1 | /* |
2 | * Copyright 2018 Google Inc. |
3 | * |
4 | * Use of this source code is governed by a BSD-style license that can be |
5 | * found in the LICENSE file. |
6 | */ |
7 | |
8 | #include "src/gpu/gradients/GrGradientShader.h" |
9 | |
10 | #include "src/gpu/gradients/generated/GrClampedGradientEffect.h" |
11 | #include "src/gpu/gradients/generated/GrTiledGradientEffect.h" |
12 | |
13 | #include "src/gpu/gradients/generated/GrLinearGradientLayout.h" |
14 | #include "src/gpu/gradients/generated/GrRadialGradientLayout.h" |
15 | #include "src/gpu/gradients/generated/GrSweepGradientLayout.h" |
16 | #include "src/gpu/gradients/generated/GrTwoPointConicalGradientLayout.h" |
17 | |
18 | #include "src/gpu/gradients/GrGradientBitmapCache.h" |
19 | #include "src/gpu/gradients/generated/GrDualIntervalGradientColorizer.h" |
20 | #include "src/gpu/gradients/generated/GrSingleIntervalGradientColorizer.h" |
21 | #include "src/gpu/gradients/generated/GrTextureGradientColorizer.h" |
22 | #include "src/gpu/gradients/generated/GrUnrolledBinaryGradientColorizer.h" |
23 | |
24 | #include "include/private/GrRecordingContext.h" |
25 | #include "src/gpu/GrCaps.h" |
26 | #include "src/gpu/GrColor.h" |
27 | #include "src/gpu/GrColorInfo.h" |
28 | #include "src/gpu/GrRecordingContextPriv.h" |
29 | #include "src/gpu/SkGr.h" |
30 | |
31 | // Intervals smaller than this (that aren't hard stops) on low-precision-only devices force us to |
32 | // use the textured gradient |
33 | static const SkScalar kLowPrecisionIntervalLimit = 0.01f; |
34 | |
35 | // Each cache entry costs 1K or 2K of RAM. Each bitmap will be 1x256 at either 32bpp or 64bpp. |
36 | static const int kMaxNumCachedGradientBitmaps = 32; |
37 | static const int kGradientTextureSize = 256; |
38 | |
39 | // NOTE: signature takes raw pointers to the color/pos arrays and a count to make it easy for |
40 | // MakeColorizer to transparently take care of hard stops at the end points of the gradient. |
41 | static std::unique_ptr<GrFragmentProcessor> make_textured_colorizer(const SkPMColor4f* colors, |
42 | const SkScalar* positions, int count, bool premul, const GrFPArgs& args) { |
43 | static GrGradientBitmapCache gCache(kMaxNumCachedGradientBitmaps, kGradientTextureSize); |
44 | |
45 | // Use 8888 or F16, depending on the destination config. |
46 | // TODO: Use 1010102 for opaque gradients, at least if destination is 1010102? |
47 | SkColorType colorType = kRGBA_8888_SkColorType; |
48 | if (GrColorTypeIsWiderThan(args.fDstColorInfo->colorType(), 8)) { |
49 | auto f16Format = args.fContext->priv().caps()->getDefaultBackendFormat( |
50 | GrColorType::kRGBA_F16, GrRenderable::kNo); |
51 | if (f16Format.isValid()) { |
52 | colorType = kRGBA_F16_SkColorType; |
53 | } |
54 | } |
55 | SkAlphaType alphaType = premul ? kPremul_SkAlphaType : kUnpremul_SkAlphaType; |
56 | |
57 | SkBitmap bitmap; |
58 | gCache.getGradient(colors, positions, count, colorType, alphaType, &bitmap); |
59 | SkASSERT(1 == bitmap.height() && SkIsPow2(bitmap.width())); |
60 | SkASSERT(bitmap.isImmutable()); |
61 | |
62 | auto view = GrMakeCachedBitmapProxyView(args.fContext, bitmap); |
63 | if (!view.proxy()) { |
64 | SkDebugf("Gradient won't draw. Could not create texture." ); |
65 | return nullptr; |
66 | } |
67 | |
68 | return GrTextureGradientColorizer::Make(std::move(view)); |
69 | } |
70 | |
71 | // Analyze the shader's color stops and positions and chooses an appropriate colorizer to represent |
72 | // the gradient. |
73 | static std::unique_ptr<GrFragmentProcessor> make_colorizer(const SkPMColor4f* colors, |
74 | const SkScalar* positions, int count, bool premul, const GrFPArgs& args) { |
75 | // If there are hard stops at the beginning or end, the first and/or last color should be |
