1 | /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) |
2 | * All rights reserved. |
3 | * |
4 | * This package is an SSL implementation written |
5 | * by Eric Young (eay@cryptsoft.com). |
6 | * The implementation was written so as to conform with Netscapes SSL. |
7 | * |
8 | * This library is free for commercial and non-commercial use as long as |
9 | * the following conditions are aheared to. The following conditions |
10 | * apply to all code found in this distribution, be it the RC4, RSA, |
11 | * lhash, DES, etc., code; not just the SSL code. The SSL documentation |
12 | * included with this distribution is covered by the same copyright terms |
13 | * except that the holder is Tim Hudson (tjh@cryptsoft.com). |
14 | * |
15 | * Copyright remains Eric Young's, and as such any Copyright notices in |
16 | * the code are not to be removed. |
17 | * If this package is used in a product, Eric Young should be given attribution |
18 | * as the author of the parts of the library used. |
19 | * This can be in the form of a textual message at program startup or |
20 | * in documentation (online or textual) provided with the package. |
21 | * |
22 | * Redistribution and use in source and binary forms, with or without |
23 | * modification, are permitted provided that the following conditions |
24 | * are met: |
25 | * 1. Redistributions of source code must retain the copyright |
26 | * notice, this list of conditions and the following disclaimer. |
27 | * 2. Redistributions in binary form must reproduce the above copyright |
28 | * notice, this list of conditions and the following disclaimer in the |
29 | * documentation and/or other materials provided with the distribution. |
30 | * 3. All advertising materials mentioning features or use of this software |
31 | * must display the following acknowledgement: |
32 | * "This product includes cryptographic software written by |
33 | * Eric Young (eay@cryptsoft.com)" |
34 | * The word 'cryptographic' can be left out if the rouines from the library |
35 | * being used are not cryptographic related :-). |
36 | * 4. If you include any Windows specific code (or a derivative thereof) from |
37 | * the apps directory (application code) you must include an acknowledgement: |
38 | * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" |
39 | * |
40 | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND |
41 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
42 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
43 | * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE |
44 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
45 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
46 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
47 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
48 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
49 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
50 | * SUCH DAMAGE. |
51 | * |
52 | * The licence and distribution terms for any publically available version or |
53 | * derivative of this code cannot be changed. i.e. this code cannot simply be |
54 | * copied and put under another distribution licence |
55 | * [including the GNU Public Licence.] */ |
56 | |
57 | #include <openssl/rsa.h> |
58 | |
59 | #include <assert.h> |
60 | #include <limits.h> |
61 | #include <string.h> |
62 | |
63 | #include <openssl/bn.h> |
64 | #include <openssl/err.h> |
65 | #include <openssl/mem.h> |
66 | #include <openssl/thread.h> |
67 | #include <openssl/type_check.h> |
68 | |
69 | #include "internal.h" |
70 | #include "../bn/internal.h" |
71 | #include "../../internal.h" |
72 | #include "../delocate.h" |
73 | |
74 | |
75 | static int check_modulus_and_exponent_sizes(const RSA *rsa) { |
76 | unsigned rsa_bits = BN_num_bits(rsa->n); |
77 | |
78 | if (rsa_bits > 16 * 1024) { |
79 | OPENSSL_PUT_ERROR(RSA, RSA_R_MODULUS_TOO_LARGE); |
80 | return 0; |
81 | } |
82 | |
83 | // Mitigate DoS attacks by limiting the exponent size. 33 bits was chosen as |
84 | // the limit based on the recommendations in [1] and [2]. Windows CryptoAPI |
85 | // doesn't support values larger than 32 bits [3], so it is unlikely that |
86 | // exponents larger than 32 bits are being used for anything Windows commonly |
87 | // does. |
88 | // |
89 | // [1] https://www.imperialviolet.org/2012/03/16/rsae.html |
90 | // [2] https://www.imperialviolet.org/2012/03/17/rsados.html |
91 | // [3] https://msdn.microsoft.com/en-us/library/aa387685(VS.85).aspx |
92 | static const unsigned kMaxExponentBits = 33; |
93 | |
94 | if (BN_num_bits(rsa->e) > kMaxExponentBits) { |
95 | OPENSSL_PUT_ERROR(RSA, RSA_R_BAD_E_VALUE); |
96 | return 0; |
97 | } |
98 | |
99 | // Verify |n > e|. Comparing |rsa_bits| to |kMaxExponentBits| is a small |
100 | // shortcut to comparing |n| and |e| directly. In reality, |kMaxExponentBits| |
101 | // is much smaller than the minimum RSA key size that any application should |
102 | // accept. |
103 | if (rsa_bits <= kMaxExponentBits) { |
104 | OPENSSL_PUT_ERROR(RSA, RSA_R_KEY_SIZE_TOO_SMALL); |
105 | return 0; |
106 | } |
107 | assert(BN_ucmp(rsa->n, rsa->e) > 0); |
108 | |
109 | return 1; |
110 | } |
111 | |
112 | static int ensure_fixed_copy(BIGNUM **out, const BIGNUM *in, int width) { |
113 | if (*out != NULL) { |
114 | return 1; |
115 | } |
116 | BIGNUM *copy = BN_dup(in); |
117 | if (copy == NULL || |
118 | !bn_resize_words(copy, width)) { |
119 | BN_free(copy); |
120 | return 0; |
121 | } |
122 | *out = copy; |
123 | CONSTTIME_SECRET(copy->d, sizeof(BN_ULONG) * width); |
124 | |
125 | return 1; |
126 | } |
127 | |
128 | // freeze_private_key finishes initializing |rsa|'s private key components. |
129 | // After this function has returned, |rsa| may not be changed. This is needed |
130 | // because |RSA| is a public struct and, additionally, OpenSSL 1.1.0 opaquified |
131 | // it wrong (see https://github.com/openssl/openssl/issues/5158). |
132 | static int freeze_private_key(RSA *rsa, BN_CTX *ctx) { |
133 | CRYPTO_MUTEX_lock_read(&rsa->lock); |
134 | int frozen = rsa->private_key_frozen; |
135 | CRYPTO_MUTEX_unlock_read(&rsa->lock); |
136 | if (frozen) { |
137 | return 1; |
138 | } |
