) return; |
| 2071 | } |
| 2072 | // NO_ASYNC required because an async exception on the state transition destructor |
| 2073 | // would leave you with the lock held and it would never be released. |
| 2074 | // The normal monitorenter NullPointerException is thrown without acquiring a lock |
| 2075 | // and the model is that an exception implies the method failed. |
| 2076 | JRT_BLOCK_NO_ASYNC |
| 2077 | oop obj(_obj); |
| 2078 | if (PrintBiasedLockingStatistics) { |
| 2079 | Atomic::inc(BiasedLocking::slow_path_entry_count_addr()); |
| 2080 | } |
| 2081 | Handle h_obj(THREAD, obj); |
| 2082 | if (UseBiasedLocking) { |
| 2083 | // Retry fast entry if bias is revoked to avoid unnecessary inflation |
| 2084 | ObjectSynchronizer::fast_enter(h_obj, lock, true, CHECK); |
| 2085 | } else { |
| 2086 | ObjectSynchronizer::slow_enter(h_obj, lock, CHECK); |
| 2087 | } |
| 2088 | assert(!HAS_PENDING_EXCEPTION, "Should have no exception here" ); |
| 2089 | JRT_BLOCK_END |
| 2090 | JRT_END |
| 2091 | |
| 2092 | // Handles the uncommon cases of monitor unlocking in compiled code |
| 2093 | JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* _obj, BasicLock* lock, JavaThread * THREAD)) |
| 2094 | oop obj(_obj); |
| 2095 | assert(JavaThread::current() == THREAD, "invariant" ); |
| 2096 | // I'm not convinced we need the code contained by MIGHT_HAVE_PENDING anymore |
| 2097 | // testing was unable to ever fire the assert that guarded it so I have removed it. |
| 2098 | assert(!HAS_PENDING_EXCEPTION, "Do we need code below anymore?" ); |
| 2099 | #undef MIGHT_HAVE_PENDING |
| 2100 | #ifdef MIGHT_HAVE_PENDING |
| 2101 | // Save and restore any pending_exception around the exception mark. |
| 2102 | // While the slow_exit must not throw an exception, we could come into |
| 2103 | // this routine with one set. |
| 2104 | oop pending_excep = NULL; |
| 2105 | const char* pending_file; |
| 2106 | int pending_line; |
| 2107 | if (HAS_PENDING_EXCEPTION) { |
| 2108 | pending_excep = PENDING_EXCEPTION; |
| 2109 | pending_file = THREAD->exception_file(); |
| 2110 | pending_line = THREAD->exception_line(); |
| 2111 | CLEAR_PENDING_EXCEPTION; |
| 2112 | } |
| 2113 | #endif /* MIGHT_HAVE_PENDING */ |
| 2114 | |
| 2115 | { |
| 2116 | // Exit must be non-blocking, and therefore no exceptions can be thrown. |
| 2117 | EXCEPTION_MARK; |
| 2118 | ObjectSynchronizer::slow_exit(obj, lock, THREAD); |
| 2119 | } |
| 2120 | |
| 2121 | #ifdef MIGHT_HAVE_PENDING |
| 2122 | if (pending_excep != NULL) { |
| 2123 | THREAD->set_pending_exception(pending_excep, pending_file, pending_line); |
| 2124 | } |
| 2125 | #endif /* MIGHT_HAVE_PENDING */ |
| 2126 | JRT_END |
| 2127 | |
| 2128 | #ifndef PRODUCT |
| 2129 | |
| 2130 | void SharedRuntime::print_statistics() { |
| 2131 | ttyLocker ttyl; |
| 2132 | if (xtty != NULL) xtty->head("statistics type='SharedRuntime'" ); |
| 2133 | |
| 2134 | if (_throw_null_ctr) tty->print_cr("%5d implicit null throw" , _throw_null_ctr); |
| 2135 | |
| 2136 | SharedRuntime::print_ic_miss_histogram(); |
| 2137 | |
| 2138 | if (CountRemovableExceptions) { |
| 2139 | if (_nof_removable_exceptions > 0) { |
| 2140 | Unimplemented(); // this counter is not yet incremented |
| 2141 | tty->print_cr("Removable exceptions: %d" , _nof_removable_exceptions); |
| 2142 | } |
| 2143 | } |
| 2144 | |
| 2145 | // Dump the JRT_ENTRY counters |
| 2146 | if (_new_instance_ctr) tty->print_cr("%5d new instance requires GC" , _new_instance_ctr); |
| 2147 | if (_new_array_ctr) tty->print_cr("%5d new array requires GC" , _new_array_ctr); |
| 2148 | if (_multi1_ctr) tty->print_cr("%5d multianewarray 1 dim" , _multi1_ctr); |
| 2149 | if (_multi2_ctr) tty->print_cr("%5d multianewarray 2 dim" , _multi2_ctr); |
| 2150 | if (_multi3_ctr) tty->print_cr("%5d multianewarray 3 dim" , _multi3_ctr); |
| 2151 | if (_multi4_ctr) tty->print_cr("%5d multianewarray 4 dim" , _multi4_ctr); |
| 2152 | if (_multi5_ctr) tty->print_cr("%5d multianewarray 5 dim" , _multi5_ctr); |
| 2153 | |
| 2154 | tty->print_cr("%5d inline cache miss in compiled" , _ic_miss_ctr); |
| 2155 | tty->print_cr("%5d wrong method" , _wrong_method_ctr); |
| 2156 | tty->print_cr("%5d unresolved static call site" , _resolve_static_ctr); |
| 2157 | tty->print_cr("%5d unresolved virtual call site" , _resolve_virtual_ctr); |
| 2158 | tty->print_cr("%5d unresolved opt virtual call site" , _resolve_opt_virtual_ctr); |
| 2159 | |
| 2160 | if (_mon_enter_stub_ctr) tty->print_cr("%5d monitor enter stub" , _mon_enter_stub_ctr); |
| 2161 | if (_mon_exit_stub_ctr) tty->print_cr("%5d monitor exit stub" , _mon_exit_stub_ctr); |
| 2162 | if (_mon_enter_ctr) tty->print_cr("%5d monitor enter slow" , _mon_enter_ctr); |
| 2163 | if (_mon_exit_ctr) tty->print_cr("%5d monitor exit slow" , _mon_exit_ctr); |
| 2164 | if (_partial_subtype_ctr) tty->print_cr("%5d slow partial subtype" , _partial_subtype_ctr); |
| 2165 | if (_jbyte_array_copy_ctr) tty->print_cr("%5d byte array copies" , _jbyte_array_copy_ctr); |
| 2166 | if (_jshort_array_copy_ctr) tty->print_cr("%5d short array copies" , _jshort_array_copy_ctr); |
| 2167 | if (_jint_array_copy_ctr) tty->print_cr("%5d int array copies" , _jint_array_copy_ctr); |
| 2168 | if (_jlong_array_copy_ctr) tty->print_cr("%5d long array copies" , _jlong_array_copy_ctr); |
| 2169 | if (_oop_array_copy_ctr) tty->print_cr("%5d oop array copies" , _oop_array_copy_ctr); |
| 2170 | if (_checkcast_array_copy_ctr) tty->print_cr("%5d checkcast array copies" , _checkcast_array_copy_ctr); |
| 2171 | if (_unsafe_array_copy_ctr) tty->print_cr("%5d unsafe array copies" , _unsafe_array_copy_ctr); |
| 2172 | if (_generic_array_copy_ctr) tty->print_cr("%5d generic array copies" , _generic_array_copy_ctr); |
| 2173 | if (_slow_array_copy_ctr) tty->print_cr("%5d slow array copies" , _slow_array_copy_ctr); |
| 2174 | if (_find_handler_ctr) tty->print_cr("%5d find exception handler" , _find_handler_ctr); |
| 2175 | if (_rethrow_ctr) tty->print_cr("%5d rethrow handler" , _rethrow_ctr); |
| 2176 | |
| 2177 | AdapterHandlerLibrary::print_statistics(); |
| 2178 | |
| 2179 | if (xtty != NULL) xtty->tail("statistics" ); |
| 2180 | } |
| 2181 | |
| 2182 | inline double percent(int x, int y) { |
| 2183 | return 100.0 * x / MAX2(y, 1); |
| 2184 | } |
| 2185 | |
| 2186 | class MethodArityHistogram { |
| 2187 | public: |
| 2188 | enum { MAX_ARITY = 256 }; |
| 2189 | private: |
