| 1 | /* |
| 2 | * Copyright (c) 2005, 2018, Oracle and/or its affiliates. All rights reserved. |
| 3 | * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
| 4 | * |
| 5 | * This code is free software; you can redistribute it and/or modify it |
| 6 | * under the terms of the GNU General Public License version 2 only, as |
| 7 | * published by the Free Software Foundation. |
| 8 | * |
| 9 | * This code is distributed in the hope that it will be useful, but WITHOUT |
| 10 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| 11 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| 12 | * version 2 for more details (a copy is included in the LICENSE file that |
| 13 | * accompanied this code). |
| 14 | * |
| 15 | * You should have received a copy of the GNU General Public License version |
| 16 | * 2 along with this work; if not, write to the Free Software Foundation, |
| 17 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
| 18 | * |
| 19 | * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
| 20 | * or visit www.oracle.com if you need additional information or have any |
| 21 | * questions. |
| 22 | * |
| 23 | */ |
| 24 | |
| 25 | #include "precompiled.hpp" |
| 26 | #include "compiler/compileLog.hpp" |
| 27 | #include "gc/shared/collectedHeap.inline.hpp" |
| 28 | #include "libadt/vectset.hpp" |
| 29 | #include "memory/universe.hpp" |
| 30 | #include "opto/addnode.hpp" |
| 31 | #include "opto/arraycopynode.hpp" |
| 32 | #include "opto/callnode.hpp" |
| 33 | #include "opto/castnode.hpp" |
| 34 | #include "opto/cfgnode.hpp" |
| 35 | #include "opto/compile.hpp" |
| 36 | #include "opto/convertnode.hpp" |
| 37 | #include "opto/graphKit.hpp" |
| 38 | #include "opto/locknode.hpp" |
| 39 | #include "opto/loopnode.hpp" |
| 40 | #include "opto/macro.hpp" |
| 41 | #include "opto/memnode.hpp" |
| 42 | #include "opto/narrowptrnode.hpp" |
| 43 | #include "opto/node.hpp" |
| 44 | #include "opto/opaquenode.hpp" |
| 45 | #include "opto/phaseX.hpp" |
| 46 | #include "opto/rootnode.hpp" |
| 47 | #include "opto/runtime.hpp" |
| 48 | #include "opto/subnode.hpp" |
| 49 | #include "opto/type.hpp" |
| 50 | #include "runtime/sharedRuntime.hpp" |
| 51 | #include "utilities/macros.hpp" |
| 52 | #if INCLUDE_G1GC |
| 53 | #include "gc/g1/g1ThreadLocalData.hpp" |
| 54 | #endif // INCLUDE_G1GC |
| 55 | #if INCLUDE_SHENANDOAHGC |
| 56 | #include "gc/shenandoah/c2/shenandoahBarrierSetC2.hpp" |
| 57 | #endif |
| 58 | |
| 59 | |
| 60 | // |
| 61 | // Replace any references to "oldref" in inputs to "use" with "newref". |
| 62 | // Returns the number of replacements made. |
| 63 | // |
| 64 | int PhaseMacroExpand::replace_input(Node *use, Node *oldref, Node *newref) { |
| 65 | int nreplacements = 0; |
| 66 | uint req = use->req(); |
| 67 | for (uint j = 0; j < use->len(); j++) { |
| 68 | Node *uin = use->in(j); |
| 69 | if (uin == oldref) { |
| 70 | if (j < req) |
| 71 | use->set_req(j, newref); |
| 72 | else |
| 73 | use->set_prec(j, newref); |
| 74 | nreplacements++; |
| 75 | } else if (j >= req && uin == NULL) { |
| 76 | break; |
| 77 | } |
| 78 | } |
| 79 | return nreplacements; |
| 80 | } |
| 81 | |
| 82 | void PhaseMacroExpand::copy_call_debug_info(CallNode *oldcall, CallNode * newcall) { |
| 83 | // Copy debug information and adjust JVMState information |
| 84 | uint old_dbg_start = oldcall->tf()->domain()->cnt(); |
| 85 | uint new_dbg_start = newcall->tf()->domain()->cnt(); |
| 86 | int jvms_adj = new_dbg_start - old_dbg_start; |
| 87 | assert (new_dbg_start == newcall->req(), "argument count mismatch" ); |
| 88 | |
| 89 | // SafePointScalarObject node could be referenced several times in debug info. |
| 90 | // Use Dict to record cloned nodes. |
| 91 | Dict* sosn_map = new Dict(cmpkey,hashkey); |
| 92 | for (uint i = old_dbg_start; i < oldcall->req(); i++) { |
| 93 | Node* old_in = oldcall->in(i); |
| 94 | // Clone old SafePointScalarObjectNodes, adjusting their field contents. |
| 95 | if (old_in != NULL && old_in->is_SafePointScalarObject()) { |
| 96 | SafePointScalarObjectNode* old_sosn = old_in->as_SafePointScalarObject(); |
| 97 | uint old_unique = C->unique(); |
| 98 | Node* new_in = old_sosn->clone(sosn_map); |
| 99 | if (old_unique != C->unique()) { // New node? |
| 100 | new_in->set_req(0, C->root()); // reset control edge |
| 101 | new_in = transform_later(new_in); // Register new node. |
| 102 | } |
| 103 | old_in = new_in; |
| 104 | } |
| 105 | newcall->add_req(old_in); |
| 106 | } |
| 107 | |
| 108 | // JVMS may be shared so clone it before we modify it |
| 109 | newcall->set_jvms(oldcall->jvms() != NULL ? oldcall->jvms()->clone_deep(C) : NULL); |
| 110 | for (JVMState *jvms = newcall->jvms(); jvms != NULL; jvms = jvms->caller()) { |
| 111 | jvms->set_map(newcall); |
| 112 | jvms->set_locoff(jvms->locoff()+jvms_adj); |
| 113 | jvms->set_stkoff(jvms->stkoff()+jvms_adj); |
| 114 | jvms->set_monoff(jvms->monoff()+jvms_adj); |
| 115 | jvms->set_scloff(jvms->scloff()+jvms_adj); |
| 116 | jvms->set_endoff(jvms->endoff()+jvms_adj); |
| 117 | } |
| 118 | } |
| 119 | |
| 120 | Node* PhaseMacroExpand::opt_bits_test(Node* ctrl, Node* region, int edge, Node* word, int mask, int bits, bool return_fast_path) { |
| 121 | Node* cmp; |
| 122 | if (mask != 0) { |
| 123 | Node* and_node = transform_later(new AndXNode(word, MakeConX(mask))); |
| 124 | cmp = transform_later(new CmpXNode(and_node, MakeConX(bits))); |
| 125 | } else { |
| 126 | cmp = word; |
| 127 | } |
| 128 | Node* bol = transform_later(new BoolNode(cmp, BoolTest::ne)); |
| 129 | IfNode* iff = new IfNode( ctrl, bol, PROB_MIN, COUNT_UNKNOWN ); |
| 130 | transform_later(iff); |
| 131 | |
| 132 | // Fast path taken. |
| 133 | Node *fast_taken = transform_later(new IfFalseNode(iff)); |
| 134 | |
| 135 | // Fast path not-taken, i.e. slow path |
| 136 | Node *slow_taken = transform_later(new IfTrueNode(iff)); |
| 137 | |
| 138 | if (return_fast_path) { |
| 139 | region->init_req(edge, slow_taken); // Capture slow-control |
| 140 | return fast_taken; |
| 141 | } else { |
| 142 | region->init_req(edge, fast_taken); // Capture fast-control |
| 143 | return slow_taken; |
| 144 | } |
| 145 | } |
| 146 | |
| 147 | //--------------------copy_predefined_input_for_runtime_call-------------------- |
| 148 | void PhaseMacroExpand::copy_predefined_input_for_runtime_call(Node * ctrl, CallNode* oldcall, CallNode* call) { |
| 149 | // Set fixed predefined input arguments |
| 150 | call->init_req( TypeFunc::Control, ctrl ); |
| 151 | call->init_req( TypeFunc::I_O , oldcall->in( TypeFunc::I_O) ); |
| 152 | call->init_req( TypeFunc::Memory , oldcall->in( TypeFunc::Memory ) ); // ????? |
| 153 | call->init_req( TypeFunc::ReturnAdr, oldcall->in( TypeFunc::ReturnAdr ) ); |
| 154 | call->init_req( TypeFunc::FramePtr, oldcall->in( TypeFunc::FramePtr ) ); |
| 155 | } |
| 156 | |
| 157 | //------------------------------make_slow_call--------------------------------- |
| 158 | CallNode* PhaseMacroExpand::make_slow_call(CallNode *oldcall, const TypeFunc* slow_call_type, |
| 159 | address slow_call, const char* leaf_name, Node* slow_path, |
| 160 | Node* parm0, Node* parm1, Node* parm2) { |
| 161 | |
| 162 | // Slow-path call |
| 163 | CallNode *call = leaf_name |
| 164 | ? (CallNode*)new CallLeafNode ( slow_call_type, slow_call, leaf_name, TypeRawPtr::BOTTOM ) |
| 165 | : (CallNode*)new CallStaticJavaNode( slow_call_type, slow_call, OptoRuntime::stub_name(slow_call), oldcall->jvms()->bci(), TypeRawPtr::BOTTOM ); |
| 166 | |
| 167 | // Slow path call has no side-effects, uses few values |
| 168 | copy_predefined_input_for_runtime_call(slow_path, oldcall, call ); |
| 169 | if (parm0 != NULL) call->init_req(TypeFunc::Parms+0, parm0); |
| 170 | if (parm1 != NULL) call->init_req(TypeFunc::Parms+1, parm1); |
| 171 | if (parm2 != NULL) call->init_req(TypeFunc::Parms+2, parm2); |
| 172 | copy_call_debug_info(oldcall, call); |
| 173 | call->set_cnt(PROB_UNLIKELY_MAG(4)); // Same effect as RC_UNCOMMON. |
| 174 | _igvn.replace_node(oldcall, call); |
| 175 | transform_later(call); |
| 176 | |
| 177 | return call; |
| 178 | } |
| 179 | |
| 180 | void PhaseMacroExpand::extract_call_projections(CallNode *call) { |
| 181 | _fallthroughproj = NULL; |
| 182 | _fallthroughcatchproj = NULL; |
| 183 | _ioproj_fallthrough = NULL; |
| 184 | _ioproj_catchall = NULL; |
| 185 | _catchallcatchproj = NULL; |
| 186 | _memproj_fallthrough = NULL; |
| 187 | _memproj_catchall = NULL; |
| 188 | _resproj = NULL; |
| 189 | for (DUIterator_Fast imax, i = call->fast_outs(imax); i < imax; i++) { |
| 190 | ProjNode *pn = call->fast_out(i)->as_Proj(); |
| 191 | switch (pn->_con) { |
| 192 | case TypeFunc::Control: |
| 193 | { |
| 194 | // For Control (fallthrough) and I_O (catch_all_index) we have CatchProj -> Catch -> Proj |
| 195 | _fallthroughproj = pn; |
| 196 | DUIterator_Fast jmax, j = pn->fast_outs(jmax); |
| 197 | const Node *cn = pn->fast_out(j); |
| 198 | if (cn->is_Catch()) { |
| 199 | ProjNode *cpn = NULL; |
| 200 | for (DUIterator_Fast kmax, k = cn->fast_outs(kmax); k < kmax; k++) { |
| 201 | cpn = cn->fast_out(k)->as_Proj(); |
| 202 | assert(cpn->is_CatchProj(), "must be a CatchProjNode" ); |
| 203 | if (cpn->_con == CatchProjNode::fall_through_index) |
| 204 | _fallthroughcatchproj = cpn; |
| 205 | else { |
| 206 | assert(cpn->_con == CatchProjNode::catch_all_index, "must be correct index." ); |
| 207 | _catchallcatchproj = cpn; |
| 208 | } |
| 209 | } |
| 210 | } |
| 211 | break; |
| 212 | } |
| 213 | case TypeFunc::I_O: |
| 214 | if (pn->_is_io_use) |
| 215 | _ioproj_catchall = pn; |
| 216 | else |
| 217 | _ioproj_fallthrough = pn; |
| 218 | break; |
| 219 | case TypeFunc::Memory: |
| 220 | if (pn->_is_io_use) |
| 221 | _memproj_catchall = pn; |
| 222 | else |
| 223 | _memproj_fallthrough = pn; |
| 224 | break; |
| 225 | case TypeFunc::Parms: |
| 226 | _resproj = pn; |
| 227 | break; |
| 228 | default: |
| 229 | assert(false, "unexpected projection from allocation node." ); |
| 230 | } |
| 231 | } |
| 232 | |
| 233 | } |
| 234 | |
| 235 | void PhaseMacroExpand::eliminate_gc_barrier(Node* p2x) { |
| 236 | BarrierSetC2 *bs = BarrierSet::barrier_set()->barrier_set_c2(); |
| 237 | bs->eliminate_gc_barrier(this, p2x); |
| 238 | } |
| 239 | |
| 240 | // Search for a memory operation for the specified memory slice. |
| 241 | static Node *scan_mem_chain(Node *mem, int alias_idx, int offset, Node *start_mem, Node *alloc, PhaseGVN *phase) { |
| 242 | Node *orig_mem = mem; |
| 243 | Node *alloc_mem = alloc->in(TypeFunc::Memory); |
| 244 | const TypeOopPtr *tinst = phase->C->get_adr_type(alias_idx)->isa_oopptr(); |
| 245 | while (true) { |
| 246 | if (mem == alloc_mem || mem == start_mem ) { |
| 247 | return mem; // hit one of our sentinels |
| 248 | } else if (mem->is_MergeMem()) { |
| 249 | mem = mem->as_MergeMem()->memory_at(alias_idx); |
| 250 | } else if (mem->is_Proj() && mem->as_Proj()->_con == TypeFunc::Memory) { |
| 251 | Node *in = mem->in(0); |
| 252 | // we can safely skip over safepoints, calls, locks and membars because we |
| 253 | // already know that the object is safe to eliminate. |
| 254 | if (in->is_Initialize() && in->as_Initialize()->allocation() == alloc) { |
| 255 | return in; |
| 256 | } else if (in->is_Call()) { |
| 257 | CallNode *call = in->as_Call(); |
| 258 | if (call->may_modify(tinst, phase)) { |
| 259 | assert(call->is_ArrayCopy(), "ArrayCopy is the only call node that doesn't make allocation escape" ); |
| 260 | if (call->as_ArrayCopy()->modifies(offset, offset, phase, false)) { |
| 261 | return in; |
| 262 | } |
| 263 | } |
| 264 | mem = in->in(TypeFunc::Memory); |
| 265 | } else if (in->is_MemBar()) { |
| 266 | ArrayCopyNode* ac = NULL; |
| 267 | if (ArrayCopyNode::may_modify(tinst, in->as_MemBar(), phase, ac)) { |
| 268 | assert(ac != NULL && ac->is_clonebasic(), "Only basic clone is a non escaping clone" ); |
| 269 | return ac; |
| 270 | } |
| 271 | mem = in->in(TypeFunc::Memory); |
| 272 | } else { |
| 273 | assert(false, "unexpected projection" ); |
| 274 | } |
| 275 | } else if (mem->is_Store()) { |
| 276 | const TypePtr* atype = mem->as_Store()->adr_type(); |
| 277 | int adr_idx = phase->C->get_alias_index(atype); |
| 278 | if (adr_idx == alias_idx) { |
| 279 | assert(atype->isa_oopptr(), "address type must be oopptr" ); |
| 280 | int adr_offset = atype->offset(); |
| 281 | uint adr_iid = atype->is_oopptr()->instance_id(); |
| 282 | // Array elements references have the same alias_idx |
| 283 | // but different offset and different instance_id. |
| 284 | if (adr_offset == offset && adr_iid == alloc->_idx) |
| 285 | return mem; |
| 286 | } else { |
| 287 | assert(adr_idx == Compile::AliasIdxRaw, "address must match or be raw" ); |
| 288 | } |
| 289 | mem = mem->in(MemNode::Memory); |
| 290 | } else if (mem->is_ClearArray()) { |
| 291 | if (!ClearArrayNode::step_through(&mem, alloc->_idx, phase)) { |
| 292 | // Can not bypass initialization of the instance |
| 293 | // we are looking. |
| 294 | debug_only(intptr_t offset;) |
| 295 | assert(alloc == AllocateNode::Ideal_allocation(mem->in(3), phase, offset), "sanity" ); |
| 296 | InitializeNode* init = alloc->as_Allocate()->initialization(); |
| 297 | // We are looking for stored value, return Initialize node |
| 298 | // or memory edge from Allocate node. |
| 299 | if (init != NULL) |
| 300 | return init; |
| 301 | else |
| 302 | return alloc->in(TypeFunc::Memory); // It will produce zero value (see callers). |
| 303 | } |
| 304 | // Otherwise skip it (the call updated 'mem' value). |
| 305 | } else if (mem->Opcode() == Op_SCMemProj) { |
| 306 | mem = mem->in(0); |
| 307 | Node* adr = NULL; |
| 308 | if (mem->is_LoadStore()) { |
| 309 | adr = mem->in(MemNode::Address); |
| 310 | } else { |
| 311 | assert(mem->Opcode() == Op_EncodeISOArray || |
| 312 | mem->Opcode() == Op_StrCompressedCopy, "sanity" ); |
| 313 | adr = mem->in(3); // Destination array |
| 314 | } |
| 315 | const TypePtr* atype = adr->bottom_type()->is_ptr(); |
| 316 | int adr_idx = phase->C->get_alias_index(atype); |
| 317 | if (adr_idx == alias_idx) { |
| 318 | DEBUG_ONLY(mem->dump();) |
| 319 | assert(false, "Object is not scalar replaceable if a LoadStore node accesses its field" ); |
| 320 | return NULL; |
| 321 | } |
| 322 | mem = mem->in(MemNode::Memory); |
| 323 | } else if (mem->Opcode() == Op_StrInflatedCopy) { |
| 324 | Node* adr = mem->in(3); // Destination array |
| 325 | const TypePtr* atype = adr->bottom_type()->is_ptr(); |
| 326 | int adr_idx = phase->C->get_alias_index(atype); |
| 327 | if (adr_idx == alias_idx) { |
| 328 | DEBUG_ONLY(mem->dump();) |
| 329 | assert(false, "Object is not scalar replaceable if a StrInflatedCopy node accesses its field" ); |
| 330 | return NULL; |
| 331 | } |
| 332 | mem = mem->in(MemNode::Memory); |
| 333 | } else { |
| 334 | return mem; |