139 | |
140 | int ret = 0; |
141 | CRYPTO_MUTEX_lock_write(&rsa->lock); |
142 | if (rsa->private_key_frozen) { |
143 | ret = 1; |
144 | goto err; |
145 | } |
146 | |
147 | // Pre-compute various intermediate values, as well as copies of private |
148 | // exponents with correct widths. Note that other threads may concurrently |
149 | // read from |rsa->n|, |rsa->e|, etc., so any fixes must be in separate |
150 | // copies. We use |mont_n->N|, |mont_p->N|, and |mont_q->N| as copies of |n|, |
151 | // |p|, and |q| with the correct minimal widths. |
152 | |
153 | if (rsa->mont_n == NULL) { |
154 | rsa->mont_n = BN_MONT_CTX_new_for_modulus(rsa->n, ctx); |
155 | if (rsa->mont_n == NULL) { |
156 | goto err; |
157 | } |
158 | } |
159 | const BIGNUM *n_fixed = &rsa->mont_n->N; |
160 | |
161 | // The only public upper-bound of |rsa->d| is the bit length of |rsa->n|. The |
162 | // ASN.1 serialization of RSA private keys unfortunately leaks the byte length |
163 | // of |rsa->d|, but normalize it so we only leak it once, rather than per |
164 | // operation. |
165 | if (rsa->d != NULL && |
166 | !ensure_fixed_copy(&rsa->d_fixed, rsa->d, n_fixed->width)) { |
167 | goto err; |
168 | } |
169 | |
170 | if (rsa->p != NULL && rsa->q != NULL) { |
171 | // TODO: p and q are also CONSTTIME_SECRET but not yet marked as such |
172 | // because the Montgomery code does things like test whether or not values |
173 | // are zero. So the secret marking probably needs to happen inside that |
174 | // code. |
175 | |
176 | if (rsa->mont_p == NULL) { |
177 | rsa->mont_p = BN_MONT_CTX_new_consttime(rsa->p, ctx); |
178 | if (rsa->mont_p == NULL) { |
179 | goto err; |
180 | } |
181 | } |
182 | const BIGNUM *p_fixed = &rsa->mont_p->N; |
183 | |
184 | if (rsa->mont_q == NULL) { |
185 | rsa->mont_q = BN_MONT_CTX_new_consttime(rsa->q, ctx); |
186 | if (rsa->mont_q == NULL) { |
187 | goto err; |
188 | } |
189 | } |
190 | const BIGNUM *q_fixed = &rsa->mont_q->N; |
191 | |
192 | if (rsa->dmp1 != NULL && rsa->dmq1 != NULL) { |
193 | // Key generation relies on this function to compute |iqmp|. |
194 | if (rsa->iqmp == NULL) { |
195 | BIGNUM *iqmp = BN_new(); |
196 | if (iqmp == NULL || |
197 | !bn_mod_inverse_secret_prime(iqmp, rsa->q, rsa->p, ctx, |
198 | rsa->mont_p)) { |
199 | BN_free(iqmp); |
200 | goto err; |
201 | } |
202 | rsa->iqmp = iqmp; |
203 | } |
204 | |
205 | // CRT components are only publicly bounded by their corresponding |
206 | // moduli's bit lengths. |rsa->iqmp| is unused outside of this one-time |
207 | // setup, so we do not compute a fixed-width version of it. |
208 | if (!ensure_fixed_copy(&rsa->dmp1_fixed, rsa->dmp1, p_fixed->width) || |
209 | !ensure_fixed_copy(&rsa->dmq1_fixed, rsa->dmq1, q_fixed->width)) { |
210 | goto err; |
211 | } |
212 | |
213 | // Compute |inv_small_mod_large_mont|. Note that it is always modulo the |
214 | // larger prime, independent of what is stored in |rsa->iqmp|. |
215 | if (rsa->inv_small_mod_large_mont == NULL) { |
216 | BIGNUM *inv_small_mod_large_mont = BN_new(); |
217 | int ok; |
218 | if (BN_cmp(rsa->p, rsa->q) < 0) { |
219 | ok = inv_small_mod_large_mont != NULL && |
220 | bn_mod_inverse_secret_prime(inv_small_mod_large_mont, rsa->p, |
221 | rsa->q, ctx, rsa->mont_q) && |
222 | BN_to_montgomery(inv_small_mod_large_mont, |
223 | inv_small_mod_large_mont, rsa->mont_q, ctx); |
224 | } else { |
225 | ok = inv_small_mod_large_mont != NULL && |
226 | BN_to_montgomery(inv_small_mod_large_mont, rsa->iqmp, |
227 | rsa->mont_p, ctx); |
228 | } |
229 | if (!ok) { |
230 | BN_free(inv_small_mod_large_mont); |
231 | goto err; |
232 | } |
233 | rsa->inv_small_mod_large_mont = inv_small_mod_large_mont; |
234 | CONSTTIME_SECRET( |
235 | rsa->inv_small_mod_large_mont->d, |
236 | sizeof(BN_ULONG) * rsa->inv_small_mod_large_mont->width); |
237 | } |
238 | } |
239 | } |
240 | |
241 | rsa->private_key_frozen = 1; |
242 | ret = 1; |
243 | |
244 | err: |
245 | CRYPTO_MUTEX_unlock_write(&rsa->lock); |
246 | return ret; |
247 | } |
248 | |
249 | size_t rsa_default_size(const RSA *rsa) { |
250 | return BN_num_bytes(rsa->n); |
251 | } |
252 | |
253 | int RSA_encrypt(RSA *rsa, size_t *out_len, uint8_t *out, size_t max_out, |
254 | const uint8_t *in, size_t in_len, int padding) { |
255 | if (rsa->n == NULL || rsa->e == NULL) { |
256 | OPENSSL_PUT_ERROR(RSA, RSA_R_VALUE_MISSING); |
257 | return 0; |
258 | } |
259 | |
260 | const unsigned rsa_size = RSA_size(rsa); |
261 | BIGNUM *f, *result; |
262 | uint8_t *buf = NULL; |
263 | BN_CTX *ctx = NULL; |
264 | int i, ret = 0; |
265 | |
266 | if (max_out < rsa_size) { |
267 | OPENSSL_PUT_ERROR(RSA, RSA_R_OUTPUT_BUFFER_TOO_SMALL); |
268 | return 0; |
269 | } |
270 | |
271 | if (!check_modulus_and_exponent_sizes(rsa)) { |
272 | return 0; |
273 | } |
274 | |
275 | ctx = BN_CTX_new(); |
276 | if (ctx == NULL) { |
277 | goto err; |
278 | } |
279 | |
280 | BN_CTX_start(ctx); |
281 | f = BN_CTX_get(ctx); |
282 | result = BN_CTX_get(ctx); |
283 | buf = OPENSSL_malloc(rsa_size); |
284 | if (!f || !result || !buf) { |
285 | OPENSSL_PUT_ERROR(RSA, ERR_R_MALLOC_FAILURE); |
286 | goto err; |
287 | } |
288 | |
289 | switch (padding) { |
290 | case RSA_PKCS1_PADDING: |
291 | i = RSA_padding_add_PKCS1_type_2(buf, rsa_size, in, in_len); |
292 | break; |
293 | case RSA_PKCS1_OAEP_PADDING: |
294 | // Use the default parameters: SHA-1 for both hashes and no label. |
295 | i = RSA_padding_add_PKCS1_OAEP_mgf1(buf, rsa_size, in, in_len, |
296 | NULL, 0, NULL, NULL); |
297 | break; |
298 | case RSA_NO_PADDING: |
299 | i = RSA_padding_add_none(buf, rsa_size, in, in_len); |
300 | break; |
301 | default: |
302 | OPENSSL_PUT_ERROR(RSA, RSA_R_UNKNOWN_PADDING_TYPE); |
303 | goto err; |
304 | } |
305 | |
306 | if (i <= 0) { |
307 | goto err; |
308 | } |
309 | |
310 | if (BN_bin2bn(buf, rsa_size, f) == NULL) { |
311 | goto err; |
312 | } |
313 | |
314 | if (BN_ucmp(f, rsa->n) >= 0) { |
315 | // usually the padding functions would catch this |
316 | OPENSSL_PUT_ERROR(RSA, RSA_R_DATA_TOO_LARGE_FOR_MODULUS); |
317 | goto err; |
318 | } |
319 | |
320 | if (!BN_MONT_CTX_set_locked(&rsa->mont_n, &rsa->lock, rsa->n, ctx) || |
