1 | /**************************************************************************/ |
2 | /* godot_soft_body_3d.cpp */ |
3 | /**************************************************************************/ |
4 | /* This file is part of: */ |
5 | /* GODOT ENGINE */ |
6 | /* https://godotengine.org */ |
7 | /**************************************************************************/ |
8 | /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */ |
9 | /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */ |
10 | /* */ |
11 | /* Permission is hereby granted, free of charge, to any person obtaining */ |
12 | /* a copy of this software and associated documentation files (the */ |
13 | /* "Software"), to deal in the Software without restriction, including */ |
14 | /* without limitation the rights to use, copy, modify, merge, publish, */ |
15 | /* distribute, sublicense, and/or sell copies of the Software, and to */ |
16 | /* permit persons to whom the Software is furnished to do so, subject to */ |
17 | /* the following conditions: */ |
18 | /* */ |
19 | /* The above copyright notice and this permission notice shall be */ |
20 | /* included in all copies or substantial portions of the Software. */ |
21 | /* */ |
22 | /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ |
23 | /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ |
24 | /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */ |
25 | /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ |
26 | /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ |
27 | /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ |
28 | /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ |
29 | /**************************************************************************/ |
30 | |
31 | #include "godot_soft_body_3d.h" |
32 | |
33 | #include "godot_space_3d.h" |
34 | |
35 | #include "core/math/geometry_3d.h" |
36 | #include "core/templates/rb_map.h" |
37 | #include "servers/rendering_server.h" |
38 | |
39 | // Based on Bullet soft body. |
40 | |
41 | /* |
42 | Bullet Continuous Collision Detection and Physics Library |
43 | Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/ |
44 | |
45 | This software is provided 'as-is', without any express or implied warranty. |
46 | In no event will the authors be held liable for any damages arising from the use of this software. |
47 | Permission is granted to anyone to use this software for any purpose, |
48 | including commercial applications, and to alter it and redistribute it freely, |
49 | subject to the following restrictions: |
50 | |
51 | 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. |
52 | 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. |
53 | 3. This notice may not be removed or altered from any source distribution. |
54 | */ |
55 | ///btSoftBody implementation by Nathanael Presson |
56 | |
57 | GodotSoftBody3D::GodotSoftBody3D() : |
58 | GodotCollisionObject3D(TYPE_SOFT_BODY), |
59 | active_list(this) { |
60 | _set_static(false); |
61 | } |
62 | |
63 | void GodotSoftBody3D::_shapes_changed() { |
64 | } |
65 | |
66 | void GodotSoftBody3D::set_state(PhysicsServer3D::BodyState p_state, const Variant &p_variant) { |
67 | switch (p_state) { |
68 | case PhysicsServer3D::BODY_STATE_TRANSFORM: { |
69 | _set_transform(p_variant); |
70 | _set_inv_transform(get_transform().inverse()); |
71 | |
72 | apply_nodes_transform(get_transform()); |
73 | |
74 | } break; |
75 | case PhysicsServer3D::BODY_STATE_LINEAR_VELOCITY: { |
76 | // Not supported. |
77 | ERR_FAIL_MSG("Linear velocity is not supported for Soft bodies." ); |
78 | } break; |
79 | case PhysicsServer3D::BODY_STATE_ANGULAR_VELOCITY: { |
80 | ERR_FAIL_MSG("Angular velocity is not supported for Soft bodies." ); |
81 | } break; |
82 | case PhysicsServer3D::BODY_STATE_SLEEPING: { |
83 | ERR_FAIL_MSG("Sleeping state is not supported for Soft bodies." ); |
84 | } break; |
85 | case PhysicsServer3D::BODY_STATE_CAN_SLEEP: { |
86 | ERR_FAIL_MSG("Sleeping state is not supported for Soft bodies." ); |
87 | } break; |
88 | } |
89 | } |
90 | |
91 | Variant GodotSoftBody3D::get_state(PhysicsServer3D::BodyState p_state) const { |
92 | switch (p_state) { |
93 | case PhysicsServer3D::BODY_STATE_TRANSFORM: { |
94 | return get_transform(); |
95 | } break; |
96 | case PhysicsServer3D::BODY_STATE_LINEAR_VELOCITY: { |
97 | ERR_FAIL_V_MSG(Vector3(), "Linear velocity is not supported for Soft bodies." ); |
98 | } break; |
99 | case PhysicsServer3D::BODY_STATE_ANGULAR_VELOCITY: { |
100 | ERR_FAIL_V_MSG(Vector3(), "Angular velocity is not supported for Soft bodies." ); |
101 | } break; |
102 | case PhysicsServer3D::BODY_STATE_SLEEPING: { |
103 | ERR_FAIL_V_MSG(false, "Sleeping state is not supported for Soft bodies." ); |
104 | } break; |
105 | case PhysicsServer3D::BODY_STATE_CAN_SLEEP: { |
106 | ERR_FAIL_V_MSG(false, "Sleeping state is not supported for Soft bodies." ); |
107 | } break; |
108 | } |
109 | |
110 | return Variant(); |
111 | } |
112 | |
113 | void GodotSoftBody3D::set_space(GodotSpace3D *p_space) { |
114 | if (get_space()) { |
115 | get_space()->soft_body_remove_from_active_list(&active_list); |
116 | |
117 | deinitialize_shape(); |
118 | } |
119 | |
120 | _set_space(p_space); |
121 | |
122 | if (get_space()) { |
123 | get_space()->soft_body_add_to_active_list(&active_list); |
124 | |
125 | if (bounds != AABB()) { |
126 | initialize_shape(true); |
127 | } |
128 | } |
129 | } |
130 | |
131 | void GodotSoftBody3D::set_mesh(RID p_mesh) { |
132 | destroy(); |
133 | |
134 | soft_mesh = p_mesh; |
135 | |
136 | if (soft_mesh.is_null()) { |
137 | return; |
138 | } |
139 | |
140 | Array arrays = RenderingServer::get_singleton()->mesh_surface_get_arrays(soft_mesh, 0); |