| 2190 | static int _arity_histogram[MAX_ARITY]; // histogram of #args |
| 2191 | static int _size_histogram[MAX_ARITY]; // histogram of arg size in words |
| 2192 | static int _max_arity; // max. arity seen |
| 2193 | static int _max_size; // max. arg size seen |
| 2194 | |
| 2195 | static void add_method_to_histogram(nmethod* nm) { |
| 2196 | if (CompiledMethod::nmethod_access_is_safe(nm)) { |
| 2197 | Method* method = nm->method(); |
| 2198 | ArgumentCount args(method->signature()); |
| 2199 | int arity = args.size() + (method->is_static() ? 0 : 1); |
| 2200 | int argsize = method->size_of_parameters(); |
| 2201 | arity = MIN2(arity, MAX_ARITY-1); |
| 2202 | argsize = MIN2(argsize, MAX_ARITY-1); |
| 2203 | int count = method->compiled_invocation_count(); |
| 2204 | _arity_histogram[arity] += count; |
| 2205 | _size_histogram[argsize] += count; |
| 2206 | _max_arity = MAX2(_max_arity, arity); |
| 2207 | _max_size = MAX2(_max_size, argsize); |
| 2208 | } |
| 2209 | } |
| 2210 | |
| 2211 | void print_histogram_helper(int n, int* histo, const char* name) { |
| 2212 | const int N = MIN2(5, n); |
| 2213 | tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):" ); |
| 2214 | double sum = 0; |
| 2215 | double weighted_sum = 0; |
| 2216 | int i; |
| 2217 | for (i = 0; i <= n; i++) { sum += histo[i]; weighted_sum += i*histo[i]; } |
| 2218 | double rest = sum; |
| 2219 | double percent = sum / 100; |
| 2220 | for (i = 0; i <= N; i++) { |
| 2221 | rest -= histo[i]; |
| 2222 | tty->print_cr("%4d: %7d (%5.1f%%)" , i, histo[i], histo[i] / percent); |
| 2223 | } |
| 2224 | tty->print_cr("rest: %7d (%5.1f%%))" , (int)rest, rest / percent); |
| 2225 | tty->print_cr("(avg. %s = %3.1f, max = %d)" , name, weighted_sum / sum, n); |
| 2226 | } |
| 2227 | |
| 2228 | void print_histogram() { |
| 2229 | tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):" ); |
| 2230 | print_histogram_helper(_max_arity, _arity_histogram, "arity" ); |
| 2231 | tty->print_cr("\nSame for parameter size (in words):" ); |
| 2232 | print_histogram_helper(_max_size, _size_histogram, "size" ); |
| 2233 | tty->cr(); |
| 2234 | } |
| 2235 | |
| 2236 | public: |
| 2237 | MethodArityHistogram() { |
| 2238 | MutexLocker mu(CodeCache_lock, Mutex::_no_safepoint_check_flag); |
| 2239 | _max_arity = _max_size = 0; |
| 2240 | for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram[i] = 0; |
| 2241 | CodeCache::nmethods_do(add_method_to_histogram); |
| 2242 | print_histogram(); |
| 2243 | } |
| 2244 | }; |
| 2245 | |
| 2246 | int MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY]; |
| 2247 | int MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY]; |
| 2248 | int MethodArityHistogram::_max_arity; |
| 2249 | int MethodArityHistogram::_max_size; |
| 2250 | |
| 2251 | void SharedRuntime::print_call_statistics(int comp_total) { |
| 2252 | tty->print_cr("Calls from compiled code:" ); |
| 2253 | int total = _nof_normal_calls + _nof_interface_calls + _nof_static_calls; |
| 2254 | int mono_c = _nof_normal_calls - _nof_optimized_calls - _nof_megamorphic_calls; |
| 2255 | int mono_i = _nof_interface_calls - _nof_optimized_interface_calls - _nof_megamorphic_interface_calls; |
| 2256 | tty->print_cr("\t%9d (%4.1f%%) total non-inlined " , total, percent(total, total)); |
| 2257 | tty->print_cr("\t%9d (%4.1f%%) virtual calls " , _nof_normal_calls, percent(_nof_normal_calls, total)); |
| 2258 | tty->print_cr("\t %9d (%3.0f%%) inlined " , _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls)); |
| 2259 | tty->print_cr("\t %9d (%3.0f%%) optimized " , _nof_optimized_calls, percent(_nof_optimized_calls, _nof_normal_calls)); |
| 2260 | tty->print_cr("\t %9d (%3.0f%%) monomorphic " , mono_c, percent(mono_c, _nof_normal_calls)); |
| 2261 | tty->print_cr("\t %9d (%3.0f%%) megamorphic " , _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls)); |
| 2262 | tty->print_cr("\t%9d (%4.1f%%) interface calls " , _nof_interface_calls, percent(_nof_interface_calls, total)); |
| 2263 | tty->print_cr("\t %9d (%3.0f%%) inlined " , _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls)); |
| 2264 | tty->print_cr("\t %9d (%3.0f%%) optimized " , _nof_optimized_interface_calls, percent(_nof_optimized_interface_calls, _nof_interface_calls)); |
| 2265 | tty->print_cr("\t %9d (%3.0f%%) monomorphic " , mono_i, percent(mono_i, _nof_interface_calls)); |
| 2266 | tty->print_cr("\t %9d (%3.0f%%) megamorphic " , _nof_megamorphic_interface_calls, percent(_nof_megamorphic_interface_calls, _nof_interface_calls)); |
| 2267 | tty->print_cr("\t%9d (%4.1f%%) static/special calls" , _nof_static_calls, percent(_nof_static_calls, total)); |
| 2268 | tty->print_cr("\t %9d (%3.0f%%) inlined " , _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls)); |
| 2269 | tty->cr(); |
| 2270 | tty->print_cr("Note 1: counter updates are not MT-safe." ); |
| 2271 | tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;" ); |
| 2272 | tty->print_cr(" %% in nested categories are relative to their category" ); |
| 2273 | tty->print_cr(" (and thus add up to more than 100%% with inlining)" ); |
| 2274 | tty->cr(); |
| 2275 | |
| 2276 | MethodArityHistogram h; |
| 2277 | } |
| 2278 | #endif |
| 2279 | |
| 2280 | |
| 2281 | // A simple wrapper class around the calling convention information |
| 2282 | // that allows sharing of adapters for the same calling convention. |
| 2283 | class AdapterFingerPrint : public CHeapObj<mtCode> { |
| 2284 | private: |
| 2285 | enum { |
| 2286 | _basic_type_bits = 4, |
| 2287 | _basic_type_mask = right_n_bits(_basic_type_bits), |
| 2288 | _basic_types_per_int = BitsPerInt / _basic_type_bits, |
| 2289 | _compact_int_count = 3 |
| 2290 | }; |
| 2291 | // TO DO: Consider integrating this with a more global scheme for compressing signatures. |
| 2292 | // For now, 4 bits per components (plus T_VOID gaps after double/long) is not excessive. |
| 2293 | |
| 2294 | union { |
| 2295 | int _compact[_compact_int_count]; |
| 2296 | int* _fingerprint; |
| 2297 | } _value; |
| 2298 | int _length; // A negative length indicates the fingerprint is in the compact form, |
| 2299 | // Otherwise _value._fingerprint is the array. |
| 2300 | |
| 2301 | // Remap BasicTypes that are handled equivalently by the adapters. |
| 2302 | // These are correct for the current system but someday it might be |
| 2303 | // necessary to make this mapping platform dependent. |
