1 | /* |
2 | * Copyright 2017 Google Inc. |
3 | * |
4 | * Use of this source code is governed by a BSD-style license that can be |
5 | * found in the LICENSE file. |
6 | */ |
7 | |
8 | #include "src/gpu/effects/GrTextureEffect.h" |
9 | |
10 | #include "src/core/SkMatrixPriv.h" |
11 | #include "src/gpu/GrTexture.h" |
12 | #include "src/gpu/effects/GrMatrixEffect.h" |
13 | #include "src/gpu/glsl/GrGLSLProgramBuilder.h" |
14 | #include "src/sksl/SkSLCPP.h" |
15 | #include "src/sksl/SkSLUtil.h" |
16 | |
17 | using Wrap = GrSamplerState::WrapMode; |
18 | using Filter = GrSamplerState::Filter; |
19 | using MipmapMode = GrSamplerState::MipmapMode; |
20 | |
21 | struct GrTextureEffect::Sampling { |
22 | GrSamplerState fHWSampler; |
23 | ShaderMode fShaderModes[2] = {ShaderMode::kNone, ShaderMode::kNone}; |
24 | SkRect fShaderSubset = {0, 0, 0, 0}; |
25 | SkRect fShaderClamp = {0, 0, 0, 0}; |
26 | float fBorder[4] = {0, 0, 0, 0}; |
27 | Sampling(Filter filter, MipmapMode mm) : fHWSampler(filter, mm) {} |
28 | Sampling(const GrSurfaceProxy& proxy, |
29 | GrSamplerState wrap, |
30 | const SkRect&, |
31 | const SkRect*, |
32 | const float border[4], |
33 | const GrCaps&, |
34 | SkVector linearFilterInset = {0.5f, 0.5f}); |
35 | inline bool hasBorderAlpha() const; |
36 | }; |
37 | |
38 | GrTextureEffect::Sampling::Sampling(const GrSurfaceProxy& proxy, |
39 | GrSamplerState sampler, |
40 | const SkRect& subset, |
41 | const SkRect* domain, |
42 | const float border[4], |
43 | const GrCaps& caps, |
44 | SkVector linearFilterInset) { |
45 | struct Span { |
46 | float fA = 0.f, fB = 0.f; |
47 | |
48 | Span makeInset(float o) const { |
49 | Span r = {fA + o, fB - o}; |
50 | if (r.fA > r.fB) { |
51 | r.fA = r.fB = (r.fA + r.fB) / 2; |
52 | } |
53 | return r; |
54 | } |
55 | |
56 | bool contains(Span r) const { return fA <= r.fA && fB >= r.fB; } |
57 | }; |
58 | struct Result1D { |
59 | ShaderMode fShaderMode; |
60 | Span fShaderSubset; |
61 | Span fShaderClamp; |
62 | Wrap fHWWrap; |
63 | }; |
64 | |
65 | auto type = proxy.asTextureProxy()->textureType(); |
66 | auto filter = sampler.filter(); |
67 | auto mm = sampler.mipmapMode(); |
68 | |
69 | auto resolve = [&](int size, Wrap wrap, Span subset, Span domain, float linearFilterInset) { |
70 | Result1D r; |
71 | bool canDoModeInHW = true; |
72 | // TODO: Use HW border color when available. |
73 | if (wrap == Wrap::kClampToBorder && |
74 | (!caps.clampToBorderSupport() || border[0] || border[1] || border[2] || border[3])) { |
75 | canDoModeInHW = false; |
76 | } else if (wrap != Wrap::kClamp && !caps.npotTextureTileSupport() && !SkIsPow2(size)) { |
77 | canDoModeInHW = false; |
78 | } else if (type != GrTextureType::k2D && |
79 | !(wrap == Wrap::kClamp || wrap == Wrap::kClampToBorder)) { |
80 | canDoModeInHW = false; |
81 | } |
82 | if (canDoModeInHW && size > 0 && subset.fA <= 0 && subset.fB >= size) { |
83 | r.fShaderMode = ShaderMode::kNone; |
84 | r.fHWWrap = wrap; |
85 | r.fShaderSubset = r.fShaderClamp = {0, 0}; |
86 | return r; |
87 | } |
88 | |
89 | r.fShaderSubset = subset; |
90 | bool domainIsSafe = false; |
91 | if (filter == Filter::kNearest) { |
92 | Span isubset{sk_float_floor(subset.fA), sk_float_ceil(subset.fB)}; |
93 | if (domain.fA > isubset.fA && domain.fB < isubset.fB) { |
94 | domainIsSafe = true; |
95 | } |
96 | // This inset prevents sampling neighboring texels that could occur when |
97 | // texture coords fall exactly at texel boundaries (depending on precision |
98 | // and GPU-specific snapping at the boundary). |
99 | r.fShaderClamp = isubset.makeInset(0.5f); |
100 | } else { |
101 | r.fShaderClamp = subset.makeInset(linearFilterInset); |
102 | if (r.fShaderClamp.contains(domain)) { |
103 | domainIsSafe = true; |
104 | } |
105 | } |
106 | if (domainIsSafe) { |
107 | // The domain of coords that will be used won't access texels outside of the subset. |
108 | // So the wrap mode effectively doesn't matter. We use kClamp since it is always |
109 | // supported. |
110 | r.fShaderMode = ShaderMode::kNone; |
111 | r.fHWWrap = Wrap::kClamp; |
112 | r.fShaderSubset = r.fShaderClamp = {0, 0}; |
113 | return r; |
114 | } |
115 | r.fShaderMode = GetShaderMode(wrap, filter, mm); |
116 | r.fHWWrap = Wrap::kClamp; |
117 | return r; |
118 | }; |
119 | |
120 | SkISize dim = proxy.isFullyLazy() ? SkISize{-1, -1} : proxy.backingStoreDimensions(); |
121 | |
122 | Span subsetX{subset.fLeft, subset.fRight}; |