141 | ERR_FAIL_COND(arrays.is_empty()); |
142 | |
143 | bool success = create_from_trimesh(arrays[RenderingServer::ARRAY_INDEX], arrays[RenderingServer::ARRAY_VERTEX]); |
144 | if (!success) { |
145 | destroy(); |
146 | } |
147 | } |
148 | |
149 | void GodotSoftBody3D::update_rendering_server(PhysicsServer3DRenderingServerHandler *p_rendering_server_handler) { |
150 | if (soft_mesh.is_null()) { |
151 | return; |
152 | } |
153 | |
154 | const uint32_t vertex_count = map_visual_to_physics.size(); |
155 | for (uint32_t i = 0; i < vertex_count; ++i) { |
156 | const uint32_t node_index = map_visual_to_physics[i]; |
157 | const Node &node = nodes[node_index]; |
158 | const Vector3 &vertex_position = node.x; |
159 | const Vector3 &vertex_normal = node.n; |
160 | |
161 | p_rendering_server_handler->set_vertex(i, &vertex_position); |
162 | p_rendering_server_handler->set_normal(i, &vertex_normal); |
163 | } |
164 | |
165 | p_rendering_server_handler->set_aabb(bounds); |
166 | } |
167 | |
168 | void GodotSoftBody3D::update_normals_and_centroids() { |
169 | for (Node &node : nodes) { |
170 | node.n = Vector3(); |
171 | } |
172 | |
173 | for (Face &face : faces) { |
174 | const Vector3 n = vec3_cross(face.n[0]->x - face.n[2]->x, face.n[0]->x - face.n[1]->x); |
175 | face.n[0]->n += n; |
176 | face.n[1]->n += n; |
177 | face.n[2]->n += n; |
178 | face.normal = n; |
179 | face.normal.normalize(); |
180 | face.centroid = 0.33333333333 * (face.n[0]->x + face.n[1]->x + face.n[2]->x); |
181 | } |
182 | |
183 | for (Node &node : nodes) { |
184 | real_t len = node.n.length(); |
185 | if (len > CMP_EPSILON) { |
186 | node.n /= len; |
187 | } |
188 | } |
189 | } |
190 | |
191 | void GodotSoftBody3D::update_bounds() { |
192 | AABB prev_bounds = bounds; |
193 | prev_bounds.grow_by(collision_margin); |
194 | |
195 | bounds = AABB(); |
196 | |
197 | const uint32_t nodes_count = nodes.size(); |
198 | if (nodes_count == 0) { |
199 | deinitialize_shape(); |
200 | return; |
201 | } |
202 | |
203 | bool first = true; |
204 | bool moved = false; |
205 | for (uint32_t node_index = 0; node_index < nodes_count; ++node_index) { |
206 | const Node &node = nodes[node_index]; |
207 | if (!prev_bounds.has_point(node.x)) { |
208 | moved = true; |
209 | } |
210 | if (first) { |
211 | bounds.position = node.x; |
212 | first = false; |
213 | } else { |
214 | bounds.expand_to(node.x); |
215 | } |
216 | } |
217 | |
218 | if (get_space()) { |
219 | initialize_shape(moved); |
220 | } |
221 | } |
222 | |
223 | void GodotSoftBody3D::update_constants() { |
224 | reset_link_rest_lengths(); |
225 | update_link_constants(); |
226 | update_area(); |
227 | } |
228 | |
229 | void GodotSoftBody3D::update_area() { |
230 | int i, ni; |
231 | |
232 | // Face area. |
233 | for (Face &face : faces) { |
234 | const Vector3 &x0 = face.n[0]->x; |
235 | const Vector3 &x1 = face.n[1]->x; |
236 | const Vector3 &x2 = face.n[2]->x; |
237 | |
238 | const Vector3 a = x1 - x0; |
239 | const Vector3 b = x2 - x0; |
240 | const Vector3 cr = vec3_cross(a, b); |
241 | face.ra = cr.length() * 0.5; |
242 | } |
243 | |
244 | // Node area. |
245 | LocalVector<int> counts; |
246 | if (nodes.size() > 0) { |
247 | counts.resize(nodes.size()); |
248 | memset(counts.ptr(), 0, counts.size() * sizeof(int)); |
249 | } |
250 | |
251 | for (Node &node : nodes) { |
252 | node.area = 0.0; |
253 | } |
254 | |
255 | for (const Face &face : faces) { |
256 | for (int j = 0; j < 3; ++j) { |
257 | const int index = (int)(face.n[j] - &nodes[0]); |
258 | counts[index]++; |
259 | face.n[j]->area += Math::abs(face.ra); |
260 | } |
261 | } |
262 | |
263 | for (i = 0, ni = nodes.size(); i < ni; ++i) { |
264 | if (counts[i] > 0) { |
265 | nodes[i].area /= (real_t)counts[i]; |
266 | } else { |
267 | nodes[i].area = 0.0; |
268 | } |
269 | } |
270 | } |
271 | |
272 | void GodotSoftBody3D::reset_link_rest_lengths() { |
273 | for (Link &link : links) { |
274 | link.rl = (link.n[0]->x - link.n[1]->x).length(); |
275 | link.c1 = link.rl * link.rl; |
276 | } |
277 | } |
278 | |
279 | void GodotSoftBody3D::update_link_constants() { |
280 | real_t inv_linear_stiffness = 1.0 / linear_stiffness; |
281 | for (Link &link : links) { |
282 | link.c0 = (link.n[0]->im + link.n[1]->im) * inv_linear_stiffness; |
283 | } |
284 | } |
285 | |
286 | void GodotSoftBody3D::apply_nodes_transform(const Transform3D &p_transform) { |
287 | if (soft_mesh.is_null()) { |
288 | return; |
289 | } |
290 | |
291 | uint32_t node_count = nodes.size(); |
292 | Vector3 leaf_size = Vector3(collision_margin, collision_margin, collision_margin) * 2.0; |
293 | for (uint32_t node_index = 0; node_index < node_count; ++node_index) { |
294 | Node &node = nodes[node_index]; |
295 | |
296 | node.x = p_transform.xform(node.x); |
297 | node.q = node.x; |
298 | node.v = Vector3(); |
299 | node.bv = Vector3(); |
300 | |
301 | AABB node_aabb(node.x, leaf_size); |
302 | node_tree.update(node.leaf, node_aabb); |
303 | } |
304 | |
305 | face_tree.clear(); |
306 | |
307 | update_normals_and_centroids(); |
308 | update_bounds(); |
309 | update_constants(); |
310 | } |
311 | |
312 | Vector3 GodotSoftBody3D::get_vertex_position(int p_index) const { |
313 | ERR_FAIL_COND_V(p_index < 0, Vector3()); |
314 | |
315 | if (soft_mesh.is_null()) { |
316 | return Vector3(); |
317 | } |
318 | |
319 | ERR_FAIL_COND_V(p_index >= (int)map_visual_to_physics.size(), Vector3()); |
320 | uint32_t node_index = map_visual_to_physics[p_index]; |
321 | |
322 | ERR_FAIL_COND_V(node_index >= nodes.size(), Vector3()); |
323 | return nodes[node_index].x; |
324 | } |
325 | |
326 | void GodotSoftBody3D::set_vertex_position(int p_index, const Vector3 &p_position) { |