76 | // ignored by the colorizer since it should only be used in a clamped border color. By detecting |
77 | // and removing these stops at the beginning, it makes optimizing the remaining color stops |
78 | // simpler. |
79 | |
80 | // SkGradientShaderBase guarantees that pos[0] == 0 by adding a dummy |
81 | bool bottomHardStop = SkScalarNearlyEqual(positions[0], positions[1]); |
82 | // The same is true for pos[end] == 1 |
83 | bool topHardStop = SkScalarNearlyEqual(positions[count - 2], positions[count - 1]); |
84 | |
85 | int offset = 0; |
86 | if (bottomHardStop) { |
87 | offset += 1; |
88 | count--; |
89 | } |
90 | if (topHardStop) { |
91 | count--; |
92 | } |
93 | |
94 | // Two remaining colors means a single interval from 0 to 1 |
95 | // (but it may have originally been a 3 or 4 color gradient with 1-2 hard stops at the ends) |
96 | if (count == 2) { |
97 | return GrSingleIntervalGradientColorizer::Make(colors[offset], colors[offset + 1]); |
98 | } |
99 | |
100 | // Do an early test for the texture fallback to skip all of the other tests for specific |
101 | // analytic support of the gradient (and compatibility with the hardware), when it's definitely |
102 | // impossible to use an analytic solution. |
103 | bool tryAnalyticColorizer = count <= GrUnrolledBinaryGradientColorizer::kMaxColorCount; |
104 | |
105 | // The remaining analytic colorizers use scale*t+bias, and the scale/bias values can become |
106 | // quite large when thresholds are close (but still outside the hardstop limit). If float isn't |
107 | // 32-bit, output can be incorrect if the thresholds are too close together. However, the |
108 | // analytic shaders are higher quality, so they can be used with lower precision hardware when |
109 | // the thresholds are not ill-conditioned. |
110 | const GrShaderCaps* caps = args.fContext->priv().caps()->shaderCaps(); |
111 | if (!caps->floatIs32Bits() && tryAnalyticColorizer) { |
112 | // Could run into problems, check if thresholds are close together (with a limit of .01, so |
113 | // that scales will be less than 100, which leaves 4 decimals of precision on 16-bit). |
114 | for (int i = offset; i < count - 1; i++) { |
115 | SkScalar dt = SkScalarAbs(positions[i] - positions[i + 1]); |
116 | if (dt <= kLowPrecisionIntervalLimit && dt > SK_ScalarNearlyZero) { |
117 | tryAnalyticColorizer = false; |
118 | break; |
119 | } |
120 | } |
121 | } |
122 | |
123 | if (tryAnalyticColorizer) { |
124 | if (count == 3) { |
125 | // Must be a dual interval gradient, where the middle point is at offset+1 and the two |
126 | // intervals share the middle color stop. |
127 | return GrDualIntervalGradientColorizer::Make(colors[offset], colors[offset + 1], |
128 | colors[offset + 1], colors[offset + 2], |
129 | positions[offset + 1]); |
130 | } else if (count == 4 && SkScalarNearlyEqual(positions[offset + 1], |
131 | positions[offset + 2])) { |
132 | // Two separate intervals that join at the same threshold position |
133 | return GrDualIntervalGradientColorizer::Make(colors[offset], colors[offset + 1], |
134 | colors[offset + 2], colors[offset + 3], |
135 | positions[offset + 1]); |
136 | } |
137 | |
138 | // The single and dual intervals are a specialized case of the unrolled binary search |
139 | // colorizer which can analytically render gradients of up to 8 intervals (up to 9 or 16 |
140 | // colors depending on how many hard stops are inserted). |
141 | std::unique_ptr<GrFragmentProcessor> unrolled = GrUnrolledBinaryGradientColorizer::Make( |
142 | colors + offset, positions + offset, count); |
143 | if (unrolled) { |
144 | return unrolled; |
145 | } |
146 | } |
147 | |