| 2304 | static int adapter_encoding(BasicType in) { |
| 2305 | switch (in) { |
| 2306 | case T_BOOLEAN: |
| 2307 | case T_BYTE: |
| 2308 | case T_SHORT: |
| 2309 | case T_CHAR: |
| 2310 | // There are all promoted to T_INT in the calling convention |
| 2311 | return T_INT; |
| 2312 | |
| 2313 | case T_OBJECT: |
| 2314 | case T_ARRAY: |
| 2315 | // In other words, we assume that any register good enough for |
| 2316 | // an int or long is good enough for a managed pointer. |
| 2317 | #ifdef _LP64 |
| 2318 | return T_LONG; |
| 2319 | #else |
| 2320 | return T_INT; |
| 2321 | #endif |
| 2322 | |
| 2323 | case T_INT: |
| 2324 | case T_LONG: |
| 2325 | case T_FLOAT: |
| 2326 | case T_DOUBLE: |
| 2327 | case T_VOID: |
| 2328 | return in; |
| 2329 | |
| 2330 | default: |
| 2331 | ShouldNotReachHere(); |
| 2332 | return T_CONFLICT; |
| 2333 | } |
| 2334 | } |
| 2335 | |
| 2336 | public: |
| 2337 | AdapterFingerPrint(int total_args_passed, BasicType* sig_bt) { |
| 2338 | // The fingerprint is based on the BasicType signature encoded |
| 2339 | // into an array of ints with eight entries per int. |
| 2340 | int* ptr; |
| 2341 | int len = (total_args_passed + (_basic_types_per_int-1)) / _basic_types_per_int; |
| 2342 | if (len <= _compact_int_count) { |
| 2343 | assert(_compact_int_count == 3, "else change next line" ); |
| 2344 | _value._compact[0] = _value._compact[1] = _value._compact[2] = 0; |
| 2345 | // Storing the signature encoded as signed chars hits about 98% |
| 2346 | // of the time. |
| 2347 | _length = -len; |
| 2348 | ptr = _value._compact; |
| 2349 | } else { |
| 2350 | _length = len; |
| 2351 | _value._fingerprint = NEW_C_HEAP_ARRAY(int, _length, mtCode); |
| 2352 | ptr = _value._fingerprint; |
| 2353 | } |
| 2354 | |
| 2355 | // Now pack the BasicTypes with 8 per int |
| 2356 | int sig_index = 0; |
| 2357 | for (int index = 0; index < len; index++) { |
| 2358 | int value = 0; |
| 2359 | for (int byte = 0; byte < _basic_types_per_int; byte++) { |
| 2360 | int bt = ((sig_index < total_args_passed) |
| 2361 | ? adapter_encoding(sig_bt[sig_index++]) |
| 2362 | : 0); |
| 2363 | assert((bt & _basic_type_mask) == bt, "must fit in 4 bits" ); |
| 2364 | value = (value << _basic_type_bits) | bt; |
| 2365 | } |
| 2366 | ptr[index] = value; |
| 2367 | } |
| 2368 | } |
| 2369 | |
| 2370 | ~AdapterFingerPrint() { |
| 2371 | if (_length > 0) { |
| 2372 | FREE_C_HEAP_ARRAY(int, _value._fingerprint); |
| 2373 | } |
| 2374 | } |
| 2375 | |
| 2376 | int value(int index) { |
| 2377 | if (_length < 0) { |
| 2378 | return _value._compact[index]; |
| 2379 | } |
| 2380 | return _value._fingerprint[index]; |
| 2381 | } |
| 2382 | int length() { |
| 2383 | if (_length < 0) return -_length; |
| 2384 | return _length; |
| 2385 | } |
| 2386 | |
| 2387 | bool is_compact() { |
| 2388 | return _length <= 0; |
| 2389 | } |
| 2390 | |
| 2391 | unsigned int compute_hash() { |
| 2392 | int hash = 0; |
| 2393 | for (int i = 0; i < length(); i++) { |
| 2394 | int v = value(i); |
| 2395 | hash = (hash << 8) ^ v ^ (hash >> 5); |
| 2396 | } |
| 2397 | return (unsigned int)hash; |
| 2398 | } |
| 2399 | |
| 2400 | const char* as_string() { |
| 2401 | stringStream st; |
| 2402 | st.print("0x" ); |
| 2403 | for (int i = 0; i < length(); i++) { |
| 2404 | st.print("%08x" , value(i)); |
| 2405 | } |
| 2406 | return st.as_string(); |
| 2407 | } |
| 2408 | |
| 2409 | bool equals(AdapterFingerPrint* other) { |
| 2410 | if (other->_length != _length) { |
| 2411 | return false; |
| 2412 | } |
| 2413 | if (_length < 0) { |
| 2414 | assert(_compact_int_count == 3, "else change next line" ); |
| 2415 | return _value._compact[0] == other->_value._compact[0] && |
| 2416 | _value._compact[1] == other->_value._compact[1] && |
| 2417 | _value._compact[2] == other->_value._compact[2]; |
| 2418 | } else { |
| 2419 | for (int i = 0; i < _length; i++) { |
| 2420 | if (_value._fingerprint[i] != other->_value._fingerprint[i]) { |
| 2421 | return false; |
| 2422 | } |
| 2423 | } |
| 2424 | } |
| 2425 | return true; |
| 2426 | } |
| 2427 | }; |
| 2428 | |
| 2429 | |
| 2430 | // A hashtable mapping from AdapterFingerPrints to AdapterHandlerEntries |
| 2431 | class AdapterHandlerTable : public BasicHashtable<mtCode> { |
| 2432 | friend class AdapterHandlerTableIterator; |
| 2433 | |
| 2434 | private: |
| 2435 | |
| 2436 | #ifndef PRODUCT |
| 2437 | static int _lookups; // number of calls to lookup |
| 2438 | static int _buckets; // number of buckets checked |
| 2439 | static int _equals; // number of buckets checked with matching hash |
| 2440 | static int _hits; // number of successful lookups |
| 2441 | static int _compact; // number of equals calls with compact signature |
| 2442 | #endif |
| 2443 | |
| 2444 | AdapterHandlerEntry* bucket(int i) { |
| 2445 | return (AdapterHandlerEntry*)BasicHashtable<mtCode>::bucket(i); |
| 2446 | } |
| 2447 | |
| 2448 | public: |
| 2449 | AdapterHandlerTable() |
| 2450 | : BasicHashtable<mtCode>(293, (DumpSharedSpaces ? sizeof(CDSAdapterHandlerEntry) : sizeof(AdapterHandlerEntry))) { } |
| 2451 | |
| 2452 | // Create a new entry suitable for insertion in the table |
| 2453 | AdapterHandlerEntry* new_entry(AdapterFingerPrint* fingerprint, address i2c_entry, address c2i_entry, address c2i_unverified_entry) { |
| 2454 | AdapterHandlerEntry* entry = (AdapterHandlerEntry*)BasicHashtable<mtCode>::new_entry(fingerprint->compute_hash()); |
| 2455 | entry->init(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry); |
| 2456 | if (DumpSharedSpaces) { |
| 2457 | ((CDSAdapterHandlerEntry*)entry)->init(); |
| 2458 | } |
| 2459 | return entry; |
| 2460 | } |
| 2461 | |
| 2462 | // Insert an entry into the table |
| 2463 | void add(AdapterHandlerEntry* entry) { |
| 2464 | int index = hash_to_index(entry->hash()); |
| 2465 | add_entry(index, entry); |
| 2466 | } |
| 2467 | |
| 2468 | void free_entry(AdapterHandlerEntry* entry) { |
| 2469 | entry->deallocate(); |
| 2470 | BasicHashtable<mtCode>::free_entry(entry); |
| 2471 | } |
| 2472 | |
| 2473 | // Find a entry with the same fingerprint if it exists |
| 2474 | AdapterHandlerEntry* lookup(int total_args_passed, BasicType* sig_bt) { |
| 2475 | NOT_PRODUCT(_lookups++); |
| 2476 | AdapterFingerPrint fp(total_args_passed, sig_bt); |
| 2477 | unsigned int hash = fp.compute_hash(); |
| 2478 | int index = hash_to_index(hash); |