327 | ERR_FAIL_COND(p_index < 0); |
328 | |
329 | if (soft_mesh.is_null()) { |
330 | return; |
331 | } |
332 | |
333 | ERR_FAIL_COND(p_index >= (int)map_visual_to_physics.size()); |
334 | uint32_t node_index = map_visual_to_physics[p_index]; |
335 | |
336 | ERR_FAIL_COND(node_index >= nodes.size()); |
337 | Node &node = nodes[node_index]; |
338 | node.q = node.x; |
339 | node.x = p_position; |
340 | } |
341 | |
342 | void GodotSoftBody3D::pin_vertex(int p_index) { |
343 | ERR_FAIL_COND(p_index < 0); |
344 | |
345 | if (is_vertex_pinned(p_index)) { |
346 | return; |
347 | } |
348 | |
349 | pinned_vertices.push_back(p_index); |
350 | |
351 | if (!soft_mesh.is_null()) { |
352 | ERR_FAIL_COND(p_index >= (int)map_visual_to_physics.size()); |
353 | uint32_t node_index = map_visual_to_physics[p_index]; |
354 | |
355 | ERR_FAIL_COND(node_index >= nodes.size()); |
356 | Node &node = nodes[node_index]; |
357 | node.im = 0.0; |
358 | } |
359 | } |
360 | |
361 | void GodotSoftBody3D::unpin_vertex(int p_index) { |
362 | ERR_FAIL_COND(p_index < 0); |
363 | |
364 | uint32_t pinned_count = pinned_vertices.size(); |
365 | for (uint32_t i = 0; i < pinned_count; ++i) { |
366 | if (p_index == pinned_vertices[i]) { |
367 | pinned_vertices.remove_at(i); |
368 | |
369 | if (!soft_mesh.is_null()) { |
370 | ERR_FAIL_COND(p_index >= (int)map_visual_to_physics.size()); |
371 | uint32_t node_index = map_visual_to_physics[p_index]; |
372 | |
373 | ERR_FAIL_COND(node_index >= nodes.size()); |
374 | real_t inv_node_mass = nodes.size() * inv_total_mass; |
375 | |
376 | Node &node = nodes[node_index]; |
377 | node.im = inv_node_mass; |
378 | } |
379 | |
380 | return; |
381 | } |
382 | } |
383 | } |
384 | |
385 | void GodotSoftBody3D::unpin_all_vertices() { |
386 | if (!soft_mesh.is_null()) { |
387 | real_t inv_node_mass = nodes.size() * inv_total_mass; |
388 | uint32_t pinned_count = pinned_vertices.size(); |
389 | for (uint32_t i = 0; i < pinned_count; ++i) { |
390 | int pinned_vertex = pinned_vertices[i]; |
391 | |
392 | ERR_CONTINUE(pinned_vertex >= (int)map_visual_to_physics.size()); |
393 | uint32_t node_index = map_visual_to_physics[pinned_vertex]; |
394 | |
395 | ERR_CONTINUE(node_index >= nodes.size()); |
396 | Node &node = nodes[node_index]; |
397 | node.im = inv_node_mass; |
398 | } |
399 | } |
400 | |
401 | pinned_vertices.clear(); |
402 | } |
403 | |
404 | bool GodotSoftBody3D::is_vertex_pinned(int p_index) const { |
405 | ERR_FAIL_COND_V(p_index < 0, false); |
406 | |
407 | uint32_t pinned_count = pinned_vertices.size(); |
408 | for (uint32_t i = 0; i < pinned_count; ++i) { |
409 | if (p_index == pinned_vertices[i]) { |
410 | return true; |
411 | } |
412 | } |
413 | |
414 | return false; |
415 | } |
416 | |
417 | uint32_t GodotSoftBody3D::get_node_count() const { |
418 | return nodes.size(); |
419 | } |
420 | |
421 | real_t GodotSoftBody3D::get_node_inv_mass(uint32_t p_node_index) const { |
422 | ERR_FAIL_UNSIGNED_INDEX_V(p_node_index, nodes.size(), 0.0); |
423 | return nodes[p_node_index].im; |
424 | } |
425 | |
426 | Vector3 GodotSoftBody3D::get_node_position(uint32_t p_node_index) const { |
427 | ERR_FAIL_UNSIGNED_INDEX_V(p_node_index, nodes.size(), Vector3()); |
428 | return nodes[p_node_index].x; |
429 | } |
430 | |
431 | Vector3 GodotSoftBody3D::get_node_velocity(uint32_t p_node_index) const { |
432 | ERR_FAIL_UNSIGNED_INDEX_V(p_node_index, nodes.size(), Vector3()); |
433 | return nodes[p_node_index].v; |
434 | } |
435 | |
436 | Vector3 GodotSoftBody3D::get_node_biased_velocity(uint32_t p_node_index) const { |
437 | ERR_FAIL_UNSIGNED_INDEX_V(p_node_index, nodes.size(), Vector3()); |
438 | return nodes[p_node_index].bv; |
439 | } |
440 | |
441 | void GodotSoftBody3D::apply_node_impulse(uint32_t p_node_index, const Vector3 &p_impulse) { |
442 | ERR_FAIL_UNSIGNED_INDEX(p_node_index, nodes.size()); |
443 | Node &node = nodes[p_node_index]; |
444 | node.v += p_impulse * node.im; |
445 | } |
446 | |
447 | void GodotSoftBody3D::apply_node_bias_impulse(uint32_t p_node_index, const Vector3 &p_impulse) { |
448 | ERR_FAIL_UNSIGNED_INDEX(p_node_index, nodes.size()); |
449 | Node &node = nodes[p_node_index]; |
450 | node.bv += p_impulse * node.im; |
451 | } |
452 | |
453 | uint32_t GodotSoftBody3D::get_face_count() const { |
454 | return faces.size(); |
455 | } |
456 | |
457 | void GodotSoftBody3D::get_face_points(uint32_t p_face_index, Vector3 &r_point_1, Vector3 &r_point_2, Vector3 &r_point_3) const { |
458 | ERR_FAIL_UNSIGNED_INDEX(p_face_index, faces.size()); |
459 | const Face &face = faces[p_face_index]; |
460 | r_point_1 = face.n[0]->x; |
461 | r_point_2 = face.n[1]->x; |
462 | r_point_3 = face.n[2]->x; |
463 | } |
464 | |
465 | Vector3 GodotSoftBody3D::get_face_normal(uint32_t p_face_index) const { |
466 | ERR_FAIL_UNSIGNED_INDEX_V(p_face_index, faces.size(), Vector3()); |
467 | return faces[p_face_index].normal; |
468 | } |
469 | |
470 | bool GodotSoftBody3D::create_from_trimesh(const Vector<int> &p_indices, const Vector<Vector3> &p_vertices) { |
471 | ERR_FAIL_COND_V(p_indices.is_empty(), false); |
472 | ERR_FAIL_COND_V(p_vertices.is_empty(), false); |
473 | |
474 | uint32_t node_count = 0; |
475 | LocalVector<Vector3> vertices; |
476 | const int visual_vertex_count(p_vertices.size()); |
477 | |
478 | LocalVector<int> triangles; |
479 | const uint32_t triangle_count(p_indices.size() / 3); |
480 | triangles.resize(triangle_count * 3); |
481 | |
482 | // Merge all overlapping vertices and create a map of physical vertices to visual vertices. |
483 | { |
484 | // Process vertices. |
485 | { |
486 | uint32_t vertex_count = 0; |
487 | HashMap<Vector3, uint32_t> unique_vertices; |
