| 1 | /* |
| 2 | * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved. |
| 3 | * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
| 4 | * |
| 5 | * This code is free software; you can redistribute it and/or modify it |
| 6 | * under the terms of the GNU General Public License version 2 only, as |
| 7 | * published by the Free Software Foundation. |
| 8 | * |
| 9 | * This code is distributed in the hope that it will be useful, but WITHOUT |
| 10 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| 11 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| 12 | * version 2 for more details (a copy is included in the LICENSE file that |
| 13 | * accompanied this code). |
| 14 | * |
| 15 | * You should have received a copy of the GNU General Public License version |
| 16 | * 2 along with this work; if not, write to the Free Software Foundation, |
| 17 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
| 18 | * |
| 19 | * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
| 20 | * or visit www.oracle.com if you need additional information or have any |
| 21 | * questions. |
| 22 | * |
| 23 | */ |
| 24 | |
| 25 | #include "precompiled.hpp" |
| 26 | #include "compiler/compileLog.hpp" |
| 27 | #include "gc/shared/barrierSet.hpp" |
| 28 | #include "gc/shared/c2/barrierSetC2.hpp" |
| 29 | #include "memory/allocation.inline.hpp" |
| 30 | #include "opto/addnode.hpp" |
| 31 | #include "opto/callnode.hpp" |
| 32 | #include "opto/cfgnode.hpp" |
| 33 | #include "opto/loopnode.hpp" |
| 34 | #include "opto/matcher.hpp" |
| 35 | #include "opto/movenode.hpp" |
| 36 | #include "opto/mulnode.hpp" |
| 37 | #include "opto/opcodes.hpp" |
| 38 | #include "opto/phaseX.hpp" |
| 39 | #include "opto/subnode.hpp" |
| 40 | #include "runtime/sharedRuntime.hpp" |
| 41 | |
| 42 | // Portions of code courtesy of Clifford Click |
| 43 | |
| 44 | // Optimization - Graph Style |
| 45 | |
| 46 | #include "math.h" |
| 47 | |
| 48 | //============================================================================= |
| 49 | //------------------------------Identity--------------------------------------- |
| 50 | // If right input is a constant 0, return the left input. |
| 51 | Node* SubNode::Identity(PhaseGVN* phase) { |
| 52 | assert(in(1) != this, "Must already have called Value" ); |
| 53 | assert(in(2) != this, "Must already have called Value" ); |
| 54 | |
| 55 | // Remove double negation |
| 56 | const Type *zero = add_id(); |
| 57 | if( phase->type( in(1) )->higher_equal( zero ) && |
| 58 | in(2)->Opcode() == Opcode() && |
| 59 | phase->type( in(2)->in(1) )->higher_equal( zero ) ) { |
| 60 | return in(2)->in(2); |
| 61 | } |
| 62 | |
| 63 | // Convert "(X+Y) - Y" into X and "(X+Y) - X" into Y |
| 64 | if( in(1)->Opcode() == Op_AddI ) { |
| 65 | if( phase->eqv(in(1)->in(2),in(2)) ) |
| 66 | return in(1)->in(1); |
| 67 | if (phase->eqv(in(1)->in(1),in(2))) |
| 68 | return in(1)->in(2); |
| 69 | |
| 70 | // Also catch: "(X + Opaque2(Y)) - Y". In this case, 'Y' is a loop-varying |
| 71 | // trip counter and X is likely to be loop-invariant (that's how O2 Nodes |
| 72 | // are originally used, although the optimizer sometimes jiggers things). |
| 73 | // This folding through an O2 removes a loop-exit use of a loop-varying |
| 74 | // value and generally lowers register pressure in and around the loop. |
| 75 | if( in(1)->in(2)->Opcode() == Op_Opaque2 && |
| 76 | phase->eqv(in(1)->in(2)->in(1),in(2)) ) |
| 77 | return in(1)->in(1); |
| 78 | } |
| 79 | |
| 80 | return ( phase->type( in(2) )->higher_equal( zero ) ) ? in(1) : this; |
| 81 | } |
| 82 | |
| 83 | //------------------------------Value------------------------------------------ |
| 84 | // A subtract node differences it's two inputs. |
| 85 | const Type* SubNode::Value_common(PhaseTransform *phase) const { |
| 86 | const Node* in1 = in(1); |
| 87 | const Node* in2 = in(2); |
| 88 | // Either input is TOP ==> the result is TOP |
| 89 | const Type* t1 = (in1 == this) ? Type::TOP : phase->type(in1); |
| 90 | if( t1 == Type::TOP ) return Type::TOP; |
| 91 | const Type* t2 = (in2 == this) ? Type::TOP : phase->type(in2); |
| 92 | if( t2 == Type::TOP ) return Type::TOP; |
| 93 | |
| 94 | // Not correct for SubFnode and AddFNode (must check for infinity) |
| 95 | // Equal? Subtract is zero |
| 96 | if (in1->eqv_uncast(in2)) return add_id(); |
| 97 | |
| 98 | // Either input is BOTTOM ==> the result is the local BOTTOM |
| 99 | if( t1 == Type::BOTTOM || t2 == Type::BOTTOM ) |
| 100 | return bottom_type(); |
| 101 | |
| 102 | return NULL; |
| 103 | } |
| 104 | |
| 105 | const Type* SubNode::Value(PhaseGVN* phase) const { |
| 106 | const Type* t = Value_common(phase); |
| 107 | if (t != NULL) { |
| 108 | return t; |
| 109 | } |
| 110 | const Type* t1 = phase->type(in(1)); |
| 111 | const Type* t2 = phase->type(in(2)); |
| 112 | return sub(t1,t2); // Local flavor of type subtraction |
| 113 | |
| 114 | } |
| 115 | |
| 116 | //============================================================================= |
| 117 | //------------------------------Helper function-------------------------------- |
| 118 | |
| 119 | static bool is_cloop_increment(Node* inc) { |
| 120 | precond(inc->Opcode() == Op_AddI || inc->Opcode() == Op_AddL); |
| 121 | |
| 122 | if (!inc->in(1)->is_Phi()) { |
| 123 | return false; |
| 124 | } |
| 125 | const PhiNode* phi = inc->in(1)->as_Phi(); |
| 126 | |
| 127 | if (phi->is_copy() || !phi->region()->is_CountedLoop()) { |
| 128 | return false; |
| 129 | } |
| 130 | |
| 131 | return inc == phi->region()->as_CountedLoop()->incr(); |
| 132 | } |
| 133 | |
| 134 | // Given the expression '(x + C) - v', or |
| 135 | // 'v - (x + C)', we examine nodes '+' and 'v': |
| 136 | // |
| 137 | // 1. Do not convert if '+' is a counted-loop increment, because the '-' is |
| 138 | // loop invariant and converting extends the live-range of 'x' to overlap |
| 139 | // with the '+', forcing another register to be used in the loop. |
| 140 | // |
| 141 | // 2. Do not convert if 'v' is a counted-loop induction variable, because |
| 142 | // 'x' might be invariant. |
| 143 | // |
| 144 | static bool ok_to_convert(Node* inc, Node* var) { |
| 145 | return !(is_cloop_increment(inc) || var->is_cloop_ind_var()); |
| 146 | } |
| 147 | |
| 148 | //------------------------------Ideal------------------------------------------ |
| 149 | Node *SubINode::Ideal(PhaseGVN *phase, bool can_reshape){ |
| 150 | Node *in1 = in(1); |
| 151 | Node *in2 = in(2); |
| 152 | uint op1 = in1->Opcode(); |
| 153 | uint op2 = in2->Opcode(); |
| 154 | |
| 155 | #ifdef ASSERT |
| 156 | // Check for dead loop |
| 157 | if( phase->eqv( in1, this ) || phase->eqv( in2, this ) || |
| 158 | ( ( op1 == Op_AddI || op1 == Op_SubI ) && |
| 159 | ( phase->eqv( in1->in(1), this ) || phase->eqv( in1->in(2), this ) || |
| 160 | phase->eqv( in1->in(1), in1 ) || phase->eqv( in1->in(2), in1 ) ) ) ) |
| 161 | assert(false, "dead loop in SubINode::Ideal" ); |
| 162 | #endif |
| 163 | |
| 164 | const Type *t2 = phase->type( in2 ); |
| 165 | if( t2 == Type::TOP ) return NULL; |
| 166 | // Convert "x-c0" into "x+ -c0". |
| 167 | if( t2->base() == Type::Int ){ // Might be bottom or top... |
| 168 | const TypeInt *i = t2->is_int(); |
| 169 | if( i->is_con() ) |
| 170 | return new AddINode(in1, phase->intcon(-i->get_con())); |
| 171 | } |
| 172 | |
| 173 | // Convert "(x+c0) - y" into (x-y) + c0" |
| 174 | // Do not collapse (x+c0)-y if "+" is a loop increment or |
| 175 | // if "y" is a loop induction variable. |
| 176 | if( op1 == Op_AddI && ok_to_convert(in1, in2) ) { |
| 177 | const Type *tadd = phase->type( in1->in(2) ); |
| 178 | if( tadd->singleton() && tadd != Type::TOP ) { |
| 179 | Node *sub2 = phase->transform( new SubINode( in1->in(1), in2 )); |
| 180 | return new AddINode( sub2, in1->in(2) ); |
| 181 | } |
| 182 | } |
| 183 | |
| 184 | |
| 185 | // Convert "x - (y+c0)" into "(x-y) - c0" |
| 186 | // Need the same check as in above optimization but reversed. |
| 187 | if (op2 == Op_AddI && ok_to_convert(in2, in1)) { |
| 188 | Node* in21 = in2->in(1); |
| 189 | Node* in22 = in2->in(2); |
| 190 | const TypeInt* tcon = phase->type(in22)->isa_int(); |
| 191 | if (tcon != NULL && tcon->is_con()) { |
| 192 | Node* sub2 = phase->transform( new SubINode(in1, in21) ); |
| 193 | Node* neg_c0 = phase->intcon(- tcon->get_con()); |
| 194 | return new AddINode(sub2, neg_c0); |
| 195 | } |
| 196 | } |
| 197 | |
| 198 | const Type *t1 = phase->type( in1 ); |
| 199 | if( t1 == Type::TOP ) return NULL; |
| 200 | |
| 201 | #ifdef ASSERT |
| 202 | // Check for dead loop |
| 203 | if( ( op2 == Op_AddI || op2 == Op_SubI ) && |
| 204 | ( phase->eqv( in2->in(1), this ) || phase->eqv( in2->in(2), this ) || |
| 205 | phase->eqv( in2->in(1), in2 ) || phase->eqv( in2->in(2), in2 ) ) ) |
| 206 | assert(false, "dead loop in SubINode::Ideal" ); |
| 207 | #endif |
| 208 | |
| 209 | // Convert "x - (x+y)" into "-y" |
| 210 | if( op2 == Op_AddI && |
| 211 | phase->eqv( in1, in2->in(1) ) ) |
| 212 | return new SubINode( phase->intcon(0),in2->in(2)); |
| 213 | // Convert "(x-y) - x" into "-y" |
| 214 | if( op1 == Op_SubI && |
| 215 | phase->eqv( in1->in(1), in2 ) ) |
| 216 | return new SubINode( phase->intcon(0),in1->in(2)); |
| 217 | // Convert "x - (y+x)" into "-y" |
| 218 | if( op2 == Op_AddI && |
| 219 | phase->eqv( in1, in2->in(2) ) ) |
| 220 | return new SubINode( phase->intcon(0),in2->in(1)); |
| 221 | |
| 222 | // Convert "0 - (x-y)" into "y-x" |
| 223 | if( t1 == TypeInt::ZERO && op2 == Op_SubI ) |
| 224 | return new SubINode( in2->in(2), in2->in(1) ); |
| 225 | |
| 226 | // Convert "0 - (x+con)" into "-con-x" |
| 227 | jint con; |
| 228 | if( t1 == TypeInt::ZERO && op2 == Op_AddI && |
| 229 | (con = in2->in(2)->find_int_con(0)) != 0 ) |
| 230 | return new SubINode( phase->intcon(-con), in2->in(1) ); |
| 231 | |
| 232 | // Convert "(X+A) - (X+B)" into "A - B" |
| 233 | if( op1 == Op_AddI && op2 == Op_AddI && in1->in(1) == in2->in(1) ) |
| 234 | return new SubINode( in1->in(2), in2->in(2) ); |
| 235 | |