| 2479 | for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) { |
| 2480 | NOT_PRODUCT(_buckets++); |
| 2481 | if (e->hash() == hash) { |
| 2482 | NOT_PRODUCT(_equals++); |
| 2483 | if (fp.equals(e->fingerprint())) { |
| 2484 | #ifndef PRODUCT |
| 2485 | if (fp.is_compact()) _compact++; |
| 2486 | _hits++; |
| 2487 | #endif |
| 2488 | return e; |
| 2489 | } |
| 2490 | } |
| 2491 | } |
| 2492 | return NULL; |
| 2493 | } |
| 2494 | |
| 2495 | #ifndef PRODUCT |
| 2496 | void print_statistics() { |
| 2497 | ResourceMark rm; |
| 2498 | int longest = 0; |
| 2499 | int empty = 0; |
| 2500 | int total = 0; |
| 2501 | int nonempty = 0; |
| 2502 | for (int index = 0; index < table_size(); index++) { |
| 2503 | int count = 0; |
| 2504 | for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) { |
| 2505 | count++; |
| 2506 | } |
| 2507 | if (count != 0) nonempty++; |
| 2508 | if (count == 0) empty++; |
| 2509 | if (count > longest) longest = count; |
| 2510 | total += count; |
| 2511 | } |
| 2512 | tty->print_cr("AdapterHandlerTable: empty %d longest %d total %d average %f" , |
| 2513 | empty, longest, total, total / (double)nonempty); |
| 2514 | tty->print_cr("AdapterHandlerTable: lookups %d buckets %d equals %d hits %d compact %d" , |
| 2515 | _lookups, _buckets, _equals, _hits, _compact); |
| 2516 | } |
| 2517 | #endif |
| 2518 | }; |
| 2519 | |
| 2520 | |
| 2521 | #ifndef PRODUCT |
| 2522 | |
| 2523 | int AdapterHandlerTable::_lookups; |
| 2524 | int AdapterHandlerTable::_buckets; |
| 2525 | int AdapterHandlerTable::_equals; |
| 2526 | int AdapterHandlerTable::_hits; |
| 2527 | int AdapterHandlerTable::_compact; |
| 2528 | |
| 2529 | #endif |
| 2530 | |
| 2531 | class AdapterHandlerTableIterator : public StackObj { |
| 2532 | private: |
| 2533 | AdapterHandlerTable* _table; |
| 2534 | int _index; |
| 2535 | AdapterHandlerEntry* _current; |
| 2536 | |
| 2537 | void scan() { |
| 2538 | while (_index < _table->table_size()) { |
| 2539 | AdapterHandlerEntry* a = _table->bucket(_index); |
| 2540 | _index++; |
| 2541 | if (a != NULL) { |
| 2542 | _current = a; |
| 2543 | return; |
| 2544 | } |
| 2545 | } |
| 2546 | } |
| 2547 | |
| 2548 | public: |
| 2549 | AdapterHandlerTableIterator(AdapterHandlerTable* table): _table(table), _index(0), _current(NULL) { |
| 2550 | scan(); |
| 2551 | } |
| 2552 | bool has_next() { |
| 2553 | return _current != NULL; |
| 2554 | } |
| 2555 | AdapterHandlerEntry* next() { |
| 2556 | if (_current != NULL) { |
| 2557 | AdapterHandlerEntry* result = _current; |
| 2558 | _current = _current->next(); |
| 2559 | if (_current == NULL) scan(); |
| 2560 | return result; |
| 2561 | } else { |
| 2562 | return NULL; |
| 2563 | } |
| 2564 | } |
| 2565 | }; |
| 2566 | |
| 2567 | |
| 2568 | // --------------------------------------------------------------------------- |
| 2569 | // Implementation of AdapterHandlerLibrary |
| 2570 | AdapterHandlerTable* AdapterHandlerLibrary::_adapters = NULL; |
| 2571 | AdapterHandlerEntry* AdapterHandlerLibrary::_abstract_method_handler = NULL; |
| 2572 | const int AdapterHandlerLibrary_size = 16*K; |
| 2573 | BufferBlob* AdapterHandlerLibrary::_buffer = NULL; |
| 2574 | |
| 2575 | BufferBlob* AdapterHandlerLibrary::buffer_blob() { |
| 2576 | // Should be called only when AdapterHandlerLibrary_lock is active. |
| 2577 | if (_buffer == NULL) // Initialize lazily |
| 2578 | _buffer = BufferBlob::create("adapters" , AdapterHandlerLibrary_size); |
| 2579 | return _buffer; |
| 2580 | } |
| 2581 | |
| 2582 | extern "C" void unexpected_adapter_call() { |
| 2583 | ShouldNotCallThis(); |
| 2584 | } |
| 2585 | |
| 2586 | void AdapterHandlerLibrary::initialize() { |
| 2587 | if (_adapters != NULL) return; |
| 2588 | _adapters = new AdapterHandlerTable(); |
| 2589 | |
| 2590 | // Create a special handler for abstract methods. Abstract methods |
| 2591 | // are never compiled so an i2c entry is somewhat meaningless, but |
| 2592 | // throw AbstractMethodError just in case. |
| 2593 | // Pass wrong_method_abstract for the c2i transitions to return |
| 2594 | // AbstractMethodError for invalid invocations. |
| 2595 | address wrong_method_abstract = SharedRuntime::get_handle_wrong_method_abstract_stub(); |
| 2596 | _abstract_method_handler = AdapterHandlerLibrary::new_entry(new AdapterFingerPrint(0, NULL), |
| 2597 | StubRoutines::throw_AbstractMethodError_entry(), |
| 2598 | wrong_method_abstract, wrong_method_abstract); |
| 2599 | } |
| 2600 | |
| 2601 | AdapterHandlerEntry* AdapterHandlerLibrary::new_entry(AdapterFingerPrint* fingerprint, |
| 2602 | address i2c_entry, |
| 2603 | address c2i_entry, |
| 2604 | address c2i_unverified_entry) { |
| 2605 | return _adapters->new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry); |
| 2606 | } |
| 2607 | |
| 2608 | AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter(const methodHandle& method) { |
| 2609 | AdapterHandlerEntry* entry = get_adapter0(method); |
| 2610 | if (method->is_shared()) { |
| 2611 | // See comments around Method::link_method() |
| 2612 | MutexLocker mu(AdapterHandlerLibrary_lock); |
| 2613 | if (method->adapter() == NULL) { |
| 2614 | method->update_adapter_trampoline(entry); |
| 2615 | } |
| 2616 | address trampoline = method->from_compiled_entry(); |
| 2617 | if (*(int*)trampoline == 0) { |
| 2618 | CodeBuffer buffer(trampoline, (int)SharedRuntime::trampoline_size()); |
| 2619 | MacroAssembler _masm(&buffer); |
| 2620 | SharedRuntime::generate_trampoline(&_masm, entry->get_c2i_entry()); |
| 2621 | assert(*(int*)trampoline != 0, "Instruction(s) for trampoline must not be encoded as zeros." ); |
| 2622 | |
| 2623 | if (PrintInterpreter) { |
| 2624 | Disassembler::decode(buffer.insts_begin(), buffer.insts_end()); |
| 2625 | } |
| 2626 | } |
| 2627 | } |
| 2628 | |
| 2629 | return entry; |
| 2630 | } |
| 2631 | |
| 2632 | AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter0(const methodHandle& method) { |
| 2633 | // Use customized signature handler. Need to lock around updates to |
| 2634 | // the AdapterHandlerTable (it is not safe for concurrent readers |
| 2635 | // and a single writer: this could be fixed if it becomes a |
| 2636 | // problem). |
| 2637 | |
| 2638 | ResourceMark rm; |
| 2639 | |
| 2640 | NOT_PRODUCT(int insts_size); |
| 2641 | AdapterBlob* new_adapter = NULL; |
| 2642 | AdapterHandlerEntry* entry = NULL; |
| 2643 | AdapterFingerPrint* fingerprint = NULL; |
