| 1 | /* |
| 2 | * Copyright 2015 Google Inc. |
| 3 | * |
| 4 | * Use of this source code is governed by a BSD-style license that can be |
| 5 | * found in the LICENSE file. |
| 6 | */ |
| 7 | |
| 8 | #include "src/gpu/GrDrawingManager.h" |
| 9 | |
| 10 | #include <memory> |
| 11 | |
| 12 | #include "include/core/SkDeferredDisplayList.h" |
| 13 | #include "include/gpu/GrBackendSemaphore.h" |
| 14 | #include "include/gpu/GrDirectContext.h" |
| 15 | #include "include/gpu/GrRecordingContext.h" |
| 16 | #include "src/core/SkDeferredDisplayListPriv.h" |
| 17 | #include "src/core/SkTTopoSort.h" |
| 18 | #include "src/gpu/GrAuditTrail.h" |
| 19 | #include "src/gpu/GrClientMappedBufferManager.h" |
| 20 | #include "src/gpu/GrContextPriv.h" |
| 21 | #include "src/gpu/GrCopyRenderTask.h" |
| 22 | #include "src/gpu/GrGpu.h" |
| 23 | #include "src/gpu/GrMemoryPool.h" |
| 24 | #include "src/gpu/GrOnFlushResourceProvider.h" |
| 25 | #include "src/gpu/GrRecordingContextPriv.h" |
| 26 | #include "src/gpu/GrRenderTargetContext.h" |
| 27 | #include "src/gpu/GrRenderTargetProxy.h" |
| 28 | #include "src/gpu/GrRenderTask.h" |
| 29 | #include "src/gpu/GrResourceAllocator.h" |
| 30 | #include "src/gpu/GrResourceProvider.h" |
| 31 | #include "src/gpu/GrSoftwarePathRenderer.h" |
| 32 | #include "src/gpu/GrSurfaceContext.h" |
| 33 | #include "src/gpu/GrSurfaceProxyPriv.h" |
| 34 | #include "src/gpu/GrTexture.h" |
| 35 | #include "src/gpu/GrTextureProxy.h" |
| 36 | #include "src/gpu/GrTextureProxyPriv.h" |
| 37 | #include "src/gpu/GrTextureResolveRenderTask.h" |
| 38 | #include "src/gpu/GrTracing.h" |
| 39 | #include "src/gpu/GrTransferFromRenderTask.h" |
| 40 | #include "src/gpu/GrUnrefDDLTask.h" |
| 41 | #include "src/gpu/GrWaitRenderTask.h" |
| 42 | #include "src/gpu/ccpr/GrCoverageCountingPathRenderer.h" |
| 43 | #include "src/gpu/text/GrSDFTOptions.h" |
| 44 | #include "src/image/SkSurface_Gpu.h" |
| 45 | |
| 46 | GrDrawingManager::RenderTaskDAG::RenderTaskDAG(bool sortRenderTasks) |
| 47 | : fSortRenderTasks(sortRenderTasks) {} |
| 48 | |
| 49 | GrDrawingManager::RenderTaskDAG::~RenderTaskDAG() {} |
| 50 | |
| 51 | void GrDrawingManager::RenderTaskDAG::gatherIDs(SkSTArray<8, uint32_t, true>* idArray) const { |
| 52 | idArray->reset(fRenderTasks.count()); |
| 53 | for (int i = 0; i < fRenderTasks.count(); ++i) { |
| 54 | if (fRenderTasks[i]) { |
| 55 | (*idArray)[i] = fRenderTasks[i]->uniqueID(); |
| 56 | } |
| 57 | } |
| 58 | } |
| 59 | |
| 60 | void GrDrawingManager::RenderTaskDAG::reset() { |
| 61 | fRenderTasks.reset(); |
| 62 | } |
| 63 | |
| 64 | void GrDrawingManager::RenderTaskDAG::rawRemoveRenderTasks(int startIndex, int stopIndex) { |
| 65 | for (int i = startIndex; i < stopIndex; ++i) { |
| 66 | fRenderTasks[i] = nullptr; |
| 67 | } |
| 68 | } |
| 69 | |
| 70 | bool GrDrawingManager::RenderTaskDAG::isUsed(GrSurfaceProxy* proxy) const { |
| 71 | for (const auto& task : fRenderTasks) { |
| 72 | if (task && task->isUsed(proxy)) { |
| 73 | return true; |
| 74 | } |
| 75 | } |
| 76 | |
| 77 | return false; |
| 78 | } |
| 79 | |
| 80 | GrRenderTask* GrDrawingManager::RenderTaskDAG::add(sk_sp<GrRenderTask> renderTask) { |
| 81 | if (renderTask) { |
| 82 | return fRenderTasks.emplace_back(std::move(renderTask)).get(); |
| 83 | } |
| 84 | return nullptr; |
| 85 | } |
| 86 | |
| 87 | GrRenderTask* GrDrawingManager::RenderTaskDAG::addBeforeLast(sk_sp<GrRenderTask> renderTask) { |
| 88 | SkASSERT(!fRenderTasks.empty()); |
| 89 | if (renderTask) { |
| 90 | // Release 'fRenderTasks.back()' and grab the raw pointer, in case the SkTArray grows |
| 91 | // and reallocates during emplace_back. |
| 92 | fRenderTasks.emplace_back(fRenderTasks.back().release()); |
| 93 | return (fRenderTasks[fRenderTasks.count() - 2] = std::move(renderTask)).get(); |
| 94 | } |
| 95 | return nullptr; |
| 96 | } |
| 97 | |
| 98 | void GrDrawingManager::RenderTaskDAG::add(const SkTArray<sk_sp<GrRenderTask>>& renderTasks) { |
| 99 | #ifdef SK_DEBUG |
| 100 | for (auto& renderTask : renderTasks) { |
| 101 | SkASSERT(renderTask->unique()); |
| 102 | } |
| 103 | #endif |
| 104 | |
| 105 | fRenderTasks.push_back_n(renderTasks.count(), renderTasks.begin()); |
| 106 | } |
| 107 | |
| 108 | void GrDrawingManager::RenderTaskDAG::swap(SkTArray<sk_sp<GrRenderTask>>* renderTasks) { |
| 109 | SkASSERT(renderTasks->empty()); |
| 110 | renderTasks->swap(fRenderTasks); |
| 111 | } |
| 112 | |
| 113 | void GrDrawingManager::RenderTaskDAG::prepForFlush() { |
| 114 | if (fSortRenderTasks) { |
| 115 | SkDEBUGCODE(bool result =) SkTTopoSort<GrRenderTask, GrRenderTask::TopoSortTraits>( |
| 116 | &fRenderTasks); |
| 117 | SkASSERT(result); |
| 118 | } |
| 119 | |
| 120 | #ifdef SK_DEBUG |
| 121 | // This block checks for any unnecessary splits in the opsTasks. If two sequential opsTasks |
| 122 | // share the same backing GrSurfaceProxy it means the opsTask was artificially split. |
| 123 | if (fRenderTasks.count()) { |
| 124 | GrOpsTask* prevOpsTask = fRenderTasks[0]->asOpsTask(); |
| 125 | for (int i = 1; i < fRenderTasks.count(); ++i) { |
| 126 | GrOpsTask* curOpsTask = fRenderTasks[i]->asOpsTask(); |
| 127 | |
| 128 | if (prevOpsTask && curOpsTask) { |
| 129 | SkASSERT(prevOpsTask->target(0).proxy() != curOpsTask->target(0).proxy()); |