123 | auto domainX = domain ? Span{domain->fLeft, domain->fRight} |
124 | : Span{SK_FloatNegativeInfinity, SK_FloatInfinity}; |
125 | auto x = resolve(dim.width(), sampler.wrapModeX(), subsetX, domainX, linearFilterInset.fX); |
126 | |
127 | Span subsetY{subset.fTop, subset.fBottom}; |
128 | auto domainY = domain ? Span{domain->fTop, domain->fBottom} |
129 | : Span{SK_FloatNegativeInfinity, SK_FloatInfinity}; |
130 | auto y = resolve(dim.height(), sampler.wrapModeY(), subsetY, domainY, linearFilterInset.fY); |
131 | |
132 | fHWSampler = {x.fHWWrap, y.fHWWrap, filter, mm}; |
133 | fShaderModes[0] = x.fShaderMode; |
134 | fShaderModes[1] = y.fShaderMode; |
135 | fShaderSubset = {x.fShaderSubset.fA, y.fShaderSubset.fA, |
136 | x.fShaderSubset.fB, y.fShaderSubset.fB}; |
137 | fShaderClamp = {x.fShaderClamp.fA, y.fShaderClamp.fA, |
138 | x.fShaderClamp.fB, y.fShaderClamp.fB}; |
139 | std::copy_n(border, 4, fBorder); |
140 | } |
141 | |
142 | bool GrTextureEffect::Sampling::hasBorderAlpha() const { |
143 | if (fHWSampler.wrapModeX() == Wrap::kClampToBorder || |
144 | fHWSampler.wrapModeY() == Wrap::kClampToBorder) { |
145 | return true; |
146 | } |
147 | if (ShaderModeIsClampToBorder(fShaderModes[0]) || ShaderModeIsClampToBorder(fShaderModes[1])) { |
148 | return fBorder[3] < 1.f; |
149 | } |
150 | return false; |
151 | } |
152 | |
153 | static void get_matrix(const SkMatrix& preMatrix, const GrSurfaceProxyView& view, |
154 | SkMatrix* outMatrix, bool* outLazyProxyNormalization) { |
155 | SkMatrix combined = preMatrix; |
156 | bool normalize = view.proxy()->backendFormat().textureType() != GrTextureType::kRectangle; |
157 | if (normalize) { |
158 | if (view.proxy()->isFullyLazy()) { |
159 | *outLazyProxyNormalization = true; |
160 | } else { |
161 | SkMatrixPriv::PostIDiv(&combined, view.proxy()->backingStoreDimensions().fWidth, |
162 | view.proxy()->backingStoreDimensions().fHeight); |
163 | *outLazyProxyNormalization = false; |
164 | } |
165 | } else { |
166 | *outLazyProxyNormalization = false; |
167 | } |
168 | if (view.origin() == kBottomLeft_GrSurfaceOrigin) { |
169 | if (normalize) { |
170 | // combined.postScale(1,-1); |
171 | // combined.postTranslate(0,1); |
172 | combined.set(SkMatrix::kMSkewY, |
173 | combined[SkMatrix::kMPersp0] - combined[SkMatrix::kMSkewY]); |
174 | combined.set(SkMatrix::kMScaleY, |
175 | combined[SkMatrix::kMPersp1] - combined[SkMatrix::kMScaleY]); |
176 | combined.set(SkMatrix::kMTransY, |
177 | combined[SkMatrix::kMPersp2] - combined[SkMatrix::kMTransY]); |
178 | } else { |
179 | // combined.postScale(1, -1); |
180 | // combined.postTranslate(0,1); |
181 | SkScalar h = view.proxy()->backingStoreDimensions().fHeight; |
182 | combined.set(SkMatrix::kMSkewY, |
183 | h * combined[SkMatrix::kMPersp0] - combined[SkMatrix::kMSkewY]); |
184 | combined.set(SkMatrix::kMScaleY, |
185 | h * combined[SkMatrix::kMPersp1] - combined[SkMatrix::kMScaleY]); |
186 | combined.set(SkMatrix::kMTransY, |
187 | h * combined[SkMatrix::kMPersp2] - combined[SkMatrix::kMTransY]); |
188 | } |
189 | } |
190 | *outMatrix = combined; |
191 | } |
192 | |
193 | std::unique_ptr<GrFragmentProcessor> GrTextureEffect::Make(GrSurfaceProxyView view, |
194 | SkAlphaType alphaType, |
195 | const SkMatrix& matrix, |
196 | Filter filter, |
197 | MipmapMode mm) { |
198 | SkMatrix final; |
199 | bool lazyProxyNormalization; |
200 | get_matrix(matrix, view, &final, &lazyProxyNormalization); |
201 | return GrMatrixEffect::Make(final, std::unique_ptr<GrFragmentProcessor>( |
202 | new GrTextureEffect(std::move(view), |
203 | alphaType, |
204 | Sampling(filter, mm), |
205 | lazyProxyNormalization))); |
206 | } |
207 | |
208 | std::unique_ptr<GrFragmentProcessor> GrTextureEffect::Make(GrSurfaceProxyView view, |
209 | SkAlphaType alphaType, |
210 | const SkMatrix& matrix, |
211 | GrSamplerState sampler, |
212 | const GrCaps& caps, |
213 | const float border[4]) { |
214 | Sampling sampling(*view.proxy(), sampler, SkRect::Make(view.proxy()->dimensions()), nullptr, |
215 | border, caps); |
216 | SkMatrix final; |
217 | bool lazyProxyNormalization; |
218 | get_matrix(matrix, view, &final, &lazyProxyNormalization); |
219 | return GrMatrixEffect::Make(final, std::unique_ptr<GrFragmentProcessor>( |
220 | new GrTextureEffect(std::move(view), |
221 | alphaType, |
222 | sampling, |
223 | lazyProxyNormalization))); |
224 | } |
225 | |
226 | std::unique_ptr<GrFragmentProcessor> GrTextureEffect::MakeSubset(GrSurfaceProxyView view, |