321 | !BN_mod_exp_mont(result, f, rsa->e, &rsa->mont_n->N, ctx, rsa->mont_n)) { |
322 | goto err; |
323 | } |
324 | |
325 | // put in leading 0 bytes if the number is less than the length of the |
326 | // modulus |
327 | if (!BN_bn2bin_padded(out, rsa_size, result)) { |
328 | OPENSSL_PUT_ERROR(RSA, ERR_R_INTERNAL_ERROR); |
329 | goto err; |
330 | } |
331 | |
332 | *out_len = rsa_size; |
333 | ret = 1; |
334 | |
335 | err: |
336 | if (ctx != NULL) { |
337 | BN_CTX_end(ctx); |
338 | BN_CTX_free(ctx); |
339 | } |
340 | OPENSSL_free(buf); |
341 | |
342 | return ret; |
343 | } |
344 | |
345 | // MAX_BLINDINGS_PER_RSA defines the maximum number of cached BN_BLINDINGs per |
346 | // RSA*. Then this limit is exceeded, BN_BLINDING objects will be created and |
347 | // destroyed as needed. |
348 | #define MAX_BLINDINGS_PER_RSA 1024 |
349 | |
350 | // rsa_blinding_get returns a BN_BLINDING to use with |rsa|. It does this by |
351 | // allocating one of the cached BN_BLINDING objects in |rsa->blindings|. If |
352 | // none are free, the cache will be extended by a extra element and the new |
353 | // BN_BLINDING is returned. |
354 | // |
355 | // On success, the index of the assigned BN_BLINDING is written to |
356 | // |*index_used| and must be passed to |rsa_blinding_release| when finished. |
357 | static BN_BLINDING *rsa_blinding_get(RSA *rsa, unsigned *index_used, |
358 | BN_CTX *ctx) { |
359 | assert(ctx != NULL); |
360 | assert(rsa->mont_n != NULL); |
361 | |
362 | BN_BLINDING *ret = NULL; |
363 | BN_BLINDING **new_blindings; |
364 | uint8_t *new_blindings_inuse; |
365 | char overflow = 0; |
366 | |
367 | CRYPTO_MUTEX_lock_write(&rsa->lock); |
368 | |
369 | unsigned i; |
370 | for (i = 0; i < rsa->num_blindings; i++) { |
371 | if (rsa->blindings_inuse[i] == 0) { |
372 | rsa->blindings_inuse[i] = 1; |
373 | ret = rsa->blindings[i]; |
374 | *index_used = i; |
375 | break; |
376 | } |
377 | } |
378 | |
379 | if (ret != NULL) { |
380 | CRYPTO_MUTEX_unlock_write(&rsa->lock); |
381 | return ret; |
382 | } |
383 | |
384 | overflow = rsa->num_blindings >= MAX_BLINDINGS_PER_RSA; |
385 | |
386 | // We didn't find a free BN_BLINDING to use so increase the length of |
387 | // the arrays by one and use the newly created element. |
388 | |
389 | CRYPTO_MUTEX_unlock_write(&rsa->lock); |
390 | ret = BN_BLINDING_new(); |
391 | if (ret == NULL) { |
392 | return NULL; |
393 | } |
394 | |
395 | if (overflow) { |
396 | // We cannot add any more cached BN_BLINDINGs so we use |ret| |
397 | // and mark it for destruction in |rsa_blinding_release|. |
398 | *index_used = MAX_BLINDINGS_PER_RSA; |
399 | return ret; |
400 | } |
401 | |
402 | CRYPTO_MUTEX_lock_write(&rsa->lock); |
403 | |
404 | new_blindings = |
405 | OPENSSL_malloc(sizeof(BN_BLINDING *) * (rsa->num_blindings + 1)); |
406 | if (new_blindings == NULL) { |
407 | goto err1; |
408 | } |
409 | OPENSSL_memcpy(new_blindings, rsa->blindings, |
410 | sizeof(BN_BLINDING *) * rsa->num_blindings); |
411 | new_blindings[rsa->num_blindings] = ret; |
412 | |
413 | new_blindings_inuse = OPENSSL_malloc(rsa->num_blindings + 1); |
414 | if (new_blindings_inuse == NULL) { |
415 | goto err2; |
416 | } |
417 | OPENSSL_memcpy(new_blindings_inuse, rsa->blindings_inuse, rsa->num_blindings); |
418 | new_blindings_inuse[rsa->num_blindings] = 1; |
419 | *index_used = rsa->num_blindings; |
420 | |
421 | OPENSSL_free(rsa->blindings); |
422 | rsa->blindings = new_blindings; |
423 | OPENSSL_free(rsa->blindings_inuse); |
424 | rsa->blindings_inuse = new_blindings_inuse; |
425 | rsa->num_blindings++; |
426 | |
427 | CRYPTO_MUTEX_unlock_write(&rsa->lock); |
428 | return ret; |
429 | |
430 | err2: |
431 | OPENSSL_free(new_blindings); |
432 | |
433 | err1: |
434 | CRYPTO_MUTEX_unlock_write(&rsa->lock); |
435 | BN_BLINDING_free(ret); |
436 | return NULL; |
437 | } |
438 | |
439 | // rsa_blinding_release marks the cached BN_BLINDING at the given index as free |
440 | // for other threads to use. |
441 | static void rsa_blinding_release(RSA *rsa, BN_BLINDING *blinding, |
442 | unsigned blinding_index) { |
443 | if (blinding_index == MAX_BLINDINGS_PER_RSA) { |
444 | // This blinding wasn't cached. |
445 | BN_BLINDING_free(blinding); |
446 | return; |
447 | } |
448 | |
449 | CRYPTO_MUTEX_lock_write(&rsa->lock); |
450 | rsa->blindings_inuse[blinding_index] = 0; |
451 | CRYPTO_MUTEX_unlock_write(&rsa->lock); |
452 | } |
453 | |
454 | // signing |
455 | int rsa_default_sign_raw(RSA *rsa, size_t *out_len, uint8_t *out, |
456 | size_t max_out, const uint8_t *in, size_t in_len, |
457 | int padding) { |
458 | const unsigned rsa_size = RSA_size(rsa); |
459 | uint8_t *buf = NULL; |
460 | int i, ret = 0; |
461 | |
462 | if (max_out < rsa_size) { |
463 | OPENSSL_PUT_ERROR(RSA, RSA_R_OUTPUT_BUFFER_TOO_SMALL); |
464 | return 0; |
465 | } |
466 | |
467 | buf = OPENSSL_malloc(rsa_size); |
468 | if (buf == NULL) { |
469 | OPENSSL_PUT_ERROR(RSA, ERR_R_MALLOC_FAILURE); |
470 | goto err; |
471 | } |
472 | |
473 | switch (padding) { |
474 | case RSA_PKCS1_PADDING: |
475 | i = RSA_padding_add_PKCS1_type_1(buf, rsa_size, in, in_len); |
476 | break; |
477 | case RSA_NO_PADDING: |
478 | i = RSA_padding_add_none(buf, rsa_size, in, in_len); |
479 | break; |
480 | default: |
481 | OPENSSL_PUT_ERROR(RSA, RSA_R_UNKNOWN_PADDING_TYPE); |
482 | goto err; |
483 | } |
484 | |
485 | if (i <= 0) { |
486 | goto err; |
487 | } |
488 | |
489 | if (!RSA_private_transform(rsa, out, buf, rsa_size)) { |
490 | goto err; |
491 | } |
492 | |
493 | CONSTTIME_DECLASSIFY(out, rsa_size); |
494 | *out_len = rsa_size; |
495 | ret = 1; |
496 | |
497 | err: |
498 | OPENSSL_free(buf); |
499 | |
500 | return ret; |
501 | } |
502 | |
503 | int rsa_default_decrypt(RSA *rsa, size_t *out_len, uint8_t *out, size_t max_out, |
504 | const uint8_t *in, size_t in_len, int padding) { |
505 | const unsigned rsa_size = RSA_size(rsa); |
506 | uint8_t *buf = NULL; |
507 | int ret = 0; |
508 | |
509 | if (max_out < rsa_size) { |
510 | OPENSSL_PUT_ERROR(RSA, RSA_R_OUTPUT_BUFFER_TOO_SMALL); |
511 | return 0; |
512 | } |
513 | |
514 | if (padding == RSA_NO_PADDING) { |
515 | buf = out; |
516 | } else { |
517 | // Allocate a temporary buffer to hold the padded plaintext. |