| 2644 | { |
| 2645 | MutexLocker mu(AdapterHandlerLibrary_lock); |
| 2646 | // make sure data structure is initialized |
| 2647 | initialize(); |
| 2648 | |
| 2649 | if (method->is_abstract()) { |
| 2650 | return _abstract_method_handler; |
| 2651 | } |
| 2652 | |
| 2653 | // Fill in the signature array, for the calling-convention call. |
| 2654 | int total_args_passed = method->size_of_parameters(); // All args on stack |
| 2655 | |
| 2656 | BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed); |
| 2657 | VMRegPair* regs = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed); |
| 2658 | int i = 0; |
| 2659 | if (!method->is_static()) // Pass in receiver first |
| 2660 | sig_bt[i++] = T_OBJECT; |
| 2661 | for (SignatureStream ss(method->signature()); !ss.at_return_type(); ss.next()) { |
| 2662 | sig_bt[i++] = ss.type(); // Collect remaining bits of signature |
| 2663 | if (ss.type() == T_LONG || ss.type() == T_DOUBLE) |
| 2664 | sig_bt[i++] = T_VOID; // Longs & doubles take 2 Java slots |
| 2665 | } |
| 2666 | assert(i == total_args_passed, "" ); |
| 2667 | |
| 2668 | // Lookup method signature's fingerprint |
| 2669 | entry = _adapters->lookup(total_args_passed, sig_bt); |
| 2670 | |
| 2671 | #ifdef ASSERT |
| 2672 | AdapterHandlerEntry* shared_entry = NULL; |
| 2673 | // Start adapter sharing verification only after the VM is booted. |
| 2674 | if (VerifyAdapterSharing && (entry != NULL)) { |
| 2675 | shared_entry = entry; |
| 2676 | entry = NULL; |
| 2677 | } |
| 2678 | #endif |
| 2679 | |
| 2680 | if (entry != NULL) { |
| 2681 | return entry; |
| 2682 | } |
| 2683 | |
| 2684 | // Get a description of the compiled java calling convention and the largest used (VMReg) stack slot usage |
| 2685 | int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, false); |
| 2686 | |
| 2687 | // Make a C heap allocated version of the fingerprint to store in the adapter |
| 2688 | fingerprint = new AdapterFingerPrint(total_args_passed, sig_bt); |
| 2689 | |
| 2690 | // StubRoutines::code2() is initialized after this function can be called. As a result, |
| 2691 | // VerifyAdapterCalls and VerifyAdapterSharing can fail if we re-use code that generated |
| 2692 | // prior to StubRoutines::code2() being set. Checks refer to checks generated in an I2C |
| 2693 | // stub that ensure that an I2C stub is called from an interpreter frame. |
| 2694 | bool contains_all_checks = StubRoutines::code2() != NULL; |
| 2695 | |
| 2696 | // Create I2C & C2I handlers |
| 2697 | BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache |
| 2698 | if (buf != NULL) { |
| 2699 | CodeBuffer buffer(buf); |
| 2700 | short buffer_locs[20]; |
| 2701 | buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs, |
| 2702 | sizeof(buffer_locs)/sizeof(relocInfo)); |
| 2703 | |
| 2704 | MacroAssembler _masm(&buffer); |
| 2705 | entry = SharedRuntime::generate_i2c2i_adapters(&_masm, |
| 2706 | total_args_passed, |
| 2707 | comp_args_on_stack, |
| 2708 | sig_bt, |
| 2709 | regs, |
| 2710 | fingerprint); |
| 2711 | #ifdef ASSERT |
| 2712 | if (VerifyAdapterSharing) { |
| 2713 | if (shared_entry != NULL) { |
| 2714 | assert(shared_entry->compare_code(buf->code_begin(), buffer.insts_size()), "code must match" ); |
| 2715 | // Release the one just created and return the original |
| 2716 | _adapters->free_entry(entry); |
| 2717 | return shared_entry; |
| 2718 | } else { |
| 2719 | entry->save_code(buf->code_begin(), buffer.insts_size()); |
| 2720 | } |
| 2721 | } |
| 2722 | #endif |
| 2723 | |
| 2724 | new_adapter = AdapterBlob::create(&buffer); |
| 2725 | NOT_PRODUCT(insts_size = buffer.insts_size()); |
| 2726 | } |
| 2727 | if (new_adapter == NULL) { |
| 2728 | // CodeCache is full, disable compilation |
| 2729 | // Ought to log this but compile log is only per compile thread |
| 2730 | // and we're some non descript Java thread. |
| 2731 | return NULL; // Out of CodeCache space |
| 2732 | } |
| 2733 | entry->relocate(new_adapter->content_begin()); |
| 2734 | #ifndef PRODUCT |
| 2735 | // debugging suppport |
| 2736 | if (PrintAdapterHandlers || PrintStubCode) { |
| 2737 | ttyLocker ttyl; |
| 2738 | entry->print_adapter_on(tty); |
| 2739 | tty->print_cr("i2c argument handler #%d for: %s %s %s (%d bytes generated)" , |
| 2740 | _adapters->number_of_entries(), (method->is_static() ? "static" : "receiver" ), |
| 2741 | method->signature()->as_C_string(), fingerprint->as_string(), insts_size); |
| 2742 | tty->print_cr("c2i argument handler starts at %p" , entry->get_c2i_entry()); |
| 2743 | if (Verbose || PrintStubCode) { |
| 2744 | address first_pc = entry->base_address(); |
| 2745 | if (first_pc != NULL) { |
| 2746 | Disassembler::decode(first_pc, first_pc + insts_size); |
| 2747 | tty->cr(); |
| 2748 | } |
| 2749 | } |
| 2750 | } |
| 2751 | #endif |
| 2752 | // Add the entry only if the entry contains all required checks (see sharedRuntime_xxx.cpp) |
| 2753 | // The checks are inserted only if -XX:+VerifyAdapterCalls is specified. |
| 2754 | if (contains_all_checks || !VerifyAdapterCalls) { |
| 2755 | _adapters->add(entry); |
| 2756 | } |
| 2757 | } |
| 2758 | // Outside of the lock |
| 2759 | if (new_adapter != NULL) { |
| 2760 | char blob_id[256]; |
| 2761 | jio_snprintf(blob_id, |
| 2762 | sizeof(blob_id), |
| 2763 | "%s(%s)@" PTR_FORMAT, |
| 2764 | new_adapter->name(), |
| 2765 | fingerprint->as_string(), |
| 2766 | new_adapter->content_begin()); |
| 2767 | Forte::register_stub(blob_id, new_adapter->content_begin(), new_adapter->content_end()); |
| 2768 | |
| 2769 | if (JvmtiExport::should_post_dynamic_code_generated()) { |
| 2770 | JvmtiExport::post_dynamic_code_generated(blob_id, new_adapter->content_begin(), new_adapter->content_end()); |
| 2771 | } |
| 2772 | } |
| 2773 | return entry; |
| 2774 | } |
| 2775 | |
| 2776 | address AdapterHandlerEntry::base_address() { |
| 2777 | address base = _i2c_entry; |
| 2778 | if (base == NULL) base = _c2i_entry; |
| 2779 | assert(base <= _c2i_entry || _c2i_entry == NULL, "" ); |
| 2780 | assert(base <= _c2i_unverified_entry || _c2i_unverified_entry == NULL, "" ); |
| 2781 | return base; |
| 2782 | } |
| 2783 | |
| 2784 | void AdapterHandlerEntry::relocate(address new_base) { |
| 2785 | address old_base = base_address(); |
| 2786 | assert(old_base != NULL, "" ); |
| 2787 | ptrdiff_t delta = new_base - old_base; |
| 2788 | if (_i2c_entry != NULL) |
