1 | /* |
2 | * Copyright 2017 Google Inc. |
3 | * |
4 | * Use of this source code is governed by a BSD-style license that can be |
5 | * found in the LICENSE file. |
6 | */ |
7 | |
8 | #include "src/gpu/ccpr/GrCCPathProcessor.h" |
9 | |
10 | #include "src/gpu/GrOnFlushResourceProvider.h" |
11 | #include "src/gpu/GrOpsRenderPass.h" |
12 | #include "src/gpu/GrTexture.h" |
13 | #include "src/gpu/ccpr/GrCCPerFlushResources.h" |
14 | #include "src/gpu/glsl/GrGLSLFragmentShaderBuilder.h" |
15 | #include "src/gpu/glsl/GrGLSLGeometryProcessor.h" |
16 | #include "src/gpu/glsl/GrGLSLProgramBuilder.h" |
17 | #include "src/gpu/glsl/GrGLSLVarying.h" |
18 | |
19 | // Paths are drawn as octagons. Each point on the octagon is the intersection of two lines: one edge |
20 | // from the path's bounding box and one edge from its 45-degree bounding box. The selectors |
21 | // below indicate one corner from the bounding box, paired with a corner from the 45-degree bounding |
22 | // box. The octagon vertex is the point that lies between these two corners, found by intersecting |
23 | // their edges. |
24 | static constexpr float kOctoEdgeNorms[8*4] = { |
25 | // bbox // bbox45 |
26 | 0,0, 0,0, |
27 | 0,0, 1,0, |
28 | 1,0, 1,0, |
29 | 1,0, 1,1, |
30 | 1,1, 1,1, |
31 | 1,1, 0,1, |
32 | 0,1, 0,1, |
33 | 0,1, 0,0, |
34 | }; |
35 | |
36 | GR_DECLARE_STATIC_UNIQUE_KEY(gVertexBufferKey); |
37 | |
38 | sk_sp<const GrGpuBuffer> GrCCPathProcessor::FindVertexBuffer(GrOnFlushResourceProvider* onFlushRP) { |
39 | GR_DEFINE_STATIC_UNIQUE_KEY(gVertexBufferKey); |
40 | return onFlushRP->findOrMakeStaticBuffer(GrGpuBufferType::kVertex, sizeof(kOctoEdgeNorms), |
41 | kOctoEdgeNorms, gVertexBufferKey); |
42 | } |
43 | |
44 | static constexpr uint16_t kRestartStrip = 0xffff; |
45 | |
46 | static constexpr uint16_t kOctoIndicesAsStrips[] = { |
47 | 3, 4, 2, 0, 1, kRestartStrip, // First half. |
48 | 7, 0, 6, 4, 5 // Second half. |
49 | }; |
50 | |
51 | static constexpr uint16_t kOctoIndicesAsTris[] = { |
52 | // First half. |
53 | 3, 4, 2, |
54 | 4, 0, 2, |
55 | 2, 0, 1, |
56 | |
57 | // Second half. |
58 | 7, 0, 6, |
59 | 0, 4, 6, |
60 | 6, 4, 5, |
61 | }; |
62 | |
63 | GR_DECLARE_STATIC_UNIQUE_KEY(gIndexBufferKey); |
64 | |
65 | constexpr GrPrimitiveProcessor::Attribute GrCCPathProcessor::kInstanceAttribs[]; |
66 | constexpr GrPrimitiveProcessor::Attribute GrCCPathProcessor::kCornersAttrib; |
67 | |
68 | sk_sp<const GrGpuBuffer> GrCCPathProcessor::FindIndexBuffer(GrOnFlushResourceProvider* onFlushRP) { |
69 | GR_DEFINE_STATIC_UNIQUE_KEY(gIndexBufferKey); |
70 | if (onFlushRP->caps()->usePrimitiveRestart()) { |
71 | return onFlushRP->findOrMakeStaticBuffer(GrGpuBufferType::kIndex, |
72 | sizeof(kOctoIndicesAsStrips), kOctoIndicesAsStrips, |
73 | gIndexBufferKey); |
74 | } else { |
75 | return onFlushRP->findOrMakeStaticBuffer(GrGpuBufferType::kIndex, |
76 | sizeof(kOctoIndicesAsTris), kOctoIndicesAsTris, |
77 | gIndexBufferKey); |