518 | buf = OPENSSL_malloc(rsa_size); |
519 | if (buf == NULL) { |
520 | OPENSSL_PUT_ERROR(RSA, ERR_R_MALLOC_FAILURE); |
521 | goto err; |
522 | } |
523 | } |
524 | |
525 | if (in_len != rsa_size) { |
526 | OPENSSL_PUT_ERROR(RSA, RSA_R_DATA_LEN_NOT_EQUAL_TO_MOD_LEN); |
527 | goto err; |
528 | } |
529 | |
530 | if (!RSA_private_transform(rsa, buf, in, rsa_size)) { |
531 | goto err; |
532 | } |
533 | |
534 | switch (padding) { |
535 | case RSA_PKCS1_PADDING: |
536 | ret = |
537 | RSA_padding_check_PKCS1_type_2(out, out_len, rsa_size, buf, rsa_size); |
538 | break; |
539 | case RSA_PKCS1_OAEP_PADDING: |
540 | // Use the default parameters: SHA-1 for both hashes and no label. |
541 | ret = RSA_padding_check_PKCS1_OAEP_mgf1(out, out_len, rsa_size, buf, |
542 | rsa_size, NULL, 0, NULL, NULL); |
543 | break; |
544 | case RSA_NO_PADDING: |
545 | *out_len = rsa_size; |
546 | ret = 1; |
547 | break; |
548 | default: |
549 | OPENSSL_PUT_ERROR(RSA, RSA_R_UNKNOWN_PADDING_TYPE); |
550 | goto err; |
551 | } |
552 | |
553 | CONSTTIME_DECLASSIFY(&ret, sizeof(ret)); |
554 | if (!ret) { |
555 | OPENSSL_PUT_ERROR(RSA, RSA_R_PADDING_CHECK_FAILED); |
556 | } else { |
557 | CONSTTIME_DECLASSIFY(out, out_len); |
558 | } |
559 | |
560 | err: |
561 | if (padding != RSA_NO_PADDING) { |
562 | OPENSSL_free(buf); |
563 | } |
564 | |
565 | return ret; |
566 | } |
567 | |
568 | static int mod_exp(BIGNUM *r0, const BIGNUM *I, RSA *rsa, BN_CTX *ctx); |
569 | |
570 | int RSA_verify_raw(RSA *rsa, size_t *out_len, uint8_t *out, size_t max_out, |
571 | const uint8_t *in, size_t in_len, int padding) { |
572 | if (rsa->n == NULL || rsa->e == NULL) { |
573 | OPENSSL_PUT_ERROR(RSA, RSA_R_VALUE_MISSING); |
574 | return 0; |
575 | } |
576 | |
577 | const unsigned rsa_size = RSA_size(rsa); |
578 | BIGNUM *f, *result; |
579 | |
580 | if (max_out < rsa_size) { |
581 | OPENSSL_PUT_ERROR(RSA, RSA_R_OUTPUT_BUFFER_TOO_SMALL); |
582 | return 0; |
583 | } |
584 | |
585 | if (in_len != rsa_size) { |
586 | OPENSSL_PUT_ERROR(RSA, RSA_R_DATA_LEN_NOT_EQUAL_TO_MOD_LEN); |
587 | return 0; |
588 | } |
589 | |
590 | if (!check_modulus_and_exponent_sizes(rsa)) { |
591 | return 0; |
592 | } |
593 | |
594 | BN_CTX *ctx = BN_CTX_new(); |
595 | if (ctx == NULL) { |
596 | return 0; |
597 | } |
598 | |
599 | int ret = 0; |
600 | uint8_t *buf = NULL; |
601 | |
602 | BN_CTX_start(ctx); |
603 | f = BN_CTX_get(ctx); |
604 | result = BN_CTX_get(ctx); |
605 | if (f == NULL || result == NULL) { |
606 | OPENSSL_PUT_ERROR(RSA, ERR_R_MALLOC_FAILURE); |
607 | goto err; |
608 | } |
609 | |
610 | if (padding == RSA_NO_PADDING) { |
611 | buf = out; |
612 | } else { |
613 | // Allocate a temporary buffer to hold the padded plaintext. |
614 | buf = OPENSSL_malloc(rsa_size); |
615 | if (buf == NULL) { |
616 | OPENSSL_PUT_ERROR(RSA, ERR_R_MALLOC_FAILURE); |
617 | goto err; |
618 | } |
619 | } |
620 | |
621 | if (BN_bin2bn(in, in_len, f) == NULL) { |
622 | goto err; |
623 | } |
624 | |
625 | if (BN_ucmp(f, rsa->n) >= 0) { |
626 | OPENSSL_PUT_ERROR(RSA, RSA_R_DATA_TOO_LARGE_FOR_MODULUS); |
627 | goto err; |
628 | } |
629 | |
630 | if (!BN_MONT_CTX_set_locked(&rsa->mont_n, &rsa->lock, rsa->n, ctx) || |
631 | !BN_mod_exp_mont(result, f, rsa->e, &rsa->mont_n->N, ctx, rsa->mont_n)) { |
632 | goto err; |
633 | } |
634 | |
635 | if (!BN_bn2bin_padded(buf, rsa_size, result)) { |
636 | OPENSSL_PUT_ERROR(RSA, ERR_R_INTERNAL_ERROR); |
637 | goto err; |
638 | } |
639 | |
640 | switch (padding) { |
641 | case RSA_PKCS1_PADDING: |
642 | ret = |
643 | RSA_padding_check_PKCS1_type_1(out, out_len, rsa_size, buf, rsa_size); |
644 | break; |
645 | case RSA_NO_PADDING: |
646 | ret = 1; |
647 | *out_len = rsa_size; |
648 | break; |
649 | default: |
650 | OPENSSL_PUT_ERROR(RSA, RSA_R_UNKNOWN_PADDING_TYPE); |
651 | goto err; |
652 | } |
653 | |
654 | if (!ret) { |
655 | OPENSSL_PUT_ERROR(RSA, RSA_R_PADDING_CHECK_FAILED); |
656 | goto err; |
657 | } |
658 | |
659 | err: |
660 | BN_CTX_end(ctx); |
661 | BN_CTX_free(ctx); |
662 | if (buf != out) { |
663 | OPENSSL_free(buf); |
664 | } |
665 | return ret; |
666 | } |
667 | |
668 | int rsa_default_private_transform(RSA *rsa, uint8_t *out, const uint8_t *in, |
669 | size_t len) { |
670 | if (rsa->n == NULL || rsa->d == NULL) { |
671 | OPENSSL_PUT_ERROR(RSA, RSA_R_VALUE_MISSING); |
672 | return 0; |
673 | } |
674 | |
675 | BIGNUM *f, *result; |
676 | BN_CTX *ctx = NULL; |
677 | unsigned blinding_index = 0; |
678 | BN_BLINDING *blinding = NULL; |
679 | int ret = 0; |
680 | |
681 | ctx = BN_CTX_new(); |
682 | if (ctx == NULL) { |
683 | goto err; |
684 | } |
685 | BN_CTX_start(ctx); |
686 | f = BN_CTX_get(ctx); |
687 | result = BN_CTX_get(ctx); |
688 | |
689 | if (f == NULL || result == NULL) { |
690 | OPENSSL_PUT_ERROR(RSA, ERR_R_MALLOC_FAILURE); |
691 | goto err; |
692 | } |
693 | |
694 | if (BN_bin2bn(in, len, f) == NULL) { |
695 | goto err; |
696 | } |
697 | |
698 | if (BN_ucmp(f, rsa->n) >= 0) { |
699 | // Usually the padding functions would catch this. |
700 | OPENSSL_PUT_ERROR(RSA, RSA_R_DATA_TOO_LARGE_FOR_MODULUS); |
701 | goto err; |
702 | } |
703 | |
704 | if (!freeze_private_key(rsa, ctx)) { |
705 | OPENSSL_PUT_ERROR(RSA, ERR_R_INTERNAL_ERROR); |
706 | goto err; |
707 | } |
708 | |
709 | const int do_blinding = (rsa->flags & RSA_FLAG_NO_BLINDING) == 0; |
710 | |
711 | if (rsa->e == NULL && do_blinding) { |
712 | // We cannot do blinding or verification without |e|, and continuing without |
713 | // those countermeasures is dangerous. However, the Java/Android RSA API |
714 | // requires support for keys where only |d| and |n| (and not |e|) are known. |
715 | // The callers that require that bad behavior set |RSA_FLAG_NO_BLINDING|. |
716 | OPENSSL_PUT_ERROR(RSA, RSA_R_NO_PUBLIC_EXPONENT); |
717 | goto err; |
718 | } |
719 | |
720 | if (do_blinding) { |
721 | blinding = rsa_blinding_get(rsa, &blinding_index, ctx); |
722 | if (blinding == NULL) { |
723 | OPENSSL_PUT_ERROR(RSA, ERR_R_INTERNAL_ERROR); |
724 | goto err; |
725 | } |
726 | if (!BN_BLINDING_convert(f, blinding, rsa->e, rsa->mont_n, ctx)) { |
727 | goto err; |
728 | } |
729 | } |
730 | |
