1/*
2 * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "classfile/systemDictionary.hpp"
27#include "gc/shared/barrierSet.hpp"
28#include "gc/shared/c2/barrierSetC2.hpp"
29#include "memory/allocation.inline.hpp"
30#include "memory/resourceArea.hpp"
31#include "oops/objArrayKlass.hpp"
32#include "opto/addnode.hpp"
33#include "opto/castnode.hpp"
34#include "opto/cfgnode.hpp"
35#include "opto/connode.hpp"
36#include "opto/convertnode.hpp"
37#include "opto/loopnode.hpp"
38#include "opto/machnode.hpp"
39#include "opto/movenode.hpp"
40#include "opto/narrowptrnode.hpp"
41#include "opto/mulnode.hpp"
42#include "opto/phaseX.hpp"
43#include "opto/regmask.hpp"
44#include "opto/runtime.hpp"
45#include "opto/subnode.hpp"
46#include "utilities/vmError.hpp"
47
48// Portions of code courtesy of Clifford Click
49
50// Optimization - Graph Style
51
52//=============================================================================
53//------------------------------Value------------------------------------------
54// Compute the type of the RegionNode.
55const Type* RegionNode::Value(PhaseGVN* phase) const {
56 for( uint i=1; i<req(); ++i ) { // For all paths in
57 Node *n = in(i); // Get Control source
58 if( !n ) continue; // Missing inputs are TOP
59 if( phase->type(n) == Type::CONTROL )
60 return Type::CONTROL;
61 }
62 return Type::TOP; // All paths dead? Then so are we
63}
64
65//------------------------------Identity---------------------------------------
66// Check for Region being Identity.
67Node* RegionNode::Identity(PhaseGVN* phase) {
68 // Cannot have Region be an identity, even if it has only 1 input.
69 // Phi users cannot have their Region input folded away for them,
70 // since they need to select the proper data input
71 return this;
72}
73
74//------------------------------merge_region-----------------------------------
75// If a Region flows into a Region, merge into one big happy merge. This is
76// hard to do if there is stuff that has to happen
77static Node *merge_region(RegionNode *region, PhaseGVN *phase) {
78 if( region->Opcode() != Op_Region ) // Do not do to LoopNodes
79 return NULL;
80 Node *progress = NULL; // Progress flag
81 PhaseIterGVN *igvn = phase->is_IterGVN();
82
83 uint rreq = region->req();
84 for( uint i = 1; i < rreq; i++ ) {
85 Node *r = region->in(i);
86 if( r && r->Opcode() == Op_Region && // Found a region?
87 r->in(0) == r && // Not already collapsed?
88 r != region && // Avoid stupid situations
89 r->outcnt() == 2 ) { // Self user and 'region' user only?
90 assert(!r->as_Region()->has_phi(), "no phi users");
91 if( !progress ) { // No progress
92 if (region->has_phi()) {
93 return NULL; // Only flatten if no Phi users
94 // igvn->hash_delete( phi );
95 }
96 igvn->hash_delete( region );
97 progress = region; // Making progress
98 }
99 igvn->hash_delete( r );
100
101 // Append inputs to 'r' onto 'region'
102 for( uint j = 1; j < r->req(); j++ ) {
103 // Move an input from 'r' to 'region'
104 region->add_req(r->in(j));
105 r->set_req(j, phase->C->top());
106 // Update phis of 'region'
107 //for( uint k = 0; k < max; k++ ) {
108 // Node *phi = region->out(k);
109 // if( phi->is_Phi() ) {
110 // phi->add_req(phi->in(i));
111 // }
112 //}
113
114 rreq++; // One more input to Region
115 } // Found a region to merge into Region
116 igvn->_worklist.push(r);
117 // Clobber pointer to the now dead 'r'
118 region->set_req(i, phase->C->top());
119 }
120 }
121
122 return progress;
123}
124
125
126
127//--------------------------------has_phi--------------------------------------
128// Helper function: Return any PhiNode that uses this region or NULL
129PhiNode* RegionNode::has_phi() const {
130 for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
131 Node* phi = fast_out(i);
132 if (phi->is_Phi()) { // Check for Phi users
133 assert(phi->in(0) == (Node*)this, "phi uses region only via in(0)");
134 return phi->as_Phi(); // this one is good enough
135 }
136 }
137
138 return NULL;
139}
140
141
142//-----------------------------has_unique_phi----------------------------------
143// Helper function: Return the only PhiNode that uses this region or NULL
144PhiNode* RegionNode::has_unique_phi() const {
145 // Check that only one use is a Phi
146 PhiNode* only_phi = NULL;
147 for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
148 Node* phi = fast_out(i);
149 if (phi->is_Phi()) { // Check for Phi users
150 assert(phi->in(0) == (Node*)this, "phi uses region only via in(0)");
151 if (only_phi == NULL) {
152 only_phi = phi->as_Phi();
153 } else {
154 return NULL; // multiple phis
155 }
156 }
157 }
158
159 return only_phi;
160}
161
162
163//------------------------------check_phi_clipping-----------------------------
164// Helper function for RegionNode's identification of FP clipping
165// Check inputs to the Phi
166static bool check_phi_clipping( PhiNode *phi, ConNode * &min, uint &min_idx, ConNode * &max, uint &max_idx, Node * &val, uint &val_idx ) {
167 min = NULL;
168 max = NULL;
169 val = NULL;
170 min_idx = 0;
171 max_idx = 0;
172 val_idx = 0;
173 uint phi_max = phi->req();
174 if( phi_max == 4 ) {
175 for( uint j = 1; j < phi_max; ++j ) {
176 Node *n = phi->in(j);
177 int opcode = n->Opcode();
178 switch( opcode ) {
179 case Op_ConI:
180 {
181 if( min == NULL ) {
182 min = n->Opcode() == Op_ConI ? (ConNode*)n : NULL;
183 min_idx = j;
184 } else {
185 max = n->Opcode() == Op_ConI ? (ConNode*)n : NULL;
186 max_idx = j;
187 if( min->get_int() > max->get_int() ) {
188 // Swap min and max
189 ConNode *temp;
190 uint temp_idx;
191 temp = min; min = max; max = temp;
192 temp_idx = min_idx; min_idx = max_idx; max_idx = temp_idx;
193 }
194 }
195 }
196 break;
197 default:
198 {
199 val = n;
200 val_idx = j;
201 }
202 break;
203 }
204 }
205 }
206 return ( min && max && val && (min->get_int() <= 0) && (max->get_int() >=0) );
207}
208
209
210//------------------------------check_if_clipping------------------------------
211// Helper function for RegionNode's identification of FP clipping
212// Check that inputs to Region come from two IfNodes,
213//
214// If
215// False True
216// If |
217// False True |
218// | | |
219// RegionNode_inputs
220//
221static bool check_if_clipping( const RegionNode *region, IfNode * &bot_if, IfNode * &top_if ) {
222 top_if = NULL;
223 bot_if = NULL;
224
225 // Check control structure above RegionNode for (if ( if ) )
226 Node *in1 = region->in(1);
227 Node *in2 = region->in(2);
228 Node *in3 = region->in(3);
229 // Check that all inputs are projections
230 if( in1->is_Proj() && in2->is_Proj() && in3->is_Proj() ) {
231 Node *in10 = in1->in(0);
232 Node *in20 = in2->in(0);
233 Node *in30 = in3->in(0);
234 // Check that #1 and #2 are ifTrue and ifFalse from same If
235 if( in10 != NULL && in10->is_If() &&
236 in20 != NULL && in20->is_If() &&
237 in30 != NULL && in30->is_If() && in10 == in20 &&
238 (in1->Opcode() != in2->Opcode()) ) {
239 Node *in100 = in10->in(0);
240 Node *in1000 = (in100 != NULL && in100->is_Proj()) ? in100->in(0) : NULL;
241 // Check that control for in10 comes from other branch of IF from in3
242 if( in1000 != NULL && in1000->is_If() &&
243 in30 == in1000 && (in3->Opcode() != in100->Opcode()) ) {
244 // Control pattern checks
245 top_if = (IfNode*)in1000;
246 bot_if = (IfNode*)in10;
247 }
248 }
249 }
250
251 return (top_if != NULL);
252}
253
254
255//------------------------------check_convf2i_clipping-------------------------
256// Helper function for RegionNode's identification of FP clipping
257// Verify that the value input to the phi comes from "ConvF2I; LShift; RShift"
258static bool check_convf2i_clipping( PhiNode *phi, uint idx, ConvF2INode * &convf2i, Node *min, Node *max) {
259 convf2i = NULL;
260
261 // Check for the RShiftNode
262 Node *rshift = phi->in(idx);
263 assert( rshift, "Previous checks ensure phi input is present");
264 if( rshift->Opcode() != Op_RShiftI ) { return false; }
265
266 // Check for the LShiftNode
267 Node *lshift = rshift->in(1);
268 assert( lshift, "Previous checks ensure phi input is present");
269 if( lshift->Opcode() != Op_LShiftI ) { return false; }
270
271 // Check for the ConvF2INode
272 Node *conv = lshift->in(1);
273 if( conv->Opcode() != Op_ConvF2I ) { return false; }
274
275 // Check that shift amounts are only to get sign bits set after F2I
276 jint max_cutoff = max->get_int();
277 jint min_cutoff = min->get_int();
278 jint left_shift = lshift->in(2)->get_int();
279 jint right_shift = rshift->in(2)->get_int();
280 jint max_post_shift = nth_bit(BitsPerJavaInteger - left_shift - 1);
281 if( left_shift != right_shift ||
282 0 > left_shift || left_shift >= BitsPerJavaInteger ||
283 max_post_shift < max_cutoff ||
284 max_post_shift < -min_cutoff ) {
285 // Shifts are necessary but current transformation eliminates them
286 return false;
287 }
288
289 // OK to return the result of ConvF2I without shifting
290 convf2i = (ConvF2INode*)conv;
291 return true;
292}
293
294
295//------------------------------check_compare_clipping-------------------------
296// Helper function for RegionNode's identification of FP clipping
297static bool check_compare_clipping( bool less_than, IfNode *iff, ConNode *limit, Node * & input ) {
298 Node *i1 = iff->in(1);
299 if ( !i1->is_Bool() ) { return false; }
300 BoolNode *bool1 = i1->as_Bool();
301 if( less_than && bool1->_test._test != BoolTest::le ) { return false; }
302 else if( !less_than && bool1->_test._test != BoolTest::lt ) { return false; }
303 const Node *cmpF = bool1->in(1);
304 if( cmpF->Opcode() != Op_CmpF ) { return false; }
305 // Test that the float value being compared against
306 // is equivalent to the int value used as a limit
307 Node *nodef = cmpF->in(2);
308 if( nodef->Opcode() != Op_ConF ) { return false; }
309 jfloat conf = nodef->getf();
310 jint coni = limit->get_int();
311 if( ((int)conf) != coni ) { return false; }
312 input = cmpF->in(1);
313 return true;
314}
315
316//------------------------------is_unreachable_region--------------------------
317// Find if the Region node is reachable from the root.
318bool RegionNode::is_unreachable_region(PhaseGVN *phase) const {
319 assert(req() == 2, "");
320
321 // First, cut the simple case of fallthrough region when NONE of
322 // region's phis references itself directly or through a data node.
323 uint max = outcnt();
324 uint i;
325 for (i = 0; i < max; i++) {
326 Node* phi = raw_out(i);
327 if (phi != NULL && phi->is_Phi()) {
328 assert(phase->eqv(phi->in(0), this) && phi->req() == 2, "");
329 if (phi->outcnt() == 0)
330 continue; // Safe case - no loops
331 if (phi->outcnt() == 1) {
332 Node* u = phi->raw_out(0);
333 // Skip if only one use is an other Phi or Call or Uncommon trap.
334 // It is safe to consider this case as fallthrough.
335 if (u != NULL && (u->is_Phi() || u->is_CFG()))
336 continue;
337 }
338 // Check when phi references itself directly or through an other node.
339 if (phi->as_Phi()->simple_data_loop_check(phi->in(1)) >= PhiNode::Unsafe)
340 break; // Found possible unsafe data loop.
341 }
342 }
343 if (i >= max)
344 return false; // An unsafe case was NOT found - don't need graph walk.
345
346 // Unsafe case - check if the Region node is reachable from root.
347 ResourceMark rm;
348
349 Arena *a = Thread::current()->resource_area();
350 Node_List nstack(a);
351 VectorSet visited(a);
352
353 // Mark all control nodes reachable from root outputs
354 Node *n = (Node*)phase->C->root();
355 nstack.push(n);
356 visited.set(n->_idx);
357 while (nstack.size() != 0) {
358 n = nstack.pop();
359 uint max = n->outcnt();
360 for (uint i = 0; i < max; i++) {
361 Node* m = n->raw_out(i);
362 if (m != NULL && m->is_CFG()) {
363 if (phase->eqv(m, this)) {
364 return false; // We reached the Region node - it is not dead.
365 }
366 if (!visited.test_set(m->_idx))
367 nstack.push(m);
368 }
369 }
370 }
371
372 return true; // The Region node is unreachable - it is dead.
373}
374
375bool RegionNode::try_clean_mem_phi(PhaseGVN *phase) {
376 // Incremental inlining + PhaseStringOpts sometimes produce:
377 //
378 // cmpP with 1 top input
379 // |
380 // If
381 // / \
382 // IfFalse IfTrue /- Some Node
383 // \ / / /
384 // Region / /-MergeMem
385 // \---Phi
386 //
387 //
388 // It's expected by PhaseStringOpts that the Region goes away and is
389 // replaced by If's control input but because there's still a Phi,
390 // the Region stays in the graph. The top input from the cmpP is
391 // propagated forward and a subgraph that is useful goes away. The
392 // code below replaces the Phi with the MergeMem so that the Region
393 // is simplified.