78 | } |
79 | } |
80 | |
81 | GrCCPathProcessor::GrCCPathProcessor(CoverageMode coverageMode, const GrTexture* atlasTexture, |
82 | const GrSwizzle& swizzle, GrSurfaceOrigin atlasOrigin, |
83 | const SkMatrix& viewMatrixIfUsingLocalCoords) |
84 | : INHERITED(kGrCCPathProcessor_ClassID) |
85 | , fCoverageMode(coverageMode) |
86 | , fAtlasAccess(GrSamplerState::Filter::kNearest, atlasTexture->backendFormat(), swizzle) |
87 | , fAtlasDimensions(atlasTexture->dimensions()) |
88 | , fAtlasOrigin(atlasOrigin) { |
89 | // TODO: Can we just assert that atlas has GrCCAtlas::kTextureOrigin and remove fAtlasOrigin? |
90 | this->setInstanceAttributes(kInstanceAttribs, SK_ARRAY_COUNT(kInstanceAttribs)); |
91 | SkASSERT(this->instanceStride() == sizeof(Instance)); |
92 | |
93 | this->setVertexAttributes(&kCornersAttrib, 1); |
94 | this->setTextureSamplerCnt(1); |
95 | |
96 | if (!viewMatrixIfUsingLocalCoords.invert(&fLocalMatrix)) { |
97 | fLocalMatrix.setIdentity(); |
98 | } |
99 | } |
100 | |
101 | class GrCCPathProcessor::Impl : public GrGLSLGeometryProcessor { |
102 | public: |
103 | void onEmitCode(EmitArgs& args, GrGPArgs* gpArgs) override; |
104 | |
105 | static void GenKey(const GrCCPathProcessor& cc, GrProcessorKeyBuilder* b) { |
106 | b->add32(AddMatrixKeys((uint32_t) cc.fCoverageMode, SkMatrix::I(), cc.fLocalMatrix)); |
107 | } |
108 | |
109 | private: |
110 | void setData(const GrGLSLProgramDataManager& pdman, |
111 | const GrPrimitiveProcessor& primProc) override { |
112 | const auto& proc = primProc.cast<GrCCPathProcessor>(); |
113 | pdman.set2f(fAtlasAdjustUniform, |
114 | 1.0f / proc.fAtlasDimensions.fWidth, |
115 | 1.0f / proc.fAtlasDimensions.fHeight); |
116 | this->setTransform(pdman, fLocalMatrixUni, proc.fLocalMatrix, &fLocalMatrix); |
117 | } |
118 | |
119 | GrGLSLUniformHandler::UniformHandle fAtlasAdjustUniform; |
120 | GrGLSLUniformHandler::UniformHandle fLocalMatrixUni; |
121 | SkMatrix fLocalMatrix = SkMatrix::InvalidMatrix(); |
122 | |
123 | typedef GrGLSLGeometryProcessor INHERITED; |
124 | }; |
125 | |
126 | void GrCCPathProcessor::getGLSLProcessorKey(const GrShaderCaps&, GrProcessorKeyBuilder* b) const { |
127 | GrCCPathProcessor::Impl::GenKey(*this, b); |
128 | } |
129 | |
130 | GrGLSLPrimitiveProcessor* GrCCPathProcessor::createGLSLInstance(const GrShaderCaps&) const { |
131 | return new Impl(); |
132 | } |
133 | |
134 | void GrCCPathProcessor::drawPaths(GrOpFlushState* flushState, const GrPipeline& pipeline, |
135 | const GrSurfaceProxy& atlasProxy, |
136 | const GrCCPerFlushResources& resources, int baseInstance, |
137 | int endInstance, const SkRect& bounds) const { |
138 | const GrCaps& caps = flushState->caps(); |
139 | GrPrimitiveType primitiveType = caps.usePrimitiveRestart() |
140 | ? GrPrimitiveType::kTriangleStrip |
141 | : GrPrimitiveType::kTriangles; |
142 | int numIndicesPerInstance = caps.usePrimitiveRestart() |
143 | ? SK_ARRAY_COUNT(kOctoIndicesAsStrips) |