731 | if (rsa->p != NULL && rsa->q != NULL && rsa->e != NULL && rsa->dmp1 != NULL && |
732 | rsa->dmq1 != NULL && rsa->iqmp != NULL && |
733 | // Require that we can reduce |f| by |rsa->p| and |rsa->q| in constant |
734 | // time, which requires primes be the same size, rounded to the Montgomery |
735 | // coefficient. (See |mod_montgomery|.) This is not required by RFC 8017, |
736 | // but it is true for keys generated by us and all common implementations. |
737 | bn_less_than_montgomery_R(rsa->q, rsa->mont_p) && |
738 | bn_less_than_montgomery_R(rsa->p, rsa->mont_q)) { |
739 | if (!mod_exp(result, f, rsa, ctx)) { |
740 | goto err; |
741 | } |
742 | } else if (!BN_mod_exp_mont_consttime(result, f, rsa->d_fixed, rsa->n, ctx, |
743 | rsa->mont_n)) { |
744 | goto err; |
745 | } |
746 | |
747 | // Verify the result to protect against fault attacks as described in the |
748 | // 1997 paper "On the Importance of Checking Cryptographic Protocols for |
749 | // Faults" by Dan Boneh, Richard A. DeMillo, and Richard J. Lipton. Some |
750 | // implementations do this only when the CRT is used, but we do it in all |
751 | // cases. Section 6 of the aforementioned paper describes an attack that |
752 | // works when the CRT isn't used. That attack is much less likely to succeed |
753 | // than the CRT attack, but there have likely been improvements since 1997. |
754 | // |
755 | // This check is cheap assuming |e| is small; it almost always is. |
756 | if (rsa->e != NULL) { |
757 | BIGNUM *vrfy = BN_CTX_get(ctx); |
758 | if (vrfy == NULL || |
759 | !BN_mod_exp_mont(vrfy, result, rsa->e, rsa->n, ctx, rsa->mont_n) || |
760 | !BN_equal_consttime(vrfy, f)) { |
761 | OPENSSL_PUT_ERROR(RSA, ERR_R_INTERNAL_ERROR); |
762 | goto err; |
763 | } |
764 | |
765 | } |
766 | |
767 | if (do_blinding && |
768 | !BN_BLINDING_invert(result, blinding, rsa->mont_n, ctx)) { |
769 | goto err; |
770 | } |
771 | |
772 | // The computation should have left |result| as a maximally-wide number, so |
773 | // that it and serializing does not leak information about the magnitude of |
774 | // the result. |
775 | // |
776 | // See Falko Strenzke, "Manger's Attack revisited", ICICS 2010. |
777 | assert(result->width == rsa->mont_n->N.width); |
778 | if (!BN_bn2bin_padded(out, len, result)) { |
779 | OPENSSL_PUT_ERROR(RSA, ERR_R_INTERNAL_ERROR); |
780 | goto err; |
781 | } |
782 | |
783 | ret = 1; |
784 | |
785 | err: |
786 | if (ctx != NULL) { |
787 | BN_CTX_end(ctx); |
788 | BN_CTX_free(ctx); |
789 | } |
790 | if (blinding != NULL) { |
791 | rsa_blinding_release(rsa, blinding, blinding_index); |
792 | } |
793 | |
794 | return ret; |
795 | } |
796 | |
797 | // mod_montgomery sets |r| to |I| mod |p|. |I| must already be fully reduced |
798 | // modulo |p| times |q|. It returns one on success and zero on error. |
799 | static int mod_montgomery(BIGNUM *r, const BIGNUM *I, const BIGNUM *p, |
800 | const BN_MONT_CTX *mont_p, const BIGNUM *q, |
801 | BN_CTX *ctx) { |
802 | // Reducing in constant-time with Montgomery reduction requires I <= p * R. We |
803 | // have I < p * q, so this follows if q < R. The caller should have checked |
804 | // this already. |
805 | if (!bn_less_than_montgomery_R(q, mont_p)) { |
806 | OPENSSL_PUT_ERROR(RSA, ERR_R_INTERNAL_ERROR); |
807 | return 0; |
808 | } |
809 | |
810 | if (// Reduce mod p with Montgomery reduction. This computes I * R^-1 mod p. |
811 | !BN_from_montgomery(r, I, mont_p, ctx) || |
812 | // Multiply by R^2 and do another Montgomery reduction to compute |
813 | // I * R^-1 * R^2 * R^-1 = I mod p. |
814 | !BN_to_montgomery(r, r, mont_p, ctx)) { |
815 | return 0; |
816 | } |
817 | |
818 | // By precomputing R^3 mod p (normally |BN_MONT_CTX| only uses R^2 mod p) and |
819 | // adjusting the API for |BN_mod_exp_mont_consttime|, we could instead compute |
820 | // I * R mod p here and save a reduction per prime. But this would require |
821 | // changing the RSAZ code and may not be worth it. Note that the RSAZ code |
822 | // uses a different radix, so it uses R' = 2^1044. There we'd actually want |
823 | // R^2 * R', and would futher benefit from a precomputed R'^2. It currently |
824 | // converts |mont_p->RR| to R'^2. |
825 | return 1; |
826 | } |
827 | |
828 | static int mod_exp(BIGNUM *r0, const BIGNUM *I, RSA *rsa, BN_CTX *ctx) { |
829 | assert(ctx != NULL); |
830 | |
831 | assert(rsa->n != NULL); |
832 | assert(rsa->e != NULL); |
833 | assert(rsa->d != NULL); |
834 | assert(rsa->p != NULL); |
835 | assert(rsa->q != NULL); |
836 | assert(rsa->dmp1 != NULL); |
837 | assert(rsa->dmq1 != NULL); |
838 | assert(rsa->iqmp != NULL); |
839 | |
840 | BIGNUM *r1, *m1; |
841 | int ret = 0; |
842 | |
843 | BN_CTX_start(ctx); |
844 | r1 = BN_CTX_get(ctx); |
845 | m1 = BN_CTX_get(ctx); |
846 | if (r1 == NULL || |
847 | m1 == NULL) { |
848 | goto err; |
849 | } |
850 | |
851 | if (!freeze_private_key(rsa, ctx)) { |
852 | goto err; |
853 | } |
854 | |
855 | // Implementing RSA with CRT in constant-time is sensitive to which prime is |
856 | // larger. Canonicalize fields so that |p| is the larger prime. |
857 | const BIGNUM *dmp1 = rsa->dmp1_fixed, *dmq1 = rsa->dmq1_fixed; |
858 | const BN_MONT_CTX *mont_p = rsa->mont_p, *mont_q = rsa->mont_q; |
859 | if (BN_cmp(rsa->p, rsa->q) < 0) { |
860 | mont_p = rsa->mont_q; |
861 | mont_q = rsa->mont_p; |
862 | dmp1 = rsa->dmq1_fixed; |
863 | dmq1 = rsa->dmp1_fixed; |
864 | } |
865 | |
866 | // Use the minimal-width versions of |n|, |p|, and |q|. Either works, but if |
867 | // someone gives us non-minimal values, these will be slightly more efficient |
868 | // on the non-Montgomery operations. |
869 | const BIGNUM *n = &rsa->mont_n->N; |
870 | const BIGNUM *p = &mont_p->N; |
871 | const BIGNUM *q = &mont_q->N; |
872 | |
873 | // This is a pre-condition for |mod_montgomery|. It was already checked by the |
874 | // caller. |
875 | assert(BN_ucmp(I, n) < 0); |
876 | |
877 | if (// |m1| is the result modulo |q|. |
878 | !mod_montgomery(r1, I, q, mont_q, p, ctx) || |
879 | !BN_mod_exp_mont_consttime(m1, r1, dmq1, q, ctx, mont_q) || |
880 | // |r0| is the result modulo |p|. |
881 | !mod_montgomery(r1, I, p, mont_p, q, ctx) || |