| 236 | // Convert "(A+X) - (B+X)" into "A - B" |
| 237 | if( op1 == Op_AddI && op2 == Op_AddI && in1->in(2) == in2->in(2) ) |
| 238 | return new SubINode( in1->in(1), in2->in(1) ); |
| 239 | |
| 240 | // Convert "(A+X) - (X+B)" into "A - B" |
| 241 | if( op1 == Op_AddI && op2 == Op_AddI && in1->in(2) == in2->in(1) ) |
| 242 | return new SubINode( in1->in(1), in2->in(2) ); |
| 243 | |
| 244 | // Convert "(X+A) - (B+X)" into "A - B" |
| 245 | if( op1 == Op_AddI && op2 == Op_AddI && in1->in(1) == in2->in(2) ) |
| 246 | return new SubINode( in1->in(2), in2->in(1) ); |
| 247 | |
| 248 | // Convert "A-(B-C)" into (A+C)-B", since add is commutative and generally |
| 249 | // nicer to optimize than subtract. |
| 250 | if( op2 == Op_SubI && in2->outcnt() == 1) { |
| 251 | Node *add1 = phase->transform( new AddINode( in1, in2->in(2) ) ); |
| 252 | return new SubINode( add1, in2->in(1) ); |
| 253 | } |
| 254 | |
| 255 | return NULL; |
| 256 | } |
| 257 | |
| 258 | //------------------------------sub-------------------------------------------- |
| 259 | // A subtract node differences it's two inputs. |
| 260 | const Type *SubINode::sub( const Type *t1, const Type *t2 ) const { |
| 261 | const TypeInt *r0 = t1->is_int(); // Handy access |
| 262 | const TypeInt *r1 = t2->is_int(); |
| 263 | int32_t lo = java_subtract(r0->_lo, r1->_hi); |
| 264 | int32_t hi = java_subtract(r0->_hi, r1->_lo); |
| 265 | |
| 266 | // We next check for 32-bit overflow. |
| 267 | // If that happens, we just assume all integers are possible. |
| 268 | if( (((r0->_lo ^ r1->_hi) >= 0) || // lo ends have same signs OR |
| 269 | ((r0->_lo ^ lo) >= 0)) && // lo results have same signs AND |
| 270 | (((r0->_hi ^ r1->_lo) >= 0) || // hi ends have same signs OR |
| 271 | ((r0->_hi ^ hi) >= 0)) ) // hi results have same signs |
| 272 | return TypeInt::make(lo,hi,MAX2(r0->_widen,r1->_widen)); |
| 273 | else // Overflow; assume all integers |
| 274 | return TypeInt::INT; |
| 275 | } |
| 276 | |
| 277 | //============================================================================= |
| 278 | //------------------------------Ideal------------------------------------------ |
| 279 | Node *SubLNode::Ideal(PhaseGVN *phase, bool can_reshape) { |
| 280 | Node *in1 = in(1); |
| 281 | Node *in2 = in(2); |
| 282 | uint op1 = in1->Opcode(); |
| 283 | uint op2 = in2->Opcode(); |
| 284 | |
| 285 | #ifdef ASSERT |
| 286 | // Check for dead loop |
| 287 | if( phase->eqv( in1, this ) || phase->eqv( in2, this ) || |
| 288 | ( ( op1 == Op_AddL || op1 == Op_SubL ) && |
| 289 | ( phase->eqv( in1->in(1), this ) || phase->eqv( in1->in(2), this ) || |
| 290 | phase->eqv( in1->in(1), in1 ) || phase->eqv( in1->in(2), in1 ) ) ) ) |
| 291 | assert(false, "dead loop in SubLNode::Ideal" ); |
| 292 | #endif |
| 293 | |
| 294 | if( phase->type( in2 ) == Type::TOP ) return NULL; |
| 295 | const TypeLong *i = phase->type( in2 )->isa_long(); |
| 296 | // Convert "x-c0" into "x+ -c0". |
| 297 | if( i && // Might be bottom or top... |
| 298 | i->is_con() ) |
| 299 | return new AddLNode(in1, phase->longcon(-i->get_con())); |
| 300 | |
| 301 | // Convert "(x+c0) - y" into (x-y) + c0" |
| 302 | // Do not collapse (x+c0)-y if "+" is a loop increment or |
| 303 | // if "y" is a loop induction variable. |
| 304 | if( op1 == Op_AddL && ok_to_convert(in1, in2) ) { |
| 305 | Node *in11 = in1->in(1); |
| 306 | const Type *tadd = phase->type( in1->in(2) ); |
| 307 | if( tadd->singleton() && tadd != Type::TOP ) { |
| 308 | Node *sub2 = phase->transform( new SubLNode( in11, in2 )); |
| 309 | return new AddLNode( sub2, in1->in(2) ); |
| 310 | } |
| 311 | } |
| 312 | |
| 313 | // Convert "x - (y+c0)" into "(x-y) - c0" |
| 314 | // Need the same check as in above optimization but reversed. |
| 315 | if (op2 == Op_AddL && ok_to_convert(in2, in1)) { |
| 316 | Node* in21 = in2->in(1); |
| 317 | Node* in22 = in2->in(2); |
| 318 | const TypeLong* tcon = phase->type(in22)->isa_long(); |
| 319 | if (tcon != NULL && tcon->is_con()) { |
| 320 | Node* sub2 = phase->transform( new SubLNode(in1, in21) ); |
| 321 | Node* neg_c0 = phase->longcon(- tcon->get_con()); |
| 322 | return new AddLNode(sub2, neg_c0); |
| 323 | } |
| 324 | } |
| 325 | |
| 326 | const Type *t1 = phase->type( in1 ); |
| 327 | if( t1 == Type::TOP ) return NULL; |
| 328 | |
| 329 | #ifdef ASSERT |
| 330 | // Check for dead loop |
| 331 | if( ( op2 == Op_AddL || op2 == Op_SubL ) && |
| 332 | ( phase->eqv( in2->in(1), this ) || phase->eqv( in2->in(2), this ) || |
| 333 | phase->eqv( in2->in(1), in2 ) || phase->eqv( in2->in(2), in2 ) ) ) |
| 334 | assert(false, "dead loop in SubLNode::Ideal" ); |
| 335 | #endif |
| 336 | |
| 337 | // Convert "x - (x+y)" into "-y" |
| 338 | if( op2 == Op_AddL && |
| 339 | phase->eqv( in1, in2->in(1) ) ) |
| 340 | return new SubLNode( phase->makecon(TypeLong::ZERO), in2->in(2)); |
| 341 | // Convert "x - (y+x)" into "-y" |
| 342 | if( op2 == Op_AddL && |
| 343 | phase->eqv( in1, in2->in(2) ) ) |
| 344 | return new SubLNode( phase->makecon(TypeLong::ZERO),in2->in(1)); |
| 345 | |
| 346 | // Convert "0 - (x-y)" into "y-x" |
| 347 | if( phase->type( in1 ) == TypeLong::ZERO && op2 == Op_SubL ) |
| 348 | return new SubLNode( in2->in(2), in2->in(1) ); |
| 349 | |
| 350 | // Convert "(X+A) - (X+B)" into "A - B" |
| 351 | if( op1 == Op_AddL && op2 == Op_AddL && in1->in(1) == in2->in(1) ) |
| 352 | return new SubLNode( in1->in(2), in2->in(2) ); |
| 353 | |
| 354 | // Convert "(A+X) - (B+X)" into "A - B" |
| 355 | if( op1 == Op_AddL && op2 == Op_AddL && in1->in(2) == in2->in(2) ) |
| 356 | return new SubLNode( in1->in(1), in2->in(1) ); |
| 357 | |
| 358 | // Convert "A-(B-C)" into (A+C)-B" |
| 359 | if( op2 == Op_SubL && in2->outcnt() == 1) { |
| 360 | Node *add1 = phase->transform( new AddLNode( in1, in2->in(2) ) ); |
| 361 | return new SubLNode( add1, in2->in(1) ); |
| 362 | } |
| 363 | |
| 364 | return NULL; |
| 365 | } |
| 366 | |
| 367 | //------------------------------sub-------------------------------------------- |
| 368 | // A subtract node differences it's two inputs. |
| 369 | const Type *SubLNode::sub( const Type *t1, const Type *t2 ) const { |
| 370 | const TypeLong *r0 = t1->is_long(); // Handy access |
| 371 | const TypeLong *r1 = t2->is_long(); |
| 372 | jlong lo = java_subtract(r0->_lo, r1->_hi); |
| 373 | jlong hi = java_subtract(r0->_hi, r1->_lo); |
| 374 | |
| 375 | // We next check for 32-bit overflow. |
| 376 | // If that happens, we just assume all integers are possible. |
| 377 | if( (((r0->_lo ^ r1->_hi) >= 0) || // lo ends have same signs OR |
| 378 | ((r0->_lo ^ lo) >= 0)) && // lo results have same signs AND |
| 379 | (((r0->_hi ^ r1->_lo) >= 0) || // hi ends have same signs OR |
| 380 | ((r0->_hi ^ hi) >= 0)) ) // hi results have same signs |
| 381 | return TypeLong::make(lo,hi,MAX2(r0->_widen,r1->_widen)); |
| 382 | else // Overflow; assume all integers |
| 383 | return TypeLong::LONG; |
| 384 | } |
| 385 | |
| 386 | //============================================================================= |
| 387 | //------------------------------Value------------------------------------------ |
| 388 | // A subtract node differences its two inputs. |
| 389 | const Type* SubFPNode::Value(PhaseGVN* phase) const { |
| 390 | const Node* in1 = in(1); |
| 391 | const Node* in2 = in(2); |
| 392 | // Either input is TOP ==> the result is TOP |
| 393 | const Type* t1 = (in1 == this) ? Type::TOP : phase->type(in1); |
| 394 | if( t1 == Type::TOP ) return Type::TOP; |
| 395 | const Type* t2 = (in2 == this) ? Type::TOP : phase->type(in2); |
| 396 | if( t2 == Type::TOP ) return Type::TOP; |
| 397 | |
| 398 | // if both operands are infinity of same sign, the result is NaN; do |
| 399 | // not replace with zero |
| 400 | if( (t1->is_finite() && t2->is_finite()) ) { |
| 401 | if( phase->eqv(in1, in2) ) return add_id(); |
| 402 | } |
| 403 | |
| 404 | // Either input is BOTTOM ==> the result is the local BOTTOM |
| 405 | const Type *bot = bottom_type(); |
| 406 | if( (t1 == bot) || (t2 == bot) || |
| 407 | (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) ) |
| 408 | return bot; |
| 409 | |
| 410 | return sub(t1,t2); // Local flavor of type subtraction |
| 411 | } |
| 412 | |
| 413 | |
| 414 | //============================================================================= |
| 415 | //------------------------------Ideal------------------------------------------ |
| 416 | Node *SubFNode::Ideal(PhaseGVN *phase, bool can_reshape) { |
| 417 | const Type *t2 = phase->type( in(2) ); |
| 418 | // Convert "x-c0" into "x+ -c0". |
| 419 | if( t2->base() == Type::FloatCon ) { // Might be bottom or top... |
| 420 | // return new (phase->C, 3) AddFNode(in(1), phase->makecon( TypeF::make(-t2->getf()) ) ); |
| 421 | } |
| 422 | |
| 423 | // Not associative because of boundary conditions (infinity) |
| 424 | if( IdealizedNumerics && !phase->C->method()->is_strict() ) { |
| 425 | // Convert "x - (x+y)" into "-y" |
| 426 | if( in(2)->is_Add() && |
| 427 | phase->eqv(in(1),in(2)->in(1) ) ) |
| 428 | return new SubFNode( phase->makecon(TypeF::ZERO),in(2)->in(2)); |
| 429 | } |
| 430 | |
| 431 | // Cannot replace 0.0-X with -X because a 'fsub' bytecode computes |
| 432 | // 0.0-0.0 as +0.0, while a 'fneg' bytecode computes -0.0. |
| 433 | //if( phase->type(in(1)) == TypeF::ZERO ) |
| 434 | //return new (phase->C, 2) NegFNode(in(2)); |
| 435 | |
| 436 | return NULL; |
| 437 | } |
| 438 | |
| 439 | //------------------------------sub-------------------------------------------- |
| 440 | // A subtract node differences its two inputs. |
| 441 | const Type *SubFNode::sub( const Type *t1, const Type *t2 ) const { |
| 442 | // no folding if one of operands is infinity or NaN, do not do constant folding |
| 443 | if( g_isfinite(t1->getf()) && g_isfinite(t2->getf()) ) { |
| 444 | return TypeF::make( t1->getf() - t2->getf() ); |
| 445 | } |
| 446 | else if( g_isnan(t1->getf()) ) { |
| 447 | return t1; |
| 448 | } |
| 449 | else if( g_isnan(t2->getf()) ) { |
| 450 | return t2; |
| 451 | } |