| 130 | } |
| 131 | |
| 132 | prevOpsTask = curOpsTask; |
| 133 | } |
| 134 | } |
| 135 | #endif |
| 136 | } |
| 137 | |
| 138 | void GrDrawingManager::RenderTaskDAG::closeAll(const GrCaps* caps) { |
| 139 | for (auto& task : fRenderTasks) { |
| 140 | if (task) { |
| 141 | task->makeClosed(*caps); |
| 142 | } |
| 143 | } |
| 144 | } |
| 145 | |
| 146 | /////////////////////////////////////////////////////////////////////////////////////////////////// |
| 147 | GrDrawingManager::GrDrawingManager(GrRecordingContext* context, |
| 148 | const GrPathRendererChain::Options& optionsForPathRendererChain, |
| 149 | bool sortRenderTasks, |
| 150 | bool reduceOpsTaskSplitting) |
| 151 | : fContext(context) |
| 152 | , fOptionsForPathRendererChain(optionsForPathRendererChain) |
| 153 | , fDAG(sortRenderTasks) |
| 154 | , fPathRendererChain(nullptr) |
| 155 | , fSoftwarePathRenderer(nullptr) |
| 156 | , fFlushing(false) |
| 157 | , fReduceOpsTaskSplitting(reduceOpsTaskSplitting) { } |
| 158 | |
| 159 | GrDrawingManager::~GrDrawingManager() { |
| 160 | fDAG.closeAll(fContext->priv().caps()); |
| 161 | this->removeRenderTasks(0, fDAG.numRenderTasks()); |
| 162 | } |
| 163 | |
| 164 | bool GrDrawingManager::wasAbandoned() const { |
| 165 | return fContext->abandoned(); |
| 166 | } |
| 167 | |
| 168 | void GrDrawingManager::freeGpuResources() { |
| 169 | for (int i = fOnFlushCBObjects.count() - 1; i >= 0; --i) { |
| 170 | if (!fOnFlushCBObjects[i]->retainOnFreeGpuResources()) { |
| 171 | // it's safe to just do this because we're iterating in reverse |
| 172 | fOnFlushCBObjects.removeShuffle(i); |
| 173 | } |
| 174 | } |
| 175 | |
| 176 | // a path renderer may be holding onto resources |
| 177 | fPathRendererChain = nullptr; |
| 178 | fSoftwarePathRenderer = nullptr; |
| 179 | } |
| 180 | |
| 181 | // MDB TODO: make use of the 'proxy' parameter. |
| 182 | bool GrDrawingManager::flush( |
| 183 | GrSurfaceProxy* proxies[], |
| 184 | int numProxies, |
| 185 | SkSurface::BackendSurfaceAccess access, |
| 186 | const GrFlushInfo& info, |
| 187 | const GrBackendSurfaceMutableState* newState) { |
| 188 | SkASSERT(numProxies >= 0); |
| 189 | SkASSERT(!numProxies || proxies); |
| 190 | GR_CREATE_TRACE_MARKER_CONTEXT("GrDrawingManager" , "flush" , fContext); |
| 191 | |
| 192 | if (fFlushing || this->wasAbandoned()) { |
| 193 | if (info.fSubmittedProc) { |
| 194 | info.fSubmittedProc(info.fSubmittedContext, false); |
| 195 | } |
| 196 | if (info.fFinishedProc) { |
| 197 | info.fFinishedProc(info.fFinishedContext); |
| 198 | } |
| 199 | return false; |
| 200 | } |
| 201 | |
| 202 | SkDEBUGCODE(this->validate()); |
| 203 | |
| 204 | if (!info.fNumSemaphores && !info.fFinishedProc && |
| 205 | access == SkSurface::BackendSurfaceAccess::kNoAccess && !newState) { |
| 206 | bool canSkip = numProxies > 0; |
| 207 | for (int i = 0; i < numProxies && canSkip; ++i) { |
| 208 | canSkip = !fDAG.isUsed(proxies[i]) && !this->isDDLTarget(proxies[i]); |
| 209 | } |
| 210 | if (canSkip) { |
| 211 | if (info.fSubmittedProc) { |
| 212 | info.fSubmittedProc(info.fSubmittedContext, true); |
| 213 | } |
| 214 | return false; |
| 215 | } |
| 216 | } |
| 217 | |
| 218 | auto direct = fContext->asDirectContext(); |
| 219 | if (!direct) { |
| 220 | if (info.fSubmittedProc) { |
| 221 | info.fSubmittedProc(info.fSubmittedContext, false); |
| 222 | } |
| 223 | if (info.fFinishedProc) { |
| 224 | info.fFinishedProc(info.fFinishedContext); |
| 225 | } |
| 226 | return false; // Can't flush while DDL recording |
| 227 | } |
| 228 | direct->priv().clientMappedBufferManager()->process(); |
| 229 | |
| 230 | GrGpu* gpu = direct->priv().getGpu(); |
| 231 | // We have a non abandoned and direct GrContext. It must have a GrGpu. |
| 232 | SkASSERT(gpu); |
| 233 | |
| 234 | fFlushing = true; |
| 235 | |
| 236 | auto resourceProvider = direct->priv().resourceProvider(); |
| 237 | auto resourceCache = direct->priv().getResourceCache(); |
| 238 | |
| 239 | // Semi-usually the GrRenderTasks are already closed at this point, but sometimes Ganesh needs |
| 240 | // to flush mid-draw. In that case, the SkGpuDevice's opsTasks won't be closed but need to be |
| 241 | // flushed anyway. Closing such opsTasks here will mean new ones will be created to replace them |
| 242 | // if the SkGpuDevice(s) write to them again. |
| 243 | fDAG.closeAll(fContext->priv().caps()); |
| 244 | fActiveOpsTask = nullptr; |
| 245 | |
| 246 | fDAG.prepForFlush(); |
| 247 | if (!fCpuBufferCache) { |
| 248 | // We cache more buffers when the backend is using client side arrays. Otherwise, we |
| 249 | // expect each pool will use a CPU buffer as a staging buffer before uploading to a GPU |
| 250 | // buffer object. Each pool only requires one staging buffer at a time. |
| 251 | int maxCachedBuffers = fContext->priv().caps()->preferClientSideDynamicBuffers() ? 2 : 6; |
| 252 | fCpuBufferCache = GrBufferAllocPool::CpuBufferCache::Make(maxCachedBuffers); |
| 253 | } |
| 254 | |
| 255 | GrOpFlushState flushState(gpu, resourceProvider, &fTokenTracker, fCpuBufferCache); |
| 256 | |
| 257 | GrOnFlushResourceProvider onFlushProvider(this); |
| 258 | |
| 259 | // Prepare any onFlush op lists (e.g. atlases). |