882 | !BN_mod_exp_mont_consttime(r0, r1, dmp1, p, ctx, mont_p) || |
883 | // Compute r0 = r0 - m1 mod p. |p| is the larger prime, so |m1| is already |
884 | // fully reduced mod |p|. |
885 | !bn_mod_sub_consttime(r0, r0, m1, p, ctx) || |
886 | // r0 = r0 * iqmp mod p. We use Montgomery multiplication to compute this |
887 | // in constant time. |inv_small_mod_large_mont| is in Montgomery form and |
888 | // r0 is not, so the result is taken out of Montgomery form. |
889 | !BN_mod_mul_montgomery(r0, r0, rsa->inv_small_mod_large_mont, mont_p, |
890 | ctx) || |
891 | // r0 = r0 * q + m1 gives the final result. Reducing modulo q gives m1, so |
892 | // it is correct mod p. Reducing modulo p gives (r0-m1)*iqmp*q + m1 = r0, |
893 | // so it is correct mod q. Finally, the result is bounded by [m1, n + m1), |
894 | // and the result is at least |m1|, so this must be the unique answer in |
895 | // [0, n). |
896 | !bn_mul_consttime(r0, r0, q, ctx) || |
897 | !bn_uadd_consttime(r0, r0, m1) || |
898 | // The result should be bounded by |n|, but fixed-width operations may |
899 | // bound the width slightly higher, so fix it. |
900 | !bn_resize_words(r0, n->width)) { |
901 | goto err; |
902 | } |
903 | |
904 | ret = 1; |
905 | |
906 | err: |
907 | BN_CTX_end(ctx); |
908 | return ret; |
909 | } |
910 | |
911 | static int ensure_bignum(BIGNUM **out) { |
912 | if (*out == NULL) { |
913 | *out = BN_new(); |
914 | } |
915 | return *out != NULL; |
916 | } |
917 | |
918 | // kBoringSSLRSASqrtTwo is the BIGNUM representation of ⌊2¹⁵³⁵×√2⌋. This is |
919 | // chosen to give enough precision for 3072-bit RSA, the largest key size FIPS |
920 | // specifies. Key sizes beyond this will round up. |
921 | // |
922 | // To verify this number, check that n² < 2³⁰⁷¹ < (n+1)², where n is value |
923 | // represented here. Note the components are listed in little-endian order. Here |
924 | // is some sample Python code to check: |
925 | // |
926 | // >>> TOBN = lambda a, b: a << 32 | b |
927 | // >>> l = [ <paste the contents of kSqrtTwo> ] |
928 | // >>> n = sum(a * 2**(64*i) for i, a in enumerate(l)) |
929 | // >>> n**2 < 2**3071 < (n+1)**2 |
930 | // True |
931 | const BN_ULONG kBoringSSLRSASqrtTwo[] = { |
932 | TOBN(0xdea06241, 0xf7aa81c2), TOBN(0xf6a1be3f, 0xca221307), |
933 | TOBN(0x332a5e9f, 0x7bda1ebf), TOBN(0x0104dc01, 0xfe32352f), |
934 | TOBN(0xb8cf341b, 0x6f8236c7), TOBN(0x4264dabc, 0xd528b651), |
935 | TOBN(0xf4d3a02c, 0xebc93e0c), TOBN(0x81394ab6, 0xd8fd0efd), |
936 | TOBN(0xeaa4a089, 0x9040ca4a), TOBN(0xf52f120f, 0x836e582e), |
937 | TOBN(0xcb2a6343, 0x31f3c84d), TOBN(0xc6d5a8a3, 0x8bb7e9dc), |
938 | TOBN(0x460abc72, 0x2f7c4e33), TOBN(0xcab1bc91, 0x1688458a), |
939 | TOBN(0x53059c60, 0x11bc337b), TOBN(0xd2202e87, 0x42af1f4e), |
940 | TOBN(0x78048736, 0x3dfa2768), TOBN(0x0f74a85e, 0x439c7b4a), |
941 | TOBN(0xa8b1fe6f, 0xdc83db39), TOBN(0x4afc8304, 0x3ab8a2c3), |
942 | TOBN(0xed17ac85, 0x83339915), TOBN(0x1d6f60ba, 0x893ba84c), |
943 | TOBN(0x597d89b3, 0x754abe9f), TOBN(0xb504f333, 0xf9de6484), |
944 | }; |
945 | const size_t kBoringSSLRSASqrtTwoLen = OPENSSL_ARRAY_SIZE(kBoringSSLRSASqrtTwo); |
946 | |
947 | // generate_prime sets |out| to a prime with length |bits| such that |out|-1 is |
948 | // relatively prime to |e|. If |p| is non-NULL, |out| will also not be close to |
949 | // |p|. |sqrt2| must be ⌊2^(bits-1)×√2⌋ (or a slightly overestimate for large |
950 | // sizes), and |pow2_bits_100| must be 2^(bits-100). |
951 | // |
952 | // This function fails with probability around 2^-21. |
953 | static int generate_prime(BIGNUM *out, int bits, const BIGNUM *e, |
954 | const BIGNUM *p, const BIGNUM *sqrt2, |
955 | const BIGNUM *pow2_bits_100, BN_CTX *ctx, |
956 | BN_GENCB *cb) { |
957 | if (bits < 128 || (bits % BN_BITS2) != 0) { |
958 | OPENSSL_PUT_ERROR(RSA, ERR_R_INTERNAL_ERROR); |
959 | return 0; |
960 | } |
961 | assert(BN_is_pow2(pow2_bits_100)); |
962 | assert(BN_is_bit_set(pow2_bits_100, bits - 100)); |
963 | |
964 | // See FIPS 186-4 appendix B.3.3, steps 4 and 5. Note |bits| here is nlen/2. |
965 | |
966 | // Use the limit from steps 4.7 and 5.8 for most values of |e|. When |e| is 3, |
967 | // the 186-4 limit is too low, so we use a higher one. Note this case is not |
968 | // reachable from |RSA_generate_key_fips|. |
969 | // |
970 | // |limit| determines the failure probability. We must find a prime that is |
971 | // not 1 mod |e|. By the prime number theorem, we'll find one with probability |
972 | // p = (e-1)/e * 2/(ln(2)*bits). Note the second term is doubled because we |
973 | // discard even numbers. |
974 | // |
975 | // The failure probability is thus (1-p)^limit. To convert that to a power of |
976 | // two, we take logs. -log_2((1-p)^limit) = -limit * ln(1-p) / ln(2). |
977 | // |
978 | // >>> def f(bits, e, limit): |
979 | // ... p = (e-1.0)/e * 2.0/(math.log(2)*bits) |
980 | // ... return -limit * math.log(1 - p) / math.log(2) |
981 | // ... |
982 | // >>> f(1024, 65537, 5*1024) |
983 | // 20.842750558272634 |
984 | // >>> f(1536, 65537, 5*1536) |
985 | // 20.83294549602474 |
986 | // >>> f(2048, 65537, 5*2048) |
987 | // 20.828047576234948 |
988 | // >>> f(1024, 3, 8*1024) |
989 | // 22.222147925962307 |
990 | // >>> f(1536, 3, 8*1536) |
991 | // 22.21518251065506 |
992 | // >>> f(2048, 3, 8*2048) |
993 | // 22.211701985875937 |
994 | if (bits >= INT_MAX/32) { |
995 | OPENSSL_PUT_ERROR(RSA, RSA_R_MODULUS_TOO_LARGE); |
996 | return 0; |
997 | } |
998 | int limit = BN_is_word(e, 3) ? bits * 8 : bits * 5; |
999 | |
1000 | int ret = 0, tries = 0, rand_tries = 0; |
1001 | BN_CTX_start(ctx); |
1002 | BIGNUM *tmp = BN_CTX_get(ctx); |
1003 | if (tmp == NULL) { |
1004 | goto err; |
1005 | } |
1006 | |
1007 | for (;;) { |
1008 | // Generate a random number of length |bits| where the bottom bit is set |
1009 | // (steps 4.2, 4.3, 5.2 and 5.3) and the top bit is set (implied by the |
1010 | // bound checked below in steps 4.4 and 5.5). |
1011 | if (!BN_rand(out, bits, BN_RAND_TOP_ONE, BN_RAND_BOTTOM_ODD) || |
1012 | !BN_GENCB_call(cb, BN_GENCB_GENERATED, rand_tries++)) { |
1013 | goto err; |
1014 | } |
1015 | |
1016 | if (p != NULL) { |
1017 | // If |p| and |out| are too close, try again (step 5.4). |