394
395 PhiNode* phi = has_unique_phi();
396 if (phi && phi->type() == Type::MEMORY && req() == 3 && phi->is_diamond_phi(true)) {
397 MergeMemNode* m = NULL;
398 assert(phi->req() == 3, "same as region");
399 for (uint i = 1; i < 3; ++i) {
400 Node *mem = phi->in(i);
401 if (mem && mem->is_MergeMem() && in(i)->outcnt() == 1) {
402 // Nothing is control-dependent on path #i except the region itself.
403 m = mem->as_MergeMem();
404 uint j = 3 - i;
405 Node* other = phi->in(j);
406 if (other && other == m->base_memory()) {
407 // m is a successor memory to other, and is not pinned inside the diamond, so push it out.
408 // This will allow the diamond to collapse completely.
409 phase->is_IterGVN()->replace_node(phi, m);
410 return true;
411 }
412 }
413 }
414 }
415 return false;
416}
417
418//------------------------------Ideal------------------------------------------
419// Return a node which is more "ideal" than the current node. Must preserve
420// the CFG, but we can still strip out dead paths.
421Node *RegionNode::Ideal(PhaseGVN *phase, bool can_reshape) {
422 if( !can_reshape && !in(0) ) return NULL; // Already degraded to a Copy
423 assert(!in(0) || !in(0)->is_Root(), "not a specially hidden merge");
424
425 // Check for RegionNode with no Phi users and both inputs come from either
426 // arm of the same IF. If found, then the control-flow split is useless.
427 bool has_phis = false;
428 if (can_reshape) { // Need DU info to check for Phi users
429 has_phis = (has_phi() != NULL); // Cache result
430 if (has_phis && try_clean_mem_phi(phase)) {
431 has_phis = false;
432 }
433
434 if (!has_phis) { // No Phi users? Nothing merging?
435 for (uint i = 1; i < req()-1; i++) {
436 Node *if1 = in(i);
437 if( !if1 ) continue;
438 Node *iff = if1->in(0);
439 if( !iff || !iff->is_If() ) continue;
440 for( uint j=i+1; j<req(); j++ ) {
441 if( in(j) && in(j)->in(0) == iff &&
442 if1->Opcode() != in(j)->Opcode() ) {
443 // Add the IF Projections to the worklist. They (and the IF itself)
444 // will be eliminated if dead.
445 phase->is_IterGVN()->add_users_to_worklist(iff);
446 set_req(i, iff->in(0));// Skip around the useless IF diamond
447 set_req(j, NULL);
448 return this; // Record progress
449 }
450 }
451 }
452 }
453 }
454
455 // Remove TOP or NULL input paths. If only 1 input path remains, this Region
456 // degrades to a copy.
457 bool add_to_worklist = false;
458 bool modified = false;
459 int cnt = 0; // Count of values merging
460 DEBUG_ONLY( int cnt_orig = req(); ) // Save original inputs count
461 int del_it = 0; // The last input path we delete
462 // For all inputs...
463 for( uint i=1; i<req(); ++i ){// For all paths in
464 Node *n = in(i); // Get the input
465 if( n != NULL ) {
466 // Remove useless control copy inputs
467 if( n->is_Region() && n->as_Region()->is_copy() ) {
468 set_req(i, n->nonnull_req());
469 modified = true;
470 i--;
471 continue;
472 }
473 if( n->is_Proj() ) { // Remove useless rethrows
474 Node *call = n->in(0);
475 if (call->is_Call() && call->as_Call()->entry_point() == OptoRuntime::rethrow_stub()) {
476 set_req(i, call->in(0));
477 modified = true;
478 i--;
479 continue;
480 }
481 }
482 if( phase->type(n) == Type::TOP ) {
483 set_req(i, NULL); // Ignore TOP inputs
484 modified = true;
485 i--;
486 continue;
487 }
488 cnt++; // One more value merging
489
490 } else if (can_reshape) { // Else found dead path with DU info
491 PhaseIterGVN *igvn = phase->is_IterGVN();
492 del_req(i); // Yank path from self
493 del_it = i;
494 uint max = outcnt();
495 DUIterator j;
496 bool progress = true;
497 while(progress) { // Need to establish property over all users
498 progress = false;
499 for (j = outs(); has_out(j); j++) {
500 Node *n = out(j);
501 if( n->req() != req() && n->is_Phi() ) {
502 assert( n->in(0) == this, "" );
503 igvn->hash_delete(n); // Yank from hash before hacking edges
504 n->set_req_X(i,NULL,igvn);// Correct DU info
505 n->del_req(i); // Yank path from Phis
506 if( max != outcnt() ) {
507 progress = true;
508 j = refresh_out_pos(j);
509 max = outcnt();
510 }
511 }
512 }
513 }
514 add_to_worklist = true;
515 i--;
516 }
517 }
518
519 if (can_reshape && cnt == 1) {
520 // Is it dead loop?
521 // If it is LoopNopde it had 2 (+1 itself) inputs and
522 // one of them was cut. The loop is dead if it was EntryContol.
523 // Loop node may have only one input because entry path
524 // is removed in PhaseIdealLoop::Dominators().
525 assert(!this->is_Loop() || cnt_orig <= 3, "Loop node should have 3 or less inputs");
526 if ((this->is_Loop() && (del_it == LoopNode::EntryControl ||
527 (del_it == 0 && is_unreachable_region(phase)))) ||
528 (!this->is_Loop() && has_phis && is_unreachable_region(phase))) {
529 // Yes, the region will be removed during the next step below.
530 // Cut the backedge input and remove phis since no data paths left.
531 // We don't cut outputs to other nodes here since we need to put them
532 // on the worklist.
533 PhaseIterGVN *igvn = phase->is_IterGVN();
534 if (in(1)->outcnt() == 1) {
535 igvn->_worklist.push(in(1));
536 }
537 del_req(1);
538 cnt = 0;
539 assert( req() == 1, "no more inputs expected" );
540 uint max = outcnt();
541 bool progress = true;
542 Node *top = phase->C->top();
543 DUIterator j;
544 while(progress) {
545 progress = false;
546 for (j = outs(); has_out(j); j++) {
547 Node *n = out(j);
548 if( n->is_Phi() ) {
549 assert( igvn->eqv(n->in(0), this), "" );
550 assert( n->req() == 2 && n->in(1) != NULL, "Only one data input expected" );
551 // Break dead loop data path.
552 // Eagerly replace phis with top to avoid phis copies generation.
553 igvn->replace_node(n, top);
554 if( max != outcnt() ) {
555 progress = true;
556 j = refresh_out_pos(j);
557 max = outcnt();
558 }
559 }
560 }
561 }
562 add_to_worklist = true;
563 }
564 }
565 if (add_to_worklist) {
566 phase->is_IterGVN()->add_users_to_worklist(this); // Revisit collapsed Phis
567 }
568
569 if( cnt <= 1 ) { // Only 1 path in?
570 set_req(0, NULL); // Null control input for region copy
571 if( cnt == 0 && !can_reshape) { // Parse phase - leave the node as it is.
572 // No inputs or all inputs are NULL.
573 return NULL;
574 } else if (can_reshape) { // Optimization phase - remove the node
575 PhaseIterGVN *igvn = phase->is_IterGVN();
576 // Strip mined (inner) loop is going away, remove outer loop.
577 if (is_CountedLoop() &&
578 as_Loop()->is_strip_mined()) {
579 Node* outer_sfpt = as_CountedLoop()->outer_safepoint();
580 Node* outer_out = as_CountedLoop()->outer_loop_exit();
581 if (outer_sfpt != NULL && outer_out != NULL) {
582 Node* in = outer_sfpt->in(0);
583 igvn->replace_node(outer_out, in);
584 LoopNode* outer = as_CountedLoop()->outer_loop();
585 igvn->replace_input_of(outer, LoopNode::LoopBackControl, igvn->C->top());
586 }
587 }
588 Node *parent_ctrl;
589 if( cnt == 0 ) {
590 assert( req() == 1, "no inputs expected" );
591 // During IGVN phase such region will be subsumed by TOP node
592 // so region's phis will have TOP as control node.
593 // Kill phis here to avoid it. PhiNode::is_copy() will be always false.
594 // Also set other user's input to top.
595 parent_ctrl = phase->C->top();
596 } else {
597 // The fallthrough case since we already checked dead loops above.
598 parent_ctrl = in(1);
599 assert(parent_ctrl != NULL, "Region is a copy of some non-null control");
600 assert(!igvn->eqv(parent_ctrl, this), "Close dead loop");
601 }
602 if (!add_to_worklist)
603 igvn->add_users_to_worklist(this); // Check for further allowed opts
604 for (DUIterator_Last imin, i = last_outs(imin); i >= imin; --i) {
605 Node* n = last_out(i);
606 igvn->hash_delete(n); // Remove from worklist before modifying edges
607 if( n->is_Phi() ) { // Collapse all Phis
608 // Eagerly replace phis to avoid copies generation.
609 Node* in;
610 if( cnt == 0 ) {
611 assert( n->req() == 1, "No data inputs expected" );
612 in = parent_ctrl; // replaced by top
613 } else {
614 assert( n->req() == 2 && n->in(1) != NULL, "Only one data input expected" );
615 in = n->in(1); // replaced by unique input
616 if( n->as_Phi()->is_unsafe_data_reference(in) )
617 in = phase->C->top(); // replaced by top
618 }
619 igvn->replace_node(n, in);
620 }
621 else if( n->is_Region() ) { // Update all incoming edges
622 assert( !igvn->eqv(n, this), "Must be removed from DefUse edges");
623 uint uses_found = 0;
624 for( uint k=1; k < n->req(); k++ ) {
625 if( n->in(k) == this ) {
626 n->set_req(k, parent_ctrl);
627 uses_found++;
628 }
629 }
630 if( uses_found > 1 ) { // (--i) done at the end of the loop.
631 i -= (uses_found - 1);
632 }
633 }
634 else {
635 assert( igvn->eqv(n->in(0), this), "Expect RegionNode to be control parent");
636 n->set_req(0, parent_ctrl);
637 }
638#ifdef ASSERT
639 for( uint k=0; k < n->req(); k++ ) {
640 assert( !igvn->eqv(n->in(k), this), "All uses of RegionNode should be gone");
641 }
642#endif
643 }
644 // Remove the RegionNode itself from DefUse info
645 igvn->remove_dead_node(this);
646 return NULL;
647 }
648 return this; // Record progress
649 }
650
651
652 // If a Region flows into a Region, merge into one big happy merge.
653 if (can_reshape) {
654 Node *m = merge_region(this, phase);
655 if (m != NULL) return m;
656 }
657
658 // Check if this region is the root of a clipping idiom on floats
659 if( ConvertFloat2IntClipping && can_reshape && req() == 4 ) {
660 // Check that only one use is a Phi and that it simplifies to two constants +
661 PhiNode* phi = has_unique_phi();
662 if (phi != NULL) { // One Phi user
663 // Check inputs to the Phi
664 ConNode *min;
665 ConNode *max;
666 Node *val;
667 uint min_idx;
668 uint max_idx;
669 uint val_idx;
670 if( check_phi_clipping( phi, min, min_idx, max, max_idx, val, val_idx ) ) {
671 IfNode *top_if;
672 IfNode *bot_if;
673 if( check_if_clipping( this, bot_if, top_if ) ) {
674 // Control pattern checks, now verify compares
675 Node *top_in = NULL; // value being compared against
676 Node *bot_in = NULL;
677 if( check_compare_clipping( true, bot_if, min, bot_in ) &&
678 check_compare_clipping( false, top_if, max, top_in ) ) {
679 if( bot_in == top_in ) {
680 PhaseIterGVN *gvn = phase->is_IterGVN();
681 assert( gvn != NULL, "Only had DefUse info in IterGVN");
682 // Only remaining check is that bot_in == top_in == (Phi's val + mods)
683
684 // Check for the ConvF2INode
685 ConvF2INode *convf2i;
686 if( check_convf2i_clipping( phi, val_idx, convf2i, min, max ) &&
687 convf2i->in(1) == bot_in ) {
688 // Matched pattern, including LShiftI; RShiftI, replace with integer compares
689 // max test
690 Node *cmp = gvn->register_new_node_with_optimizer(new CmpINode( convf2i, min ));
691 Node *boo = gvn->register_new_node_with_optimizer(new BoolNode( cmp, BoolTest::lt ));
692 IfNode *iff = (IfNode*)gvn->register_new_node_with_optimizer(new IfNode( top_if->in(0), boo, PROB_UNLIKELY_MAG(5), top_if->_fcnt ));
693 Node *if_min= gvn->register_new_node_with_optimizer(new IfTrueNode (iff));
694 Node *ifF = gvn->register_new_node_with_optimizer(new IfFalseNode(iff));
695 // min test
696 cmp = gvn->register_new_node_with_optimizer(new CmpINode( convf2i, max ));
697 boo = gvn->register_new_node_with_optimizer(new BoolNode( cmp, BoolTest::gt ));
698 iff = (IfNode*)gvn->register_new_node_with_optimizer(new IfNode( ifF, boo, PROB_UNLIKELY_MAG(5), bot_if->_fcnt ));
699 Node *if_max= gvn->register_new_node_with_optimizer(new IfTrueNode (iff));
700 ifF = gvn->register_new_node_with_optimizer(new IfFalseNode(iff));
701 // update input edges to region node
702 set_req_X( min_idx, if_min, gvn );
703 set_req_X( max_idx, if_max, gvn );
704 set_req_X( val_idx, ifF, gvn );
705 // remove unnecessary 'LShiftI; RShiftI' idiom
706 gvn->hash_delete(phi);
707 phi->set_req_X( val_idx, convf2i, gvn );
708 gvn->hash_find_insert(phi);
709 // Return transformed region node
710 return this;
711 }
712 }
713 }
714 }
715 }
716 }
717 }
718
719 if (can_reshape) {
720 modified |= optimize_trichotomy(phase->is_IterGVN());
721 }
722
723 return modified ? this : NULL;
724}
725
726//------------------------------optimize_trichotomy--------------------------
727// Optimize nested comparisons of the following kind:
728//
729// int compare(int a, int b) {
730// return (a < b) ? -1 : (a == b) ? 0 : 1;
731// }
732//
733// Shape 1:
734// if (compare(a, b) == 1) { ... } -> if (a > b) { ... }
735//
736// Shape 2:
737// if (compare(a, b) == 0) { ... } -> if (a == b) { ... }
738//
739// Above code leads to the following IR shapes where both Ifs compare the
740// same value and two out of three region inputs idx1 and idx2 map to
741// the same value and control flow.