144 | : SK_ARRAY_COUNT(kOctoIndicesAsTris); |
145 | auto enablePrimitiveRestart = GrPrimitiveRestart(flushState->caps().usePrimitiveRestart()); |
146 | |
147 | GrRenderTargetProxy* rtProxy = flushState->proxy(); |
148 | GrProgramInfo programInfo(rtProxy->numSamples(), rtProxy->numStencilSamples(), |
149 | rtProxy->backendFormat(), flushState->writeView()->origin(), |
150 | &pipeline, this, primitiveType); |
151 | |
152 | flushState->bindPipelineAndScissorClip(programInfo, bounds); |
153 | flushState->bindTextures(*this, atlasProxy, pipeline); |
154 | flushState->bindBuffers(resources.indexBuffer(), resources.instanceBuffer(), |
155 | resources.vertexBuffer(), enablePrimitiveRestart); |
156 | flushState->drawIndexedInstanced(numIndicesPerInstance, 0, endInstance - baseInstance, |
157 | baseInstance, 0); |
158 | } |
159 | |
160 | void GrCCPathProcessor::Impl::onEmitCode(EmitArgs& args, GrGPArgs* gpArgs) { |
161 | using Interpolation = GrGLSLVaryingHandler::Interpolation; |
162 | |
163 | const GrCCPathProcessor& proc = args.fGP.cast<GrCCPathProcessor>(); |
164 | GrGLSLUniformHandler* uniHandler = args.fUniformHandler; |
165 | GrGLSLVaryingHandler* varyingHandler = args.fVaryingHandler; |
166 | bool isCoverageCount = (CoverageMode::kCoverageCount == proc.fCoverageMode); |
167 | |
168 | const char* atlasAdjust; |
169 | fAtlasAdjustUniform = uniHandler->addUniform( |
170 | nullptr, kVertex_GrShaderFlag, kFloat2_GrSLType, "atlas_adjust" , &atlasAdjust); |
171 | |
172 | varyingHandler->emitAttributes(proc); |
173 | |
174 | GrGLSLVarying texcoord((isCoverageCount) ? kFloat3_GrSLType : kFloat2_GrSLType); |
175 | varyingHandler->addVarying("texcoord" , &texcoord); |
176 | |
177 | GrGLSLVarying color(kHalf4_GrSLType); |
178 | varyingHandler->addPassThroughAttribute( |
179 | kInstanceAttribs[kColorAttribIdx], args.fOutputColor, Interpolation::kCanBeFlat); |
180 | |
181 | // The vertex shader bloats and intersects the devBounds and devBounds45 rectangles, in order to |
182 | // find an octagon that circumscribes the (bloated) path. |
183 | GrGLSLVertexBuilder* v = args.fVertBuilder; |
184 | |
185 | // Are we clockwise? (Positive wind => nonzero fill rule.) |
186 | // Or counter-clockwise? (negative wind => even/odd fill rule.) |
187 | v->codeAppendf("float wind = sign(devbounds.z - devbounds.x);" ); |
188 | |
189 | // Find our reference corner from the device-space bounding box. |
190 | v->codeAppendf("float2 refpt = mix(devbounds.xy, devbounds.zw, corners.xy);" ); |
191 | |
192 | // Find our reference corner from the 45-degree bounding box. |
193 | v->codeAppendf("float2 refpt45 = mix(devbounds45.xy, devbounds45.zw, corners.zw);" ); |
194 | // Transform back to device space. |
195 | v->codeAppendf("refpt45 *= float2x2(+1, +1, -wind, +wind) * .5;" ); |
196 | |
197 | // Find the normals to each edge, then intersect them to find our octagon vertex. |
198 | v->codeAppendf("float2x2 N = float2x2(" |