| 452 | else { |
| 453 | return Type::FLOAT; |
| 454 | } |
| 455 | } |
| 456 | |
| 457 | //============================================================================= |
| 458 | //------------------------------Ideal------------------------------------------ |
| 459 | Node *SubDNode::Ideal(PhaseGVN *phase, bool can_reshape){ |
| 460 | const Type *t2 = phase->type( in(2) ); |
| 461 | // Convert "x-c0" into "x+ -c0". |
| 462 | if( t2->base() == Type::DoubleCon ) { // Might be bottom or top... |
| 463 | // return new (phase->C, 3) AddDNode(in(1), phase->makecon( TypeD::make(-t2->getd()) ) ); |
| 464 | } |
| 465 | |
| 466 | // Not associative because of boundary conditions (infinity) |
| 467 | if( IdealizedNumerics && !phase->C->method()->is_strict() ) { |
| 468 | // Convert "x - (x+y)" into "-y" |
| 469 | if( in(2)->is_Add() && |
| 470 | phase->eqv(in(1),in(2)->in(1) ) ) |
| 471 | return new SubDNode( phase->makecon(TypeD::ZERO),in(2)->in(2)); |
| 472 | } |
| 473 | |
| 474 | // Cannot replace 0.0-X with -X because a 'dsub' bytecode computes |
| 475 | // 0.0-0.0 as +0.0, while a 'dneg' bytecode computes -0.0. |
| 476 | //if( phase->type(in(1)) == TypeD::ZERO ) |
| 477 | //return new (phase->C, 2) NegDNode(in(2)); |
| 478 | |
| 479 | return NULL; |
| 480 | } |
| 481 | |
| 482 | //------------------------------sub-------------------------------------------- |
| 483 | // A subtract node differences its two inputs. |
| 484 | const Type *SubDNode::sub( const Type *t1, const Type *t2 ) const { |
| 485 | // no folding if one of operands is infinity or NaN, do not do constant folding |
| 486 | if( g_isfinite(t1->getd()) && g_isfinite(t2->getd()) ) { |
| 487 | return TypeD::make( t1->getd() - t2->getd() ); |
| 488 | } |
| 489 | else if( g_isnan(t1->getd()) ) { |
| 490 | return t1; |
| 491 | } |
| 492 | else if( g_isnan(t2->getd()) ) { |
| 493 | return t2; |
| 494 | } |
| 495 | else { |
| 496 | return Type::DOUBLE; |
| 497 | } |
| 498 | } |
| 499 | |
| 500 | //============================================================================= |
| 501 | //------------------------------Idealize--------------------------------------- |
| 502 | // Unlike SubNodes, compare must still flatten return value to the |
| 503 | // range -1, 0, 1. |
| 504 | // And optimizations like those for (X + Y) - X fail if overflow happens. |
| 505 | Node* CmpNode::Identity(PhaseGVN* phase) { |
| 506 | return this; |
| 507 | } |
| 508 | |
| 509 | #ifndef PRODUCT |
| 510 | //----------------------------related------------------------------------------ |
| 511 | // Related nodes of comparison nodes include all data inputs (until hitting a |
| 512 | // control boundary) as well as all outputs until and including control nodes |
| 513 | // as well as their projections. In compact mode, data inputs till depth 1 and |
| 514 | // all outputs till depth 1 are considered. |
| 515 | void CmpNode::related(GrowableArray<Node*> *in_rel, GrowableArray<Node*> *out_rel, bool compact) const { |
| 516 | if (compact) { |
| 517 | this->collect_nodes(in_rel, 1, false, true); |
| 518 | this->collect_nodes(out_rel, -1, false, false); |
| 519 | } else { |
| 520 | this->collect_nodes_in_all_data(in_rel, false); |
| 521 | this->collect_nodes_out_all_ctrl_boundary(out_rel); |
| 522 | // Now, find all control nodes in out_rel, and include their projections |
| 523 | // and projection targets (if any) in the result. |
| 524 | GrowableArray<Node*> proj(Compile::current()->unique()); |
| 525 | for (GrowableArrayIterator<Node*> it = out_rel->begin(); it != out_rel->end(); ++it) { |
| 526 | Node* n = *it; |
| 527 | if (n->is_CFG() && !n->is_Proj()) { |
| 528 | // Assume projections and projection targets are found at levels 1 and 2. |
| 529 | n->collect_nodes(&proj, -2, false, false); |
| 530 | for (GrowableArrayIterator<Node*> p = proj.begin(); p != proj.end(); ++p) { |
| 531 | out_rel->append_if_missing(*p); |
| 532 | } |
| 533 | proj.clear(); |
| 534 | } |
| 535 | } |
| 536 | } |
| 537 | } |
| 538 | #endif |
| 539 | |
| 540 | //============================================================================= |
| 541 | //------------------------------cmp-------------------------------------------- |
| 542 | // Simplify a CmpI (compare 2 integers) node, based on local information. |
| 543 | // If both inputs are constants, compare them. |
| 544 | const Type *CmpINode::sub( const Type *t1, const Type *t2 ) const { |
| 545 | const TypeInt *r0 = t1->is_int(); // Handy access |
| 546 | const TypeInt *r1 = t2->is_int(); |
| 547 | |
| 548 | if( r0->_hi < r1->_lo ) // Range is always low? |
| 549 | return TypeInt::CC_LT; |
| 550 | else if( r0->_lo > r1->_hi ) // Range is always high? |
| 551 | return TypeInt::CC_GT; |
| 552 | |
| 553 | else if( r0->is_con() && r1->is_con() ) { // comparing constants? |
| 554 | assert(r0->get_con() == r1->get_con(), "must be equal" ); |
| 555 | return TypeInt::CC_EQ; // Equal results. |
| 556 | } else if( r0->_hi == r1->_lo ) // Range is never high? |
| 557 | return TypeInt::CC_LE; |
| 558 | else if( r0->_lo == r1->_hi ) // Range is never low? |
| 559 | return TypeInt::CC_GE; |
| 560 | return TypeInt::CC; // else use worst case results |
| 561 | } |
| 562 | |
| 563 | // Simplify a CmpU (compare 2 integers) node, based on local information. |
| 564 | // If both inputs are constants, compare them. |
| 565 | const Type *CmpUNode::sub( const Type *t1, const Type *t2 ) const { |
| 566 | assert(!t1->isa_ptr(), "obsolete usage of CmpU" ); |
| 567 | |
| 568 | // comparing two unsigned ints |
| 569 | const TypeInt *r0 = t1->is_int(); // Handy access |
| 570 | const TypeInt *r1 = t2->is_int(); |
| 571 | |
| 572 | // Current installed version |
| 573 | // Compare ranges for non-overlap |
| 574 | juint lo0 = r0->_lo; |
| 575 | juint hi0 = r0->_hi; |
| 576 | juint lo1 = r1->_lo; |
| 577 | juint hi1 = r1->_hi; |
| 578 | |
| 579 | // If either one has both negative and positive values, |
| 580 | // it therefore contains both 0 and -1, and since [0..-1] is the |
| 581 | // full unsigned range, the type must act as an unsigned bottom. |
| 582 | bool bot0 = ((jint)(lo0 ^ hi0) < 0); |
| 583 | bool bot1 = ((jint)(lo1 ^ hi1) < 0); |
| 584 | |
| 585 | if (bot0 || bot1) { |
| 586 | // All unsigned values are LE -1 and GE 0. |
| 587 | if (lo0 == 0 && hi0 == 0) { |
| 588 | return TypeInt::CC_LE; // 0 <= bot |
| 589 | } else if ((jint)lo0 == -1 && (jint)hi0 == -1) { |
| 590 | return TypeInt::CC_GE; // -1 >= bot |
| 591 | } else if (lo1 == 0 && hi1 == 0) { |
| 592 | return TypeInt::CC_GE; // bot >= 0 |
| 593 | } else if ((jint)lo1 == -1 && (jint)hi1 == -1) { |
| 594 | return TypeInt::CC_LE; // bot <= -1 |
| 595 | } |
| 596 | } else { |
| 597 | // We can use ranges of the form [lo..hi] if signs are the same. |
| 598 | assert(lo0 <= hi0 && lo1 <= hi1, "unsigned ranges are valid" ); |
| 599 | // results are reversed, '-' > '+' for unsigned compare |
| 600 | if (hi0 < lo1) { |
| 601 | return TypeInt::CC_LT; // smaller |
| 602 | } else if (lo0 > hi1) { |
| 603 | return TypeInt::CC_GT; // greater |
| 604 | } else if (hi0 == lo1 && lo0 == hi1) { |
| 605 | return TypeInt::CC_EQ; // Equal results |
| 606 | } else if (lo0 >= hi1) { |
| 607 | return TypeInt::CC_GE; |
| 608 | } else if (hi0 <= lo1) { |
| 609 | // Check for special case in Hashtable::get. (See below.) |
| 610 | if ((jint)lo0 >= 0 && (jint)lo1 >= 0 && is_index_range_check()) |
| 611 | return TypeInt::CC_LT; |
| 612 | return TypeInt::CC_LE; |
| 613 | } |
| 614 | } |
| 615 | // Check for special case in Hashtable::get - the hash index is |
| 616 | // mod'ed to the table size so the following range check is useless. |
| 617 | // Check for: (X Mod Y) CmpU Y, where the mod result and Y both have |
| 618 | // to be positive. |
| 619 | // (This is a gross hack, since the sub method never |
| 620 | // looks at the structure of the node in any other case.) |
| 621 | if ((jint)lo0 >= 0 && (jint)lo1 >= 0 && is_index_range_check()) |
| 622 | return TypeInt::CC_LT; |
| 623 | return TypeInt::CC; // else use worst case results |
| 624 | } |
| 625 | |
| 626 | const Type* CmpUNode::Value(PhaseGVN* phase) const { |
| 627 | const Type* t = SubNode::Value_common(phase); |
| 628 | if (t != NULL) { |
| 629 | return t; |
| 630 | } |
| 631 | const Node* in1 = in(1); |
| 632 | const Node* in2 = in(2); |
| 633 | const Type* t1 = phase->type(in1); |
| 634 | const Type* t2 = phase->type(in2); |
| 635 | assert(t1->isa_int(), "CmpU has only Int type inputs" ); |
| 636 | if (t2 == TypeInt::INT) { // Compare to bottom? |
| 637 | return bottom_type(); |
| 638 | } |
| 639 | uint in1_op = in1->Opcode(); |
| 640 | if (in1_op == Op_AddI || in1_op == Op_SubI) { |
| 641 | // The problem rise when result of AddI(SubI) may overflow |
| 642 | // signed integer value. Let say the input type is |
| 643 | // [256, maxint] then +128 will create 2 ranges due to |
| 644 | // overflow: [minint, minint+127] and [384, maxint]. |
| 645 | // But C2 type system keep only 1 type range and as result |
| 646 | // it use general [minint, maxint] for this case which we |
| 647 | // can't optimize. |
| 648 | // |
| 649 | // Make 2 separate type ranges based on types of AddI(SubI) inputs |
| 650 | // and compare results of their compare. If results are the same |
| 651 | // CmpU node can be optimized. |
| 652 | const Node* in11 = in1->in(1); |
| 653 | const Node* in12 = in1->in(2); |
| 654 | const Type* t11 = (in11 == in1) ? Type::TOP : phase->type(in11); |
| 655 | const Type* t12 = (in12 == in1) ? Type::TOP : phase->type(in12); |
| 656 | // Skip cases when input types are top or bottom. |
| 657 | if ((t11 != Type::TOP) && (t11 != TypeInt::INT) && |
| 658 | (t12 != Type::TOP) && (t12 != TypeInt::INT)) { |
| 659 | const TypeInt *r0 = t11->is_int(); |
| 660 | const TypeInt *r1 = t12->is_int(); |
| 661 | jlong lo_r0 = r0->_lo; |
| 662 | jlong hi_r0 = r0->_hi; |
| 663 | jlong lo_r1 = r1->_lo; |
| 664 | jlong hi_r1 = r1->_hi; |
| 665 | if (in1_op == Op_SubI) { |
| 666 | jlong tmp = hi_r1; |
| 667 | hi_r1 = -lo_r1; |
| 668 | lo_r1 = -tmp; |