742//
743// (1) If (2) If
744// / \ / \
745// Proj Proj Proj Proj
746// | \ | \
747// | If | If If
748// | / \ | / \ / \
749// | Proj Proj | Proj Proj ==> Proj Proj
750// | / / \ | / | /
751// Region / \ | / | /
752// \ / \ | / | /
753// Region Region Region
754//
755// The method returns true if 'this' is modified and false otherwise.
756bool RegionNode::optimize_trichotomy(PhaseIterGVN* igvn) {
757 int idx1 = 1, idx2 = 2;
758 Node* region = NULL;
759 if (req() == 3 && in(1) != NULL && in(2) != NULL) {
760 // Shape 1: Check if one of the inputs is a region that merges two control
761 // inputs and has no other users (especially no Phi users).
762 region = in(1)->isa_Region() ? in(1) : in(2)->isa_Region();
763 if (region == NULL || region->outcnt() != 2 || region->req() != 3) {
764 return false; // No suitable region input found
765 }
766 } else if (req() == 4) {
767 // Shape 2: Check if two control inputs map to the same value of the unique phi
768 // user and treat these as if they would come from another region (shape (1)).
769 PhiNode* phi = has_unique_phi();
770 if (phi == NULL) {
771 return false; // No unique phi user
772 }
773 if (phi->in(idx1) != phi->in(idx2)) {
774 idx2 = 3;
775 if (phi->in(idx1) != phi->in(idx2)) {
776 idx1 = 2;
777 if (phi->in(idx1) != phi->in(idx2)) {
778 return false; // No equal phi inputs found
779 }
780 }
781 }
782 assert(phi->in(idx1) == phi->in(idx2), "must be"); // Region is merging same value
783 region = this;
784 }
785 if (region == NULL || region->in(idx1) == NULL || region->in(idx2) == NULL) {
786 return false; // Region does not merge two control inputs
787 }
788 // At this point we know that region->in(idx1) and region->(idx2) map to the same
789 // value and control flow. Now search for ifs that feed into these region inputs.
790 ProjNode* proj1 = region->in(idx1)->isa_Proj();
791 ProjNode* proj2 = region->in(idx2)->isa_Proj();
792 if (proj1 == NULL || proj1->outcnt() != 1 ||
793 proj2 == NULL || proj2->outcnt() != 1) {
794 return false; // No projection inputs with region as unique user found
795 }
796 assert(proj1 != proj2, "should be different projections");
797 IfNode* iff1 = proj1->in(0)->isa_If();
798 IfNode* iff2 = proj2->in(0)->isa_If();
799 if (iff1 == NULL || iff1->outcnt() != 2 ||
800 iff2 == NULL || iff2->outcnt() != 2) {
801 return false; // No ifs found
802 }
803 if (iff1 == iff2) {
804 igvn->add_users_to_worklist(iff1); // Make sure dead if is eliminated
805 igvn->replace_input_of(region, idx1, iff1->in(0));
806 igvn->replace_input_of(region, idx2, igvn->C->top());
807 return (region == this); // Remove useless if (both projections map to the same control/value)
808 }
809 BoolNode* bol1 = iff1->in(1)->isa_Bool();
810 BoolNode* bol2 = iff2->in(1)->isa_Bool();
811 if (bol1 == NULL || bol2 == NULL) {
812 return false; // No bool inputs found
813 }
814 Node* cmp1 = bol1->in(1);
815 Node* cmp2 = bol2->in(1);
816 bool commute = false;
817 if (!cmp1->is_Cmp() || !cmp2->is_Cmp()) {
818 return false; // No comparison
819 } else if (cmp1->Opcode() == Op_CmpF || cmp1->Opcode() == Op_CmpD ||
820 cmp2->Opcode() == Op_CmpF || cmp2->Opcode() == Op_CmpD ||
821 cmp1->Opcode() == Op_CmpP || cmp1->Opcode() == Op_CmpN ||
822 cmp2->Opcode() == Op_CmpP || cmp2->Opcode() == Op_CmpN) {
823 // Floats and pointers don't exactly obey trichotomy. To be on the safe side, don't transform their tests.
824 return false;
825 } else if (cmp1 != cmp2) {
826 if (cmp1->in(1) == cmp2->in(2) &&
827 cmp1->in(2) == cmp2->in(1)) {
828 commute = true; // Same but swapped inputs, commute the test
829 } else {
830 return false; // Ifs are not comparing the same values
831 }
832 }
833 proj1 = proj1->other_if_proj();
834 proj2 = proj2->other_if_proj();
835 if (!((proj1->unique_ctrl_out() == iff2 &&
836 proj2->unique_ctrl_out() == this) ||
837 (proj2->unique_ctrl_out() == iff1 &&
838 proj1->unique_ctrl_out() == this))) {
839 return false; // Ifs are not connected through other projs
840 }
841 // Found 'iff -> proj -> iff -> proj -> this' shape where all other projs are merged
842 // through 'region' and map to the same value. Merge the boolean tests and replace
843 // the ifs by a single comparison.
844 BoolTest test1 = (proj1->_con == 1) ? bol1->_test : bol1->_test.negate();
845 BoolTest test2 = (proj2->_con == 1) ? bol2->_test : bol2->_test.negate();
846 test1 = commute ? test1.commute() : test1;
847 // After possibly commuting test1, if we can merge test1 & test2, then proj2/iff2/bol2 are the nodes to refine.
848 BoolTest::mask res = test1.merge(test2);
849 if (res == BoolTest::illegal) {
850 return false; // Unable to merge tests
851 }
852 // Adjust iff1 to always pass (only iff2 will remain)
853 igvn->replace_input_of(iff1, 1, igvn->intcon(proj1->_con));
854 if (res == BoolTest::never) {
855 // Merged test is always false, adjust iff2 to always fail
856 igvn->replace_input_of(iff2, 1, igvn->intcon(1 - proj2->_con));
857 } else {
858 // Replace bool input of iff2 with merged test
859 BoolNode* new_bol = new BoolNode(bol2->in(1), res);
860 igvn->replace_input_of(iff2, 1, igvn->transform((proj2->_con == 1) ? new_bol : new_bol->negate(igvn)));
861 }
862 return false;
863}
864
865const RegMask &RegionNode::out_RegMask() const {
866 return RegMask::Empty;
867}
868
869// Find the one non-null required input. RegionNode only
870Node *Node::nonnull_req() const {
871 assert( is_Region(), "" );
872 for( uint i = 1; i < _cnt; i++ )
873 if( in(i) )
874 return in(i);
875 ShouldNotReachHere();
876 return NULL;
877}
878
879
880//=============================================================================
881// note that these functions assume that the _adr_type field is flattened
882uint PhiNode::hash() const {
883 const Type* at = _adr_type;
884 return TypeNode::hash() + (at ? at->hash() : 0);
885}
886bool PhiNode::cmp( const Node &n ) const {
887 return TypeNode::cmp(n) && _adr_type == ((PhiNode&)n)._adr_type;
888}
889static inline
890const TypePtr* flatten_phi_adr_type(const TypePtr* at) {
891 if (at == NULL || at == TypePtr::BOTTOM) return at;
892 return Compile::current()->alias_type(at)->adr_type();
893}
894
895//----------------------------make---------------------------------------------
896// create a new phi with edges matching r and set (initially) to x
897PhiNode* PhiNode::make(Node* r, Node* x, const Type *t, const TypePtr* at) {
898 uint preds = r->req(); // Number of predecessor paths
899 assert(t != Type::MEMORY || at == flatten_phi_adr_type(at), "flatten at");
900 PhiNode* p = new PhiNode(r, t, at);
901 for (uint j = 1; j < preds; j++) {
902 // Fill in all inputs, except those which the region does not yet have
903 if (r->in(j) != NULL)
904 p->init_req(j, x);
905 }
906 return p;
907}
908PhiNode* PhiNode::make(Node* r, Node* x) {
909 const Type* t = x->bottom_type();
910 const TypePtr* at = NULL;
911 if (t == Type::MEMORY) at = flatten_phi_adr_type(x->adr_type());
912 return make(r, x, t, at);
913}
914PhiNode* PhiNode::make_blank(Node* r, Node* x) {
915 const Type* t = x->bottom_type();
916 const TypePtr* at = NULL;
917 if (t == Type::MEMORY) at = flatten_phi_adr_type(x->adr_type());
918 return new PhiNode(r, t, at);
919}
920
921
922//------------------------slice_memory-----------------------------------------
923// create a new phi with narrowed memory type
924PhiNode* PhiNode::slice_memory(const TypePtr* adr_type) const {
925 PhiNode* mem = (PhiNode*) clone();
926 *(const TypePtr**)&mem->_adr_type = adr_type;
927 // convert self-loops, or else we get a bad graph
928 for (uint i = 1; i < req(); i++) {
929 if ((const Node*)in(i) == this) mem->set_req(i, mem);
930 }
931 mem->verify_adr_type();
932 return mem;
933}
934
935//------------------------split_out_instance-----------------------------------
936// Split out an instance type from a bottom phi.
937PhiNode* PhiNode::split_out_instance(const TypePtr* at, PhaseIterGVN *igvn) const {
938 const TypeOopPtr *t_oop = at->isa_oopptr();
939 assert(t_oop != NULL && t_oop->is_known_instance(), "expecting instance oopptr");
940 const TypePtr *t = adr_type();
941 assert(type() == Type::MEMORY &&
942 (t == TypePtr::BOTTOM || t == TypeRawPtr::BOTTOM ||
943 t->isa_oopptr() && !t->is_oopptr()->is_known_instance() &&
944 t->is_oopptr()->cast_to_exactness(true)
945 ->is_oopptr()->cast_to_ptr_type(t_oop->ptr())
946 ->is_oopptr()->cast_to_instance_id(t_oop->instance_id()) == t_oop),
947 "bottom or raw memory required");
948
949 // Check if an appropriate node already exists.
950 Node *region = in(0);
951 for (DUIterator_Fast kmax, k = region->fast_outs(kmax); k < kmax; k++) {
952 Node* use = region->fast_out(k);
953 if( use->is_Phi()) {
954 PhiNode *phi2 = use->as_Phi();
955 if (phi2->type() == Type::MEMORY && phi2->adr_type() == at) {
956 return phi2;
957 }
958 }
959 }
960 Compile *C = igvn->C;
961 Arena *a = Thread::current()->resource_area();
962 Node_Array node_map = new Node_Array(a);
963 Node_Stack stack(a, C->live_nodes() >> 4);
964 PhiNode *nphi = slice_memory(at);
965 igvn->register_new_node_with_optimizer( nphi );
966 node_map.map(_idx, nphi);
967 stack.push((Node *)this, 1);
968 while(!stack.is_empty()) {
969 PhiNode *ophi = stack.node()->as_Phi();
970 uint i = stack.index();
971 assert(i >= 1, "not control edge");
972 stack.pop();
973 nphi = node_map[ophi->_idx]->as_Phi();
974 for (; i < ophi->req(); i++) {
975 Node *in = ophi->in(i);
976 if (in == NULL || igvn->type(in) == Type::TOP)
977 continue;
978 Node *opt = MemNode::optimize_simple_memory_chain(in, t_oop, NULL, igvn);
979 PhiNode *optphi = opt->is_Phi() ? opt->as_Phi() : NULL;
980 if (optphi != NULL && optphi->adr_type() == TypePtr::BOTTOM) {
981 opt = node_map[optphi->_idx];
982 if (opt == NULL) {
983 stack.push(ophi, i);
984 nphi = optphi->slice_memory(at);
985 igvn->register_new_node_with_optimizer( nphi );
986 node_map.map(optphi->_idx, nphi);
987 ophi = optphi;
988 i = 0; // will get incremented at top of loop
989 continue;
990 }
991 }
992 nphi->set_req(i, opt);
993 }
994 }
995 return nphi;
996}
997
998//------------------------verify_adr_type--------------------------------------
999#ifdef ASSERT
1000void PhiNode::verify_adr_type(VectorSet& visited, const TypePtr* at) const {
1001 if (visited.test_set(_idx)) return; //already visited
1002
1003 // recheck constructor invariants:
1004 verify_adr_type(false);
1005
1006 // recheck local phi/phi consistency:
1007 assert(_adr_type == at || _adr_type == TypePtr::BOTTOM,
1008 "adr_type must be consistent across phi nest");
1009
1010 // walk around
1011 for (uint i = 1; i < req(); i++) {
1012 Node* n = in(i);
1013 if (n == NULL) continue;
1014 const Node* np = in(i);
1015 if (np->is_Phi()) {
1016 np->as_Phi()->verify_adr_type(visited, at);
1017 } else if (n->bottom_type() == Type::TOP
1018 || (n->is_Mem() && n->in(MemNode::Address)->bottom_type() == Type::TOP)) {
1019 // ignore top inputs
1020 } else {
1021 const TypePtr* nat = flatten_phi_adr_type(n->adr_type());
1022 // recheck phi/non-phi consistency at leaves:
1023 assert((nat != NULL) == (at != NULL), "");
1024 assert(nat == at || nat == TypePtr::BOTTOM,
1025 "adr_type must be consistent at leaves of phi nest");
1026 }
1027 }
1028}
1029
1030// Verify a whole nest of phis rooted at this one.