488 | |
489 | vertices.resize(visual_vertex_count); |
490 | map_visual_to_physics.resize(visual_vertex_count); |
491 | |
492 | for (int visual_vertex_index = 0; visual_vertex_index < visual_vertex_count; ++visual_vertex_index) { |
493 | const Vector3 &vertex = p_vertices[visual_vertex_index]; |
494 | |
495 | HashMap<Vector3, uint32_t>::Iterator e = unique_vertices.find(vertex); |
496 | uint32_t vertex_id; |
497 | if (e) { |
498 | // Already existing. |
499 | vertex_id = e->value; |
500 | } else { |
501 | // Create new one. |
502 | vertex_id = vertex_count++; |
503 | unique_vertices[vertex] = vertex_id; |
504 | vertices[vertex_id] = vertex; |
505 | } |
506 | |
507 | map_visual_to_physics[visual_vertex_index] = vertex_id; |
508 | } |
509 | |
510 | vertices.resize(vertex_count); |
511 | } |
512 | |
513 | // Process triangles. |
514 | { |
515 | for (uint32_t triangle_index = 0; triangle_index < triangle_count; ++triangle_index) { |
516 | for (int i = 0; i < 3; ++i) { |
517 | int visual_index = 3 * triangle_index + i; |
518 | int physics_index = map_visual_to_physics[p_indices[visual_index]]; |
519 | triangles[visual_index] = physics_index; |
520 | node_count = MAX((int)node_count, physics_index); |
521 | } |
522 | } |
523 | } |
524 | } |
525 | |
526 | ++node_count; |
527 | |
528 | // Create nodes from vertices. |
529 | nodes.resize(node_count); |
530 | real_t inv_node_mass = node_count * inv_total_mass; |
531 | Vector3 leaf_size = Vector3(collision_margin, collision_margin, collision_margin) * 2.0; |
532 | for (uint32_t i = 0; i < node_count; ++i) { |
533 | Node &node = nodes[i]; |
534 | node.s = vertices[i]; |
535 | node.x = node.s; |
536 | node.q = node.s; |
537 | node.im = inv_node_mass; |
538 | |
539 | AABB node_aabb(node.x, leaf_size); |
540 | node.leaf = node_tree.insert(node_aabb, &node); |
541 | |
542 | node.index = i; |
543 | } |
544 | |
545 | // Create links and faces from triangles. |
546 | LocalVector<bool> chks; |
547 | chks.resize(node_count * node_count); |
548 | memset(chks.ptr(), 0, chks.size() * sizeof(bool)); |
549 | |
550 | for (uint32_t i = 0; i < triangle_count * 3; i += 3) { |
551 | const int idx[] = { triangles[i], triangles[i + 1], triangles[i + 2] }; |
552 | |
553 | for (int j = 2, k = 0; k < 3; j = k++) { |
554 | int chk = idx[k] * node_count + idx[j]; |
555 | if (!chks[chk]) { |
556 | chks[chk] = true; |
557 | int inv_chk = idx[j] * node_count + idx[k]; |
558 | chks[inv_chk] = true; |
559 | |
560 | append_link(idx[j], idx[k]); |
561 | } |
562 | } |
563 | |
564 | append_face(idx[0], idx[1], idx[2]); |
565 | } |
566 | |
567 | // Set pinned nodes. |
568 | uint32_t pinned_count = pinned_vertices.size(); |
569 | for (uint32_t i = 0; i < pinned_count; ++i) { |
570 | int pinned_vertex = pinned_vertices[i]; |
571 | |
572 | ERR_CONTINUE(pinned_vertex >= visual_vertex_count); |
573 | uint32_t node_index = map_visual_to_physics[pinned_vertex]; |
574 | |
575 | ERR_CONTINUE(node_index >= node_count); |
576 | Node &node = nodes[node_index]; |
577 | node.im = 0.0; |
578 | } |
579 | |
580 | generate_bending_constraints(2); |
581 | reoptimize_link_order(); |
582 | |
583 | update_constants(); |
584 | update_normals_and_centroids(); |
585 | update_bounds(); |
586 | |
587 | return true; |
588 | } |
589 | |
590 | void GodotSoftBody3D::generate_bending_constraints(int p_distance) { |
591 | uint32_t i, j; |
592 | |
593 | if (p_distance > 1) { |
594 | // Build graph. |
595 | const uint32_t n = nodes.size(); |
596 | const unsigned inf = (~(unsigned)0) >> 1; |
597 | const uint32_t adj_size = n * n; |
598 | unsigned *adj = memnew_arr(unsigned, adj_size); |
599 | |
600 | #define IDX(_x_, _y_) ((_y_)*n + (_x_)) |
601 | for (j = 0; j < n; ++j) { |
602 | for (i = 0; i < n; ++i) { |
603 | int idx_ij = j * n + i; |
604 | int idx_ji = i * n + j; |
605 | if (i != j) { |
606 | adj[idx_ij] = adj[idx_ji] = inf; |
607 | } else { |
608 | adj[idx_ij] = adj[idx_ji] = 0; |
609 | } |
610 | } |
611 | } |
612 | for (Link &link : links) { |
613 | const int ia = (int)(link.n[0] - &nodes[0]); |
614 | const int ib = (int)(link.n[1] - &nodes[0]); |
615 | int idx = ib * n + ia; |
616 | int idx_inv = ia * n + ib; |
617 | adj[idx] = 1; |
618 | adj[idx_inv] = 1; |
619 | } |
620 | |
621 | // Special optimized case for distance == 2. |
622 | if (p_distance == 2) { |
623 | LocalVector<LocalVector<int>> node_links; |
624 | |
625 | // Build node links. |
626 | node_links.resize(nodes.size()); |
627 | |
628 | for (Link &link : links) { |
629 | const int ia = (int)(link.n[0] - &nodes[0]); |
630 | const int ib = (int)(link.n[1] - &nodes[0]); |
631 | if (node_links[ia].find(ib) == -1) { |
632 | node_links[ia].push_back(ib); |
633 | } |
634 | |
635 | if (node_links[ib].find(ia) == -1) { |
636 | node_links[ib].push_back(ia); |
637 | } |
638 | } |
639 | for (uint32_t ii = 0; ii < node_links.size(); ii++) { |
640 | for (uint32_t jj = 0; jj < node_links[ii].size(); jj++) { |
641 | int k = node_links[ii][jj]; |
642 | for (const int &l : node_links[k]) { |
643 | if ((int)ii != l) { |
644 | int idx_ik = k * n + ii; |
645 | int idx_kj = l * n + k; |
646 | const unsigned sum = adj[idx_ik] + adj[idx_kj]; |
647 | ERR_FAIL_COND(sum != 2); |
648 | int idx_ij = l * n + ii; |
649 | if (adj[idx_ij] > sum) { |
650 | int idx_ji = l * n + ii; |
651 | adj[idx_ij] = adj[idx_ji] = sum; |
652 | } |
653 | } |
654 | } |
655 | } |
656 | } |
657 | } else { |
658 | // Generic Floyd's algorithm. |
659 | for (uint32_t k = 0; k < n; ++k) { |
660 | for (j = 0; j < n; ++j) { |
661 | for (i = j + 1; i < n; ++i) { |
662 | int idx_ik = k * n + i; |
663 | int idx_kj = j * n + k; |
664 | const unsigned sum = adj[idx_ik] + adj[idx_kj]; |