| 669 | // Note, for substructing [minint,x] type range |
| 670 | // long arithmetic provides correct overflow answer. |
| 671 | // The confusion come from the fact that in 32-bit |
| 672 | // -minint == minint but in 64-bit -minint == maxint+1. |
| 673 | } |
| 674 | jlong lo_long = lo_r0 + lo_r1; |
| 675 | jlong hi_long = hi_r0 + hi_r1; |
| 676 | int lo_tr1 = min_jint; |
| 677 | int hi_tr1 = (int)hi_long; |
| 678 | int lo_tr2 = (int)lo_long; |
| 679 | int hi_tr2 = max_jint; |
| 680 | bool underflow = lo_long != (jlong)lo_tr2; |
| 681 | bool overflow = hi_long != (jlong)hi_tr1; |
| 682 | // Use sub(t1, t2) when there is no overflow (one type range) |
| 683 | // or when both overflow and underflow (too complex). |
| 684 | if ((underflow != overflow) && (hi_tr1 < lo_tr2)) { |
| 685 | // Overflow only on one boundary, compare 2 separate type ranges. |
| 686 | int w = MAX2(r0->_widen, r1->_widen); // _widen does not matter here |
| 687 | const TypeInt* tr1 = TypeInt::make(lo_tr1, hi_tr1, w); |
| 688 | const TypeInt* tr2 = TypeInt::make(lo_tr2, hi_tr2, w); |
| 689 | const Type* cmp1 = sub(tr1, t2); |
| 690 | const Type* cmp2 = sub(tr2, t2); |
| 691 | if (cmp1 == cmp2) { |
| 692 | return cmp1; // Hit! |
| 693 | } |
| 694 | } |
| 695 | } |
| 696 | } |
| 697 | |
| 698 | return sub(t1, t2); // Local flavor of type subtraction |
| 699 | } |
| 700 | |
| 701 | bool CmpUNode::is_index_range_check() const { |
| 702 | // Check for the "(X ModI Y) CmpU Y" shape |
| 703 | return (in(1)->Opcode() == Op_ModI && |
| 704 | in(1)->in(2)->eqv_uncast(in(2))); |
| 705 | } |
| 706 | |
| 707 | //------------------------------Idealize--------------------------------------- |
| 708 | Node *CmpINode::Ideal( PhaseGVN *phase, bool can_reshape ) { |
| 709 | if (phase->type(in(2))->higher_equal(TypeInt::ZERO)) { |
| 710 | switch (in(1)->Opcode()) { |
| 711 | case Op_CmpL3: // Collapse a CmpL3/CmpI into a CmpL |
| 712 | return new CmpLNode(in(1)->in(1),in(1)->in(2)); |
| 713 | case Op_CmpF3: // Collapse a CmpF3/CmpI into a CmpF |
| 714 | return new CmpFNode(in(1)->in(1),in(1)->in(2)); |
| 715 | case Op_CmpD3: // Collapse a CmpD3/CmpI into a CmpD |
| 716 | return new CmpDNode(in(1)->in(1),in(1)->in(2)); |
| 717 | //case Op_SubI: |
| 718 | // If (x - y) cannot overflow, then ((x - y) <?> 0) |
| 719 | // can be turned into (x <?> y). |
| 720 | // This is handled (with more general cases) by Ideal_sub_algebra. |
| 721 | } |
| 722 | } |
| 723 | return NULL; // No change |
| 724 | } |
| 725 | |
| 726 | |
| 727 | //============================================================================= |
| 728 | // Simplify a CmpL (compare 2 longs ) node, based on local information. |
| 729 | // If both inputs are constants, compare them. |
| 730 | const Type *CmpLNode::sub( const Type *t1, const Type *t2 ) const { |
| 731 | const TypeLong *r0 = t1->is_long(); // Handy access |
| 732 | const TypeLong *r1 = t2->is_long(); |
| 733 | |
| 734 | if( r0->_hi < r1->_lo ) // Range is always low? |
| 735 | return TypeInt::CC_LT; |
| 736 | else if( r0->_lo > r1->_hi ) // Range is always high? |
| 737 | return TypeInt::CC_GT; |
| 738 | |
| 739 | else if( r0->is_con() && r1->is_con() ) { // comparing constants? |
| 740 | assert(r0->get_con() == r1->get_con(), "must be equal" ); |
| 741 | return TypeInt::CC_EQ; // Equal results. |
| 742 | } else if( r0->_hi == r1->_lo ) // Range is never high? |
| 743 | return TypeInt::CC_LE; |
| 744 | else if( r0->_lo == r1->_hi ) // Range is never low? |
| 745 | return TypeInt::CC_GE; |
| 746 | return TypeInt::CC; // else use worst case results |
| 747 | } |
| 748 | |
| 749 | |
| 750 | // Simplify a CmpUL (compare 2 unsigned longs) node, based on local information. |
| 751 | // If both inputs are constants, compare them. |
| 752 | const Type* CmpULNode::sub(const Type* t1, const Type* t2) const { |
| 753 | assert(!t1->isa_ptr(), "obsolete usage of CmpUL" ); |
| 754 | |
| 755 | // comparing two unsigned longs |
| 756 | const TypeLong* r0 = t1->is_long(); // Handy access |
| 757 | const TypeLong* r1 = t2->is_long(); |
| 758 | |
| 759 | // Current installed version |
| 760 | // Compare ranges for non-overlap |
| 761 | julong lo0 = r0->_lo; |
| 762 | julong hi0 = r0->_hi; |
| 763 | julong lo1 = r1->_lo; |
| 764 | julong hi1 = r1->_hi; |
| 765 | |
| 766 | // If either one has both negative and positive values, |
| 767 | // it therefore contains both 0 and -1, and since [0..-1] is the |
| 768 | // full unsigned range, the type must act as an unsigned bottom. |
| 769 | bool bot0 = ((jlong)(lo0 ^ hi0) < 0); |
| 770 | bool bot1 = ((jlong)(lo1 ^ hi1) < 0); |
| 771 | |
| 772 | if (bot0 || bot1) { |
| 773 | // All unsigned values are LE -1 and GE 0. |
| 774 | if (lo0 == 0 && hi0 == 0) { |
| 775 | return TypeInt::CC_LE; // 0 <= bot |
| 776 | } else if ((jlong)lo0 == -1 && (jlong)hi0 == -1) { |
| 777 | return TypeInt::CC_GE; // -1 >= bot |
| 778 | } else if (lo1 == 0 && hi1 == 0) { |
| 779 | return TypeInt::CC_GE; // bot >= 0 |
| 780 | } else if ((jlong)lo1 == -1 && (jlong)hi1 == -1) { |
| 781 | return TypeInt::CC_LE; // bot <= -1 |
| 782 | } |
| 783 | } else { |
| 784 | // We can use ranges of the form [lo..hi] if signs are the same. |
| 785 | assert(lo0 <= hi0 && lo1 <= hi1, "unsigned ranges are valid" ); |
| 786 | // results are reversed, '-' > '+' for unsigned compare |
| 787 | if (hi0 < lo1) { |
| 788 | return TypeInt::CC_LT; // smaller |
| 789 | } else if (lo0 > hi1) { |
| 790 | return TypeInt::CC_GT; // greater |
| 791 | } else if (hi0 == lo1 && lo0 == hi1) { |
| 792 | return TypeInt::CC_EQ; // Equal results |
| 793 | } else if (lo0 >= hi1) { |
| 794 | return TypeInt::CC_GE; |
| 795 | } else if (hi0 <= lo1) { |
| 796 | return TypeInt::CC_LE; |
| 797 | } |
| 798 | } |
| 799 | |
| 800 | return TypeInt::CC; // else use worst case results |
| 801 | } |
| 802 | |
| 803 | //============================================================================= |
| 804 | //------------------------------sub-------------------------------------------- |
| 805 | // Simplify an CmpP (compare 2 pointers) node, based on local information. |
| 806 | // If both inputs are constants, compare them. |
| 807 | const Type *CmpPNode::sub( const Type *t1, const Type *t2 ) const { |
| 808 | const TypePtr *r0 = t1->is_ptr(); // Handy access |
| 809 | const TypePtr *r1 = t2->is_ptr(); |
| 810 | |
| 811 | // Undefined inputs makes for an undefined result |
| 812 | if( TypePtr::above_centerline(r0->_ptr) || |
| 813 | TypePtr::above_centerline(r1->_ptr) ) |
| 814 | return Type::TOP; |
| 815 | |
| 816 | if (r0 == r1 && r0->singleton()) { |
| 817 | // Equal pointer constants (klasses, nulls, etc.) |
| 818 | return TypeInt::CC_EQ; |
| 819 | } |
| 820 | |
| 821 | // See if it is 2 unrelated classes. |
| 822 | const TypeOopPtr* p0 = r0->isa_oopptr(); |
| 823 | const TypeOopPtr* p1 = r1->isa_oopptr(); |
| 824 | if (p0 && p1) { |
| 825 | Node* in1 = in(1)->uncast(); |
| 826 | Node* in2 = in(2)->uncast(); |
| 827 | AllocateNode* alloc1 = AllocateNode::Ideal_allocation(in1, NULL); |
| 828 | AllocateNode* alloc2 = AllocateNode::Ideal_allocation(in2, NULL); |
| 829 | if (MemNode::detect_ptr_independence(in1, alloc1, in2, alloc2, NULL)) { |
| 830 | return TypeInt::CC_GT; // different pointers |
| 831 | } |
| 832 | ciKlass* klass0 = p0->klass(); |
| 833 | bool xklass0 = p0->klass_is_exact(); |
| 834 | ciKlass* klass1 = p1->klass(); |
| 835 | bool xklass1 = p1->klass_is_exact(); |
| 836 | int kps = (p0->isa_klassptr()?1:0) + (p1->isa_klassptr()?1:0); |
| 837 | if (klass0 && klass1 && |
| 838 | kps != 1 && // both or neither are klass pointers |
| 839 | klass0->is_loaded() && !klass0->is_interface() && // do not trust interfaces |
| 840 | klass1->is_loaded() && !klass1->is_interface() && |
| 841 | (!klass0->is_obj_array_klass() || |
| 842 | !klass0->as_obj_array_klass()->base_element_klass()->is_interface()) && |
| 843 | (!klass1->is_obj_array_klass() || |
| 844 | !klass1->as_obj_array_klass()->base_element_klass()->is_interface())) { |
| 845 | bool unrelated_classes = false; |
| 846 | // See if neither subclasses the other, or if the class on top |
| 847 | // is precise. In either of these cases, the compare is known |
| 848 | // to fail if at least one of the pointers is provably not null. |
| 849 | if (klass0->equals(klass1)) { // if types are unequal but klasses are equal |
| 850 | // Do nothing; we know nothing for imprecise types |
| 851 | } else if (klass0->is_subtype_of(klass1)) { |
| 852 | // If klass1's type is PRECISE, then classes are unrelated. |
| 853 | unrelated_classes = xklass1; |
| 854 | } else if (klass1->is_subtype_of(klass0)) { |
| 855 | // If klass0's type is PRECISE, then classes are unrelated. |
| 856 | unrelated_classes = xklass0; |
| 857 | } else { // Neither subtypes the other |
| 858 | unrelated_classes = true; |
| 859 | } |
| 860 | if (unrelated_classes) { |
| 861 | // The oops classes are known to be unrelated. If the joined PTRs of |
| 862 | // two oops is not Null and not Bottom, then we are sure that one |
| 863 | // of the two oops is non-null, and the comparison will always fail. |
| 864 | TypePtr::PTR jp = r0->join_ptr(r1->_ptr); |
| 865 | if (jp != TypePtr::Null && jp != TypePtr::BotPTR) { |
| 866 | return TypeInt::CC_GT; |
| 867 | } |
| 868 | } |
| 869 | } |
| 870 | } |
| 871 | |
| 872 | // Known constants can be compared exactly |
| 873 | // Null can be distinguished from any NotNull pointers |
| 874 | // Unknown inputs makes an unknown result |
| 875 | if( r0->singleton() ) { |
| 876 | intptr_t bits0 = r0->get_con(); |
| 877 | if( r1->singleton() ) |
| 878 | return bits0 == r1->get_con() ? TypeInt::CC_EQ : TypeInt::CC_GT; |
| 879 | return ( r1->_ptr == TypePtr::NotNull && bits0==0 ) ? TypeInt::CC_GT : TypeInt::CC; |
| 880 | } else if( r1->singleton() ) { |
| 881 | intptr_t bits1 = r1->get_con(); |
| 882 | return ( r0->_ptr == TypePtr::NotNull && bits1==0 ) ? TypeInt::CC_GT : TypeInt::CC; |
| 883 | } else |
| 884 | return TypeInt::CC; |
| 885 | } |
| 886 | |