| 260 | if (!fOnFlushCBObjects.empty()) { |
| 261 | fDAG.gatherIDs(&fFlushingRenderTaskIDs); |
| 262 | |
| 263 | for (GrOnFlushCallbackObject* onFlushCBObject : fOnFlushCBObjects) { |
| 264 | onFlushCBObject->preFlush(&onFlushProvider, fFlushingRenderTaskIDs.begin(), |
| 265 | fFlushingRenderTaskIDs.count()); |
| 266 | } |
| 267 | for (const auto& onFlushRenderTask : fOnFlushRenderTasks) { |
| 268 | onFlushRenderTask->makeClosed(*fContext->priv().caps()); |
| 269 | #ifdef SK_DEBUG |
| 270 | // OnFlush callbacks are invoked during flush, and are therefore expected to handle |
| 271 | // resource allocation & usage on their own. (No deferred or lazy proxies!) |
| 272 | onFlushRenderTask->visitTargetAndSrcProxies_debugOnly( |
| 273 | [](GrSurfaceProxy* p, GrMipmapped mipMapped) { |
| 274 | SkASSERT(!p->asTextureProxy() || !p->asTextureProxy()->texPriv().isDeferred()); |
| 275 | SkASSERT(!p->isLazy()); |
| 276 | if (p->requiresManualMSAAResolve()) { |
| 277 | // The onFlush callback is responsible for ensuring MSAA gets resolved. |
| 278 | SkASSERT(p->asRenderTargetProxy() && !p->asRenderTargetProxy()->isMSAADirty()); |
| 279 | } |
| 280 | if (GrMipmapped::kYes == mipMapped) { |
| 281 | // The onFlush callback is responsible for regenerating mips if needed. |
| 282 | SkASSERT(p->asTextureProxy() && !p->asTextureProxy()->mipmapsAreDirty()); |
| 283 | } |
| 284 | }); |
| 285 | #endif |
| 286 | onFlushRenderTask->prepare(&flushState); |
| 287 | } |
| 288 | } |
| 289 | |
| 290 | #if 0 |
| 291 | // Enable this to print out verbose GrOp information |
| 292 | SkDEBUGCODE(SkDebugf("onFlush renderTasks:" )); |
| 293 | for (const auto& onFlushRenderTask : fOnFlushRenderTasks) { |
| 294 | SkDEBUGCODE(onFlushRenderTask->dump();) |
| 295 | } |
| 296 | SkDEBUGCODE(SkDebugf("Normal renderTasks:" )); |
| 297 | for (int i = 0; i < fRenderTasks.count(); ++i) { |
| 298 | SkDEBUGCODE(fRenderTasks[i]->dump();) |
| 299 | } |
| 300 | #endif |
| 301 | |
| 302 | int startIndex, stopIndex; |
| 303 | bool flushed = false; |
| 304 | |
| 305 | { |
| 306 | GrResourceAllocator alloc(resourceProvider SkDEBUGCODE(, fDAG.numRenderTasks())); |
| 307 | for (int i = 0; i < fDAG.numRenderTasks(); ++i) { |
| 308 | if (fDAG.renderTask(i)) { |
| 309 | fDAG.renderTask(i)->gatherProxyIntervals(&alloc); |
| 310 | } |
| 311 | alloc.markEndOfOpsTask(i); |
| 312 | } |
| 313 | alloc.determineRecyclability(); |
| 314 | |
| 315 | GrResourceAllocator::AssignError error = GrResourceAllocator::AssignError::kNoError; |
| 316 | int numRenderTasksExecuted = 0; |
| 317 | while (alloc.assign(&startIndex, &stopIndex, &error)) { |
| 318 | if (GrResourceAllocator::AssignError::kFailedProxyInstantiation == error) { |
| 319 | for (int i = startIndex; i < stopIndex; ++i) { |
| 320 | GrRenderTask* renderTask = fDAG.renderTask(i); |
| 321 | if (!renderTask) { |
| 322 | continue; |
| 323 | } |
| 324 | if (!renderTask->isInstantiated()) { |
| 325 | // No need to call the renderTask's handleInternalAllocationFailure |
| 326 | // since we will already skip executing the renderTask since it is not |
| 327 | // instantiated. |
| 328 | continue; |
| 329 | } |
| 330 | renderTask->handleInternalAllocationFailure(); |
| 331 | } |
| 332 | this->removeRenderTasks(startIndex, stopIndex); |
| 333 | } |
| 334 | |
| 335 | if (this->executeRenderTasks( |
| 336 | startIndex, stopIndex, &flushState, &numRenderTasksExecuted)) { |
| 337 | flushed = true; |
| 338 | } |
| 339 | } |
| 340 | } |
| 341 | |
| 342 | #ifdef SK_DEBUG |
| 343 | for (int i = 0; i < fDAG.numRenderTasks(); ++i) { |
| 344 | // All render tasks should have been cleared out by now – we only reset the array below to |
| 345 | // reclaim storage. |
| 346 | SkASSERT(!fDAG.renderTask(i)); |
| 347 | } |
| 348 | #endif |
| 349 | fLastRenderTasks.reset(); |
| 350 | fDAG.reset(); |
| 351 | this->clearDDLTargets(); |
| 352 | |
| 353 | #ifdef SK_DEBUG |
| 354 | // In non-DDL mode this checks that all the flushed ops have been freed from the memory pool. |
| 355 | // When we move to partial flushes this assert will no longer be valid. |
| 356 | // In DDL mode this check is somewhat superfluous since the memory for most of the ops/opsTasks |
| 357 | // will be stored in the DDL's GrOpMemoryPools. |
| 358 | GrOpMemoryPool* opMemoryPool = fContext->priv().opMemoryPool(); |
| 359 | opMemoryPool->isEmpty(); |
| 360 | #endif |
| 361 | |
| 362 | gpu->executeFlushInfo(proxies, numProxies, access, info, newState); |
| 363 | |
| 364 | // Give the cache a chance to purge resources that become purgeable due to flushing. |
| 365 | if (flushed) { |
| 366 | resourceCache->purgeAsNeeded(); |
| 367 | flushed = false; |
| 368 | } |
| 369 | for (GrOnFlushCallbackObject* onFlushCBObject : fOnFlushCBObjects) { |
| 370 | onFlushCBObject->postFlush(fTokenTracker.nextTokenToFlush(), fFlushingRenderTaskIDs.begin(), |
| 371 | fFlushingRenderTaskIDs.count()); |
| 372 | flushed = true; |
| 373 | } |
| 374 | if (flushed) { |
| 375 | resourceCache->purgeAsNeeded(); |
| 376 | } |
| 377 | fFlushingRenderTaskIDs.reset(); |
| 378 | fFlushing = false; |
| 379 | |
| 380 | return true; |
| 381 | } |
| 382 | |
| 383 | bool GrDrawingManager::submitToGpu(bool syncToCpu) { |
| 384 | if (fFlushing || this->wasAbandoned()) { |