665 | int idx_ij = j * n + i; |
666 | if (adj[idx_ij] > sum) { |
667 | int idx_ji = j * n + i; |
668 | adj[idx_ij] = adj[idx_ji] = sum; |
669 | } |
670 | } |
671 | } |
672 | } |
673 | } |
674 | |
675 | // Build links. |
676 | for (j = 0; j < n; ++j) { |
677 | for (i = j + 1; i < n; ++i) { |
678 | int idx_ij = j * n + i; |
679 | if (adj[idx_ij] == (unsigned)p_distance) { |
680 | append_link(i, j); |
681 | } |
682 | } |
683 | } |
684 | memdelete_arr(adj); |
685 | } |
686 | } |
687 | |
688 | //=================================================================== |
689 | // |
690 | // |
691 | // This function takes in a list of interdependent Links and tries |
692 | // to maximize the distance between calculation |
693 | // of dependent links. This increases the amount of parallelism that can |
694 | // be exploited by out-of-order instruction processors with large but |
695 | // (inevitably) finite instruction windows. |
696 | // |
697 | //=================================================================== |
698 | |
699 | // A small structure to track lists of dependent link calculations. |
700 | class LinkDeps { |
701 | public: |
702 | // A link calculation that is dependent on this one. |
703 | // Positive values = "input A" while negative values = "input B". |
704 | int value; |
705 | // Next dependence in the list. |
706 | LinkDeps *next; |
707 | }; |
708 | typedef LinkDeps *LinkDepsPtr; |
709 | |
710 | void GodotSoftBody3D::reoptimize_link_order() { |
711 | const int reop_not_dependent = -1; |
712 | const int reop_node_complete = -2; |
713 | |
714 | uint32_t link_count = links.size(); |
715 | uint32_t node_count = nodes.size(); |
716 | |
717 | if (link_count < 1 || node_count < 2) { |
718 | return; |
719 | } |
720 | |
721 | uint32_t i; |
722 | Link *lr; |
723 | int ar, br; |
724 | Node *node0 = &(nodes[0]); |
725 | Node *node1 = &(nodes[1]); |
726 | LinkDepsPtr link_dep; |
727 | int ready_list_head, ready_list_tail, link_num, link_dep_frees, dep_link; |
728 | |
729 | // Allocate temporary buffers. |
730 | int *node_written_at = memnew_arr(int, node_count + 1); // What link calculation produced this node's current values? |
731 | int *link_dep_A = memnew_arr(int, link_count); // Link calculation input is dependent upon prior calculation #N |
732 | int *link_dep_B = memnew_arr(int, link_count); |
733 | int *ready_list = memnew_arr(int, link_count); // List of ready-to-process link calculations (# of links, maximum) |
734 | LinkDeps *link_dep_free_list = memnew_arr(LinkDeps, 2 * link_count); // Dependent-on-me list elements (2x# of links, maximum) |
735 | LinkDepsPtr *link_dep_list_starts = memnew_arr(LinkDepsPtr, link_count); // Start nodes of dependent-on-me lists, one for each link |
736 | |
737 | // Copy the original, unsorted links to a side buffer. |
738 | Link *link_buffer = memnew_arr(Link, link_count); |
739 | memcpy(link_buffer, &(links[0]), sizeof(Link) * link_count); |
740 | |
741 | // Clear out the node setup and ready list. |
742 | for (i = 0; i < node_count + 1; i++) { |
743 | node_written_at[i] = reop_not_dependent; |
744 | } |
745 | for (i = 0; i < link_count; i++) { |
746 | link_dep_list_starts[i] = nullptr; |
747 | } |
748 | ready_list_head = ready_list_tail = link_dep_frees = 0; |
749 | |
750 | // Initial link analysis to set up data structures. |
751 | for (i = 0; i < link_count; i++) { |
752 | // Note which prior link calculations we are dependent upon & build up dependence lists. |
753 | lr = &(links[i]); |
754 | ar = (lr->n[0] - node0) / (node1 - node0); |
755 | br = (lr->n[1] - node0) / (node1 - node0); |
756 | if (node_written_at[ar] > reop_not_dependent) { |
757 | link_dep_A[i] = node_written_at[ar]; |
758 | link_dep = &link_dep_free_list[link_dep_frees++]; |
759 | link_dep->value = i; |
760 | link_dep->next = link_dep_list_starts[node_written_at[ar]]; |
761 | link_dep_list_starts[node_written_at[ar]] = link_dep; |
762 | } else { |
763 | link_dep_A[i] = reop_not_dependent; |
764 | } |
765 | if (node_written_at[br] > reop_not_dependent) { |
766 | link_dep_B[i] = node_written_at[br]; |
767 | link_dep = &link_dep_free_list[link_dep_frees++]; |
768 | link_dep->value = -(int)(i + 1); |
769 | link_dep->next = link_dep_list_starts[node_written_at[br]]; |
770 | link_dep_list_starts[node_written_at[br]] = link_dep; |
771 | } else { |
772 | link_dep_B[i] = reop_not_dependent; |
773 | } |
774 | |
775 | // Add this link to the initial ready list, if it is not dependent on any other links. |
776 | if ((link_dep_A[i] == reop_not_dependent) && (link_dep_B[i] == reop_not_dependent)) { |
777 | ready_list[ready_list_tail++] = i; |
778 | link_dep_A[i] = link_dep_B[i] = reop_node_complete; // Probably not needed now. |
779 | } |
780 | |
781 | // Update the nodes to mark which ones are calculated by this link. |
782 | node_written_at[ar] = node_written_at[br] = i; |
783 | } |
784 | |
785 | // Process the ready list and create the sorted list of links: |
786 | // -- By treating the ready list as a queue, we maximize the distance between any |
787 | // inter-dependent node calculations. |
788 | // -- All other (non-related) nodes in the ready list will automatically be inserted |
789 | // in between each set of inter-dependent link calculations by this loop. |
790 | i = 0; |
791 | while (ready_list_head != ready_list_tail) { |
792 | // Use ready list to select the next link to process. |
793 | link_num = ready_list[ready_list_head++]; |
794 | // Copy the next-to-calculate link back into the original link array. |
795 | links[i++] = link_buffer[link_num]; |
796 | |
797 | // Free up any link inputs that are dependent on this one. |
798 | link_dep = link_dep_list_starts[link_num]; |
