| 1 | /**************************************************************************/ |
| 2 | /* godot_soft_body_3d.cpp */ |
| 3 | /**************************************************************************/ |
| 4 | /* This file is part of: */ |
| 5 | /* GODOT ENGINE */ |
| 6 | /* https://godotengine.org */ |
| 7 | /**************************************************************************/ |
| 8 | /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */ |
| 9 | /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */ |
| 10 | /* */ |
| 11 | /* Permission is hereby granted, free of charge, to any person obtaining */ |
| 12 | /* a copy of this software and associated documentation files (the */ |
| 13 | /* "Software"), to deal in the Software without restriction, including */ |
| 14 | /* without limitation the rights to use, copy, modify, merge, publish, */ |
| 15 | /* distribute, sublicense, and/or sell copies of the Software, and to */ |
| 16 | /* permit persons to whom the Software is furnished to do so, subject to */ |
| 17 | /* the following conditions: */ |
| 18 | /* */ |
| 19 | /* The above copyright notice and this permission notice shall be */ |
| 20 | /* included in all copies or substantial portions of the Software. */ |
| 21 | /* */ |
| 22 | /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ |
| 23 | /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ |
| 24 | /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */ |
| 25 | /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ |
| 26 | /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ |
| 27 | /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ |
| 28 | /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ |
| 29 | /**************************************************************************/ |
| 30 | |
| 31 | #include "godot_soft_body_3d.h" |
| 32 | |
| 33 | #include "godot_space_3d.h" |
| 34 | |
| 35 | #include "core/math/geometry_3d.h" |
| 36 | #include "core/templates/rb_map.h" |
| 37 | #include "servers/rendering_server.h" |
| 38 | |
| 39 | // Based on Bullet soft body. |
| 40 | |
| 41 | /* |
| 42 | Bullet Continuous Collision Detection and Physics Library |
| 43 | Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/ |
| 44 | |
| 45 | This software is provided 'as-is', without any express or implied warranty. |
| 46 | In no event will the authors be held liable for any damages arising from the use of this software. |
| 47 | Permission is granted to anyone to use this software for any purpose, |
| 48 | including commercial applications, and to alter it and redistribute it freely, |
| 49 | subject to the following restrictions: |
| 50 | |
| 51 | 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. |
| 52 | 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. |
| 53 | 3. This notice may not be removed or altered from any source distribution. |
| 54 | */ |
| 55 | ///btSoftBody implementation by Nathanael Presson |
| 56 | |
| 57 | GodotSoftBody3D::GodotSoftBody3D() : |
| 58 | GodotCollisionObject3D(TYPE_SOFT_BODY), |
| 59 | active_list(this) { |
| 60 | _set_static(false); |
| 61 | } |
| 62 | |
| 63 | void GodotSoftBody3D::_shapes_changed() { |
| 64 | } |
| 65 | |
| 66 | void GodotSoftBody3D::set_state(PhysicsServer3D::BodyState p_state, const Variant &p_variant) { |
| 67 | switch (p_state) { |
| 68 | case PhysicsServer3D::BODY_STATE_TRANSFORM: { |
| 69 | _set_transform(p_variant); |
| 70 | _set_inv_transform(get_transform().inverse()); |
| 71 | |
| 72 | apply_nodes_transform(get_transform()); |
| 73 | |
| 74 | } break; |
| 75 | case PhysicsServer3D::BODY_STATE_LINEAR_VELOCITY: { |
| 76 | // Not supported. |
| 77 | ERR_FAIL_MSG("Linear velocity is not supported for Soft bodies." ); |
| 78 | } break; |
| 79 | case PhysicsServer3D::BODY_STATE_ANGULAR_VELOCITY: { |
| 80 | ERR_FAIL_MSG("Angular velocity is not supported for Soft bodies." ); |
| 81 | } break; |
| 82 | case PhysicsServer3D::BODY_STATE_SLEEPING: { |
| 83 | ERR_FAIL_MSG("Sleeping state is not supported for Soft bodies." ); |
| 84 | } break; |
| 85 | case PhysicsServer3D::BODY_STATE_CAN_SLEEP: { |
| 86 | ERR_FAIL_MSG("Sleeping state is not supported for Soft bodies." ); |
| 87 | } break; |
| 88 | } |
| 89 | } |
| 90 | |
| 91 | Variant GodotSoftBody3D::get_state(PhysicsServer3D::BodyState p_state) const { |
| 92 | switch (p_state) { |
| 93 | case PhysicsServer3D::BODY_STATE_TRANSFORM: { |
| 94 | return get_transform(); |
| 95 | } break; |
| 96 | case PhysicsServer3D::BODY_STATE_LINEAR_VELOCITY: { |
| 97 | ERR_FAIL_V_MSG(Vector3(), "Linear velocity is not supported for Soft bodies." ); |
| 98 | } break; |
| 99 | case PhysicsServer3D::BODY_STATE_ANGULAR_VELOCITY: { |
| 100 | ERR_FAIL_V_MSG(Vector3(), "Angular velocity is not supported for Soft bodies." ); |
| 101 | } break; |
| 102 | case PhysicsServer3D::BODY_STATE_SLEEPING: { |
| 103 | ERR_FAIL_V_MSG(false, "Sleeping state is not supported for Soft bodies." ); |
| 104 | } break; |
| 105 | case PhysicsServer3D::BODY_STATE_CAN_SLEEP: { |
| 106 | ERR_FAIL_V_MSG(false, "Sleeping state is not supported for Soft bodies." ); |
| 107 | } break; |
| 108 | } |
| 109 | |
| 110 | return Variant(); |
| 111 | } |
| 112 | |
| 113 | void GodotSoftBody3D::set_space(GodotSpace3D *p_space) { |
| 114 | if (get_space()) { |
| 115 | get_space()->soft_body_remove_from_active_list(&active_list); |
| 116 | |
| 117 | deinitialize_shape(); |
| 118 | } |
| 119 | |
| 120 | _set_space(p_space); |
| 121 | |
| 122 | if (get_space()) { |
| 123 | get_space()->soft_body_add_to_active_list(&active_list); |
| 124 | |
| 125 | if (bounds != AABB()) { |
| 126 | initialize_shape(true); |
| 127 | } |
| 128 | } |
| 129 | } |
| 130 | |
| 131 | void GodotSoftBody3D::set_mesh(RID p_mesh) { |
| 132 | destroy(); |
| 133 | |
| 134 | soft_mesh = p_mesh; |
| 135 | |
| 136 | if (soft_mesh.is_null()) { |
| 137 | return; |
| 138 | } |
| 139 | |
| 140 | Array arrays = RenderingServer::get_singleton()->mesh_surface_get_arrays(soft_mesh, 0); |