| 2789 | _i2c_entry += delta; |
| 2790 | if (_c2i_entry != NULL) |
| 2791 | _c2i_entry += delta; |
| 2792 | if (_c2i_unverified_entry != NULL) |
| 2793 | _c2i_unverified_entry += delta; |
| 2794 | assert(base_address() == new_base, "" ); |
| 2795 | } |
| 2796 | |
| 2797 | |
| 2798 | void AdapterHandlerEntry::deallocate() { |
| 2799 | delete _fingerprint; |
| 2800 | #ifdef ASSERT |
| 2801 | if (_saved_code) FREE_C_HEAP_ARRAY(unsigned char, _saved_code); |
| 2802 | #endif |
| 2803 | } |
| 2804 | |
| 2805 | |
| 2806 | #ifdef ASSERT |
| 2807 | // Capture the code before relocation so that it can be compared |
| 2808 | // against other versions. If the code is captured after relocation |
| 2809 | // then relative instructions won't be equivalent. |
| 2810 | void AdapterHandlerEntry::save_code(unsigned char* buffer, int length) { |
| 2811 | _saved_code = NEW_C_HEAP_ARRAY(unsigned char, length, mtCode); |
| 2812 | _saved_code_length = length; |
| 2813 | memcpy(_saved_code, buffer, length); |
| 2814 | } |
| 2815 | |
| 2816 | |
| 2817 | bool AdapterHandlerEntry::compare_code(unsigned char* buffer, int length) { |
| 2818 | if (length != _saved_code_length) { |
| 2819 | return false; |
| 2820 | } |
| 2821 | |
| 2822 | return (memcmp(buffer, _saved_code, length) == 0) ? true : false; |
| 2823 | } |
| 2824 | #endif |
| 2825 | |
| 2826 | |
| 2827 | /** |
| 2828 | * Create a native wrapper for this native method. The wrapper converts the |
| 2829 | * Java-compiled calling convention to the native convention, handles |
| 2830 | * arguments, and transitions to native. On return from the native we transition |
| 2831 | * back to java blocking if a safepoint is in progress. |
| 2832 | */ |
| 2833 | void AdapterHandlerLibrary::create_native_wrapper(const methodHandle& method) { |
| 2834 | ResourceMark rm; |
| 2835 | nmethod* nm = NULL; |
| 2836 | |
| 2837 | assert(method->is_native(), "must be native" ); |
| 2838 | assert(method->is_method_handle_intrinsic() || |
| 2839 | method->has_native_function(), "must have something valid to call!" ); |
| 2840 | |
| 2841 | { |
| 2842 | // Perform the work while holding the lock, but perform any printing outside the lock |
| 2843 | MutexLocker mu(AdapterHandlerLibrary_lock); |
| 2844 | // See if somebody beat us to it |
| 2845 | if (method->code() != NULL) { |
| 2846 | return; |
| 2847 | } |
| 2848 | |
| 2849 | const int compile_id = CompileBroker::assign_compile_id(method, CompileBroker::standard_entry_bci); |
| 2850 | assert(compile_id > 0, "Must generate native wrapper" ); |
| 2851 | |
| 2852 | |
| 2853 | ResourceMark rm; |
| 2854 | BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache |
| 2855 | if (buf != NULL) { |
| 2856 | CodeBuffer buffer(buf); |
| 2857 | double locs_buf[20]; |
| 2858 | buffer.insts()->initialize_shared_locs((relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo)); |
| 2859 | MacroAssembler _masm(&buffer); |
| 2860 | |
| 2861 | // Fill in the signature array, for the calling-convention call. |
| 2862 | const int total_args_passed = method->size_of_parameters(); |
| 2863 | |
| 2864 | BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed); |
| 2865 | VMRegPair* regs = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed); |
| 2866 | int i=0; |
| 2867 | if (!method->is_static()) // Pass in receiver first |
| 2868 | sig_bt[i++] = T_OBJECT; |
| 2869 | SignatureStream ss(method->signature()); |
| 2870 | for (; !ss.at_return_type(); ss.next()) { |
| 2871 | sig_bt[i++] = ss.type(); // Collect remaining bits of signature |
| 2872 | if (ss.type() == T_LONG || ss.type() == T_DOUBLE) |
| 2873 | sig_bt[i++] = T_VOID; // Longs & doubles take 2 Java slots |
| 2874 | } |
| 2875 | assert(i == total_args_passed, "" ); |
| 2876 | BasicType ret_type = ss.type(); |
| 2877 | |
| 2878 | // Now get the compiled-Java layout as input (or output) arguments. |
| 2879 | // NOTE: Stubs for compiled entry points of method handle intrinsics |
| 2880 | // are just trampolines so the argument registers must be outgoing ones. |
| 2881 | const bool is_outgoing = method->is_method_handle_intrinsic(); |
| 2882 | int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, is_outgoing); |
| 2883 | |
| 2884 | // Generate the compiled-to-native wrapper code |
| 2885 | nm = SharedRuntime::generate_native_wrapper(&_masm, method, compile_id, sig_bt, regs, ret_type); |
| 2886 | |
| 2887 | if (nm != NULL) { |
| 2888 | method->set_code(method, nm); |
| 2889 | |
| 2890 | DirectiveSet* directive = DirectivesStack::getDefaultDirective(CompileBroker::compiler(CompLevel_simple)); |
| 2891 | if (directive->PrintAssemblyOption) { |
| 2892 | nm->print_code(); |
| 2893 | } |
| 2894 | DirectivesStack::release(directive); |
| 2895 | } |
| 2896 | } |
| 2897 | } // Unlock AdapterHandlerLibrary_lock |
| 2898 | |
| 2899 | |
| 2900 | // Install the generated code. |
| 2901 | if (nm != NULL) { |
| 2902 | const char *msg = method->is_static() ? "(static)" : "" ; |
| 2903 | CompileTask::print_ul(nm, msg); |
| 2904 | if (PrintCompilation) { |
| 2905 | ttyLocker ttyl; |
| 2906 | CompileTask::print(tty, nm, msg); |
| 2907 | } |
| 2908 | nm->post_compiled_method_load_event(); |
| 2909 | } |
| 2910 | } |
| 2911 | |
| 2912 | JRT_ENTRY_NO_ASYNC(void, SharedRuntime::block_for_jni_critical(JavaThread* thread)) |
| 2913 | assert(thread == JavaThread::current(), "must be" ); |
| 2914 | // The code is about to enter a JNI lazy critical native method and |
| 2915 | // _needs_gc is true, so if this thread is already in a critical |
| 2916 | // section then just return, otherwise this thread should block |
| 2917 | // until needs_gc has been cleared. |
| 2918 | if (thread->in_critical()) { |
| 2919 | return; |
| 2920 | } |
| 2921 | // Lock and unlock a critical section to give the system a chance to block |
| 2922 | GCLocker::lock_critical(thread); |
| 2923 | GCLocker::unlock_critical(thread); |
| 2924 | JRT_END |
| 2925 | |
| 2926 | JRT_LEAF(oopDesc*, SharedRuntime::pin_object(JavaThread* thread, oopDesc* obj)) |
| 2927 | assert(Universe::heap()->supports_object_pinning(), "Why we are here?" ); |
| 2928 | assert(obj != NULL, "Should not be null" ); |
| 2929 | oop o(obj); |
| 2930 | o = Universe::heap()->pin_object(thread, o); |
| 2931 | assert(o != NULL, "Should not be null" ); |
| 2932 | return o; |
| 2933 | JRT_END |
| 2934 | |
| 2935 | JRT_LEAF(void, SharedRuntime::unpin_object(JavaThread* thread, oopDesc* obj)) |