799 | while (link_dep) { |
800 | dep_link = link_dep->value; |
801 | if (dep_link >= 0) { |
802 | link_dep_A[dep_link] = reop_not_dependent; |
803 | } else { |
804 | dep_link = -dep_link - 1; |
805 | link_dep_B[dep_link] = reop_not_dependent; |
806 | } |
807 | // Add this dependent link calculation to the ready list if *both* inputs are clear. |
808 | if ((link_dep_A[dep_link] == reop_not_dependent) && (link_dep_B[dep_link] == reop_not_dependent)) { |
809 | ready_list[ready_list_tail++] = dep_link; |
810 | link_dep_A[dep_link] = link_dep_B[dep_link] = reop_node_complete; // Probably not needed now. |
811 | } |
812 | link_dep = link_dep->next; |
813 | } |
814 | } |
815 | |
816 | // Delete the temporary buffers. |
817 | memdelete_arr(node_written_at); |
818 | memdelete_arr(link_dep_A); |
819 | memdelete_arr(link_dep_B); |
820 | memdelete_arr(ready_list); |
821 | memdelete_arr(link_dep_free_list); |
822 | memdelete_arr(link_dep_list_starts); |
823 | memdelete_arr(link_buffer); |
824 | } |
825 | |
826 | void GodotSoftBody3D::append_link(uint32_t p_node1, uint32_t p_node2) { |
827 | if (p_node1 == p_node2) { |
828 | return; |
829 | } |
830 | |
831 | Node *node1 = &nodes[p_node1]; |
832 | Node *node2 = &nodes[p_node2]; |
833 | |
834 | Link link; |
835 | link.n[0] = node1; |
836 | link.n[1] = node2; |
837 | link.rl = (node1->x - node2->x).length(); |
838 | |
839 | links.push_back(link); |
840 | } |
841 | |
842 | void GodotSoftBody3D::append_face(uint32_t p_node1, uint32_t p_node2, uint32_t p_node3) { |
843 | if (p_node1 == p_node2) { |
844 | return; |
845 | } |
846 | if (p_node1 == p_node3) { |
847 | return; |
848 | } |
849 | if (p_node2 == p_node3) { |
850 | return; |
851 | } |
852 | |
853 | Node *node1 = &nodes[p_node1]; |
854 | Node *node2 = &nodes[p_node2]; |
855 | Node *node3 = &nodes[p_node3]; |
856 | |
857 | Face face; |
858 | face.n[0] = node1; |
859 | face.n[1] = node2; |
860 | face.n[2] = node3; |
861 | |
862 | face.index = faces.size(); |
863 | |
864 | faces.push_back(face); |
865 | } |
866 | |
867 | void GodotSoftBody3D::set_iteration_count(int p_val) { |
868 | iteration_count = p_val; |
869 | } |
870 | |
871 | void GodotSoftBody3D::set_total_mass(real_t p_val) { |
872 | ERR_FAIL_COND(p_val < 0.0); |
873 | |
874 | inv_total_mass = 1.0 / p_val; |
875 | real_t mass_factor = total_mass * inv_total_mass; |
876 | total_mass = p_val; |
877 | |
878 | uint32_t node_count = nodes.size(); |
879 | for (uint32_t node_index = 0; node_index < node_count; ++node_index) { |
880 | Node &node = nodes[node_index]; |
881 | node.im *= mass_factor; |
882 | } |
883 | |
884 | update_constants(); |
885 | } |
886 | |
887 | void GodotSoftBody3D::set_collision_margin(real_t p_val) { |
888 | collision_margin = p_val; |
889 | } |
890 | |
891 | void GodotSoftBody3D::set_linear_stiffness(real_t p_val) { |
892 | linear_stiffness = p_val; |
893 | } |
894 | |
895 | void GodotSoftBody3D::set_pressure_coefficient(real_t p_val) { |
896 | pressure_coefficient = p_val; |
897 | } |
898 | |
899 | void GodotSoftBody3D::set_damping_coefficient(real_t p_val) { |
900 | damping_coefficient = p_val; |
901 | } |
902 | |
903 | void GodotSoftBody3D::set_drag_coefficient(real_t p_val) { |
904 | drag_coefficient = p_val; |
905 | } |
906 | |
907 | void GodotSoftBody3D::add_velocity(const Vector3 &p_velocity) { |
908 | for (Node &node : nodes) { |
909 | if (node.im > 0) { |
910 | node.v += p_velocity; |
911 | } |
912 | } |
913 | } |
914 | |
915 | void GodotSoftBody3D::apply_forces(const LocalVector<GodotArea3D *> &p_wind_areas) { |
916 | if (nodes.is_empty()) { |
917 | return; |
918 | } |
919 | |
920 | int32_t j; |
921 | |
922 | real_t volume = 0.0; |
923 | const Vector3 &org = nodes[0].x; |
924 | |
925 | // Iterate over faces (try not to iterate elsewhere if possible). |
926 | for (const Face &face : faces) { |
927 | Vector3 wind_force(0, 0, 0); |
928 | |
929 | // Compute volume. |
930 | volume += vec3_dot(face.n[0]->x - org, vec3_cross(face.n[1]->x - org, face.n[2]->x - org)); |
931 | |
932 | // Compute nodal forces from area winds. |
933 | if (!p_wind_areas.is_empty()) { |
934 | for (const GodotArea3D *area : p_wind_areas) { |
935 | wind_force += _compute_area_windforce(area, &face); |
936 | } |
937 | |
938 | for (j = 0; j < 3; j++) { |
939 | Node *current_node = face.n[j]; |
940 | current_node->f += wind_force; |
941 | } |
942 | } |
943 | } |
944 | volume /= 6.0; |
945 | |
946 | // Apply nodal pressure forces. |
947 | if (pressure_coefficient > CMP_EPSILON) { |
948 | real_t ivolumetp = 1.0 / Math::abs(volume) * pressure_coefficient; |
949 | for (Node &node : nodes) { |
950 | if (node.im > 0) { |
951 | node.f += node.n * (node.area * ivolumetp); |
952 | } |
953 | } |
954 | } |
955 | } |
956 | |
957 | Vector3 GodotSoftBody3D::_compute_area_windforce(const GodotArea3D *p_area, const Face *p_face) { |
958 | real_t wfm = p_area->get_wind_force_magnitude(); |
959 | real_t waf = p_area->get_wind_attenuation_factor(); |
960 | const Vector3 &wd = p_area->get_wind_direction(); |
961 | const Vector3 &ws = p_area->get_wind_source(); |
962 | real_t projection_on_tri_normal = vec3_dot(p_face->normal, wd); |
963 | real_t projection_toward_centroid = vec3_dot(p_face->centroid - ws, wd); |
964 | real_t attenuation_over_distance = pow(projection_toward_centroid, -waf); |
965 | real_t nodal_force_magnitude = wfm * 0.33333333333 * p_face->ra * projection_on_tri_normal * attenuation_over_distance; |
966 | return nodal_force_magnitude * p_face->normal; |
967 | } |
968 | |
969 | void GodotSoftBody3D::predict_motion(real_t p_delta) { |
970 | const real_t inv_delta = 1.0 / p_delta; |
971 | |
972 | ERR_FAIL_COND(!get_space()); |
973 | |