| 141 | ERR_FAIL_COND(arrays.is_empty()); |
| 142 | |
| 143 | bool success = create_from_trimesh(arrays[RenderingServer::ARRAY_INDEX], arrays[RenderingServer::ARRAY_VERTEX]); |
| 144 | if (!success) { |
| 145 | destroy(); |
| 146 | } |
| 147 | } |
| 148 | |
| 149 | void GodotSoftBody3D::update_rendering_server(PhysicsServer3DRenderingServerHandler *p_rendering_server_handler) { |
| 150 | if (soft_mesh.is_null()) { |
| 151 | return; |
| 152 | } |
| 153 | |
| 154 | const uint32_t vertex_count = map_visual_to_physics.size(); |
| 155 | for (uint32_t i = 0; i < vertex_count; ++i) { |
| 156 | const uint32_t node_index = map_visual_to_physics[i]; |
| 157 | const Node &node = nodes[node_index]; |
| 158 | const Vector3 &vertex_position = node.x; |
| 159 | const Vector3 &vertex_normal = node.n; |
| 160 | |
| 161 | p_rendering_server_handler->set_vertex(i, &vertex_position); |
| 162 | p_rendering_server_handler->set_normal(i, &vertex_normal); |
| 163 | } |
| 164 | |
| 165 | p_rendering_server_handler->set_aabb(bounds); |
| 166 | } |
| 167 | |
| 168 | void GodotSoftBody3D::update_normals_and_centroids() { |
| 169 | for (Node &node : nodes) { |
| 170 | node.n = Vector3(); |
| 171 | } |
| 172 | |
| 173 | for (Face &face : faces) { |
| 174 | const Vector3 n = vec3_cross(face.n[0]->x - face.n[2]->x, face.n[0]->x - face.n[1]->x); |
| 175 | face.n[0]->n += n; |
| 176 | face.n[1]->n += n; |
| 177 | face.n[2]->n += n; |
| 178 | face.normal = n; |
| 179 | face.normal.normalize(); |
| 180 | face.centroid = 0.33333333333 * (face.n[0]->x + face.n[1]->x + face.n[2]->x); |
| 181 | } |
| 182 | |
| 183 | for (Node &node : nodes) { |
| 184 | real_t len = node.n.length(); |
| 185 | if (len > CMP_EPSILON) { |
| 186 | node.n /= len; |
| 187 | } |
| 188 | } |
| 189 | } |
| 190 | |
| 191 | void GodotSoftBody3D::update_bounds() { |
| 192 | AABB prev_bounds = bounds; |
| 193 | prev_bounds.grow_by(collision_margin); |
| 194 | |
| 195 | bounds = AABB(); |
| 196 | |
| 197 | const uint32_t nodes_count = nodes.size(); |
| 198 | if (nodes_count == 0) { |
| 199 | deinitialize_shape(); |
| 200 | return; |
| 201 | } |
| 202 | |
| 203 | bool first = true; |
| 204 | bool moved = false; |
| 205 | for (uint32_t node_index = 0; node_index < nodes_count; ++node_index) { |
| 206 | const Node &node = nodes[node_index]; |
| 207 | if (!prev_bounds.has_point(node.x)) { |
| 208 | moved = true; |
| 209 | } |
| 210 | if (first) { |
| 211 | bounds.position = node.x; |
| 212 | first = false; |
| 213 | } else { |
| 214 | bounds.expand_to(node.x); |
| 215 | } |
| 216 | } |
| 217 | |
| 218 | if (get_space()) { |
| 219 | initialize_shape(moved); |
| 220 | } |
| 221 | } |
| 222 | |
| 223 | void GodotSoftBody3D::update_constants() { |
| 224 | reset_link_rest_lengths(); |
| 225 | update_link_constants(); |
| 226 | update_area(); |
| 227 | } |
| 228 | |
| 229 | void GodotSoftBody3D::update_area() { |
| 230 | int i, ni; |
| 231 | |
| 232 | // Face area. |
| 233 | for (Face &face : faces) { |
| 234 | const Vector3 &x0 = face.n[0]->x; |
| 235 | const Vector3 &x1 = face.n[1]->x; |
| 236 | const Vector3 &x2 = face.n[2]->x; |
| 237 | |
| 238 | const Vector3 a = x1 - x0; |
| 239 | const Vector3 b = x2 - x0; |
| 240 | const Vector3 cr = vec3_cross(a, b); |
| 241 | face.ra = cr.length() * 0.5; |
| 242 | } |
| 243 | |
| 244 | // Node area. |
| 245 | LocalVector<int> counts; |
| 246 | if (nodes.size() > 0) { |
| 247 | counts.resize(nodes.size()); |
| 248 | memset(counts.ptr(), 0, counts.size() * sizeof(int)); |
| 249 | } |
| 250 | |
| 251 | for (Node &node : nodes) { |
| 252 | node.area = 0.0; |
| 253 | } |
| 254 | |
| 255 | for (const Face &face : faces) { |
| 256 | for (int j = 0; j < 3; ++j) { |
| 257 | const int index = (int)(face.n[j] - &nodes[0]); |
| 258 | counts[index]++; |
| 259 | face.n[j]->area += Math::abs(face.ra); |
| 260 | } |
| 261 | } |
| 262 | |
| 263 | for (i = 0, ni = nodes.size(); i < ni; ++i) { |
| 264 | if (counts[i] > 0) { |
| 265 | nodes[i].area /= (real_t)counts[i]; |
| 266 | } else { |
| 267 | nodes[i].area = 0.0; |
| 268 | } |
| 269 | } |
| 270 | } |
| 271 | |
| 272 | void GodotSoftBody3D::reset_link_rest_lengths() { |
| 273 | for (Link &link : links) { |
| 274 | link.rl = (link.n[0]->x - link.n[1]->x).length(); |
| 275 | link.c1 = link.rl * link.rl; |
| 276 | } |
| 277 | } |
| 278 | |
| 279 | void GodotSoftBody3D::update_link_constants() { |
| 280 | real_t inv_linear_stiffness = 1.0 / linear_stiffness; |
| 281 | for (Link &link : links) { |
| 282 | link.c0 = (link.n[0]->im + link.n[1]->im) * inv_linear_stiffness; |
| 283 | } |
| 284 | } |
| 285 | |
| 286 | void GodotSoftBody3D::apply_nodes_transform(const Transform3D &p_transform) { |
| 287 | if (soft_mesh.is_null()) { |
| 288 | return; |
| 289 | } |
| 290 | |
| 291 | uint32_t node_count = nodes.size(); |
| 292 | Vector3 leaf_size = Vector3(collision_margin, collision_margin, collision_margin) * 2.0; |
| 293 | for (uint32_t node_index = 0; node_index < node_count; ++node_index) { |
| 294 | Node &node = nodes[node_index]; |
| 295 | |
| 296 | node.x = p_transform.xform(node.x); |
| 297 | node.q = node.x; |
| 298 | node.v = Vector3(); |
| 299 | node.bv = Vector3(); |
| 300 | |
| 301 | AABB node_aabb(node.x, leaf_size); |
| 302 | node_tree.update(node.leaf, node_aabb); |
| 303 | } |
| 304 | |
| 305 | face_tree.clear(); |
| 306 | |
| 307 | update_normals_and_centroids(); |
| 308 | update_bounds(); |
| 309 | update_constants(); |
| 310 | } |
| 311 | |
| 312 | Vector3 GodotSoftBody3D::get_vertex_position(int p_index) const { |
| 313 | ERR_FAIL_COND_V(p_index < 0, Vector3()); |
| 314 | |
| 315 | if (soft_mesh.is_null()) { |
| 316 | return Vector3(); |
| 317 | } |
| 318 | |
| 319 | ERR_FAIL_COND_V(p_index >= (int)map_visual_to_physics.size(), Vector3()); |
| 320 | uint32_t node_index = map_visual_to_physics[p_index]; |
| 321 | |
| 322 | ERR_FAIL_COND_V(node_index >= nodes.size(), Vector3()); |
| 323 | return nodes[node_index].x; |
| 324 | } |
| 325 | |
| 326 | void GodotSoftBody3D::set_vertex_position(int p_index, const Vector3 &p_position) { |