| 385 | return false; |
| 386 | } |
| 387 | |
| 388 | auto direct = fContext->asDirectContext(); |
| 389 | if (!direct) { |
| 390 | return false; // Can't submit while DDL recording |
| 391 | } |
| 392 | GrGpu* gpu = direct->priv().getGpu(); |
| 393 | return gpu->submitToGpu(syncToCpu); |
| 394 | } |
| 395 | |
| 396 | bool GrDrawingManager::executeRenderTasks(int startIndex, int stopIndex, GrOpFlushState* flushState, |
| 397 | int* numRenderTasksExecuted) { |
| 398 | SkASSERT(startIndex <= stopIndex && stopIndex <= fDAG.numRenderTasks()); |
| 399 | |
| 400 | #if GR_FLUSH_TIME_OP_SPEW |
| 401 | SkDebugf("Flushing opsTask: %d to %d out of [%d, %d]\n" , |
| 402 | startIndex, stopIndex, 0, fDAG.numRenderTasks()); |
| 403 | for (int i = startIndex; i < stopIndex; ++i) { |
| 404 | if (fDAG.renderTask(i)) { |
| 405 | fDAG.renderTask(i)->dump(true); |
| 406 | } |
| 407 | } |
| 408 | #endif |
| 409 | |
| 410 | bool anyRenderTasksExecuted = false; |
| 411 | |
| 412 | for (int i = startIndex; i < stopIndex; ++i) { |
| 413 | GrRenderTask* renderTask = fDAG.renderTask(i); |
| 414 | if (!renderTask || !renderTask->isInstantiated()) { |
| 415 | continue; |
| 416 | } |
| 417 | |
| 418 | SkASSERT(renderTask->deferredProxiesAreInstantiated()); |
| 419 | |
| 420 | renderTask->prepare(flushState); |
| 421 | } |
| 422 | |
| 423 | // Upload all data to the GPU |
| 424 | flushState->preExecuteDraws(); |
| 425 | |
| 426 | // For Vulkan, if we have too many oplists to be flushed we end up allocating a lot of resources |
| 427 | // for each command buffer associated with the oplists. If this gets too large we can cause the |
| 428 | // devices to go OOM. In practice we usually only hit this case in our tests, but to be safe we |
| 429 | // put a cap on the number of oplists we will execute before flushing to the GPU to relieve some |
| 430 | // memory pressure. |
| 431 | static constexpr int kMaxRenderTasksBeforeFlush = 100; |
| 432 | |
| 433 | // Execute the onFlush renderTasks first, if any. |
| 434 | for (sk_sp<GrRenderTask>& onFlushRenderTask : fOnFlushRenderTasks) { |
| 435 | if (!onFlushRenderTask->execute(flushState)) { |
| 436 | SkDebugf("WARNING: onFlushRenderTask failed to execute.\n" ); |
| 437 | } |
| 438 | SkASSERT(onFlushRenderTask->unique()); |
| 439 | onFlushRenderTask->disown(this); |
| 440 | onFlushRenderTask = nullptr; |
| 441 | (*numRenderTasksExecuted)++; |
| 442 | if (*numRenderTasksExecuted >= kMaxRenderTasksBeforeFlush) { |
| 443 | flushState->gpu()->submitToGpu(false); |
| 444 | *numRenderTasksExecuted = 0; |
| 445 | } |
| 446 | } |
| 447 | fOnFlushRenderTasks.reset(); |
| 448 | |
| 449 | // Execute the normal op lists. |
| 450 | for (int i = startIndex; i < stopIndex; ++i) { |
| 451 | GrRenderTask* renderTask = fDAG.renderTask(i); |
| 452 | if (!renderTask || !renderTask->isInstantiated()) { |
| 453 | continue; |
| 454 | } |
| 455 | |
| 456 | if (renderTask->execute(flushState)) { |
| 457 | anyRenderTasksExecuted = true; |
| 458 | } |
| 459 | (*numRenderTasksExecuted)++; |
| 460 | if (*numRenderTasksExecuted >= kMaxRenderTasksBeforeFlush) { |
| 461 | flushState->gpu()->submitToGpu(false); |
| 462 | *numRenderTasksExecuted = 0; |
| 463 | } |
| 464 | } |
| 465 | |
| 466 | SkASSERT(!flushState->opsRenderPass()); |
| 467 | SkASSERT(fTokenTracker.nextDrawToken() == fTokenTracker.nextTokenToFlush()); |
| 468 | |
| 469 | // We reset the flush state before the RenderTasks so that the last resources to be freed are |
| 470 | // those that are written to in the RenderTasks. This helps to make sure the most recently used |
| 471 | // resources are the last to be purged by the resource cache. |
| 472 | flushState->reset(); |
| 473 | |
| 474 | this->removeRenderTasks(startIndex, stopIndex); |
| 475 | |
| 476 | return anyRenderTasksExecuted; |
| 477 | } |
| 478 | |
| 479 | void GrDrawingManager::removeRenderTasks(int startIndex, int stopIndex) { |
| 480 | for (int i = startIndex; i < stopIndex; ++i) { |
| 481 | GrRenderTask* task = fDAG.renderTask(i); |
| 482 | if (!task) { |
| 483 | continue; |
| 484 | } |
| 485 | if (!task->unique()) { |
| 486 | // TODO: Eventually this should be guaranteed unique: http://skbug.com/7111 |
| 487 | task->endFlush(this); |
| 488 | } |
| 489 | task->disown(this); |
| 490 | } |
| 491 | fDAG.rawRemoveRenderTasks(startIndex, stopIndex); |
| 492 | } |
| 493 | |
| 494 | static void resolve_and_mipmap(GrGpu* gpu, GrSurfaceProxy* proxy) { |
| 495 | if (!proxy->isInstantiated()) { |
| 496 | return; |
| 497 | } |
| 498 | |
| 499 | // In the flushSurfaces case, we need to resolve MSAA immediately after flush. This is |
| 500 | // because clients expect the flushed surface's backing texture to be fully resolved |
| 501 | // upon return. |
| 502 | if (proxy->requiresManualMSAAResolve()) { |
| 503 | auto* rtProxy = proxy->asRenderTargetProxy(); |
| 504 | SkASSERT(rtProxy); |
| 505 | if (rtProxy->isMSAADirty()) { |
| 506 | SkASSERT(rtProxy->peekRenderTarget()); |
| 507 | gpu->resolveRenderTarget(rtProxy->peekRenderTarget(), rtProxy->msaaDirtyRect()); |
| 508 | gpu->submitToGpu(false); |
| 509 | rtProxy->markMSAAResolved(); |
| 510 | } |
| 511 | } |
| 512 | // If, after a flush, any of the proxies of interest have dirty mipmaps, regenerate them in |