| 335 | } |
| 336 | assert(mem != orig_mem, "dead memory loop" ); |
| 337 | } |
| 338 | } |
| 339 | |
| 340 | // Generate loads from source of the arraycopy for fields of |
| 341 | // destination needed at a deoptimization point |
| 342 | Node* PhaseMacroExpand::make_arraycopy_load(ArrayCopyNode* ac, intptr_t offset, Node* ctl, Node* mem, BasicType ft, const Type *ftype, AllocateNode *alloc) { |
| 343 | BasicType bt = ft; |
| 344 | const Type *type = ftype; |
| 345 | if (ft == T_NARROWOOP) { |
| 346 | bt = T_OBJECT; |
| 347 | type = ftype->make_oopptr(); |
| 348 | } |
| 349 | Node* res = NULL; |
| 350 | if (ac->is_clonebasic()) { |
| 351 | Node* base = ac->in(ArrayCopyNode::Src)->in(AddPNode::Base); |
| 352 | Node* adr = _igvn.transform(new AddPNode(base, base, MakeConX(offset))); |
| 353 | const TypePtr* adr_type = _igvn.type(base)->is_ptr()->add_offset(offset); |
| 354 | res = LoadNode::make(_igvn, ctl, mem, adr, adr_type, type, bt, MemNode::unordered, LoadNode::Pinned); |
| 355 | } else { |
| 356 | if (ac->modifies(offset, offset, &_igvn, true)) { |
| 357 | assert(ac->in(ArrayCopyNode::Dest) == alloc->result_cast(), "arraycopy destination should be allocation's result" ); |
| 358 | uint shift = exact_log2(type2aelembytes(bt)); |
| 359 | Node* diff = _igvn.transform(new SubINode(ac->in(ArrayCopyNode::SrcPos), ac->in(ArrayCopyNode::DestPos))); |
| 360 | #ifdef _LP64 |
| 361 | diff = _igvn.transform(new ConvI2LNode(diff)); |
| 362 | #endif |
| 363 | diff = _igvn.transform(new LShiftXNode(diff, intcon(shift))); |
| 364 | |
| 365 | Node* off = _igvn.transform(new AddXNode(MakeConX(offset), diff)); |
| 366 | Node* base = ac->in(ArrayCopyNode::Src); |
| 367 | Node* adr = _igvn.transform(new AddPNode(base, base, off)); |
| 368 | const TypePtr* adr_type = _igvn.type(base)->is_ptr()->add_offset(offset); |
| 369 | res = LoadNode::make(_igvn, ctl, mem, adr, adr_type, type, bt, MemNode::unordered, LoadNode::Pinned); |
| 370 | } |
| 371 | } |
| 372 | if (res != NULL) { |
| 373 | res = _igvn.transform(res); |
| 374 | if (ftype->isa_narrowoop()) { |
| 375 | // PhaseMacroExpand::scalar_replacement adds DecodeN nodes |
| 376 | res = _igvn.transform(new EncodePNode(res, ftype)); |
| 377 | } |
| 378 | return res; |
| 379 | } |
| 380 | return NULL; |
| 381 | } |
| 382 | |
| 383 | // |
| 384 | // Given a Memory Phi, compute a value Phi containing the values from stores |
| 385 | // on the input paths. |
| 386 | // Note: this function is recursive, its depth is limited by the "level" argument |
| 387 | // Returns the computed Phi, or NULL if it cannot compute it. |
| 388 | Node *PhaseMacroExpand::value_from_mem_phi(Node *mem, BasicType ft, const Type *phi_type, const TypeOopPtr *adr_t, AllocateNode *alloc, Node_Stack *value_phis, int level) { |
| 389 | assert(mem->is_Phi(), "sanity" ); |
| 390 | int alias_idx = C->get_alias_index(adr_t); |
| 391 | int offset = adr_t->offset(); |
| 392 | int instance_id = adr_t->instance_id(); |
| 393 | |
| 394 | // Check if an appropriate value phi already exists. |
| 395 | Node* region = mem->in(0); |
| 396 | for (DUIterator_Fast kmax, k = region->fast_outs(kmax); k < kmax; k++) { |
| 397 | Node* phi = region->fast_out(k); |
| 398 | if (phi->is_Phi() && phi != mem && |
| 399 | phi->as_Phi()->is_same_inst_field(phi_type, (int)mem->_idx, instance_id, alias_idx, offset)) { |
| 400 | return phi; |
| 401 | } |
| 402 | } |
| 403 | // Check if an appropriate new value phi already exists. |
| 404 | Node* new_phi = value_phis->find(mem->_idx); |
| 405 | if (new_phi != NULL) |
| 406 | return new_phi; |
| 407 | |
| 408 | if (level <= 0) { |
| 409 | return NULL; // Give up: phi tree too deep |
| 410 | } |
| 411 | Node *start_mem = C->start()->proj_out_or_null(TypeFunc::Memory); |
| 412 | Node *alloc_mem = alloc->in(TypeFunc::Memory); |
| 413 | |
| 414 | uint length = mem->req(); |
| 415 | GrowableArray <Node *> values(length, length, NULL, false); |
| 416 | |
| 417 | // create a new Phi for the value |
| 418 | PhiNode *phi = new PhiNode(mem->in(0), phi_type, NULL, mem->_idx, instance_id, alias_idx, offset); |
| 419 | transform_later(phi); |
| 420 | value_phis->push(phi, mem->_idx); |
| 421 | |
| 422 | for (uint j = 1; j < length; j++) { |
| 423 | Node *in = mem->in(j); |
| 424 | if (in == NULL || in->is_top()) { |
| 425 | values.at_put(j, in); |
| 426 | } else { |
| 427 | Node *val = scan_mem_chain(in, alias_idx, offset, start_mem, alloc, &_igvn); |
| 428 | if (val == start_mem || val == alloc_mem) { |
| 429 | // hit a sentinel, return appropriate 0 value |
| 430 | values.at_put(j, _igvn.zerocon(ft)); |
| 431 | continue; |
| 432 | } |
| 433 | if (val->is_Initialize()) { |
| 434 | val = val->as_Initialize()->find_captured_store(offset, type2aelembytes(ft), &_igvn); |
| 435 | } |
| 436 | if (val == NULL) { |
| 437 | return NULL; // can't find a value on this path |
| 438 | } |
| 439 | if (val == mem) { |
| 440 | values.at_put(j, mem); |
| 441 | } else if (val->is_Store()) { |
| 442 | Node* n = val->in(MemNode::ValueIn); |
| 443 | BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); |
| 444 | n = bs->step_over_gc_barrier(n); |
| 445 | values.at_put(j, n); |
| 446 | } else if(val->is_Proj() && val->in(0) == alloc) { |
| 447 | values.at_put(j, _igvn.zerocon(ft)); |
| 448 | } else if (val->is_Phi()) { |
| 449 | val = value_from_mem_phi(val, ft, phi_type, adr_t, alloc, value_phis, level-1); |
| 450 | if (val == NULL) { |
| 451 | return NULL; |
| 452 | } |
| 453 | values.at_put(j, val); |
| 454 | } else if (val->Opcode() == Op_SCMemProj) { |
| 455 | assert(val->in(0)->is_LoadStore() || |
| 456 | val->in(0)->Opcode() == Op_EncodeISOArray || |
| 457 | val->in(0)->Opcode() == Op_StrCompressedCopy, "sanity" ); |
| 458 | assert(false, "Object is not scalar replaceable if a LoadStore node accesses its field" ); |
| 459 | return NULL; |
| 460 | } else if (val->is_ArrayCopy()) { |
| 461 | Node* res = make_arraycopy_load(val->as_ArrayCopy(), offset, val->in(0), val->in(TypeFunc::Memory), ft, phi_type, alloc); |
| 462 | if (res == NULL) { |
| 463 | return NULL; |
| 464 | } |
| 465 | values.at_put(j, res); |
| 466 | } else { |
| 467 | #ifdef ASSERT |
| 468 | val->dump(); |
| 469 | assert(false, "unknown node on this path" ); |
| 470 | #endif |
| 471 | return NULL; // unknown node on this path |
| 472 | } |
| 473 | } |
| 474 | } |
| 475 | // Set Phi's inputs |
| 476 | for (uint j = 1; j < length; j++) { |
| 477 | if (values.at(j) == mem) { |
| 478 | phi->init_req(j, phi); |
| 479 | } else { |
| 480 | phi->init_req(j, values.at(j)); |
| 481 | } |
| 482 | } |
| 483 | return phi; |
| 484 | } |
| 485 | |
| 486 | // Search the last value stored into the object's field. |
| 487 | Node *PhaseMacroExpand::value_from_mem(Node *sfpt_mem, Node *sfpt_ctl, BasicType ft, const Type *ftype, const TypeOopPtr *adr_t, AllocateNode *alloc) { |
| 488 | assert(adr_t->is_known_instance_field(), "instance required" ); |
| 489 | int instance_id = adr_t->instance_id(); |
| 490 | assert((uint)instance_id == alloc->_idx, "wrong allocation" ); |
| 491 | |
| 492 | int alias_idx = C->get_alias_index(adr_t); |
| 493 | int offset = adr_t->offset(); |
| 494 | Node *start_mem = C->start()->proj_out_or_null(TypeFunc::Memory); |
| 495 | Node *alloc_ctrl = alloc->in(TypeFunc::Control); |
| 496 | Node *alloc_mem = alloc->in(TypeFunc::Memory); |
| 497 | Arena *a = Thread::current()->resource_area(); |
| 498 | VectorSet visited(a); |
| 499 | |
| 500 | |
| 501 | bool done = sfpt_mem == alloc_mem; |
| 502 | Node *mem = sfpt_mem; |
| 503 | while (!done) { |
| 504 | if (visited.test_set(mem->_idx)) { |
| 505 | return NULL; // found a loop, give up |
| 506 | } |
| 507 | mem = scan_mem_chain(mem, alias_idx, offset, start_mem, alloc, &_igvn); |
| 508 | if (mem == start_mem || mem == alloc_mem) { |
| 509 | done = true; // hit a sentinel, return appropriate 0 value |
| 510 | } else if (mem->is_Initialize()) { |
| 511 | mem = mem->as_Initialize()->find_captured_store(offset, type2aelembytes(ft), &_igvn); |
| 512 | if (mem == NULL) { |
| 513 | done = true; // Something go wrong. |
| 514 | } else if (mem->is_Store()) { |
| 515 | const TypePtr* atype = mem->as_Store()->adr_type(); |
| 516 | assert(C->get_alias_index(atype) == Compile::AliasIdxRaw, "store is correct memory slice" ); |
| 517 | done = true; |
| 518 | } |
| 519 | } else if (mem->is_Store()) { |
| 520 | const TypeOopPtr* atype = mem->as_Store()->adr_type()->isa_oopptr(); |
| 521 | assert(atype != NULL, "address type must be oopptr" ); |
| 522 | assert(C->get_alias_index(atype) == alias_idx && |
| 523 | atype->is_known_instance_field() && atype->offset() == offset && |
| 524 | atype->instance_id() == instance_id, "store is correct memory slice" ); |
| 525 | done = true; |
| 526 | } else if (mem->is_Phi()) { |
| 527 | // try to find a phi's unique input |
| 528 | Node *unique_input = NULL; |
| 529 | Node *top = C->top(); |
| 530 | for (uint i = 1; i < mem->req(); i++) { |
| 531 | Node *n = scan_mem_chain(mem->in(i), alias_idx, offset, start_mem, alloc, &_igvn); |
| 532 | if (n == NULL || n == top || n == mem) { |
| 533 | continue; |
| 534 | } else if (unique_input == NULL) { |
| 535 | unique_input = n; |
| 536 | } else if (unique_input != n) { |
| 537 | unique_input = top; |
| 538 | break; |
| 539 | } |
| 540 | } |
| 541 | if (unique_input != NULL && unique_input != top) { |
| 542 | mem = unique_input; |
| 543 | } else { |
| 544 | done = true; |
| 545 | } |
| 546 | } else if (mem->is_ArrayCopy()) { |
| 547 | done = true; |
| 548 | } else { |
| 549 | assert(false, "unexpected node" ); |
| 550 | } |
| 551 | } |
| 552 | if (mem != NULL) { |
| 553 | if (mem == start_mem || mem == alloc_mem) { |
| 554 | // hit a sentinel, return appropriate 0 value |
| 555 | return _igvn.zerocon(ft); |
| 556 | } else if (mem->is_Store()) { |
| 557 | Node* n = mem->in(MemNode::ValueIn); |
| 558 | BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); |
| 559 | n = bs->step_over_gc_barrier(n); |
| 560 | return n; |
| 561 | } else if (mem->is_Phi()) { |
| 562 | // attempt to produce a Phi reflecting the values on the input paths of the Phi |
| 563 | Node_Stack value_phis(a, 8); |
| 564 | Node * phi = value_from_mem_phi(mem, ft, ftype, adr_t, alloc, &value_phis, ValueSearchLimit); |
| 565 | if (phi != NULL) { |
| 566 | return phi; |
| 567 | } else { |
| 568 | // Kill all new Phis |
| 569 | while(value_phis.is_nonempty()) { |
| 570 | Node* n = value_phis.node(); |
| 571 | _igvn.replace_node(n, C->top()); |
| 572 | value_phis.pop(); |
| 573 | } |
| 574 | } |
| 575 | } else if (mem->is_ArrayCopy()) { |
| 576 | Node* ctl = mem->in(0); |
| 577 | Node* m = mem->in(TypeFunc::Memory); |
| 578 | if (sfpt_ctl->is_Proj() && sfpt_ctl->as_Proj()->is_uncommon_trap_proj(Deoptimization::Reason_none)) { |
| 579 | // pin the loads in the uncommon trap path |
| 580 | ctl = sfpt_ctl; |
| 581 | m = sfpt_mem; |
| 582 | } |
| 583 | return make_arraycopy_load(mem->as_ArrayCopy(), offset, ctl, m, ft, ftype, alloc); |
| 584 | } |
| 585 | } |
| 586 | // Something go wrong. |
| 587 | return NULL; |
| 588 | } |
| 589 | |
| 590 | // Check the possibility of scalar replacement. |
| 591 | bool PhaseMacroExpand::can_eliminate_allocation(AllocateNode *alloc, GrowableArray <SafePointNode *>& safepoints) { |
| 592 | // Scan the uses of the allocation to check for anything that would |
| 593 | // prevent us from eliminating it. |
| 594 | NOT_PRODUCT( const char* fail_eliminate = NULL; ) |
| 595 | DEBUG_ONLY( Node* disq_node = NULL; ) |
| 596 | bool can_eliminate = true; |
| 597 | |
| 598 | Node* res = alloc->result_cast(); |
| 599 | const TypeOopPtr* res_type = NULL; |
| 600 | if (res == NULL) { |
| 601 | // All users were eliminated. |
| 602 | } else if (!res->is_CheckCastPP()) { |
| 603 | NOT_PRODUCT(fail_eliminate = "Allocation does not have unique CheckCastPP" ;) |
| 604 | can_eliminate = false; |
| 605 | } else { |
| 606 | res_type = _igvn.type(res)->isa_oopptr(); |
| 607 | if (res_type == NULL) { |
| 608 | NOT_PRODUCT(fail_eliminate = "Neither instance or array allocation" ;) |
| 609 | can_eliminate = false; |
| 610 | } else if (res_type->isa_aryptr()) { |
| 611 | int length = alloc->in(AllocateNode::ALength)->find_int_con(-1); |
| 612 | if (length < 0) { |
| 613 | NOT_PRODUCT(fail_eliminate = "Array's size is not constant" ;) |
| 614 | can_eliminate = false; |
| 615 | } |
| 616 | } |
| 617 | } |
| 618 | |
| 619 | if (can_eliminate && res != NULL) { |
| 620 | for (DUIterator_Fast jmax, j = res->fast_outs(jmax); |
| 621 | j < jmax && can_eliminate; j++) { |
| 622 | Node* use = res->fast_out(j); |
| 623 | |
| 624 | if (use->is_AddP()) { |
| 625 | const TypePtr* addp_type = _igvn.type(use)->is_ptr(); |
| 626 | int offset = addp_type->offset(); |
| 627 | |
| 628 | if (offset == Type::OffsetTop || offset == Type::OffsetBot) { |
| 629 | NOT_PRODUCT(fail_eliminate = "Undefined field referrence" ;) |
| 630 | can_eliminate = false; |
| 631 | break; |
| 632 | } |
| 633 | for (DUIterator_Fast kmax, k = use->fast_outs(kmax); |
| 634 | k < kmax && can_eliminate; k++) { |
| 635 | Node* n = use->fast_out(k); |
| 636 | if (!n->is_Store() && n->Opcode() != Op_CastP2X && |
| 637 | SHENANDOAHGC_ONLY((!UseShenandoahGC || !ShenandoahBarrierSetC2::is_shenandoah_wb_pre_call(n)) &&) |
| 638 | !(n->is_ArrayCopy() && |
| 639 | n->as_ArrayCopy()->is_clonebasic() && |
| 640 | n->in(ArrayCopyNode::Dest) == use)) { |
| 641 | DEBUG_ONLY(disq_node = n;) |
| 642 | if (n->is_Load() || n->is_LoadStore()) { |
| 643 | NOT_PRODUCT(fail_eliminate = "Field load" ;) |
| 644 | } else { |
| 645 | NOT_PRODUCT(fail_eliminate = "Not store field referrence" ;) |
| 646 | } |
| 647 | can_eliminate = false; |
| 648 | } |
| 649 | } |
| 650 | } else if (use->is_ArrayCopy() && |
| 651 | (use->as_ArrayCopy()->is_arraycopy_validated() || |
| 652 | use->as_ArrayCopy()->is_copyof_validated() || |
| 653 | use->as_ArrayCopy()->is_copyofrange_validated()) && |
| 654 | use->in(ArrayCopyNode::Dest) == res) { |
| 655 | // ok to eliminate |
| 656 | } else if (use->is_SafePoint()) { |
| 657 | SafePointNode* sfpt = use->as_SafePoint(); |
| 658 | if (sfpt->is_Call() && sfpt->as_Call()->has_non_debug_use(res)) { |
| 659 | // Object is passed as argument. |
| 660 | DEBUG_ONLY(disq_node = use;) |
| 661 | NOT_PRODUCT(fail_eliminate = "Object is passed as argument" ;) |
| 662 | can_eliminate = false; |
| 663 | } |
| 664 | Node* sfptMem = sfpt->memory(); |
| 665 | if (sfptMem == NULL || sfptMem->is_top()) { |
| 666 | DEBUG_ONLY(disq_node = use;) |
| 667 | NOT_PRODUCT(fail_eliminate = "NULL or TOP memory" ;) |
| 668 | can_eliminate = false; |
| 669 | } else { |
| 670 | safepoints.append_if_missing(sfpt); |
| 671 | } |
| 672 | } else if (use->Opcode() != Op_CastP2X) { // CastP2X is used by card mark |
| 673 | if (use->is_Phi()) { |