| 327 | ERR_FAIL_COND(p_index < 0); |
| 328 | |
| 329 | if (soft_mesh.is_null()) { |
| 330 | return; |
| 331 | } |
| 332 | |
| 333 | ERR_FAIL_COND(p_index >= (int)map_visual_to_physics.size()); |
| 334 | uint32_t node_index = map_visual_to_physics[p_index]; |
| 335 | |
| 336 | ERR_FAIL_COND(node_index >= nodes.size()); |
| 337 | Node &node = nodes[node_index]; |
| 338 | node.q = node.x; |
| 339 | node.x = p_position; |
| 340 | } |
| 341 | |
| 342 | void GodotSoftBody3D::pin_vertex(int p_index) { |
| 343 | ERR_FAIL_COND(p_index < 0); |
| 344 | |
| 345 | if (is_vertex_pinned(p_index)) { |
| 346 | return; |
| 347 | } |
| 348 | |
| 349 | pinned_vertices.push_back(p_index); |
| 350 | |
| 351 | if (!soft_mesh.is_null()) { |
| 352 | ERR_FAIL_COND(p_index >= (int)map_visual_to_physics.size()); |
| 353 | uint32_t node_index = map_visual_to_physics[p_index]; |
| 354 | |
| 355 | ERR_FAIL_COND(node_index >= nodes.size()); |
| 356 | Node &node = nodes[node_index]; |
| 357 | node.im = 0.0; |
| 358 | } |
| 359 | } |
| 360 | |
| 361 | void GodotSoftBody3D::unpin_vertex(int p_index) { |
| 362 | ERR_FAIL_COND(p_index < 0); |
| 363 | |
| 364 | uint32_t pinned_count = pinned_vertices.size(); |
| 365 | for (uint32_t i = 0; i < pinned_count; ++i) { |
| 366 | if (p_index == pinned_vertices[i]) { |
| 367 | pinned_vertices.remove_at(i); |
| 368 | |
| 369 | if (!soft_mesh.is_null()) { |
| 370 | ERR_FAIL_COND(p_index >= (int)map_visual_to_physics.size()); |
| 371 | uint32_t node_index = map_visual_to_physics[p_index]; |
| 372 | |
| 373 | ERR_FAIL_COND(node_index >= nodes.size()); |
| 374 | real_t inv_node_mass = nodes.size() * inv_total_mass; |
| 375 | |
| 376 | Node &node = nodes[node_index]; |
| 377 | node.im = inv_node_mass; |
| 378 | } |
| 379 | |
| 380 | return; |
| 381 | } |
| 382 | } |
| 383 | } |
| 384 | |
| 385 | void GodotSoftBody3D::unpin_all_vertices() { |
| 386 | if (!soft_mesh.is_null()) { |
| 387 | real_t inv_node_mass = nodes.size() * inv_total_mass; |
| 388 | uint32_t pinned_count = pinned_vertices.size(); |
| 389 | for (uint32_t i = 0; i < pinned_count; ++i) { |
| 390 | int pinned_vertex = pinned_vertices[i]; |
| 391 | |
| 392 | ERR_CONTINUE(pinned_vertex >= (int)map_visual_to_physics.size()); |
| 393 | uint32_t node_index = map_visual_to_physics[pinned_vertex]; |
| 394 | |
| 395 | ERR_CONTINUE(node_index >= nodes.size()); |
| 396 | Node &node = nodes[node_index]; |
| 397 | node.im = inv_node_mass; |
| 398 | } |
| 399 | } |
| 400 | |
| 401 | pinned_vertices.clear(); |
| 402 | } |
| 403 | |
| 404 | bool GodotSoftBody3D::is_vertex_pinned(int p_index) const { |
| 405 | ERR_FAIL_COND_V(p_index < 0, false); |
| 406 | |
| 407 | uint32_t pinned_count = pinned_vertices.size(); |
| 408 | for (uint32_t i = 0; i < pinned_count; ++i) { |
| 409 | if (p_index == pinned_vertices[i]) { |
| 410 | return true; |
| 411 | } |
| 412 | } |
| 413 | |
| 414 | return false; |
| 415 | } |
| 416 | |
| 417 | uint32_t GodotSoftBody3D::get_node_count() const { |
| 418 | return nodes.size(); |
| 419 | } |
| 420 | |
| 421 | real_t GodotSoftBody3D::get_node_inv_mass(uint32_t p_node_index) const { |
| 422 | ERR_FAIL_UNSIGNED_INDEX_V(p_node_index, nodes.size(), 0.0); |
| 423 | return nodes[p_node_index].im; |
| 424 | } |
| 425 | |
| 426 | Vector3 GodotSoftBody3D::get_node_position(uint32_t p_node_index) const { |
| 427 | ERR_FAIL_UNSIGNED_INDEX_V(p_node_index, nodes.size(), Vector3()); |
| 428 | return nodes[p_node_index].x; |
| 429 | } |
| 430 | |
| 431 | Vector3 GodotSoftBody3D::get_node_velocity(uint32_t p_node_index) const { |
| 432 | ERR_FAIL_UNSIGNED_INDEX_V(p_node_index, nodes.size(), Vector3()); |
| 433 | return nodes[p_node_index].v; |
| 434 | } |
| 435 | |
| 436 | Vector3 GodotSoftBody3D::get_node_biased_velocity(uint32_t p_node_index) const { |
| 437 | ERR_FAIL_UNSIGNED_INDEX_V(p_node_index, nodes.size(), Vector3()); |
| 438 | return nodes[p_node_index].bv; |
| 439 | } |
| 440 | |
| 441 | void GodotSoftBody3D::apply_node_impulse(uint32_t p_node_index, const Vector3 &p_impulse) { |
| 442 | ERR_FAIL_UNSIGNED_INDEX(p_node_index, nodes.size()); |
| 443 | Node &node = nodes[p_node_index]; |
| 444 | node.v += p_impulse * node.im; |
| 445 | } |
| 446 | |
| 447 | void GodotSoftBody3D::apply_node_bias_impulse(uint32_t p_node_index, const Vector3 &p_impulse) { |
| 448 | ERR_FAIL_UNSIGNED_INDEX(p_node_index, nodes.size()); |
| 449 | Node &node = nodes[p_node_index]; |
| 450 | node.bv += p_impulse * node.im; |
| 451 | } |
| 452 | |
| 453 | uint32_t GodotSoftBody3D::get_face_count() const { |
| 454 | return faces.size(); |
| 455 | } |
| 456 | |
| 457 | void GodotSoftBody3D::get_face_points(uint32_t p_face_index, Vector3 &r_point_1, Vector3 &r_point_2, Vector3 &r_point_3) const { |
| 458 | ERR_FAIL_UNSIGNED_INDEX(p_face_index, faces.size()); |
| 459 | const Face &face = faces[p_face_index]; |
| 460 | r_point_1 = face.n[0]->x; |
| 461 | r_point_2 = face.n[1]->x; |
| 462 | r_point_3 = face.n[2]->x; |
| 463 | } |
| 464 | |
| 465 | Vector3 GodotSoftBody3D::get_face_normal(uint32_t p_face_index) const { |
| 466 | ERR_FAIL_UNSIGNED_INDEX_V(p_face_index, faces.size(), Vector3()); |
| 467 | return faces[p_face_index].normal; |
| 468 | } |
| 469 | |
| 470 | bool GodotSoftBody3D::create_from_trimesh(const Vector<int> &p_indices, const Vector<Vector3> &p_vertices) { |
| 471 | ERR_FAIL_COND_V(p_indices.is_empty(), false); |
| 472 | ERR_FAIL_COND_V(p_vertices.is_empty(), false); |
| 473 | |
| 474 | uint32_t node_count = 0; |
| 475 | LocalVector<Vector3> vertices; |
| 476 | const int visual_vertex_count(p_vertices.size()); |
| 477 | |
| 478 | LocalVector<int> triangles; |
| 479 | const uint32_t triangle_count(p_indices.size() / 3); |
| 480 | triangles.resize(triangle_count * 3); |
| 481 | |
| 482 | // Merge all overlapping vertices and create a map of physical vertices to visual vertices. |
| 483 | { |
| 484 | // Process vertices. |
| 485 | { |
| 486 | uint32_t vertex_count = 0; |
| 487 | HashMap<Vector3, uint32_t> unique_vertices; |