227 | SkAlphaType alphaType, |
228 | const SkMatrix& matrix, |
229 | GrSamplerState sampler, |
230 | const SkRect& subset, |
231 | const GrCaps& caps, |
232 | const float border[4]) { |
233 | Sampling sampling(*view.proxy(), sampler, subset, nullptr, border, caps); |
234 | SkMatrix final; |
235 | bool lazyProxyNormalization; |
236 | get_matrix(matrix, view, &final, &lazyProxyNormalization); |
237 | return GrMatrixEffect::Make(final, std::unique_ptr<GrFragmentProcessor>( |
238 | new GrTextureEffect(std::move(view), |
239 | alphaType, |
240 | sampling, |
241 | lazyProxyNormalization))); |
242 | } |
243 | |
244 | std::unique_ptr<GrFragmentProcessor> GrTextureEffect::MakeSubset(GrSurfaceProxyView view, |
245 | SkAlphaType alphaType, |
246 | const SkMatrix& matrix, |
247 | GrSamplerState sampler, |
248 | const SkRect& subset, |
249 | const SkRect& domain, |
250 | const GrCaps& caps, |
251 | const float border[4]) { |
252 | Sampling sampling(*view.proxy(), sampler, subset, &domain, border, caps); |
253 | SkMatrix final; |
254 | bool lazyProxyNormalization; |
255 | get_matrix(matrix, view, &final, &lazyProxyNormalization); |
256 | return GrMatrixEffect::Make(final, std::unique_ptr<GrFragmentProcessor>( |
257 | new GrTextureEffect(std::move(view), |
258 | alphaType, |
259 | sampling, |
260 | lazyProxyNormalization))); |
261 | } |
262 | |
263 | std::unique_ptr<GrFragmentProcessor> GrTextureEffect::MakeCustomLinearFilterInset( |
264 | GrSurfaceProxyView view, |
265 | SkAlphaType alphaType, |
266 | const SkMatrix& matrix, |
267 | Wrap wx, |
268 | Wrap wy, |
269 | const SkRect& subset, |
270 | const SkRect* domain, |
271 | SkVector inset, |
272 | const GrCaps& caps, |
273 | const float border[4]) { |
274 | GrSamplerState sampler(wx, wy, Filter::kLinear); |
275 | Sampling sampling(*view.proxy(), sampler, subset, domain, border, caps, inset); |
276 | SkMatrix final; |
277 | bool lazyProxyNormalization; |
278 | get_matrix(matrix, view, &final, &lazyProxyNormalization); |
279 | return GrMatrixEffect::Make( |
280 | final, std::unique_ptr<GrFragmentProcessor>(new GrTextureEffect( |
281 | std::move(view), alphaType, sampling, lazyProxyNormalization))); |
282 | } |
283 | |
284 | GrTextureEffect::ShaderMode GrTextureEffect::GetShaderMode(Wrap wrap, |
285 | Filter filter, |
286 | MipmapMode mm) { |
287 | switch (wrap) { |
288 | case Wrap::kMirrorRepeat: |
289 | return ShaderMode::kMirrorRepeat; |
290 | case Wrap::kClamp: |
291 | return ShaderMode::kClamp; |
292 | case Wrap::kRepeat: |
293 | switch (mm) { |
294 | case MipmapMode::kNone: |
295 | switch (filter) { |
296 | case Filter::kNearest: return ShaderMode::kRepeat_Nearest_None; |
297 | case Filter::kLinear: return ShaderMode::kRepeat_Linear_None; |
298 | } |
299 | SkUNREACHABLE; |
300 | case MipmapMode::kNearest: |
301 | case MipmapMode::kLinear: |
302 | switch (filter) { |
303 | case Filter::kNearest: return ShaderMode::kRepeat_Nearest_Mipmap; |
304 | case Filter::kLinear: return ShaderMode::kRepeat_Linear_Mipmap; |
305 | } |
306 | SkUNREACHABLE; |
307 | } |
308 | SkUNREACHABLE; |
309 | case Wrap::kClampToBorder: |
310 | return filter == Filter::kNearest ? ShaderMode::kClampToBorder_Nearest |
311 | : ShaderMode::kClampToBorder_Filter; |
312 | } |
313 | SkUNREACHABLE; |
314 | } |
315 | |
316 | inline bool GrTextureEffect::ShaderModeIsClampToBorder(ShaderMode m) { |
317 | return m == ShaderMode::kClampToBorder_Nearest || m == ShaderMode::kClampToBorder_Filter; |
318 | } |
319 | |
320 | void GrTextureEffect::Impl::emitCode(EmitArgs& args) { |
321 | using ShaderMode = GrTextureEffect::ShaderMode; |
322 | |
323 | auto& te = args.fFp.cast<GrTextureEffect>(); |
324 | auto* fb = args.fFragBuilder; |
325 | |
326 | if (te.fShaderModes[0] == ShaderMode::kNone && |
327 | te.fShaderModes[1] == ShaderMode::kNone) { |
328 | fb->codeAppendf("%s = " , args.fOutputColor); |
329 | if (te.fLazyProxyNormalization) { |
330 | const char* norm = nullptr; |
331 | fNormUni = args.fUniformHandler->addUniform(&te, kFragment_GrShaderFlag, |
332 | kFloat4_GrSLType, "norm" , &norm); |
333 | SkString coordString = SkStringPrintf("%s * %s.zw" , args.fSampleCoord, norm); |
334 | fb->appendTextureLookup(fSamplerHandle, coordString.c_str()); |
335 | } else { |
336 | fb->appendTextureLookup(fSamplerHandle, args.fSampleCoord); |
337 | } |
338 | fb->codeAppendf(";" ); |
339 | } else { |