1018 | if (!bn_abs_sub_consttime(tmp, out, p, ctx)) { |
1019 | goto err; |
1020 | } |
1021 | if (BN_cmp(tmp, pow2_bits_100) <= 0) { |
1022 | continue; |
1023 | } |
1024 | } |
1025 | |
1026 | // If out < 2^(bits-1)×√2, try again (steps 4.4 and 5.5). This is equivalent |
1027 | // to out <= ⌊2^(bits-1)×√2⌋, or out <= sqrt2 for FIPS key sizes. |
1028 | // |
1029 | // For larger keys, the comparison is approximate, leaning towards |
1030 | // retrying. That is, we reject a negligible fraction of primes that are |
1031 | // within the FIPS bound, but we will never accept a prime outside the |
1032 | // bound, ensuring the resulting RSA key is the right size. |
1033 | if (BN_cmp(out, sqrt2) <= 0) { |
1034 | continue; |
1035 | } |
1036 | |
1037 | // RSA key generation's bottleneck is discarding composites. If it fails |
1038 | // trial division, do not bother computing a GCD or performing Rabin-Miller. |
1039 | if (!bn_odd_number_is_obviously_composite(out)) { |
1040 | // Check gcd(out-1, e) is one (steps 4.5 and 5.6). |
1041 | int relatively_prime; |
1042 | if (!BN_sub(tmp, out, BN_value_one()) || |
1043 | !bn_is_relatively_prime(&relatively_prime, tmp, e, ctx)) { |
1044 | goto err; |
1045 | } |
1046 | if (relatively_prime) { |
1047 | // Test |out| for primality (steps 4.5.1 and 5.6.1). |
1048 | int is_probable_prime; |
1049 | if (!BN_primality_test(&is_probable_prime, out, BN_prime_checks, ctx, 0, |
1050 | cb)) { |
1051 | goto err; |
1052 | } |
1053 | if (is_probable_prime) { |
1054 | ret = 1; |
1055 | goto err; |
1056 | } |
1057 | } |
1058 | } |
1059 | |
1060 | // If we've tried too many times to find a prime, abort (steps 4.7 and |
1061 | // 5.8). |
1062 | tries++; |
1063 | if (tries >= limit) { |
1064 | OPENSSL_PUT_ERROR(RSA, RSA_R_TOO_MANY_ITERATIONS); |
1065 | goto err; |
1066 | } |
1067 | if (!BN_GENCB_call(cb, 2, tries)) { |
1068 | goto err; |
1069 | } |
1070 | } |
1071 | |
1072 | err: |
1073 | BN_CTX_end(ctx); |
1074 | return ret; |
1075 | } |
1076 | |
1077 | // rsa_generate_key_impl generates an RSA key using a generalized version of |
1078 | // FIPS 186-4 appendix B.3. |RSA_generate_key_fips| performs additional checks |
1079 | // for FIPS-compliant key generation. |
1080 | // |
1081 | // This function returns one on success and zero on failure. It has a failure |
1082 | // probability of about 2^-20. |
1083 | static int rsa_generate_key_impl(RSA *rsa, int bits, const BIGNUM *e_value, |
1084 | BN_GENCB *cb) { |
1085 | // See FIPS 186-4 appendix B.3. This function implements a generalized version |
1086 | // of the FIPS algorithm. |RSA_generate_key_fips| performs additional checks |
1087 | // for FIPS-compliant key generation. |
1088 | |
1089 | // Always generate RSA keys which are a multiple of 128 bits. Round |bits| |
1090 | // down as needed. |
1091 | bits &= ~127; |
1092 | |
1093 | // Reject excessively small keys. |
1094 | if (bits < 256) { |
1095 | OPENSSL_PUT_ERROR(RSA, RSA_R_KEY_SIZE_TOO_SMALL); |
1096 | return 0; |
1097 | } |
1098 | |
1099 | // Reject excessively large public exponents. Windows CryptoAPI and Go don't |
1100 | // support values larger than 32 bits, so match their limits for generating |
1101 | // keys. (|check_modulus_and_exponent_sizes| uses a slightly more conservative |
1102 | // value, but we don't need to support generating such keys.) |
1103 | // https://github.com/golang/go/issues/3161 |
1104 | // https://msdn.microsoft.com/en-us/library/aa387685(VS.85).aspx |
1105 | if (BN_num_bits(e_value) > 32) { |
1106 | OPENSSL_PUT_ERROR(RSA, RSA_R_BAD_E_VALUE); |
1107 | return 0; |
1108 | } |
1109 | |
1110 | int ret = 0; |
1111 | int prime_bits = bits / 2; |
1112 | BN_CTX *ctx = BN_CTX_new(); |
1113 | if (ctx == NULL) { |
1114 | goto bn_err; |
1115 | } |
1116 | BN_CTX_start(ctx); |
1117 | BIGNUM *totient = BN_CTX_get(ctx); |
1118 | BIGNUM *pm1 = BN_CTX_get(ctx); |
1119 | BIGNUM *qm1 = BN_CTX_get(ctx); |
1120 | BIGNUM *sqrt2 = BN_CTX_get(ctx); |
1121 | BIGNUM *pow2_prime_bits_100 = BN_CTX_get(ctx); |
1122 | BIGNUM *pow2_prime_bits = BN_CTX_get(ctx); |
1123 | if (totient == NULL || pm1 == NULL || qm1 == NULL || sqrt2 == NULL || |
1124 | pow2_prime_bits_100 == NULL || pow2_prime_bits == NULL || |
1125 | !BN_set_bit(pow2_prime_bits_100, prime_bits - 100) || |
1126 | !BN_set_bit(pow2_prime_bits, prime_bits)) { |
1127 | goto bn_err; |
1128 | } |
1129 | |
1130 | // We need the RSA components non-NULL. |
1131 | if (!ensure_bignum(&rsa->n) || |
1132 | !ensure_bignum(&rsa->d) || |
1133 | !ensure_bignum(&rsa->e) || |
1134 | !ensure_bignum(&rsa->p) || |
1135 | !ensure_bignum(&rsa->q) || |
1136 | !ensure_bignum(&rsa->dmp1) || |
1137 | !ensure_bignum(&rsa->dmq1)) { |
1138 | goto bn_err; |
1139 | } |
1140 | |
1141 | if (!BN_copy(rsa->e, e_value)) { |
1142 | goto bn_err; |
1143 | } |
1144 | |
1145 | // Compute sqrt2 >= ⌊2^(prime_bits-1)×√2⌋. |
1146 | if (!bn_set_words(sqrt2, kBoringSSLRSASqrtTwo, kBoringSSLRSASqrtTwoLen)) { |
1147 | goto bn_err; |
1148 | } |
1149 | int sqrt2_bits = kBoringSSLRSASqrtTwoLen * BN_BITS2; |
1150 | assert(sqrt2_bits == (int)BN_num_bits(sqrt2)); |
1151 | if (sqrt2_bits > prime_bits) { |
1152 | // For key sizes up to 3072 (prime_bits = 1536), this is exactly |
1153 | // ⌊2^(prime_bits-1)×√2⌋. |
1154 | if (!BN_rshift(sqrt2, sqrt2, sqrt2_bits - prime_bits)) { |
1155 | goto bn_err; |
1156 | } |
1157 | } else if (prime_bits > sqrt2_bits) { |
1158 | // For key sizes beyond 3072, this is approximate. We err towards retrying |
1159 | // to ensure our key is the right size and round up. |
1160 | if (!BN_add_word(sqrt2, 1) || |
1161 | !BN_lshift(sqrt2, sqrt2, prime_bits - sqrt2_bits)) { |
1162 | goto bn_err; |
1163 | } |
1164 | } |
1165 | assert(prime_bits == (int)BN_num_bits(sqrt2)); |
1166 | |
1167 | do { |
1168 | // Generate p and q, each of size |prime_bits|, using the steps outlined in |
1169 | // appendix FIPS 186-4 appendix B.3.3. |
1170 | // |
1171 | // Each call to |generate_prime| fails with probability p = 2^-21. The |
1172 | // probability that either call fails is 1 - (1-p)^2, which is around 2^-20. |
1173 | if (!generate_prime(rsa->p, prime_bits, rsa->e, NULL, sqrt2, |
1174 | pow2_prime_bits_100, ctx, cb) || |