| 488 | |
| 489 | vertices.resize(visual_vertex_count); |
| 490 | map_visual_to_physics.resize(visual_vertex_count); |
| 491 | |
| 492 | for (int visual_vertex_index = 0; visual_vertex_index < visual_vertex_count; ++visual_vertex_index) { |
| 493 | const Vector3 &vertex = p_vertices[visual_vertex_index]; |
| 494 | |
| 495 | HashMap<Vector3, uint32_t>::Iterator e = unique_vertices.find(vertex); |
| 496 | uint32_t vertex_id; |
| 497 | if (e) { |
| 498 | // Already existing. |
| 499 | vertex_id = e->value; |
| 500 | } else { |
| 501 | // Create new one. |
| 502 | vertex_id = vertex_count++; |
| 503 | unique_vertices[vertex] = vertex_id; |
| 504 | vertices[vertex_id] = vertex; |
| 505 | } |
| 506 | |
| 507 | map_visual_to_physics[visual_vertex_index] = vertex_id; |
| 508 | } |
| 509 | |
| 510 | vertices.resize(vertex_count); |
| 511 | } |
| 512 | |
| 513 | // Process triangles. |
| 514 | { |
| 515 | for (uint32_t triangle_index = 0; triangle_index < triangle_count; ++triangle_index) { |
| 516 | for (int i = 0; i < 3; ++i) { |
| 517 | int visual_index = 3 * triangle_index + i; |
| 518 | int physics_index = map_visual_to_physics[p_indices[visual_index]]; |
| 519 | triangles[visual_index] = physics_index; |
| 520 | node_count = MAX((int)node_count, physics_index); |
| 521 | } |
| 522 | } |
| 523 | } |
| 524 | } |
| 525 | |
| 526 | ++node_count; |
| 527 | |
| 528 | // Create nodes from vertices. |
| 529 | nodes.resize(node_count); |
| 530 | real_t inv_node_mass = node_count * inv_total_mass; |
| 531 | Vector3 leaf_size = Vector3(collision_margin, collision_margin, collision_margin) * 2.0; |
| 532 | for (uint32_t i = 0; i < node_count; ++i) { |
| 533 | Node &node = nodes[i]; |
| 534 | node.s = vertices[i]; |
| 535 | node.x = node.s; |
| 536 | node.q = node.s; |
| 537 | node.im = inv_node_mass; |
| 538 | |
| 539 | AABB node_aabb(node.x, leaf_size); |
| 540 | node.leaf = node_tree.insert(node_aabb, &node); |
| 541 | |
| 542 | node.index = i; |
| 543 | } |
| 544 | |
| 545 | // Create links and faces from triangles. |
| 546 | LocalVector<bool> chks; |
| 547 | chks.resize(node_count * node_count); |
| 548 | memset(chks.ptr(), 0, chks.size() * sizeof(bool)); |
| 549 | |
| 550 | for (uint32_t i = 0; i < triangle_count * 3; i += 3) { |
| 551 | const int idx[] = { triangles[i], triangles[i + 1], triangles[i + 2] }; |
| 552 | |
| 553 | for (int j = 2, k = 0; k < 3; j = k++) { |
| 554 | int chk = idx[k] * node_count + idx[j]; |
| 555 | if (!chks[chk]) { |
| 556 | chks[chk] = true; |
| 557 | int inv_chk = idx[j] * node_count + idx[k]; |
| 558 | chks[inv_chk] = true; |
| 559 | |
| 560 | append_link(idx[j], idx[k]); |
| 561 | } |
| 562 | } |
| 563 | |
| 564 | append_face(idx[0], idx[1], idx[2]); |
| 565 | } |
| 566 | |
| 567 | // Set pinned nodes. |
| 568 | uint32_t pinned_count = pinned_vertices.size(); |
| 569 | for (uint32_t i = 0; i < pinned_count; ++i) { |
| 570 | int pinned_vertex = pinned_vertices[i]; |
| 571 | |
| 572 | ERR_CONTINUE(pinned_vertex >= visual_vertex_count); |
| 573 | uint32_t node_index = map_visual_to_physics[pinned_vertex]; |
| 574 | |
| 575 | ERR_CONTINUE(node_index >= node_count); |
| 576 | Node &node = nodes[node_index]; |
| 577 | node.im = 0.0; |
| 578 | } |
| 579 | |
| 580 | generate_bending_constraints(2); |
| 581 | reoptimize_link_order(); |
| 582 | |
| 583 | update_constants(); |
| 584 | update_normals_and_centroids(); |
| 585 | update_bounds(); |
| 586 | |
| 587 | return true; |
| 588 | } |
| 589 | |
| 590 | void GodotSoftBody3D::generate_bending_constraints(int p_distance) { |
| 591 | uint32_t i, j; |
| 592 | |
| 593 | if (p_distance > 1) { |
| 594 | // Build graph. |
| 595 | const uint32_t n = nodes.size(); |
| 596 | const unsigned inf = (~(unsigned)0) >> 1; |
| 597 | const uint32_t adj_size = n * n; |
| 598 | unsigned *adj = memnew_arr(unsigned, adj_size); |
| 599 | |
| 600 | #define IDX(_x_, _y_) ((_y_)*n + (_x_)) |
| 601 | for (j = 0; j < n; ++j) { |
| 602 | for (i = 0; i < n; ++i) { |
| 603 | int idx_ij = j * n + i; |
| 604 | int idx_ji = i * n + j; |
| 605 | if (i != j) { |
| 606 | adj[idx_ij] = adj[idx_ji] = inf; |
| 607 | } else { |
| 608 | adj[idx_ij] = adj[idx_ji] = 0; |
| 609 | } |
| 610 | } |
| 611 | } |
| 612 | for (Link &link : links) { |
| 613 | const int ia = (int)(link.n[0] - &nodes[0]); |
| 614 | const int ib = (int)(link.n[1] - &nodes[0]); |
| 615 | int idx = ib * n + ia; |
| 616 | int idx_inv = ia * n + ib; |
| 617 | adj[idx] = 1; |
| 618 | adj[idx_inv] = 1; |
| 619 | } |
| 620 | |
| 621 | // Special optimized case for distance == 2. |
| 622 | if (p_distance == 2) { |
| 623 | LocalVector<LocalVector<int>> node_links; |
| 624 | |
| 625 | // Build node links. |
| 626 | node_links.resize(nodes.size()); |
| 627 | |
| 628 | for (Link &link : links) { |
| 629 | const int ia = (int)(link.n[0] - &nodes[0]); |
| 630 | const int ib = (int)(link.n[1] - &nodes[0]); |
| 631 | if (node_links[ia].find(ib) == -1) { |
| 632 | node_links[ia].push_back(ib); |
| 633 | } |
| 634 | |
| 635 | if (node_links[ib].find(ia) == -1) { |
| 636 | node_links[ib].push_back(ia); |
| 637 | } |
| 638 | } |
| 639 | for (uint32_t ii = 0; ii < node_links.size(); ii++) { |
| 640 | for (uint32_t jj = 0; jj < node_links[ii].size(); jj++) { |
| 641 | int k = node_links[ii][jj]; |
| 642 | for (const int &l : node_links[k]) { |
| 643 | if ((int)ii != l) { |
| 644 | int idx_ik = k * n + ii; |
| 645 | int idx_kj = l * n + k; |
| 646 | const unsigned sum = adj[idx_ik] + adj[idx_kj]; |
| 647 | ERR_FAIL_COND(sum != 2); |
| 648 | int idx_ij = l * n + ii; |
| 649 | if (adj[idx_ij] > sum) { |
| 650 | int idx_ji = l * n + ii; |
| 651 | adj[idx_ij] = adj[idx_ji] = sum; |
| 652 | } |
| 653 | } |
| 654 | } |
| 655 | } |
| 656 | } |
| 657 | } else { |
| 658 | // Generic Floyd's algorithm. |
| 659 | for (uint32_t k = 0; k < n; ++k) { |
| 660 | for (j = 0; j < n; ++j) { |
| 661 | for (i = j + 1; i < n; ++i) { |
| 662 | int idx_ik = k * n + i; |
| 663 | int idx_kj = j * n + k; |
| 664 | const unsigned sum = adj[idx_ik] + adj[idx_kj]; |