1031void PhiNode::verify_adr_type(bool recursive) const {
1032 if (VMError::is_error_reported()) return; // muzzle asserts when debugging an error
1033 if (Node::in_dump()) return; // muzzle asserts when printing
1034
1035 assert((_type == Type::MEMORY) == (_adr_type != NULL), "adr_type for memory phis only");
1036
1037 if (!VerifyAliases) return; // verify thoroughly only if requested
1038
1039 assert(_adr_type == flatten_phi_adr_type(_adr_type),
1040 "Phi::adr_type must be pre-normalized");
1041
1042 if (recursive) {
1043 VectorSet visited(Thread::current()->resource_area());
1044 verify_adr_type(visited, _adr_type);
1045 }
1046}
1047#endif
1048
1049
1050//------------------------------Value------------------------------------------
1051// Compute the type of the PhiNode
1052const Type* PhiNode::Value(PhaseGVN* phase) const {
1053 Node *r = in(0); // RegionNode
1054 if( !r ) // Copy or dead
1055 return in(1) ? phase->type(in(1)) : Type::TOP;
1056
1057 // Note: During parsing, phis are often transformed before their regions.
1058 // This means we have to use type_or_null to defend against untyped regions.
1059 if( phase->type_or_null(r) == Type::TOP ) // Dead code?
1060 return Type::TOP;
1061
1062 // Check for trip-counted loop. If so, be smarter.
1063 CountedLoopNode* l = r->is_CountedLoop() ? r->as_CountedLoop() : NULL;
1064 if (l && ((const Node*)l->phi() == this)) { // Trip counted loop!
1065 // protect against init_trip() or limit() returning NULL
1066 if (l->can_be_counted_loop(phase)) {
1067 const Node *init = l->init_trip();
1068 const Node *limit = l->limit();
1069 const Node* stride = l->stride();
1070 if (init != NULL && limit != NULL && stride != NULL) {
1071 const TypeInt* lo = phase->type(init)->isa_int();
1072 const TypeInt* hi = phase->type(limit)->isa_int();
1073 const TypeInt* stride_t = phase->type(stride)->isa_int();
1074 if (lo != NULL && hi != NULL && stride_t != NULL) { // Dying loops might have TOP here
1075 assert(stride_t->_hi >= stride_t->_lo, "bad stride type");
1076 BoolTest::mask bt = l->loopexit()->test_trip();
1077 // If the loop exit condition is "not equal", the condition
1078 // would not trigger if init > limit (if stride > 0) or if
1079 // init < limit if (stride > 0) so we can't deduce bounds
1080 // for the iv from the exit condition.
1081 if (bt != BoolTest::ne) {
1082 if (stride_t->_hi < 0) { // Down-counter loop
1083 swap(lo, hi);
1084 return TypeInt::make(MIN2(lo->_lo, hi->_lo) , hi->_hi, 3);
1085 } else if (stride_t->_lo >= 0) {
1086 return TypeInt::make(lo->_lo, MAX2(lo->_hi, hi->_hi), 3);
1087 }
1088 }
1089 }
1090 }
1091 } else if (l->in(LoopNode::LoopBackControl) != NULL &&
1092 in(LoopNode::EntryControl) != NULL &&
1093 phase->type(l->in(LoopNode::LoopBackControl)) == Type::TOP) {
1094 // During CCP, if we saturate the type of a counted loop's Phi
1095 // before the special code for counted loop above has a chance
1096 // to run (that is as long as the type of the backedge's control
1097 // is top), we might end up with non monotonic types
1098 return phase->type(in(LoopNode::EntryControl))->filter_speculative(_type);
1099 }
1100 }
1101
1102 // Until we have harmony between classes and interfaces in the type
1103 // lattice, we must tread carefully around phis which implicitly
1104 // convert the one to the other.
1105 const TypePtr* ttp = _type->make_ptr();
1106 const TypeInstPtr* ttip = (ttp != NULL) ? ttp->isa_instptr() : NULL;
1107 const TypeKlassPtr* ttkp = (ttp != NULL) ? ttp->isa_klassptr() : NULL;
1108 bool is_intf = false;
1109 if (ttip != NULL) {
1110 ciKlass* k = ttip->klass();
1111 if (k->is_loaded() && k->is_interface())
1112 is_intf = true;
1113 }
1114 if (ttkp != NULL) {
1115 ciKlass* k = ttkp->klass();
1116 if (k->is_loaded() && k->is_interface())
1117 is_intf = true;
1118 }
1119
1120 // Default case: merge all inputs
1121 const Type *t = Type::TOP; // Merged type starting value
1122 for (uint i = 1; i < req(); ++i) {// For all paths in
1123 // Reachable control path?
1124 if (r->in(i) && phase->type(r->in(i)) == Type::CONTROL) {
1125 const Type* ti = phase->type(in(i));
1126 // We assume that each input of an interface-valued Phi is a true
1127 // subtype of that interface. This might not be true of the meet
1128 // of all the input types. The lattice is not distributive in
1129 // such cases. Ward off asserts in type.cpp by refusing to do
1130 // meets between interfaces and proper classes.
1131 const TypePtr* tip = ti->make_ptr();
1132 const TypeInstPtr* tiip = (tip != NULL) ? tip->isa_instptr() : NULL;
1133 if (tiip) {
1134 bool ti_is_intf = false;
1135 ciKlass* k = tiip->klass();
1136 if (k->is_loaded() && k->is_interface())
1137 ti_is_intf = true;
1138 if (is_intf != ti_is_intf)
1139 { t = _type; break; }
1140 }
1141 t = t->meet_speculative(ti);
1142 }
1143 }
1144
1145 // The worst-case type (from ciTypeFlow) should be consistent with "t".
1146 // That is, we expect that "t->higher_equal(_type)" holds true.
1147 // There are various exceptions:
1148 // - Inputs which are phis might in fact be widened unnecessarily.
1149 // For example, an input might be a widened int while the phi is a short.
1150 // - Inputs might be BotPtrs but this phi is dependent on a null check,
1151 // and postCCP has removed the cast which encodes the result of the check.
1152 // - The type of this phi is an interface, and the inputs are classes.
1153 // - Value calls on inputs might produce fuzzy results.
1154 // (Occurrences of this case suggest improvements to Value methods.)
1155 //
1156 // It is not possible to see Type::BOTTOM values as phi inputs,
1157 // because the ciTypeFlow pre-pass produces verifier-quality types.
1158 const Type* ft = t->filter_speculative(_type); // Worst case type
1159
1160#ifdef ASSERT
1161 // The following logic has been moved into TypeOopPtr::filter.
1162 const Type* jt = t->join_speculative(_type);
1163 if (jt->empty()) { // Emptied out???
1164
1165 // Check for evil case of 't' being a class and '_type' expecting an
1166 // interface. This can happen because the bytecodes do not contain
1167 // enough type info to distinguish a Java-level interface variable
1168 // from a Java-level object variable. If we meet 2 classes which
1169 // both implement interface I, but their meet is at 'j/l/O' which
1170 // doesn't implement I, we have no way to tell if the result should
1171 // be 'I' or 'j/l/O'. Thus we'll pick 'j/l/O'. If this then flows
1172 // into a Phi which "knows" it's an Interface type we'll have to
1173 // uplift the type.
1174 if (!t->empty() && ttip && ttip->is_loaded() && ttip->klass()->is_interface()) {
1175 assert(ft == _type, ""); // Uplift to interface
1176 } else if (!t->empty() && ttkp && ttkp->is_loaded() && ttkp->klass()->is_interface()) {
1177 assert(ft == _type, ""); // Uplift to interface
1178 } else {
1179 // We also have to handle 'evil cases' of interface- vs. class-arrays
1180 Type::get_arrays_base_elements(jt, _type, NULL, &ttip);
1181 if (!t->empty() && ttip != NULL && ttip->is_loaded() && ttip->klass()->is_interface()) {
1182 assert(ft == _type, ""); // Uplift to array of interface
1183 } else {
1184 // Otherwise it's something stupid like non-overlapping int ranges
1185 // found on dying counted loops.
1186 assert(ft == Type::TOP, ""); // Canonical empty value
1187 }
1188 }
1189 }
1190
1191 else {
1192
1193 // If we have an interface-typed Phi and we narrow to a class type, the join
1194 // should report back the class. However, if we have a J/L/Object
1195 // class-typed Phi and an interface flows in, it's possible that the meet &
1196 // join report an interface back out. This isn't possible but happens
1197 // because the type system doesn't interact well with interfaces.
1198 const TypePtr *jtp = jt->make_ptr();
1199 const TypeInstPtr *jtip = (jtp != NULL) ? jtp->isa_instptr() : NULL;
1200 const TypeKlassPtr *jtkp = (jtp != NULL) ? jtp->isa_klassptr() : NULL;
1201 if( jtip && ttip ) {
1202 if( jtip->is_loaded() && jtip->klass()->is_interface() &&
1203 ttip->is_loaded() && !ttip->klass()->is_interface() ) {
1204 assert(ft == ttip->cast_to_ptr_type(jtip->ptr()) ||
1205 ft->isa_narrowoop() && ft->make_ptr() == ttip->cast_to_ptr_type(jtip->ptr()), "");
1206 jt = ft;
1207 }
1208 }
1209 if( jtkp && ttkp ) {
1210 if( jtkp->is_loaded() && jtkp->klass()->is_interface() &&
1211 !jtkp->klass_is_exact() && // Keep exact interface klass (6894807)
1212 ttkp->is_loaded() && !ttkp->klass()->is_interface() ) {
1213 assert(ft == ttkp->cast_to_ptr_type(jtkp->ptr()) ||
1214 ft->isa_narrowklass() && ft->make_ptr() == ttkp->cast_to_ptr_type(jtkp->ptr()), "");
1215 jt = ft;
1216 }
1217 }
1218 if (jt != ft && jt->base() == ft->base()) {
1219 if (jt->isa_int() &&
1220 jt->is_int()->_lo == ft->is_int()->_lo &&
1221 jt->is_int()->_hi == ft->is_int()->_hi)
1222 jt = ft;
1223 if (jt->isa_long() &&
1224 jt->is_long()->_lo == ft->is_long()->_lo &&
1225 jt->is_long()->_hi == ft->is_long()->_hi)
1226 jt = ft;
1227 }
1228 if (jt != ft) {
1229 tty->print("merge type: "); t->dump(); tty->cr();
1230 tty->print("kill type: "); _type->dump(); tty->cr();
1231 tty->print("join type: "); jt->dump(); tty->cr();
1232 tty->print("filter type: "); ft->dump(); tty->cr();
1233 }
1234 assert(jt == ft, "");
1235 }
1236#endif //ASSERT
1237
1238 // Deal with conversion problems found in data loops.
1239 ft = phase->saturate(ft, phase->type_or_null(this), _type);
1240
1241 return ft;
1242}
1243
1244
1245//------------------------------is_diamond_phi---------------------------------
1246// Does this Phi represent a simple well-shaped diamond merge? Return the
1247// index of the true path or 0 otherwise.
1248// If check_control_only is true, do not inspect the If node at the
1249// top, and return -1 (not an edge number) on success.
1250int PhiNode::is_diamond_phi(bool check_control_only) const {
1251 // Check for a 2-path merge
1252 Node *region = in(0);
1253 if( !region ) return 0;
1254 if( region->req() != 3 ) return 0;
1255 if( req() != 3 ) return 0;
1256 // Check that both paths come from the same If
1257 Node *ifp1 = region->in(1);
1258 Node *ifp2 = region->in(2);
1259 if( !ifp1 || !ifp2 ) return 0;
1260 Node *iff = ifp1->in(0);
1261 if( !iff || !iff->is_If() ) return 0;
1262 if( iff != ifp2->in(0) ) return 0;
1263 if (check_control_only) return -1;
1264 // Check for a proper bool/cmp
1265 const Node *b = iff->in(1);
1266 if( !b->is_Bool() ) return 0;
1267 const Node *cmp = b->in(1);
1268 if( !cmp->is_Cmp() ) return 0;
1269
1270 // Check for branching opposite expected
1271 if( ifp2->Opcode() == Op_IfTrue ) {
1272 assert( ifp1->Opcode() == Op_IfFalse, "" );
1273 return 2;
1274 } else {
1275 assert( ifp1->Opcode() == Op_IfTrue, "" );
1276 return 1;
1277 }
1278}
1279
1280//----------------------------check_cmove_id-----------------------------------
1281// Check for CMove'ing a constant after comparing against the constant.