| 887 | static inline Node* isa_java_mirror_load(PhaseGVN* phase, Node* n) { |
| 888 | // Return the klass node for (indirect load from OopHandle) |
| 889 | // LoadBarrier?(LoadP(LoadP(AddP(foo:Klass, #java_mirror)))) |
| 890 | // or NULL if not matching. |
| 891 | BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); |
| 892 | n = bs->step_over_gc_barrier(n); |
| 893 | |
| 894 | if (n->Opcode() != Op_LoadP) return NULL; |
| 895 | |
| 896 | const TypeInstPtr* tp = phase->type(n)->isa_instptr(); |
| 897 | if (!tp || tp->klass() != phase->C->env()->Class_klass()) return NULL; |
| 898 | |
| 899 | Node* adr = n->in(MemNode::Address); |
| 900 | // First load from OopHandle: ((OopHandle)mirror)->resolve(); may need barrier. |
| 901 | if (adr->Opcode() != Op_LoadP || !phase->type(adr)->isa_rawptr()) return NULL; |
| 902 | adr = adr->in(MemNode::Address); |
| 903 | |
| 904 | intptr_t off = 0; |
| 905 | Node* k = AddPNode::Ideal_base_and_offset(adr, phase, off); |
| 906 | if (k == NULL) return NULL; |
| 907 | const TypeKlassPtr* tkp = phase->type(k)->isa_klassptr(); |
| 908 | if (!tkp || off != in_bytes(Klass::java_mirror_offset())) return NULL; |
| 909 | |
| 910 | // We've found the klass node of a Java mirror load. |
| 911 | return k; |
| 912 | } |
| 913 | |
| 914 | static inline Node* isa_const_java_mirror(PhaseGVN* phase, Node* n) { |
| 915 | // for ConP(Foo.class) return ConP(Foo.klass) |
| 916 | // otherwise return NULL |
| 917 | if (!n->is_Con()) return NULL; |
| 918 | |
| 919 | const TypeInstPtr* tp = phase->type(n)->isa_instptr(); |
| 920 | if (!tp) return NULL; |
| 921 | |
| 922 | ciType* mirror_type = tp->java_mirror_type(); |
| 923 | // TypeInstPtr::java_mirror_type() returns non-NULL for compile- |
| 924 | // time Class constants only. |
| 925 | if (!mirror_type) return NULL; |
| 926 | |
| 927 | // x.getClass() == int.class can never be true (for all primitive types) |
| 928 | // Return a ConP(NULL) node for this case. |
| 929 | if (mirror_type->is_classless()) { |
| 930 | return phase->makecon(TypePtr::NULL_PTR); |
| 931 | } |
| 932 | |
| 933 | // return the ConP(Foo.klass) |
| 934 | assert(mirror_type->is_klass(), "mirror_type should represent a Klass*" ); |
| 935 | return phase->makecon(TypeKlassPtr::make(mirror_type->as_klass())); |
| 936 | } |
| 937 | |
| 938 | //------------------------------Ideal------------------------------------------ |
| 939 | // Normalize comparisons between Java mirror loads to compare the klass instead. |
| 940 | // |
| 941 | // Also check for the case of comparing an unknown klass loaded from the primary |
| 942 | // super-type array vs a known klass with no subtypes. This amounts to |
| 943 | // checking to see an unknown klass subtypes a known klass with no subtypes; |
| 944 | // this only happens on an exact match. We can shorten this test by 1 load. |
| 945 | Node *CmpPNode::Ideal( PhaseGVN *phase, bool can_reshape ) { |
| 946 | // Normalize comparisons between Java mirrors into comparisons of the low- |
| 947 | // level klass, where a dependent load could be shortened. |
| 948 | // |
| 949 | // The new pattern has a nice effect of matching the same pattern used in the |
| 950 | // fast path of instanceof/checkcast/Class.isInstance(), which allows |
| 951 | // redundant exact type check be optimized away by GVN. |
| 952 | // For example, in |
| 953 | // if (x.getClass() == Foo.class) { |
| 954 | // Foo foo = (Foo) x; |
| 955 | // // ... use a ... |
| 956 | // } |
| 957 | // a CmpPNode could be shared between if_acmpne and checkcast |
| 958 | { |
| 959 | Node* k1 = isa_java_mirror_load(phase, in(1)); |
| 960 | Node* k2 = isa_java_mirror_load(phase, in(2)); |
| 961 | Node* conk2 = isa_const_java_mirror(phase, in(2)); |
| 962 | |
| 963 | if (k1 && (k2 || conk2)) { |
| 964 | Node* lhs = k1; |
| 965 | Node* rhs = (k2 != NULL) ? k2 : conk2; |
| 966 | PhaseIterGVN* igvn = phase->is_IterGVN(); |
| 967 | if (igvn != NULL) { |
| 968 | set_req_X(1, lhs, igvn); |
| 969 | set_req_X(2, rhs, igvn); |
| 970 | } else { |
| 971 | set_req(1, lhs); |
| 972 | set_req(2, rhs); |
| 973 | } |
| 974 | return this; |
| 975 | } |
| 976 | } |
| 977 | |
| 978 | // Constant pointer on right? |
| 979 | const TypeKlassPtr* t2 = phase->type(in(2))->isa_klassptr(); |
| 980 | if (t2 == NULL || !t2->klass_is_exact()) |
| 981 | return NULL; |
| 982 | // Get the constant klass we are comparing to. |
| 983 | ciKlass* superklass = t2->klass(); |
| 984 | |
| 985 | // Now check for LoadKlass on left. |
| 986 | Node* ldk1 = in(1); |
| 987 | if (ldk1->is_DecodeNKlass()) { |
| 988 | ldk1 = ldk1->in(1); |
| 989 | if (ldk1->Opcode() != Op_LoadNKlass ) |
| 990 | return NULL; |
| 991 | } else if (ldk1->Opcode() != Op_LoadKlass ) |
| 992 | return NULL; |
| 993 | // Take apart the address of the LoadKlass: |
| 994 | Node* adr1 = ldk1->in(MemNode::Address); |
| 995 | intptr_t con2 = 0; |
| 996 | Node* ldk2 = AddPNode::Ideal_base_and_offset(adr1, phase, con2); |
| 997 | if (ldk2 == NULL) |
| 998 | return NULL; |
| 999 | if (con2 == oopDesc::klass_offset_in_bytes()) { |
| 1000 | // We are inspecting an object's concrete class. |
| 1001 | // Short-circuit the check if the query is abstract. |
| 1002 | if (superklass->is_interface() || |
| 1003 | superklass->is_abstract()) { |
| 1004 | // Make it come out always false: |
| 1005 | this->set_req(2, phase->makecon(TypePtr::NULL_PTR)); |
| 1006 | return this; |
| 1007 | } |
| 1008 | } |
| 1009 | |
| 1010 | // Check for a LoadKlass from primary supertype array. |
| 1011 | // Any nested loadklass from loadklass+con must be from the p.s. array. |
| 1012 | if (ldk2->is_DecodeNKlass()) { |
| 1013 | // Keep ldk2 as DecodeN since it could be used in CmpP below. |
| 1014 | if (ldk2->in(1)->Opcode() != Op_LoadNKlass ) |
| 1015 | return NULL; |
| 1016 | } else if (ldk2->Opcode() != Op_LoadKlass) |
| 1017 | return NULL; |
| 1018 | |
| 1019 | // Verify that we understand the situation |
| 1020 | if (con2 != (intptr_t) superklass->super_check_offset()) |
| 1021 | return NULL; // Might be element-klass loading from array klass |
| 1022 | |
| 1023 | // If 'superklass' has no subklasses and is not an interface, then we are |
| 1024 | // assured that the only input which will pass the type check is |
| 1025 | // 'superklass' itself. |
| 1026 | // |
| 1027 | // We could be more liberal here, and allow the optimization on interfaces |
| 1028 | // which have a single implementor. This would require us to increase the |
| 1029 | // expressiveness of the add_dependency() mechanism. |
| 1030 | // %%% Do this after we fix TypeOopPtr: Deps are expressive enough now. |
| 1031 | |
| 1032 | // Object arrays must have their base element have no subtypes |
| 1033 | while (superklass->is_obj_array_klass()) { |
| 1034 | ciType* elem = superklass->as_obj_array_klass()->element_type(); |
| 1035 | superklass = elem->as_klass(); |
| 1036 | } |
| 1037 | if (superklass->is_instance_klass()) { |
| 1038 | ciInstanceKlass* ik = superklass->as_instance_klass(); |
| 1039 | if (ik->has_subklass() || ik->is_interface()) return NULL; |
| 1040 | // Add a dependency if there is a chance that a subclass will be added later. |
| 1041 | if (!ik->is_final()) { |
| 1042 | phase->C->dependencies()->assert_leaf_type(ik); |
| 1043 | } |
| 1044 | } |
| 1045 | |
| 1046 | // Bypass the dependent load, and compare directly |
| 1047 | this->set_req(1,ldk2); |
| 1048 | |
| 1049 | return this; |
| 1050 | } |
| 1051 | |
| 1052 | //============================================================================= |
| 1053 | //------------------------------sub-------------------------------------------- |
| 1054 | // Simplify an CmpN (compare 2 pointers) node, based on local information. |
| 1055 | // If both inputs are constants, compare them. |
| 1056 | const Type *CmpNNode::sub( const Type *t1, const Type *t2 ) const { |
| 1057 | const TypePtr *r0 = t1->make_ptr(); // Handy access |
| 1058 | const TypePtr *r1 = t2->make_ptr(); |
| 1059 | |
| 1060 | // Undefined inputs makes for an undefined result |
| 1061 | if ((r0 == NULL) || (r1 == NULL) || |
| 1062 | TypePtr::above_centerline(r0->_ptr) || |
| 1063 | TypePtr::above_centerline(r1->_ptr)) { |
| 1064 | return Type::TOP; |
| 1065 | } |
| 1066 | if (r0 == r1 && r0->singleton()) { |
| 1067 | // Equal pointer constants (klasses, nulls, etc.) |
| 1068 | return TypeInt::CC_EQ; |
| 1069 | } |
| 1070 | |
| 1071 | // See if it is 2 unrelated classes. |
| 1072 | const TypeOopPtr* p0 = r0->isa_oopptr(); |
| 1073 | const TypeOopPtr* p1 = r1->isa_oopptr(); |
| 1074 | if (p0 && p1) { |
| 1075 | ciKlass* klass0 = p0->klass(); |
| 1076 | bool xklass0 = p0->klass_is_exact(); |
| 1077 | ciKlass* klass1 = p1->klass(); |
| 1078 | bool xklass1 = p1->klass_is_exact(); |
| 1079 | int kps = (p0->isa_klassptr()?1:0) + (p1->isa_klassptr()?1:0); |
| 1080 | if (klass0 && klass1 && |
| 1081 | kps != 1 && // both or neither are klass pointers |
| 1082 | !klass0->is_interface() && // do not trust interfaces |
| 1083 | !klass1->is_interface()) { |
| 1084 | bool unrelated_classes = false; |
| 1085 | // See if neither subclasses the other, or if the class on top |
| 1086 | // is precise. In either of these cases, the compare is known |
| 1087 | // to fail if at least one of the pointers is provably not null. |
| 1088 | if (klass0->equals(klass1)) { // if types are unequal but klasses are equal |
| 1089 | // Do nothing; we know nothing for imprecise types |
| 1090 | } else if (klass0->is_subtype_of(klass1)) { |
| 1091 | // If klass1's type is PRECISE, then classes are unrelated. |
| 1092 | unrelated_classes = xklass1; |
| 1093 | } else if (klass1->is_subtype_of(klass0)) { |
| 1094 | // If klass0's type is PRECISE, then classes are unrelated. |
| 1095 | unrelated_classes = xklass0; |
| 1096 | } else { // Neither subtypes the other |
| 1097 | unrelated_classes = true; |
| 1098 | } |
| 1099 | if (unrelated_classes) { |
| 1100 | // The oops classes are known to be unrelated. If the joined PTRs of |
| 1101 | // two oops is not Null and not Bottom, then we are sure that one |
