| 1 | /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) |
| 2 | * All rights reserved. |
| 3 | * |
| 4 | * This package is an SSL implementation written |
| 5 | * by Eric Young (eay@cryptsoft.com). |
| 6 | * The implementation was written so as to conform with Netscapes SSL. |
| 7 | * |
| 8 | * This library is free for commercial and non-commercial use as long as |
| 9 | * the following conditions are aheared to. The following conditions |
| 10 | * apply to all code found in this distribution, be it the RC4, RSA, |
| 11 | * lhash, DES, etc., code; not just the SSL code. The SSL documentation |
| 12 | * included with this distribution is covered by the same copyright terms |
| 13 | * except that the holder is Tim Hudson (tjh@cryptsoft.com). |
| 14 | * |
| 15 | * Copyright remains Eric Young's, and as such any Copyright notices in |
| 16 | * the code are not to be removed. |
| 17 | * If this package is used in a product, Eric Young should be given attribution |
| 18 | * as the author of the parts of the library used. |
| 19 | * This can be in the form of a textual message at program startup or |
| 20 | * in documentation (online or textual) provided with the package. |
| 21 | * |
| 22 | * Redistribution and use in source and binary forms, with or without |
| 23 | * modification, are permitted provided that the following conditions |
| 24 | * are met: |
| 25 | * 1. Redistributions of source code must retain the copyright |
| 26 | * notice, this list of conditions and the following disclaimer. |
| 27 | * 2. Redistributions in binary form must reproduce the above copyright |
| 28 | * notice, this list of conditions and the following disclaimer in the |
| 29 | * documentation and/or other materials provided with the distribution. |
| 30 | * 3. All advertising materials mentioning features or use of this software |
| 31 | * must display the following acknowledgement: |
| 32 | * "This product includes cryptographic software written by |
| 33 | * Eric Young (eay@cryptsoft.com)" |
| 34 | * The word 'cryptographic' can be left out if the rouines from the library |
| 35 | * being used are not cryptographic related :-). |
| 36 | * 4. If you include any Windows specific code (or a derivative thereof) from |
| 37 | * the apps directory (application code) you must include an acknowledgement: |
| 38 | * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" |
| 39 | * |
| 40 | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND |
| 41 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 42 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 43 | * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE |
| 44 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| 45 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
| 46 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| 47 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
| 48 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
| 49 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
| 50 | * SUCH DAMAGE. |
| 51 | * |
| 52 | * The licence and distribution terms for any publically available version or |
| 53 | * derivative of this code cannot be changed. i.e. this code cannot simply be |
| 54 | * copied and put under another distribution licence |
| 55 | * [including the GNU Public Licence.] */ |
| 56 | |
| 57 | #include <openssl/rsa.h> |
| 58 | |
| 59 | #include <assert.h> |
| 60 | #include <limits.h> |
| 61 | #include <string.h> |
| 62 | |
| 63 | #include <openssl/bn.h> |
| 64 | #include <openssl/err.h> |
| 65 | #include <openssl/mem.h> |
| 66 | #include <openssl/thread.h> |
| 67 | #include <openssl/type_check.h> |
| 68 | |
| 69 | #include "internal.h" |
| 70 | #include "../bn/internal.h" |
| 71 | #include "../../internal.h" |
| 72 | #include "../delocate.h" |
| 73 | |
| 74 | |
| 75 | static int check_modulus_and_exponent_sizes(const RSA *rsa) { |
| 76 | unsigned rsa_bits = BN_num_bits(rsa->n); |
| 77 | |
| 78 | if (rsa_bits > 16 * 1024) { |
| 79 | OPENSSL_PUT_ERROR(RSA, RSA_R_MODULUS_TOO_LARGE); |
| 80 | return 0; |
| 81 | } |
| 82 | |
| 83 | // Mitigate DoS attacks by limiting the exponent size. 33 bits was chosen as |
| 84 | // the limit based on the recommendations in [1] and [2]. Windows CryptoAPI |
| 85 | // doesn't support values larger than 32 bits [3], so it is unlikely that |
| 86 | // exponents larger than 32 bits are being used for anything Windows commonly |
| 87 | // does. |
| 88 | // |
| 89 | // [1] https://www.imperialviolet.org/2012/03/16/rsae.html |
| 90 | // [2] https://www.imperialviolet.org/2012/03/17/rsados.html |
| 91 | // [3] https://msdn.microsoft.com/en-us/library/aa387685(VS.85).aspx |
| 92 | static const unsigned kMaxExponentBits = 33; |
| 93 | |
| 94 | if (BN_num_bits(rsa->e) > kMaxExponentBits) { |
| 95 | OPENSSL_PUT_ERROR(RSA, RSA_R_BAD_E_VALUE); |
| 96 | return 0; |
| 97 | } |
| 98 | |
| 99 | // Verify |n > e|. Comparing |rsa_bits| to |kMaxExponentBits| is a small |
| 100 | // shortcut to comparing |n| and |e| directly. In reality, |kMaxExponentBits| |
| 101 | // is much smaller than the minimum RSA key size that any application should |
| 102 | // accept. |
| 103 | if (rsa_bits <= kMaxExponentBits) { |
| 104 | OPENSSL_PUT_ERROR(RSA, RSA_R_KEY_SIZE_TOO_SMALL); |
| 105 | return 0; |
| 106 | } |
| 107 | assert(BN_ucmp(rsa->n, rsa->e) > 0); |
| 108 | |
| 109 | return 1; |
| 110 | } |
| 111 | |
| 112 | static int ensure_fixed_copy(BIGNUM **out, const BIGNUM *in, int width) { |
| 113 | if (*out != NULL) { |
| 114 | return 1; |
| 115 | } |
| 116 | BIGNUM *copy = BN_dup(in); |
| 117 | if (copy == NULL || |
| 118 | !bn_resize_words(copy, width)) { |
| 119 | BN_free(copy); |
| 120 | return 0; |
| 121 | } |
| 122 | *out = copy; |
| 123 | CONSTTIME_SECRET(copy->d, sizeof(BN_ULONG) * width); |
| 124 | |
| 125 | return 1; |
| 126 | } |
| 127 | |
| 128 | // freeze_private_key finishes initializing |rsa|'s private key components. |
| 129 | // After this function has returned, |rsa| may not be changed. This is needed |
| 130 | // because |RSA| is a public struct and, additionally, OpenSSL 1.1.0 opaquified |
| 131 | // it wrong (see https://github.com/openssl/openssl/issues/5158). |
| 132 | static int freeze_private_key(RSA *rsa, BN_CTX *ctx) { |
| 133 | CRYPTO_MUTEX_lock_read(&rsa->lock); |
| 134 | int frozen = rsa->private_key_frozen; |
| 135 | CRYPTO_MUTEX_unlock_read(&rsa->lock); |
| 136 | if (frozen) { |
| 137 | return 1; |
| 138 | } |
| 139 | |
| 140 | int ret = 0; |
| 141 | CRYPTO_MUTEX_lock_write(&rsa->lock); |