| 513 | // case their backend textures are being stolen. |
| 514 | // (This special case is exercised by the ReimportImageTextureWithMipLevels test.) |
| 515 | // FIXME: It may be more ideal to plumb down a "we're going to steal the backends" flag. |
| 516 | if (auto* textureProxy = proxy->asTextureProxy()) { |
| 517 | if (textureProxy->mipmapsAreDirty()) { |
| 518 | SkASSERT(textureProxy->peekTexture()); |
| 519 | gpu->regenerateMipMapLevels(textureProxy->peekTexture()); |
| 520 | textureProxy->markMipmapsClean(); |
| 521 | } |
| 522 | } |
| 523 | } |
| 524 | |
| 525 | GrSemaphoresSubmitted GrDrawingManager::flushSurfaces( |
| 526 | GrSurfaceProxy* proxies[], |
| 527 | int numProxies, |
| 528 | SkSurface::BackendSurfaceAccess access, |
| 529 | const GrFlushInfo& info, |
| 530 | const GrBackendSurfaceMutableState* newState) { |
| 531 | if (this->wasAbandoned()) { |
| 532 | if (info.fSubmittedProc) { |
| 533 | info.fSubmittedProc(info.fSubmittedContext, false); |
| 534 | } |
| 535 | if (info.fFinishedProc) { |
| 536 | info.fFinishedProc(info.fFinishedContext); |
| 537 | } |
| 538 | return GrSemaphoresSubmitted::kNo; |
| 539 | } |
| 540 | SkDEBUGCODE(this->validate()); |
| 541 | SkASSERT(numProxies >= 0); |
| 542 | SkASSERT(!numProxies || proxies); |
| 543 | |
| 544 | auto direct = fContext->asDirectContext(); |
| 545 | if (!direct) { |
| 546 | if (info.fSubmittedProc) { |
| 547 | info.fSubmittedProc(info.fSubmittedContext, false); |
| 548 | } |
| 549 | if (info.fFinishedProc) { |
| 550 | info.fFinishedProc(info.fFinishedContext); |
| 551 | } |
| 552 | return GrSemaphoresSubmitted::kNo; // Can't flush while DDL recording |
| 553 | } |
| 554 | |
| 555 | GrGpu* gpu = direct->priv().getGpu(); |
| 556 | // We have a non abandoned and direct GrContext. It must have a GrGpu. |
| 557 | SkASSERT(gpu); |
| 558 | |
| 559 | // TODO: It is important to upgrade the drawingmanager to just flushing the |
| 560 | // portion of the DAG required by 'proxies' in order to restore some of the |
| 561 | // semantics of this method. |
| 562 | bool didFlush = this->flush(proxies, numProxies, access, info, newState); |
| 563 | for (int i = 0; i < numProxies; ++i) { |
| 564 | resolve_and_mipmap(gpu, proxies[i]); |
| 565 | } |
| 566 | |
| 567 | SkDEBUGCODE(this->validate()); |
| 568 | |
| 569 | if (!didFlush || (!direct->priv().caps()->semaphoreSupport() && info.fNumSemaphores)) { |
| 570 | return GrSemaphoresSubmitted::kNo; |
| 571 | } |
| 572 | return GrSemaphoresSubmitted::kYes; |
| 573 | } |
| 574 | |
| 575 | void GrDrawingManager::addOnFlushCallbackObject(GrOnFlushCallbackObject* onFlushCBObject) { |
| 576 | fOnFlushCBObjects.push_back(onFlushCBObject); |
| 577 | } |
| 578 | |
| 579 | #if GR_TEST_UTILS |
| 580 | void GrDrawingManager::testingOnly_removeOnFlushCallbackObject(GrOnFlushCallbackObject* cb) { |
| 581 | int n = std::find(fOnFlushCBObjects.begin(), fOnFlushCBObjects.end(), cb) - |
| 582 | fOnFlushCBObjects.begin(); |
| 583 | SkASSERT(n < fOnFlushCBObjects.count()); |
| 584 | fOnFlushCBObjects.removeShuffle(n); |
| 585 | } |
| 586 | #endif |
| 587 | |
| 588 | void GrDrawingManager::setLastRenderTask(const GrSurfaceProxy* proxy, GrRenderTask* task) { |
| 589 | #ifdef SK_DEBUG |
| 590 | if (GrRenderTask* prior = this->getLastRenderTask(proxy)) { |
| 591 | SkASSERT(prior->isClosed()); |
| 592 | } |
| 593 | #endif |
| 594 | uint32_t key = proxy->uniqueID().asUInt(); |
| 595 | if (task) { |
| 596 | fLastRenderTasks.set(key, task); |
| 597 | } else if (fLastRenderTasks.find(key)) { |
| 598 | fLastRenderTasks.remove(key); |
| 599 | } |
| 600 | } |
| 601 | |
| 602 | GrRenderTask* GrDrawingManager::getLastRenderTask(const GrSurfaceProxy* proxy) const { |
| 603 | auto entry = fLastRenderTasks.find(proxy->uniqueID().asUInt()); |
| 604 | return entry ? *entry : nullptr; |
| 605 | } |
| 606 | |
| 607 | GrOpsTask* GrDrawingManager::getLastOpsTask(const GrSurfaceProxy* proxy) const { |
| 608 | GrRenderTask* task = this->getLastRenderTask(proxy); |
| 609 | return task ? task->asOpsTask() : nullptr; |
| 610 | } |
| 611 | |
| 612 | |
| 613 | void GrDrawingManager::moveRenderTasksToDDL(SkDeferredDisplayList* ddl) { |
| 614 | SkDEBUGCODE(this->validate()); |
| 615 | |
| 616 | // no renderTask should receive a new command after this |
| 617 | fDAG.closeAll(fContext->priv().caps()); |
| 618 | fActiveOpsTask = nullptr; |
| 619 | |
| 620 | fDAG.swap(&ddl->fRenderTasks); |
| 621 | SkASSERT(!fDAG.numRenderTasks()); |
| 622 | |
| 623 | for (auto& renderTask : ddl->fRenderTasks) { |
| 624 | renderTask->disown(this); |
| 625 | renderTask->prePrepare(fContext); |
| 626 | } |
| 627 | |
| 628 | ddl->fArenas = std::move(fContext->priv().detachArenas()); |
| 629 | |
| 630 | fContext->priv().detachProgramData(&ddl->fProgramData); |
| 631 | |
| 632 | if (fPathRendererChain) { |
| 633 | if (auto ccpr = fPathRendererChain->getCoverageCountingPathRenderer()) { |
| 634 | ddl->fPendingPaths = ccpr->detachPendingPaths(); |
| 635 | } |
| 636 | } |
| 637 | |
| 638 | SkDEBUGCODE(this->validate()); |
| 639 | } |
| 640 | |
| 641 | void GrDrawingManager::copyRenderTasksFromDDL(sk_sp<const SkDeferredDisplayList> ddl, |
| 642 | GrRenderTargetProxy* newDest) { |
| 643 | SkDEBUGCODE(this->validate()); |