| 2936 | assert(Universe::heap()->supports_object_pinning(), "Why we are here?" ); |
| 2937 | assert(obj != NULL, "Should not be null" ); |
| 2938 | oop o(obj); |
| 2939 | Universe::heap()->unpin_object(thread, o); |
| 2940 | JRT_END |
| 2941 | |
| 2942 | // ------------------------------------------------------------------------- |
| 2943 | // Java-Java calling convention |
| 2944 | // (what you use when Java calls Java) |
| 2945 | |
| 2946 | //------------------------------name_for_receiver---------------------------------- |
| 2947 | // For a given signature, return the VMReg for parameter 0. |
| 2948 | VMReg SharedRuntime::name_for_receiver() { |
| 2949 | VMRegPair regs; |
| 2950 | BasicType sig_bt = T_OBJECT; |
| 2951 | (void) java_calling_convention(&sig_bt, ®s, 1, true); |
| 2952 | // Return argument 0 register. In the LP64 build pointers |
| 2953 | // take 2 registers, but the VM wants only the 'main' name. |
| 2954 | return regs.first(); |
| 2955 | } |
| 2956 | |
| 2957 | VMRegPair *SharedRuntime::find_callee_arguments(Symbol* sig, bool has_receiver, bool has_appendix, int* arg_size) { |
| 2958 | // This method is returning a data structure allocating as a |
| 2959 | // ResourceObject, so do not put any ResourceMarks in here. |
| 2960 | char *s = sig->as_C_string(); |
| 2961 | int len = (int)strlen(s); |
| 2962 | s++; len--; // Skip opening paren |
| 2963 | |
| 2964 | BasicType *sig_bt = NEW_RESOURCE_ARRAY(BasicType, 256); |
| 2965 | VMRegPair *regs = NEW_RESOURCE_ARRAY(VMRegPair, 256); |
| 2966 | int cnt = 0; |
| 2967 | if (has_receiver) { |
| 2968 | sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature |
| 2969 | } |
| 2970 | |
| 2971 | while (*s != ')') { // Find closing right paren |
| 2972 | switch (*s++) { // Switch on signature character |
| 2973 | case 'B': sig_bt[cnt++] = T_BYTE; break; |
| 2974 | case 'C': sig_bt[cnt++] = T_CHAR; break; |
| 2975 | case 'D': sig_bt[cnt++] = T_DOUBLE; sig_bt[cnt++] = T_VOID; break; |
| 2976 | case 'F': sig_bt[cnt++] = T_FLOAT; break; |
| 2977 | case 'I': sig_bt[cnt++] = T_INT; break; |
| 2978 | case 'J': sig_bt[cnt++] = T_LONG; sig_bt[cnt++] = T_VOID; break; |
| 2979 | case 'S': sig_bt[cnt++] = T_SHORT; break; |
| 2980 | case 'Z': sig_bt[cnt++] = T_BOOLEAN; break; |
| 2981 | case 'V': sig_bt[cnt++] = T_VOID; break; |
| 2982 | case 'L': // Oop |
| 2983 | while (*s++ != ';'); // Skip signature |
| 2984 | sig_bt[cnt++] = T_OBJECT; |
| 2985 | break; |
| 2986 | case '[': { // Array |
| 2987 | do { // Skip optional size |
| 2988 | while (*s >= '0' && *s <= '9') s++; |
| 2989 | } while (*s++ == '['); // Nested arrays? |
| 2990 | // Skip element type |
| 2991 | if (s[-1] == 'L') |
| 2992 | while (*s++ != ';'); // Skip signature |
| 2993 | sig_bt[cnt++] = T_ARRAY; |
| 2994 | break; |
| 2995 | } |
| 2996 | default : ShouldNotReachHere(); |
| 2997 | } |
| 2998 | } |
| 2999 | |
| 3000 | if (has_appendix) { |
| 3001 | sig_bt[cnt++] = T_OBJECT; |
| 3002 | } |
| 3003 | |
| 3004 | assert(cnt < 256, "grow table size" ); |
| 3005 | |
| 3006 | int comp_args_on_stack; |
| 3007 | comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt, true); |
| 3008 | |
| 3009 | // the calling convention doesn't count out_preserve_stack_slots so |
| 3010 | // we must add that in to get "true" stack offsets. |
| 3011 | |
| 3012 | if (comp_args_on_stack) { |
| 3013 | for (int i = 0; i < cnt; i++) { |
| 3014 | VMReg reg1 = regs[i].first(); |
| 3015 | if (reg1->is_stack()) { |
| 3016 | // Yuck |
| 3017 | reg1 = reg1->bias(out_preserve_stack_slots()); |
| 3018 | } |
| 3019 | VMReg reg2 = regs[i].second(); |
| 3020 | if (reg2->is_stack()) { |
| 3021 | // Yuck |
| 3022 | reg2 = reg2->bias(out_preserve_stack_slots()); |
| 3023 | } |
| 3024 | regs[i].set_pair(reg2, reg1); |
| 3025 | } |
| 3026 | } |
| 3027 | |
| 3028 | // results |
| 3029 | *arg_size = cnt; |
| 3030 | return regs; |
| 3031 | } |
| 3032 | |
| 3033 | // OSR Migration Code |
| 3034 | // |
| 3035 | // This code is used convert interpreter frames into compiled frames. It is |
| 3036 | // called from very start of a compiled OSR nmethod. A temp array is |
| 3037 | // allocated to hold the interesting bits of the interpreter frame. All |
| 3038 | // active locks are inflated to allow them to move. The displaced headers and |
| 3039 | // active interpreter locals are copied into the temp buffer. Then we return |
| 3040 | // back to the compiled code. The compiled code then pops the current |
| 3041 | // interpreter frame off the stack and pushes a new compiled frame. Then it |
| 3042 | // copies the interpreter locals and displaced headers where it wants. |
| 3043 | // Finally it calls back to free the temp buffer. |
| 3044 | // |
| 3045 | // All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed. |
| 3046 | |
| 3047 | JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *thread) ) |
| 3048 | |
| 3049 | // |
| 3050 | // This code is dependent on the memory layout of the interpreter local |
| 3051 | // array and the monitors. On all of our platforms the layout is identical |
| 3052 | // so this code is shared. If some platform lays the their arrays out |
| 3053 | // differently then this code could move to platform specific code or |
| 3054 | // the code here could be modified to copy items one at a time using |
| 3055 | // frame accessor methods and be platform independent. |
| 3056 | |
| 3057 | frame fr = thread->last_frame(); |
| 3058 | assert(fr.is_interpreted_frame(), "" ); |
| 3059 | assert(fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks" ); |
| 3060 | |
| 3061 | // Figure out how many monitors are active. |
| 3062 | int active_monitor_count = 0; |
| 3063 | for (BasicObjectLock *kptr = fr.interpreter_frame_monitor_end(); |
| 3064 | kptr < fr.interpreter_frame_monitor_begin(); |
| 3065 | kptr = fr.next_monitor_in_interpreter_frame(kptr) ) { |
| 3066 | if (kptr->obj() != NULL) active_monitor_count++; |
| 3067 | } |
| 3068 | |
| 3069 | // QQQ we could place number of active monitors in the array so that compiled code |
| 3070 | // could double check it. |
| 3071 | |
| 3072 | Method* moop = fr.interpreter_frame_method(); |
| 3073 | int max_locals = moop->max_locals(); |
| 3074 | // Allocate temp buffer, 1 word per local & 2 per active monitor |
| 3075 | int buf_size_words = max_locals + active_monitor_count * BasicObjectLock::size(); |