340 | // Tripping this assert means we have a normalized fully lazy proxy with a |
341 | // non-default ShaderMode. There's nothing fundamentally wrong with doing that, but |
342 | // it hasn't been tested and this code path probably won't handle normalization |
343 | // properly in that case. |
344 | SkASSERT(!te.fLazyProxyNormalization); |
345 | // Here is the basic flow of the various ShaderModes are implemented in a series of |
346 | // steps. Not all the steps apply to all the modes. We try to emit only the steps |
347 | // that are necessary for the given x/y shader modes. |
348 | // |
349 | // 0) Start with interpolated coordinates (unnormalize if doing anything |
350 | // complicated). |
351 | // 1) Map the coordinates into the subset range [Repeat and MirrorRepeat], or pass |
352 | // through output of 0). |
353 | // 2) Clamp the coordinates to a 0.5 inset of the subset rect [Clamp, Repeat, and |
354 | // MirrorRepeat always or ClampToBorder only when filtering] or pass through |
355 | // output of 1). The clamp rect collapses to a line or point it if the subset |
356 | // rect is less than one pixel wide/tall. |
357 | // 3) Look up texture with output of 2) [All] |
358 | // 3) Use the difference between 1) and 2) to apply filtering at edge [Repeat or |
359 | // ClampToBorder]. In the Repeat case this requires extra texture lookups on the |
360 | // other side of the subset (up to 3 more reads). Or if ClampToBorder and not |
361 | // filtering do a hard less than/greater than test with the subset rect. |
362 | |
363 | // Convert possible projective texture coordinates into non-homogeneous half2. |
364 | fb->codeAppendf("float2 inCoord = %s;" , args.fSampleCoord); |
365 | |
366 | const auto& m = te.fShaderModes; |
367 | GrTextureType textureType = te.view().proxy()->backendFormat().textureType(); |
368 | bool normCoords = textureType != GrTextureType::kRectangle; |
369 | |
370 | const char* borderName = nullptr; |
371 | if (te.hasClampToBorderShaderMode()) { |
372 | fBorderUni = args.fUniformHandler->addUniform( |
373 | &te, kFragment_GrShaderFlag, kHalf4_GrSLType, "border" , &borderName); |
374 | } |
375 | auto modeUsesSubset = [](ShaderMode m) { |
376 | switch (m) { |
377 | case ShaderMode::kNone: return false; |
378 | case ShaderMode::kClamp: return false; |
379 | case ShaderMode::kRepeat_Nearest_None: return true; |
380 | case ShaderMode::kRepeat_Linear_None: return true; |
381 | case ShaderMode::kRepeat_Nearest_Mipmap: return true; |
382 | case ShaderMode::kRepeat_Linear_Mipmap: return true; |
383 | case ShaderMode::kMirrorRepeat: return true; |
384 | case ShaderMode::kClampToBorder_Nearest: return true; |
385 | case ShaderMode::kClampToBorder_Filter: return true; |
386 | } |
387 | SkUNREACHABLE; |
388 | }; |
389 | |
390 | auto modeUsesClamp = [](ShaderMode m) { |
391 | switch (m) { |
392 | case ShaderMode::kNone: return false; |
393 | case ShaderMode::kClamp: return true; |
394 | case ShaderMode::kRepeat_Nearest_None: return true; |
395 | case ShaderMode::kRepeat_Linear_None: return true; |
396 | case ShaderMode::kRepeat_Nearest_Mipmap: return true; |
397 | case ShaderMode::kRepeat_Linear_Mipmap: return true; |
398 | case ShaderMode::kMirrorRepeat: return true; |
399 | case ShaderMode::kClampToBorder_Nearest: return false; |
400 | case ShaderMode::kClampToBorder_Filter: return true; |
401 | } |
402 | SkUNREACHABLE; |
403 | }; |
404 | |
405 | // To keep things a little simpler, when we have filtering logic in the shader we |
406 | // operate on unnormalized texture coordinates. We will add a uniform that stores |
407 | // {w, h, 1/w, 1/h} in a float4 below. |
408 | auto modeRequiresUnormCoords = [](ShaderMode m) { |
409 | switch (m) { |
410 | case ShaderMode::kNone: return false; |
411 | case ShaderMode::kClamp: return false; |
412 | case ShaderMode::kRepeat_Nearest_None: return false; |
413 | case ShaderMode::kRepeat_Linear_None: return true; |
414 | case ShaderMode::kRepeat_Nearest_Mipmap: return true; |
415 | case ShaderMode::kRepeat_Linear_Mipmap: return true; |
416 | case ShaderMode::kMirrorRepeat: return false; |
417 | case ShaderMode::kClampToBorder_Nearest: return true; |
418 | case ShaderMode::kClampToBorder_Filter: return true; |
419 | } |
420 | SkUNREACHABLE; |
421 | }; |
422 | |
423 | bool useSubset[2] = {modeUsesSubset(m[0]), modeUsesSubset(m[1])}; |
424 | bool useClamp [2] = {modeUsesClamp (m[0]), modeUsesClamp (m[1])}; |
425 | |
426 | const char* subsetName = nullptr; |