148 | // Otherwise fall back to a rasterized gradient sampled by a texture, which can handle |
149 | // arbitrary gradients (the only downside being sampling resolution). |
150 | return make_textured_colorizer(colors + offset, positions + offset, count, premul, args); |
151 | } |
152 | |
153 | // Combines the colorizer and layout with an appropriately configured master effect based on the |
154 | // gradient's tile mode |
155 | static std::unique_ptr<GrFragmentProcessor> make_gradient(const SkGradientShaderBase& shader, |
156 | const GrFPArgs& args, std::unique_ptr<GrFragmentProcessor> layout) { |
157 | // No shader is possible if a layout couldn't be created, e.g. a layout-specific Make() returned |
158 | // null. |
159 | if (layout == nullptr) { |
160 | return nullptr; |
161 | } |
162 | |
163 | // Convert all colors into destination space and into SkPMColor4fs, and handle |
164 | // premul issues depending on the interpolation mode |
165 | bool inputPremul = shader.getGradFlags() & SkGradientShader::kInterpolateColorsInPremul_Flag; |
166 | bool allOpaque = true; |
167 | SkAutoSTMalloc<4, SkPMColor4f> colors(shader.fColorCount); |
168 | SkColor4fXformer xformedColors(shader.fOrigColors4f, shader.fColorCount, |
169 | shader.fColorSpace.get(), args.fDstColorInfo->colorSpace()); |
170 | for (int i = 0; i < shader.fColorCount; i++) { |
171 | const SkColor4f& upmColor = xformedColors.fColors[i]; |
172 | colors[i] = inputPremul ? upmColor.premul() |
173 | : SkPMColor4f{ upmColor.fR, upmColor.fG, upmColor.fB, upmColor.fA }; |
174 | if (allOpaque && !SkScalarNearlyEqual(colors[i].fA, 1.0)) { |
175 | allOpaque = false; |
176 | } |
177 | } |
178 | |
179 | // SkGradientShader stores positions implicitly when they are evenly spaced, but the getPos() |
180 | // implementation performs a branch for every position index. Since the shader conversion |
181 | // requires lots of position tests, calculate all of the positions up front if needed. |
182 | SkTArray<SkScalar, true> implicitPos; |
183 | SkScalar* positions; |
184 | if (shader.fOrigPos) { |
185 | positions = shader.fOrigPos; |
186 | } else { |
187 | implicitPos.reserve(shader.fColorCount); |
188 | SkScalar posScale = SK_Scalar1 / (shader.fColorCount - 1); |
189 | for (int i = 0 ; i < shader.fColorCount; i++) { |
190 | implicitPos.push_back(SkIntToScalar(i) * posScale); |
191 | } |
192 | positions = implicitPos.begin(); |
193 | } |
194 | |
195 | // All gradients are colorized the same way, regardless of layout |
196 | std::unique_ptr<GrFragmentProcessor> colorizer = make_colorizer( |
197 | colors.get(), positions, shader.fColorCount, inputPremul, args); |
198 | if (colorizer == nullptr) { |
199 | return nullptr; |
200 | } |
201 | |
202 | // The master effect has to export premul colors, but under certain conditions it doesn't need |
203 | // to do anything to achieve that: i.e. its interpolating already premul colors (inputPremul) |
204 | // or all the colors have a = 1, in which case premul is a no op. Note that this allOpaque |
205 | // check is more permissive than SkGradientShaderBase's isOpaque(), since we can optimize away |
206 | // the make-premul op for two point conical gradients (which report false for isOpaque). |
207 | bool makePremul = !inputPremul && !allOpaque; |
208 | |
209 | // All tile modes are supported (unless something was added to SkShader) |
210 | std::unique_ptr<GrFragmentProcessor> master; |
211 | switch(shader.getTileMode()) { |
212 | case SkTileMode::kRepeat: |
213 | master = GrTiledGradientEffect::Make(std::move(colorizer), std::move(layout), |
214 | /* mirror */ false, makePremul, allOpaque); |
215 | break; |
216 | case SkTileMode::kMirror: |
217 | master = GrTiledGradientEffect::Make(std::move(colorizer), std::move(layout), |