| 644 | |
| 645 | if (fActiveOpsTask) { |
| 646 | // This is a temporary fix for the partial-MDB world. In that world we're not |
| 647 | // reordering so ops that (in the single opsTask world) would've just glommed onto the |
| 648 | // end of the single opsTask but referred to a far earlier RT need to appear in their |
| 649 | // own opsTask. |
| 650 | fActiveOpsTask->makeClosed(*fContext->priv().caps()); |
| 651 | fActiveOpsTask = nullptr; |
| 652 | } |
| 653 | |
| 654 | // Propagate the DDL proxy's state information to the replaying DDL. |
| 655 | if (ddl->priv().targetProxy()->isMSAADirty()) { |
| 656 | newDest->markMSAADirty(ddl->priv().targetProxy()->msaaDirtyRect(), |
| 657 | ddl->characterization().origin()); |
| 658 | } |
| 659 | GrTextureProxy* newTextureProxy = newDest->asTextureProxy(); |
| 660 | if (newTextureProxy && GrMipmapped::kYes == newTextureProxy->mipmapped()) { |
| 661 | newTextureProxy->markMipmapsDirty(); |
| 662 | } |
| 663 | |
| 664 | this->addDDLTarget(newDest, ddl->priv().targetProxy()); |
| 665 | |
| 666 | // Here we jam the proxy that backs the current replay SkSurface into the LazyProxyData. |
| 667 | // The lazy proxy that references it (in the copied opsTasks) will steal its GrTexture. |
| 668 | ddl->fLazyProxyData->fReplayDest = newDest; |
| 669 | |
| 670 | if (ddl->fPendingPaths.size()) { |
| 671 | GrCoverageCountingPathRenderer* ccpr = this->getCoverageCountingPathRenderer(); |
| 672 | |
| 673 | ccpr->mergePendingPaths(ddl->fPendingPaths); |
| 674 | } |
| 675 | |
| 676 | fDAG.add(ddl->fRenderTasks); |
| 677 | |
| 678 | // Add a task to unref the DDL after flush. |
| 679 | GrRenderTask* unrefTask = fDAG.add(sk_make_sp<GrUnrefDDLTask>(std::move(ddl))); |
| 680 | unrefTask->makeClosed(*fContext->priv().caps()); |
| 681 | |
| 682 | SkDEBUGCODE(this->validate()); |
| 683 | } |
| 684 | |
| 685 | #ifdef SK_DEBUG |
| 686 | void GrDrawingManager::validate() const { |
| 687 | if (fDAG.sortingRenderTasks() && fReduceOpsTaskSplitting) { |
| 688 | SkASSERT(!fActiveOpsTask); |
| 689 | } else { |
| 690 | if (fActiveOpsTask) { |
| 691 | SkASSERT(!fDAG.empty()); |
| 692 | SkASSERT(!fActiveOpsTask->isClosed()); |
| 693 | SkASSERT(fActiveOpsTask == fDAG.back()); |
| 694 | } |
| 695 | |
| 696 | for (int i = 0; i < fDAG.numRenderTasks(); ++i) { |
| 697 | if (fActiveOpsTask != fDAG.renderTask(i)) { |
| 698 | // The resolveTask associated with the activeTask remains open for as long as the |
| 699 | // activeTask does. |
| 700 | bool isActiveResolveTask = |
| 701 | fActiveOpsTask && fActiveOpsTask->fTextureResolveTask == fDAG.renderTask(i); |
| 702 | SkASSERT(isActiveResolveTask || fDAG.renderTask(i)->isClosed()); |
| 703 | } |
| 704 | } |
| 705 | |
| 706 | if (!fDAG.empty() && !fDAG.back()->isClosed()) { |
| 707 | SkASSERT(fActiveOpsTask == fDAG.back()); |
| 708 | } |
| 709 | } |
| 710 | } |
| 711 | #endif |
| 712 | |
| 713 | void GrDrawingManager::closeRenderTasksForNewRenderTask(GrSurfaceProxy* target) { |
| 714 | if (target && fDAG.sortingRenderTasks() && fReduceOpsTaskSplitting) { |
| 715 | // In this case we need to close all the renderTasks that rely on the current contents of |
| 716 | // 'target'. That is bc we're going to update the content of the proxy so they need to be |
| 717 | // split in case they use both the old and new content. (This is a bit of an overkill: they |
| 718 | // really only need to be split if they ever reference proxy's contents again but that is |
| 719 | // hard to predict/handle). |
| 720 | if (GrRenderTask* lastRenderTask = this->getLastRenderTask(target)) { |
| 721 | lastRenderTask->closeThoseWhoDependOnMe(*fContext->priv().caps()); |
| 722 | } |
| 723 | } else if (fActiveOpsTask) { |
| 724 | // This is a temporary fix for the partial-MDB world. In that world we're not |
| 725 | // reordering so ops that (in the single opsTask world) would've just glommed onto the |
| 726 | // end of the single opsTask but referred to a far earlier RT need to appear in their |
| 727 | // own opsTask. |
| 728 | fActiveOpsTask->makeClosed(*fContext->priv().caps()); |
| 729 | fActiveOpsTask = nullptr; |
| 730 | } |
| 731 | } |
| 732 | |
| 733 | sk_sp<GrOpsTask> GrDrawingManager::newOpsTask(GrSurfaceProxyView surfaceView, |
| 734 | bool managedOpsTask) { |
| 735 | SkDEBUGCODE(this->validate()); |
| 736 | SkASSERT(fContext); |
| 737 | |
| 738 | GrSurfaceProxy* proxy = surfaceView.proxy(); |
| 739 | this->closeRenderTasksForNewRenderTask(proxy); |
| 740 | |
| 741 | sk_sp<GrOpsTask> opsTask(new GrOpsTask(this, fContext->priv().arenas(), |
| 742 | std::move(surfaceView), |
| 743 | fContext->priv().auditTrail())); |
| 744 | SkASSERT(this->getLastRenderTask(proxy) == opsTask.get()); |
| 745 | |
| 746 | if (managedOpsTask) { |
| 747 | fDAG.add(opsTask); |
| 748 | |
| 749 | if (!fDAG.sortingRenderTasks() || !fReduceOpsTaskSplitting) { |
| 750 | fActiveOpsTask = opsTask.get(); |
| 751 | } |
| 752 | } |
| 753 | |
| 754 | SkDEBUGCODE(this->validate()); |
| 755 | return opsTask; |
| 756 | } |
| 757 | |
| 758 | GrTextureResolveRenderTask* GrDrawingManager::newTextureResolveRenderTask(const GrCaps& caps) { |
| 759 | // Unlike in the "new opsTask" case, we do not want to close the active opsTask, nor (if we are |