| 674 | if (use->outcnt() == 1 && use->unique_out()->Opcode() == Op_Return) { |
| 675 | NOT_PRODUCT(fail_eliminate = "Object is return value" ;) |
| 676 | } else { |
| 677 | NOT_PRODUCT(fail_eliminate = "Object is referenced by Phi" ;) |
| 678 | } |
| 679 | DEBUG_ONLY(disq_node = use;) |
| 680 | } else { |
| 681 | if (use->Opcode() == Op_Return) { |
| 682 | NOT_PRODUCT(fail_eliminate = "Object is return value" ;) |
| 683 | }else { |
| 684 | NOT_PRODUCT(fail_eliminate = "Object is referenced by node" ;) |
| 685 | } |
| 686 | DEBUG_ONLY(disq_node = use;) |
| 687 | } |
| 688 | can_eliminate = false; |
| 689 | } |
| 690 | } |
| 691 | } |
| 692 | |
| 693 | #ifndef PRODUCT |
| 694 | if (PrintEliminateAllocations) { |
| 695 | if (can_eliminate) { |
| 696 | tty->print("Scalar " ); |
| 697 | if (res == NULL) |
| 698 | alloc->dump(); |
| 699 | else |
| 700 | res->dump(); |
| 701 | } else if (alloc->_is_scalar_replaceable) { |
| 702 | tty->print("NotScalar (%s)" , fail_eliminate); |
| 703 | if (res == NULL) |
| 704 | alloc->dump(); |
| 705 | else |
| 706 | res->dump(); |
| 707 | #ifdef ASSERT |
| 708 | if (disq_node != NULL) { |
| 709 | tty->print(" >>>> " ); |
| 710 | disq_node->dump(); |
| 711 | } |
| 712 | #endif /*ASSERT*/ |
| 713 | } |
| 714 | } |
| 715 | #endif |
| 716 | return can_eliminate; |
| 717 | } |
| 718 | |
| 719 | // Do scalar replacement. |
| 720 | bool PhaseMacroExpand::scalar_replacement(AllocateNode *alloc, GrowableArray <SafePointNode *>& safepoints) { |
| 721 | GrowableArray <SafePointNode *> safepoints_done; |
| 722 | |
| 723 | ciKlass* klass = NULL; |
| 724 | ciInstanceKlass* iklass = NULL; |
| 725 | int nfields = 0; |
| 726 | int array_base = 0; |
| 727 | int element_size = 0; |
| 728 | BasicType basic_elem_type = T_ILLEGAL; |
| 729 | ciType* elem_type = NULL; |
| 730 | |
| 731 | Node* res = alloc->result_cast(); |
| 732 | assert(res == NULL || res->is_CheckCastPP(), "unexpected AllocateNode result" ); |
| 733 | const TypeOopPtr* res_type = NULL; |
| 734 | if (res != NULL) { // Could be NULL when there are no users |
| 735 | res_type = _igvn.type(res)->isa_oopptr(); |
| 736 | } |
| 737 | |
| 738 | if (res != NULL) { |
| 739 | klass = res_type->klass(); |
| 740 | if (res_type->isa_instptr()) { |
| 741 | // find the fields of the class which will be needed for safepoint debug information |
| 742 | assert(klass->is_instance_klass(), "must be an instance klass." ); |
| 743 | iklass = klass->as_instance_klass(); |
| 744 | nfields = iklass->nof_nonstatic_fields(); |
| 745 | } else { |
| 746 | // find the array's elements which will be needed for safepoint debug information |
| 747 | nfields = alloc->in(AllocateNode::ALength)->find_int_con(-1); |
| 748 | assert(klass->is_array_klass() && nfields >= 0, "must be an array klass." ); |
| 749 | elem_type = klass->as_array_klass()->element_type(); |
| 750 | basic_elem_type = elem_type->basic_type(); |
| 751 | array_base = arrayOopDesc::base_offset_in_bytes(basic_elem_type); |
| 752 | element_size = type2aelembytes(basic_elem_type); |
| 753 | } |
| 754 | } |
| 755 | // |
| 756 | // Process the safepoint uses |
| 757 | // |
| 758 | while (safepoints.length() > 0) { |
| 759 | SafePointNode* sfpt = safepoints.pop(); |
| 760 | Node* mem = sfpt->memory(); |
| 761 | Node* ctl = sfpt->control(); |
| 762 | assert(sfpt->jvms() != NULL, "missed JVMS" ); |
| 763 | // Fields of scalar objs are referenced only at the end |
| 764 | // of regular debuginfo at the last (youngest) JVMS. |
| 765 | // Record relative start index. |
| 766 | uint first_ind = (sfpt->req() - sfpt->jvms()->scloff()); |
| 767 | SafePointScalarObjectNode* sobj = new SafePointScalarObjectNode(res_type, |
| 768 | #ifdef ASSERT |
| 769 | alloc, |
| 770 | #endif |
| 771 | first_ind, nfields); |
| 772 | sobj->init_req(0, C->root()); |
| 773 | transform_later(sobj); |
| 774 | |
| 775 | // Scan object's fields adding an input to the safepoint for each field. |
| 776 | for (int j = 0; j < nfields; j++) { |
| 777 | intptr_t offset; |
| 778 | ciField* field = NULL; |
| 779 | if (iklass != NULL) { |
| 780 | field = iklass->nonstatic_field_at(j); |
| 781 | offset = field->offset(); |
| 782 | elem_type = field->type(); |
| 783 | basic_elem_type = field->layout_type(); |
| 784 | } else { |
| 785 | offset = array_base + j * (intptr_t)element_size; |
| 786 | } |
| 787 | |
| 788 | const Type *field_type; |
| 789 | // The next code is taken from Parse::do_get_xxx(). |
| 790 | if (basic_elem_type == T_OBJECT || basic_elem_type == T_ARRAY) { |
| 791 | if (!elem_type->is_loaded()) { |
| 792 | field_type = TypeInstPtr::BOTTOM; |
| 793 | } else if (field != NULL && field->is_static_constant()) { |
| 794 | // This can happen if the constant oop is non-perm. |
| 795 | ciObject* con = field->constant_value().as_object(); |
| 796 | // Do not "join" in the previous type; it doesn't add value, |
| 797 | // and may yield a vacuous result if the field is of interface type. |
| 798 | field_type = TypeOopPtr::make_from_constant(con)->isa_oopptr(); |
| 799 | assert(field_type != NULL, "field singleton type must be consistent" ); |
| 800 | } else { |
| 801 | field_type = TypeOopPtr::make_from_klass(elem_type->as_klass()); |
| 802 | } |
| 803 | if (UseCompressedOops) { |
| 804 | field_type = field_type->make_narrowoop(); |
| 805 | basic_elem_type = T_NARROWOOP; |
| 806 | } |
| 807 | } else { |
| 808 | field_type = Type::get_const_basic_type(basic_elem_type); |
| 809 | } |
| 810 | |
| 811 | const TypeOopPtr *field_addr_type = res_type->add_offset(offset)->isa_oopptr(); |
| 812 | |
| 813 | Node *field_val = value_from_mem(mem, ctl, basic_elem_type, field_type, field_addr_type, alloc); |
| 814 | if (field_val == NULL) { |
| 815 | // We weren't able to find a value for this field, |
| 816 | // give up on eliminating this allocation. |
| 817 | |
| 818 | // Remove any extra entries we added to the safepoint. |
| 819 | uint last = sfpt->req() - 1; |
| 820 | for (int k = 0; k < j; k++) { |
| 821 | sfpt->del_req(last--); |
| 822 | } |
| 823 | _igvn._worklist.push(sfpt); |
| 824 | // rollback processed safepoints |
| 825 | while (safepoints_done.length() > 0) { |
| 826 | SafePointNode* sfpt_done = safepoints_done.pop(); |
| 827 | // remove any extra entries we added to the safepoint |
| 828 | last = sfpt_done->req() - 1; |
| 829 | for (int k = 0; k < nfields; k++) { |
| 830 | sfpt_done->del_req(last--); |
| 831 | } |
| 832 | JVMState *jvms = sfpt_done->jvms(); |
| 833 | jvms->set_endoff(sfpt_done->req()); |
| 834 | // Now make a pass over the debug information replacing any references |
| 835 | // to SafePointScalarObjectNode with the allocated object. |
| 836 | int start = jvms->debug_start(); |
| 837 | int end = jvms->debug_end(); |
| 838 | for (int i = start; i < end; i++) { |
| 839 | if (sfpt_done->in(i)->is_SafePointScalarObject()) { |
| 840 | SafePointScalarObjectNode* scobj = sfpt_done->in(i)->as_SafePointScalarObject(); |
| 841 | if (scobj->first_index(jvms) == sfpt_done->req() && |
| 842 | scobj->n_fields() == (uint)nfields) { |
| 843 | assert(scobj->alloc() == alloc, "sanity" ); |
| 844 | sfpt_done->set_req(i, res); |
| 845 | } |
| 846 | } |
| 847 | } |
| 848 | _igvn._worklist.push(sfpt_done); |
| 849 | } |
| 850 | #ifndef PRODUCT |
| 851 | if (PrintEliminateAllocations) { |
| 852 | if (field != NULL) { |
| 853 | tty->print("=== At SafePoint node %d can't find value of Field: " , |
| 854 | sfpt->_idx); |
| 855 | field->print(); |
| 856 | int field_idx = C->get_alias_index(field_addr_type); |
| 857 | tty->print(" (alias_idx=%d)" , field_idx); |
| 858 | } else { // Array's element |
| 859 | tty->print("=== At SafePoint node %d can't find value of array element [%d]" , |
| 860 | sfpt->_idx, j); |
| 861 | } |
| 862 | tty->print(", which prevents elimination of: " ); |
| 863 | if (res == NULL) |
| 864 | alloc->dump(); |
| 865 | else |
| 866 | res->dump(); |
| 867 | } |
| 868 | #endif |
| 869 | return false; |
| 870 | } |
| 871 | if (UseCompressedOops && field_type->isa_narrowoop()) { |
| 872 | // Enable "DecodeN(EncodeP(Allocate)) --> Allocate" transformation |
| 873 | // to be able scalar replace the allocation. |
| 874 | if (field_val->is_EncodeP()) { |
| 875 | field_val = field_val->in(1); |
| 876 | } else { |
| 877 | field_val = transform_later(new DecodeNNode(field_val, field_val->get_ptr_type())); |
| 878 | } |
| 879 | } |
| 880 | sfpt->add_req(field_val); |
| 881 | } |
| 882 | JVMState *jvms = sfpt->jvms(); |
| 883 | jvms->set_endoff(sfpt->req()); |
| 884 | // Now make a pass over the debug information replacing any references |
| 885 | // to the allocated object with "sobj" |
| 886 | int start = jvms->debug_start(); |
| 887 | int end = jvms->debug_end(); |
| 888 | sfpt->replace_edges_in_range(res, sobj, start, end); |
| 889 | _igvn._worklist.push(sfpt); |
| 890 | safepoints_done.append_if_missing(sfpt); // keep it for rollback |
| 891 | } |
| 892 | return true; |
| 893 | } |
| 894 | |
| 895 | static void disconnect_projections(MultiNode* n, PhaseIterGVN& igvn) { |
| 896 | Node* ctl_proj = n->proj_out_or_null(TypeFunc::Control); |
| 897 | Node* mem_proj = n->proj_out_or_null(TypeFunc::Memory); |
| 898 | if (ctl_proj != NULL) { |
| 899 | igvn.replace_node(ctl_proj, n->in(0)); |
| 900 | } |
| 901 | if (mem_proj != NULL) { |
| 902 | igvn.replace_node(mem_proj, n->in(TypeFunc::Memory)); |
| 903 | } |
| 904 | } |
| 905 | |
| 906 | // Process users of eliminated allocation. |
| 907 | void PhaseMacroExpand::process_users_of_allocation(CallNode *alloc) { |
| 908 | Node* res = alloc->result_cast(); |
| 909 | if (res != NULL) { |
| 910 | for (DUIterator_Last jmin, j = res->last_outs(jmin); j >= jmin; ) { |
| 911 | Node *use = res->last_out(j); |
| 912 | uint oc1 = res->outcnt(); |
| 913 | |
| 914 | if (use->is_AddP()) { |
| 915 | for (DUIterator_Last kmin, k = use->last_outs(kmin); k >= kmin; ) { |
| 916 | Node *n = use->last_out(k); |
| 917 | uint oc2 = use->outcnt(); |
| 918 | if (n->is_Store()) { |
| 919 | #ifdef ASSERT |
| 920 | // Verify that there is no dependent MemBarVolatile nodes, |
| 921 | // they should be removed during IGVN, see MemBarNode::Ideal(). |
| 922 | for (DUIterator_Fast pmax, p = n->fast_outs(pmax); |
| 923 | p < pmax; p++) { |
| 924 | Node* mb = n->fast_out(p); |
| 925 | assert(mb->is_Initialize() || !mb->is_MemBar() || |
| 926 | mb->req() <= MemBarNode::Precedent || |
| 927 | mb->in(MemBarNode::Precedent) != n, |
| 928 | "MemBarVolatile should be eliminated for non-escaping object" ); |
| 929 | } |
| 930 | #endif |
| 931 | _igvn.replace_node(n, n->in(MemNode::Memory)); |
| 932 | } else if (n->is_ArrayCopy()) { |
| 933 | // Disconnect ArrayCopy node |
| 934 | ArrayCopyNode* ac = n->as_ArrayCopy(); |
| 935 | assert(ac->is_clonebasic(), "unexpected array copy kind" ); |
| 936 | Node* membar_after = ac->proj_out(TypeFunc::Control)->unique_ctrl_out(); |
| 937 | disconnect_projections(ac, _igvn); |
| 938 | assert(alloc->in(0)->is_Proj() && alloc->in(0)->in(0)->Opcode() == Op_MemBarCPUOrder, "mem barrier expected before allocation" ); |
| 939 | Node* membar_before = alloc->in(0)->in(0); |
| 940 | disconnect_projections(membar_before->as_MemBar(), _igvn); |
| 941 | if (membar_after->is_MemBar()) { |
| 942 | disconnect_projections(membar_after->as_MemBar(), _igvn); |
| 943 | } |
| 944 | } else { |
| 945 | eliminate_gc_barrier(n); |
| 946 | } |
| 947 | k -= (oc2 - use->outcnt()); |
| 948 | } |
| 949 | _igvn.remove_dead_node(use); |
| 950 | } else if (use->is_ArrayCopy()) { |
| 951 | // Disconnect ArrayCopy node |
| 952 | ArrayCopyNode* ac = use->as_ArrayCopy(); |
| 953 | assert(ac->is_arraycopy_validated() || |
| 954 | ac->is_copyof_validated() || |
| 955 | ac->is_copyofrange_validated(), "unsupported" ); |
| 956 | CallProjections callprojs; |
| 957 | ac->extract_projections(&callprojs, true); |
| 958 | |
| 959 | _igvn.replace_node(callprojs.fallthrough_ioproj, ac->in(TypeFunc::I_O)); |
| 960 | _igvn.replace_node(callprojs.fallthrough_memproj, ac->in(TypeFunc::Memory)); |
| 961 | _igvn.replace_node(callprojs.fallthrough_catchproj, ac->in(TypeFunc::Control)); |
| 962 | |
| 963 | // Set control to top. IGVN will remove the remaining projections |
| 964 | ac->set_req(0, top()); |
| 965 | ac->replace_edge(res, top()); |
| 966 | |
| 967 | // Disconnect src right away: it can help find new |
| 968 | // opportunities for allocation elimination |
| 969 | Node* src = ac->in(ArrayCopyNode::Src); |
| 970 | ac->replace_edge(src, top()); |
| 971 | // src can be top at this point if src and dest of the |
| 972 | // arraycopy were the same |
| 973 | if (src->outcnt() == 0 && !src->is_top()) { |
| 974 | _igvn.remove_dead_node(src); |
| 975 | } |
| 976 | |
| 977 | _igvn._worklist.push(ac); |
| 978 | } else { |
| 979 | eliminate_gc_barrier(use); |
| 980 | } |
| 981 | j -= (oc1 - res->outcnt()); |
| 982 | } |
| 983 | assert(res->outcnt() == 0, "all uses of allocated objects must be deleted" ); |
| 984 | _igvn.remove_dead_node(res); |
| 985 | } |
| 986 | |
| 987 | // |
| 988 | // Process other users of allocation's projections |
| 989 | // |
| 990 | if (_resproj != NULL && _resproj->outcnt() != 0) { |
| 991 | // First disconnect stores captured by Initialize node. |
| 992 | // If Initialize node is eliminated first in the following code, |
| 993 | // it will kill such stores and DUIterator_Last will assert. |
| 994 | for (DUIterator_Fast jmax, j = _resproj->fast_outs(jmax); j < jmax; j++) { |
| 995 | Node *use = _resproj->fast_out(j); |
| 996 | if (use->is_AddP()) { |
| 997 | // raw memory addresses used only by the initialization |
| 998 | _igvn.replace_node(use, C->top()); |
| 999 | --j; --jmax; |
| 1000 | } |
| 1001 | } |
| 1002 | for (DUIterator_Last jmin, j = _resproj->last_outs(jmin); j >= jmin; ) { |
| 1003 | Node *use = _resproj->last_out(j); |
| 1004 | uint oc1 = _resproj->outcnt(); |
| 1005 | if (use->is_Initialize()) { |
| 1006 | // Eliminate Initialize node. |
| 1007 | InitializeNode *init = use->as_Initialize(); |
| 1008 | assert(init->outcnt() <= 2, "only a control and memory projection expected" ); |
| 1009 | Node *ctrl_proj = init->proj_out_or_null(TypeFunc::Control); |
| 1010 | if (ctrl_proj != NULL) { |
| 1011 | _igvn.replace_node(ctrl_proj, init->in(TypeFunc::Control)); |
| 1012 | #ifdef ASSERT |
| 1013 | BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); |
| 1014 | Node* tmp = init->in(TypeFunc::Control); |
| 1015 | while (bs->is_gc_barrier_node(tmp)) { |
| 1016 | Node* tmp2 = bs->step_over_gc_barrier_ctrl(tmp); |
| 1017 | assert(tmp != tmp2, "Must make progress" ); |
| 1018 | tmp = tmp2; |
| 1019 | } |
| 1020 | assert(tmp == _fallthroughcatchproj, "allocation control projection" ); |
| 1021 | #endif |
| 1022 | } |
| 1023 | Node *mem_proj = init->proj_out_or_null(TypeFunc::Memory); |
| 1024 | if (mem_proj != NULL) { |
| 1025 | Node *mem = init->in(TypeFunc::Memory); |