| 3076 | intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words, mtCode); |
| 3077 | |
| 3078 | // Copy the locals. Order is preserved so that loading of longs works. |
| 3079 | // Since there's no GC I can copy the oops blindly. |
| 3080 | assert(sizeof(HeapWord)==sizeof(intptr_t), "fix this code" ); |
| 3081 | Copy::disjoint_words((HeapWord*)fr.interpreter_frame_local_at(max_locals-1), |
| 3082 | (HeapWord*)&buf[0], |
| 3083 | max_locals); |
| 3084 | |
| 3085 | // Inflate locks. Copy the displaced headers. Be careful, there can be holes. |
| 3086 | int i = max_locals; |
| 3087 | for (BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end(); |
| 3088 | kptr2 < fr.interpreter_frame_monitor_begin(); |
| 3089 | kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) { |
| 3090 | if (kptr2->obj() != NULL) { // Avoid 'holes' in the monitor array |
| 3091 | BasicLock *lock = kptr2->lock(); |
| 3092 | // Inflate so the displaced header becomes position-independent |
| 3093 | if (lock->displaced_header()->is_unlocked()) |
| 3094 | ObjectSynchronizer::inflate_helper(kptr2->obj()); |
| 3095 | // Now the displaced header is free to move |
| 3096 | buf[i++] = (intptr_t)lock->displaced_header(); |
| 3097 | buf[i++] = cast_from_oop<intptr_t>(kptr2->obj()); |
| 3098 | } |
| 3099 | } |
| 3100 | assert(i - max_locals == active_monitor_count*2, "found the expected number of monitors" ); |
| 3101 | |
| 3102 | return buf; |
| 3103 | JRT_END |
| 3104 | |
| 3105 | JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) ) |
| 3106 | FREE_C_HEAP_ARRAY(intptr_t, buf); |
| 3107 | JRT_END |
| 3108 | |
| 3109 | bool AdapterHandlerLibrary::contains(const CodeBlob* b) { |
| 3110 | AdapterHandlerTableIterator iter(_adapters); |
| 3111 | while (iter.has_next()) { |
| 3112 | AdapterHandlerEntry* a = iter.next(); |
| 3113 | if (b == CodeCache::find_blob(a->get_i2c_entry())) return true; |
| 3114 | } |
| 3115 | return false; |
| 3116 | } |
| 3117 | |
| 3118 | void AdapterHandlerLibrary::print_handler_on(outputStream* st, const CodeBlob* b) { |
| 3119 | AdapterHandlerTableIterator iter(_adapters); |
| 3120 | while (iter.has_next()) { |
| 3121 | AdapterHandlerEntry* a = iter.next(); |
| 3122 | if (b == CodeCache::find_blob(a->get_i2c_entry())) { |
| 3123 | st->print("Adapter for signature: " ); |
| 3124 | a->print_adapter_on(tty); |
| 3125 | return; |
| 3126 | } |
| 3127 | } |
| 3128 | assert(false, "Should have found handler" ); |
| 3129 | } |
| 3130 | |
| 3131 | void AdapterHandlerEntry::print_adapter_on(outputStream* st) const { |
| 3132 | st->print_cr("AHE@" INTPTR_FORMAT ": %s i2c: " INTPTR_FORMAT " c2i: " INTPTR_FORMAT " c2iUV: " INTPTR_FORMAT, |
| 3133 | p2i(this), fingerprint()->as_string(), |
| 3134 | p2i(get_i2c_entry()), p2i(get_c2i_entry()), p2i(get_c2i_unverified_entry())); |
| 3135 | |
| 3136 | } |
| 3137 | |
| 3138 | #if INCLUDE_CDS |
| 3139 | |
| 3140 | void CDSAdapterHandlerEntry::init() { |
| 3141 | assert(DumpSharedSpaces, "used during dump time only" ); |
| 3142 | _c2i_entry_trampoline = (address)MetaspaceShared::misc_code_space_alloc(SharedRuntime::trampoline_size()); |
| 3143 | _adapter_trampoline = (AdapterHandlerEntry**)MetaspaceShared::misc_code_space_alloc(sizeof(AdapterHandlerEntry*)); |
| 3144 | }; |
| 3145 | |
| 3146 | #endif // INCLUDE_CDS |
| 3147 | |
| 3148 | |
| 3149 | #ifndef PRODUCT |
| 3150 | |
| 3151 | void AdapterHandlerLibrary::print_statistics() { |
| 3152 | _adapters->print_statistics(); |
| 3153 | } |
| 3154 | |
| 3155 | #endif /* PRODUCT */ |
| 3156 | |
| 3157 | JRT_LEAF(void, SharedRuntime::enable_stack_reserved_zone(JavaThread* thread)) |
| 3158 | assert(thread->is_Java_thread(), "Only Java threads have a stack reserved zone" ); |
| 3159 | if (thread->stack_reserved_zone_disabled()) { |
| 3160 | thread->enable_stack_reserved_zone(); |
| 3161 | } |
| 3162 | thread->set_reserved_stack_activation(thread->stack_base()); |
| 3163 | JRT_END |
| 3164 | |
| 3165 | frame SharedRuntime::look_for_reserved_stack_annotated_method(JavaThread* thread, frame fr) { |
| 3166 | ResourceMark rm(thread); |
| 3167 | frame activation; |
| 3168 | CompiledMethod* nm = NULL; |
| 3169 | int count = 1; |
| 3170 | |
| 3171 | assert(fr.is_java_frame(), "Must start on Java frame" ); |
| 3172 | |
| 3173 | while (true) { |
| 3174 | Method* method = NULL; |
| 3175 | bool found = false; |
| 3176 | if (fr.is_interpreted_frame()) { |
| 3177 | method = fr.interpreter_frame_method(); |
| 3178 | if (method != NULL && method->has_reserved_stack_access()) { |
| 3179 | found = true; |
| 3180 | } |
| 3181 | } else { |
| 3182 | CodeBlob* cb = fr.cb(); |
| 3183 | if (cb != NULL && cb->is_compiled()) { |
| 3184 | nm = cb->as_compiled_method(); |
| 3185 | method = nm->method(); |
| 3186 | // scope_desc_near() must be used, instead of scope_desc_at() because on |
| 3187 | // SPARC, the pcDesc can be on the delay slot after the call instruction. |
| 3188 | for (ScopeDesc *sd = nm->scope_desc_near(fr.pc()); sd != NULL; sd = sd->sender()) { |
| 3189 | method = sd->method(); |
| 3190 | if (method != NULL && method->has_reserved_stack_access()) { |
| 3191 | found = true; |
| 3192 | } |
| 3193 | } |
| 3194 | } |
| 3195 | } |
| 3196 | if (found) { |
| 3197 | activation = fr; |
| 3198 | warning("Potentially dangerous stack overflow in " |
| 3199 | "ReservedStackAccess annotated method %s [%d]" , |
| 3200 | method->name_and_sig_as_C_string(), count++); |
| 3201 | EventReservedStackActivation event; |
| 3202 | if (event.should_commit()) { |
| 3203 | event.set_method(method); |
| 3204 | event.commit(); |
| 3205 | } |
| 3206 | } |
| 3207 | if (fr.is_first_java_frame()) { |
| 3208 | break; |
| 3209 | } else { |
| 3210 | fr = fr.java_sender(); |
| 3211 | } |
| 3212 | } |
| 3213 | return activation; |
| 3214 | } |
| 3215 | |
| 3216 | void SharedRuntime::on_slowpath_allocation_exit(JavaThread* thread) { |
| 3217 | // After any safepoint, just before going back to compiled code, |
| 3218 | // we inform the GC that we will be doing initializing writes to |
| 3219 | // this object in the future without emitting card-marks, so |
| 3220 | // GC may take any compensating steps. |
| 3221 | |
| 3222 | oop new_obj = thread->vm_result(); |
| 3223 | if (new_obj == NULL) return; |
| 3224 | |
| 3225 | BarrierSet *bs = BarrierSet::barrier_set(); |
| 3226 | bs->on_slowpath_allocation_exit(thread, new_obj); |
| 3227 | } |
| 3228 | |