| 760 | // in sorting and opsTask reduction mode) the render tasks that depend on any proxy's current |
| 761 | // state. This is because those opsTasks can still receive new ops and because if they refer to |
| 762 | // the mipmapped version of 'proxy', they will then come to depend on the render task being |
| 763 | // created here. |
| 764 | // |
| 765 | // Add the new textureResolveTask before the fActiveOpsTask (if not in |
| 766 | // sorting/opsTask-splitting-reduction mode) because it will depend upon this resolve task. |
| 767 | // NOTE: Putting it here will also reduce the amount of work required by the topological sort. |
| 768 | return static_cast<GrTextureResolveRenderTask*>(fDAG.addBeforeLast( |
| 769 | sk_make_sp<GrTextureResolveRenderTask>())); |
| 770 | } |
| 771 | |
| 772 | void GrDrawingManager::newWaitRenderTask(sk_sp<GrSurfaceProxy> proxy, |
| 773 | std::unique_ptr<std::unique_ptr<GrSemaphore>[]> semaphores, |
| 774 | int numSemaphores) { |
| 775 | SkDEBUGCODE(this->validate()); |
| 776 | SkASSERT(fContext); |
| 777 | |
| 778 | const GrCaps& caps = *fContext->priv().caps(); |
| 779 | |
| 780 | sk_sp<GrWaitRenderTask> waitTask = sk_make_sp<GrWaitRenderTask>(GrSurfaceProxyView(proxy), |
| 781 | std::move(semaphores), |
| 782 | numSemaphores); |
| 783 | if (fReduceOpsTaskSplitting) { |
| 784 | GrRenderTask* lastTask = this->getLastRenderTask(proxy.get()); |
| 785 | if (lastTask && !lastTask->isClosed()) { |
| 786 | // We directly make the currently open renderTask depend on waitTask instead of using |
| 787 | // the proxy version of addDependency. The waitTask will never need to trigger any |
| 788 | // resolves or mip map generation which is the main advantage of going through the proxy |
| 789 | // version. Additionally we would've had to temporarily set the wait task as the |
| 790 | // lastRenderTask on the proxy, add the dependency, and then reset the lastRenderTask to |
| 791 | // lastTask. Additionally we add all dependencies of lastTask to waitTask so that the |
| 792 | // waitTask doesn't get reordered before them and unnecessarily block those tasks. |
| 793 | // Note: Any previous Ops already in lastTask will get blocked by the wait semaphore |
| 794 | // even though they don't need to be for correctness. |
| 795 | |
| 796 | // Make sure we add the dependencies of lastTask to waitTask first or else we'll get a |
| 797 | // circular self dependency of waitTask on waitTask. |
| 798 | waitTask->addDependenciesFromOtherTask(lastTask); |
| 799 | lastTask->addDependency(waitTask.get()); |
| 800 | } else { |
| 801 | // If there is a last task we set the waitTask to depend on it so that it doesn't get |
| 802 | // reordered in front of the lastTask causing the lastTask to be blocked by the |
| 803 | // semaphore. Again we directly just go through adding the dependency to the task and |
| 804 | // not the proxy since we don't need to worry about resolving anything. |
| 805 | if (lastTask) { |
| 806 | waitTask->addDependency(lastTask); |
| 807 | } |
| 808 | this->setLastRenderTask(proxy.get(), waitTask.get()); |
| 809 | } |
| 810 | fDAG.add(waitTask); |
| 811 | } else { |
| 812 | if (fActiveOpsTask && (fActiveOpsTask->target(0).proxy() == proxy.get())) { |
| 813 | SkASSERT(this->getLastRenderTask(proxy.get()) == fActiveOpsTask); |
| 814 | fDAG.addBeforeLast(waitTask); |
| 815 | // In this case we keep the current renderTask open but just insert the new waitTask |
| 816 | // before it in the list. The waitTask will never need to trigger any resolves or mip |
| 817 | // map generation which is the main advantage of going through the proxy version. |
| 818 | // Additionally we would've had to temporarily set the wait task as the lastRenderTask |
| 819 | // on the proxy, add the dependency, and then reset the lastRenderTask to |
| 820 | // fActiveOpsTask. Additionally we make the waitTask depend on all of fActiveOpsTask |
| 821 | // dependencies so that we don't unnecessarily reorder the waitTask before them. |
| 822 | // Note: Any previous Ops already in fActiveOpsTask will get blocked by the wait |
| 823 | // semaphore even though they don't need to be for correctness. |
| 824 | |
| 825 | // Make sure we add the dependencies of fActiveOpsTask to waitTask first or else we'll |
| 826 | // get a circular self dependency of waitTask on waitTask. |
| 827 | waitTask->addDependenciesFromOtherTask(fActiveOpsTask); |
| 828 | fActiveOpsTask->addDependency(waitTask.get()); |
| 829 | } else { |
| 830 | // In this case we just close the previous RenderTask and start and append the waitTask |
| 831 | // to the DAG. Since it is the last task now we call setLastRenderTask on the proxy. If |
| 832 | // there is a lastTask on the proxy we make waitTask depend on that task. This |
| 833 | // dependency isn't strictly needed but it does keep the DAG from reordering the |
| 834 | // waitTask earlier and blocking more tasks. |
| 835 | if (GrRenderTask* lastTask = this->getLastRenderTask(proxy.get())) { |
| 836 | waitTask->addDependency(lastTask); |
| 837 | } |
| 838 | this->setLastRenderTask(proxy.get(), waitTask.get()); |
| 839 | this->closeRenderTasksForNewRenderTask(proxy.get()); |
| 840 | fDAG.add(waitTask); |
| 841 | } |
| 842 | } |
| 843 | waitTask->makeClosed(caps); |