| 665 | int idx_ij = j * n + i; |
| 666 | if (adj[idx_ij] > sum) { |
| 667 | int idx_ji = j * n + i; |
| 668 | adj[idx_ij] = adj[idx_ji] = sum; |
| 669 | } |
| 670 | } |
| 671 | } |
| 672 | } |
| 673 | } |
| 674 | |
| 675 | // Build links. |
| 676 | for (j = 0; j < n; ++j) { |
| 677 | for (i = j + 1; i < n; ++i) { |
| 678 | int idx_ij = j * n + i; |
| 679 | if (adj[idx_ij] == (unsigned)p_distance) { |
| 680 | append_link(i, j); |
| 681 | } |
| 682 | } |
| 683 | } |
| 684 | memdelete_arr(adj); |
| 685 | } |
| 686 | } |
| 687 | |
| 688 | //=================================================================== |
| 689 | // |
| 690 | // |
| 691 | // This function takes in a list of interdependent Links and tries |
| 692 | // to maximize the distance between calculation |
| 693 | // of dependent links. This increases the amount of parallelism that can |
| 694 | // be exploited by out-of-order instruction processors with large but |
| 695 | // (inevitably) finite instruction windows. |
| 696 | // |
| 697 | //=================================================================== |
| 698 | |
| 699 | // A small structure to track lists of dependent link calculations. |
| 700 | class LinkDeps { |
| 701 | public: |
| 702 | // A link calculation that is dependent on this one. |
| 703 | // Positive values = "input A" while negative values = "input B". |
| 704 | int value; |
| 705 | // Next dependence in the list. |
| 706 | LinkDeps *next; |
| 707 | }; |
| 708 | typedef LinkDeps *LinkDepsPtr; |
| 709 | |
| 710 | void GodotSoftBody3D::reoptimize_link_order() { |
| 711 | const int reop_not_dependent = -1; |
| 712 | const int reop_node_complete = -2; |
| 713 | |
| 714 | uint32_t link_count = links.size(); |
| 715 | uint32_t node_count = nodes.size(); |
| 716 | |
| 717 | if (link_count < 1 || node_count < 2) { |
| 718 | return; |
| 719 | } |
| 720 | |
| 721 | uint32_t i; |
| 722 | Link *lr; |
| 723 | int ar, br; |
| 724 | Node *node0 = &(nodes[0]); |
| 725 | Node *node1 = &(nodes[1]); |
| 726 | LinkDepsPtr link_dep; |
| 727 | int ready_list_head, ready_list_tail, link_num, link_dep_frees, dep_link; |
| 728 | |
| 729 | // Allocate temporary buffers. |
| 730 | int *node_written_at = memnew_arr(int, node_count + 1); // What link calculation produced this node's current values? |
| 731 | int *link_dep_A = memnew_arr(int, link_count); // Link calculation input is dependent upon prior calculation #N |
| 732 | int *link_dep_B = memnew_arr(int, link_count); |
| 733 | int *ready_list = memnew_arr(int, link_count); // List of ready-to-process link calculations (# of links, maximum) |
| 734 | LinkDeps *link_dep_free_list = memnew_arr(LinkDeps, 2 * link_count); // Dependent-on-me list elements (2x# of links, maximum) |
| 735 | LinkDepsPtr *link_dep_list_starts = memnew_arr(LinkDepsPtr, link_count); // Start nodes of dependent-on-me lists, one for each link |
| 736 | |
| 737 | // Copy the original, unsorted links to a side buffer. |
| 738 | Link *link_buffer = memnew_arr(Link, link_count); |
| 739 | memcpy(link_buffer, &(links[0]), sizeof(Link) * link_count); |
| 740 | |
| 741 | // Clear out the node setup and ready list. |
| 742 | for (i = 0; i < node_count + 1; i++) { |
| 743 | node_written_at[i] = reop_not_dependent; |
| 744 | } |
| 745 | for (i = 0; i < link_count; i++) { |
| 746 | link_dep_list_starts[i] = nullptr; |
| 747 | } |
| 748 | ready_list_head = ready_list_tail = link_dep_frees = 0; |
| 749 | |
| 750 | // Initial link analysis to set up data structures. |
| 751 | for (i = 0; i < link_count; i++) { |
| 752 | // Note which prior link calculations we are dependent upon & build up dependence lists. |
| 753 | lr = &(links[i]); |
| 754 | ar = (lr->n[0] - node0) / (node1 - node0); |
| 755 | br = (lr->n[1] - node0) / (node1 - node0); |
| 756 | if (node_written_at[ar] > reop_not_dependent) { |
| 757 | link_dep_A[i] = node_written_at[ar]; |
| 758 | link_dep = &link_dep_free_list[link_dep_frees++]; |
| 759 | link_dep->value = i; |
| 760 | link_dep->next = link_dep_list_starts[node_written_at[ar]]; |
| 761 | link_dep_list_starts[node_written_at[ar]] = link_dep; |
| 762 | } else { |
| 763 | link_dep_A[i] = reop_not_dependent; |
| 764 | } |
| 765 | if (node_written_at[br] > reop_not_dependent) { |
| 766 | link_dep_B[i] = node_written_at[br]; |
| 767 | link_dep = &link_dep_free_list[link_dep_frees++]; |
| 768 | link_dep->value = -(int)(i + 1); |
| 769 | link_dep->next = link_dep_list_starts[node_written_at[br]]; |
| 770 | link_dep_list_starts[node_written_at[br]] = link_dep; |
| 771 | } else { |
| 772 | link_dep_B[i] = reop_not_dependent; |
| 773 | } |
| 774 | |
| 775 | // Add this link to the initial ready list, if it is not dependent on any other links. |
| 776 | if ((link_dep_A[i] == reop_not_dependent) && (link_dep_B[i] == reop_not_dependent)) { |
| 777 | ready_list[ready_list_tail++] = i; |
| 778 | link_dep_A[i] = link_dep_B[i] = reop_node_complete; // Probably not needed now. |
| 779 | } |
| 780 | |
| 781 | // Update the nodes to mark which ones are calculated by this link. |
| 782 | node_written_at[ar] = node_written_at[br] = i; |
| 783 | } |
| 784 | |
| 785 | // Process the ready list and create the sorted list of links: |
| 786 | // -- By treating the ready list as a queue, we maximize the distance between any |
| 787 | // inter-dependent node calculations. |
| 788 | // -- All other (non-related) nodes in the ready list will automatically be inserted |
| 789 | // in between each set of inter-dependent link calculations by this loop. |
| 790 | i = 0; |
| 791 | while (ready_list_head != ready_list_tail) { |
| 792 | // Use ready list to select the next link to process. |
| 793 | link_num = ready_list[ready_list_head++]; |
| 794 | // Copy the next-to-calculate link back into the original link array. |
| 795 | links[i++] = link_buffer[link_num]; |
| 796 | |
| 797 | // Free up any link inputs that are dependent on this one. |
| 798 | link_dep = link_dep_list_starts[link_num]; |
| 799 | while (link_dep) { |