1175 | !BN_GENCB_call(cb, 3, 0) || |
1176 | !generate_prime(rsa->q, prime_bits, rsa->e, rsa->p, sqrt2, |
1177 | pow2_prime_bits_100, ctx, cb) || |
1178 | !BN_GENCB_call(cb, 3, 1)) { |
1179 | goto bn_err; |
1180 | } |
1181 | |
1182 | if (BN_cmp(rsa->p, rsa->q) < 0) { |
1183 | BIGNUM *tmp = rsa->p; |
1184 | rsa->p = rsa->q; |
1185 | rsa->q = tmp; |
1186 | } |
1187 | |
1188 | // Calculate d = e^(-1) (mod lcm(p-1, q-1)), per FIPS 186-4. This differs |
1189 | // from typical RSA implementations which use (p-1)*(q-1). |
1190 | // |
1191 | // Note this means the size of d might reveal information about p-1 and |
1192 | // q-1. However, we do operations with Chinese Remainder Theorem, so we only |
1193 | // use d (mod p-1) and d (mod q-1) as exponents. Using a minimal totient |
1194 | // does not affect those two values. |
1195 | int no_inverse; |
1196 | if (!bn_usub_consttime(pm1, rsa->p, BN_value_one()) || |
1197 | !bn_usub_consttime(qm1, rsa->q, BN_value_one()) || |
1198 | !bn_lcm_consttime(totient, pm1, qm1, ctx) || |
1199 | !bn_mod_inverse_consttime(rsa->d, &no_inverse, rsa->e, totient, ctx)) { |
1200 | goto bn_err; |
1201 | } |
1202 | |
1203 | // Retry if |rsa->d| <= 2^|prime_bits|. See appendix B.3.1's guidance on |
1204 | // values for d. |
1205 | } while (BN_cmp(rsa->d, pow2_prime_bits) <= 0); |
1206 | |
1207 | if (// Calculate n. |
1208 | !bn_mul_consttime(rsa->n, rsa->p, rsa->q, ctx) || |
1209 | // Calculate d mod (p-1). |
1210 | !bn_div_consttime(NULL, rsa->dmp1, rsa->d, pm1, ctx) || |
1211 | // Calculate d mod (q-1) |
1212 | !bn_div_consttime(NULL, rsa->dmq1, rsa->d, qm1, ctx)) { |
1213 | goto bn_err; |
1214 | } |
1215 | bn_set_minimal_width(rsa->n); |
1216 | |
1217 | // Sanity-check that |rsa->n| has the specified size. This is implied by |
1218 | // |generate_prime|'s bounds. |
1219 | if (BN_num_bits(rsa->n) != (unsigned)bits) { |
1220 | OPENSSL_PUT_ERROR(RSA, ERR_R_INTERNAL_ERROR); |
1221 | goto err; |
1222 | } |
1223 | |
1224 | // Call |freeze_private_key| to compute the inverse of q mod p, by way of |
1225 | // |rsa->mont_p|. |
1226 | if (!freeze_private_key(rsa, ctx)) { |
1227 | goto bn_err; |
1228 | } |
1229 | |
1230 | // The key generation process is complex and thus error-prone. It could be |
1231 | // disastrous to generate and then use a bad key so double-check that the key |
1232 | // makes sense. |
1233 | if (!RSA_check_key(rsa)) { |
1234 | OPENSSL_PUT_ERROR(RSA, RSA_R_INTERNAL_ERROR); |
1235 | goto err; |
1236 | } |
1237 | |
1238 | ret = 1; |
1239 | |
1240 | bn_err: |
1241 | if (!ret) { |
1242 | OPENSSL_PUT_ERROR(RSA, ERR_LIB_BN); |
1243 | } |
1244 | err: |
1245 | if (ctx != NULL) { |
1246 | BN_CTX_end(ctx); |
1247 | BN_CTX_free(ctx); |
1248 | } |
1249 | return ret; |
1250 | } |
1251 | |
1252 | static void replace_bignum(BIGNUM **out, BIGNUM **in) { |
1253 | BN_free(*out); |
1254 | *out = *in; |
1255 | *in = NULL; |
1256 | } |
1257 | |
1258 | static void replace_bn_mont_ctx(BN_MONT_CTX **out, BN_MONT_CTX **in) { |
1259 | BN_MONT_CTX_free(*out); |
1260 | *out = *in; |
1261 | *in = NULL; |
1262 | } |
1263 | |
1264 | int RSA_generate_key_ex(RSA *rsa, int bits, const BIGNUM *e_value, |
1265 | BN_GENCB *cb) { |
1266 | // |rsa_generate_key_impl|'s 2^-20 failure probability is too high at scale, |
1267 | // so we run the FIPS algorithm four times, bringing it down to 2^-80. We |
1268 | // should just adjust the retry limit, but FIPS 186-4 prescribes that value |
1269 | // and thus results in unnecessary complexity. |
1270 | for (int i = 0; i < 4; i++) { |
1271 | ERR_clear_error(); |
1272 | // Generate into scratch space, to avoid leaving partial work on failure. |
1273 | RSA *tmp = RSA_new(); |
1274 | if (tmp == NULL) { |
1275 | return 0; |
1276 | } |
1277 | if (rsa_generate_key_impl(tmp, bits, e_value, cb)) { |
1278 | replace_bignum(&rsa->n, &tmp->n); |
1279 | replace_bignum(&rsa->e, &tmp->e); |
1280 | replace_bignum(&rsa->d, &tmp->d); |
1281 | replace_bignum(&rsa->p, &tmp->p); |
1282 | replace_bignum(&rsa->q, &tmp->q); |
1283 | replace_bignum(&rsa->dmp1, &tmp->dmp1); |
1284 | replace_bignum(&rsa->dmq1, &tmp->dmq1); |
1285 | replace_bignum(&rsa->iqmp, &tmp->iqmp); |
1286 | replace_bn_mont_ctx(&rsa->mont_n, &tmp->mont_n); |
1287 | replace_bn_mont_ctx(&rsa->mont_p, &tmp->mont_p); |
1288 | replace_bn_mont_ctx(&rsa->mont_q, &tmp->mont_q); |
1289 | replace_bignum(&rsa->d_fixed, &tmp->d_fixed); |
1290 | replace_bignum(&rsa->dmp1_fixed, &tmp->dmp1_fixed); |
1291 | replace_bignum(&rsa->dmq1_fixed, &tmp->dmq1_fixed); |
1292 | replace_bignum(&rsa->inv_small_mod_large_mont, |
1293 | &tmp->inv_small_mod_large_mont); |
1294 | rsa->private_key_frozen = tmp->private_key_frozen; |
1295 | RSA_free(tmp); |
1296 | return 1; |
1297 | } |
1298 | uint32_t err = ERR_peek_error(); |
1299 | RSA_free(tmp); |
1300 | tmp = NULL; |
1301 | // Only retry on |RSA_R_TOO_MANY_ITERATIONS|. This is so a caller-induced |
1302 | // failure in |BN_GENCB_call| is still fatal. |
1303 | if (ERR_GET_LIB(err) != ERR_LIB_RSA || |
1304 | ERR_GET_REASON(err) != RSA_R_TOO_MANY_ITERATIONS) { |
1305 | return 0; |
1306 | } |
1307 | } |
1308 | |
1309 | return 0; |
1310 | } |
1311 | |
1312 | int RSA_generate_key_fips(RSA *rsa, int bits, BN_GENCB *cb) { |
1313 | // FIPS 186-4 allows 2048-bit and 3072-bit RSA keys (1024-bit and 1536-bit |
1314 | // primes, respectively) with the prime generation method we use. |
1315 | if (bits != 2048 && bits != 3072) { |
1316 | OPENSSL_PUT_ERROR(RSA, RSA_R_BAD_RSA_PARAMETERS); |
1317 | return 0; |
1318 | } |
1319 | |
1320 | BIGNUM *e = BN_new(); |
1321 | int ret = e != NULL && |
1322 | BN_set_word(e, RSA_F4) && |
1323 | RSA_generate_key_ex(rsa, bits, e, cb) && |
1324 | RSA_check_fips(rsa); |
1325 | BN_free(e); |
1326 | return ret; |
1327 | } |
1328 | |
1329 | DEFINE_METHOD_FUNCTION(RSA_METHOD, RSA_default_method) { |
1330 | // All of the methods are NULL to make it easier for the compiler/linker to |
1331 | // drop unused functions. The wrapper functions will select the appropriate |
1332 | // |rsa_default_*| implementation. |
1333 | OPENSSL_memset(out, 0, sizeof(RSA_METHOD)); |
1334 | out->common.is_static = 1; |
1335 | } |
1336 | |