| 1026 | #ifdef ASSERT |
| 1027 | if (mem->is_MergeMem()) { |
| 1028 | assert(mem->in(TypeFunc::Memory) == _memproj_fallthrough, "allocation memory projection" ); |
| 1029 | } else { |
| 1030 | assert(mem == _memproj_fallthrough, "allocation memory projection" ); |
| 1031 | } |
| 1032 | #endif |
| 1033 | _igvn.replace_node(mem_proj, mem); |
| 1034 | } |
| 1035 | } else { |
| 1036 | assert(false, "only Initialize or AddP expected" ); |
| 1037 | } |
| 1038 | j -= (oc1 - _resproj->outcnt()); |
| 1039 | } |
| 1040 | } |
| 1041 | if (_fallthroughcatchproj != NULL) { |
| 1042 | _igvn.replace_node(_fallthroughcatchproj, alloc->in(TypeFunc::Control)); |
| 1043 | } |
| 1044 | if (_memproj_fallthrough != NULL) { |
| 1045 | _igvn.replace_node(_memproj_fallthrough, alloc->in(TypeFunc::Memory)); |
| 1046 | } |
| 1047 | if (_memproj_catchall != NULL) { |
| 1048 | _igvn.replace_node(_memproj_catchall, C->top()); |
| 1049 | } |
| 1050 | if (_ioproj_fallthrough != NULL) { |
| 1051 | _igvn.replace_node(_ioproj_fallthrough, alloc->in(TypeFunc::I_O)); |
| 1052 | } |
| 1053 | if (_ioproj_catchall != NULL) { |
| 1054 | _igvn.replace_node(_ioproj_catchall, C->top()); |
| 1055 | } |
| 1056 | if (_catchallcatchproj != NULL) { |
| 1057 | _igvn.replace_node(_catchallcatchproj, C->top()); |
| 1058 | } |
| 1059 | } |
| 1060 | |
| 1061 | bool PhaseMacroExpand::eliminate_allocate_node(AllocateNode *alloc) { |
| 1062 | // Don't do scalar replacement if the frame can be popped by JVMTI: |
| 1063 | // if reallocation fails during deoptimization we'll pop all |
| 1064 | // interpreter frames for this compiled frame and that won't play |
| 1065 | // nice with JVMTI popframe. |
| 1066 | if (!EliminateAllocations || JvmtiExport::can_pop_frame() || !alloc->_is_non_escaping) { |
| 1067 | return false; |
| 1068 | } |
| 1069 | Node* klass = alloc->in(AllocateNode::KlassNode); |
| 1070 | const TypeKlassPtr* tklass = _igvn.type(klass)->is_klassptr(); |
| 1071 | Node* res = alloc->result_cast(); |
| 1072 | // Eliminate boxing allocations which are not used |
| 1073 | // regardless scalar replacable status. |
| 1074 | bool boxing_alloc = C->eliminate_boxing() && |
| 1075 | tklass->klass()->is_instance_klass() && |
| 1076 | tklass->klass()->as_instance_klass()->is_box_klass(); |
| 1077 | if (!alloc->_is_scalar_replaceable && (!boxing_alloc || (res != NULL))) { |
| 1078 | return false; |
| 1079 | } |
| 1080 | |
| 1081 | extract_call_projections(alloc); |
| 1082 | |
| 1083 | GrowableArray <SafePointNode *> safepoints; |
| 1084 | if (!can_eliminate_allocation(alloc, safepoints)) { |
| 1085 | return false; |
| 1086 | } |
| 1087 | |
| 1088 | if (!alloc->_is_scalar_replaceable) { |
| 1089 | assert(res == NULL, "sanity" ); |
| 1090 | // We can only eliminate allocation if all debug info references |
| 1091 | // are already replaced with SafePointScalarObject because |
| 1092 | // we can't search for a fields value without instance_id. |
| 1093 | if (safepoints.length() > 0) { |
| 1094 | return false; |
| 1095 | } |
| 1096 | } |
| 1097 | |
| 1098 | if (!scalar_replacement(alloc, safepoints)) { |
| 1099 | return false; |
| 1100 | } |
| 1101 | |
| 1102 | CompileLog* log = C->log(); |
| 1103 | if (log != NULL) { |
| 1104 | log->head("eliminate_allocation type='%d'" , |
| 1105 | log->identify(tklass->klass())); |
| 1106 | JVMState* p = alloc->jvms(); |
| 1107 | while (p != NULL) { |
| 1108 | log->elem("jvms bci='%d' method='%d'" , p->bci(), log->identify(p->method())); |
| 1109 | p = p->caller(); |
| 1110 | } |
| 1111 | log->tail("eliminate_allocation" ); |
| 1112 | } |
| 1113 | |
| 1114 | process_users_of_allocation(alloc); |
| 1115 | |
| 1116 | #ifndef PRODUCT |
| 1117 | if (PrintEliminateAllocations) { |
| 1118 | if (alloc->is_AllocateArray()) |
| 1119 | tty->print_cr("++++ Eliminated: %d AllocateArray" , alloc->_idx); |
| 1120 | else |
| 1121 | tty->print_cr("++++ Eliminated: %d Allocate" , alloc->_idx); |
| 1122 | } |
| 1123 | #endif |
| 1124 | |
| 1125 | return true; |
| 1126 | } |
| 1127 | |
| 1128 | bool PhaseMacroExpand::eliminate_boxing_node(CallStaticJavaNode *boxing) { |
| 1129 | // EA should remove all uses of non-escaping boxing node. |
| 1130 | if (!C->eliminate_boxing() || boxing->proj_out_or_null(TypeFunc::Parms) != NULL) { |
| 1131 | return false; |
| 1132 | } |
| 1133 | |
| 1134 | assert(boxing->result_cast() == NULL, "unexpected boxing node result" ); |
| 1135 | |
| 1136 | extract_call_projections(boxing); |
| 1137 | |
| 1138 | const TypeTuple* r = boxing->tf()->range(); |
| 1139 | assert(r->cnt() > TypeFunc::Parms, "sanity" ); |
| 1140 | const TypeInstPtr* t = r->field_at(TypeFunc::Parms)->isa_instptr(); |
| 1141 | assert(t != NULL, "sanity" ); |
| 1142 | |
| 1143 | CompileLog* log = C->log(); |
| 1144 | if (log != NULL) { |
| 1145 | log->head("eliminate_boxing type='%d'" , |
| 1146 | log->identify(t->klass())); |
| 1147 | JVMState* p = boxing->jvms(); |
| 1148 | while (p != NULL) { |
| 1149 | log->elem("jvms bci='%d' method='%d'" , p->bci(), log->identify(p->method())); |
| 1150 | p = p->caller(); |
| 1151 | } |
| 1152 | log->tail("eliminate_boxing" ); |
| 1153 | } |
| 1154 | |
| 1155 | process_users_of_allocation(boxing); |
| 1156 | |
| 1157 | #ifndef PRODUCT |
| 1158 | if (PrintEliminateAllocations) { |
| 1159 | tty->print("++++ Eliminated: %d " , boxing->_idx); |
| 1160 | boxing->method()->print_short_name(tty); |
| 1161 | tty->cr(); |
| 1162 | } |
| 1163 | #endif |
| 1164 | |
| 1165 | return true; |
| 1166 | } |
| 1167 | |
| 1168 | //---------------------------set_eden_pointers------------------------- |
| 1169 | void PhaseMacroExpand::set_eden_pointers(Node* &eden_top_adr, Node* &eden_end_adr) { |
| 1170 | if (UseTLAB) { // Private allocation: load from TLS |
| 1171 | Node* thread = transform_later(new ThreadLocalNode()); |
| 1172 | int tlab_top_offset = in_bytes(JavaThread::tlab_top_offset()); |
| 1173 | int tlab_end_offset = in_bytes(JavaThread::tlab_end_offset()); |
| 1174 | eden_top_adr = basic_plus_adr(top()/*not oop*/, thread, tlab_top_offset); |
| 1175 | eden_end_adr = basic_plus_adr(top()/*not oop*/, thread, tlab_end_offset); |
| 1176 | } else { // Shared allocation: load from globals |
| 1177 | CollectedHeap* ch = Universe::heap(); |
| 1178 | address top_adr = (address)ch->top_addr(); |
| 1179 | address end_adr = (address)ch->end_addr(); |
| 1180 | eden_top_adr = makecon(TypeRawPtr::make(top_adr)); |
| 1181 | eden_end_adr = basic_plus_adr(eden_top_adr, end_adr - top_adr); |
| 1182 | } |
| 1183 | } |
| 1184 | |
| 1185 | |
| 1186 | Node* PhaseMacroExpand::make_load(Node* ctl, Node* mem, Node* base, int offset, const Type* value_type, BasicType bt) { |
| 1187 | Node* adr = basic_plus_adr(base, offset); |
| 1188 | const TypePtr* adr_type = adr->bottom_type()->is_ptr(); |
| 1189 | Node* value = LoadNode::make(_igvn, ctl, mem, adr, adr_type, value_type, bt, MemNode::unordered); |
| 1190 | transform_later(value); |
| 1191 | return value; |
| 1192 | } |
| 1193 | |
| 1194 | |
| 1195 | Node* PhaseMacroExpand::make_store(Node* ctl, Node* mem, Node* base, int offset, Node* value, BasicType bt) { |
| 1196 | Node* adr = basic_plus_adr(base, offset); |
| 1197 | mem = StoreNode::make(_igvn, ctl, mem, adr, NULL, value, bt, MemNode::unordered); |
| 1198 | transform_later(mem); |
| 1199 | return mem; |
| 1200 | } |
| 1201 | |
| 1202 | //============================================================================= |
| 1203 | // |
| 1204 | // A L L O C A T I O N |
| 1205 | // |
| 1206 | // Allocation attempts to be fast in the case of frequent small objects. |
| 1207 | // It breaks down like this: |
| 1208 | // |
| 1209 | // 1) Size in doublewords is computed. This is a constant for objects and |
| 1210 | // variable for most arrays. Doubleword units are used to avoid size |
| 1211 | // overflow of huge doubleword arrays. We need doublewords in the end for |
| 1212 | // rounding. |
| 1213 | // |
| 1214 | // 2) Size is checked for being 'too large'. Too-large allocations will go |
| 1215 | // the slow path into the VM. The slow path can throw any required |
| 1216 | // exceptions, and does all the special checks for very large arrays. The |
| 1217 | // size test can constant-fold away for objects. For objects with |
| 1218 | // finalizers it constant-folds the otherway: you always go slow with |
| 1219 | // finalizers. |
| 1220 | // |
| 1221 | // 3) If NOT using TLABs, this is the contended loop-back point. |
| 1222 | // Load-Locked the heap top. If using TLABs normal-load the heap top. |
| 1223 | // |
| 1224 | // 4) Check that heap top + size*8 < max. If we fail go the slow ` route. |
| 1225 | // NOTE: "top+size*8" cannot wrap the 4Gig line! Here's why: for largish |
| 1226 | // "size*8" we always enter the VM, where "largish" is a constant picked small |
| 1227 | // enough that there's always space between the eden max and 4Gig (old space is |
| 1228 | // there so it's quite large) and large enough that the cost of entering the VM |
| 1229 | // is dwarfed by the cost to initialize the space. |
| 1230 | // |
| 1231 | // 5) If NOT using TLABs, Store-Conditional the adjusted heap top back |
| 1232 | // down. If contended, repeat at step 3. If using TLABs normal-store |
| 1233 | // adjusted heap top back down; there is no contention. |
| 1234 | // |
| 1235 | // 6) If !ZeroTLAB then Bulk-clear the object/array. Fill in klass & mark |
| 1236 | // fields. |
| 1237 | // |
| 1238 | // 7) Merge with the slow-path; cast the raw memory pointer to the correct |
| 1239 | // oop flavor. |
| 1240 | // |
| 1241 | //============================================================================= |
| 1242 | // FastAllocateSizeLimit value is in DOUBLEWORDS. |
| 1243 | // Allocations bigger than this always go the slow route. |
| 1244 | // This value must be small enough that allocation attempts that need to |
| 1245 | // trigger exceptions go the slow route. Also, it must be small enough so |
| 1246 | // that heap_top + size_in_bytes does not wrap around the 4Gig limit. |
| 1247 | //=============================================================================j// |
| 1248 | // %%% Here is an old comment from parseHelper.cpp; is it outdated? |
| 1249 | // The allocator will coalesce int->oop copies away. See comment in |
| 1250 | // coalesce.cpp about how this works. It depends critically on the exact |
| 1251 | // code shape produced here, so if you are changing this code shape |
| 1252 | // make sure the GC info for the heap-top is correct in and around the |
| 1253 | // slow-path call. |
| 1254 | // |
| 1255 | |
| 1256 | void PhaseMacroExpand::expand_allocate_common( |
| 1257 | AllocateNode* alloc, // allocation node to be expanded |
| 1258 | Node* length, // array length for an array allocation |
| 1259 | const TypeFunc* slow_call_type, // Type of slow call |
| 1260 | address slow_call_address // Address of slow call |
| 1261 | ) |
| 1262 | { |
| 1263 | |
| 1264 | Node* ctrl = alloc->in(TypeFunc::Control); |
| 1265 | Node* mem = alloc->in(TypeFunc::Memory); |
| 1266 | Node* i_o = alloc->in(TypeFunc::I_O); |
| 1267 | Node* size_in_bytes = alloc->in(AllocateNode::AllocSize); |
| 1268 | Node* klass_node = alloc->in(AllocateNode::KlassNode); |
| 1269 | Node* initial_slow_test = alloc->in(AllocateNode::InitialTest); |
| 1270 | |
| 1271 | assert(ctrl != NULL, "must have control" ); |
| 1272 | // We need a Region and corresponding Phi's to merge the slow-path and fast-path results. |
| 1273 | // they will not be used if "always_slow" is set |
| 1274 | enum { slow_result_path = 1, fast_result_path = 2 }; |
| 1275 | Node *result_region = NULL; |
| 1276 | Node *result_phi_rawmem = NULL; |
| 1277 | Node *result_phi_rawoop = NULL; |
| 1278 | Node *result_phi_i_o = NULL; |
| 1279 | |
| 1280 | // The initial slow comparison is a size check, the comparison |
| 1281 | // we want to do is a BoolTest::gt |
| 1282 | bool always_slow = false; |
| 1283 | int tv = _igvn.find_int_con(initial_slow_test, -1); |
| 1284 | if (tv >= 0) { |
| 1285 | always_slow = (tv == 1); |
| 1286 | initial_slow_test = NULL; |
| 1287 | } else { |
| 1288 | initial_slow_test = BoolNode::make_predicate(initial_slow_test, &_igvn); |
| 1289 | } |
| 1290 | |
| 1291 | if (C->env()->dtrace_alloc_probes() || |
| 1292 | (!UseTLAB && !Universe::heap()->supports_inline_contig_alloc())) { |
| 1293 | // Force slow-path allocation |
| 1294 | always_slow = true; |
| 1295 | initial_slow_test = NULL; |
| 1296 | } |
| 1297 | |
| 1298 | |
| 1299 | enum { too_big_or_final_path = 1, need_gc_path = 2 }; |
| 1300 | Node *slow_region = NULL; |
| 1301 | Node *toobig_false = ctrl; |
| 1302 | |
| 1303 | assert (initial_slow_test == NULL || !always_slow, "arguments must be consistent" ); |
| 1304 | // generate the initial test if necessary |
| 1305 | if (initial_slow_test != NULL ) { |
| 1306 | slow_region = new RegionNode(3); |
| 1307 | |
| 1308 | // Now make the initial failure test. Usually a too-big test but |
| 1309 | // might be a TRUE for finalizers or a fancy class check for |
| 1310 | // newInstance0. |
| 1311 | IfNode *toobig_iff = new IfNode(ctrl, initial_slow_test, PROB_MIN, COUNT_UNKNOWN); |
| 1312 | transform_later(toobig_iff); |
| 1313 | // Plug the failing-too-big test into the slow-path region |
| 1314 | Node *toobig_true = new IfTrueNode( toobig_iff ); |
| 1315 | transform_later(toobig_true); |
| 1316 | slow_region ->init_req( too_big_or_final_path, toobig_true ); |
| 1317 | toobig_false = new IfFalseNode( toobig_iff ); |
| 1318 | transform_later(toobig_false); |
| 1319 | } else { // No initial test, just fall into next case |
| 1320 | toobig_false = ctrl; |
| 1321 | debug_only(slow_region = NodeSentinel); |
| 1322 | } |
| 1323 | |
| 1324 | Node *slow_mem = mem; // save the current memory state for slow path |
| 1325 | // generate the fast allocation code unless we know that the initial test will always go slow |
| 1326 | if (!always_slow) { |
| 1327 | // Fast path modifies only raw memory. |
| 1328 | if (mem->is_MergeMem()) { |
| 1329 | mem = mem->as_MergeMem()->memory_at(Compile::AliasIdxRaw); |
| 1330 | } |
| 1331 | |
| 1332 | // allocate the Region and Phi nodes for the result |
| 1333 | result_region = new RegionNode(3); |
| 1334 | result_phi_rawmem = new PhiNode(result_region, Type::MEMORY, TypeRawPtr::BOTTOM); |
| 1335 | result_phi_rawoop = new PhiNode(result_region, TypeRawPtr::BOTTOM); |
| 1336 | result_phi_i_o = new PhiNode(result_region, Type::ABIO); // I/O is used for Prefetch |
| 1337 | |
| 1338 | // Grab regular I/O before optional prefetch may change it. |
| 1339 | // Slow-path does no I/O so just set it to the original I/O. |
| 1340 | result_phi_i_o->init_req(slow_result_path, i_o); |
| 1341 | |
| 1342 | Node* needgc_ctrl = NULL; |
| 1343 | // Name successful fast-path variables |
| 1344 | Node* fast_oop_ctrl; |