| 142 | if (rsa->private_key_frozen) { |
| 143 | ret = 1; |
| 144 | goto err; |
| 145 | } |
| 146 | |
| 147 | // Pre-compute various intermediate values, as well as copies of private |
| 148 | // exponents with correct widths. Note that other threads may concurrently |
| 149 | // read from |rsa->n|, |rsa->e|, etc., so any fixes must be in separate |
| 150 | // copies. We use |mont_n->N|, |mont_p->N|, and |mont_q->N| as copies of |n|, |
| 151 | // |p|, and |q| with the correct minimal widths. |
| 152 | |
| 153 | if (rsa->mont_n == NULL) { |
| 154 | rsa->mont_n = BN_MONT_CTX_new_for_modulus(rsa->n, ctx); |
| 155 | if (rsa->mont_n == NULL) { |
| 156 | goto err; |
| 157 | } |
| 158 | } |
| 159 | const BIGNUM *n_fixed = &rsa->mont_n->N; |
| 160 | |
| 161 | // The only public upper-bound of |rsa->d| is the bit length of |rsa->n|. The |
| 162 | // ASN.1 serialization of RSA private keys unfortunately leaks the byte length |
| 163 | // of |rsa->d|, but normalize it so we only leak it once, rather than per |
| 164 | // operation. |
| 165 | if (rsa->d != NULL && |
| 166 | !ensure_fixed_copy(&rsa->d_fixed, rsa->d, n_fixed->width)) { |
| 167 | goto err; |
| 168 | } |
| 169 | |
| 170 | if (rsa->p != NULL && rsa->q != NULL) { |
| 171 | // TODO: p and q are also CONSTTIME_SECRET but not yet marked as such |
| 172 | // because the Montgomery code does things like test whether or not values |
| 173 | // are zero. So the secret marking probably needs to happen inside that |
| 174 | // code. |
| 175 | |
| 176 | if (rsa->mont_p == NULL) { |
| 177 | rsa->mont_p = BN_MONT_CTX_new_consttime(rsa->p, ctx); |
| 178 | if (rsa->mont_p == NULL) { |
| 179 | goto err; |
| 180 | } |
| 181 | } |
| 182 | const BIGNUM *p_fixed = &rsa->mont_p->N; |
| 183 | |
| 184 | if (rsa->mont_q == NULL) { |
| 185 | rsa->mont_q = BN_MONT_CTX_new_consttime(rsa->q, ctx); |
| 186 | if (rsa->mont_q == NULL) { |
| 187 | goto err; |
| 188 | } |
| 189 | } |
| 190 | const BIGNUM *q_fixed = &rsa->mont_q->N; |
| 191 | |
| 192 | if (rsa->dmp1 != NULL && rsa->dmq1 != NULL) { |
| 193 | // Key generation relies on this function to compute |iqmp|. |
| 194 | if (rsa->iqmp == NULL) { |
| 195 | BIGNUM *iqmp = BN_new(); |
| 196 | if (iqmp == NULL || |
| 197 | !bn_mod_inverse_secret_prime(iqmp, rsa->q, rsa->p, ctx, |
| 198 | rsa->mont_p)) { |
| 199 | BN_free(iqmp); |
| 200 | goto err; |
| 201 | } |
| 202 | rsa->iqmp = iqmp; |
| 203 | } |
| 204 | |
| 205 | // CRT components are only publicly bounded by their corresponding |
| 206 | // moduli's bit lengths. |rsa->iqmp| is unused outside of this one-time |
| 207 | // setup, so we do not compute a fixed-width version of it. |
| 208 | if (!ensure_fixed_copy(&rsa->dmp1_fixed, rsa->dmp1, p_fixed->width) || |
| 209 | !ensure_fixed_copy(&rsa->dmq1_fixed, rsa->dmq1, q_fixed->width)) { |
| 210 | goto err; |
| 211 | } |
| 212 | |
| 213 | // Compute |inv_small_mod_large_mont|. Note that it is always modulo the |
| 214 | // larger prime, independent of what is stored in |rsa->iqmp|. |
| 215 | if (rsa->inv_small_mod_large_mont == NULL) { |
| 216 | BIGNUM *inv_small_mod_large_mont = BN_new(); |
| 217 | int ok; |
| 218 | if (BN_cmp(rsa->p, rsa->q) < 0) { |
| 219 | ok = inv_small_mod_large_mont != NULL && |
| 220 | bn_mod_inverse_secret_prime(inv_small_mod_large_mont, rsa->p, |
| 221 | rsa->q, ctx, rsa->mont_q) && |
| 222 | BN_to_montgomery(inv_small_mod_large_mont, |
| 223 | inv_small_mod_large_mont, rsa->mont_q, ctx); |
| 224 | } else { |
| 225 | ok = inv_small_mod_large_mont != NULL && |
| 226 | BN_to_montgomery(inv_small_mod_large_mont, rsa->iqmp, |
| 227 | rsa->mont_p, ctx); |
| 228 | } |
| 229 | if (!ok) { |
| 230 | BN_free(inv_small_mod_large_mont); |
| 231 | goto err; |
| 232 | } |
| 233 | rsa->inv_small_mod_large_mont = inv_small_mod_large_mont; |
| 234 | CONSTTIME_SECRET( |
| 235 | rsa->inv_small_mod_large_mont->d, |
| 236 | sizeof(BN_ULONG) * rsa->inv_small_mod_large_mont->width); |
| 237 | } |
| 238 | } |
| 239 | } |
| 240 | |
| 241 | rsa->private_key_frozen = 1; |
| 242 | ret = 1; |
| 243 | |
| 244 | err: |
| 245 | CRYPTO_MUTEX_unlock_write(&rsa->lock); |
| 246 | return ret; |
| 247 | } |
| 248 | |
| 249 | size_t rsa_default_size(const RSA *rsa) { |
| 250 | return BN_num_bytes(rsa->n); |
| 251 | } |
| 252 | |
| 253 | int RSA_encrypt(RSA *rsa, size_t *out_len, uint8_t *out, size_t max_out, |
| 254 | const uint8_t *in, size_t in_len, int padding) { |
| 255 | if (rsa->n == NULL || rsa->e == NULL) { |
| 256 | OPENSSL_PUT_ERROR(RSA, RSA_R_VALUE_MISSING); |
| 257 | return 0; |
| 258 | } |
| 259 | |
| 260 | const unsigned rsa_size = RSA_size(rsa); |
| 261 | BIGNUM *f, *result; |
| 262 | uint8_t *buf = NULL; |
| 263 | BN_CTX *ctx = NULL; |
| 264 | int i, ret = 0; |
| 265 | |
| 266 | if (max_out < rsa_size) { |
| 267 | OPENSSL_PUT_ERROR(RSA, RSA_R_OUTPUT_BUFFER_TOO_SMALL); |
| 268 | return 0; |
| 269 | } |
| 270 | |
| 271 | if (!check_modulus_and_exponent_sizes(rsa)) { |
| 272 | return 0; |
| 273 | } |
| 274 | |
| 275 | ctx = BN_CTX_new(); |
| 276 | if (ctx == NULL) { |
| 277 | goto err; |
| 278 | } |
| 279 | |
| 280 | BN_CTX_start(ctx); |
| 281 | f = BN_CTX_get(ctx); |
| 282 | result = BN_CTX_get(ctx); |
| 283 | buf = OPENSSL_malloc(rsa_size); |
| 284 | if (!f || !result || !buf) { |
| 285 | OPENSSL_PUT_ERROR(RSA, ERR_R_MALLOC_FAILURE); |
| 286 | goto err; |
| 287 | } |
| 288 | |
| 289 | switch (padding) { |
| 290 | case RSA_PKCS1_PADDING: |
| 291 | i = RSA_padding_add_PKCS1_type_2(buf, rsa_size, in, in_len); |
| 292 | break; |
| 293 | case RSA_PKCS1_OAEP_PADDING: |
| 294 | // Use the default parameters: SHA-1 for both hashes and no label. |
| 295 | i = RSA_padding_add_PKCS1_OAEP_mgf1(buf, rsa_size, in, in_len, |
| 296 | NULL, 0, NULL, NULL); |
| 297 | break; |
| 298 | case RSA_NO_PADDING: |
| 299 | i = RSA_padding_add_none(buf, rsa_size, in, in_len); |
| 300 | break; |
| 301 | default: |
| 302 | OPENSSL_PUT_ERROR(RSA, RSA_R_UNKNOWN_PADDING_TYPE); |
| 303 | goto err; |
| 304 | } |
| 305 | |
| 306 | if (i <= 0) { |
| 307 | goto err; |
| 308 | } |
| 309 | |
| 310 | if (BN_bin2bn(buf, rsa_size, f) == NULL) { |
| 311 | goto err; |
| 312 | } |
| 313 | |
| 314 | if (BN_ucmp(f, rsa->n) >= 0) { |
| 315 | // usually the padding functions would catch this |
| 316 | OPENSSL_PUT_ERROR(RSA, RSA_R_DATA_TOO_LARGE_FOR_MODULUS); |
| 317 | goto err; |
| 318 | } |
| 319 | |
| 320 | if (!BN_MONT_CTX_set_locked(&rsa->mont_n, &rsa->lock, rsa->n, ctx) || |
| 321 | !BN_mod_exp_mont(result, f, rsa->e, &rsa->mont_n->N, ctx, rsa->mont_n)) { |