974 | bool gravity_done = false; |
975 | Vector3 gravity; |
976 | |
977 | LocalVector<GodotArea3D *> wind_areas; |
978 | |
979 | int ac = areas.size(); |
980 | if (ac) { |
981 | areas.sort(); |
982 | const AreaCMP *aa = &areas[0]; |
983 | for (int i = ac - 1; i >= 0; i--) { |
984 | if (!gravity_done) { |
985 | PhysicsServer3D::AreaSpaceOverrideMode area_gravity_mode = (PhysicsServer3D::AreaSpaceOverrideMode)(int)aa[i].area->get_param(PhysicsServer3D::AREA_PARAM_GRAVITY_OVERRIDE_MODE); |
986 | if (area_gravity_mode != PhysicsServer3D::AREA_SPACE_OVERRIDE_DISABLED) { |
987 | Vector3 area_gravity; |
988 | aa[i].area->compute_gravity(get_transform().get_origin(), area_gravity); |
989 | switch (area_gravity_mode) { |
990 | case PhysicsServer3D::AREA_SPACE_OVERRIDE_COMBINE: |
991 | case PhysicsServer3D::AREA_SPACE_OVERRIDE_COMBINE_REPLACE: { |
992 | gravity += area_gravity; |
993 | gravity_done = area_gravity_mode == PhysicsServer3D::AREA_SPACE_OVERRIDE_COMBINE_REPLACE; |
994 | } break; |
995 | case PhysicsServer3D::AREA_SPACE_OVERRIDE_REPLACE: |
996 | case PhysicsServer3D::AREA_SPACE_OVERRIDE_REPLACE_COMBINE: { |
997 | gravity = area_gravity; |
998 | gravity_done = area_gravity_mode == PhysicsServer3D::AREA_SPACE_OVERRIDE_REPLACE; |
999 | } break; |
1000 | default: { |
1001 | } |
1002 | } |
1003 | } |
1004 | } |
1005 | |
1006 | if (aa[i].area->get_wind_force_magnitude() > CMP_EPSILON) { |
1007 | wind_areas.push_back(aa[i].area); |
1008 | } |
1009 | } |
1010 | } |
1011 | |
1012 | // Add default gravity and damping from space area. |
1013 | if (!gravity_done) { |
1014 | GodotArea3D *default_area = get_space()->get_default_area(); |
1015 | ERR_FAIL_COND(!default_area); |
1016 | |
1017 | Vector3 default_gravity; |
1018 | default_area->compute_gravity(get_transform().get_origin(), default_gravity); |
1019 | gravity += default_gravity; |
1020 | } |
1021 | |
1022 | // Apply forces. |
1023 | add_velocity(gravity * p_delta); |
1024 | if (pressure_coefficient > CMP_EPSILON || !wind_areas.is_empty()) { |
1025 | apply_forces(wind_areas); |
1026 | } |
1027 | |
1028 | // Avoid soft body from 'exploding' so use some upper threshold of maximum motion |
1029 | // that a node can travel per frame. |
1030 | const real_t max_displacement = 1000.0; |
1031 | real_t clamp_delta_v = max_displacement * inv_delta; |
1032 | |
1033 | // Integrate. |
1034 | for (Node &node : nodes) { |
1035 | node.q = node.x; |
1036 | Vector3 delta_v = node.f * node.im * p_delta; |
1037 | for (int c = 0; c < 3; c++) { |
1038 | delta_v[c] = CLAMP(delta_v[c], -clamp_delta_v, clamp_delta_v); |
1039 | } |
1040 | node.v += delta_v; |
1041 | node.x += node.v * p_delta; |
1042 | node.f = Vector3(); |
1043 | } |
1044 | |
1045 | // Bounds and tree update. |
1046 | update_bounds(); |
1047 | |
1048 | // Node tree update. |
1049 | for (const Node &node : nodes) { |
1050 | AABB node_aabb(node.x, Vector3()); |
1051 | node_aabb.expand_to(node.x + node.v * p_delta); |
1052 | node_aabb.grow_by(collision_margin); |
1053 | |
1054 | node_tree.update(node.leaf, node_aabb); |
1055 | } |
1056 | |
1057 | // Face tree update. |
1058 | if (!face_tree.is_empty()) { |
1059 | update_face_tree(p_delta); |
1060 | } |
1061 | |
1062 | // Optimize node tree. |
1063 | node_tree.optimize_incremental(1); |
1064 | face_tree.optimize_incremental(1); |
1065 | } |
1066 | |
1067 | void GodotSoftBody3D::solve_constraints(real_t p_delta) { |
1068 | const real_t inv_delta = 1.0 / p_delta; |
1069 | |
1070 | for (Link &link : links) { |
1071 | link.c3 = link.n[1]->q - link.n[0]->q; |
1072 | link.c2 = 1 / (link.c3.length_squared() * link.c0); |
1073 | } |
1074 | |
1075 | // Solve velocities. |
1076 | for (Node &node : nodes) { |
1077 | node.x = node.q + node.v * p_delta; |
1078 | } |
1079 | |
1080 | // Solve positions. |
1081 | for (int isolve = 0; isolve < iteration_count; ++isolve) { |
1082 | const real_t ti = isolve / (real_t)iteration_count; |
1083 | solve_links(1.0, ti); |
1084 | } |
1085 | const real_t vc = (1.0 - damping_coefficient) * inv_delta; |
1086 | for (Node &node : nodes) { |
1087 | node.x += node.bv * p_delta; |
1088 | node.bv = Vector3(); |
1089 | |
1090 | node.v = (node.x - node.q) * vc; |
1091 | |
1092 | node.q = node.x; |
1093 | } |
1094 | |
1095 | update_normals_and_centroids(); |
1096 | } |
1097 | |
1098 | void GodotSoftBody3D::solve_links(real_t kst, real_t ti) { |
1099 | for (Link &link : links) { |
1100 | if (link.c0 > 0) { |
1101 | Node &node_a = *link.n[0]; |
1102 | Node &node_b = *link.n[1]; |
1103 | const Vector3 del = node_b.x - node_a.x; |
1104 | const real_t len = del.length_squared(); |
1105 | if (link.c1 + len > CMP_EPSILON) { |
1106 | const real_t k = ((link.c1 - len) / (link.c0 * (link.c1 + len))) * kst; |
1107 | node_a.x -= del * (k * node_a.im); |
1108 | node_b.x += del * (k * node_b.im); |
1109 | } |
1110 | } |
1111 | } |
1112 | } |
1113 | |
1114 | struct AABBQueryResult { |
1115 | const GodotSoftBody3D *soft_body = nullptr; |
1116 | void *userdata = nullptr; |
1117 | GodotSoftBody3D::QueryResultCallback result_callback = nullptr; |
1118 | |
1119 | _FORCE_INLINE_ bool operator()(void *p_data) { |
1120 | return result_callback(soft_body->get_node_index(p_data), userdata); |
1121 | }; |
1122 | }; |
1123 | |
1124 | void GodotSoftBody3D::query_aabb(const AABB &p_aabb, GodotSoftBody3D::QueryResultCallback p_result_callback, void *p_userdata) { |
1125 | AABBQueryResult query_result; |
1126 | query_result.soft_body = this; |
1127 | query_result.result_callback = p_result_callback; |
1128 | query_result.userdata = p_userdata; |
1129 | |
1130 | node_tree.aabb_query(p_aabb, query_result); |
1131 | } |
1132 | |
1133 | struct RayQueryResult { |