1282// Happens all the time now, since if we compare equality vs a constant in
1283// the parser, we "know" the variable is constant on one path and we force
1284// it. Thus code like "if( x==0 ) {/*EMPTY*/}" ends up inserting a
1285// conditional move: "x = (x==0)?0:x;". Yucko. This fix is slightly more
1286// general in that we don't need constants. Since CMove's are only inserted
1287// in very special circumstances, we do it here on generic Phi's.
1288Node* PhiNode::is_cmove_id(PhaseTransform* phase, int true_path) {
1289 assert(true_path !=0, "only diamond shape graph expected");
1290
1291 // is_diamond_phi() has guaranteed the correctness of the nodes sequence:
1292 // phi->region->if_proj->ifnode->bool->cmp
1293 Node* region = in(0);
1294 Node* iff = region->in(1)->in(0);
1295 BoolNode* b = iff->in(1)->as_Bool();
1296 Node* cmp = b->in(1);
1297 Node* tval = in(true_path);
1298 Node* fval = in(3-true_path);
1299 Node* id = CMoveNode::is_cmove_id(phase, cmp, tval, fval, b);
1300 if (id == NULL)
1301 return NULL;
1302
1303 // Either value might be a cast that depends on a branch of 'iff'.
1304 // Since the 'id' value will float free of the diamond, either
1305 // decast or return failure.
1306 Node* ctl = id->in(0);
1307 if (ctl != NULL && ctl->in(0) == iff) {
1308 if (id->is_ConstraintCast()) {
1309 return id->in(1);
1310 } else {
1311 // Don't know how to disentangle this value.
1312 return NULL;
1313 }
1314 }
1315
1316 return id;
1317}
1318
1319//------------------------------Identity---------------------------------------
1320// Check for Region being Identity.
1321Node* PhiNode::Identity(PhaseGVN* phase) {
1322 // Check for no merging going on
1323 // (There used to be special-case code here when this->region->is_Loop.
1324 // It would check for a tributary phi on the backedge that the main phi
1325 // trivially, perhaps with a single cast. The unique_input method
1326 // does all this and more, by reducing such tributaries to 'this'.)
1327 Node* uin = unique_input(phase, false);
1328 if (uin != NULL) {
1329 return uin;
1330 }
1331
1332 int true_path = is_diamond_phi();
1333 if (true_path != 0) {
1334 Node* id = is_cmove_id(phase, true_path);
1335 if (id != NULL) return id;
1336 }
1337
1338 return this; // No identity
1339}
1340
1341//-----------------------------unique_input------------------------------------
1342// Find the unique value, discounting top, self-loops, and casts.
1343// Return top if there are no inputs, and self if there are multiple.
1344Node* PhiNode::unique_input(PhaseTransform* phase, bool uncast) {
1345 // 1) One unique direct input,
1346 // or if uncast is true:
1347 // 2) some of the inputs have an intervening ConstraintCast
1348 // 3) an input is a self loop
1349 //
1350 // 1) input or 2) input or 3) input __
1351 // / \ / \ \ / \
1352 // \ / | cast phi cast
1353 // phi \ / / \ /
1354 // phi / --
1355
1356 Node* r = in(0); // RegionNode
1357 if (r == NULL) return in(1); // Already degraded to a Copy
1358 Node* input = NULL; // The unique direct input (maybe uncasted = ConstraintCasts removed)
1359
1360 for (uint i = 1, cnt = req(); i < cnt; ++i) {
1361 Node* rc = r->in(i);
1362 if (rc == NULL || phase->type(rc) == Type::TOP)
1363 continue; // ignore unreachable control path
1364 Node* n = in(i);
1365 if (n == NULL)
1366 continue;
1367 Node* un = n;
1368 if (uncast) {
1369#ifdef ASSERT
1370 Node* m = un->uncast();
1371#endif
1372 while (un != NULL && un->req() == 2 && un->is_ConstraintCast()) {
1373 Node* next = un->in(1);
1374 if (phase->type(next)->isa_rawptr() && phase->type(un)->isa_oopptr()) {
1375 // risk exposing raw ptr at safepoint
1376 break;
1377 }
1378 un = next;
1379 }
1380 assert(m == un || un->in(1) == m, "Only expected at CheckCastPP from allocation");
1381 }
1382 if (un == NULL || un == this || phase->type(un) == Type::TOP) {
1383 continue; // ignore if top, or in(i) and "this" are in a data cycle
1384 }
1385 // Check for a unique input (maybe uncasted)
1386 if (input == NULL) {
1387 input = un;
1388 } else if (input != un) {
1389 input = NodeSentinel; // no unique input
1390 }
1391 }
1392 if (input == NULL) {
1393 return phase->C->top(); // no inputs
1394 }
1395
1396 if (input != NodeSentinel) {
1397 return input; // one unique direct input
1398 }
1399
1400 // Nothing.
1401 return NULL;
1402}
1403
1404//------------------------------is_x2logic-------------------------------------
1405// Check for simple convert-to-boolean pattern
1406// If:(C Bool) Region:(IfF IfT) Phi:(Region 0 1)
1407// Convert Phi to an ConvIB.
1408static Node *is_x2logic( PhaseGVN *phase, PhiNode *phi, int true_path ) {
1409 assert(true_path !=0, "only diamond shape graph expected");
1410 // Convert the true/false index into an expected 0/1 return.
1411 // Map 2->0 and 1->1.
1412 int flipped = 2-true_path;
1413
1414 // is_diamond_phi() has guaranteed the correctness of the nodes sequence:
1415 // phi->region->if_proj->ifnode->bool->cmp
1416 Node *region = phi->in(0);
1417 Node *iff = region->in(1)->in(0);
1418 BoolNode *b = (BoolNode*)iff->in(1);
1419 const CmpNode *cmp = (CmpNode*)b->in(1);
1420
1421 Node *zero = phi->in(1);
1422 Node *one = phi->in(2);
1423 const Type *tzero = phase->type( zero );
1424 const Type *tone = phase->type( one );
1425
1426 // Check for compare vs 0
1427 const Type *tcmp = phase->type(cmp->in(2));
1428 if( tcmp != TypeInt::ZERO && tcmp != TypePtr::NULL_PTR ) {
1429 // Allow cmp-vs-1 if the other input is bounded by 0-1
1430 if( !(tcmp == TypeInt::ONE && phase->type(cmp->in(1)) == TypeInt::BOOL) )
1431 return NULL;
1432 flipped = 1-flipped; // Test is vs 1 instead of 0!
1433 }
1434
1435 // Check for setting zero/one opposite expected
1436 if( tzero == TypeInt::ZERO ) {
1437 if( tone == TypeInt::ONE ) {
1438 } else return NULL;
1439 } else if( tzero == TypeInt::ONE ) {
1440 if( tone == TypeInt::ZERO ) {
1441 flipped = 1-flipped;
1442 } else return NULL;
1443 } else return NULL;
1444
1445 // Check for boolean test backwards
1446 if( b->_test._test == BoolTest::ne ) {
1447 } else if( b->_test._test == BoolTest::eq ) {
1448 flipped = 1-flipped;
1449 } else return NULL;
1450
1451 // Build int->bool conversion
1452 Node *in1 = cmp->in(1);
1453 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
1454 in1 = bs->step_over_gc_barrier(in1);
1455 Node *n = new Conv2BNode(in1);
1456 if( flipped )
1457 n = new XorINode( phase->transform(n), phase->intcon(1) );
1458
1459 return n;
1460}
1461
1462//------------------------------is_cond_add------------------------------------
1463// Check for simple conditional add pattern: "(P < Q) ? X+Y : X;"
1464// To be profitable the control flow has to disappear; there can be no other
1465// values merging here. We replace the test-and-branch with:
1466// "(sgn(P-Q))&Y) + X". Basically, convert "(P < Q)" into 0 or -1 by
1467// moving the carry bit from (P-Q) into a register with 'sbb EAX,EAX'.
1468// Then convert Y to 0-or-Y and finally add.
1469// This is a key transform for SpecJava _201_compress.
1470static Node* is_cond_add(PhaseGVN *phase, PhiNode *phi, int true_path) {
1471 assert(true_path !=0, "only diamond shape graph expected");
1472
1473 // is_diamond_phi() has guaranteed the correctness of the nodes sequence:
1474 // phi->region->if_proj->ifnode->bool->cmp
1475 RegionNode *region = (RegionNode*)phi->in(0);
1476 Node *iff = region->in(1)->in(0);
1477 BoolNode* b = iff->in(1)->as_Bool();
1478 const CmpNode *cmp = (CmpNode*)b->in(1);
1479
1480 // Make sure only merging this one phi here
1481 if (region->has_unique_phi() != phi) return NULL;
1482
1483 // Make sure each arm of the diamond has exactly one output, which we assume
1484 // is the region. Otherwise, the control flow won't disappear.
1485 if (region->in(1)->outcnt() != 1) return NULL;
1486 if (region->in(2)->outcnt() != 1) return NULL;
1487
1488 // Check for "(P < Q)" of type signed int
1489 if (b->_test._test != BoolTest::lt) return NULL;
1490 if (cmp->Opcode() != Op_CmpI) return NULL;
1491
1492 Node *p = cmp->in(1);
1493 Node *q = cmp->in(2);
1494 Node *n1 = phi->in( true_path);
1495 Node *n2 = phi->in(3-true_path);
1496
1497 int op = n1->Opcode();
1498 if( op != Op_AddI // Need zero as additive identity
1499 /*&&op != Op_SubI &&
1500 op != Op_AddP &&
1501 op != Op_XorI &&
1502 op != Op_OrI*/ )
1503 return NULL;
1504
1505 Node *x = n2;
1506 Node *y = NULL;
1507 if( x == n1->in(1) ) {
1508 y = n1->in(2);
1509 } else if( x == n1->in(2) ) {
1510 y = n1->in(1);
1511 } else return NULL;
1512
1513 // Not so profitable if compare and add are constants
1514 if( q->is_Con() && phase->type(q) != TypeInt::ZERO && y->is_Con() )
1515 return NULL;
1516
1517 Node *cmplt = phase->transform( new CmpLTMaskNode(p,q) );
1518 Node *j_and = phase->transform( new AndINode(cmplt,y) );
1519 return new AddINode(j_and,x);
1520}
1521
1522//------------------------------is_absolute------------------------------------
1523// Check for absolute value.
1524static Node* is_absolute( PhaseGVN *phase, PhiNode *phi_root, int true_path) {
1525 assert(true_path !=0, "only diamond shape graph expected");
1526
1527 int cmp_zero_idx = 0; // Index of compare input where to look for zero
1528 int phi_x_idx = 0; // Index of phi input where to find naked x
1529
1530 // ABS ends with the merge of 2 control flow paths.
1531 // Find the false path from the true path. With only 2 inputs, 3 - x works nicely.
1532 int false_path = 3 - true_path;
1533
1534 // is_diamond_phi() has guaranteed the correctness of the nodes sequence:
1535 // phi->region->if_proj->ifnode->bool->cmp
1536 BoolNode *bol = phi_root->in(0)->in(1)->in(0)->in(1)->as_Bool();
1537
1538 // Check bool sense
1539 switch( bol->_test._test ) {
1540 case BoolTest::lt: cmp_zero_idx = 1; phi_x_idx = true_path; break;
1541 case BoolTest::le: cmp_zero_idx = 2; phi_x_idx = false_path; break;
1542 case BoolTest::gt: cmp_zero_idx = 2; phi_x_idx = true_path; break;
1543 case BoolTest::ge: cmp_zero_idx = 1; phi_x_idx = false_path; break;
1544 default: return NULL; break;
1545 }
1546
1547 // Test is next
1548 Node *cmp = bol->in(1);
1549 const Type *tzero = NULL;
1550 switch( cmp->Opcode() ) {
1551 case Op_CmpF: tzero = TypeF::ZERO; break; // Float ABS
1552 case Op_CmpD: tzero = TypeD::ZERO; break; // Double ABS
1553 default: return NULL;
1554 }
1555
1556 // Find zero input of compare; the other input is being abs'd
1557 Node *x = NULL;
1558 bool flip = false;
1559 if( phase->type(cmp->in(cmp_zero_idx)) == tzero ) {
1560 x = cmp->in(3 - cmp_zero_idx);
1561 } else if( phase->type(cmp->in(3 - cmp_zero_idx)) == tzero ) {
1562 // The test is inverted, we should invert the result...
1563 x = cmp->in(cmp_zero_idx);
1564 flip = true;
1565 } else {
1566 return NULL;
1567 }
1568
1569 // Next get the 2 pieces being selected, one is the original value
1570 // and the other is the negated value.