| 322 | goto err; |
| 323 | } |
| 324 | |
| 325 | // put in leading 0 bytes if the number is less than the length of the |
| 326 | // modulus |
| 327 | if (!BN_bn2bin_padded(out, rsa_size, result)) { |
| 328 | OPENSSL_PUT_ERROR(RSA, ERR_R_INTERNAL_ERROR); |
| 329 | goto err; |
| 330 | } |
| 331 | |
| 332 | *out_len = rsa_size; |
| 333 | ret = 1; |
| 334 | |
| 335 | err: |
| 336 | if (ctx != NULL) { |
| 337 | BN_CTX_end(ctx); |
| 338 | BN_CTX_free(ctx); |
| 339 | } |
| 340 | OPENSSL_free(buf); |
| 341 | |
| 342 | return ret; |
| 343 | } |
| 344 | |
| 345 | // MAX_BLINDINGS_PER_RSA defines the maximum number of cached BN_BLINDINGs per |
| 346 | // RSA*. Then this limit is exceeded, BN_BLINDING objects will be created and |
| 347 | // destroyed as needed. |
| 348 | #define MAX_BLINDINGS_PER_RSA 1024 |
| 349 | |
| 350 | // rsa_blinding_get returns a BN_BLINDING to use with |rsa|. It does this by |
| 351 | // allocating one of the cached BN_BLINDING objects in |rsa->blindings|. If |
| 352 | // none are free, the cache will be extended by a extra element and the new |
| 353 | // BN_BLINDING is returned. |
| 354 | // |
| 355 | // On success, the index of the assigned BN_BLINDING is written to |
| 356 | // |*index_used| and must be passed to |rsa_blinding_release| when finished. |
| 357 | static BN_BLINDING *rsa_blinding_get(RSA *rsa, unsigned *index_used, |
| 358 | BN_CTX *ctx) { |
| 359 | assert(ctx != NULL); |
| 360 | assert(rsa->mont_n != NULL); |
| 361 | |
| 362 | BN_BLINDING *ret = NULL; |
| 363 | BN_BLINDING **new_blindings; |
| 364 | uint8_t *new_blindings_inuse; |
| 365 | char overflow = 0; |
| 366 | |
| 367 | CRYPTO_MUTEX_lock_write(&rsa->lock); |
| 368 | |
| 369 | unsigned i; |
| 370 | for (i = 0; i < rsa->num_blindings; i++) { |
| 371 | if (rsa->blindings_inuse[i] == 0) { |
| 372 | rsa->blindings_inuse[i] = 1; |
| 373 | ret = rsa->blindings[i]; |
| 374 | *index_used = i; |
| 375 | break; |
| 376 | } |
| 377 | } |
| 378 | |
| 379 | if (ret != NULL) { |
| 380 | CRYPTO_MUTEX_unlock_write(&rsa->lock); |
| 381 | return ret; |
| 382 | } |
| 383 | |
| 384 | overflow = rsa->num_blindings >= MAX_BLINDINGS_PER_RSA; |
| 385 | |
| 386 | // We didn't find a free BN_BLINDING to use so increase the length of |
| 387 | // the arrays by one and use the newly created element. |
| 388 | |
| 389 | CRYPTO_MUTEX_unlock_write(&rsa->lock); |
| 390 | ret = BN_BLINDING_new(); |
| 391 | if (ret == NULL) { |
| 392 | return NULL; |
| 393 | } |
| 394 | |
| 395 | if (overflow) { |
| 396 | // We cannot add any more cached BN_BLINDINGs so we use |ret| |
| 397 | // and mark it for destruction in |rsa_blinding_release|. |
| 398 | *index_used = MAX_BLINDINGS_PER_RSA; |
| 399 | return ret; |
| 400 | } |
| 401 | |
| 402 | CRYPTO_MUTEX_lock_write(&rsa->lock); |
| 403 | |
| 404 | new_blindings = |
| 405 | OPENSSL_malloc(sizeof(BN_BLINDING *) * (rsa->num_blindings + 1)); |
| 406 | if (new_blindings == NULL) { |
| 407 | goto err1; |
| 408 | } |
| 409 | OPENSSL_memcpy(new_blindings, rsa->blindings, |
| 410 | sizeof(BN_BLINDING *) * rsa->num_blindings); |
| 411 | new_blindings[rsa->num_blindings] = ret; |
| 412 | |
| 413 | new_blindings_inuse = OPENSSL_malloc(rsa->num_blindings + 1); |
| 414 | if (new_blindings_inuse == NULL) { |
| 415 | goto err2; |
| 416 | } |
| 417 | OPENSSL_memcpy(new_blindings_inuse, rsa->blindings_inuse, rsa->num_blindings); |
| 418 | new_blindings_inuse[rsa->num_blindings] = 1; |
| 419 | *index_used = rsa->num_blindings; |
| 420 | |
| 421 | OPENSSL_free(rsa->blindings); |
| 422 | rsa->blindings = new_blindings; |
| 423 | OPENSSL_free(rsa->blindings_inuse); |
| 424 | rsa->blindings_inuse = new_blindings_inuse; |
| 425 | rsa->num_blindings++; |
| 426 | |
| 427 | CRYPTO_MUTEX_unlock_write(&rsa->lock); |
| 428 | return ret; |
| 429 | |
| 430 | err2: |
| 431 | OPENSSL_free(new_blindings); |
| 432 | |
| 433 | err1: |
| 434 | CRYPTO_MUTEX_unlock_write(&rsa->lock); |
| 435 | BN_BLINDING_free(ret); |
| 436 | return NULL; |
| 437 | } |
| 438 | |
| 439 | // rsa_blinding_release marks the cached BN_BLINDING at the given index as free |
| 440 | // for other threads to use. |
| 441 | static void rsa_blinding_release(RSA *rsa, BN_BLINDING *blinding, |
| 442 | unsigned blinding_index) { |
| 443 | if (blinding_index == MAX_BLINDINGS_PER_RSA) { |
| 444 | // This blinding wasn't cached. |
| 445 | BN_BLINDING_free(blinding); |
| 446 | return; |
| 447 | } |
| 448 | |
| 449 | CRYPTO_MUTEX_lock_write(&rsa->lock); |
| 450 | rsa->blindings_inuse[blinding_index] = 0; |
| 451 | CRYPTO_MUTEX_unlock_write(&rsa->lock); |
| 452 | } |
| 453 | |
| 454 | // signing |
| 455 | int rsa_default_sign_raw(RSA *rsa, size_t *out_len, uint8_t *out, |
| 456 | size_t max_out, const uint8_t *in, size_t in_len, |
| 457 | int padding) { |
| 458 | const unsigned rsa_size = RSA_size(rsa); |
| 459 | uint8_t *buf = NULL; |
| 460 | int i, ret = 0; |
| 461 | |
| 462 | if (max_out < rsa_size) { |
| 463 | OPENSSL_PUT_ERROR(RSA, RSA_R_OUTPUT_BUFFER_TOO_SMALL); |
| 464 | return 0; |
| 465 | } |
| 466 | |
| 467 | buf = OPENSSL_malloc(rsa_size); |
| 468 | if (buf == NULL) { |
| 469 | OPENSSL_PUT_ERROR(RSA, ERR_R_MALLOC_FAILURE); |
| 470 | goto err; |
| 471 | } |
| 472 | |
| 473 | switch (padding) { |
| 474 | case RSA_PKCS1_PADDING: |
| 475 | i = RSA_padding_add_PKCS1_type_1(buf, rsa_size, in, in_len); |
| 476 | break; |
| 477 | case RSA_NO_PADDING: |
| 478 | i = RSA_padding_add_none(buf, rsa_size, in, in_len); |
| 479 | break; |
| 480 | default: |
| 481 | OPENSSL_PUT_ERROR(RSA, RSA_R_UNKNOWN_PADDING_TYPE); |
| 482 | goto err; |
| 483 | } |
| 484 | |
| 485 | if (i <= 0) { |
| 486 | goto err; |
| 487 | } |
| 488 | |
| 489 | if (!RSA_private_transform(rsa, out, buf, rsa_size)) { |
| 490 | goto err; |
| 491 | } |
| 492 | |
| 493 | CONSTTIME_DECLASSIFY(out, rsa_size); |
| 494 | *out_len = rsa_size; |
| 495 | ret = 1; |
| 496 | |
| 497 | err: |
| 498 | OPENSSL_free(buf); |
| 499 | |
| 500 | return ret; |
| 501 | } |
| 502 | |
| 503 | int rsa_default_decrypt(RSA *rsa, size_t *out_len, uint8_t *out, size_t max_out, |
| 504 | const uint8_t *in, size_t in_len, int padding) { |
| 505 | const unsigned rsa_size = RSA_size(rsa); |
| 506 | uint8_t *buf = NULL; |
| 507 | int ret = 0; |
| 508 | |
| 509 | if (max_out < rsa_size) { |
| 510 | OPENSSL_PUT_ERROR(RSA, RSA_R_OUTPUT_BUFFER_TOO_SMALL); |
| 511 | return 0; |
| 512 | } |
| 513 | |
| 514 | if (padding == RSA_NO_PADDING) { |
| 515 | buf = out; |
| 516 | } else { |