218 | /* mirror */ true, makePremul, allOpaque); |
219 | break; |
220 | case SkTileMode::kClamp: |
221 | // For the clamped mode, the border colors are the first and last colors, corresponding |
222 | // to t=0 and t=1, because SkGradientShaderBase enforces that by adding color stops as |
223 | // appropriate. If there is a hard stop, this grabs the expected outer colors for the |
224 | // border. |
225 | master = GrClampedGradientEffect::Make(std::move(colorizer), std::move(layout), |
226 | colors[0], colors[shader.fColorCount - 1], makePremul, allOpaque); |
227 | break; |
228 | case SkTileMode::kDecal: |
229 | // Even if the gradient colors are opaque, the decal borders are transparent so |
230 | // disable that optimization |
231 | master = GrClampedGradientEffect::Make(std::move(colorizer), std::move(layout), |
232 | SK_PMColor4fTRANSPARENT, SK_PMColor4fTRANSPARENT, |
233 | makePremul, /* colorsAreOpaque */ false); |
234 | break; |
235 | } |
236 | |
237 | if (master == nullptr) { |
238 | // Unexpected tile mode |
239 | return nullptr; |
240 | } |
241 | if (args.fInputColorIsOpaque) { |
242 | return GrFragmentProcessor::OverrideInput(std::move(master), SK_PMColor4fWHITE, false); |
243 | } |
244 | return GrFragmentProcessor::MulChildByInputAlpha(std::move(master)); |
245 | } |
246 | |
247 | namespace GrGradientShader { |
248 | |
249 | std::unique_ptr<GrFragmentProcessor> MakeLinear(const SkLinearGradient& shader, |
250 | const GrFPArgs& args) { |
251 | return make_gradient(shader, args, GrLinearGradientLayout::Make(shader, args)); |
252 | } |
253 | |
254 | std::unique_ptr<GrFragmentProcessor> MakeRadial(const SkRadialGradient& shader, |
255 | const GrFPArgs& args) { |
256 | return make_gradient(shader,args, GrRadialGradientLayout::Make(shader, args)); |
257 | } |
258 | |
259 | std::unique_ptr<GrFragmentProcessor> MakeSweep(const SkSweepGradient& shader, |
260 | const GrFPArgs& args) { |
261 | return make_gradient(shader,args, GrSweepGradientLayout::Make(shader, args)); |
262 | } |
263 | |
264 | std::unique_ptr<GrFragmentProcessor> MakeConical(const SkTwoPointConicalGradient& shader, |
265 | const GrFPArgs& args) { |
266 | return make_gradient(shader, args, GrTwoPointConicalGradientLayout::Make(shader, args)); |
267 | } |
268 | |
269 | #if GR_TEST_UTILS |
270 | RandomParams::RandomParams(SkRandom* random) { |
271 | // Set color count to min of 2 so that we don't trigger the const color optimization and make |
272 | // a non-gradient processor. |
273 | fColorCount = random->nextRangeU(2, kMaxRandomGradientColors); |
274 | fUseColors4f = random->nextBool(); |
275 | |
276 | // if one color, omit stops, otherwise randomly decide whether or not to |
277 | if (fColorCount == 1 || (fColorCount >= 2 && random->nextBool())) { |
278 | fStops = nullptr; |
279 | } else { |
280 | fStops = fStopStorage; |
281 | } |
282 | |
283 | // if using SkColor4f, attach a random (possibly null) color space (with linear gamma) |
284 | if (fUseColors4f) { |
285 | fColorSpace = GrTest::TestColorSpace(random); |
286 | } |
287 | |
288 | SkScalar stop = 0.f; |
289 | for (int i = 0; i < fColorCount; ++i) { |
290 | if (fUseColors4f) { |
291 | fColors4f[i].fR = random->nextUScalar1(); |
292 | fColors4f[i].fG = random->nextUScalar1(); |
293 | fColors4f[i].fB = random->nextUScalar1(); |
294 | fColors4f[i].fA = random->nextUScalar1(); |
295 | } else { |
296 | fColors[i] = random->nextU(); |
297 | } |
298 | if (fStops) { |
299 | fStops[i] = stop; |
300 | stop = i < fColorCount - 1 ? stop + random->nextUScalar1() * (1.f - stop) : 1.f; |
301 | } |
302 | } |
303 | fTileMode = static_cast<SkTileMode>(random->nextULessThan(kSkTileModeCount)); |
304 | } |
305 | #endif |
306 | |
307 | } |
308 | |