| 800 | dep_link = link_dep->value; |
| 801 | if (dep_link >= 0) { |
| 802 | link_dep_A[dep_link] = reop_not_dependent; |
| 803 | } else { |
| 804 | dep_link = -dep_link - 1; |
| 805 | link_dep_B[dep_link] = reop_not_dependent; |
| 806 | } |
| 807 | // Add this dependent link calculation to the ready list if *both* inputs are clear. |
| 808 | if ((link_dep_A[dep_link] == reop_not_dependent) && (link_dep_B[dep_link] == reop_not_dependent)) { |
| 809 | ready_list[ready_list_tail++] = dep_link; |
| 810 | link_dep_A[dep_link] = link_dep_B[dep_link] = reop_node_complete; // Probably not needed now. |
| 811 | } |
| 812 | link_dep = link_dep->next; |
| 813 | } |
| 814 | } |
| 815 | |
| 816 | // Delete the temporary buffers. |
| 817 | memdelete_arr(node_written_at); |
| 818 | memdelete_arr(link_dep_A); |
| 819 | memdelete_arr(link_dep_B); |
| 820 | memdelete_arr(ready_list); |
| 821 | memdelete_arr(link_dep_free_list); |
| 822 | memdelete_arr(link_dep_list_starts); |
| 823 | memdelete_arr(link_buffer); |
| 824 | } |
| 825 | |
| 826 | void GodotSoftBody3D::append_link(uint32_t p_node1, uint32_t p_node2) { |
| 827 | if (p_node1 == p_node2) { |
| 828 | return; |
| 829 | } |
| 830 | |
| 831 | Node *node1 = &nodes[p_node1]; |
| 832 | Node *node2 = &nodes[p_node2]; |
| 833 | |
| 834 | Link link; |
| 835 | link.n[0] = node1; |
| 836 | link.n[1] = node2; |
| 837 | link.rl = (node1->x - node2->x).length(); |
| 838 | |
| 839 | links.push_back(link); |
| 840 | } |
| 841 | |
| 842 | void GodotSoftBody3D::append_face(uint32_t p_node1, uint32_t p_node2, uint32_t p_node3) { |
| 843 | if (p_node1 == p_node2) { |
| 844 | return; |
| 845 | } |
| 846 | if (p_node1 == p_node3) { |
| 847 | return; |
| 848 | } |
| 849 | if (p_node2 == p_node3) { |
| 850 | return; |
| 851 | } |
| 852 | |
| 853 | Node *node1 = &nodes[p_node1]; |
| 854 | Node *node2 = &nodes[p_node2]; |
| 855 | Node *node3 = &nodes[p_node3]; |
| 856 | |
| 857 | Face face; |
| 858 | face.n[0] = node1; |
| 859 | face.n[1] = node2; |
| 860 | face.n[2] = node3; |
| 861 | |
| 862 | face.index = faces.size(); |
| 863 | |
| 864 | faces.push_back(face); |
| 865 | } |
| 866 | |
| 867 | void GodotSoftBody3D::set_iteration_count(int p_val) { |
| 868 | iteration_count = p_val; |
| 869 | } |
| 870 | |
| 871 | void GodotSoftBody3D::set_total_mass(real_t p_val) { |
| 872 | ERR_FAIL_COND(p_val < 0.0); |
| 873 | |
| 874 | inv_total_mass = 1.0 / p_val; |
| 875 | real_t mass_factor = total_mass * inv_total_mass; |
| 876 | total_mass = p_val; |
| 877 | |
| 878 | uint32_t node_count = nodes.size(); |
| 879 | for (uint32_t node_index = 0; node_index < node_count; ++node_index) { |
| 880 | Node &node = nodes[node_index]; |
| 881 | node.im *= mass_factor; |
| 882 | } |
| 883 | |
| 884 | update_constants(); |
| 885 | } |
| 886 | |
| 887 | void GodotSoftBody3D::set_collision_margin(real_t p_val) { |
| 888 | collision_margin = p_val; |
| 889 | } |
| 890 | |
| 891 | void GodotSoftBody3D::set_linear_stiffness(real_t p_val) { |
| 892 | linear_stiffness = p_val; |
| 893 | } |
| 894 | |
| 895 | void GodotSoftBody3D::set_pressure_coefficient(real_t p_val) { |
| 896 | pressure_coefficient = p_val; |
| 897 | } |
| 898 | |
| 899 | void GodotSoftBody3D::set_damping_coefficient(real_t p_val) { |
| 900 | damping_coefficient = p_val; |
| 901 | } |
| 902 | |
| 903 | void GodotSoftBody3D::set_drag_coefficient(real_t p_val) { |
| 904 | drag_coefficient = p_val; |
| 905 | } |
| 906 | |
| 907 | void GodotSoftBody3D::add_velocity(const Vector3 &p_velocity) { |
| 908 | for (Node &node : nodes) { |
| 909 | if (node.im > 0) { |
| 910 | node.v += p_velocity; |
| 911 | } |
| 912 | } |
| 913 | } |
| 914 | |
| 915 | void GodotSoftBody3D::apply_forces(const LocalVector<GodotArea3D *> &p_wind_areas) { |
| 916 | if (nodes.is_empty()) { |
| 917 | return; |
| 918 | } |
| 919 | |
| 920 | int32_t j; |
| 921 | |
| 922 | real_t volume = 0.0; |
| 923 | const Vector3 &org = nodes[0].x; |
| 924 | |
| 925 | // Iterate over faces (try not to iterate elsewhere if possible). |
| 926 | for (const Face &face : faces) { |
| 927 | Vector3 wind_force(0, 0, 0); |
| 928 | |
| 929 | // Compute volume. |
| 930 | volume += vec3_dot(face.n[0]->x - org, vec3_cross(face.n[1]->x - org, face.n[2]->x - org)); |
| 931 | |
| 932 | // Compute nodal forces from area winds. |
| 933 | if (!p_wind_areas.is_empty()) { |
| 934 | for (const GodotArea3D *area : p_wind_areas) { |
| 935 | wind_force += _compute_area_windforce(area, &face); |
| 936 | } |
| 937 | |
| 938 | for (j = 0; j < 3; j++) { |
| 939 | Node *current_node = face.n[j]; |
| 940 | current_node->f += wind_force; |
| 941 | } |
| 942 | } |
| 943 | } |
| 944 | volume /= 6.0; |
| 945 | |
| 946 | // Apply nodal pressure forces. |
| 947 | if (pressure_coefficient > CMP_EPSILON) { |
| 948 | real_t ivolumetp = 1.0 / Math::abs(volume) * pressure_coefficient; |
| 949 | for (Node &node : nodes) { |
| 950 | if (node.im > 0) { |
| 951 | node.f += node.n * (node.area * ivolumetp); |
| 952 | } |
| 953 | } |
| 954 | } |
| 955 | } |
| 956 | |
| 957 | Vector3 GodotSoftBody3D::_compute_area_windforce(const GodotArea3D *p_area, const Face *p_face) { |
| 958 | real_t wfm = p_area->get_wind_force_magnitude(); |
| 959 | real_t waf = p_area->get_wind_attenuation_factor(); |
| 960 | const Vector3 &wd = p_area->get_wind_direction(); |
| 961 | const Vector3 &ws = p_area->get_wind_source(); |
| 962 | real_t projection_on_tri_normal = vec3_dot(p_face->normal, wd); |
| 963 | real_t projection_toward_centroid = vec3_dot(p_face->centroid - ws, wd); |
| 964 | real_t attenuation_over_distance = pow(projection_toward_centroid, -waf); |
| 965 | real_t nodal_force_magnitude = wfm * 0.33333333333 * p_face->ra * projection_on_tri_normal * attenuation_over_distance; |
| 966 | return nodal_force_magnitude * p_face->normal; |
| 967 | } |
| 968 | |
| 969 | void GodotSoftBody3D::predict_motion(real_t p_delta) { |
| 970 | const real_t inv_delta = 1.0 / p_delta; |
| 971 | |
| 972 | ERR_FAIL_COND(!get_space()); |
| 973 | |