| 517 | // Allocate a temporary buffer to hold the padded plaintext. |
| 518 | buf = OPENSSL_malloc(rsa_size); |
| 519 | if (buf == NULL) { |
| 520 | OPENSSL_PUT_ERROR(RSA, ERR_R_MALLOC_FAILURE); |
| 521 | goto err; |
| 522 | } |
| 523 | } |
| 524 | |
| 525 | if (in_len != rsa_size) { |
| 526 | OPENSSL_PUT_ERROR(RSA, RSA_R_DATA_LEN_NOT_EQUAL_TO_MOD_LEN); |
| 527 | goto err; |
| 528 | } |
| 529 | |
| 530 | if (!RSA_private_transform(rsa, buf, in, rsa_size)) { |
| 531 | goto err; |
| 532 | } |
| 533 | |
| 534 | switch (padding) { |
| 535 | case RSA_PKCS1_PADDING: |
| 536 | ret = |
| 537 | RSA_padding_check_PKCS1_type_2(out, out_len, rsa_size, buf, rsa_size); |
| 538 | break; |
| 539 | case RSA_PKCS1_OAEP_PADDING: |
| 540 | // Use the default parameters: SHA-1 for both hashes and no label. |
| 541 | ret = RSA_padding_check_PKCS1_OAEP_mgf1(out, out_len, rsa_size, buf, |
| 542 | rsa_size, NULL, 0, NULL, NULL); |
| 543 | break; |
| 544 | case RSA_NO_PADDING: |
| 545 | *out_len = rsa_size; |
| 546 | ret = 1; |
| 547 | break; |
| 548 | default: |
| 549 | OPENSSL_PUT_ERROR(RSA, RSA_R_UNKNOWN_PADDING_TYPE); |
| 550 | goto err; |
| 551 | } |
| 552 | |
| 553 | CONSTTIME_DECLASSIFY(&ret, sizeof(ret)); |
| 554 | if (!ret) { |
| 555 | OPENSSL_PUT_ERROR(RSA, RSA_R_PADDING_CHECK_FAILED); |
| 556 | } else { |
| 557 | CONSTTIME_DECLASSIFY(out, out_len); |
| 558 | } |
| 559 | |
| 560 | err: |
| 561 | if (padding != RSA_NO_PADDING) { |
| 562 | OPENSSL_free(buf); |
| 563 | } |
| 564 | |
| 565 | return ret; |
| 566 | } |
| 567 | |
| 568 | static int mod_exp(BIGNUM *r0, const BIGNUM *I, RSA *rsa, BN_CTX *ctx); |
| 569 | |
| 570 | int RSA_verify_raw(RSA *rsa, size_t *out_len, uint8_t *out, size_t max_out, |
| 571 | const uint8_t *in, size_t in_len, int padding) { |
| 572 | if (rsa->n == NULL || rsa->e == NULL) { |
| 573 | OPENSSL_PUT_ERROR(RSA, RSA_R_VALUE_MISSING); |
| 574 | return 0; |
| 575 | } |
| 576 | |
| 577 | const unsigned rsa_size = RSA_size(rsa); |
| 578 | BIGNUM *f, *result; |
| 579 | |
| 580 | if (max_out < rsa_size) { |
| 581 | OPENSSL_PUT_ERROR(RSA, RSA_R_OUTPUT_BUFFER_TOO_SMALL); |
| 582 | return 0; |
| 583 | } |
| 584 | |
| 585 | if (in_len != rsa_size) { |
| 586 | OPENSSL_PUT_ERROR(RSA, RSA_R_DATA_LEN_NOT_EQUAL_TO_MOD_LEN); |
| 587 | return 0; |
| 588 | } |
| 589 | |
| 590 | if (!check_modulus_and_exponent_sizes(rsa)) { |
| 591 | return 0; |
| 592 | } |
| 593 | |
| 594 | BN_CTX *ctx = BN_CTX_new(); |
| 595 | if (ctx == NULL) { |
| 596 | return 0; |
| 597 | } |
| 598 | |
| 599 | int ret = 0; |
| 600 | uint8_t *buf = NULL; |
| 601 | |
| 602 | BN_CTX_start(ctx); |
| 603 | f = BN_CTX_get(ctx); |
| 604 | result = BN_CTX_get(ctx); |
| 605 | if (f == NULL || result == NULL) { |
| 606 | OPENSSL_PUT_ERROR(RSA, ERR_R_MALLOC_FAILURE); |
| 607 | goto err; |
| 608 | } |
| 609 | |
| 610 | if (padding == RSA_NO_PADDING) { |
| 611 | buf = out; |
| 612 | } else { |
| 613 | // Allocate a temporary buffer to hold the padded plaintext. |
| 614 | buf = OPENSSL_malloc(rsa_size); |
| 615 | if (buf == NULL) { |
| 616 | OPENSSL_PUT_ERROR(RSA, ERR_R_MALLOC_FAILURE); |
| 617 | goto err; |
| 618 | } |
| 619 | } |
| 620 | |
| 621 | if (BN_bin2bn(in, in_len, f) == NULL) { |
| 622 | goto err; |
| 623 | } |
| 624 | |
| 625 | if (BN_ucmp(f, rsa->n) >= 0) { |
| 626 | OPENSSL_PUT_ERROR(RSA, RSA_R_DATA_TOO_LARGE_FOR_MODULUS); |
| 627 | goto err; |
| 628 | } |
| 629 | |
| 630 | if (!BN_MONT_CTX_set_locked(&rsa->mont_n, &rsa->lock, rsa->n, ctx) || |
| 631 | !BN_mod_exp_mont(result, f, rsa->e, &rsa->mont_n->N, ctx, rsa->mont_n)) { |
| 632 | goto err; |
| 633 | } |
| 634 | |
| 635 | if (!BN_bn2bin_padded(buf, rsa_size, result)) { |
| 636 | OPENSSL_PUT_ERROR(RSA, ERR_R_INTERNAL_ERROR); |
| 637 | goto err; |
| 638 | } |
| 639 | |
| 640 | switch (padding) { |
| 641 | case RSA_PKCS1_PADDING: |
| 642 | ret = |
| 643 | RSA_padding_check_PKCS1_type_1(out, out_len, rsa_size, buf, rsa_size); |
| 644 | break; |
| 645 | case RSA_NO_PADDING: |
| 646 | ret = 1; |
| 647 | *out_len = rsa_size; |
| 648 | break; |
| 649 | default: |
| 650 | OPENSSL_PUT_ERROR(RSA, RSA_R_UNKNOWN_PADDING_TYPE); |
| 651 | goto err; |
| 652 | } |
| 653 | |
| 654 | if (!ret) { |
| 655 | OPENSSL_PUT_ERROR(RSA, RSA_R_PADDING_CHECK_FAILED); |
| 656 | goto err; |
| 657 | } |
| 658 | |
| 659 | err: |
| 660 | BN_CTX_end(ctx); |
| 661 | BN_CTX_free(ctx); |
| 662 | if (buf != out) { |
| 663 | OPENSSL_free(buf); |
| 664 | } |
| 665 | return ret; |
| 666 | } |
| 667 | |
| 668 | int rsa_default_private_transform(RSA *rsa, uint8_t *out, const uint8_t *in, |
| 669 | size_t len) { |
| 670 | if (rsa->n == NULL || rsa->d == NULL) { |
| 671 | OPENSSL_PUT_ERROR(RSA, RSA_R_VALUE_MISSING); |
| 672 | return 0; |
| 673 | } |
| 674 | |
| 675 | BIGNUM *f, *result; |
| 676 | BN_CTX *ctx = NULL; |
| 677 | unsigned blinding_index = 0; |
| 678 | BN_BLINDING *blinding = NULL; |
| 679 | int ret = 0; |
| 680 | |
| 681 | ctx = BN_CTX_new(); |
| 682 | if (ctx == NULL) { |
| 683 | goto err; |
| 684 | } |
| 685 | BN_CTX_start(ctx); |
| 686 | f = BN_CTX_get(ctx); |
| 687 | result = BN_CTX_get(ctx); |
| 688 | |
| 689 | if (f == NULL || result == NULL) { |
| 690 | OPENSSL_PUT_ERROR(RSA, ERR_R_MALLOC_FAILURE); |
| 691 | goto err; |
| 692 | } |
| 693 | |
| 694 | if (BN_bin2bn(in, len, f) == NULL) { |
| 695 | goto err; |
| 696 | } |
| 697 | |
| 698 | if (BN_ucmp(f, rsa->n) >= 0) { |
| 699 | // Usually the padding functions would catch this. |
| 700 | OPENSSL_PUT_ERROR(RSA, RSA_R_DATA_TOO_LARGE_FOR_MODULUS); |
| 701 | goto err; |
| 702 | } |
| 703 | |
| 704 | if (!freeze_private_key(rsa, ctx)) { |
| 705 | OPENSSL_PUT_ERROR(RSA, ERR_R_INTERNAL_ERROR); |
| 706 | goto err; |
| 707 | } |
| 708 | |
| 709 | const int do_blinding = (rsa->flags & RSA_FLAG_NO_BLINDING) == 0; |
| 710 | |
| 711 | if (rsa->e == NULL && do_blinding) { |
| 712 | // We cannot do blinding or verification without |e|, and continuing without |
| 713 | // those countermeasures is dangerous. However, the Java/Android RSA API |
| 714 | // requires support for keys where only |d| and |n| (and not |e|) are known. |
| 715 | // The callers that require that bad behavior set |RSA_FLAG_NO_BLINDING|. |
| 716 | OPENSSL_PUT_ERROR(RSA, RSA_R_NO_PUBLIC_EXPONENT); |
| 717 | goto err; |
| 718 | } |
| 719 | |
| 720 | if (do_blinding) { |
| 721 | blinding = rsa_blinding_get(rsa, &blinding_index, ctx); |
| 722 | if (blinding == NULL) { |
| 723 | OPENSSL_PUT_ERROR(RSA, ERR_R_INTERNAL_ERROR); |
| 724 | goto err; |
| 725 | } |
| 726 | if (!BN_BLINDING_convert(f, blinding, rsa->e, rsa->mont_n, ctx)) { |