1134 | const GodotSoftBody3D *soft_body = nullptr; |
1135 | void *userdata = nullptr; |
1136 | GodotSoftBody3D::QueryResultCallback result_callback = nullptr; |
1137 | |
1138 | _FORCE_INLINE_ bool operator()(void *p_data) { |
1139 | return result_callback(soft_body->get_face_index(p_data), userdata); |
1140 | }; |
1141 | }; |
1142 | |
1143 | void GodotSoftBody3D::query_ray(const Vector3 &p_from, const Vector3 &p_to, GodotSoftBody3D::QueryResultCallback p_result_callback, void *p_userdata) { |
1144 | if (face_tree.is_empty()) { |
1145 | initialize_face_tree(); |
1146 | } |
1147 | |
1148 | RayQueryResult query_result; |
1149 | query_result.soft_body = this; |
1150 | query_result.result_callback = p_result_callback; |
1151 | query_result.userdata = p_userdata; |
1152 | |
1153 | face_tree.ray_query(p_from, p_to, query_result); |
1154 | } |
1155 | |
1156 | void GodotSoftBody3D::initialize_face_tree() { |
1157 | face_tree.clear(); |
1158 | for (Face &face : faces) { |
1159 | AABB face_aabb; |
1160 | |
1161 | face_aabb.position = face.n[0]->x; |
1162 | face_aabb.expand_to(face.n[1]->x); |
1163 | face_aabb.expand_to(face.n[2]->x); |
1164 | |
1165 | face_aabb.grow_by(collision_margin); |
1166 | |
1167 | face.leaf = face_tree.insert(face_aabb, &face); |
1168 | } |
1169 | } |
1170 | |
1171 | void GodotSoftBody3D::update_face_tree(real_t p_delta) { |
1172 | for (const Face &face : faces) { |
1173 | AABB face_aabb; |
1174 | |
1175 | const Node *node0 = face.n[0]; |
1176 | face_aabb.position = node0->x; |
1177 | face_aabb.expand_to(node0->x + node0->v * p_delta); |
1178 | |
1179 | const Node *node1 = face.n[1]; |
1180 | face_aabb.expand_to(node1->x); |
1181 | face_aabb.expand_to(node1->x + node1->v * p_delta); |
1182 | |
1183 | const Node *node2 = face.n[2]; |
1184 | face_aabb.expand_to(node2->x); |
1185 | face_aabb.expand_to(node2->x + node2->v * p_delta); |
1186 | |
1187 | face_aabb.grow_by(collision_margin); |
1188 | |
1189 | face_tree.update(face.leaf, face_aabb); |
1190 | } |
1191 | } |
1192 | |
1193 | void GodotSoftBody3D::initialize_shape(bool p_force_move) { |
1194 | if (get_shape_count() == 0) { |
1195 | GodotSoftBodyShape3D *soft_body_shape = memnew(GodotSoftBodyShape3D(this)); |
1196 | add_shape(soft_body_shape); |
1197 | } else if (p_force_move) { |
1198 | GodotSoftBodyShape3D *soft_body_shape = static_cast<GodotSoftBodyShape3D *>(get_shape(0)); |
1199 | soft_body_shape->update_bounds(); |
1200 | } |
1201 | } |
1202 | |
1203 | void GodotSoftBody3D::deinitialize_shape() { |
1204 | if (get_shape_count() > 0) { |
1205 | GodotShape3D *shape = get_shape(0); |
1206 | remove_shape(shape); |
1207 | memdelete(shape); |
1208 | } |
1209 | } |
1210 | |
1211 | void GodotSoftBody3D::destroy() { |
1212 | soft_mesh = RID(); |
1213 | |
1214 | map_visual_to_physics.clear(); |
1215 | |
1216 | node_tree.clear(); |
1217 | face_tree.clear(); |
1218 | |
1219 | nodes.clear(); |
1220 | links.clear(); |
1221 | faces.clear(); |
1222 | |
1223 | bounds = AABB(); |
1224 | deinitialize_shape(); |
1225 | } |
1226 | |
1227 | void GodotSoftBodyShape3D::update_bounds() { |
1228 | ERR_FAIL_COND(!soft_body); |
1229 | |
1230 | AABB collision_aabb = soft_body->get_bounds(); |
1231 | collision_aabb.grow_by(soft_body->get_collision_margin()); |
1232 | configure(collision_aabb); |
1233 | } |
1234 | |
1235 | GodotSoftBodyShape3D::GodotSoftBodyShape3D(GodotSoftBody3D *p_soft_body) { |
1236 | soft_body = p_soft_body; |
1237 | update_bounds(); |
1238 | } |
1239 | |
1240 | struct _SoftBodyIntersectSegmentInfo { |
1241 | const GodotSoftBody3D *soft_body = nullptr; |
1242 | Vector3 from; |
1243 | Vector3 dir; |
1244 | Vector3 hit_position; |
1245 | uint32_t hit_face_index = -1; |
1246 | real_t hit_dist_sq = INFINITY; |
1247 | |
1248 | static bool process_hit(uint32_t p_face_index, void *p_userdata) { |
1249 | _SoftBodyIntersectSegmentInfo &query_info = *(static_cast<_SoftBodyIntersectSegmentInfo *>(p_userdata)); |
1250 | |
1251 | Vector3 points[3]; |
1252 | query_info.soft_body->get_face_points(p_face_index, points[0], points[1], points[2]); |
1253 | |
1254 | Vector3 result; |
1255 | if (Geometry3D::ray_intersects_triangle(query_info.from, query_info.dir, points[0], points[1], points[2], &result)) { |
1256 | real_t dist_sq = query_info.from.distance_squared_to(result); |
1257 | if (dist_sq < query_info.hit_dist_sq) { |
1258 | query_info.hit_dist_sq = dist_sq; |
1259 | query_info.hit_position = result; |
1260 | query_info.hit_face_index = p_face_index; |
1261 | } |
1262 | } |
1263 | |
1264 | // Continue with the query. |
1265 | return false; |
1266 | } |
1267 | }; |
1268 | |
1269 | bool GodotSoftBodyShape3D::intersect_segment(const Vector3 &p_begin, const Vector3 &p_end, Vector3 &r_result, Vector3 &r_normal, int &r_face_index, bool p_hit_back_faces) const { |
1270 | _SoftBodyIntersectSegmentInfo query_info; |
1271 | query_info.soft_body = soft_body; |
1272 | query_info.from = p_begin; |
1273 | query_info.dir = (p_end - p_begin).normalized(); |
1274 | |
1275 | soft_body->query_ray(p_begin, p_end, _SoftBodyIntersectSegmentInfo::process_hit, &query_info); |
1276 | |
1277 | if (query_info.hit_dist_sq != INFINITY) { |
1278 | r_result = query_info.hit_position; |
1279 | r_normal = soft_body->get_face_normal(query_info.hit_face_index); |
1280 | return true; |
1281 | } |
1282 | |
1283 | return false; |
1284 | } |
1285 | |
1286 | bool GodotSoftBodyShape3D::intersect_point(const Vector3 &p_point) const { |
1287 | return false; |
1288 | } |
1289 | |
1290 | Vector3 GodotSoftBodyShape3D::get_closest_point_to(const Vector3 &p_point) const { |
1291 | ERR_FAIL_V_MSG(Vector3(), "Get closest point is not supported for soft bodies." ); |
1292 | } |
1293 | |