| 974 | bool gravity_done = false; |
| 975 | Vector3 gravity; |
| 976 | |
| 977 | LocalVector<GodotArea3D *> wind_areas; |
| 978 | |
| 979 | int ac = areas.size(); |
| 980 | if (ac) { |
| 981 | areas.sort(); |
| 982 | const AreaCMP *aa = &areas[0]; |
| 983 | for (int i = ac - 1; i >= 0; i--) { |
| 984 | if (!gravity_done) { |
| 985 | PhysicsServer3D::AreaSpaceOverrideMode area_gravity_mode = (PhysicsServer3D::AreaSpaceOverrideMode)(int)aa[i].area->get_param(PhysicsServer3D::AREA_PARAM_GRAVITY_OVERRIDE_MODE); |
| 986 | if (area_gravity_mode != PhysicsServer3D::AREA_SPACE_OVERRIDE_DISABLED) { |
| 987 | Vector3 area_gravity; |
| 988 | aa[i].area->compute_gravity(get_transform().get_origin(), area_gravity); |
| 989 | switch (area_gravity_mode) { |
| 990 | case PhysicsServer3D::AREA_SPACE_OVERRIDE_COMBINE: |
| 991 | case PhysicsServer3D::AREA_SPACE_OVERRIDE_COMBINE_REPLACE: { |
| 992 | gravity += area_gravity; |
| 993 | gravity_done = area_gravity_mode == PhysicsServer3D::AREA_SPACE_OVERRIDE_COMBINE_REPLACE; |
| 994 | } break; |
| 995 | case PhysicsServer3D::AREA_SPACE_OVERRIDE_REPLACE: |
| 996 | case PhysicsServer3D::AREA_SPACE_OVERRIDE_REPLACE_COMBINE: { |
| 997 | gravity = area_gravity; |
| 998 | gravity_done = area_gravity_mode == PhysicsServer3D::AREA_SPACE_OVERRIDE_REPLACE; |
| 999 | } break; |
| 1000 | default: { |
| 1001 | } |
| 1002 | } |
| 1003 | } |
| 1004 | } |
| 1005 | |
| 1006 | if (aa[i].area->get_wind_force_magnitude() > CMP_EPSILON) { |
| 1007 | wind_areas.push_back(aa[i].area); |
| 1008 | } |
| 1009 | } |
| 1010 | } |
| 1011 | |
| 1012 | // Add default gravity and damping from space area. |
| 1013 | if (!gravity_done) { |
| 1014 | GodotArea3D *default_area = get_space()->get_default_area(); |
| 1015 | ERR_FAIL_COND(!default_area); |
| 1016 | |
| 1017 | Vector3 default_gravity; |
| 1018 | default_area->compute_gravity(get_transform().get_origin(), default_gravity); |
| 1019 | gravity += default_gravity; |
| 1020 | } |
| 1021 | |
| 1022 | // Apply forces. |
| 1023 | add_velocity(gravity * p_delta); |
| 1024 | if (pressure_coefficient > CMP_EPSILON || !wind_areas.is_empty()) { |
| 1025 | apply_forces(wind_areas); |
| 1026 | } |
| 1027 | |
| 1028 | // Avoid soft body from 'exploding' so use some upper threshold of maximum motion |
| 1029 | // that a node can travel per frame. |
| 1030 | const real_t max_displacement = 1000.0; |
| 1031 | real_t clamp_delta_v = max_displacement * inv_delta; |
| 1032 | |
| 1033 | // Integrate. |
| 1034 | for (Node &node : nodes) { |
| 1035 | node.q = node.x; |
| 1036 | Vector3 delta_v = node.f * node.im * p_delta; |
| 1037 | for (int c = 0; c < 3; c++) { |
| 1038 | delta_v[c] = CLAMP(delta_v[c], -clamp_delta_v, clamp_delta_v); |
| 1039 | } |
| 1040 | node.v += delta_v; |
| 1041 | node.x += node.v * p_delta; |
| 1042 | node.f = Vector3(); |
| 1043 | } |
| 1044 | |
| 1045 | // Bounds and tree update. |
| 1046 | update_bounds(); |
| 1047 | |
| 1048 | // Node tree update. |
| 1049 | for (const Node &node : nodes) { |
| 1050 | AABB node_aabb(node.x, Vector3()); |
| 1051 | node_aabb.expand_to(node.x + node.v * p_delta); |
| 1052 | node_aabb.grow_by(collision_margin); |
| 1053 | |
| 1054 | node_tree.update(node.leaf, node_aabb); |
| 1055 | } |
| 1056 | |
| 1057 | // Face tree update. |
| 1058 | if (!face_tree.is_empty()) { |
| 1059 | update_face_tree(p_delta); |
| 1060 | } |
| 1061 | |
| 1062 | // Optimize node tree. |
| 1063 | node_tree.optimize_incremental(1); |
| 1064 | face_tree.optimize_incremental(1); |
| 1065 | } |
| 1066 | |
| 1067 | void GodotSoftBody3D::solve_constraints(real_t p_delta) { |
| 1068 | const real_t inv_delta = 1.0 / p_delta; |
| 1069 | |
| 1070 | for (Link &link : links) { |
| 1071 | link.c3 = link.n[1]->q - link.n[0]->q; |
| 1072 | link.c2 = 1 / (link.c3.length_squared() * link.c0); |
| 1073 | } |
| 1074 | |
| 1075 | // Solve velocities. |
| 1076 | for (Node &node : nodes) { |
| 1077 | node.x = node.q + node.v * p_delta; |
| 1078 | } |
| 1079 | |
| 1080 | // Solve positions. |
| 1081 | for (int isolve = 0; isolve < iteration_count; ++isolve) { |
| 1082 | const real_t ti = isolve / (real_t)iteration_count; |
| 1083 | solve_links(1.0, ti); |
| 1084 | } |
| 1085 | const real_t vc = (1.0 - damping_coefficient) * inv_delta; |
| 1086 | for (Node &node : nodes) { |
| 1087 | node.x += node.bv * p_delta; |
| 1088 | node.bv = Vector3(); |
| 1089 | |
| 1090 | node.v = (node.x - node.q) * vc; |
| 1091 | |
| 1092 | node.q = node.x; |
| 1093 | } |
| 1094 | |
| 1095 | update_normals_and_centroids(); |
| 1096 | } |
| 1097 | |
| 1098 | void GodotSoftBody3D::solve_links(real_t kst, real_t ti) { |
| 1099 | for (Link &link : links) { |
| 1100 | if (link.c0 > 0) { |
| 1101 | Node &node_a = *link.n[0]; |
| 1102 | Node &node_b = *link.n[1]; |
| 1103 | const Vector3 del = node_b.x - node_a.x; |
| 1104 | const real_t len = del.length_squared(); |
| 1105 | if (link.c1 + len > CMP_EPSILON) { |
| 1106 | const real_t k = ((link.c1 - len) / (link.c0 * (link.c1 + len))) * kst; |
| 1107 | node_a.x -= del * (k * node_a.im); |
| 1108 | node_b.x += del * (k * node_b.im); |
| 1109 | } |
| 1110 | } |
| 1111 | } |
| 1112 | } |
| 1113 | |
| 1114 | struct AABBQueryResult { |
| 1115 | const GodotSoftBody3D *soft_body = nullptr; |
| 1116 | void *userdata = nullptr; |
| 1117 | GodotSoftBody3D::QueryResultCallback result_callback = nullptr; |
| 1118 | |
| 1119 | _FORCE_INLINE_ bool operator()(void *p_data) { |
| 1120 | return result_callback(soft_body->get_node_index(p_data), userdata); |
| 1121 | }; |
| 1122 | }; |
| 1123 | |
| 1124 | void GodotSoftBody3D::query_aabb(const AABB &p_aabb, GodotSoftBody3D::QueryResultCallback p_result_callback, void *p_userdata) { |
| 1125 | AABBQueryResult query_result; |
| 1126 | query_result.soft_body = this; |
| 1127 | query_result.result_callback = p_result_callback; |
| 1128 | query_result.userdata = p_userdata; |
| 1129 | |
| 1130 | node_tree.aabb_query(p_aabb, query_result); |
| 1131 | } |
| 1132 | |
| 1133 | struct RayQueryResult { |