| 727 | goto err; |
| 728 | } |
| 729 | } |
| 730 | |
| 731 | if (rsa->p != NULL && rsa->q != NULL && rsa->e != NULL && rsa->dmp1 != NULL && |
| 732 | rsa->dmq1 != NULL && rsa->iqmp != NULL && |
| 733 | // Require that we can reduce |f| by |rsa->p| and |rsa->q| in constant |
| 734 | // time, which requires primes be the same size, rounded to the Montgomery |
| 735 | // coefficient. (See |mod_montgomery|.) This is not required by RFC 8017, |
| 736 | // but it is true for keys generated by us and all common implementations. |
| 737 | bn_less_than_montgomery_R(rsa->q, rsa->mont_p) && |
| 738 | bn_less_than_montgomery_R(rsa->p, rsa->mont_q)) { |
| 739 | if (!mod_exp(result, f, rsa, ctx)) { |
| 740 | goto err; |
| 741 | } |
| 742 | } else if (!BN_mod_exp_mont_consttime(result, f, rsa->d_fixed, rsa->n, ctx, |
| 743 | rsa->mont_n)) { |
| 744 | goto err; |
| 745 | } |
| 746 | |
| 747 | // Verify the result to protect against fault attacks as described in the |
| 748 | // 1997 paper "On the Importance of Checking Cryptographic Protocols for |
| 749 | // Faults" by Dan Boneh, Richard A. DeMillo, and Richard J. Lipton. Some |
| 750 | // implementations do this only when the CRT is used, but we do it in all |
| 751 | // cases. Section 6 of the aforementioned paper describes an attack that |
| 752 | // works when the CRT isn't used. That attack is much less likely to succeed |
| 753 | // than the CRT attack, but there have likely been improvements since 1997. |
| 754 | // |
| 755 | // This check is cheap assuming |e| is small; it almost always is. |
| 756 | if (rsa->e != NULL) { |
| 757 | BIGNUM *vrfy = BN_CTX_get(ctx); |
| 758 | if (vrfy == NULL || |
| 759 | !BN_mod_exp_mont(vrfy, result, rsa->e, rsa->n, ctx, rsa->mont_n) || |
| 760 | !BN_equal_consttime(vrfy, f)) { |
| 761 | OPENSSL_PUT_ERROR(RSA, ERR_R_INTERNAL_ERROR); |
| 762 | goto err; |
| 763 | } |
| 764 | |
| 765 | } |
| 766 | |
| 767 | if (do_blinding && |
| 768 | !BN_BLINDING_invert(result, blinding, rsa->mont_n, ctx)) { |
| 769 | goto err; |
| 770 | } |
| 771 | |
| 772 | // The computation should have left |result| as a maximally-wide number, so |
| 773 | // that it and serializing does not leak information about the magnitude of |
| 774 | // the result. |
| 775 | // |
| 776 | // See Falko Strenzke, "Manger's Attack revisited", ICICS 2010. |
| 777 | assert(result->width == rsa->mont_n->N.width); |
| 778 | if (!BN_bn2bin_padded(out, len, result)) { |
| 779 | OPENSSL_PUT_ERROR(RSA, ERR_R_INTERNAL_ERROR); |
| 780 | goto err; |
| 781 | } |
| 782 | |
| 783 | ret = 1; |
| 784 | |
| 785 | err: |
| 786 | if (ctx != NULL) { |
| 787 | BN_CTX_end(ctx); |
| 788 | BN_CTX_free(ctx); |
| 789 | } |
| 790 | if (blinding != NULL) { |
| 791 | rsa_blinding_release(rsa, blinding, blinding_index); |
| 792 | } |
| 793 | |
| 794 | return ret; |
| 795 | } |
| 796 | |
| 797 | // mod_montgomery sets |r| to |I| mod |p|. |I| must already be fully reduced |
| 798 | // modulo |p| times |q|. It returns one on success and zero on error. |
| 799 | static int mod_montgomery(BIGNUM *r, const BIGNUM *I, const BIGNUM *p, |
| 800 | const BN_MONT_CTX *mont_p, const BIGNUM *q, |
| 801 | BN_CTX *ctx) { |
| 802 | // Reducing in constant-time with Montgomery reduction requires I <= p * R. We |
| 803 | // have I < p * q, so this follows if q < R. The caller should have checked |
| 804 | // this already. |
| 805 | if (!bn_less_than_montgomery_R(q, mont_p)) { |
| 806 | OPENSSL_PUT_ERROR(RSA, ERR_R_INTERNAL_ERROR); |
| 807 | return 0; |
| 808 | } |
| 809 | |
| 810 | if (// Reduce mod p with Montgomery reduction. This computes I * R^-1 mod p. |
| 811 | !BN_from_montgomery(r, I, mont_p, ctx) || |
| 812 | // Multiply by R^2 and do another Montgomery reduction to compute |
| 813 | // I * R^-1 * R^2 * R^-1 = I mod p. |
| 814 | !BN_to_montgomery(r, r, mont_p, ctx)) { |
| 815 | return 0; |
| 816 | } |
| 817 | |
| 818 | // By precomputing R^3 mod p (normally |BN_MONT_CTX| only uses R^2 mod p) and |
| 819 | // adjusting the API for |BN_mod_exp_mont_consttime|, we could instead compute |
| 820 | // I * R mod p here and save a reduction per prime. But this would require |
| 821 | // changing the RSAZ code and may not be worth it. Note that the RSAZ code |
| 822 | // uses a different radix, so it uses R' = 2^1044. There we'd actually want |
| 823 | // R^2 * R', and would futher benefit from a precomputed R'^2. It currently |
| 824 | // converts |mont_p->RR| to R'^2. |
| 825 | return 1; |
| 826 | } |
| 827 | |
| 828 | static int mod_exp(BIGNUM *r0, const BIGNUM *I, RSA *rsa, BN_CTX *ctx) { |
| 829 | assert(ctx != NULL); |
| 830 | |
| 831 | assert(rsa->n != NULL); |
| 832 | assert(rsa->e != NULL); |
| 833 | assert(rsa->d != NULL); |
| 834 | assert(rsa->p != NULL); |
| 835 | assert(rsa->q != NULL); |
| 836 | assert(rsa->dmp1 != NULL); |
| 837 | assert(rsa->dmq1 != NULL); |
| 838 | assert(rsa->iqmp != NULL); |
| 839 | |
| 840 | BIGNUM *r1, *m1; |
| 841 | int ret = 0; |
| 842 | |
| 843 | BN_CTX_start(ctx); |
| 844 | r1 = BN_CTX_get(ctx); |
| 845 | m1 = BN_CTX_get(ctx); |
| 846 | if (r1 == NULL || |
| 847 | m1 == NULL) { |
| 848 | goto err; |
| 849 | } |
| 850 | |
| 851 | if (!freeze_private_key(rsa, ctx)) { |
| 852 | goto err; |
| 853 | } |
| 854 | |
| 855 | // Implementing RSA with CRT in constant-time is sensitive to which prime is |
| 856 | // larger. Canonicalize fields so that |p| is the larger prime. |
| 857 | const BIGNUM *dmp1 = rsa->dmp1_fixed, *dmq1 = rsa->dmq1_fixed; |
| 858 | const BN_MONT_CTX *mont_p = rsa->mont_p, *mont_q = rsa->mont_q; |
| 859 | if (BN_cmp(rsa->p, rsa->q) < 0) { |
| 860 | mont_p = rsa->mont_q; |
| 861 | mont_q = rsa->mont_p; |
| 862 | dmp1 = rsa->dmq1_fixed; |
| 863 | dmq1 = rsa->dmp1_fixed; |
| 864 | } |
| 865 | |
| 866 | // Use the minimal-width versions of |n|, |p|, and |q|. Either works, but if |
| 867 | // someone gives us non-minimal values, these will be slightly more efficient |
| 868 | // on the non-Montgomery operations. |
| 869 | const BIGNUM *n = &rsa->mont_n->N; |
| 870 | const BIGNUM *p = &mont_p->N; |
| 871 | const BIGNUM *q = &mont_q->N; |
| 872 | |
| 873 | // This is a pre-condition for |mod_montgomery|. It was already checked by the |
| 874 | // caller. |
| 875 | assert(BN_ucmp(I, n) < 0); |
| 876 | |
| 877 | if (// |m1| is the result modulo |q|. |
| 878 | !mod_montgomery(r1, I, q, mont_q, p, ctx) || |
| 879 | !BN_mod_exp_mont_consttime(m1, r1, dmq1, q, ctx, mont_q) || |
| 880 | // |r0| is the result modulo |p|. |