| 1345 | Node* fast_oop_rawmem; |
| 1346 | |
| 1347 | intx prefetch_lines = length != NULL ? AllocatePrefetchLines : AllocateInstancePrefetchLines; |
| 1348 | |
| 1349 | BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); |
| 1350 | Node* fast_oop = bs->obj_allocate(this, ctrl, mem, toobig_false, size_in_bytes, i_o, needgc_ctrl, |
| 1351 | fast_oop_ctrl, fast_oop_rawmem, |
| 1352 | prefetch_lines); |
| 1353 | |
| 1354 | if (initial_slow_test) { |
| 1355 | slow_region->init_req(need_gc_path, needgc_ctrl); |
| 1356 | // This completes all paths into the slow merge point |
| 1357 | transform_later(slow_region); |
| 1358 | } else { // No initial slow path needed! |
| 1359 | // Just fall from the need-GC path straight into the VM call. |
| 1360 | slow_region = needgc_ctrl; |
| 1361 | } |
| 1362 | |
| 1363 | InitializeNode* init = alloc->initialization(); |
| 1364 | fast_oop_rawmem = initialize_object(alloc, |
| 1365 | fast_oop_ctrl, fast_oop_rawmem, fast_oop, |
| 1366 | klass_node, length, size_in_bytes); |
| 1367 | |
| 1368 | // If initialization is performed by an array copy, any required |
| 1369 | // MemBarStoreStore was already added. If the object does not |
| 1370 | // escape no need for a MemBarStoreStore. If the object does not |
| 1371 | // escape in its initializer and memory barrier (MemBarStoreStore or |
| 1372 | // stronger) is already added at exit of initializer, also no need |
| 1373 | // for a MemBarStoreStore. Otherwise we need a MemBarStoreStore |
| 1374 | // so that stores that initialize this object can't be reordered |
| 1375 | // with a subsequent store that makes this object accessible by |
| 1376 | // other threads. |
| 1377 | // Other threads include java threads and JVM internal threads |
| 1378 | // (for example concurrent GC threads). Current concurrent GC |
| 1379 | // implementation: CMS and G1 will not scan newly created object, |
| 1380 | // so it's safe to skip storestore barrier when allocation does |
| 1381 | // not escape. |
| 1382 | if (!alloc->does_not_escape_thread() && |
| 1383 | !alloc->is_allocation_MemBar_redundant() && |
| 1384 | (init == NULL || !init->is_complete_with_arraycopy())) { |
| 1385 | if (init == NULL || init->req() < InitializeNode::RawStores) { |
| 1386 | // No InitializeNode or no stores captured by zeroing |
| 1387 | // elimination. Simply add the MemBarStoreStore after object |
| 1388 | // initialization. |
| 1389 | MemBarNode* mb = MemBarNode::make(C, Op_MemBarStoreStore, Compile::AliasIdxBot); |
| 1390 | transform_later(mb); |
| 1391 | |
| 1392 | mb->init_req(TypeFunc::Memory, fast_oop_rawmem); |
| 1393 | mb->init_req(TypeFunc::Control, fast_oop_ctrl); |
| 1394 | fast_oop_ctrl = new ProjNode(mb,TypeFunc::Control); |
| 1395 | transform_later(fast_oop_ctrl); |
| 1396 | fast_oop_rawmem = new ProjNode(mb,TypeFunc::Memory); |
| 1397 | transform_later(fast_oop_rawmem); |
| 1398 | } else { |
| 1399 | // Add the MemBarStoreStore after the InitializeNode so that |
| 1400 | // all stores performing the initialization that were moved |
| 1401 | // before the InitializeNode happen before the storestore |
| 1402 | // barrier. |
| 1403 | |
| 1404 | Node* init_ctrl = init->proj_out_or_null(TypeFunc::Control); |
| 1405 | Node* init_mem = init->proj_out_or_null(TypeFunc::Memory); |
| 1406 | |
| 1407 | MemBarNode* mb = MemBarNode::make(C, Op_MemBarStoreStore, Compile::AliasIdxBot); |
| 1408 | transform_later(mb); |
| 1409 | |
| 1410 | Node* ctrl = new ProjNode(init,TypeFunc::Control); |
| 1411 | transform_later(ctrl); |
| 1412 | Node* mem = new ProjNode(init,TypeFunc::Memory); |
| 1413 | transform_later(mem); |
| 1414 | |
| 1415 | // The MemBarStoreStore depends on control and memory coming |
| 1416 | // from the InitializeNode |
| 1417 | mb->init_req(TypeFunc::Memory, mem); |
| 1418 | mb->init_req(TypeFunc::Control, ctrl); |
| 1419 | |
| 1420 | ctrl = new ProjNode(mb,TypeFunc::Control); |
| 1421 | transform_later(ctrl); |
| 1422 | mem = new ProjNode(mb,TypeFunc::Memory); |
| 1423 | transform_later(mem); |
| 1424 | |
| 1425 | // All nodes that depended on the InitializeNode for control |
| 1426 | // and memory must now depend on the MemBarNode that itself |
| 1427 | // depends on the InitializeNode |
| 1428 | if (init_ctrl != NULL) { |
| 1429 | _igvn.replace_node(init_ctrl, ctrl); |
| 1430 | } |
| 1431 | if (init_mem != NULL) { |
| 1432 | _igvn.replace_node(init_mem, mem); |
| 1433 | } |
| 1434 | } |
| 1435 | } |
| 1436 | |
| 1437 | if (C->env()->dtrace_extended_probes()) { |
| 1438 | // Slow-path call |
| 1439 | int size = TypeFunc::Parms + 2; |
| 1440 | CallLeafNode *call = new CallLeafNode(OptoRuntime::dtrace_object_alloc_Type(), |
| 1441 | CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_object_alloc_base), |
| 1442 | "dtrace_object_alloc" , |
| 1443 | TypeRawPtr::BOTTOM); |
| 1444 | |
| 1445 | // Get base of thread-local storage area |
| 1446 | Node* thread = new ThreadLocalNode(); |
| 1447 | transform_later(thread); |
| 1448 | |
| 1449 | call->init_req(TypeFunc::Parms+0, thread); |
| 1450 | call->init_req(TypeFunc::Parms+1, fast_oop); |
| 1451 | call->init_req(TypeFunc::Control, fast_oop_ctrl); |
| 1452 | call->init_req(TypeFunc::I_O , top()); // does no i/o |
| 1453 | call->init_req(TypeFunc::Memory , fast_oop_rawmem); |
| 1454 | call->init_req(TypeFunc::ReturnAdr, alloc->in(TypeFunc::ReturnAdr)); |
| 1455 | call->init_req(TypeFunc::FramePtr, alloc->in(TypeFunc::FramePtr)); |
| 1456 | transform_later(call); |
| 1457 | fast_oop_ctrl = new ProjNode(call,TypeFunc::Control); |
| 1458 | transform_later(fast_oop_ctrl); |
| 1459 | fast_oop_rawmem = new ProjNode(call,TypeFunc::Memory); |
| 1460 | transform_later(fast_oop_rawmem); |
| 1461 | } |
| 1462 | |
| 1463 | // Plug in the successful fast-path into the result merge point |
| 1464 | result_region ->init_req(fast_result_path, fast_oop_ctrl); |
| 1465 | result_phi_rawoop->init_req(fast_result_path, fast_oop); |
| 1466 | result_phi_i_o ->init_req(fast_result_path, i_o); |
| 1467 | result_phi_rawmem->init_req(fast_result_path, fast_oop_rawmem); |
| 1468 | } else { |
| 1469 | slow_region = ctrl; |
| 1470 | result_phi_i_o = i_o; // Rename it to use in the following code. |
| 1471 | } |
| 1472 | |
| 1473 | // Generate slow-path call |
| 1474 | CallNode *call = new CallStaticJavaNode(slow_call_type, slow_call_address, |
| 1475 | OptoRuntime::stub_name(slow_call_address), |
| 1476 | alloc->jvms()->bci(), |
| 1477 | TypePtr::BOTTOM); |
| 1478 | call->init_req( TypeFunc::Control, slow_region ); |
| 1479 | call->init_req( TypeFunc::I_O , top() ) ; // does no i/o |
| 1480 | call->init_req( TypeFunc::Memory , slow_mem ); // may gc ptrs |
| 1481 | call->init_req( TypeFunc::ReturnAdr, alloc->in(TypeFunc::ReturnAdr) ); |
| 1482 | call->init_req( TypeFunc::FramePtr, alloc->in(TypeFunc::FramePtr) ); |
| 1483 | |
| 1484 | call->init_req(TypeFunc::Parms+0, klass_node); |
| 1485 | if (length != NULL) { |
| 1486 | call->init_req(TypeFunc::Parms+1, length); |
| 1487 | } |
| 1488 | |
| 1489 | // Copy debug information and adjust JVMState information, then replace |
| 1490 | // allocate node with the call |
| 1491 | copy_call_debug_info((CallNode *) alloc, call); |
| 1492 | if (!always_slow) { |
| 1493 | call->set_cnt(PROB_UNLIKELY_MAG(4)); // Same effect as RC_UNCOMMON. |
| 1494 | } else { |
| 1495 | // Hook i_o projection to avoid its elimination during allocation |
| 1496 | // replacement (when only a slow call is generated). |
| 1497 | call->set_req(TypeFunc::I_O, result_phi_i_o); |
| 1498 | } |
| 1499 | _igvn.replace_node(alloc, call); |
| 1500 | transform_later(call); |
| 1501 | |
| 1502 | // Identify the output projections from the allocate node and |
| 1503 | // adjust any references to them. |
| 1504 | // The control and io projections look like: |
| 1505 | // |
| 1506 | // v---Proj(ctrl) <-----+ v---CatchProj(ctrl) |
| 1507 | // Allocate Catch |
| 1508 | // ^---Proj(io) <-------+ ^---CatchProj(io) |
| 1509 | // |
| 1510 | // We are interested in the CatchProj nodes. |
| 1511 | // |
| 1512 | extract_call_projections(call); |
| 1513 | |
| 1514 | // An allocate node has separate memory projections for the uses on |
| 1515 | // the control and i_o paths. Replace the control memory projection with |
| 1516 | // result_phi_rawmem (unless we are only generating a slow call when |
| 1517 | // both memory projections are combined) |
| 1518 | if (!always_slow && _memproj_fallthrough != NULL) { |
| 1519 | for (DUIterator_Fast imax, i = _memproj_fallthrough->fast_outs(imax); i < imax; i++) { |
| 1520 | Node *use = _memproj_fallthrough->fast_out(i); |
| 1521 | _igvn.rehash_node_delayed(use); |
| 1522 | imax -= replace_input(use, _memproj_fallthrough, result_phi_rawmem); |
| 1523 | // back up iterator |
| 1524 | --i; |
| 1525 | } |
| 1526 | } |
| 1527 | // Now change uses of _memproj_catchall to use _memproj_fallthrough and delete |
| 1528 | // _memproj_catchall so we end up with a call that has only 1 memory projection. |
| 1529 | if (_memproj_catchall != NULL ) { |
| 1530 | if (_memproj_fallthrough == NULL) { |
| 1531 | _memproj_fallthrough = new ProjNode(call, TypeFunc::Memory); |
| 1532 | transform_later(_memproj_fallthrough); |
| 1533 | } |
| 1534 | for (DUIterator_Fast imax, i = _memproj_catchall->fast_outs(imax); i < imax; i++) { |
| 1535 | Node *use = _memproj_catchall->fast_out(i); |
| 1536 | _igvn.rehash_node_delayed(use); |
| 1537 | imax -= replace_input(use, _memproj_catchall, _memproj_fallthrough); |
| 1538 | // back up iterator |
| 1539 | --i; |
| 1540 | } |
| 1541 | assert(_memproj_catchall->outcnt() == 0, "all uses must be deleted" ); |
| 1542 | _igvn.remove_dead_node(_memproj_catchall); |
| 1543 | } |
| 1544 | |
| 1545 | // An allocate node has separate i_o projections for the uses on the control |
| 1546 | // and i_o paths. Always replace the control i_o projection with result i_o |
| 1547 | // otherwise incoming i_o become dead when only a slow call is generated |
| 1548 | // (it is different from memory projections where both projections are |
| 1549 | // combined in such case). |
| 1550 | if (_ioproj_fallthrough != NULL) { |
| 1551 | for (DUIterator_Fast imax, i = _ioproj_fallthrough->fast_outs(imax); i < imax; i++) { |
| 1552 | Node *use = _ioproj_fallthrough->fast_out(i); |
| 1553 | _igvn.rehash_node_delayed(use); |
| 1554 | imax -= replace_input(use, _ioproj_fallthrough, result_phi_i_o); |
| 1555 | // back up iterator |
| 1556 | --i; |
| 1557 | } |
| 1558 | } |
| 1559 | // Now change uses of _ioproj_catchall to use _ioproj_fallthrough and delete |
| 1560 | // _ioproj_catchall so we end up with a call that has only 1 i_o projection. |
| 1561 | if (_ioproj_catchall != NULL ) { |
| 1562 | if (_ioproj_fallthrough == NULL) { |
| 1563 | _ioproj_fallthrough = new ProjNode(call, TypeFunc::I_O); |
| 1564 | transform_later(_ioproj_fallthrough); |
| 1565 | } |
| 1566 | for (DUIterator_Fast imax, i = _ioproj_catchall->fast_outs(imax); i < imax; i++) { |
| 1567 | Node *use = _ioproj_catchall->fast_out(i); |
| 1568 | _igvn.rehash_node_delayed(use); |
| 1569 | imax -= replace_input(use, _ioproj_catchall, _ioproj_fallthrough); |
| 1570 | // back up iterator |
| 1571 | --i; |
| 1572 | } |
| 1573 | assert(_ioproj_catchall->outcnt() == 0, "all uses must be deleted" ); |
| 1574 | _igvn.remove_dead_node(_ioproj_catchall); |
| 1575 | } |
| 1576 | |
| 1577 | // if we generated only a slow call, we are done |
| 1578 | if (always_slow) { |
| 1579 | // Now we can unhook i_o. |
| 1580 | if (result_phi_i_o->outcnt() > 1) { |
| 1581 | call->set_req(TypeFunc::I_O, top()); |
| 1582 | } else { |
| 1583 | assert(result_phi_i_o->unique_ctrl_out() == call, "" ); |
| 1584 | // Case of new array with negative size known during compilation. |
| 1585 | // AllocateArrayNode::Ideal() optimization disconnect unreachable |
| 1586 | // following code since call to runtime will throw exception. |
| 1587 | // As result there will be no users of i_o after the call. |
| 1588 | // Leave i_o attached to this call to avoid problems in preceding graph. |
| 1589 | } |
| 1590 | return; |
| 1591 | } |
| 1592 | |
| 1593 | |
| 1594 | if (_fallthroughcatchproj != NULL) { |
| 1595 | ctrl = _fallthroughcatchproj->clone(); |
| 1596 | transform_later(ctrl); |
| 1597 | _igvn.replace_node(_fallthroughcatchproj, result_region); |
| 1598 | } else { |
| 1599 | ctrl = top(); |
| 1600 | } |
| 1601 | Node *slow_result; |
| 1602 | if (_resproj == NULL) { |
| 1603 | // no uses of the allocation result |
| 1604 | slow_result = top(); |
| 1605 | } else { |
| 1606 | slow_result = _resproj->clone(); |
| 1607 | transform_later(slow_result); |
| 1608 | _igvn.replace_node(_resproj, result_phi_rawoop); |
| 1609 | } |
| 1610 | |
| 1611 | // Plug slow-path into result merge point |
| 1612 | result_region ->init_req( slow_result_path, ctrl ); |
| 1613 | result_phi_rawoop->init_req( slow_result_path, slow_result); |
| 1614 | result_phi_rawmem->init_req( slow_result_path, _memproj_fallthrough ); |
| 1615 | transform_later(result_region); |
| 1616 | transform_later(result_phi_rawoop); |
| 1617 | transform_later(result_phi_rawmem); |
| 1618 | transform_later(result_phi_i_o); |
| 1619 | // This completes all paths into the result merge point |
| 1620 | } |
| 1621 | |
| 1622 | |
| 1623 | // Helper for PhaseMacroExpand::expand_allocate_common. |
| 1624 | // Initializes the newly-allocated storage. |
| 1625 | Node* |
| 1626 | PhaseMacroExpand::initialize_object(AllocateNode* alloc, |
| 1627 | Node* control, Node* rawmem, Node* object, |
| 1628 | Node* klass_node, Node* length, |
| 1629 | Node* size_in_bytes) { |
| 1630 | InitializeNode* init = alloc->initialization(); |
| 1631 | // Store the klass & mark bits |
| 1632 | Node* mark_node = NULL; |
| 1633 | // For now only enable fast locking for non-array types |
| 1634 | if (UseBiasedLocking && (length == NULL)) { |
| 1635 | mark_node = make_load(control, rawmem, klass_node, in_bytes(Klass::prototype_header_offset()), TypeRawPtr::BOTTOM, T_ADDRESS); |
| 1636 | } else { |
| 1637 | mark_node = makecon(TypeRawPtr::make((address)markOopDesc::prototype())); |
| 1638 | } |
| 1639 | rawmem = make_store(control, rawmem, object, oopDesc::mark_offset_in_bytes(), mark_node, T_ADDRESS); |
| 1640 | |
| 1641 | rawmem = make_store(control, rawmem, object, oopDesc::klass_offset_in_bytes(), klass_node, T_METADATA); |
| 1642 | int = alloc->minimum_header_size(); // conservatively small |
| 1643 | |
| 1644 | // Array length |
| 1645 | if (length != NULL) { // Arrays need length field |
| 1646 | rawmem = make_store(control, rawmem, object, arrayOopDesc::length_offset_in_bytes(), length, T_INT); |
| 1647 | // conservatively small header size: |
| 1648 | header_size = arrayOopDesc::base_offset_in_bytes(T_BYTE); |
| 1649 | ciKlass* k = _igvn.type(klass_node)->is_klassptr()->klass(); |