427 | if (useSubset[0] || useSubset[1]) { |
428 | fSubsetUni = args.fUniformHandler->addUniform( |
429 | &te, kFragment_GrShaderFlag, kFloat4_GrSLType, "subset" , &subsetName); |
430 | } |
431 | |
432 | const char* clampName = nullptr; |
433 | if (useClamp[0] || useClamp[1]) { |
434 | fClampUni = args.fUniformHandler->addUniform( |
435 | &te, kFragment_GrShaderFlag, kFloat4_GrSLType, "clamp" , &clampName); |
436 | } |
437 | |
438 | const char* norm = nullptr; |
439 | if (normCoords && (modeRequiresUnormCoords(m[0]) || |
440 | modeRequiresUnormCoords(m[1]))) { |
441 | // TODO: Detect support for textureSize() or polyfill textureSize() in SkSL and |
442 | // always use? |
443 | fNormUni = args.fUniformHandler->addUniform(&te, kFragment_GrShaderFlag, |
444 | kFloat4_GrSLType, "norm" , &norm); |
445 | // TODO: Remove the normalization from the CoordTransform to skip unnormalizing |
446 | // step here. |
447 | fb->codeAppendf("inCoord *= %s.xy;" , norm); |
448 | } |
449 | |
450 | // Generates a string to read at a coordinate, normalizing coords if necessary. |
451 | auto read = [&](const char* coord) { |
452 | SkString result; |
453 | SkString normCoord; |
454 | if (norm) { |
455 | normCoord.printf("(%s) * %s.zw" , coord, norm); |
456 | } else { |
457 | normCoord = coord; |
458 | } |
459 | fb->appendTextureLookup(&result, fSamplerHandle, normCoord.c_str()); |
460 | return result; |
461 | }; |
462 | |
463 | // Implements coord wrapping for kRepeat and kMirrorRepeat |
464 | auto subsetCoord = [&](ShaderMode mode, |
465 | const char* coordSwizzle, |
466 | const char* subsetStartSwizzle, |
467 | const char* subsetStopSwizzle, |
468 | const char* , |
469 | const char* coordWeight) { |
470 | switch (mode) { |
471 | // These modes either don't use the subset rect or don't need to map the |
472 | // coords to be within the subset. |
473 | case ShaderMode::kNone: |
474 | case ShaderMode::kClampToBorder_Nearest: |
475 | case ShaderMode::kClampToBorder_Filter: |
476 | case ShaderMode::kClamp: |
477 | fb->codeAppendf("subsetCoord.%s = inCoord.%s;" , coordSwizzle, coordSwizzle); |
478 | break; |
479 | case ShaderMode::kRepeat_Nearest_None: |
480 | case ShaderMode::kRepeat_Linear_None: |
481 | fb->codeAppendf( |
482 | "subsetCoord.%s = mod(inCoord.%s - %s.%s, %s.%s - %s.%s) + " |
483 | "%s.%s;" , |
484 | coordSwizzle, coordSwizzle, subsetName, subsetStartSwizzle, subsetName, |
485 | subsetStopSwizzle, subsetName, subsetStartSwizzle, subsetName, |
486 | subsetStartSwizzle); |
487 | break; |
488 | case ShaderMode::kRepeat_Nearest_Mipmap: |
489 | case ShaderMode::kRepeat_Linear_Mipmap: |
490 | // The approach here is to generate two sets of texture coords that |
491 | // are both "moving" at the same speed (if not direction) as |
492 | // inCoords. We accomplish that by using two out of phase mirror |
493 | // repeat coords. We will always sample using both coords but the |
494 | // read from the upward sloping one is selected using a weight |
495 | // that transitions from one set to the other near the reflection |
496 | // point. Like the coords, the weight is a saw-tooth function, |
497 | // phase-shifted, vertically translated, and then clamped to 0..1. |
498 | // TODO: Skip this and use textureGrad() when available. |
499 | SkASSERT(extraCoord); |
500 | SkASSERT(coordWeight); |
501 | fb->codeAppend("{" ); |
502 | fb->codeAppendf("float w = %s.%s - %s.%s;" , subsetName, subsetStopSwizzle, |
503 | subsetName, subsetStartSwizzle); |
504 | fb->codeAppendf("float w2 = 2 * w;" ); |
505 | fb->codeAppendf("float d = inCoord.%s - %s.%s;" , coordSwizzle, subsetName, |
506 | subsetStartSwizzle); |
507 | fb->codeAppend("float m = mod(d, w2);" ); |
508 | fb->codeAppend("float o = mix(m, w2 - m, step(w, m));" ); |
509 | fb->codeAppendf("subsetCoord.%s = o + %s.%s;" , coordSwizzle, subsetName, |
510 | subsetStartSwizzle); |
511 | fb->codeAppendf("%s = w - o + %s.%s;" , extraCoord, subsetName, |
512 | subsetStartSwizzle); |
513 | // coordWeight is used as the third param of mix() to blend between a |
514 | // sample taken using subsetCoord and a sample at extraCoord. |
515 | fb->codeAppend("float hw = w/2;" ); |
516 | fb->codeAppend("float n = mod(d - hw, w2);" ); |
517 | fb->codeAppendf( |
518 | "%s = saturate(half(mix(n, w2 - n, step(w, n)) - hw + " |
519 | "0.5));" , |
520 | coordWeight); |
521 | fb->codeAppend("}" ); |
522 | break; |
523 | case ShaderMode::kMirrorRepeat: |