| 881 | !mod_montgomery(r1, I, p, mont_p, q, ctx) || |
| 882 | !BN_mod_exp_mont_consttime(r0, r1, dmp1, p, ctx, mont_p) || |
| 883 | // Compute r0 = r0 - m1 mod p. |p| is the larger prime, so |m1| is already |
| 884 | // fully reduced mod |p|. |
| 885 | !bn_mod_sub_consttime(r0, r0, m1, p, ctx) || |
| 886 | // r0 = r0 * iqmp mod p. We use Montgomery multiplication to compute this |
| 887 | // in constant time. |inv_small_mod_large_mont| is in Montgomery form and |
| 888 | // r0 is not, so the result is taken out of Montgomery form. |
| 889 | !BN_mod_mul_montgomery(r0, r0, rsa->inv_small_mod_large_mont, mont_p, |
| 890 | ctx) || |
| 891 | // r0 = r0 * q + m1 gives the final result. Reducing modulo q gives m1, so |
| 892 | // it is correct mod p. Reducing modulo p gives (r0-m1)*iqmp*q + m1 = r0, |
| 893 | // so it is correct mod q. Finally, the result is bounded by [m1, n + m1), |
| 894 | // and the result is at least |m1|, so this must be the unique answer in |
| 895 | // [0, n). |
| 896 | !bn_mul_consttime(r0, r0, q, ctx) || |
| 897 | !bn_uadd_consttime(r0, r0, m1) || |
| 898 | // The result should be bounded by |n|, but fixed-width operations may |
| 899 | // bound the width slightly higher, so fix it. |
| 900 | !bn_resize_words(r0, n->width)) { |
| 901 | goto err; |
| 902 | } |
| 903 | |
| 904 | ret = 1; |
| 905 | |
| 906 | err: |
| 907 | BN_CTX_end(ctx); |
| 908 | return ret; |
| 909 | } |
| 910 | |
| 911 | static int ensure_bignum(BIGNUM **out) { |
| 912 | if (*out == NULL) { |
| 913 | *out = BN_new(); |
| 914 | } |
| 915 | return *out != NULL; |
| 916 | } |
| 917 | |
| 918 | // kBoringSSLRSASqrtTwo is the BIGNUM representation of ⌊2¹⁵³⁵×√2⌋. This is |
| 919 | // chosen to give enough precision for 3072-bit RSA, the largest key size FIPS |
| 920 | // specifies. Key sizes beyond this will round up. |
| 921 | // |
| 922 | // To verify this number, check that n² < 2³⁰⁷¹ < (n+1)², where n is value |
| 923 | // represented here. Note the components are listed in little-endian order. Here |
| 924 | // is some sample Python code to check: |
| 925 | // |
| 926 | // >>> TOBN = lambda a, b: a << 32 | b |
| 927 | // >>> l = [ <paste the contents of kSqrtTwo> ] |
| 928 | // >>> n = sum(a * 2**(64*i) for i, a in enumerate(l)) |
| 929 | // >>> n**2 < 2**3071 < (n+1)**2 |
| 930 | // True |
| 931 | const BN_ULONG kBoringSSLRSASqrtTwo[] = { |
| 932 | TOBN(0xdea06241, 0xf7aa81c2), TOBN(0xf6a1be3f, 0xca221307), |
| 933 | TOBN(0x332a5e9f, 0x7bda1ebf), TOBN(0x0104dc01, 0xfe32352f), |
| 934 | TOBN(0xb8cf341b, 0x6f8236c7), TOBN(0x4264dabc, 0xd528b651), |
| 935 | TOBN(0xf4d3a02c, 0xebc93e0c), TOBN(0x81394ab6, 0xd8fd0efd), |
| 936 | TOBN(0xeaa4a089, 0x9040ca4a), TOBN(0xf52f120f, 0x836e582e), |
| 937 | TOBN(0xcb2a6343, 0x31f3c84d), TOBN(0xc6d5a8a3, 0x8bb7e9dc), |
| 938 | TOBN(0x460abc72, 0x2f7c4e33), TOBN(0xcab1bc91, 0x1688458a), |
| 939 | TOBN(0x53059c60, 0x11bc337b), TOBN(0xd2202e87, 0x42af1f4e), |
| 940 | TOBN(0x78048736, 0x3dfa2768), TOBN(0x0f74a85e, 0x439c7b4a), |
| 941 | TOBN(0xa8b1fe6f, 0xdc83db39), TOBN(0x4afc8304, 0x3ab8a2c3), |
| 942 | TOBN(0xed17ac85, 0x83339915), TOBN(0x1d6f60ba, 0x893ba84c), |
| 943 | TOBN(0x597d89b3, 0x754abe9f), TOBN(0xb504f333, 0xf9de6484), |
| 944 | }; |
| 945 | const size_t kBoringSSLRSASqrtTwoLen = OPENSSL_ARRAY_SIZE(kBoringSSLRSASqrtTwo); |
| 946 | |
| 947 | // generate_prime sets |out| to a prime with length |bits| such that |out|-1 is |
| 948 | // relatively prime to |e|. If |p| is non-NULL, |out| will also not be close to |
| 949 | // |p|. |sqrt2| must be ⌊2^(bits-1)×√2⌋ (or a slightly overestimate for large |
| 950 | // sizes), and |pow2_bits_100| must be 2^(bits-100). |
| 951 | // |
| 952 | // This function fails with probability around 2^-21. |
| 953 | static int generate_prime(BIGNUM *out, int bits, const BIGNUM *e, |
| 954 | const BIGNUM *p, const BIGNUM *sqrt2, |
| 955 | const BIGNUM *pow2_bits_100, BN_CTX *ctx, |
| 956 | BN_GENCB *cb) { |
| 957 | if (bits < 128 || (bits % BN_BITS2) != 0) { |
| 958 | OPENSSL_PUT_ERROR(RSA, ERR_R_INTERNAL_ERROR); |
| 959 | return 0; |
| 960 | } |
| 961 | assert(BN_is_pow2(pow2_bits_100)); |
| 962 | assert(BN_is_bit_set(pow2_bits_100, bits - 100)); |
| 963 | |
| 964 | // See FIPS 186-4 appendix B.3.3, steps 4 and 5. Note |bits| here is nlen/2. |
| 965 | |
| 966 | // Use the limit from steps 4.7 and 5.8 for most values of |e|. When |e| is 3, |
| 967 | // the 186-4 limit is too low, so we use a higher one. Note this case is not |
| 968 | // reachable from |RSA_generate_key_fips|. |
| 969 | // |
| 970 | // |limit| determines the failure probability. We must find a prime that is |
| 971 | // not 1 mod |e|. By the prime number theorem, we'll find one with probability |
| 972 | // p = (e-1)/e * 2/(ln(2)*bits). Note the second term is doubled because we |
| 973 | // discard even numbers. |
| 974 | // |
| 975 | // The failure probability is thus (1-p)^limit. To convert that to a power of |
| 976 | // two, we take logs. -log_2((1-p)^limit) = -limit * ln(1-p) / ln(2). |
| 977 | // |
| 978 | // >>> def f(bits, e, limit): |
| 979 | // ... p = (e-1.0)/e * 2.0/(math.log(2)*bits) |
| 980 | // ... return -limit * math.log(1 - p) / math.log(2) |
| 981 | // ... |
| 982 | // >>> f(1024, 65537, 5*1024) |
| 983 | // 20.842750558272634 |
| 984 | // >>> f(1536, 65537, 5*1536) |
| 985 | // 20.83294549602474 |
| 986 | // >>> f(2048, 65537, 5*2048) |
| 987 | // 20.828047576234948 |
| 988 | // >>> f(1024, 3, 8*1024) |
| 989 | // 22.222147925962307 |
| 990 | // >>> f(1536, 3, 8*1536) |
| 991 | // 22.21518251065506 |
| 992 | // >>> f(2048, 3, 8*2048) |
| 993 | // 22.211701985875937 |
| 994 | if (bits >= INT_MAX/32) { |
| 995 | OPENSSL_PUT_ERROR(RSA, RSA_R_MODULUS_TOO_LARGE); |
| 996 | return 0; |
| 997 | } |
| 998 | int limit = BN_is_word(e, 3) ? bits * 8 : bits * 5; |
| 999 | |
| 1000 | int ret = 0, tries = 0, rand_tries = 0; |
| 1001 | BN_CTX_start(ctx); |
| 1002 | BIGNUM *tmp = BN_CTX_get(ctx); |
| 1003 | if (tmp == NULL) { |
| 1004 | goto err; |
| 1005 | } |
| 1006 | |
| 1007 | for (;;) { |
| 1008 | // Generate a random number of length |bits| where the bottom bit is set |
| 1009 | // (steps 4.2, 4.3, 5.2 and 5.3) and the top bit is set (implied by the |
| 1010 | // bound checked below in steps 4.4 and 5.5). |
| 1011 | if (!BN_rand(out, bits, BN_RAND_TOP_ONE, BN_RAND_BOTTOM_ODD) || |
| 1012 | !BN_GENCB_call(cb, BN_GENCB_GENERATED, rand_tries++)) { |
| 1013 | goto err; |
| 1014 | } |
| 1015 | |
| 1016 | if (p != NULL) { |