| 1650 | if (k->is_array_klass()) // we know the exact header size in most cases: |
| 1651 | header_size = Klass::layout_helper_header_size(k->layout_helper()); |
| 1652 | } |
| 1653 | |
| 1654 | // Clear the object body, if necessary. |
| 1655 | if (init == NULL) { |
| 1656 | // The init has somehow disappeared; be cautious and clear everything. |
| 1657 | // |
| 1658 | // This can happen if a node is allocated but an uncommon trap occurs |
| 1659 | // immediately. In this case, the Initialize gets associated with the |
| 1660 | // trap, and may be placed in a different (outer) loop, if the Allocate |
| 1661 | // is in a loop. If (this is rare) the inner loop gets unrolled, then |
| 1662 | // there can be two Allocates to one Initialize. The answer in all these |
| 1663 | // edge cases is safety first. It is always safe to clear immediately |
| 1664 | // within an Allocate, and then (maybe or maybe not) clear some more later. |
| 1665 | if (!(UseTLAB && ZeroTLAB)) { |
| 1666 | rawmem = ClearArrayNode::clear_memory(control, rawmem, object, |
| 1667 | header_size, size_in_bytes, |
| 1668 | &_igvn); |
| 1669 | } |
| 1670 | } else { |
| 1671 | if (!init->is_complete()) { |
| 1672 | // Try to win by zeroing only what the init does not store. |
| 1673 | // We can also try to do some peephole optimizations, |
| 1674 | // such as combining some adjacent subword stores. |
| 1675 | rawmem = init->complete_stores(control, rawmem, object, |
| 1676 | header_size, size_in_bytes, &_igvn); |
| 1677 | } |
| 1678 | // We have no more use for this link, since the AllocateNode goes away: |
| 1679 | init->set_req(InitializeNode::RawAddress, top()); |
| 1680 | // (If we keep the link, it just confuses the register allocator, |
| 1681 | // who thinks he sees a real use of the address by the membar.) |
| 1682 | } |
| 1683 | |
| 1684 | return rawmem; |
| 1685 | } |
| 1686 | |
| 1687 | // Generate prefetch instructions for next allocations. |
| 1688 | Node* PhaseMacroExpand::prefetch_allocation(Node* i_o, Node*& needgc_false, |
| 1689 | Node*& contended_phi_rawmem, |
| 1690 | Node* old_eden_top, Node* new_eden_top, |
| 1691 | intx lines) { |
| 1692 | enum { fall_in_path = 1, pf_path = 2 }; |
| 1693 | if( UseTLAB && AllocatePrefetchStyle == 2 ) { |
| 1694 | // Generate prefetch allocation with watermark check. |
| 1695 | // As an allocation hits the watermark, we will prefetch starting |
| 1696 | // at a "distance" away from watermark. |
| 1697 | |
| 1698 | Node *pf_region = new RegionNode(3); |
| 1699 | Node *pf_phi_rawmem = new PhiNode( pf_region, Type::MEMORY, |
| 1700 | TypeRawPtr::BOTTOM ); |
| 1701 | // I/O is used for Prefetch |
| 1702 | Node *pf_phi_abio = new PhiNode( pf_region, Type::ABIO ); |
| 1703 | |
| 1704 | Node *thread = new ThreadLocalNode(); |
| 1705 | transform_later(thread); |
| 1706 | |
| 1707 | Node *eden_pf_adr = new AddPNode( top()/*not oop*/, thread, |
| 1708 | _igvn.MakeConX(in_bytes(JavaThread::tlab_pf_top_offset())) ); |
| 1709 | transform_later(eden_pf_adr); |
| 1710 | |
| 1711 | Node *old_pf_wm = new LoadPNode(needgc_false, |
| 1712 | contended_phi_rawmem, eden_pf_adr, |
| 1713 | TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM, |
| 1714 | MemNode::unordered); |
| 1715 | transform_later(old_pf_wm); |
| 1716 | |
| 1717 | // check against new_eden_top |
| 1718 | Node *need_pf_cmp = new CmpPNode( new_eden_top, old_pf_wm ); |
| 1719 | transform_later(need_pf_cmp); |
| 1720 | Node *need_pf_bol = new BoolNode( need_pf_cmp, BoolTest::ge ); |
| 1721 | transform_later(need_pf_bol); |
| 1722 | IfNode *need_pf_iff = new IfNode( needgc_false, need_pf_bol, |
| 1723 | PROB_UNLIKELY_MAG(4), COUNT_UNKNOWN ); |
| 1724 | transform_later(need_pf_iff); |
| 1725 | |
| 1726 | // true node, add prefetchdistance |
| 1727 | Node *need_pf_true = new IfTrueNode( need_pf_iff ); |
| 1728 | transform_later(need_pf_true); |
| 1729 | |
| 1730 | Node *need_pf_false = new IfFalseNode( need_pf_iff ); |
| 1731 | transform_later(need_pf_false); |
| 1732 | |
| 1733 | Node *new_pf_wmt = new AddPNode( top(), old_pf_wm, |
| 1734 | _igvn.MakeConX(AllocatePrefetchDistance) ); |
| 1735 | transform_later(new_pf_wmt ); |
| 1736 | new_pf_wmt->set_req(0, need_pf_true); |
| 1737 | |
| 1738 | Node *store_new_wmt = new StorePNode(need_pf_true, |
| 1739 | contended_phi_rawmem, eden_pf_adr, |
| 1740 | TypeRawPtr::BOTTOM, new_pf_wmt, |
| 1741 | MemNode::unordered); |
| 1742 | transform_later(store_new_wmt); |
| 1743 | |
| 1744 | // adding prefetches |
| 1745 | pf_phi_abio->init_req( fall_in_path, i_o ); |
| 1746 | |
| 1747 | Node *prefetch_adr; |
| 1748 | Node *prefetch; |
| 1749 | uint step_size = AllocatePrefetchStepSize; |
| 1750 | uint distance = 0; |
| 1751 | |
| 1752 | for ( intx i = 0; i < lines; i++ ) { |
| 1753 | prefetch_adr = new AddPNode( old_pf_wm, new_pf_wmt, |
| 1754 | _igvn.MakeConX(distance) ); |
| 1755 | transform_later(prefetch_adr); |
| 1756 | prefetch = new PrefetchAllocationNode( i_o, prefetch_adr ); |
| 1757 | transform_later(prefetch); |
| 1758 | distance += step_size; |
| 1759 | i_o = prefetch; |
| 1760 | } |
| 1761 | pf_phi_abio->set_req( pf_path, i_o ); |
| 1762 | |
| 1763 | pf_region->init_req( fall_in_path, need_pf_false ); |
| 1764 | pf_region->init_req( pf_path, need_pf_true ); |
| 1765 | |
| 1766 | pf_phi_rawmem->init_req( fall_in_path, contended_phi_rawmem ); |
| 1767 | pf_phi_rawmem->init_req( pf_path, store_new_wmt ); |
| 1768 | |
| 1769 | transform_later(pf_region); |
| 1770 | transform_later(pf_phi_rawmem); |
| 1771 | transform_later(pf_phi_abio); |
| 1772 | |
| 1773 | needgc_false = pf_region; |
| 1774 | contended_phi_rawmem = pf_phi_rawmem; |
| 1775 | i_o = pf_phi_abio; |
| 1776 | } else if( UseTLAB && AllocatePrefetchStyle == 3 ) { |
| 1777 | // Insert a prefetch instruction for each allocation. |
| 1778 | // This code is used to generate 1 prefetch instruction per cache line. |
| 1779 | |
| 1780 | // Generate several prefetch instructions. |
| 1781 | uint step_size = AllocatePrefetchStepSize; |
| 1782 | uint distance = AllocatePrefetchDistance; |
| 1783 | |
| 1784 | // Next cache address. |
| 1785 | Node *cache_adr = new AddPNode(old_eden_top, old_eden_top, |
| 1786 | _igvn.MakeConX(step_size + distance)); |
| 1787 | transform_later(cache_adr); |
| 1788 | cache_adr = new CastP2XNode(needgc_false, cache_adr); |
| 1789 | transform_later(cache_adr); |
| 1790 | // Address is aligned to execute prefetch to the beginning of cache line size |
| 1791 | // (it is important when BIS instruction is used on SPARC as prefetch). |
| 1792 | Node* mask = _igvn.MakeConX(~(intptr_t)(step_size-1)); |
| 1793 | cache_adr = new AndXNode(cache_adr, mask); |
| 1794 | transform_later(cache_adr); |
| 1795 | cache_adr = new CastX2PNode(cache_adr); |
| 1796 | transform_later(cache_adr); |
| 1797 | |
| 1798 | // Prefetch |
| 1799 | Node *prefetch = new PrefetchAllocationNode( contended_phi_rawmem, cache_adr ); |
| 1800 | prefetch->set_req(0, needgc_false); |
| 1801 | transform_later(prefetch); |
| 1802 | contended_phi_rawmem = prefetch; |
| 1803 | Node *prefetch_adr; |
| 1804 | distance = step_size; |
| 1805 | for ( intx i = 1; i < lines; i++ ) { |
| 1806 | prefetch_adr = new AddPNode( cache_adr, cache_adr, |
| 1807 | _igvn.MakeConX(distance) ); |
| 1808 | transform_later(prefetch_adr); |
| 1809 | prefetch = new PrefetchAllocationNode( contended_phi_rawmem, prefetch_adr ); |
| 1810 | transform_later(prefetch); |
| 1811 | distance += step_size; |
| 1812 | contended_phi_rawmem = prefetch; |
| 1813 | } |
| 1814 | } else if( AllocatePrefetchStyle > 0 ) { |
| 1815 | // Insert a prefetch for each allocation only on the fast-path |
| 1816 | Node *prefetch_adr; |
| 1817 | Node *prefetch; |
| 1818 | // Generate several prefetch instructions. |
| 1819 | uint step_size = AllocatePrefetchStepSize; |
| 1820 | uint distance = AllocatePrefetchDistance; |
| 1821 | for ( intx i = 0; i < lines; i++ ) { |
| 1822 | prefetch_adr = new AddPNode( old_eden_top, new_eden_top, |
| 1823 | _igvn.MakeConX(distance) ); |
| 1824 | transform_later(prefetch_adr); |
| 1825 | prefetch = new PrefetchAllocationNode( i_o, prefetch_adr ); |
| 1826 | // Do not let it float too high, since if eden_top == eden_end, |
| 1827 | // both might be null. |
| 1828 | if( i == 0 ) { // Set control for first prefetch, next follows it |
| 1829 | prefetch->init_req(0, needgc_false); |
| 1830 | } |
| 1831 | transform_later(prefetch); |
| 1832 | distance += step_size; |
| 1833 | i_o = prefetch; |
| 1834 | } |
| 1835 | } |
| 1836 | return i_o; |
| 1837 | } |
| 1838 | |
| 1839 | |
| 1840 | void PhaseMacroExpand::expand_allocate(AllocateNode *alloc) { |
| 1841 | expand_allocate_common(alloc, NULL, |
| 1842 | OptoRuntime::new_instance_Type(), |
| 1843 | OptoRuntime::new_instance_Java()); |
| 1844 | } |
| 1845 | |
| 1846 | void PhaseMacroExpand::expand_allocate_array(AllocateArrayNode *alloc) { |
| 1847 | Node* length = alloc->in(AllocateNode::ALength); |
| 1848 | InitializeNode* init = alloc->initialization(); |
| 1849 | Node* klass_node = alloc->in(AllocateNode::KlassNode); |
| 1850 | ciKlass* k = _igvn.type(klass_node)->is_klassptr()->klass(); |
| 1851 | address slow_call_address; // Address of slow call |
| 1852 | if (init != NULL && init->is_complete_with_arraycopy() && |
| 1853 | k->is_type_array_klass()) { |
| 1854 | // Don't zero type array during slow allocation in VM since |
| 1855 | // it will be initialized later by arraycopy in compiled code. |
| 1856 | slow_call_address = OptoRuntime::new_array_nozero_Java(); |
| 1857 | } else { |
| 1858 | slow_call_address = OptoRuntime::new_array_Java(); |
| 1859 | } |
| 1860 | expand_allocate_common(alloc, length, |
| 1861 | OptoRuntime::new_array_Type(), |
| 1862 | slow_call_address); |
| 1863 | } |
| 1864 | |
| 1865 | //-------------------mark_eliminated_box---------------------------------- |
| 1866 | // |
| 1867 | // During EA obj may point to several objects but after few ideal graph |
| 1868 | // transformations (CCP) it may point to only one non escaping object |
| 1869 | // (but still using phi), corresponding locks and unlocks will be marked |
| 1870 | // for elimination. Later obj could be replaced with a new node (new phi) |
| 1871 | // and which does not have escape information. And later after some graph |
| 1872 | // reshape other locks and unlocks (which were not marked for elimination |
| 1873 | // before) are connected to this new obj (phi) but they still will not be |
| 1874 | // marked for elimination since new obj has no escape information. |
| 1875 | // Mark all associated (same box and obj) lock and unlock nodes for |
| 1876 | // elimination if some of them marked already. |
| 1877 | void PhaseMacroExpand::mark_eliminated_box(Node* oldbox, Node* obj) { |
| 1878 | if (oldbox->as_BoxLock()->is_eliminated()) |
| 1879 | return; // This BoxLock node was processed already. |
| 1880 | |
| 1881 | // New implementation (EliminateNestedLocks) has separate BoxLock |
| 1882 | // node for each locked region so mark all associated locks/unlocks as |
| 1883 | // eliminated even if different objects are referenced in one locked region |
| 1884 | // (for example, OSR compilation of nested loop inside locked scope). |
| 1885 | if (EliminateNestedLocks || |
| 1886 | oldbox->as_BoxLock()->is_simple_lock_region(NULL, obj)) { |
| 1887 | // Box is used only in one lock region. Mark this box as eliminated. |
| 1888 | _igvn.hash_delete(oldbox); |
| 1889 | oldbox->as_BoxLock()->set_eliminated(); // This changes box's hash value |
| 1890 | _igvn.hash_insert(oldbox); |
| 1891 | |
| 1892 | for (uint i = 0; i < oldbox->outcnt(); i++) { |
| 1893 | Node* u = oldbox->raw_out(i); |
| 1894 | if (u->is_AbstractLock() && !u->as_AbstractLock()->is_non_esc_obj()) { |
| 1895 | AbstractLockNode* alock = u->as_AbstractLock(); |
| 1896 | // Check lock's box since box could be referenced by Lock's debug info. |
| 1897 | if (alock->box_node() == oldbox) { |
| 1898 | // Mark eliminated all related locks and unlocks. |
| 1899 | #ifdef ASSERT |
| 1900 | alock->log_lock_optimization(C, "eliminate_lock_set_non_esc4" ); |
| 1901 | #endif |
| 1902 | alock->set_non_esc_obj(); |
| 1903 | } |
| 1904 | } |
| 1905 | } |
| 1906 | return; |
| 1907 | } |
| 1908 | |
| 1909 | // Create new "eliminated" BoxLock node and use it in monitor debug info |
| 1910 | // instead of oldbox for the same object. |
| 1911 | BoxLockNode* newbox = oldbox->clone()->as_BoxLock(); |
| 1912 | |
| 1913 | // Note: BoxLock node is marked eliminated only here and it is used |
| 1914 | // to indicate that all associated lock and unlock nodes are marked |
| 1915 | // for elimination. |
| 1916 | newbox->set_eliminated(); |
| 1917 | transform_later(newbox); |
| 1918 | |
| 1919 | // Replace old box node with new box for all users of the same object. |
| 1920 | for (uint i = 0; i < oldbox->outcnt();) { |
| 1921 | bool next_edge = true; |
| 1922 | |
| 1923 | Node* u = oldbox->raw_out(i); |
| 1924 | if (u->is_AbstractLock()) { |
| 1925 | AbstractLockNode* alock = u->as_AbstractLock(); |
| 1926 | if (alock->box_node() == oldbox && alock->obj_node()->eqv_uncast(obj)) { |
| 1927 | // Replace Box and mark eliminated all related locks and unlocks. |
| 1928 | #ifdef ASSERT |
| 1929 | alock->log_lock_optimization(C, "eliminate_lock_set_non_esc5" ); |
| 1930 | #endif |
| 1931 | alock->set_non_esc_obj(); |
| 1932 | _igvn.rehash_node_delayed(alock); |
| 1933 | alock->set_box_node(newbox); |
| 1934 | next_edge = false; |
| 1935 | } |
| 1936 | } |
| 1937 | if (u->is_FastLock() && u->as_FastLock()->obj_node()->eqv_uncast(obj)) { |
| 1938 | FastLockNode* flock = u->as_FastLock(); |
| 1939 | assert(flock->box_node() == oldbox, "sanity" ); |
| 1940 | _igvn.rehash_node_delayed(flock); |
| 1941 | flock->set_box_node(newbox); |
| 1942 | next_edge = false; |
| 1943 | } |
| 1944 | |
| 1945 | // Replace old box in monitor debug info. |
| 1946 | if (u->is_SafePoint() && u->as_SafePoint()->jvms()) { |
| 1947 | SafePointNode* sfn = u->as_SafePoint(); |
| 1948 | JVMState* youngest_jvms = sfn->jvms(); |
| 1949 | int max_depth = youngest_jvms->depth(); |
| 1950 | for (int depth = 1; depth <= max_depth; depth++) { |
| 1951 | JVMState* jvms = youngest_jvms->of_depth(depth); |
| 1952 | int num_mon = jvms->nof_monitors(); |
| 1953 | // Loop over monitors |
| 1954 | for (int idx = 0; idx < num_mon; idx++) { |
| 1955 | Node* obj_node = sfn->monitor_obj(jvms, idx); |
| 1956 | Node* box_node = sfn->monitor_box(jvms, idx); |
| 1957 | if (box_node == oldbox && obj_node->eqv_uncast(obj)) { |
| 1958 | int j = jvms->monitor_box_offset(idx); |
| 1959 | _igvn.replace_input_of(u, j, newbox); |
| 1960 | next_edge = false; |
| 1961 | } |
| 1962 | } |
| 1963 | } |
| 1964 | } |
| 1965 | if (next_edge) i++; |
| 1966 | } |
| 1967 | } |
| 1968 | |