524 | fb->codeAppend("{" ); |
525 | fb->codeAppendf("float w = %s.%s - %s.%s;" , subsetName, subsetStopSwizzle, |
526 | subsetName, subsetStartSwizzle); |
527 | fb->codeAppendf("float w2 = 2 * w;" ); |
528 | fb->codeAppendf("float m = mod(inCoord.%s - %s.%s, w2);" , coordSwizzle, |
529 | subsetName, subsetStartSwizzle); |
530 | fb->codeAppendf("subsetCoord.%s = mix(m, w2 - m, step(w, m)) + %s.%s;" , |
531 | coordSwizzle, subsetName, subsetStartSwizzle); |
532 | fb->codeAppend("}" ); |
533 | break; |
534 | } |
535 | }; |
536 | |
537 | auto clampCoord = [&](bool clamp, |
538 | const char* coordSwizzle, |
539 | const char* clampStartSwizzle, |
540 | const char* clampStopSwizzle) { |
541 | if (clamp) { |
542 | fb->codeAppendf("clampedCoord.%s = clamp(subsetCoord.%s, %s.%s, %s.%s);" , |
543 | coordSwizzle, coordSwizzle, clampName, clampStartSwizzle, clampName, |
544 | clampStopSwizzle); |
545 | } else { |
546 | fb->codeAppendf("clampedCoord.%s = subsetCoord.%s;" , coordSwizzle, coordSwizzle); |
547 | } |
548 | }; |
549 | |
550 | // Insert vars for extra coords and blending weights for repeat + mip map. |
551 | const char* = nullptr; |
552 | const char* repeatCoordWeightX = nullptr; |
553 | const char* = nullptr; |
554 | const char* repeatCoordWeightY = nullptr; |
555 | |
556 | bool mipmapRepeatX = m[0] == ShaderMode::kRepeat_Nearest_Mipmap || |
557 | m[0] == ShaderMode::kRepeat_Linear_Mipmap; |
558 | bool mipmapRepeatY = m[1] == ShaderMode::kRepeat_Nearest_Mipmap || |
559 | m[1] == ShaderMode::kRepeat_Linear_Mipmap; |
560 | |
561 | if (mipmapRepeatX) { |
562 | fb->codeAppend("float extraRepeatCoordX; half repeatCoordWeightX;" ); |
563 | extraRepeatCoordX = "extraRepeatCoordX" ; |
564 | repeatCoordWeightX = "repeatCoordWeightX" ; |
565 | } |
566 | if (mipmapRepeatY) { |
567 | fb->codeAppend("float extraRepeatCoordY; half repeatCoordWeightY;" ); |
568 | extraRepeatCoordY = "extraRepeatCoordY" ; |
569 | repeatCoordWeightY = "repeatCoordWeightY" ; |
570 | } |
571 | |
572 | // Apply subset rect and clamp rect to coords. |
573 | fb->codeAppend("float2 subsetCoord;" ); |
574 | subsetCoord(te.fShaderModes[0], "x" , "x" , "z" , extraRepeatCoordX, repeatCoordWeightX); |
575 | subsetCoord(te.fShaderModes[1], "y" , "y" , "w" , extraRepeatCoordY, repeatCoordWeightY); |
576 | fb->codeAppend("float2 clampedCoord;" ); |
577 | clampCoord(useClamp[0], "x" , "x" , "z" ); |
578 | clampCoord(useClamp[1], "y" , "y" , "w" ); |
579 | |
580 | // Additional clamping for the extra coords for kRepeat with mip maps. |
581 | if (mipmapRepeatX) { |
582 | fb->codeAppendf("extraRepeatCoordX = clamp(extraRepeatCoordX, %s.x, %s.z);" , clampName, |
583 | clampName); |
584 | } |
585 | if (mipmapRepeatY) { |
586 | fb->codeAppendf("extraRepeatCoordY = clamp(extraRepeatCoordY, %s.y, %s.w);" , clampName, |
587 | clampName); |
588 | } |
589 | |
590 | // Do the 2 or 4 texture reads for kRepeatMipMap and then apply the weight(s) |
591 | // to blend between them. If neither direction is repeat or not using mip maps do a single |
592 | // read at clampedCoord. |
593 | if (mipmapRepeatX && mipmapRepeatY) { |
594 | fb->codeAppendf( |
595 | "half4 textureColor =" |
596 | " mix(mix(%s, %s, repeatCoordWeightX)," |
597 | " mix(%s, %s, repeatCoordWeightX)," |
598 | " repeatCoordWeightY);" , |
599 | read("clampedCoord" ).c_str(), |
600 | read("float2(extraRepeatCoordX, clampedCoord.y)" ).c_str(), |
601 | read("float2(clampedCoord.x, extraRepeatCoordY)" ).c_str(), |
602 | read("float2(extraRepeatCoordX, extraRepeatCoordY)" ).c_str()); |
603 | |
604 | } else if (mipmapRepeatX) { |
605 | fb->codeAppendf("half4 textureColor = mix(%s, %s, repeatCoordWeightX);" , |
606 | read("clampedCoord" ).c_str(), |
607 | read("float2(extraRepeatCoordX, clampedCoord.y)" ).c_str()); |
608 | } else if (mipmapRepeatY) { |
609 | fb->codeAppendf("half4 textureColor = mix(%s, %s, repeatCoordWeightY);" , |
610 | read("clampedCoord" ).c_str(), |
611 | read("float2(clampedCoord.x, extraRepeatCoordY)" ).c_str()); |
612 | } else { |
613 | fb->codeAppendf("half4 textureColor = %s;" , read("clampedCoord" ).c_str()); |
614 | } |
615 | |
616 | // Strings for extra texture reads used only in kRepeatLinear |
617 | SkString repeatLinearReadX; |
618 | SkString repeatLinearReadY; |
619 | |
620 | // Calculate the amount the coord moved for clamping. This will be used |
621 | // to implement shader-based filtering for kClampToBorder and kRepeat. |