1571 if( phi_root->in(phi_x_idx) != x ) return NULL;
1572
1573 // Check other phi input for subtract node
1574 Node *sub = phi_root->in(3 - phi_x_idx);
1575
1576 // Allow only Sub(0,X) and fail out for all others; Neg is not OK
1577 if( tzero == TypeF::ZERO ) {
1578 if( sub->Opcode() != Op_SubF ||
1579 sub->in(2) != x ||
1580 phase->type(sub->in(1)) != tzero ) return NULL;
1581 x = new AbsFNode(x);
1582 if (flip) {
1583 x = new SubFNode(sub->in(1), phase->transform(x));
1584 }
1585 } else {
1586 if( sub->Opcode() != Op_SubD ||
1587 sub->in(2) != x ||
1588 phase->type(sub->in(1)) != tzero ) return NULL;
1589 x = new AbsDNode(x);
1590 if (flip) {
1591 x = new SubDNode(sub->in(1), phase->transform(x));
1592 }
1593 }
1594
1595 return x;
1596}
1597
1598//------------------------------split_once-------------------------------------
1599// Helper for split_flow_path
1600static void split_once(PhaseIterGVN *igvn, Node *phi, Node *val, Node *n, Node *newn) {
1601 igvn->hash_delete(n); // Remove from hash before hacking edges
1602
1603 uint j = 1;
1604 for (uint i = phi->req()-1; i > 0; i--) {
1605 if (phi->in(i) == val) { // Found a path with val?
1606 // Add to NEW Region/Phi, no DU info
1607 newn->set_req( j++, n->in(i) );
1608 // Remove from OLD Region/Phi
1609 n->del_req(i);
1610 }
1611 }
1612
1613 // Register the new node but do not transform it. Cannot transform until the
1614 // entire Region/Phi conglomerate has been hacked as a single huge transform.
1615 igvn->register_new_node_with_optimizer( newn );
1616
1617 // Now I can point to the new node.
1618 n->add_req(newn);
1619 igvn->_worklist.push(n);
1620}
1621
1622//------------------------------split_flow_path--------------------------------
1623// Check for merging identical values and split flow paths
1624static Node* split_flow_path(PhaseGVN *phase, PhiNode *phi) {
1625 BasicType bt = phi->type()->basic_type();
1626 if( bt == T_ILLEGAL || type2size[bt] <= 0 )
1627 return NULL; // Bail out on funny non-value stuff
1628 if( phi->req() <= 3 ) // Need at least 2 matched inputs and a
1629 return NULL; // third unequal input to be worth doing
1630
1631 // Scan for a constant
1632 uint i;
1633 for( i = 1; i < phi->req()-1; i++ ) {
1634 Node *n = phi->in(i);
1635 if( !n ) return NULL;
1636 if( phase->type(n) == Type::TOP ) return NULL;
1637 if( n->Opcode() == Op_ConP || n->Opcode() == Op_ConN || n->Opcode() == Op_ConNKlass )
1638 break;
1639 }
1640 if( i >= phi->req() ) // Only split for constants
1641 return NULL;
1642
1643 Node *val = phi->in(i); // Constant to split for
1644 uint hit = 0; // Number of times it occurs
1645 Node *r = phi->region();
1646
1647 for( ; i < phi->req(); i++ ){ // Count occurrences of constant
1648 Node *n = phi->in(i);
1649 if( !n ) return NULL;
1650 if( phase->type(n) == Type::TOP ) return NULL;
1651 if( phi->in(i) == val ) {
1652 hit++;
1653 if (PhaseIdealLoop::find_predicate(r->in(i)) != NULL) {
1654 return NULL; // don't split loop entry path
1655 }
1656 }
1657 }
1658
1659 if( hit <= 1 || // Make sure we find 2 or more
1660 hit == phi->req()-1 ) // and not ALL the same value
1661 return NULL;
1662
1663 // Now start splitting out the flow paths that merge the same value.
1664 // Split first the RegionNode.
1665 PhaseIterGVN *igvn = phase->is_IterGVN();
1666 RegionNode *newr = new RegionNode(hit+1);
1667 split_once(igvn, phi, val, r, newr);
1668
1669 // Now split all other Phis than this one
1670 for (DUIterator_Fast kmax, k = r->fast_outs(kmax); k < kmax; k++) {
1671 Node* phi2 = r->fast_out(k);
1672 if( phi2->is_Phi() && phi2->as_Phi() != phi ) {
1673 PhiNode *newphi = PhiNode::make_blank(newr, phi2);
1674 split_once(igvn, phi, val, phi2, newphi);
1675 }
1676 }
1677
1678 // Clean up this guy
1679 igvn->hash_delete(phi);
1680 for( i = phi->req()-1; i > 0; i-- ) {
1681 if( phi->in(i) == val ) {
1682 phi->del_req(i);
1683 }
1684 }
1685 phi->add_req(val);
1686
1687 return phi;
1688}
1689
1690//=============================================================================
1691//------------------------------simple_data_loop_check-------------------------
1692// Try to determining if the phi node in a simple safe/unsafe data loop.
1693// Returns:
1694// enum LoopSafety { Safe = 0, Unsafe, UnsafeLoop };
1695// Safe - safe case when the phi and it's inputs reference only safe data
1696// nodes;
1697// Unsafe - the phi and it's inputs reference unsafe data nodes but there
1698// is no reference back to the phi - need a graph walk
1699// to determine if it is in a loop;
1700// UnsafeLoop - unsafe case when the phi references itself directly or through
1701// unsafe data node.
1702// Note: a safe data node is a node which could/never reference itself during
1703// GVN transformations. For now it is Con, Proj, Phi, CastPP, CheckCastPP.
1704// I mark Phi nodes as safe node not only because they can reference itself
1705// but also to prevent mistaking the fallthrough case inside an outer loop
1706// as dead loop when the phi references itselfs through an other phi.
1707PhiNode::LoopSafety PhiNode::simple_data_loop_check(Node *in) const {
1708 // It is unsafe loop if the phi node references itself directly.
1709 if (in == (Node*)this)
1710 return UnsafeLoop; // Unsafe loop
1711 // Unsafe loop if the phi node references itself through an unsafe data node.
1712 // Exclude cases with null inputs or data nodes which could reference
1713 // itself (safe for dead loops).
1714 if (in != NULL && !in->is_dead_loop_safe()) {
1715 // Check inputs of phi's inputs also.
1716 // It is much less expensive then full graph walk.
1717 uint cnt = in->req();
1718 uint i = (in->is_Proj() && !in->is_CFG()) ? 0 : 1;
1719 for (; i < cnt; ++i) {
1720 Node* m = in->in(i);
1721 if (m == (Node*)this)
1722 return UnsafeLoop; // Unsafe loop
1723 if (m != NULL && !m->is_dead_loop_safe()) {
1724 // Check the most common case (about 30% of all cases):
1725 // phi->Load/Store->AddP->(ConP ConP Con)/(Parm Parm Con).
1726 Node *m1 = (m->is_AddP() && m->req() > 3) ? m->in(1) : NULL;
1727 if (m1 == (Node*)this)
1728 return UnsafeLoop; // Unsafe loop
1729 if (m1 != NULL && m1 == m->in(2) &&
1730 m1->is_dead_loop_safe() && m->in(3)->is_Con()) {
1731 continue; // Safe case
1732 }
1733 // The phi references an unsafe node - need full analysis.
1734 return Unsafe;
1735 }
1736 }
1737 }
1738 return Safe; // Safe case - we can optimize the phi node.
1739}
1740
1741//------------------------------is_unsafe_data_reference-----------------------
1742// If phi can be reached through the data input - it is data loop.
1743bool PhiNode::is_unsafe_data_reference(Node *in) const {
1744 assert(req() > 1, "");
1745 // First, check simple cases when phi references itself directly or
1746 // through an other node.
1747 LoopSafety safety = simple_data_loop_check(in);
1748 if (safety == UnsafeLoop)
1749 return true; // phi references itself - unsafe loop
1750 else if (safety == Safe)
1751 return false; // Safe case - phi could be replaced with the unique input.
1752
1753 // Unsafe case when we should go through data graph to determine
1754 // if the phi references itself.
1755
1756 ResourceMark rm;
1757
1758 Arena *a = Thread::current()->resource_area();
1759 Node_List nstack(a);
1760 VectorSet visited(a);
1761
1762 nstack.push(in); // Start with unique input.
1763 visited.set(in->_idx);
1764 while (nstack.size() != 0) {
1765 Node* n = nstack.pop();
1766 uint cnt = n->req();
1767 uint i = (n->is_Proj() && !n->is_CFG()) ? 0 : 1;
1768 for (; i < cnt; i++) {
1769 Node* m = n->in(i);
1770 if (m == (Node*)this) {
1771 return true; // Data loop
1772 }
1773 if (m != NULL && !m->is_dead_loop_safe()) { // Only look for unsafe cases.
1774 if (!visited.test_set(m->_idx))
1775 nstack.push(m);
1776 }
1777 }
1778 }
1779 return false; // The phi is not reachable from its inputs
1780}
1781
1782
1783//------------------------------Ideal------------------------------------------
1784// Return a node which is more "ideal" than the current node. Must preserve
1785// the CFG, but we can still strip out dead paths.
1786Node *PhiNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1787 // The next should never happen after 6297035 fix.
1788 if( is_copy() ) // Already degraded to a Copy ?
1789 return NULL; // No change
1790
1791 Node *r = in(0); // RegionNode
1792 assert(r->in(0) == NULL || !r->in(0)->is_Root(), "not a specially hidden merge");
1793
1794 // Note: During parsing, phis are often transformed before their regions.
1795 // This means we have to use type_or_null to defend against untyped regions.
1796 if( phase->type_or_null(r) == Type::TOP ) // Dead code?
1797 return NULL; // No change
1798
1799 Node *top = phase->C->top();
1800 bool new_phi = (outcnt() == 0); // transforming new Phi
1801 // No change for igvn if new phi is not hooked
1802 if (new_phi && can_reshape)
1803 return NULL;
1804
1805 // The are 2 situations when only one valid phi's input is left
1806 // (in addition to Region input).
1807 // One: region is not loop - replace phi with this input.
1808 // Two: region is loop - replace phi with top since this data path is dead
1809 // and we need to break the dead data loop.
1810 Node* progress = NULL; // Record if any progress made
1811 for( uint j = 1; j < req(); ++j ){ // For all paths in
1812 // Check unreachable control paths
1813 Node* rc = r->in(j);
1814 Node* n = in(j); // Get the input
1815 if (rc == NULL || phase->type(rc) == Type::TOP) {
1816 if (n != top) { // Not already top?
1817 PhaseIterGVN *igvn = phase->is_IterGVN();
1818 if (can_reshape && igvn != NULL) {
1819 igvn->_worklist.push(r);
1820 }
1821 // Nuke it down
1822 if (can_reshape) {
1823 set_req_X(j, top, igvn);
1824 } else {
1825 set_req(j, top);
1826 }
1827 progress = this; // Record progress
1828 }
1829 }
1830 }
1831
1832 if (can_reshape && outcnt() == 0) {
1833 // set_req() above may kill outputs if Phi is referenced
1834 // only by itself on the dead (top) control path.
1835 return top;
1836 }
1837
1838 bool uncasted = false;
1839 Node* uin = unique_input(phase, false);
1840 if (uin == NULL && can_reshape) {
1841 uncasted = true;
1842 uin = unique_input(phase, true);
1843 }
1844 if (uin == top) { // Simplest case: no alive inputs.
1845 if (can_reshape) // IGVN transformation
1846 return top;
1847 else
1848 return NULL; // Identity will return TOP
1849 } else if (uin != NULL) {
1850 // Only one not-NULL unique input path is left.
1851 // Determine if this input is backedge of a loop.
1852 // (Skip new phis which have no uses and dead regions).
1853 if (outcnt() > 0 && r->in(0) != NULL) {
1854 // First, take the short cut when we know it is a loop and
1855 // the EntryControl data path is dead.
1856 // Loop node may have only one input because entry path
1857 // is removed in PhaseIdealLoop::Dominators().
1858 assert(!r->is_Loop() || r->req() <= 3, "Loop node should have 3 or less inputs");
1859 bool is_loop = (r->is_Loop() && r->req() == 3);
1860 // Then, check if there is a data loop when phi references itself directly
1861 // or through other data nodes.
1862 if ((is_loop && !uin->eqv_uncast(in(LoopNode::EntryControl))) ||
1863 (!is_loop && is_unsafe_data_reference(uin))) {
1864 // Break this data loop to avoid creation of a dead loop.
1865 if (can_reshape) {
1866 return top;
1867 } else {
1868 // We can't return top if we are in Parse phase - cut inputs only
1869 // let Identity to handle the case.
1870 replace_edge(uin, top);
1871 return NULL;
1872 }
1873 }
1874 }
1875
1876 if (uncasted) {
1877 // Add cast nodes between the phi to be removed and its unique input.
1878 // Wait until after parsing for the type information to propagate from the casts.
1879 assert(can_reshape, "Invalid during parsing");
1880 const Type* phi_type = bottom_type();
1881 assert(phi_type->isa_int() || phi_type->isa_ptr(), "bad phi type");
1882 // Add casts to carry the control dependency of the Phi that is
1883 // going away
1884 Node* cast = NULL;
1885 if (phi_type->isa_int()) {
1886 cast = ConstraintCastNode::make_cast(Op_CastII, r, uin, phi_type, true);
1887 } else {
1888 const Type* uin_type = phase->type(uin);
1889 if (!phi_type->isa_oopptr() && !uin_type->isa_oopptr()) {
1890 cast = ConstraintCastNode::make_cast(Op_CastPP, r, uin, phi_type, true);
1891 } else {
1892 // Use a CastPP for a cast to not null and a CheckCastPP for
1893 // a cast to a new klass (and both if both null-ness and
1894 // klass change).