| 844 | |
| 845 | SkDEBUGCODE(this->validate()); |
| 846 | } |
| 847 | |
| 848 | void GrDrawingManager::newTransferFromRenderTask(sk_sp<GrSurfaceProxy> srcProxy, |
| 849 | const SkIRect& srcRect, |
| 850 | GrColorType surfaceColorType, |
| 851 | GrColorType dstColorType, |
| 852 | sk_sp<GrGpuBuffer> dstBuffer, |
| 853 | size_t dstOffset) { |
| 854 | SkDEBUGCODE(this->validate()); |
| 855 | SkASSERT(fContext); |
| 856 | // This copies from srcProxy to dstBuffer so it doesn't have a real target. |
| 857 | this->closeRenderTasksForNewRenderTask(nullptr); |
| 858 | |
| 859 | GrRenderTask* task = fDAG.add(sk_make_sp<GrTransferFromRenderTask>( |
| 860 | srcProxy, srcRect, surfaceColorType, dstColorType, |
| 861 | std::move(dstBuffer), dstOffset)); |
| 862 | |
| 863 | const GrCaps& caps = *fContext->priv().caps(); |
| 864 | |
| 865 | // We always say GrMipmapped::kNo here since we are always just copying from the base layer. We |
| 866 | // don't need to make sure the whole mip map chain is valid. |
| 867 | task->addDependency(this, srcProxy.get(), GrMipmapped::kNo, |
| 868 | GrTextureResolveManager(this), caps); |
| 869 | task->makeClosed(caps); |
| 870 | |
| 871 | // We have closed the previous active oplist but since a new oplist isn't being added there |
| 872 | // shouldn't be an active one. |
| 873 | SkASSERT(!fActiveOpsTask); |
| 874 | SkDEBUGCODE(this->validate()); |
| 875 | } |
| 876 | |
| 877 | bool GrDrawingManager::newCopyRenderTask(GrSurfaceProxyView srcView, |
| 878 | const SkIRect& srcRect, |
| 879 | GrSurfaceProxyView dstView, |
| 880 | const SkIPoint& dstPoint) { |
| 881 | SkDEBUGCODE(this->validate()); |
| 882 | SkASSERT(fContext); |
| 883 | |
| 884 | this->closeRenderTasksForNewRenderTask(dstView.proxy()); |
| 885 | const GrCaps& caps = *fContext->priv().caps(); |
| 886 | |
| 887 | GrSurfaceProxy* srcProxy = srcView.proxy(); |
| 888 | |
| 889 | GrRenderTask* task = |
| 890 | fDAG.add(GrCopyRenderTask::Make(this, std::move(srcView), srcRect, std::move(dstView), |
| 891 | dstPoint, &caps)); |
| 892 | if (!task) { |
| 893 | return false; |
| 894 | } |
| 895 | |
| 896 | // We always say GrMipmapped::kNo here since we are always just copying from the base layer to |
| 897 | // another base layer. We don't need to make sure the whole mip map chain is valid. |
| 898 | task->addDependency(this, srcProxy, GrMipmapped::kNo, GrTextureResolveManager(this), caps); |
| 899 | task->makeClosed(caps); |
| 900 | |
| 901 | // We have closed the previous active oplist but since a new oplist isn't being added there |
| 902 | // shouldn't be an active one. |
| 903 | SkASSERT(!fActiveOpsTask); |
| 904 | SkDEBUGCODE(this->validate()); |
| 905 | return true; |
| 906 | } |
| 907 | |
| 908 | /* |
| 909 | * This method finds a path renderer that can draw the specified path on |
| 910 | * the provided target. |
| 911 | * Due to its expense, the software path renderer has split out so it can |
| 912 | * can be individually allowed/disallowed via the "allowSW" boolean. |
| 913 | */ |
| 914 | GrPathRenderer* GrDrawingManager::getPathRenderer(const GrPathRenderer::CanDrawPathArgs& args, |
| 915 | bool allowSW, |
| 916 | GrPathRendererChain::DrawType drawType, |
| 917 | GrPathRenderer::StencilSupport* stencilSupport) { |
| 918 | |
| 919 | if (!fPathRendererChain) { |
| 920 | fPathRendererChain = |
| 921 | std::make_unique<GrPathRendererChain>(fContext, fOptionsForPathRendererChain); |
| 922 | } |
| 923 | |
| 924 | GrPathRenderer* pr = fPathRendererChain->getPathRenderer(args, drawType, stencilSupport); |
| 925 | if (!pr && allowSW) { |
| 926 | auto swPR = this->getSoftwarePathRenderer(); |
| 927 | if (GrPathRenderer::CanDrawPath::kNo != swPR->canDrawPath(args)) { |
| 928 | pr = swPR; |
| 929 | } |
| 930 | } |
| 931 | |
| 932 | #if GR_PATH_RENDERER_SPEW |
| 933 | if (pr) { |
| 934 | SkDebugf("getPathRenderer: %s\n" , pr->name()); |
| 935 | } |
| 936 | #endif |
| 937 | |
| 938 | return pr; |
| 939 | } |
| 940 | |
| 941 | GrPathRenderer* GrDrawingManager::getSoftwarePathRenderer() { |
| 942 | if (!fSoftwarePathRenderer) { |
| 943 | fSoftwarePathRenderer.reset( |
| 944 | new GrSoftwarePathRenderer(fContext->priv().proxyProvider(), |
| 945 | fOptionsForPathRendererChain.fAllowPathMaskCaching)); |
| 946 | } |
| 947 | return fSoftwarePathRenderer.get(); |
| 948 | } |
| 949 | |
| 950 | GrCoverageCountingPathRenderer* GrDrawingManager::getCoverageCountingPathRenderer() { |
| 951 | if (!fPathRendererChain) { |
| 952 | fPathRendererChain = std::make_unique<GrPathRendererChain>(fContext, fOptionsForPathRendererChain); |
| 953 | } |
| 954 | return fPathRendererChain->getCoverageCountingPathRenderer(); |
| 955 | } |
| 956 | |
| 957 | void GrDrawingManager::flushIfNecessary() { |
| 958 | auto direct = fContext->asDirectContext(); |
| 959 | if (!direct) { |
| 960 | return; |
| 961 | } |
| 962 | |
| 963 | auto resourceCache = direct->priv().getResourceCache(); |
| 964 | if (resourceCache && resourceCache->requestsFlush()) { |
| 965 | if (this->flush(nullptr, 0, SkSurface::BackendSurfaceAccess::kNoAccess, GrFlushInfo(), |
| 966 | nullptr)) { |
| 967 | this->submitToGpu(false); |
| 968 | } |
| 969 | resourceCache->purgeAsNeeded(); |
| 970 | } |
| 971 | } |
| 972 | |
| 973 | |