622 | bool repeatLinearFilterX = m[0] == ShaderMode::kRepeat_Linear_None || |
623 | m[0] == ShaderMode::kRepeat_Linear_Mipmap; |
624 | bool repeatLinearFilterY = m[1] == ShaderMode::kRepeat_Linear_None || |
625 | m[1] == ShaderMode::kRepeat_Linear_Mipmap; |
626 | if (repeatLinearFilterX || m[0] == ShaderMode::kClampToBorder_Filter) { |
627 | fb->codeAppend("half errX = half(subsetCoord.x - clampedCoord.x);" ); |
628 | if (repeatLinearFilterX) { |
629 | fb->codeAppendf("float repeatCoordX = errX > 0 ? %s.x : %s.z;" , |
630 | clampName, clampName); |
631 | repeatLinearReadX = read("float2(repeatCoordX, clampedCoord.y)" ); |
632 | } |
633 | } |
634 | if (repeatLinearFilterY || m[1] == ShaderMode::kClampToBorder_Filter) { |
635 | fb->codeAppend("half errY = half(subsetCoord.y - clampedCoord.y);" ); |
636 | if (repeatLinearFilterY) { |
637 | fb->codeAppendf("float repeatCoordY = errY > 0 ? %s.y : %s.w;" , |
638 | clampName, clampName); |
639 | repeatLinearReadY = read("float2(clampedCoord.x, repeatCoordY)" ); |
640 | } |
641 | } |
642 | |
643 | // Add logic for kRepeat + linear filter. Do 1 or 3 more texture reads depending |
644 | // on whether both modes are kRepeat and whether we're near a single subset edge |
645 | // or a corner. Then blend the multiple reads using the err values calculated |
646 | // above. |
647 | const char* ifStr = "if" ; |
648 | if (repeatLinearFilterX && repeatLinearFilterY) { |
649 | auto repeatLinearReadXY = read("float2(repeatCoordX, repeatCoordY)" ); |
650 | fb->codeAppendf( |
651 | "if (errX != 0 && errY != 0) {" |
652 | " errX = abs(errX);" |
653 | " textureColor = mix(mix(textureColor, %s, errX)," |
654 | " mix(%s, %s, errX)," |
655 | " abs(errY));" |
656 | "}" , |
657 | repeatLinearReadX.c_str(), repeatLinearReadY.c_str(), |
658 | repeatLinearReadXY.c_str()); |
659 | ifStr = "else if" ; |
660 | } |
661 | if (repeatLinearFilterX) { |
662 | fb->codeAppendf( |
663 | "%s (errX != 0) {" |
664 | " textureColor = mix(textureColor, %s, abs(errX));" |
665 | "}" , |
666 | ifStr, repeatLinearReadX.c_str()); |
667 | } |
668 | if (repeatLinearFilterY) { |
669 | fb->codeAppendf( |
670 | "%s (errY != 0) {" |
671 | " textureColor = mix(textureColor, %s, abs(errY));" |
672 | "}" , |
673 | ifStr, repeatLinearReadY.c_str()); |
674 | } |
675 | |
676 | // Do soft edge shader filtering against border color for kClampToBorderFilter using |
677 | // the err values calculated above. |
678 | if (m[0] == ShaderMode::kClampToBorder_Filter) { |
679 | fb->codeAppendf("textureColor = mix(textureColor, %s, min(abs(errX), 1));" , borderName); |
680 | } |
681 | if (m[1] == ShaderMode::kClampToBorder_Filter) { |
682 | fb->codeAppendf("textureColor = mix(textureColor, %s, min(abs(errY), 1));" , borderName); |
683 | } |
684 | |
685 | // Do hard-edge shader transition to border color for kClampToBorderNearest at the |
686 | // subset boundaries. Snap the input coordinates to nearest neighbor (with an |
687 | // epsilon) before comparing to the subset rect to avoid GPU interpolation errors |
688 | if (m[0] == ShaderMode::kClampToBorder_Nearest) { |
689 | fb->codeAppendf( |
690 | "float snappedX = floor(inCoord.x + 0.001) + 0.5;" |
691 | "if (snappedX < %s.x || snappedX > %s.z) {" |
692 | " textureColor = %s;" |
693 | "}" , |
694 | subsetName, subsetName, borderName); |
695 | } |
696 | if (m[1] == ShaderMode::kClampToBorder_Nearest) { |
697 | fb->codeAppendf( |
698 | "float snappedY = floor(inCoord.y + 0.001) + 0.5;" |
699 | "if (snappedY < %s.y || snappedY > %s.w) {" |
700 | " textureColor = %s;" |
701 | "}" , |
702 | subsetName, subsetName, borderName); |
703 | } |
704 | fb->codeAppendf("%s = textureColor;" , args.fOutputColor); |
705 | } |
706 | } |
707 | |
708 | void GrTextureEffect::Impl::onSetData(const GrGLSLProgramDataManager& pdm, |
709 | const GrFragmentProcessor& fp) { |
710 | const auto& te = fp.cast<GrTextureEffect>(); |
711 | |
712 | const float w = te.texture()->width(); |
713 | const float h = te.texture()->height(); |
714 | const auto& s = te.fSubset; |
715 | const auto& c = te.fClamp; |
716 | |
717 | auto type = te.texture()->textureType(); |
718 | |
719 | float norm[4] = {w, h, 1.f/w, 1.f/h}; |
720 | |
721 | if (fNormUni.isValid()) { |
722 | pdm.set4fv(fNormUni, 1, norm); |
723 | SkASSERT(type != GrTextureType::kRectangle); |
724 | } |
725 | |
726 | auto pushRect = [&](float rect[4], UniformHandle uni) { |
727 | if (te.view().origin() == kBottomLeft_GrSurfaceOrigin) { |