199 | "corners.z + corners.w - 1, corners.w - corners.z, " |
200 | "corners.xy*2 - 1);" ); |
201 | v->codeAppendf("N = float2x2(wind, 0, 0, 1) * N;" ); |
202 | v->codeAppendf("float2 K = float2(dot(N[0], refpt), dot(N[1], refpt45));" ); |
203 | v->codeAppendf("float2 octocoord = K * inverse(N);" ); |
204 | |
205 | // Round the octagon out to ensure we rasterize every pixel the path might touch. (Positive |
206 | // bloatdir means we should take the "ceil" and negative means to take the "floor".) |
207 | // |
208 | // NOTE: If we were just drawing a rect, ceil/floor would be enough. But since there are also |
209 | // diagonals in the octagon that cross through pixel centers, we need to outset by another |
210 | // quarter px to ensure those pixels get rasterized. |
211 | v->codeAppendf("float2 bloatdir = (0 != N[0].x) " |
212 | "? float2(N[0].x, N[1].y)" |
213 | ": float2(N[1].x, N[0].y);" ); |
214 | v->codeAppendf("octocoord = (ceil(octocoord * bloatdir - 1e-4) + 0.25) * bloatdir;" ); |
215 | v->codeAppendf("float2 atlascoord = octocoord + float2(dev_to_atlas_offset);" ); |
216 | |
217 | // Convert to atlas coordinates in order to do our texture lookup. |
218 | if (kTopLeft_GrSurfaceOrigin == proc.fAtlasOrigin) { |
219 | v->codeAppendf("%s.xy = atlascoord * %s;" , texcoord.vsOut(), atlasAdjust); |
220 | } else { |
221 | SkASSERT(kBottomLeft_GrSurfaceOrigin == proc.fAtlasOrigin); |
222 | v->codeAppendf("%s.xy = float2(atlascoord.x * %s.x, 1 - atlascoord.y * %s.y);" , |
223 | texcoord.vsOut(), atlasAdjust, atlasAdjust); |
224 | } |
225 | if (isCoverageCount) { |
226 | v->codeAppendf("%s.z = wind * .5;" , texcoord.vsOut()); |
227 | } |
228 | |
229 | gpArgs->fPositionVar.set(kFloat2_GrSLType, "octocoord" ); |
230 | this->writeLocalCoord(v, args.fUniformHandler, gpArgs, gpArgs->fPositionVar, proc.fLocalMatrix, |
231 | &fLocalMatrixUni); |
232 | |
233 | // Fragment shader. |
234 | GrGLSLFPFragmentBuilder* f = args.fFragBuilder; |
235 | |
236 | // Look up coverage in the atlas. |
237 | f->codeAppendf("half coverage = " ); |
238 | f->appendTextureLookup(args.fTexSamplers[0], SkStringPrintf("%s.xy" , texcoord.fsIn()).c_str()); |
239 | f->codeAppendf(".a;" ); |
240 | |
241 | if (isCoverageCount) { |
242 | f->codeAppendf("coverage = abs(coverage);" ); |
243 | |
244 | // Scale coverage count by .5. Make it negative for even-odd paths and positive for |
245 | // winding ones. Clamp winding coverage counts at 1.0 (i.e. min(coverage/2, .5)). |
246 | f->codeAppendf("coverage = min(abs(coverage) * half(%s.z), .5);" , texcoord.fsIn()); |
247 | |
248 | // For negative values, this finishes the even-odd sawtooth function. Since positive |
249 | // (winding) values were clamped at "coverage/2 = .5", this only undoes the previous |
250 | // multiply by .5. |
251 | f->codeAppend ("coverage = 1 - abs(fract(coverage) * 2 - 1);" ); |
252 | } |
253 | |
254 | f->codeAppendf("%s = half4(coverage);" , args.fOutputCoverage); |
255 | } |
256 | |