| 1134 | const GodotSoftBody3D *soft_body = nullptr; |
| 1135 | void *userdata = nullptr; |
| 1136 | GodotSoftBody3D::QueryResultCallback result_callback = nullptr; |
| 1137 | |
| 1138 | _FORCE_INLINE_ bool operator()(void *p_data) { |
| 1139 | return result_callback(soft_body->get_face_index(p_data), userdata); |
| 1140 | }; |
| 1141 | }; |
| 1142 | |
| 1143 | void GodotSoftBody3D::query_ray(const Vector3 &p_from, const Vector3 &p_to, GodotSoftBody3D::QueryResultCallback p_result_callback, void *p_userdata) { |
| 1144 | if (face_tree.is_empty()) { |
| 1145 | initialize_face_tree(); |
| 1146 | } |
| 1147 | |
| 1148 | RayQueryResult query_result; |
| 1149 | query_result.soft_body = this; |
| 1150 | query_result.result_callback = p_result_callback; |
| 1151 | query_result.userdata = p_userdata; |
| 1152 | |
| 1153 | face_tree.ray_query(p_from, p_to, query_result); |
| 1154 | } |
| 1155 | |
| 1156 | void GodotSoftBody3D::initialize_face_tree() { |
| 1157 | face_tree.clear(); |
| 1158 | for (Face &face : faces) { |
| 1159 | AABB face_aabb; |
| 1160 | |
| 1161 | face_aabb.position = face.n[0]->x; |
| 1162 | face_aabb.expand_to(face.n[1]->x); |
| 1163 | face_aabb.expand_to(face.n[2]->x); |
| 1164 | |
| 1165 | face_aabb.grow_by(collision_margin); |
| 1166 | |
| 1167 | face.leaf = face_tree.insert(face_aabb, &face); |
| 1168 | } |
| 1169 | } |
| 1170 | |
| 1171 | void GodotSoftBody3D::update_face_tree(real_t p_delta) { |
| 1172 | for (const Face &face : faces) { |
| 1173 | AABB face_aabb; |
| 1174 | |
| 1175 | const Node *node0 = face.n[0]; |
| 1176 | face_aabb.position = node0->x; |
| 1177 | face_aabb.expand_to(node0->x + node0->v * p_delta); |
| 1178 | |
| 1179 | const Node *node1 = face.n[1]; |
| 1180 | face_aabb.expand_to(node1->x); |
| 1181 | face_aabb.expand_to(node1->x + node1->v * p_delta); |
| 1182 | |
| 1183 | const Node *node2 = face.n[2]; |
| 1184 | face_aabb.expand_to(node2->x); |
| 1185 | face_aabb.expand_to(node2->x + node2->v * p_delta); |
| 1186 | |
| 1187 | face_aabb.grow_by(collision_margin); |
| 1188 | |
| 1189 | face_tree.update(face.leaf, face_aabb); |
| 1190 | } |
| 1191 | } |
| 1192 | |
| 1193 | void GodotSoftBody3D::initialize_shape(bool p_force_move) { |
| 1194 | if (get_shape_count() == 0) { |
| 1195 | GodotSoftBodyShape3D *soft_body_shape = memnew(GodotSoftBodyShape3D(this)); |
| 1196 | add_shape(soft_body_shape); |
| 1197 | } else if (p_force_move) { |
| 1198 | GodotSoftBodyShape3D *soft_body_shape = static_cast<GodotSoftBodyShape3D *>(get_shape(0)); |
| 1199 | soft_body_shape->update_bounds(); |
| 1200 | } |
| 1201 | } |
| 1202 | |
| 1203 | void GodotSoftBody3D::deinitialize_shape() { |
| 1204 | if (get_shape_count() > 0) { |
| 1205 | GodotShape3D *shape = get_shape(0); |
| 1206 | remove_shape(shape); |
| 1207 | memdelete(shape); |
| 1208 | } |
| 1209 | } |
| 1210 | |
| 1211 | void GodotSoftBody3D::destroy() { |
| 1212 | soft_mesh = RID(); |
| 1213 | |
| 1214 | map_visual_to_physics.clear(); |
| 1215 | |
| 1216 | node_tree.clear(); |
| 1217 | face_tree.clear(); |
| 1218 | |
| 1219 | nodes.clear(); |
| 1220 | links.clear(); |
| 1221 | faces.clear(); |
| 1222 | |
| 1223 | bounds = AABB(); |
| 1224 | deinitialize_shape(); |
| 1225 | } |
| 1226 | |
| 1227 | void GodotSoftBodyShape3D::update_bounds() { |
| 1228 | ERR_FAIL_COND(!soft_body); |
| 1229 | |
| 1230 | AABB collision_aabb = soft_body->get_bounds(); |
| 1231 | collision_aabb.grow_by(soft_body->get_collision_margin()); |
| 1232 | configure(collision_aabb); |
| 1233 | } |
| 1234 | |
| 1235 | GodotSoftBodyShape3D::GodotSoftBodyShape3D(GodotSoftBody3D *p_soft_body) { |
| 1236 | soft_body = p_soft_body; |
| 1237 | update_bounds(); |
| 1238 | } |
| 1239 | |
| 1240 | struct _SoftBodyIntersectSegmentInfo { |
| 1241 | const GodotSoftBody3D *soft_body = nullptr; |
| 1242 | Vector3 from; |
| 1243 | Vector3 dir; |
| 1244 | Vector3 hit_position; |
| 1245 | uint32_t hit_face_index = -1; |
| 1246 | real_t hit_dist_sq = INFINITY; |
| 1247 | |
| 1248 | static bool process_hit(uint32_t p_face_index, void *p_userdata) { |
| 1249 | _SoftBodyIntersectSegmentInfo &query_info = *(static_cast<_SoftBodyIntersectSegmentInfo *>(p_userdata)); |
| 1250 | |
| 1251 | Vector3 points[3]; |
| 1252 | query_info.soft_body->get_face_points(p_face_index, points[0], points[1], points[2]); |
| 1253 | |
| 1254 | Vector3 result; |
| 1255 | if (Geometry3D::ray_intersects_triangle(query_info.from, query_info.dir, points[0], points[1], points[2], &result)) { |
| 1256 | real_t dist_sq = query_info.from.distance_squared_to(result); |
| 1257 | if (dist_sq < query_info.hit_dist_sq) { |
| 1258 | query_info.hit_dist_sq = dist_sq; |
| 1259 | query_info.hit_position = result; |
| 1260 | query_info.hit_face_index = p_face_index; |
| 1261 | } |
| 1262 | } |
| 1263 | |
| 1264 | // Continue with the query. |
| 1265 | return false; |
| 1266 | } |
| 1267 | }; |
| 1268 | |
| 1269 | bool GodotSoftBodyShape3D::intersect_segment(const Vector3 &p_begin, const Vector3 &p_end, Vector3 &r_result, Vector3 &r_normal, int &r_face_index, bool p_hit_back_faces) const { |
| 1270 | _SoftBodyIntersectSegmentInfo query_info; |
| 1271 | query_info.soft_body = soft_body; |
| 1272 | query_info.from = p_begin; |
| 1273 | query_info.dir = (p_end - p_begin).normalized(); |
| 1274 | |
| 1275 | soft_body->query_ray(p_begin, p_end, _SoftBodyIntersectSegmentInfo::process_hit, &query_info); |
| 1276 | |
| 1277 | if (query_info.hit_dist_sq != INFINITY) { |
| 1278 | r_result = query_info.hit_position; |
| 1279 | r_normal = soft_body->get_face_normal(query_info.hit_face_index); |
| 1280 | return true; |
| 1281 | } |
| 1282 | |
| 1283 | return false; |
| 1284 | } |
| 1285 | |
| 1286 | bool GodotSoftBodyShape3D::intersect_point(const Vector3 &p_point) const { |
| 1287 | return false; |
| 1288 | } |
| 1289 | |
| 1290 | Vector3 GodotSoftBodyShape3D::get_closest_point_to(const Vector3 &p_point) const { |
| 1291 | ERR_FAIL_V_MSG(Vector3(), "Get closest point is not supported for soft bodies." ); |
| 1292 | } |
| 1293 | |