| 1102 | // of the two oops is non-null, and the comparison will always fail. |
| 1103 | TypePtr::PTR jp = r0->join_ptr(r1->_ptr); |
| 1104 | if (jp != TypePtr::Null && jp != TypePtr::BotPTR) { |
| 1105 | return TypeInt::CC_GT; |
| 1106 | } |
| 1107 | } |
| 1108 | } |
| 1109 | } |
| 1110 | |
| 1111 | // Known constants can be compared exactly |
| 1112 | // Null can be distinguished from any NotNull pointers |
| 1113 | // Unknown inputs makes an unknown result |
| 1114 | if( r0->singleton() ) { |
| 1115 | intptr_t bits0 = r0->get_con(); |
| 1116 | if( r1->singleton() ) |
| 1117 | return bits0 == r1->get_con() ? TypeInt::CC_EQ : TypeInt::CC_GT; |
| 1118 | return ( r1->_ptr == TypePtr::NotNull && bits0==0 ) ? TypeInt::CC_GT : TypeInt::CC; |
| 1119 | } else if( r1->singleton() ) { |
| 1120 | intptr_t bits1 = r1->get_con(); |
| 1121 | return ( r0->_ptr == TypePtr::NotNull && bits1==0 ) ? TypeInt::CC_GT : TypeInt::CC; |
| 1122 | } else |
| 1123 | return TypeInt::CC; |
| 1124 | } |
| 1125 | |
| 1126 | //------------------------------Ideal------------------------------------------ |
| 1127 | Node *CmpNNode::Ideal( PhaseGVN *phase, bool can_reshape ) { |
| 1128 | return NULL; |
| 1129 | } |
| 1130 | |
| 1131 | //============================================================================= |
| 1132 | //------------------------------Value------------------------------------------ |
| 1133 | // Simplify an CmpF (compare 2 floats ) node, based on local information. |
| 1134 | // If both inputs are constants, compare them. |
| 1135 | const Type* CmpFNode::Value(PhaseGVN* phase) const { |
| 1136 | const Node* in1 = in(1); |
| 1137 | const Node* in2 = in(2); |
| 1138 | // Either input is TOP ==> the result is TOP |
| 1139 | const Type* t1 = (in1 == this) ? Type::TOP : phase->type(in1); |
| 1140 | if( t1 == Type::TOP ) return Type::TOP; |
| 1141 | const Type* t2 = (in2 == this) ? Type::TOP : phase->type(in2); |
| 1142 | if( t2 == Type::TOP ) return Type::TOP; |
| 1143 | |
| 1144 | // Not constants? Don't know squat - even if they are the same |
| 1145 | // value! If they are NaN's they compare to LT instead of EQ. |
| 1146 | const TypeF *tf1 = t1->isa_float_constant(); |
| 1147 | const TypeF *tf2 = t2->isa_float_constant(); |
| 1148 | if( !tf1 || !tf2 ) return TypeInt::CC; |
| 1149 | |
| 1150 | // This implements the Java bytecode fcmpl, so unordered returns -1. |
| 1151 | if( tf1->is_nan() || tf2->is_nan() ) |
| 1152 | return TypeInt::CC_LT; |
| 1153 | |
| 1154 | if( tf1->_f < tf2->_f ) return TypeInt::CC_LT; |
| 1155 | if( tf1->_f > tf2->_f ) return TypeInt::CC_GT; |
| 1156 | assert( tf1->_f == tf2->_f, "do not understand FP behavior" ); |
| 1157 | return TypeInt::CC_EQ; |
| 1158 | } |
| 1159 | |
| 1160 | |
| 1161 | //============================================================================= |
| 1162 | //------------------------------Value------------------------------------------ |
| 1163 | // Simplify an CmpD (compare 2 doubles ) node, based on local information. |
| 1164 | // If both inputs are constants, compare them. |
| 1165 | const Type* CmpDNode::Value(PhaseGVN* phase) const { |
| 1166 | const Node* in1 = in(1); |
| 1167 | const Node* in2 = in(2); |
| 1168 | // Either input is TOP ==> the result is TOP |
| 1169 | const Type* t1 = (in1 == this) ? Type::TOP : phase->type(in1); |
| 1170 | if( t1 == Type::TOP ) return Type::TOP; |
| 1171 | const Type* t2 = (in2 == this) ? Type::TOP : phase->type(in2); |
| 1172 | if( t2 == Type::TOP ) return Type::TOP; |
| 1173 | |
| 1174 | // Not constants? Don't know squat - even if they are the same |
| 1175 | // value! If they are NaN's they compare to LT instead of EQ. |
| 1176 | const TypeD *td1 = t1->isa_double_constant(); |
| 1177 | const TypeD *td2 = t2->isa_double_constant(); |
| 1178 | if( !td1 || !td2 ) return TypeInt::CC; |
| 1179 | |
| 1180 | // This implements the Java bytecode dcmpl, so unordered returns -1. |
| 1181 | if( td1->is_nan() || td2->is_nan() ) |
| 1182 | return TypeInt::CC_LT; |
| 1183 | |
| 1184 | if( td1->_d < td2->_d ) return TypeInt::CC_LT; |
| 1185 | if( td1->_d > td2->_d ) return TypeInt::CC_GT; |
| 1186 | assert( td1->_d == td2->_d, "do not understand FP behavior" ); |
| 1187 | return TypeInt::CC_EQ; |
| 1188 | } |
| 1189 | |
| 1190 | //------------------------------Ideal------------------------------------------ |
| 1191 | Node *CmpDNode::Ideal(PhaseGVN *phase, bool can_reshape){ |
| 1192 | // Check if we can change this to a CmpF and remove a ConvD2F operation. |
| 1193 | // Change (CMPD (F2D (float)) (ConD value)) |
| 1194 | // To (CMPF (float) (ConF value)) |
| 1195 | // Valid when 'value' does not lose precision as a float. |
| 1196 | // Benefits: eliminates conversion, does not require 24-bit mode |
| 1197 | |
| 1198 | // NaNs prevent commuting operands. This transform works regardless of the |
| 1199 | // order of ConD and ConvF2D inputs by preserving the original order. |
| 1200 | int idx_f2d = 1; // ConvF2D on left side? |
| 1201 | if( in(idx_f2d)->Opcode() != Op_ConvF2D ) |
| 1202 | idx_f2d = 2; // No, swap to check for reversed args |
| 1203 | int idx_con = 3-idx_f2d; // Check for the constant on other input |
| 1204 | |
| 1205 | if( ConvertCmpD2CmpF && |
| 1206 | in(idx_f2d)->Opcode() == Op_ConvF2D && |
| 1207 | in(idx_con)->Opcode() == Op_ConD ) { |
| 1208 | const TypeD *t2 = in(idx_con)->bottom_type()->is_double_constant(); |
| 1209 | double t2_value_as_double = t2->_d; |
| 1210 | float t2_value_as_float = (float)t2_value_as_double; |
| 1211 | if( t2_value_as_double == (double)t2_value_as_float ) { |
| 1212 | // Test value can be represented as a float |
| 1213 | // Eliminate the conversion to double and create new comparison |
| 1214 | Node *new_in1 = in(idx_f2d)->in(1); |
| 1215 | Node *new_in2 = phase->makecon( TypeF::make(t2_value_as_float) ); |
| 1216 | if( idx_f2d != 1 ) { // Must flip args to match original order |
| 1217 | Node *tmp = new_in1; |
| 1218 | new_in1 = new_in2; |
| 1219 | new_in2 = tmp; |
| 1220 | } |
| 1221 | CmpFNode *new_cmp = (Opcode() == Op_CmpD3) |
| 1222 | ? new CmpF3Node( new_in1, new_in2 ) |
| 1223 | : new CmpFNode ( new_in1, new_in2 ) ; |
| 1224 | return new_cmp; // Changed to CmpFNode |
| 1225 | } |
| 1226 | // Testing value required the precision of a double |
| 1227 | } |
| 1228 | return NULL; // No change |
| 1229 | } |
| 1230 | |
| 1231 | |
| 1232 | //============================================================================= |
| 1233 | //------------------------------cc2logical------------------------------------- |
| 1234 | // Convert a condition code type to a logical type |
| 1235 | const Type *BoolTest::cc2logical( const Type *CC ) const { |
| 1236 | if( CC == Type::TOP ) return Type::TOP; |
| 1237 | if( CC->base() != Type::Int ) return TypeInt::BOOL; // Bottom or worse |
| 1238 | const TypeInt *ti = CC->is_int(); |
| 1239 | if( ti->is_con() ) { // Only 1 kind of condition codes set? |
| 1240 | // Match low order 2 bits |
| 1241 | int tmp = ((ti->get_con()&3) == (_test&3)) ? 1 : 0; |
| 1242 | if( _test & 4 ) tmp = 1-tmp; // Optionally complement result |
| 1243 | return TypeInt::make(tmp); // Boolean result |
| 1244 | } |
| 1245 | |
| 1246 | if( CC == TypeInt::CC_GE ) { |
| 1247 | if( _test == ge ) return TypeInt::ONE; |
| 1248 | if( _test == lt ) return TypeInt::ZERO; |
| 1249 | } |
| 1250 | if( CC == TypeInt::CC_LE ) { |
| 1251 | if( _test == le ) return TypeInt::ONE; |
| 1252 | if( _test == gt ) return TypeInt::ZERO; |
| 1253 | } |
| 1254 | |
| 1255 | return TypeInt::BOOL; |
| 1256 | } |
| 1257 | |
| 1258 | //------------------------------dump_spec------------------------------------- |
| 1259 | // Print special per-node info |
| 1260 | void BoolTest::dump_on(outputStream *st) const { |
| 1261 | const char *msg[] = {"eq" ,"gt" ,"of" ,"lt" ,"ne" ,"le" ,"nof" ,"ge" }; |
| 1262 | st->print("%s" , msg[_test]); |
| 1263 | } |
| 1264 | |
| 1265 | // Returns the logical AND of two tests (or 'never' if both tests can never be true). |
| 1266 | // For example, a test for 'le' followed by a test for 'lt' is equivalent with 'lt'. |
| 1267 | BoolTest::mask BoolTest::merge(BoolTest other) const { |
| 1268 | const mask res[illegal+1][illegal+1] = { |
| 1269 | // eq, gt, of, lt, ne, le, nof, ge, never, illegal |
| 1270 | {eq, never, illegal, never, never, eq, illegal, eq, never, illegal}, // eq |
| 1271 | {never, gt, illegal, never, gt, never, illegal, gt, never, illegal}, // gt |
| 1272 | {illegal, illegal, illegal, illegal, illegal, illegal, illegal, illegal, never, illegal}, // of |
| 1273 | {never, never, illegal, lt, lt, lt, illegal, never, never, illegal}, // lt |
| 1274 | {never, gt, illegal, lt, ne, lt, illegal, gt, never, illegal}, // ne |
| 1275 | {eq, never, illegal, lt, lt, le, illegal, eq, never, illegal}, // le |
| 1276 | {illegal, illegal, illegal, illegal, illegal, illegal, illegal, illegal, never, illegal}, // nof |
| 1277 | {eq, gt, illegal, never, gt, eq, illegal, ge, never, illegal}, // ge |
| 1278 | {never, never, never, never, never, never, never, never, never, illegal}, // never |
| 1279 | {illegal, illegal, illegal, illegal, illegal, illegal, illegal, illegal, illegal, illegal}}; // illegal |
| 1280 | return res[_test][other._test]; |
| 1281 | } |
| 1282 | |
| 1283 | //============================================================================= |
| 1284 | uint BoolNode::hash() const { return (Node::hash() << 3)|(_test._test+1); } |
| 1285 | uint BoolNode::size_of() const { return sizeof(BoolNode); } |
| 1286 | |
| 1287 | //------------------------------operator==------------------------------------- |
| 1288 | bool BoolNode::cmp( const Node &n ) const { |
| 1289 | const BoolNode *b = (const BoolNode *)&n; // Cast up |
| 1290 | return (_test._test == b->_test._test); |
| 1291 | } |
| 1292 | |
| 1293 | //-------------------------------make_predicate-------------------------------- |
| 1294 | Node* BoolNode::make_predicate(Node* test_value, PhaseGVN* phase) { |
| 1295 | if (test_value->is_Con()) return test_value; |