| 1017 | // If |p| and |out| are too close, try again (step 5.4). |
| 1018 | if (!bn_abs_sub_consttime(tmp, out, p, ctx)) { |
| 1019 | goto err; |
| 1020 | } |
| 1021 | if (BN_cmp(tmp, pow2_bits_100) <= 0) { |
| 1022 | continue; |
| 1023 | } |
| 1024 | } |
| 1025 | |
| 1026 | // If out < 2^(bits-1)×√2, try again (steps 4.4 and 5.5). This is equivalent |
| 1027 | // to out <= ⌊2^(bits-1)×√2⌋, or out <= sqrt2 for FIPS key sizes. |
| 1028 | // |
| 1029 | // For larger keys, the comparison is approximate, leaning towards |
| 1030 | // retrying. That is, we reject a negligible fraction of primes that are |
| 1031 | // within the FIPS bound, but we will never accept a prime outside the |
| 1032 | // bound, ensuring the resulting RSA key is the right size. |
| 1033 | if (BN_cmp(out, sqrt2) <= 0) { |
| 1034 | continue; |
| 1035 | } |
| 1036 | |
| 1037 | // RSA key generation's bottleneck is discarding composites. If it fails |
| 1038 | // trial division, do not bother computing a GCD or performing Rabin-Miller. |
| 1039 | if (!bn_odd_number_is_obviously_composite(out)) { |
| 1040 | // Check gcd(out-1, e) is one (steps 4.5 and 5.6). |
| 1041 | int relatively_prime; |
| 1042 | if (!BN_sub(tmp, out, BN_value_one()) || |
| 1043 | !bn_is_relatively_prime(&relatively_prime, tmp, e, ctx)) { |
| 1044 | goto err; |
| 1045 | } |
| 1046 | if (relatively_prime) { |
| 1047 | // Test |out| for primality (steps 4.5.1 and 5.6.1). |
| 1048 | int is_probable_prime; |
| 1049 | if (!BN_primality_test(&is_probable_prime, out, BN_prime_checks, ctx, 0, |
| 1050 | cb)) { |
| 1051 | goto err; |
| 1052 | } |
| 1053 | if (is_probable_prime) { |
| 1054 | ret = 1; |
| 1055 | goto err; |
| 1056 | } |
| 1057 | } |
| 1058 | } |
| 1059 | |
| 1060 | // If we've tried too many times to find a prime, abort (steps 4.7 and |
| 1061 | // 5.8). |
| 1062 | tries++; |
| 1063 | if (tries >= limit) { |
| 1064 | OPENSSL_PUT_ERROR(RSA, RSA_R_TOO_MANY_ITERATIONS); |
| 1065 | goto err; |
| 1066 | } |
| 1067 | if (!BN_GENCB_call(cb, 2, tries)) { |
| 1068 | goto err; |
| 1069 | } |
| 1070 | } |
| 1071 | |
| 1072 | err: |
| 1073 | BN_CTX_end(ctx); |
| 1074 | return ret; |
| 1075 | } |
| 1076 | |
| 1077 | // rsa_generate_key_impl generates an RSA key using a generalized version of |
| 1078 | // FIPS 186-4 appendix B.3. |RSA_generate_key_fips| performs additional checks |
| 1079 | // for FIPS-compliant key generation. |
| 1080 | // |
| 1081 | // This function returns one on success and zero on failure. It has a failure |
| 1082 | // probability of about 2^-20. |
| 1083 | static int rsa_generate_key_impl(RSA *rsa, int bits, const BIGNUM *e_value, |
| 1084 | BN_GENCB *cb) { |
| 1085 | // See FIPS 186-4 appendix B.3. This function implements a generalized version |
| 1086 | // of the FIPS algorithm. |RSA_generate_key_fips| performs additional checks |
| 1087 | // for FIPS-compliant key generation. |
| 1088 | |
| 1089 | // Always generate RSA keys which are a multiple of 128 bits. Round |bits| |
| 1090 | // down as needed. |
| 1091 | bits &= ~127; |
| 1092 | |
| 1093 | // Reject excessively small keys. |
| 1094 | if (bits < 256) { |
| 1095 | OPENSSL_PUT_ERROR(RSA, RSA_R_KEY_SIZE_TOO_SMALL); |
| 1096 | return 0; |
| 1097 | } |
| 1098 | |
| 1099 | // Reject excessively large public exponents. Windows CryptoAPI and Go don't |
| 1100 | // support values larger than 32 bits, so match their limits for generating |
| 1101 | // keys. (|check_modulus_and_exponent_sizes| uses a slightly more conservative |
| 1102 | // value, but we don't need to support generating such keys.) |
| 1103 | // https://github.com/golang/go/issues/3161 |
| 1104 | // https://msdn.microsoft.com/en-us/library/aa387685(VS.85).aspx |
| 1105 | if (BN_num_bits(e_value) > 32) { |
| 1106 | OPENSSL_PUT_ERROR(RSA, RSA_R_BAD_E_VALUE); |
| 1107 | return 0; |
| 1108 | } |
| 1109 | |
| 1110 | int ret = 0; |
| 1111 | int prime_bits = bits / 2; |
| 1112 | BN_CTX *ctx = BN_CTX_new(); |
| 1113 | if (ctx == NULL) { |
| 1114 | goto bn_err; |
| 1115 | } |
| 1116 | BN_CTX_start(ctx); |
| 1117 | BIGNUM *totient = BN_CTX_get(ctx); |
| 1118 | BIGNUM *pm1 = BN_CTX_get(ctx); |
| 1119 | BIGNUM *qm1 = BN_CTX_get(ctx); |
| 1120 | BIGNUM *sqrt2 = BN_CTX_get(ctx); |
| 1121 | BIGNUM *pow2_prime_bits_100 = BN_CTX_get(ctx); |
| 1122 | BIGNUM *pow2_prime_bits = BN_CTX_get(ctx); |
| 1123 | if (totient == NULL || pm1 == NULL || qm1 == NULL || sqrt2 == NULL || |
| 1124 | pow2_prime_bits_100 == NULL || pow2_prime_bits == NULL || |
| 1125 | !BN_set_bit(pow2_prime_bits_100, prime_bits - 100) || |
| 1126 | !BN_set_bit(pow2_prime_bits, prime_bits)) { |
| 1127 | goto bn_err; |
| 1128 | } |
| 1129 | |
| 1130 | // We need the RSA components non-NULL. |
| 1131 | if (!ensure_bignum(&rsa->n) || |
| 1132 | !ensure_bignum(&rsa->d) || |
| 1133 | !ensure_bignum(&rsa->e) || |
| 1134 | !ensure_bignum(&rsa->p) || |
| 1135 | !ensure_bignum(&rsa->q) || |
| 1136 | !ensure_bignum(&rsa->dmp1) || |
| 1137 | !ensure_bignum(&rsa->dmq1)) { |
| 1138 | goto bn_err; |
| 1139 | } |
| 1140 | |
| 1141 | if (!BN_copy(rsa->e, e_value)) { |
| 1142 | goto bn_err; |
| 1143 | } |
| 1144 | |
| 1145 | // Compute sqrt2 >= ⌊2^(prime_bits-1)×√2⌋. |
| 1146 | if (!bn_set_words(sqrt2, kBoringSSLRSASqrtTwo, kBoringSSLRSASqrtTwoLen)) { |
| 1147 | goto bn_err; |
| 1148 | } |
| 1149 | int sqrt2_bits = kBoringSSLRSASqrtTwoLen * BN_BITS2; |
| 1150 | assert(sqrt2_bits == (int)BN_num_bits(sqrt2)); |
| 1151 | if (sqrt2_bits > prime_bits) { |
| 1152 | // For key sizes up to 3072 (prime_bits = 1536), this is exactly |
| 1153 | // ⌊2^(prime_bits-1)×√2⌋. |
| 1154 | if (!BN_rshift(sqrt2, sqrt2, sqrt2_bits - prime_bits)) { |
| 1155 | goto bn_err; |
| 1156 | } |
| 1157 | } else if (prime_bits > sqrt2_bits) { |
| 1158 | // For key sizes beyond 3072, this is approximate. We err towards retrying |
| 1159 | // to ensure our key is the right size and round up. |
| 1160 | if (!BN_add_word(sqrt2, 1) || |
| 1161 | !BN_lshift(sqrt2, sqrt2, prime_bits - sqrt2_bits)) { |
| 1162 | goto bn_err; |
| 1163 | } |
| 1164 | } |
| 1165 | assert(prime_bits == (int)BN_num_bits(sqrt2)); |
| 1166 | |
| 1167 | do { |
| 1168 | // Generate p and q, each of size |prime_bits|, using the steps outlined in |
| 1169 | // appendix FIPS 186-4 appendix B.3.3. |
| 1170 | // |
| 1171 | // Each call to |generate_prime| fails with probability p = 2^-21. The |
| 1172 | // probability that either call fails is 1 - (1-p)^2, which is around 2^-20. |
| 1173 | if (!generate_prime(rsa->p, prime_bits, rsa->e, NULL, sqrt2, |