1895
1896 // If the type of phi is not null but the type of uin may be
1897 // null, uin's type must be casted to not null
1898 if (phi_type->join(TypePtr::NOTNULL) == phi_type->remove_speculative() &&
1899 uin_type->join(TypePtr::NOTNULL) != uin_type->remove_speculative()) {
1900 cast = ConstraintCastNode::make_cast(Op_CastPP, r, uin, TypePtr::NOTNULL, true);
1901 }
1902
1903 // If the type of phi and uin, both casted to not null,
1904 // differ the klass of uin must be (check)cast'ed to match
1905 // that of phi
1906 if (phi_type->join_speculative(TypePtr::NOTNULL) != uin_type->join_speculative(TypePtr::NOTNULL)) {
1907 Node* n = uin;
1908 if (cast != NULL) {
1909 cast = phase->transform(cast);
1910 n = cast;
1911 }
1912 cast = ConstraintCastNode::make_cast(Op_CheckCastPP, r, n, phi_type, true);
1913 }
1914 if (cast == NULL) {
1915 cast = ConstraintCastNode::make_cast(Op_CastPP, r, uin, phi_type, true);
1916 }
1917 }
1918 }
1919 assert(cast != NULL, "cast should be set");
1920 cast = phase->transform(cast);
1921 // set all inputs to the new cast(s) so the Phi is removed by Identity
1922 PhaseIterGVN* igvn = phase->is_IterGVN();
1923 for (uint i = 1; i < req(); i++) {
1924 set_req_X(i, cast, igvn);
1925 }
1926 uin = cast;
1927 }
1928
1929 // One unique input.
1930 debug_only(Node* ident = Identity(phase));
1931 // The unique input must eventually be detected by the Identity call.
1932#ifdef ASSERT
1933 if (ident != uin && !ident->is_top()) {
1934 // print this output before failing assert
1935 r->dump(3);
1936 this->dump(3);
1937 ident->dump();
1938 uin->dump();
1939 }
1940#endif
1941 assert(ident == uin || ident->is_top(), "Identity must clean this up");
1942 return NULL;
1943 }
1944
1945 Node* opt = NULL;
1946 int true_path = is_diamond_phi();
1947 if( true_path != 0 ) {
1948 // Check for CMove'ing identity. If it would be unsafe,
1949 // handle it here. In the safe case, let Identity handle it.
1950 Node* unsafe_id = is_cmove_id(phase, true_path);
1951 if( unsafe_id != NULL && is_unsafe_data_reference(unsafe_id) )
1952 opt = unsafe_id;
1953
1954 // Check for simple convert-to-boolean pattern
1955 if( opt == NULL )
1956 opt = is_x2logic(phase, this, true_path);
1957
1958 // Check for absolute value
1959 if( opt == NULL )
1960 opt = is_absolute(phase, this, true_path);
1961
1962 // Check for conditional add
1963 if( opt == NULL && can_reshape )
1964 opt = is_cond_add(phase, this, true_path);
1965
1966 // These 4 optimizations could subsume the phi:
1967 // have to check for a dead data loop creation.
1968 if( opt != NULL ) {
1969 if( opt == unsafe_id || is_unsafe_data_reference(opt) ) {
1970 // Found dead loop.
1971 if( can_reshape )
1972 return top;
1973 // We can't return top if we are in Parse phase - cut inputs only
1974 // to stop further optimizations for this phi. Identity will return TOP.
1975 assert(req() == 3, "only diamond merge phi here");
1976 set_req(1, top);
1977 set_req(2, top);
1978 return NULL;
1979 } else {
1980 return opt;
1981 }
1982 }
1983 }
1984
1985 // Check for merging identical values and split flow paths
1986 if (can_reshape) {
1987 opt = split_flow_path(phase, this);
1988 // This optimization only modifies phi - don't need to check for dead loop.
1989 assert(opt == NULL || phase->eqv(opt, this), "do not elide phi");
1990 if (opt != NULL) return opt;
1991 }
1992
1993 if (in(1) != NULL && in(1)->Opcode() == Op_AddP && can_reshape) {
1994 // Try to undo Phi of AddP:
1995 // (Phi (AddP base base y) (AddP base2 base2 y))
1996 // becomes:
1997 // newbase := (Phi base base2)
1998 // (AddP newbase newbase y)
1999 //
2000 // This occurs as a result of unsuccessful split_thru_phi and
2001 // interferes with taking advantage of addressing modes. See the
2002 // clone_shift_expressions code in matcher.cpp
2003 Node* addp = in(1);
2004 const Type* type = addp->in(AddPNode::Base)->bottom_type();
2005 Node* y = addp->in(AddPNode::Offset);
2006 if (y != NULL && addp->in(AddPNode::Base) == addp->in(AddPNode::Address)) {
2007 // make sure that all the inputs are similar to the first one,
2008 // i.e. AddP with base == address and same offset as first AddP
2009 bool doit = true;
2010 for (uint i = 2; i < req(); i++) {
2011 if (in(i) == NULL ||
2012 in(i)->Opcode() != Op_AddP ||
2013 in(i)->in(AddPNode::Base) != in(i)->in(AddPNode::Address) ||
2014 in(i)->in(AddPNode::Offset) != y) {
2015 doit = false;
2016 break;
2017 }
2018 // Accumulate type for resulting Phi
2019 type = type->meet_speculative(in(i)->in(AddPNode::Base)->bottom_type());
2020 }
2021 Node* base = NULL;
2022 if (doit) {
2023 // Check for neighboring AddP nodes in a tree.
2024 // If they have a base, use that it.
2025 for (DUIterator_Fast kmax, k = this->fast_outs(kmax); k < kmax; k++) {
2026 Node* u = this->fast_out(k);
2027 if (u->is_AddP()) {
2028 Node* base2 = u->in(AddPNode::Base);
2029 if (base2 != NULL && !base2->is_top()) {
2030 if (base == NULL)
2031 base = base2;
2032 else if (base != base2)
2033 { doit = false; break; }
2034 }
2035 }
2036 }
2037 }
2038 if (doit) {
2039 if (base == NULL) {
2040 base = new PhiNode(in(0), type, NULL);
2041 for (uint i = 1; i < req(); i++) {
2042 base->init_req(i, in(i)->in(AddPNode::Base));
2043 }
2044 phase->is_IterGVN()->register_new_node_with_optimizer(base);
2045 }
2046 return new AddPNode(base, base, y);
2047 }
2048 }
2049 }
2050
2051 // Split phis through memory merges, so that the memory merges will go away.
2052 // Piggy-back this transformation on the search for a unique input....
2053 // It will be as if the merged memory is the unique value of the phi.
2054 // (Do not attempt this optimization unless parsing is complete.
2055 // It would make the parser's memory-merge logic sick.)
2056 // (MergeMemNode is not dead_loop_safe - need to check for dead loop.)
2057 if (progress == NULL && can_reshape && type() == Type::MEMORY) {
2058 // see if this phi should be sliced
2059 uint merge_width = 0;
2060 bool saw_self = false;
2061 for( uint i=1; i<req(); ++i ) {// For all paths in
2062 Node *ii = in(i);
2063 // TOP inputs should not be counted as safe inputs because if the
2064 // Phi references itself through all other inputs then splitting the
2065 // Phi through memory merges would create dead loop at later stage.
2066 if (ii == top) {
2067 return NULL; // Delay optimization until graph is cleaned.
2068 }
2069 if (ii->is_MergeMem()) {
2070 MergeMemNode* n = ii->as_MergeMem();
2071 merge_width = MAX2(merge_width, n->req());
2072 saw_self = saw_self || phase->eqv(n->base_memory(), this);
2073 }
2074 }
2075
2076 // This restriction is temporarily necessary to ensure termination:
2077 if (!saw_self && adr_type() == TypePtr::BOTTOM) merge_width = 0;
2078
2079 if (merge_width > Compile::AliasIdxRaw) {
2080 // found at least one non-empty MergeMem
2081 const TypePtr* at = adr_type();
2082 if (at != TypePtr::BOTTOM) {
2083 // Patch the existing phi to select an input from the merge:
2084 // Phi:AT1(...MergeMem(m0, m1, m2)...) into
2085 // Phi:AT1(...m1...)
2086 int alias_idx = phase->C->get_alias_index(at);
2087 for (uint i=1; i<req(); ++i) {
2088 Node *ii = in(i);
2089 if (ii->is_MergeMem()) {
2090 MergeMemNode* n = ii->as_MergeMem();
2091 // compress paths and change unreachable cycles to TOP
2092 // If not, we can update the input infinitely along a MergeMem cycle
2093 // Equivalent code is in MemNode::Ideal_common
2094 Node *m = phase->transform(n);
2095 if (outcnt() == 0) { // Above transform() may kill us!
2096 return top;
2097 }
2098 // If transformed to a MergeMem, get the desired slice
2099 // Otherwise the returned node represents memory for every slice
2100 Node *new_mem = (m->is_MergeMem()) ?
2101 m->as_MergeMem()->memory_at(alias_idx) : m;
2102 // Update input if it is progress over what we have now
2103 if (new_mem != ii) {
2104 set_req(i, new_mem);
2105 progress = this;
2106 }
2107 }
2108 }
2109 } else {
2110 // We know that at least one MergeMem->base_memory() == this
2111 // (saw_self == true). If all other inputs also references this phi
2112 // (directly or through data nodes) - it is dead loop.
2113 bool saw_safe_input = false;
2114 for (uint j = 1; j < req(); ++j) {
2115 Node *n = in(j);
2116 if (n->is_MergeMem() && n->as_MergeMem()->base_memory() == this)
2117 continue; // skip known cases
2118 if (!is_unsafe_data_reference(n)) {
2119 saw_safe_input = true; // found safe input
2120 break;
2121 }
2122 }
2123 if (!saw_safe_input)
2124 return top; // all inputs reference back to this phi - dead loop
2125
2126 // Phi(...MergeMem(m0, m1:AT1, m2:AT2)...) into
2127 // MergeMem(Phi(...m0...), Phi:AT1(...m1...), Phi:AT2(...m2...))
2128 PhaseIterGVN *igvn = phase->is_IterGVN();
2129 Node* hook = new Node(1);
2130 PhiNode* new_base = (PhiNode*) clone();
2131 // Must eagerly register phis, since they participate in loops.
2132 if (igvn) {
2133 igvn->register_new_node_with_optimizer(new_base);
2134 hook->add_req(new_base);
2135 }
2136 MergeMemNode* result = MergeMemNode::make(new_base);
2137 for (uint i = 1; i < req(); ++i) {
2138 Node *ii = in(i);
2139 if (ii->is_MergeMem()) {
2140 MergeMemNode* n = ii->as_MergeMem();
2141 for (MergeMemStream mms(result, n); mms.next_non_empty2(); ) {
2142 // If we have not seen this slice yet, make a phi for it.
2143 bool made_new_phi = false;
2144 if (mms.is_empty()) {
2145 Node* new_phi = new_base->slice_memory(mms.adr_type(phase->C));
2146 made_new_phi = true;
2147 if (igvn) {
2148 igvn->register_new_node_with_optimizer(new_phi);
2149 hook->add_req(new_phi);
2150 }
2151 mms.set_memory(new_phi);
2152 }
2153 Node* phi = mms.memory();
2154 assert(made_new_phi || phi->in(i) == n, "replace the i-th merge by a slice");
2155 phi->set_req(i, mms.memory2());
2156 }
2157 }
2158 }
2159 // Distribute all self-loops.
2160 { // (Extra braces to hide mms.)
2161 for (MergeMemStream mms(result); mms.next_non_empty(); ) {
2162 Node* phi = mms.memory();
2163 for (uint i = 1; i < req(); ++i) {
2164 if (phi->in(i) == this) phi->set_req(i, phi);
2165 }
2166 }
2167 }
2168 // now transform the new nodes, and return the mergemem
2169 for (MergeMemStream mms(result); mms.next_non_empty(); ) {
2170 Node* phi = mms.memory();
2171 mms.set_memory(phase->transform(phi));
2172 }
2173 if (igvn) { // Unhook.
2174 igvn->hash_delete(hook);
2175 for (uint i = 1; i < hook->req(); i++) {
2176 hook->set_req(i, NULL);
2177 }
2178 }
2179 // Replace self with the result.
2180 return result;
2181 }
2182 }
2183 //
2184 // Other optimizations on the memory chain
2185 //
2186 const TypePtr* at = adr_type();
2187 for( uint i=1; i<req(); ++i ) {// For all paths in
2188 Node *ii = in(i);
2189 Node *new_in = MemNode::optimize_memory_chain(ii, at, NULL, phase);
2190 if (ii != new_in ) {
2191 set_req(i, new_in);
2192 progress = this;
2193 }
2194 }
2195 }
2196
2197#ifdef _LP64
2198 // Push DecodeN/DecodeNKlass down through phi.
2199 // The rest of phi graph will transform by split EncodeP node though phis up.
2200 if ((UseCompressedOops || UseCompressedClassPointers) && can_reshape && progress == NULL) {
2201 bool may_push = true;
2202 bool has_decodeN = false;
2203 bool is_decodeN = false;
2204 for (uint i=1; i<req(); ++i) {// For all paths in
2205 Node *ii = in(i);
2206 if (ii->is_DecodeNarrowPtr() && ii->bottom_type() == bottom_type()) {
2207 // Do optimization if a non dead path exist.
2208 if (ii->in(1)->bottom_type() != Type::TOP) {
2209 has_decodeN = true;
2210 is_decodeN = ii->is_DecodeN();
2211 }
2212 } else if (!ii->is_Phi()) {
2213 may_push = false;
2214 }
2215 }
2216
2217 if (has_decodeN && may_push) {
2218 PhaseIterGVN *igvn = phase->is_IterGVN();
2219 // Make narrow type for new phi.