728 | rect[1] = h - rect[1]; |
729 | rect[3] = h - rect[3]; |
730 | std::swap(rect[1], rect[3]); |
731 | } |
732 | if (!fNormUni.isValid() && type != GrTextureType::kRectangle) { |
733 | rect[0] *= norm[2]; |
734 | rect[2] *= norm[2]; |
735 | rect[1] *= norm[3]; |
736 | rect[3] *= norm[3]; |
737 | } |
738 | pdm.set4fv(uni, 1, rect); |
739 | }; |
740 | |
741 | if (fSubsetUni.isValid()) { |
742 | float subset[] = {s.fLeft, s.fTop, s.fRight, s.fBottom}; |
743 | pushRect(subset, fSubsetUni); |
744 | } |
745 | if (fClampUni.isValid()) { |
746 | float subset[] = {c.fLeft, c.fTop, c.fRight, c.fBottom}; |
747 | pushRect(subset, fClampUni); |
748 | } |
749 | if (fBorderUni.isValid()) { |
750 | pdm.set4fv(fBorderUni, 1, te.fBorder); |
751 | } |
752 | } |
753 | |
754 | GrGLSLFragmentProcessor* GrTextureEffect::onCreateGLSLInstance() const { return new Impl; } |
755 | |
756 | void GrTextureEffect::onGetGLSLProcessorKey(const GrShaderCaps&, GrProcessorKeyBuilder* b) const { |
757 | auto m0 = static_cast<uint32_t>(fShaderModes[0]); |
758 | auto m1 = static_cast<uint32_t>(fShaderModes[1]); |
759 | b->add32((m0 << 16) | m1); |
760 | } |
761 | |
762 | bool GrTextureEffect::onIsEqual(const GrFragmentProcessor& other) const { |
763 | auto& that = other.cast<GrTextureEffect>(); |
764 | if (fView != that.fView) { |
765 | return false; |
766 | } |
767 | if (fSamplerState != that.fSamplerState) { |
768 | return false; |
769 | } |
770 | if (fShaderModes[0] != that.fShaderModes[0] || fShaderModes[1] != that.fShaderModes[1]) { |
771 | return false; |
772 | } |
773 | if (fSubset != that.fSubset) { |
774 | return false; |
775 | } |
776 | if (this->hasClampToBorderShaderMode() && !std::equal(fBorder, fBorder + 4, that.fBorder)) { |
777 | return false; |
778 | } |
779 | return true; |
780 | } |
781 | |
782 | GrTextureEffect::GrTextureEffect(GrSurfaceProxyView view, |
783 | SkAlphaType alphaType, |
784 | const Sampling& sampling, |
785 | bool lazyProxyNormalization) |
786 | : GrFragmentProcessor(kGrTextureEffect_ClassID, |
787 | ModulateForSamplerOptFlags(alphaType, sampling.hasBorderAlpha())) |
788 | , fView(std::move(view)) |
789 | , fSamplerState(sampling.fHWSampler) |
790 | , fSubset(sampling.fShaderSubset) |
791 | , fClamp(sampling.fShaderClamp) |
792 | , fShaderModes{sampling.fShaderModes[0], sampling.fShaderModes[1]} |
793 | , fLazyProxyNormalization(lazyProxyNormalization) { |
794 | // We always compare the range even when it isn't used so assert we have canonical don't care |
795 | // values. |
796 | SkASSERT(fShaderModes[0] != ShaderMode::kNone || (fSubset.fLeft == 0 && fSubset.fRight == 0)); |
797 | SkASSERT(fShaderModes[1] != ShaderMode::kNone || (fSubset.fTop == 0 && fSubset.fBottom == 0)); |
798 | this->setUsesSampleCoordsDirectly(); |
799 | std::copy_n(sampling.fBorder, 4, fBorder); |
800 | } |
801 | |
802 | GrTextureEffect::GrTextureEffect(const GrTextureEffect& src) |
803 | : INHERITED(kGrTextureEffect_ClassID, src.optimizationFlags()) |
804 | , fView(src.fView) |
805 | , fSamplerState(src.fSamplerState) |
806 | , fSubset(src.fSubset) |
807 | , fClamp(src.fClamp) |
808 | , fShaderModes{src.fShaderModes[0], src.fShaderModes[1]} |
809 | , fLazyProxyNormalization(src.fLazyProxyNormalization) { |
810 | std::copy_n(src.fBorder, 4, fBorder); |
811 | this->setUsesSampleCoordsDirectly(); |
812 | } |
813 | |
814 | std::unique_ptr<GrFragmentProcessor> GrTextureEffect::clone() const { |
815 | return std::unique_ptr<GrFragmentProcessor>(new GrTextureEffect(*this)); |
816 | } |
817 | |
818 | GR_DEFINE_FRAGMENT_PROCESSOR_TEST(GrTextureEffect); |
819 | #if GR_TEST_UTILS |
820 | std::unique_ptr<GrFragmentProcessor> GrTextureEffect::TestCreate(GrProcessorTestData* testData) { |
821 | auto [view, ct, at] = testData->randomView(); |
822 | Wrap wrapModes[2]; |
823 | GrTest::TestWrapModes(testData->fRandom, wrapModes); |
824 | |
825 | Filter filter = testData->fRandom->nextBool() ? Filter::kLinear : Filter::kNearest; |
826 | MipmapMode mm = MipmapMode::kNone; |
827 | if (view.asTextureProxy()->mipmapped() == GrMipmapped::kYes) { |
828 | mm = testData->fRandom->nextBool() ? MipmapMode::kLinear : MipmapMode::kNone; |
829 | } |
830 | GrSamplerState params(wrapModes, filter, mm); |
831 | |
832 | const SkMatrix& matrix = GrTest::TestMatrix(testData->fRandom); |
833 | return GrTextureEffect::Make(std::move(view), at, matrix, params, *testData->caps()); |
834 | } |
835 | #endif |
836 | |