| 1296 | if (test_value->is_Bool()) return test_value; |
| 1297 | if (test_value->is_CMove() && |
| 1298 | test_value->in(CMoveNode::Condition)->is_Bool()) { |
| 1299 | BoolNode* bol = test_value->in(CMoveNode::Condition)->as_Bool(); |
| 1300 | const Type* ftype = phase->type(test_value->in(CMoveNode::IfFalse)); |
| 1301 | const Type* ttype = phase->type(test_value->in(CMoveNode::IfTrue)); |
| 1302 | if (ftype == TypeInt::ZERO && !TypeInt::ZERO->higher_equal(ttype)) { |
| 1303 | return bol; |
| 1304 | } else if (ttype == TypeInt::ZERO && !TypeInt::ZERO->higher_equal(ftype)) { |
| 1305 | return phase->transform( bol->negate(phase) ); |
| 1306 | } |
| 1307 | // Else fall through. The CMove gets in the way of the test. |
| 1308 | // It should be the case that make_predicate(bol->as_int_value()) == bol. |
| 1309 | } |
| 1310 | Node* cmp = new CmpINode(test_value, phase->intcon(0)); |
| 1311 | cmp = phase->transform(cmp); |
| 1312 | Node* bol = new BoolNode(cmp, BoolTest::ne); |
| 1313 | return phase->transform(bol); |
| 1314 | } |
| 1315 | |
| 1316 | //--------------------------------as_int_value--------------------------------- |
| 1317 | Node* BoolNode::as_int_value(PhaseGVN* phase) { |
| 1318 | // Inverse to make_predicate. The CMove probably boils down to a Conv2B. |
| 1319 | Node* cmov = CMoveNode::make(NULL, this, |
| 1320 | phase->intcon(0), phase->intcon(1), |
| 1321 | TypeInt::BOOL); |
| 1322 | return phase->transform(cmov); |
| 1323 | } |
| 1324 | |
| 1325 | //----------------------------------negate------------------------------------- |
| 1326 | BoolNode* BoolNode::negate(PhaseGVN* phase) { |
| 1327 | return new BoolNode(in(1), _test.negate()); |
| 1328 | } |
| 1329 | |
| 1330 | // Change "bool eq/ne (cmp (add/sub A B) C)" into false/true if add/sub |
| 1331 | // overflows and we can prove that C is not in the two resulting ranges. |
| 1332 | // This optimization is similar to the one performed by CmpUNode::Value(). |
| 1333 | Node* BoolNode::fold_cmpI(PhaseGVN* phase, SubNode* cmp, Node* cmp1, int cmp_op, |
| 1334 | int cmp1_op, const TypeInt* cmp2_type) { |
| 1335 | // Only optimize eq/ne integer comparison of add/sub |
| 1336 | if((_test._test == BoolTest::eq || _test._test == BoolTest::ne) && |
| 1337 | (cmp_op == Op_CmpI) && (cmp1_op == Op_AddI || cmp1_op == Op_SubI)) { |
| 1338 | // Skip cases were inputs of add/sub are not integers or of bottom type |
| 1339 | const TypeInt* r0 = phase->type(cmp1->in(1))->isa_int(); |
| 1340 | const TypeInt* r1 = phase->type(cmp1->in(2))->isa_int(); |
| 1341 | if ((r0 != NULL) && (r0 != TypeInt::INT) && |
| 1342 | (r1 != NULL) && (r1 != TypeInt::INT) && |
| 1343 | (cmp2_type != TypeInt::INT)) { |
| 1344 | // Compute exact (long) type range of add/sub result |
| 1345 | jlong lo_long = r0->_lo; |
| 1346 | jlong hi_long = r0->_hi; |
| 1347 | if (cmp1_op == Op_AddI) { |
| 1348 | lo_long += r1->_lo; |
| 1349 | hi_long += r1->_hi; |
| 1350 | } else { |
| 1351 | lo_long -= r1->_hi; |
| 1352 | hi_long -= r1->_lo; |
| 1353 | } |
| 1354 | // Check for over-/underflow by casting to integer |
| 1355 | int lo_int = (int)lo_long; |
| 1356 | int hi_int = (int)hi_long; |
| 1357 | bool underflow = lo_long != (jlong)lo_int; |
| 1358 | bool overflow = hi_long != (jlong)hi_int; |
| 1359 | if ((underflow != overflow) && (hi_int < lo_int)) { |
| 1360 | // Overflow on one boundary, compute resulting type ranges: |
| 1361 | // tr1 [MIN_INT, hi_int] and tr2 [lo_int, MAX_INT] |
| 1362 | int w = MAX2(r0->_widen, r1->_widen); // _widen does not matter here |
| 1363 | const TypeInt* tr1 = TypeInt::make(min_jint, hi_int, w); |
| 1364 | const TypeInt* tr2 = TypeInt::make(lo_int, max_jint, w); |
| 1365 | // Compare second input of cmp to both type ranges |
| 1366 | const Type* sub_tr1 = cmp->sub(tr1, cmp2_type); |
| 1367 | const Type* sub_tr2 = cmp->sub(tr2, cmp2_type); |
| 1368 | if (sub_tr1 == TypeInt::CC_LT && sub_tr2 == TypeInt::CC_GT) { |
| 1369 | // The result of the add/sub will never equal cmp2. Replace BoolNode |
| 1370 | // by false (0) if it tests for equality and by true (1) otherwise. |
| 1371 | return ConINode::make((_test._test == BoolTest::eq) ? 0 : 1); |
| 1372 | } |
| 1373 | } |
| 1374 | } |
| 1375 | } |
| 1376 | return NULL; |
| 1377 | } |
| 1378 | |
| 1379 | static bool is_counted_loop_cmp(Node *cmp) { |
| 1380 | Node *n = cmp->in(1)->in(1); |
| 1381 | return n != NULL && |
| 1382 | n->is_Phi() && |
| 1383 | n->in(0) != NULL && |
| 1384 | n->in(0)->is_CountedLoop() && |
| 1385 | n->in(0)->as_CountedLoop()->phi() == n; |
| 1386 | } |
| 1387 | |
| 1388 | //------------------------------Ideal------------------------------------------ |
| 1389 | Node *BoolNode::Ideal(PhaseGVN *phase, bool can_reshape) { |
| 1390 | // Change "bool tst (cmp con x)" into "bool ~tst (cmp x con)". |
| 1391 | // This moves the constant to the right. Helps value-numbering. |
| 1392 | Node *cmp = in(1); |
| 1393 | if( !cmp->is_Sub() ) return NULL; |
| 1394 | int cop = cmp->Opcode(); |
| 1395 | if( cop == Op_FastLock || cop == Op_FastUnlock) return NULL; |
| 1396 | Node *cmp1 = cmp->in(1); |
| 1397 | Node *cmp2 = cmp->in(2); |
| 1398 | if( !cmp1 ) return NULL; |
| 1399 | |
| 1400 | if (_test._test == BoolTest::overflow || _test._test == BoolTest::no_overflow) { |
| 1401 | return NULL; |
| 1402 | } |
| 1403 | |
| 1404 | // Constant on left? |
| 1405 | Node *con = cmp1; |
| 1406 | uint op2 = cmp2->Opcode(); |
| 1407 | // Move constants to the right of compare's to canonicalize. |
| 1408 | // Do not muck with Opaque1 nodes, as this indicates a loop |
| 1409 | // guard that cannot change shape. |
| 1410 | if( con->is_Con() && !cmp2->is_Con() && op2 != Op_Opaque1 && |
| 1411 | // Because of NaN's, CmpD and CmpF are not commutative |
| 1412 | cop != Op_CmpD && cop != Op_CmpF && |
| 1413 | // Protect against swapping inputs to a compare when it is used by a |
| 1414 | // counted loop exit, which requires maintaining the loop-limit as in(2) |
| 1415 | !is_counted_loop_exit_test() ) { |
| 1416 | // Ok, commute the constant to the right of the cmp node. |
| 1417 | // Clone the Node, getting a new Node of the same class |
| 1418 | cmp = cmp->clone(); |
| 1419 | // Swap inputs to the clone |
| 1420 | cmp->swap_edges(1, 2); |
| 1421 | cmp = phase->transform( cmp ); |
| 1422 | return new BoolNode( cmp, _test.commute() ); |
| 1423 | } |
| 1424 | |
| 1425 | // Change "bool eq/ne (cmp (xor X 1) 0)" into "bool ne/eq (cmp X 0)". |
| 1426 | // The XOR-1 is an idiom used to flip the sense of a bool. We flip the |
| 1427 | // test instead. |
| 1428 | int cmp1_op = cmp1->Opcode(); |
| 1429 | const TypeInt* cmp2_type = phase->type(cmp2)->isa_int(); |
| 1430 | if (cmp2_type == NULL) return NULL; |
| 1431 | Node* j_xor = cmp1; |
| 1432 | if( cmp2_type == TypeInt::ZERO && |
| 1433 | cmp1_op == Op_XorI && |
| 1434 | j_xor->in(1) != j_xor && // An xor of itself is dead |
| 1435 | phase->type( j_xor->in(1) ) == TypeInt::BOOL && |
| 1436 | phase->type( j_xor->in(2) ) == TypeInt::ONE && |
| 1437 | (_test._test == BoolTest::eq || |
| 1438 | _test._test == BoolTest::ne) ) { |
| 1439 | Node *ncmp = phase->transform(new CmpINode(j_xor->in(1),cmp2)); |
| 1440 | return new BoolNode( ncmp, _test.negate() ); |
| 1441 | } |
| 1442 | |
| 1443 | // Change ((x & m) u<= m) or ((m & x) u<= m) to always true |
| 1444 | // Same with ((x & m) u< m+1) and ((m & x) u< m+1) |
| 1445 | if (cop == Op_CmpU && |
| 1446 | cmp1_op == Op_AndI) { |
| 1447 | Node* bound = NULL; |
| 1448 | if (_test._test == BoolTest::le) { |
| 1449 | bound = cmp2; |
| 1450 | } else if (_test._test == BoolTest::lt && |
| 1451 | cmp2->Opcode() == Op_AddI && |
| 1452 | cmp2->in(2)->find_int_con(0) == 1) { |
| 1453 | bound = cmp2->in(1); |
| 1454 | } |
| 1455 | if (cmp1->in(2) == bound || cmp1->in(1) == bound) { |
| 1456 | return ConINode::make(1); |
| 1457 | } |
| 1458 | } |
| 1459 | |
| 1460 | // Change ((x & (m - 1)) u< m) into (m > 0) |
| 1461 | // This is the off-by-one variant of the above |
| 1462 | if (cop == Op_CmpU && |
| 1463 | _test._test == BoolTest::lt && |
| 1464 | cmp1_op == Op_AndI) { |
| 1465 | Node* l = cmp1->in(1); |
| 1466 | Node* r = cmp1->in(2); |
| 1467 | for (int repeat = 0; repeat < 2; repeat++) { |
| 1468 | bool match = r->Opcode() == Op_AddI && r->in(2)->find_int_con(0) == -1 && |
| 1469 | r->in(1) == cmp2; |
| 1470 | if (match) { |
| 1471 | // arraylength known to be non-negative, so a (arraylength != 0) is sufficient, |
| 1472 | // but to be compatible with the array range check pattern, use (arraylength u> 0) |
| 1473 | Node* ncmp = cmp2->Opcode() == Op_LoadRange |
| 1474 | ? phase->transform(new CmpUNode(cmp2, phase->intcon(0))) |
| 1475 | : phase->transform(new CmpINode(cmp2, phase->intcon(0))); |
| 1476 | return new BoolNode(ncmp, BoolTest::gt); |
| 1477 | } else { |
| 1478 | // commute and try again |
| 1479 | l = cmp1->in(2); |
| 1480 | r = cmp1->in(1); |
| 1481 | } |
| 1482 | } |
| 1483 | } |
| 1484 | |
| 1485 | // Change x u< 1 or x u<= 0 to x == 0 |
| 1486 | if (cop == Op_CmpU && |
| 1487 | cmp1_op != Op_LoadRange && |
| 1488 | ((_test._test == BoolTest::lt && |
| 1489 | cmp2->find_int_con(-1) == 1) || |
| 1490 | (_test._test == BoolTest::le && |
| 1491 | cmp2->find_int_con(-1) == 0))) { |
| 1492 | Node* ncmp = phase->transform(new CmpINode(cmp1, phase->intcon(0))); |
| 1493 | return new BoolNode(ncmp, BoolTest::eq); |
| 1494 | } |
| 1495 | |
| 1496 | // Change (arraylength <= 0) or (arraylength == 0) |
| 1497 | // into (arraylength u<= 0) |
| 1498 | // Also change (arraylength != 0) into (arraylength u> 0) |
| 1499 | // The latter version matches the code pattern generated for |
| 1500 | // array range checks, which will more likely be optimized later. |
| 1501 | if (cop == Op_CmpI && |
| 1502 | cmp1_op == Op_LoadRange && |
| 1503 | cmp2->find_int_con(-1) == 0) { |
| 1504 | if (_test._test == BoolTest::le || _test._test == BoolTest::eq) { |
| 1505 | Node* ncmp = phase->transform(new CmpUNode(cmp1, cmp2)); |
| 1506 | return new BoolNode(ncmp, BoolTest::le); |
| 1507 | } else if (_test._test == BoolTest::ne) { |