| 1969 | //-----------------------mark_eliminated_locking_nodes----------------------- |
| 1970 | void PhaseMacroExpand::mark_eliminated_locking_nodes(AbstractLockNode *alock) { |
| 1971 | if (EliminateNestedLocks) { |
| 1972 | if (alock->is_nested()) { |
| 1973 | assert(alock->box_node()->as_BoxLock()->is_eliminated(), "sanity" ); |
| 1974 | return; |
| 1975 | } else if (!alock->is_non_esc_obj()) { // Not eliminated or coarsened |
| 1976 | // Only Lock node has JVMState needed here. |
| 1977 | // Not that preceding claim is documented anywhere else. |
| 1978 | if (alock->jvms() != NULL) { |
| 1979 | if (alock->as_Lock()->is_nested_lock_region()) { |
| 1980 | // Mark eliminated related nested locks and unlocks. |
| 1981 | Node* obj = alock->obj_node(); |
| 1982 | BoxLockNode* box_node = alock->box_node()->as_BoxLock(); |
| 1983 | assert(!box_node->is_eliminated(), "should not be marked yet" ); |
| 1984 | // Note: BoxLock node is marked eliminated only here |
| 1985 | // and it is used to indicate that all associated lock |
| 1986 | // and unlock nodes are marked for elimination. |
| 1987 | box_node->set_eliminated(); // Box's hash is always NO_HASH here |
| 1988 | for (uint i = 0; i < box_node->outcnt(); i++) { |
| 1989 | Node* u = box_node->raw_out(i); |
| 1990 | if (u->is_AbstractLock()) { |
| 1991 | alock = u->as_AbstractLock(); |
| 1992 | if (alock->box_node() == box_node) { |
| 1993 | // Verify that this Box is referenced only by related locks. |
| 1994 | assert(alock->obj_node()->eqv_uncast(obj), "" ); |
| 1995 | // Mark all related locks and unlocks. |
| 1996 | #ifdef ASSERT |
| 1997 | alock->log_lock_optimization(C, "eliminate_lock_set_nested" ); |
| 1998 | #endif |
| 1999 | alock->set_nested(); |
| 2000 | } |
| 2001 | } |
| 2002 | } |
| 2003 | } else { |
| 2004 | #ifdef ASSERT |
| 2005 | alock->log_lock_optimization(C, "eliminate_lock_NOT_nested_lock_region" ); |
| 2006 | if (C->log() != NULL) |
| 2007 | alock->as_Lock()->is_nested_lock_region(C); // rerun for debugging output |
| 2008 | #endif |
| 2009 | } |
| 2010 | } |
| 2011 | return; |
| 2012 | } |
| 2013 | // Process locks for non escaping object |
| 2014 | assert(alock->is_non_esc_obj(), "" ); |
| 2015 | } // EliminateNestedLocks |
| 2016 | |
| 2017 | if (alock->is_non_esc_obj()) { // Lock is used for non escaping object |
| 2018 | // Look for all locks of this object and mark them and |
| 2019 | // corresponding BoxLock nodes as eliminated. |
| 2020 | Node* obj = alock->obj_node(); |
| 2021 | for (uint j = 0; j < obj->outcnt(); j++) { |
| 2022 | Node* o = obj->raw_out(j); |
| 2023 | if (o->is_AbstractLock() && |
| 2024 | o->as_AbstractLock()->obj_node()->eqv_uncast(obj)) { |
| 2025 | alock = o->as_AbstractLock(); |
| 2026 | Node* box = alock->box_node(); |
| 2027 | // Replace old box node with new eliminated box for all users |
| 2028 | // of the same object and mark related locks as eliminated. |
| 2029 | mark_eliminated_box(box, obj); |
| 2030 | } |
| 2031 | } |
| 2032 | } |
| 2033 | } |
| 2034 | |
| 2035 | // we have determined that this lock/unlock can be eliminated, we simply |
| 2036 | // eliminate the node without expanding it. |
| 2037 | // |
| 2038 | // Note: The membar's associated with the lock/unlock are currently not |
| 2039 | // eliminated. This should be investigated as a future enhancement. |
| 2040 | // |
| 2041 | bool PhaseMacroExpand::eliminate_locking_node(AbstractLockNode *alock) { |
| 2042 | |
| 2043 | if (!alock->is_eliminated()) { |
| 2044 | return false; |
| 2045 | } |
| 2046 | #ifdef ASSERT |
| 2047 | if (!alock->is_coarsened()) { |
| 2048 | // Check that new "eliminated" BoxLock node is created. |
| 2049 | BoxLockNode* oldbox = alock->box_node()->as_BoxLock(); |
| 2050 | assert(oldbox->is_eliminated(), "should be done already" ); |
| 2051 | } |
| 2052 | #endif |
| 2053 | |
| 2054 | alock->log_lock_optimization(C, "eliminate_lock" ); |
| 2055 | |
| 2056 | #ifndef PRODUCT |
| 2057 | if (PrintEliminateLocks) { |
| 2058 | if (alock->is_Lock()) { |
| 2059 | tty->print_cr("++++ Eliminated: %d Lock" , alock->_idx); |
| 2060 | } else { |
| 2061 | tty->print_cr("++++ Eliminated: %d Unlock" , alock->_idx); |
| 2062 | } |
| 2063 | } |
| 2064 | #endif |
| 2065 | |
| 2066 | Node* mem = alock->in(TypeFunc::Memory); |
| 2067 | Node* ctrl = alock->in(TypeFunc::Control); |
| 2068 | guarantee(ctrl != NULL, "missing control projection, cannot replace_node() with NULL" ); |
| 2069 | |
| 2070 | extract_call_projections(alock); |
| 2071 | // There are 2 projections from the lock. The lock node will |
| 2072 | // be deleted when its last use is subsumed below. |
| 2073 | assert(alock->outcnt() == 2 && |
| 2074 | _fallthroughproj != NULL && |
| 2075 | _memproj_fallthrough != NULL, |
| 2076 | "Unexpected projections from Lock/Unlock" ); |
| 2077 | |
| 2078 | Node* fallthroughproj = _fallthroughproj; |
| 2079 | Node* memproj_fallthrough = _memproj_fallthrough; |
| 2080 | |
| 2081 | // The memory projection from a lock/unlock is RawMem |
| 2082 | // The input to a Lock is merged memory, so extract its RawMem input |
| 2083 | // (unless the MergeMem has been optimized away.) |
| 2084 | if (alock->is_Lock()) { |
| 2085 | // Seach for MemBarAcquireLock node and delete it also. |
| 2086 | MemBarNode* membar = fallthroughproj->unique_ctrl_out()->as_MemBar(); |
| 2087 | assert(membar != NULL && membar->Opcode() == Op_MemBarAcquireLock, "" ); |
| 2088 | Node* ctrlproj = membar->proj_out(TypeFunc::Control); |
| 2089 | Node* memproj = membar->proj_out(TypeFunc::Memory); |
| 2090 | _igvn.replace_node(ctrlproj, fallthroughproj); |
| 2091 | _igvn.replace_node(memproj, memproj_fallthrough); |
| 2092 | |
| 2093 | // Delete FastLock node also if this Lock node is unique user |
| 2094 | // (a loop peeling may clone a Lock node). |
| 2095 | Node* flock = alock->as_Lock()->fastlock_node(); |
| 2096 | if (flock->outcnt() == 1) { |
| 2097 | assert(flock->unique_out() == alock, "sanity" ); |
| 2098 | _igvn.replace_node(flock, top()); |
| 2099 | } |
| 2100 | } |
| 2101 | |
| 2102 | // Seach for MemBarReleaseLock node and delete it also. |
| 2103 | if (alock->is_Unlock() && ctrl->is_Proj() && ctrl->in(0)->is_MemBar()) { |
| 2104 | MemBarNode* membar = ctrl->in(0)->as_MemBar(); |
| 2105 | assert(membar->Opcode() == Op_MemBarReleaseLock && |
| 2106 | mem->is_Proj() && membar == mem->in(0), "" ); |
| 2107 | _igvn.replace_node(fallthroughproj, ctrl); |
| 2108 | _igvn.replace_node(memproj_fallthrough, mem); |
| 2109 | fallthroughproj = ctrl; |
| 2110 | memproj_fallthrough = mem; |
| 2111 | ctrl = membar->in(TypeFunc::Control); |
| 2112 | mem = membar->in(TypeFunc::Memory); |
| 2113 | } |
| 2114 | |
| 2115 | _igvn.replace_node(fallthroughproj, ctrl); |
| 2116 | _igvn.replace_node(memproj_fallthrough, mem); |
| 2117 | return true; |
| 2118 | } |
| 2119 | |
| 2120 | |
| 2121 | //------------------------------expand_lock_node---------------------- |
| 2122 | void PhaseMacroExpand::expand_lock_node(LockNode *lock) { |
| 2123 | |
| 2124 | Node* ctrl = lock->in(TypeFunc::Control); |
| 2125 | Node* mem = lock->in(TypeFunc::Memory); |
| 2126 | Node* obj = lock->obj_node(); |
| 2127 | Node* box = lock->box_node(); |
| 2128 | Node* flock = lock->fastlock_node(); |
| 2129 | |
| 2130 | assert(!box->as_BoxLock()->is_eliminated(), "sanity" ); |
| 2131 | |
| 2132 | // Make the merge point |
| 2133 | Node *region; |
| 2134 | Node *mem_phi; |
| 2135 | Node *slow_path; |
| 2136 | |
| 2137 | if (UseOptoBiasInlining) { |
| 2138 | /* |
| 2139 | * See the full description in MacroAssembler::biased_locking_enter(). |
| 2140 | * |
| 2141 | * if( (mark_word & biased_lock_mask) == biased_lock_pattern ) { |
| 2142 | * // The object is biased. |
| 2143 | * proto_node = klass->prototype_header; |
| 2144 | * o_node = thread | proto_node; |
| 2145 | * x_node = o_node ^ mark_word; |
| 2146 | * if( (x_node & ~age_mask) == 0 ) { // Biased to the current thread ? |
| 2147 | * // Done. |
| 2148 | * } else { |
| 2149 | * if( (x_node & biased_lock_mask) != 0 ) { |
| 2150 | * // The klass's prototype header is no longer biased. |
| 2151 | * cas(&mark_word, mark_word, proto_node) |
| 2152 | * goto cas_lock; |
| 2153 | * } else { |
| 2154 | * // The klass's prototype header is still biased. |
| 2155 | * if( (x_node & epoch_mask) != 0 ) { // Expired epoch? |
| 2156 | * old = mark_word; |
| 2157 | * new = o_node; |
| 2158 | * } else { |
| 2159 | * // Different thread or anonymous biased. |
| 2160 | * old = mark_word & (epoch_mask | age_mask | biased_lock_mask); |
| 2161 | * new = thread | old; |
| 2162 | * } |
| 2163 | * // Try to rebias. |
| 2164 | * if( cas(&mark_word, old, new) == 0 ) { |
| 2165 | * // Done. |
| 2166 | * } else { |
| 2167 | * goto slow_path; // Failed. |
| 2168 | * } |
| 2169 | * } |
| 2170 | * } |
| 2171 | * } else { |
| 2172 | * // The object is not biased. |
| 2173 | * cas_lock: |
| 2174 | * if( FastLock(obj) == 0 ) { |
| 2175 | * // Done. |
| 2176 | * } else { |
| 2177 | * slow_path: |
| 2178 | * OptoRuntime::complete_monitor_locking_Java(obj); |
| 2179 | * } |
| 2180 | * } |
| 2181 | */ |
| 2182 | |
| 2183 | region = new RegionNode(5); |
| 2184 | // create a Phi for the memory state |
| 2185 | mem_phi = new PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM); |
| 2186 | |
| 2187 | Node* fast_lock_region = new RegionNode(3); |
| 2188 | Node* fast_lock_mem_phi = new PhiNode( fast_lock_region, Type::MEMORY, TypeRawPtr::BOTTOM); |
| 2189 | |
| 2190 | // First, check mark word for the biased lock pattern. |
| 2191 | Node* mark_node = make_load(ctrl, mem, obj, oopDesc::mark_offset_in_bytes(), TypeX_X, TypeX_X->basic_type()); |
| 2192 | |
| 2193 | // Get fast path - mark word has the biased lock pattern. |
| 2194 | ctrl = opt_bits_test(ctrl, fast_lock_region, 1, mark_node, |
| 2195 | markOopDesc::biased_lock_mask_in_place, |
| 2196 | markOopDesc::biased_lock_pattern, true); |
| 2197 | // fast_lock_region->in(1) is set to slow path. |
| 2198 | fast_lock_mem_phi->init_req(1, mem); |
| 2199 | |
| 2200 | // Now check that the lock is biased to the current thread and has |
| 2201 | // the same epoch and bias as Klass::_prototype_header. |
| 2202 | |
| 2203 | // Special-case a fresh allocation to avoid building nodes: |
| 2204 | Node* klass_node = AllocateNode::Ideal_klass(obj, &_igvn); |
| 2205 | if (klass_node == NULL) { |
| 2206 | Node* k_adr = basic_plus_adr(obj, oopDesc::klass_offset_in_bytes()); |
| 2207 | klass_node = transform_later(LoadKlassNode::make(_igvn, NULL, mem, k_adr, _igvn.type(k_adr)->is_ptr())); |
| 2208 | #ifdef _LP64 |
| 2209 | if (UseCompressedClassPointers && klass_node->is_DecodeNKlass()) { |
| 2210 | assert(klass_node->in(1)->Opcode() == Op_LoadNKlass, "sanity" ); |
| 2211 | klass_node->in(1)->init_req(0, ctrl); |
| 2212 | } else |
| 2213 | #endif |
| 2214 | klass_node->init_req(0, ctrl); |
| 2215 | } |
| 2216 | Node *proto_node = make_load(ctrl, mem, klass_node, in_bytes(Klass::prototype_header_offset()), TypeX_X, TypeX_X->basic_type()); |
| 2217 | |
| 2218 | Node* thread = transform_later(new ThreadLocalNode()); |
| 2219 | Node* cast_thread = transform_later(new CastP2XNode(ctrl, thread)); |
| 2220 | Node* o_node = transform_later(new OrXNode(cast_thread, proto_node)); |
| 2221 | Node* x_node = transform_later(new XorXNode(o_node, mark_node)); |
| 2222 | |
| 2223 | // Get slow path - mark word does NOT match the value. |
| 2224 | Node* not_biased_ctrl = opt_bits_test(ctrl, region, 3, x_node, |
| 2225 | (~markOopDesc::age_mask_in_place), 0); |
| 2226 | // region->in(3) is set to fast path - the object is biased to the current thread. |
| 2227 | mem_phi->init_req(3, mem); |
| 2228 | |
| 2229 | |
| 2230 | // Mark word does NOT match the value (thread | Klass::_prototype_header). |
| 2231 | |
| 2232 | |
| 2233 | // First, check biased pattern. |
| 2234 | // Get fast path - _prototype_header has the same biased lock pattern. |
| 2235 | ctrl = opt_bits_test(not_biased_ctrl, fast_lock_region, 2, x_node, |
| 2236 | markOopDesc::biased_lock_mask_in_place, 0, true); |
| 2237 | |
| 2238 | not_biased_ctrl = fast_lock_region->in(2); // Slow path |
| 2239 | // fast_lock_region->in(2) - the prototype header is no longer biased |
| 2240 | // and we have to revoke the bias on this object. |
| 2241 | // We are going to try to reset the mark of this object to the prototype |
| 2242 | // value and fall through to the CAS-based locking scheme. |
| 2243 | Node* adr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes()); |
| 2244 | Node* cas = new StoreXConditionalNode(not_biased_ctrl, mem, adr, |
| 2245 | proto_node, mark_node); |
| 2246 | transform_later(cas); |
| 2247 | Node* proj = transform_later(new SCMemProjNode(cas)); |
| 2248 | fast_lock_mem_phi->init_req(2, proj); |
| 2249 | |
| 2250 | |
| 2251 | // Second, check epoch bits. |
| 2252 | Node* rebiased_region = new RegionNode(3); |
| 2253 | Node* old_phi = new PhiNode( rebiased_region, TypeX_X); |
| 2254 | Node* new_phi = new PhiNode( rebiased_region, TypeX_X); |
| 2255 | |
| 2256 | // Get slow path - mark word does NOT match epoch bits. |
| 2257 | Node* epoch_ctrl = opt_bits_test(ctrl, rebiased_region, 1, x_node, |
| 2258 | markOopDesc::epoch_mask_in_place, 0); |
| 2259 | // The epoch of the current bias is not valid, attempt to rebias the object |
| 2260 | // toward the current thread. |
| 2261 | rebiased_region->init_req(2, epoch_ctrl); |
| 2262 | old_phi->init_req(2, mark_node); |
| 2263 | new_phi->init_req(2, o_node); |
| 2264 | |
| 2265 | // rebiased_region->in(1) is set to fast path. |
| 2266 | // The epoch of the current bias is still valid but we know |
| 2267 | // nothing about the owner; it might be set or it might be clear. |
| 2268 | Node* cmask = MakeConX(markOopDesc::biased_lock_mask_in_place | |
| 2269 | markOopDesc::age_mask_in_place | |
| 2270 | markOopDesc::epoch_mask_in_place); |
| 2271 | Node* old = transform_later(new AndXNode(mark_node, cmask)); |
| 2272 | cast_thread = transform_later(new CastP2XNode(ctrl, thread)); |
| 2273 | Node* new_mark = transform_later(new OrXNode(cast_thread, old)); |
| 2274 | old_phi->init_req(1, old); |
| 2275 | new_phi->init_req(1, new_mark); |
| 2276 | |
| 2277 | transform_later(rebiased_region); |
| 2278 | transform_later(old_phi); |
| 2279 | transform_later(new_phi); |
| 2280 | |
| 2281 | // Try to acquire the bias of the object using an atomic operation. |
| 2282 | // If this fails we will go in to the runtime to revoke the object's bias. |
| 2283 | cas = new StoreXConditionalNode(rebiased_region, mem, adr, new_phi, old_phi); |
| 2284 | transform_later(cas); |
| 2285 | proj = transform_later(new SCMemProjNode(cas)); |
| 2286 | |
| 2287 | // Get slow path - Failed to CAS. |
| 2288 | not_biased_ctrl = opt_bits_test(rebiased_region, region, 4, cas, 0, 0); |
| 2289 | mem_phi->init_req(4, proj); |