| 1174 | pow2_prime_bits_100, ctx, cb) || |
| 1175 | !BN_GENCB_call(cb, 3, 0) || |
| 1176 | !generate_prime(rsa->q, prime_bits, rsa->e, rsa->p, sqrt2, |
| 1177 | pow2_prime_bits_100, ctx, cb) || |
| 1178 | !BN_GENCB_call(cb, 3, 1)) { |
| 1179 | goto bn_err; |
| 1180 | } |
| 1181 | |
| 1182 | if (BN_cmp(rsa->p, rsa->q) < 0) { |
| 1183 | BIGNUM *tmp = rsa->p; |
| 1184 | rsa->p = rsa->q; |
| 1185 | rsa->q = tmp; |
| 1186 | } |
| 1187 | |
| 1188 | // Calculate d = e^(-1) (mod lcm(p-1, q-1)), per FIPS 186-4. This differs |
| 1189 | // from typical RSA implementations which use (p-1)*(q-1). |
| 1190 | // |
| 1191 | // Note this means the size of d might reveal information about p-1 and |
| 1192 | // q-1. However, we do operations with Chinese Remainder Theorem, so we only |
| 1193 | // use d (mod p-1) and d (mod q-1) as exponents. Using a minimal totient |
| 1194 | // does not affect those two values. |
| 1195 | int no_inverse; |
| 1196 | if (!bn_usub_consttime(pm1, rsa->p, BN_value_one()) || |
| 1197 | !bn_usub_consttime(qm1, rsa->q, BN_value_one()) || |
| 1198 | !bn_lcm_consttime(totient, pm1, qm1, ctx) || |
| 1199 | !bn_mod_inverse_consttime(rsa->d, &no_inverse, rsa->e, totient, ctx)) { |
| 1200 | goto bn_err; |
| 1201 | } |
| 1202 | |
| 1203 | // Retry if |rsa->d| <= 2^|prime_bits|. See appendix B.3.1's guidance on |
| 1204 | // values for d. |
| 1205 | } while (BN_cmp(rsa->d, pow2_prime_bits) <= 0); |
| 1206 | |
| 1207 | if (// Calculate n. |
| 1208 | !bn_mul_consttime(rsa->n, rsa->p, rsa->q, ctx) || |
| 1209 | // Calculate d mod (p-1). |
| 1210 | !bn_div_consttime(NULL, rsa->dmp1, rsa->d, pm1, ctx) || |
| 1211 | // Calculate d mod (q-1) |
| 1212 | !bn_div_consttime(NULL, rsa->dmq1, rsa->d, qm1, ctx)) { |
| 1213 | goto bn_err; |
| 1214 | } |
| 1215 | bn_set_minimal_width(rsa->n); |
| 1216 | |
| 1217 | // Sanity-check that |rsa->n| has the specified size. This is implied by |
| 1218 | // |generate_prime|'s bounds. |
| 1219 | if (BN_num_bits(rsa->n) != (unsigned)bits) { |
| 1220 | OPENSSL_PUT_ERROR(RSA, ERR_R_INTERNAL_ERROR); |
| 1221 | goto err; |
| 1222 | } |
| 1223 | |
| 1224 | // Call |freeze_private_key| to compute the inverse of q mod p, by way of |
| 1225 | // |rsa->mont_p|. |
| 1226 | if (!freeze_private_key(rsa, ctx)) { |
| 1227 | goto bn_err; |
| 1228 | } |
| 1229 | |
| 1230 | // The key generation process is complex and thus error-prone. It could be |
| 1231 | // disastrous to generate and then use a bad key so double-check that the key |
| 1232 | // makes sense. |
| 1233 | if (!RSA_check_key(rsa)) { |
| 1234 | OPENSSL_PUT_ERROR(RSA, RSA_R_INTERNAL_ERROR); |
| 1235 | goto err; |
| 1236 | } |
| 1237 | |
| 1238 | ret = 1; |
| 1239 | |
| 1240 | bn_err: |
| 1241 | if (!ret) { |
| 1242 | OPENSSL_PUT_ERROR(RSA, ERR_LIB_BN); |
| 1243 | } |
| 1244 | err: |
| 1245 | if (ctx != NULL) { |
| 1246 | BN_CTX_end(ctx); |
| 1247 | BN_CTX_free(ctx); |
| 1248 | } |
| 1249 | return ret; |
| 1250 | } |
| 1251 | |
| 1252 | static void replace_bignum(BIGNUM **out, BIGNUM **in) { |
| 1253 | BN_free(*out); |
| 1254 | *out = *in; |
| 1255 | *in = NULL; |
| 1256 | } |
| 1257 | |
| 1258 | static void replace_bn_mont_ctx(BN_MONT_CTX **out, BN_MONT_CTX **in) { |
| 1259 | BN_MONT_CTX_free(*out); |
| 1260 | *out = *in; |
| 1261 | *in = NULL; |
| 1262 | } |
| 1263 | |
| 1264 | int RSA_generate_key_ex(RSA *rsa, int bits, const BIGNUM *e_value, |
| 1265 | BN_GENCB *cb) { |
| 1266 | // |rsa_generate_key_impl|'s 2^-20 failure probability is too high at scale, |
| 1267 | // so we run the FIPS algorithm four times, bringing it down to 2^-80. We |
| 1268 | // should just adjust the retry limit, but FIPS 186-4 prescribes that value |
| 1269 | // and thus results in unnecessary complexity. |
| 1270 | for (int i = 0; i < 4; i++) { |
| 1271 | ERR_clear_error(); |
| 1272 | // Generate into scratch space, to avoid leaving partial work on failure. |
| 1273 | RSA *tmp = RSA_new(); |
| 1274 | if (tmp == NULL) { |
| 1275 | return 0; |
| 1276 | } |
| 1277 | if (rsa_generate_key_impl(tmp, bits, e_value, cb)) { |
| 1278 | replace_bignum(&rsa->n, &tmp->n); |
| 1279 | replace_bignum(&rsa->e, &tmp->e); |
| 1280 | replace_bignum(&rsa->d, &tmp->d); |
| 1281 | replace_bignum(&rsa->p, &tmp->p); |
| 1282 | replace_bignum(&rsa->q, &tmp->q); |
| 1283 | replace_bignum(&rsa->dmp1, &tmp->dmp1); |
| 1284 | replace_bignum(&rsa->dmq1, &tmp->dmq1); |
| 1285 | replace_bignum(&rsa->iqmp, &tmp->iqmp); |
| 1286 | replace_bn_mont_ctx(&rsa->mont_n, &tmp->mont_n); |
| 1287 | replace_bn_mont_ctx(&rsa->mont_p, &tmp->mont_p); |
| 1288 | replace_bn_mont_ctx(&rsa->mont_q, &tmp->mont_q); |
| 1289 | replace_bignum(&rsa->d_fixed, &tmp->d_fixed); |
| 1290 | replace_bignum(&rsa->dmp1_fixed, &tmp->dmp1_fixed); |
| 1291 | replace_bignum(&rsa->dmq1_fixed, &tmp->dmq1_fixed); |
| 1292 | replace_bignum(&rsa->inv_small_mod_large_mont, |
| 1293 | &tmp->inv_small_mod_large_mont); |
| 1294 | rsa->private_key_frozen = tmp->private_key_frozen; |
| 1295 | RSA_free(tmp); |
| 1296 | return 1; |
| 1297 | } |
| 1298 | uint32_t err = ERR_peek_error(); |
| 1299 | RSA_free(tmp); |
| 1300 | tmp = NULL; |
| 1301 | // Only retry on |RSA_R_TOO_MANY_ITERATIONS|. This is so a caller-induced |
| 1302 | // failure in |BN_GENCB_call| is still fatal. |
| 1303 | if (ERR_GET_LIB(err) != ERR_LIB_RSA || |
| 1304 | ERR_GET_REASON(err) != RSA_R_TOO_MANY_ITERATIONS) { |
| 1305 | return 0; |
| 1306 | } |
| 1307 | } |
| 1308 | |
| 1309 | return 0; |
| 1310 | } |
| 1311 | |
| 1312 | int RSA_generate_key_fips(RSA *rsa, int bits, BN_GENCB *cb) { |
| 1313 | // FIPS 186-4 allows 2048-bit and 3072-bit RSA keys (1024-bit and 1536-bit |
| 1314 | // primes, respectively) with the prime generation method we use. |
| 1315 | if (bits != 2048 && bits != 3072) { |
| 1316 | OPENSSL_PUT_ERROR(RSA, RSA_R_BAD_RSA_PARAMETERS); |
| 1317 | return 0; |
| 1318 | } |
| 1319 | |
| 1320 | BIGNUM *e = BN_new(); |
| 1321 | int ret = e != NULL && |
| 1322 | BN_set_word(e, RSA_F4) && |
| 1323 | RSA_generate_key_ex(rsa, bits, e, cb) && |
| 1324 | RSA_check_fips(rsa); |
| 1325 | BN_free(e); |
| 1326 | return ret; |
| 1327 | } |
| 1328 | |
| 1329 | DEFINE_METHOD_FUNCTION(RSA_METHOD, RSA_default_method) { |
| 1330 | // All of the methods are NULL to make it easier for the compiler/linker to |
| 1331 | // drop unused functions. The wrapper functions will select the appropriate |
| 1332 | // |rsa_default_*| implementation. |
| 1333 | OPENSSL_memset(out, 0, sizeof(RSA_METHOD)); |
| 1334 | out->common.is_static = 1; |
| 1335 | } |
| 1336 | |