2220 const Type* narrow_t;
2221 if (is_decodeN) {
2222 narrow_t = TypeNarrowOop::make(this->bottom_type()->is_ptr());
2223 } else {
2224 narrow_t = TypeNarrowKlass::make(this->bottom_type()->is_ptr());
2225 }
2226 PhiNode* new_phi = new PhiNode(r, narrow_t);
2227 uint orig_cnt = req();
2228 for (uint i=1; i<req(); ++i) {// For all paths in
2229 Node *ii = in(i);
2230 Node* new_ii = NULL;
2231 if (ii->is_DecodeNarrowPtr()) {
2232 assert(ii->bottom_type() == bottom_type(), "sanity");
2233 new_ii = ii->in(1);
2234 } else {
2235 assert(ii->is_Phi(), "sanity");
2236 if (ii->as_Phi() == this) {
2237 new_ii = new_phi;
2238 } else {
2239 if (is_decodeN) {
2240 new_ii = new EncodePNode(ii, narrow_t);
2241 } else {
2242 new_ii = new EncodePKlassNode(ii, narrow_t);
2243 }
2244 igvn->register_new_node_with_optimizer(new_ii);
2245 }
2246 }
2247 new_phi->set_req(i, new_ii);
2248 }
2249 igvn->register_new_node_with_optimizer(new_phi, this);
2250 if (is_decodeN) {
2251 progress = new DecodeNNode(new_phi, bottom_type());
2252 } else {
2253 progress = new DecodeNKlassNode(new_phi, bottom_type());
2254 }
2255 }
2256 }
2257#endif
2258
2259 return progress; // Return any progress
2260}
2261
2262//------------------------------is_tripcount-----------------------------------
2263bool PhiNode::is_tripcount() const {
2264 return (in(0) != NULL && in(0)->is_CountedLoop() &&
2265 in(0)->as_CountedLoop()->phi() == this);
2266}
2267
2268//------------------------------out_RegMask------------------------------------
2269const RegMask &PhiNode::in_RegMask(uint i) const {
2270 return i ? out_RegMask() : RegMask::Empty;
2271}
2272
2273const RegMask &PhiNode::out_RegMask() const {
2274 uint ideal_reg = _type->ideal_reg();
2275 assert( ideal_reg != Node::NotAMachineReg, "invalid type at Phi" );
2276 if( ideal_reg == 0 ) return RegMask::Empty;
2277 assert(ideal_reg != Op_RegFlags, "flags register is not spillable");
2278 return *(Compile::current()->matcher()->idealreg2spillmask[ideal_reg]);
2279}
2280
2281#ifndef PRODUCT
2282void PhiNode::related(GrowableArray<Node*> *in_rel, GrowableArray<Node*> *out_rel, bool compact) const {
2283 // For a PhiNode, the set of related nodes includes all inputs till level 2,
2284 // and all outputs till level 1. In compact mode, inputs till level 1 are
2285 // collected.
2286 this->collect_nodes(in_rel, compact ? 1 : 2, false, false);
2287 this->collect_nodes(out_rel, -1, false, false);
2288}
2289
2290void PhiNode::dump_spec(outputStream *st) const {
2291 TypeNode::dump_spec(st);
2292 if (is_tripcount()) {
2293 st->print(" #tripcount");
2294 }
2295}
2296#endif
2297
2298
2299//=============================================================================
2300const Type* GotoNode::Value(PhaseGVN* phase) const {
2301 // If the input is reachable, then we are executed.
2302 // If the input is not reachable, then we are not executed.
2303 return phase->type(in(0));
2304}
2305
2306Node* GotoNode::Identity(PhaseGVN* phase) {
2307 return in(0); // Simple copy of incoming control
2308}
2309
2310const RegMask &GotoNode::out_RegMask() const {
2311 return RegMask::Empty;
2312}
2313
2314#ifndef PRODUCT
2315//-----------------------------related-----------------------------------------
2316// The related nodes of a GotoNode are all inputs at level 1, as well as the
2317// outputs at level 1. This is regardless of compact mode.
2318void GotoNode::related(GrowableArray<Node*> *in_rel, GrowableArray<Node*> *out_rel, bool compact) const {
2319 this->collect_nodes(in_rel, 1, false, false);
2320 this->collect_nodes(out_rel, -1, false, false);
2321}
2322#endif
2323
2324
2325//=============================================================================
2326const RegMask &JumpNode::out_RegMask() const {
2327 return RegMask::Empty;
2328}
2329
2330#ifndef PRODUCT
2331//-----------------------------related-----------------------------------------
2332// The related nodes of a JumpNode are all inputs at level 1, as well as the
2333// outputs at level 2 (to include actual jump targets beyond projection nodes).
2334// This is regardless of compact mode.
2335void JumpNode::related(GrowableArray<Node*> *in_rel, GrowableArray<Node*> *out_rel, bool compact) const {
2336 this->collect_nodes(in_rel, 1, false, false);
2337 this->collect_nodes(out_rel, -2, false, false);
2338}
2339#endif
2340
2341//=============================================================================
2342const RegMask &JProjNode::out_RegMask() const {
2343 return RegMask::Empty;
2344}
2345
2346//=============================================================================
2347const RegMask &CProjNode::out_RegMask() const {
2348 return RegMask::Empty;
2349}
2350
2351
2352
2353//=============================================================================
2354
2355uint PCTableNode::hash() const { return Node::hash() + _size; }
2356bool PCTableNode::cmp( const Node &n ) const
2357{ return _size == ((PCTableNode&)n)._size; }
2358
2359const Type *PCTableNode::bottom_type() const {
2360 const Type** f = TypeTuple::fields(_size);
2361 for( uint i = 0; i < _size; i++ ) f[i] = Type::CONTROL;
2362 return TypeTuple::make(_size, f);
2363}
2364
2365//------------------------------Value------------------------------------------
2366// Compute the type of the PCTableNode. If reachable it is a tuple of
2367// Control, otherwise the table targets are not reachable
2368const Type* PCTableNode::Value(PhaseGVN* phase) const {
2369 if( phase->type(in(0)) == Type::CONTROL )
2370 return bottom_type();
2371 return Type::TOP; // All paths dead? Then so are we
2372}
2373
2374//------------------------------Ideal------------------------------------------
2375// Return a node which is more "ideal" than the current node. Strip out
2376// control copies
2377Node *PCTableNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2378 return remove_dead_region(phase, can_reshape) ? this : NULL;
2379}
2380
2381//=============================================================================
2382uint JumpProjNode::hash() const {
2383 return Node::hash() + _dest_bci;
2384}
2385
2386bool JumpProjNode::cmp( const Node &n ) const {
2387 return ProjNode::cmp(n) &&
2388 _dest_bci == ((JumpProjNode&)n)._dest_bci;
2389}
2390
2391#ifndef PRODUCT
2392void JumpProjNode::dump_spec(outputStream *st) const {
2393 ProjNode::dump_spec(st);
2394 st->print("@bci %d ",_dest_bci);
2395}
2396
2397void JumpProjNode::dump_compact_spec(outputStream *st) const {
2398 ProjNode::dump_compact_spec(st);
2399 st->print("(%d)%d@%d", _switch_val, _proj_no, _dest_bci);
2400}
2401
2402void JumpProjNode::related(GrowableArray<Node*> *in_rel, GrowableArray<Node*> *out_rel, bool compact) const {
2403 // The related nodes of a JumpProjNode are its inputs and outputs at level 1.
2404 this->collect_nodes(in_rel, 1, false, false);
2405 this->collect_nodes(out_rel, -1, false, false);
2406}
2407#endif
2408
2409//=============================================================================
2410//------------------------------Value------------------------------------------
2411// Check for being unreachable, or for coming from a Rethrow. Rethrow's cannot
2412// have the default "fall_through_index" path.
2413const Type* CatchNode::Value(PhaseGVN* phase) const {
2414 // Unreachable? Then so are all paths from here.
2415 if( phase->type(in(0)) == Type::TOP ) return Type::TOP;
2416 // First assume all paths are reachable
2417 const Type** f = TypeTuple::fields(_size);
2418 for( uint i = 0; i < _size; i++ ) f[i] = Type::CONTROL;
2419 // Identify cases that will always throw an exception
2420 // () rethrow call
2421 // () virtual or interface call with NULL receiver
2422 // () call is a check cast with incompatible arguments
2423 if( in(1)->is_Proj() ) {
2424 Node *i10 = in(1)->in(0);
2425 if( i10->is_Call() ) {
2426 CallNode *call = i10->as_Call();
2427 // Rethrows always throw exceptions, never return
2428 if (call->entry_point() == OptoRuntime::rethrow_stub()) {
2429 f[CatchProjNode::fall_through_index] = Type::TOP;
2430 } else if( call->req() > TypeFunc::Parms ) {
2431 const Type *arg0 = phase->type( call->in(TypeFunc::Parms) );
2432 // Check for null receiver to virtual or interface calls
2433 if( call->is_CallDynamicJava() &&
2434 arg0->higher_equal(TypePtr::NULL_PTR) ) {
2435 f[CatchProjNode::fall_through_index] = Type::TOP;
2436 }
2437 } // End of if not a runtime stub
2438 } // End of if have call above me
2439 } // End of slot 1 is not a projection
2440 return TypeTuple::make(_size, f);
2441}
2442
2443//=============================================================================
2444uint CatchProjNode::hash() const {
2445 return Node::hash() + _handler_bci;
2446}
2447
2448
2449bool CatchProjNode::cmp( const Node &n ) const {
2450 return ProjNode::cmp(n) &&
2451 _handler_bci == ((CatchProjNode&)n)._handler_bci;
2452}
2453
2454
2455//------------------------------Identity---------------------------------------
2456// If only 1 target is possible, choose it if it is the main control
2457Node* CatchProjNode::Identity(PhaseGVN* phase) {
2458 // If my value is control and no other value is, then treat as ID
2459 const TypeTuple *t = phase->type(in(0))->is_tuple();
2460 if (t->field_at(_con) != Type::CONTROL) return this;
2461 // If we remove the last CatchProj and elide the Catch/CatchProj, then we
2462 // also remove any exception table entry. Thus we must know the call
2463 // feeding the Catch will not really throw an exception. This is ok for
2464 // the main fall-thru control (happens when we know a call can never throw
2465 // an exception) or for "rethrow", because a further optimization will
2466 // yank the rethrow (happens when we inline a function that can throw an
2467 // exception and the caller has no handler). Not legal, e.g., for passing
2468 // a NULL receiver to a v-call, or passing bad types to a slow-check-cast.
2469 // These cases MUST throw an exception via the runtime system, so the VM
2470 // will be looking for a table entry.
2471 Node *proj = in(0)->in(1); // Expect a proj feeding CatchNode
2472 CallNode *call;
2473 if (_con != TypeFunc::Control && // Bail out if not the main control.
2474 !(proj->is_Proj() && // AND NOT a rethrow
2475 proj->in(0)->is_Call() &&
2476 (call = proj->in(0)->as_Call()) &&
2477 call->entry_point() == OptoRuntime::rethrow_stub()))
2478 return this;
2479
2480 // Search for any other path being control
2481 for (uint i = 0; i < t->cnt(); i++) {
2482 if (i != _con && t->field_at(i) == Type::CONTROL)
2483 return this;
2484 }
2485 // Only my path is possible; I am identity on control to the jump
2486 return in(0)->in(0);
2487}
2488
2489
2490#ifndef PRODUCT
2491void CatchProjNode::dump_spec(outputStream *st) const {
2492 ProjNode::dump_spec(st);
2493 st->print("@bci %d ",_handler_bci);
2494}
2495#endif
2496
2497//=============================================================================
2498//------------------------------Identity---------------------------------------
2499// Check for CreateEx being Identity.
2500Node* CreateExNode::Identity(PhaseGVN* phase) {
2501 if( phase->type(in(1)) == Type::TOP ) return in(1);
2502 if( phase->type(in(0)) == Type::TOP ) return in(0);
2503 // We only come from CatchProj, unless the CatchProj goes away.
2504 // If the CatchProj is optimized away, then we just carry the
2505 // exception oop through.
2506 CallNode *call = in(1)->in(0)->as_Call();
2507
2508 return ( in(0)->is_CatchProj() && in(0)->in(0)->in(1) == in(1) )
2509 ? this
2510 : call->in(TypeFunc::Parms);
2511}
2512
2513//=============================================================================
2514//------------------------------Value------------------------------------------
2515// Check for being unreachable.
2516const Type* NeverBranchNode::Value(PhaseGVN* phase) const {
2517 if (!in(0) || in(0)->is_top()) return Type::TOP;
2518 return bottom_type();
2519}
2520
2521//------------------------------Ideal------------------------------------------
2522// Check for no longer being part of a loop
2523Node *NeverBranchNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2524 if (can_reshape && !in(0)->is_Loop()) {
2525 // Dead code elimination can sometimes delete this projection so
2526 // if it's not there, there's nothing to do.
2527 Node* fallthru = proj_out_or_null(0);
2528 if (fallthru != NULL) {
2529 phase->is_IterGVN()->replace_node(fallthru, in(0));
2530 }
2531 return phase->C->top();
2532 }
2533 return NULL;
2534}
2535
2536#ifndef PRODUCT
2537void NeverBranchNode::format( PhaseRegAlloc *ra_, outputStream *st) const {
2538 st->print("%s", Name());
2539}
2540#endif
2541