| 2290 | // region->in(4) is set to fast path - the object is rebiased to the current thread. |
| 2291 | |
| 2292 | // Failed to CAS. |
| 2293 | slow_path = new RegionNode(3); |
| 2294 | Node *slow_mem = new PhiNode( slow_path, Type::MEMORY, TypeRawPtr::BOTTOM); |
| 2295 | |
| 2296 | slow_path->init_req(1, not_biased_ctrl); // Capture slow-control |
| 2297 | slow_mem->init_req(1, proj); |
| 2298 | |
| 2299 | // Call CAS-based locking scheme (FastLock node). |
| 2300 | |
| 2301 | transform_later(fast_lock_region); |
| 2302 | transform_later(fast_lock_mem_phi); |
| 2303 | |
| 2304 | // Get slow path - FastLock failed to lock the object. |
| 2305 | ctrl = opt_bits_test(fast_lock_region, region, 2, flock, 0, 0); |
| 2306 | mem_phi->init_req(2, fast_lock_mem_phi); |
| 2307 | // region->in(2) is set to fast path - the object is locked to the current thread. |
| 2308 | |
| 2309 | slow_path->init_req(2, ctrl); // Capture slow-control |
| 2310 | slow_mem->init_req(2, fast_lock_mem_phi); |
| 2311 | |
| 2312 | transform_later(slow_path); |
| 2313 | transform_later(slow_mem); |
| 2314 | // Reset lock's memory edge. |
| 2315 | lock->set_req(TypeFunc::Memory, slow_mem); |
| 2316 | |
| 2317 | } else { |
| 2318 | region = new RegionNode(3); |
| 2319 | // create a Phi for the memory state |
| 2320 | mem_phi = new PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM); |
| 2321 | |
| 2322 | // Optimize test; set region slot 2 |
| 2323 | slow_path = opt_bits_test(ctrl, region, 2, flock, 0, 0); |
| 2324 | mem_phi->init_req(2, mem); |
| 2325 | } |
| 2326 | |
| 2327 | // Make slow path call |
| 2328 | CallNode *call = make_slow_call((CallNode *) lock, OptoRuntime::complete_monitor_enter_Type(), |
| 2329 | OptoRuntime::complete_monitor_locking_Java(), NULL, slow_path, |
| 2330 | obj, box, NULL); |
| 2331 | |
| 2332 | extract_call_projections(call); |
| 2333 | |
| 2334 | // Slow path can only throw asynchronous exceptions, which are always |
| 2335 | // de-opted. So the compiler thinks the slow-call can never throw an |
| 2336 | // exception. If it DOES throw an exception we would need the debug |
| 2337 | // info removed first (since if it throws there is no monitor). |
| 2338 | assert ( _ioproj_fallthrough == NULL && _ioproj_catchall == NULL && |
| 2339 | _memproj_catchall == NULL && _catchallcatchproj == NULL, "Unexpected projection from Lock" ); |
| 2340 | |
| 2341 | // Capture slow path |
| 2342 | // disconnect fall-through projection from call and create a new one |
| 2343 | // hook up users of fall-through projection to region |
| 2344 | Node *slow_ctrl = _fallthroughproj->clone(); |
| 2345 | transform_later(slow_ctrl); |
| 2346 | _igvn.hash_delete(_fallthroughproj); |
| 2347 | _fallthroughproj->disconnect_inputs(NULL, C); |
| 2348 | region->init_req(1, slow_ctrl); |
| 2349 | // region inputs are now complete |
| 2350 | transform_later(region); |
| 2351 | _igvn.replace_node(_fallthroughproj, region); |
| 2352 | |
| 2353 | Node *memproj = transform_later(new ProjNode(call, TypeFunc::Memory)); |
| 2354 | mem_phi->init_req(1, memproj ); |
| 2355 | transform_later(mem_phi); |
| 2356 | _igvn.replace_node(_memproj_fallthrough, mem_phi); |
| 2357 | } |
| 2358 | |
| 2359 | //------------------------------expand_unlock_node---------------------- |
| 2360 | void PhaseMacroExpand::expand_unlock_node(UnlockNode *unlock) { |
| 2361 | |
| 2362 | Node* ctrl = unlock->in(TypeFunc::Control); |
| 2363 | Node* mem = unlock->in(TypeFunc::Memory); |
| 2364 | Node* obj = unlock->obj_node(); |
| 2365 | Node* box = unlock->box_node(); |
| 2366 | |
| 2367 | assert(!box->as_BoxLock()->is_eliminated(), "sanity" ); |
| 2368 | |
| 2369 | // No need for a null check on unlock |
| 2370 | |
| 2371 | // Make the merge point |
| 2372 | Node *region; |
| 2373 | Node *mem_phi; |
| 2374 | |
| 2375 | if (UseOptoBiasInlining) { |
| 2376 | // Check for biased locking unlock case, which is a no-op. |
| 2377 | // See the full description in MacroAssembler::biased_locking_exit(). |
| 2378 | region = new RegionNode(4); |
| 2379 | // create a Phi for the memory state |
| 2380 | mem_phi = new PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM); |
| 2381 | mem_phi->init_req(3, mem); |
| 2382 | |
| 2383 | Node* mark_node = make_load(ctrl, mem, obj, oopDesc::mark_offset_in_bytes(), TypeX_X, TypeX_X->basic_type()); |
| 2384 | ctrl = opt_bits_test(ctrl, region, 3, mark_node, |
| 2385 | markOopDesc::biased_lock_mask_in_place, |
| 2386 | markOopDesc::biased_lock_pattern); |
| 2387 | } else { |
| 2388 | region = new RegionNode(3); |
| 2389 | // create a Phi for the memory state |
| 2390 | mem_phi = new PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM); |
| 2391 | } |
| 2392 | |
| 2393 | FastUnlockNode *funlock = new FastUnlockNode( ctrl, obj, box ); |
| 2394 | funlock = transform_later( funlock )->as_FastUnlock(); |
| 2395 | // Optimize test; set region slot 2 |
| 2396 | Node *slow_path = opt_bits_test(ctrl, region, 2, funlock, 0, 0); |
| 2397 | Node *thread = transform_later(new ThreadLocalNode()); |
| 2398 | |
| 2399 | CallNode *call = make_slow_call((CallNode *) unlock, OptoRuntime::complete_monitor_exit_Type(), |
| 2400 | CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C), |
| 2401 | "complete_monitor_unlocking_C" , slow_path, obj, box, thread); |
| 2402 | |
| 2403 | extract_call_projections(call); |
| 2404 | |
| 2405 | assert ( _ioproj_fallthrough == NULL && _ioproj_catchall == NULL && |
| 2406 | _memproj_catchall == NULL && _catchallcatchproj == NULL, "Unexpected projection from Lock" ); |
| 2407 | |
| 2408 | // No exceptions for unlocking |
| 2409 | // Capture slow path |
| 2410 | // disconnect fall-through projection from call and create a new one |
| 2411 | // hook up users of fall-through projection to region |
| 2412 | Node *slow_ctrl = _fallthroughproj->clone(); |
| 2413 | transform_later(slow_ctrl); |
| 2414 | _igvn.hash_delete(_fallthroughproj); |
| 2415 | _fallthroughproj->disconnect_inputs(NULL, C); |
| 2416 | region->init_req(1, slow_ctrl); |
| 2417 | // region inputs are now complete |
| 2418 | transform_later(region); |
| 2419 | _igvn.replace_node(_fallthroughproj, region); |
| 2420 | |
| 2421 | Node *memproj = transform_later(new ProjNode(call, TypeFunc::Memory) ); |
| 2422 | mem_phi->init_req(1, memproj ); |
| 2423 | mem_phi->init_req(2, mem); |
| 2424 | transform_later(mem_phi); |
| 2425 | _igvn.replace_node(_memproj_fallthrough, mem_phi); |
| 2426 | } |
| 2427 | |
| 2428 | //---------------------------eliminate_macro_nodes---------------------- |
| 2429 | // Eliminate scalar replaced allocations and associated locks. |
| 2430 | void PhaseMacroExpand::eliminate_macro_nodes() { |
| 2431 | if (C->macro_count() == 0) |
| 2432 | return; |
| 2433 | |
| 2434 | // First, attempt to eliminate locks |
| 2435 | int cnt = C->macro_count(); |
| 2436 | for (int i=0; i < cnt; i++) { |
| 2437 | Node *n = C->macro_node(i); |
| 2438 | if (n->is_AbstractLock()) { // Lock and Unlock nodes |
| 2439 | // Before elimination mark all associated (same box and obj) |
| 2440 | // lock and unlock nodes. |
| 2441 | mark_eliminated_locking_nodes(n->as_AbstractLock()); |
| 2442 | } |
| 2443 | } |
| 2444 | bool progress = true; |
| 2445 | while (progress) { |
| 2446 | progress = false; |
| 2447 | for (int i = C->macro_count(); i > 0; i--) { |
| 2448 | Node * n = C->macro_node(i-1); |
| 2449 | bool success = false; |
| 2450 | debug_only(int old_macro_count = C->macro_count();); |
| 2451 | if (n->is_AbstractLock()) { |
| 2452 | success = eliminate_locking_node(n->as_AbstractLock()); |
| 2453 | } |
| 2454 | assert(success == (C->macro_count() < old_macro_count), "elimination reduces macro count" ); |
| 2455 | progress = progress || success; |
| 2456 | } |
| 2457 | } |
| 2458 | // Next, attempt to eliminate allocations |
| 2459 | _has_locks = false; |
| 2460 | progress = true; |
| 2461 | while (progress) { |
| 2462 | progress = false; |
| 2463 | for (int i = C->macro_count(); i > 0; i--) { |
| 2464 | Node * n = C->macro_node(i-1); |
| 2465 | bool success = false; |
| 2466 | debug_only(int old_macro_count = C->macro_count();); |
| 2467 | switch (n->class_id()) { |
| 2468 | case Node::Class_Allocate: |
| 2469 | case Node::Class_AllocateArray: |
| 2470 | success = eliminate_allocate_node(n->as_Allocate()); |
| 2471 | break; |
| 2472 | case Node::Class_CallStaticJava: |
| 2473 | success = eliminate_boxing_node(n->as_CallStaticJava()); |
| 2474 | break; |
| 2475 | case Node::Class_Lock: |
| 2476 | case Node::Class_Unlock: |
| 2477 | assert(!n->as_AbstractLock()->is_eliminated(), "sanity" ); |
| 2478 | _has_locks = true; |
| 2479 | break; |
| 2480 | case Node::Class_ArrayCopy: |
| 2481 | break; |
| 2482 | case Node::Class_OuterStripMinedLoop: |
| 2483 | break; |
| 2484 | default: |
| 2485 | assert(n->Opcode() == Op_LoopLimit || |
| 2486 | n->Opcode() == Op_Opaque1 || |
| 2487 | n->Opcode() == Op_Opaque2 || |
| 2488 | n->Opcode() == Op_Opaque3 || |
| 2489 | BarrierSet::barrier_set()->barrier_set_c2()->is_gc_barrier_node(n), |
| 2490 | "unknown node type in macro list" ); |
| 2491 | } |
| 2492 | assert(success == (C->macro_count() < old_macro_count), "elimination reduces macro count" ); |
| 2493 | progress = progress || success; |
| 2494 | } |
| 2495 | } |
| 2496 | } |
| 2497 | |
| 2498 | //------------------------------expand_macro_nodes---------------------- |
| 2499 | // Returns true if a failure occurred. |
| 2500 | bool PhaseMacroExpand::expand_macro_nodes() { |
| 2501 | // Last attempt to eliminate macro nodes. |
| 2502 | eliminate_macro_nodes(); |
| 2503 | |
| 2504 | // Make sure expansion will not cause node limit to be exceeded. |
| 2505 | // Worst case is a macro node gets expanded into about 200 nodes. |
| 2506 | // Allow 50% more for optimization. |
| 2507 | if (C->check_node_count(C->macro_count() * 300, "out of nodes before macro expansion" ) ) |
| 2508 | return true; |
| 2509 | |
| 2510 | // Eliminate Opaque and LoopLimit nodes. Do it after all loop optimizations. |
| 2511 | bool progress = true; |
| 2512 | while (progress) { |
| 2513 | progress = false; |
| 2514 | for (int i = C->macro_count(); i > 0; i--) { |
| 2515 | Node * n = C->macro_node(i-1); |
| 2516 | bool success = false; |
| 2517 | debug_only(int old_macro_count = C->macro_count();); |
| 2518 | if (n->Opcode() == Op_LoopLimit) { |
| 2519 | // Remove it from macro list and put on IGVN worklist to optimize. |
| 2520 | C->remove_macro_node(n); |
| 2521 | _igvn._worklist.push(n); |
| 2522 | success = true; |
| 2523 | } else if (n->Opcode() == Op_CallStaticJava) { |
| 2524 | // Remove it from macro list and put on IGVN worklist to optimize. |
| 2525 | C->remove_macro_node(n); |
| 2526 | _igvn._worklist.push(n); |
| 2527 | success = true; |
| 2528 | } else if (n->Opcode() == Op_Opaque1 || n->Opcode() == Op_Opaque2) { |
| 2529 | _igvn.replace_node(n, n->in(1)); |
| 2530 | success = true; |
| 2531 | #if INCLUDE_RTM_OPT |
| 2532 | } else if ((n->Opcode() == Op_Opaque3) && ((Opaque3Node*)n)->rtm_opt()) { |
| 2533 | assert(C->profile_rtm(), "should be used only in rtm deoptimization code" ); |
| 2534 | assert((n->outcnt() == 1) && n->unique_out()->is_Cmp(), "" ); |
| 2535 | Node* cmp = n->unique_out(); |
| 2536 | #ifdef ASSERT |
| 2537 | // Validate graph. |
| 2538 | assert((cmp->outcnt() == 1) && cmp->unique_out()->is_Bool(), "" ); |
| 2539 | BoolNode* bol = cmp->unique_out()->as_Bool(); |
| 2540 | assert((bol->outcnt() == 1) && bol->unique_out()->is_If() && |
| 2541 | (bol->_test._test == BoolTest::ne), "" ); |
| 2542 | IfNode* ifn = bol->unique_out()->as_If(); |
| 2543 | assert((ifn->outcnt() == 2) && |
| 2544 | ifn->proj_out(1)->is_uncommon_trap_proj(Deoptimization::Reason_rtm_state_change) != NULL, "" ); |
| 2545 | #endif |
| 2546 | Node* repl = n->in(1); |
| 2547 | if (!_has_locks) { |
| 2548 | // Remove RTM state check if there are no locks in the code. |
| 2549 | // Replace input to compare the same value. |
| 2550 | repl = (cmp->in(1) == n) ? cmp->in(2) : cmp->in(1); |
| 2551 | } |
| 2552 | _igvn.replace_node(n, repl); |
| 2553 | success = true; |
| 2554 | #endif |
| 2555 | } else if (n->Opcode() == Op_OuterStripMinedLoop) { |
| 2556 | n->as_OuterStripMinedLoop()->adjust_strip_mined_loop(&_igvn); |
| 2557 | C->remove_macro_node(n); |
| 2558 | success = true; |
| 2559 | } |
| 2560 | assert(success == (C->macro_count() < old_macro_count), "elimination reduces macro count" ); |
| 2561 | progress = progress || success; |
| 2562 | } |
| 2563 | } |
| 2564 | |
| 2565 | // expand arraycopy "macro" nodes first |
| 2566 | // For ReduceBulkZeroing, we must first process all arraycopy nodes |
| 2567 | // before the allocate nodes are expanded. |
| 2568 | int macro_idx = C->macro_count() - 1; |
| 2569 | while (macro_idx >= 0) { |
| 2570 | Node * n = C->macro_node(macro_idx); |
| 2571 | assert(n->is_macro(), "only macro nodes expected here" ); |
| 2572 | if (_igvn.type(n) == Type::TOP || (n->in(0) != NULL && n->in(0)->is_top())) { |
| 2573 | // node is unreachable, so don't try to expand it |
| 2574 | C->remove_macro_node(n); |
| 2575 | } else if (n->is_ArrayCopy()){ |
| 2576 | int macro_count = C->macro_count(); |
| 2577 | expand_arraycopy_node(n->as_ArrayCopy()); |
| 2578 | assert(C->macro_count() < macro_count, "must have deleted a node from macro list" ); |
| 2579 | } |
| 2580 | if (C->failing()) return true; |
| 2581 | macro_idx --; |
| 2582 | } |
| 2583 | |
| 2584 | // expand "macro" nodes |
| 2585 | // nodes are removed from the macro list as they are processed |
| 2586 | while (C->macro_count() > 0) { |
| 2587 | int macro_count = C->macro_count(); |
| 2588 | Node * n = C->macro_node(macro_count-1); |
| 2589 | assert(n->is_macro(), "only macro nodes expected here" ); |
| 2590 | if (_igvn.type(n) == Type::TOP || (n->in(0) != NULL && n->in(0)->is_top())) { |
| 2591 | // node is unreachable, so don't try to expand it |
| 2592 | C->remove_macro_node(n); |
| 2593 | continue; |
| 2594 | } |
| 2595 | switch (n->class_id()) { |
| 2596 | case Node::Class_Allocate: |
| 2597 | expand_allocate(n->as_Allocate()); |
| 2598 | break; |
| 2599 | case Node::Class_AllocateArray: |
| 2600 | expand_allocate_array(n->as_AllocateArray()); |
| 2601 | break; |
| 2602 | case Node::Class_Lock: |
| 2603 | expand_lock_node(n->as_Lock()); |
| 2604 | break; |
| 2605 | case Node::Class_Unlock: |
| 2606 | expand_unlock_node(n->as_Unlock()); |
| 2607 | break; |
| 2608 | default: |
| 2609 | assert(false, "unknown node type in macro list" ); |
| 2610 | } |
| 2611 | assert(C->macro_count() < macro_count, "must have deleted a node from macro list" ); |
| 2612 | if (C->failing()) return true; |
| 2613 | } |
| 2614 | |
| 2615 | _igvn.set_delay_transform(false); |
| 2616 | _igvn.optimize(); |
| 2617 | if (C->failing()) return true; |
| 2618 | return false; |
| 2619 | } |
| 2620 | |