| 1508 | Node* ncmp = phase->transform(new CmpUNode(cmp1, cmp2)); |
| 1509 | return new BoolNode(ncmp, BoolTest::gt); |
| 1510 | } |
| 1511 | } |
| 1512 | |
| 1513 | // Change "bool eq/ne (cmp (Conv2B X) 0)" into "bool eq/ne (cmp X 0)". |
| 1514 | // This is a standard idiom for branching on a boolean value. |
| 1515 | Node *c2b = cmp1; |
| 1516 | if( cmp2_type == TypeInt::ZERO && |
| 1517 | cmp1_op == Op_Conv2B && |
| 1518 | (_test._test == BoolTest::eq || |
| 1519 | _test._test == BoolTest::ne) ) { |
| 1520 | Node *ncmp = phase->transform(phase->type(c2b->in(1))->isa_int() |
| 1521 | ? (Node*)new CmpINode(c2b->in(1),cmp2) |
| 1522 | : (Node*)new CmpPNode(c2b->in(1),phase->makecon(TypePtr::NULL_PTR)) |
| 1523 | ); |
| 1524 | return new BoolNode( ncmp, _test._test ); |
| 1525 | } |
| 1526 | |
| 1527 | // Comparing a SubI against a zero is equal to comparing the SubI |
| 1528 | // arguments directly. This only works for eq and ne comparisons |
| 1529 | // due to possible integer overflow. |
| 1530 | if ((_test._test == BoolTest::eq || _test._test == BoolTest::ne) && |
| 1531 | (cop == Op_CmpI) && |
| 1532 | (cmp1_op == Op_SubI) && |
| 1533 | ( cmp2_type == TypeInt::ZERO ) ) { |
| 1534 | Node *ncmp = phase->transform( new CmpINode(cmp1->in(1),cmp1->in(2))); |
| 1535 | return new BoolNode( ncmp, _test._test ); |
| 1536 | } |
| 1537 | |
| 1538 | // Same as above but with and AddI of a constant |
| 1539 | if ((_test._test == BoolTest::eq || _test._test == BoolTest::ne) && |
| 1540 | cop == Op_CmpI && |
| 1541 | cmp1_op == Op_AddI && |
| 1542 | cmp1->in(2) != NULL && |
| 1543 | phase->type(cmp1->in(2))->isa_int() && |
| 1544 | phase->type(cmp1->in(2))->is_int()->is_con() && |
| 1545 | cmp2_type == TypeInt::ZERO && |
| 1546 | !is_counted_loop_cmp(cmp) // modifying the exit test of a counted loop messes the counted loop shape |
| 1547 | ) { |
| 1548 | const TypeInt* cmp1_in2 = phase->type(cmp1->in(2))->is_int(); |
| 1549 | Node *ncmp = phase->transform( new CmpINode(cmp1->in(1),phase->intcon(-cmp1_in2->_hi))); |
| 1550 | return new BoolNode( ncmp, _test._test ); |
| 1551 | } |
| 1552 | |
| 1553 | // Change "bool eq/ne (cmp (phi (X -X) 0))" into "bool eq/ne (cmp X 0)" |
| 1554 | // since zero check of conditional negation of an integer is equal to |
| 1555 | // zero check of the integer directly. |
| 1556 | if ((_test._test == BoolTest::eq || _test._test == BoolTest::ne) && |
| 1557 | (cop == Op_CmpI) && |
| 1558 | (cmp2_type == TypeInt::ZERO) && |
| 1559 | (cmp1_op == Op_Phi)) { |
| 1560 | // There should be a diamond phi with true path at index 1 or 2 |
| 1561 | PhiNode *phi = cmp1->as_Phi(); |
| 1562 | int idx_true = phi->is_diamond_phi(); |
| 1563 | if (idx_true != 0) { |
| 1564 | // True input is in(idx_true) while false input is in(3 - idx_true) |
| 1565 | Node *tin = phi->in(idx_true); |
| 1566 | Node *fin = phi->in(3 - idx_true); |
| 1567 | if ((tin->Opcode() == Op_SubI) && |
| 1568 | (phase->type(tin->in(1)) == TypeInt::ZERO) && |
| 1569 | (tin->in(2) == fin)) { |
| 1570 | // Found conditional negation at true path, create a new CmpINode without that |
| 1571 | Node *ncmp = phase->transform(new CmpINode(fin, cmp2)); |
| 1572 | return new BoolNode(ncmp, _test._test); |
| 1573 | } |
| 1574 | if ((fin->Opcode() == Op_SubI) && |
| 1575 | (phase->type(fin->in(1)) == TypeInt::ZERO) && |
| 1576 | (fin->in(2) == tin)) { |
| 1577 | // Found conditional negation at false path, create a new CmpINode without that |
| 1578 | Node *ncmp = phase->transform(new CmpINode(tin, cmp2)); |
| 1579 | return new BoolNode(ncmp, _test._test); |
| 1580 | } |
| 1581 | } |
| 1582 | } |
| 1583 | |
| 1584 | // Change (-A vs 0) into (A vs 0) by commuting the test. Disallow in the |
| 1585 | // most general case because negating 0x80000000 does nothing. Needed for |
| 1586 | // the CmpF3/SubI/CmpI idiom. |
| 1587 | if( cop == Op_CmpI && |
| 1588 | cmp1_op == Op_SubI && |
| 1589 | cmp2_type == TypeInt::ZERO && |
| 1590 | phase->type( cmp1->in(1) ) == TypeInt::ZERO && |
| 1591 | phase->type( cmp1->in(2) )->higher_equal(TypeInt::SYMINT) ) { |
| 1592 | Node *ncmp = phase->transform( new CmpINode(cmp1->in(2),cmp2)); |
| 1593 | return new BoolNode( ncmp, _test.commute() ); |
| 1594 | } |
| 1595 | |
| 1596 | // Try to optimize signed integer comparison |
| 1597 | return fold_cmpI(phase, cmp->as_Sub(), cmp1, cop, cmp1_op, cmp2_type); |
| 1598 | |
| 1599 | // The transformation below is not valid for either signed or unsigned |
| 1600 | // comparisons due to wraparound concerns at MAX_VALUE and MIN_VALUE. |
| 1601 | // This transformation can be resurrected when we are able to |
| 1602 | // make inferences about the range of values being subtracted from |
| 1603 | // (or added to) relative to the wraparound point. |
| 1604 | // |
| 1605 | // // Remove +/-1's if possible. |
| 1606 | // // "X <= Y-1" becomes "X < Y" |
| 1607 | // // "X+1 <= Y" becomes "X < Y" |
| 1608 | // // "X < Y+1" becomes "X <= Y" |
| 1609 | // // "X-1 < Y" becomes "X <= Y" |
| 1610 | // // Do not this to compares off of the counted-loop-end. These guys are |
| 1611 | // // checking the trip counter and they want to use the post-incremented |
| 1612 | // // counter. If they use the PRE-incremented counter, then the counter has |
| 1613 | // // to be incremented in a private block on a loop backedge. |
| 1614 | // if( du && du->cnt(this) && du->out(this)[0]->Opcode() == Op_CountedLoopEnd ) |
| 1615 | // return NULL; |
| 1616 | // #ifndef PRODUCT |
| 1617 | // // Do not do this in a wash GVN pass during verification. |
| 1618 | // // Gets triggered by too many simple optimizations to be bothered with |
| 1619 | // // re-trying it again and again. |
| 1620 | // if( !phase->allow_progress() ) return NULL; |
| 1621 | // #endif |
| 1622 | // // Not valid for unsigned compare because of corner cases in involving zero. |
| 1623 | // // For example, replacing "X-1 <u Y" with "X <=u Y" fails to throw an |
| 1624 | // // exception in case X is 0 (because 0-1 turns into 4billion unsigned but |
| 1625 | // // "0 <=u Y" is always true). |
| 1626 | // if( cmp->Opcode() == Op_CmpU ) return NULL; |
| 1627 | // int cmp2_op = cmp2->Opcode(); |
| 1628 | // if( _test._test == BoolTest::le ) { |
| 1629 | // if( cmp1_op == Op_AddI && |
| 1630 | // phase->type( cmp1->in(2) ) == TypeInt::ONE ) |
| 1631 | // return clone_cmp( cmp, cmp1->in(1), cmp2, phase, BoolTest::lt ); |
| 1632 | // else if( cmp2_op == Op_AddI && |
| 1633 | // phase->type( cmp2->in(2) ) == TypeInt::MINUS_1 ) |
| 1634 | // return clone_cmp( cmp, cmp1, cmp2->in(1), phase, BoolTest::lt ); |
| 1635 | // } else if( _test._test == BoolTest::lt ) { |
| 1636 | // if( cmp1_op == Op_AddI && |
| 1637 | // phase->type( cmp1->in(2) ) == TypeInt::MINUS_1 ) |
| 1638 | // return clone_cmp( cmp, cmp1->in(1), cmp2, phase, BoolTest::le ); |
| 1639 | // else if( cmp2_op == Op_AddI && |
| 1640 | // phase->type( cmp2->in(2) ) == TypeInt::ONE ) |
| 1641 | // return clone_cmp( cmp, cmp1, cmp2->in(1), phase, BoolTest::le ); |
| 1642 | // } |
| 1643 | } |
| 1644 | |
| 1645 | //------------------------------Value------------------------------------------ |
| 1646 | // Simplify a Bool (convert condition codes to boolean (1 or 0)) node, |
| 1647 | // based on local information. If the input is constant, do it. |
| 1648 | const Type* BoolNode::Value(PhaseGVN* phase) const { |
| 1649 | return _test.cc2logical( phase->type( in(1) ) ); |
| 1650 | } |
| 1651 | |
| 1652 | #ifndef PRODUCT |
| 1653 | //------------------------------dump_spec-------------------------------------- |
| 1654 | // Dump special per-node info |
| 1655 | void BoolNode::dump_spec(outputStream *st) const { |
| 1656 | st->print("[" ); |
| 1657 | _test.dump_on(st); |
| 1658 | st->print("]" ); |
| 1659 | } |
| 1660 | |
| 1661 | //-------------------------------related--------------------------------------- |
| 1662 | // A BoolNode's related nodes are all of its data inputs, and all of its |
| 1663 | // outputs until control nodes are hit, which are included. In compact |
| 1664 | // representation, inputs till level 3 and immediate outputs are included. |
| 1665 | void BoolNode::related(GrowableArray<Node*> *in_rel, GrowableArray<Node*> *out_rel, bool compact) const { |
| 1666 | if (compact) { |
| 1667 | this->collect_nodes(in_rel, 3, false, true); |
| 1668 | this->collect_nodes(out_rel, -1, false, false); |
| 1669 | } else { |
| 1670 | this->collect_nodes_in_all_data(in_rel, false); |
| 1671 | this->collect_nodes_out_all_ctrl_boundary(out_rel); |
| 1672 | } |
| 1673 | } |
| 1674 | #endif |
| 1675 | |
| 1676 | //----------------------is_counted_loop_exit_test------------------------------ |
| 1677 | // Returns true if node is used by a counted loop node. |
| 1678 | bool BoolNode::is_counted_loop_exit_test() { |
| 1679 | for( DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++ ) { |
| 1680 | Node* use = fast_out(i); |
| 1681 | if (use->is_CountedLoopEnd()) { |
| 1682 | return true; |
| 1683 | } |
| 1684 | } |
| 1685 | return false; |
| 1686 | } |
| 1687 | |
| 1688 | //============================================================================= |
| 1689 | //------------------------------Value------------------------------------------ |
| 1690 | // Compute sqrt |
| 1691 | const Type* SqrtDNode::Value(PhaseGVN* phase) const { |
| 1692 | const Type *t1 = phase->type( in(1) ); |
| 1693 | if( t1 == Type::TOP ) return Type::TOP; |
| 1694 | if( t1->base() != Type::DoubleCon ) return Type::DOUBLE; |
| 1695 | double d = t1->getd(); |
| 1696 | if( d < 0.0 ) return Type::DOUBLE; |
| 1697 | return TypeD::make( sqrt( d ) ); |
| 1698 | } |
| 1699 | |
| 1700 | const Type* SqrtFNode::Value(PhaseGVN* phase) const { |
| 1701 | const Type *t1 = phase->type( in(1) ); |
| 1702 | if( t1 == Type::TOP ) return Type::TOP; |
| 1703 | if( t1->base() != Type::FloatCon ) return Type::FLOAT; |
| 1704 | float f = t1->getf(); |
| 1705 | if( f < 0.0f ) return Type::FLOAT; |
| 1706 | return TypeF::make( (float)sqrt( (double)f ) ); |
| 1707 | } |
| 1708 | |