| 1 | /* |
| 2 | * Copyright (c) 2015-2019, Intel Corporation |
| 3 | * |
| 4 | * Redistribution and use in source and binary forms, with or without |
| 5 | * modification, are permitted provided that the following conditions are met: |
| 6 | * |
| 7 | * * Redistributions of source code must retain the above copyright notice, |
| 8 | * this list of conditions and the following disclaimer. |
| 9 | * * Redistributions in binary form must reproduce the above copyright |
| 10 | * notice, this list of conditions and the following disclaimer in the |
| 11 | * documentation and/or other materials provided with the distribution. |
| 12 | * * Neither the name of Intel Corporation nor the names of its contributors |
| 13 | * may be used to endorse or promote products derived from this software |
| 14 | * without specific prior written permission. |
| 15 | * |
| 16 | * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| 17 | * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 18 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 19 | * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| 20 | * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| 21 | * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| 22 | * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| 23 | * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| 24 | * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| 25 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| 26 | * POSSIBILITY OF SUCH DAMAGE. |
| 27 | */ |
| 28 | |
| 29 | #include "rose_build_impl.h" |
| 30 | |
| 31 | #include "ue2common.h" |
| 32 | #include "grey.h" |
| 33 | #include "hs_compile.h" // for HS_MODE_* |
| 34 | #include "rose_build_add_internal.h" |
| 35 | #include "rose_build_anchored.h" |
| 36 | #include "rose_build_dump.h" |
| 37 | #include "rose_build_engine_blob.h" |
| 38 | #include "rose_build_exclusive.h" |
| 39 | #include "rose_build_groups.h" |
| 40 | #include "rose_build_infix.h" |
| 41 | #include "rose_build_long_lit.h" |
| 42 | #include "rose_build_lookaround.h" |
| 43 | #include "rose_build_matchers.h" |
| 44 | #include "rose_build_misc.h" |
| 45 | #include "rose_build_program.h" |
| 46 | #include "rose_build_resources.h" |
| 47 | #include "rose_build_scatter.h" |
| 48 | #include "rose_build_util.h" |
| 49 | #include "rose_build_width.h" |
| 50 | #include "rose_internal.h" |
| 51 | #include "rose_program.h" |
| 52 | #include "hwlm/hwlm.h" /* engine types */ |
| 53 | #include "hwlm/hwlm_build.h" |
| 54 | #include "hwlm/hwlm_literal.h" |
| 55 | #include "nfa/castlecompile.h" |
| 56 | #include "nfa/goughcompile.h" |
| 57 | #include "nfa/mcclellancompile.h" |
| 58 | #include "nfa/mcclellancompile_util.h" |
| 59 | #include "nfa/mcsheng_compile.h" |
| 60 | #include "nfa/nfa_api_queue.h" |
| 61 | #include "nfa/nfa_build_util.h" |
| 62 | #include "nfa/nfa_internal.h" |
| 63 | #include "nfa/shengcompile.h" |
| 64 | #include "nfa/shufticompile.h" |
| 65 | #include "nfa/tamaramacompile.h" |
| 66 | #include "nfa/tamarama_internal.h" |
| 67 | #include "nfagraph/ng_execute.h" |
| 68 | #include "nfagraph/ng_holder.h" |
| 69 | #include "nfagraph/ng_lbr.h" |
| 70 | #include "nfagraph/ng_limex.h" |
| 71 | #include "nfagraph/ng_mcclellan.h" |
| 72 | #include "nfagraph/ng_repeat.h" |
| 73 | #include "nfagraph/ng_reports.h" |
| 74 | #include "nfagraph/ng_revacc.h" |
| 75 | #include "nfagraph/ng_stop.h" |
| 76 | #include "nfagraph/ng_util.h" |
| 77 | #include "nfagraph/ng_width.h" |
| 78 | #include "smallwrite/smallwrite_build.h" |
| 79 | #include "som/slot_manager.h" |
| 80 | #include "util/bitutils.h" |
| 81 | #include "util/boundary_reports.h" |
| 82 | #include "util/charreach.h" |
| 83 | #include "util/charreach_util.h" |
| 84 | #include "util/compile_context.h" |
| 85 | #include "util/compile_error.h" |
| 86 | #include "util/container.h" |
| 87 | #include "util/fatbit_build.h" |
| 88 | #include "util/graph_range.h" |
| 89 | #include "util/insertion_ordered.h" |
| 90 | #include "util/make_unique.h" |
| 91 | #include "util/multibit_build.h" |
| 92 | #include "util/noncopyable.h" |
| 93 | #include "util/order_check.h" |
| 94 | #include "util/popcount.h" |
| 95 | #include "util/queue_index_factory.h" |
| 96 | #include "util/report_manager.h" |
| 97 | #include "util/ue2string.h" |
| 98 | #include "util/verify_types.h" |
| 99 | |
| 100 | #include <algorithm> |
| 101 | #include <array> |
| 102 | #include <map> |
| 103 | #include <queue> |
| 104 | #include <set> |
| 105 | #include <sstream> |
| 106 | #include <string> |
| 107 | #include <vector> |
| 108 | #include <utility> |
| 109 | |
| 110 | #include <boost/range/adaptor/map.hpp> |
| 111 | |
| 112 | using namespace std; |
| 113 | using boost::adaptors::map_values; |
| 114 | using boost::adaptors::map_keys; |
| 115 | |
| 116 | namespace ue2 { |
| 117 | |
| 118 | /* The rose bytecode construction is a giant cesspit. |
| 119 | * |
| 120 | * One issue is that bits and pieces are constructed piecemeal and these |
| 121 | * sections are used by later in the construction process. Until the very end of |
| 122 | * the construction there is no useful invariant holding for the bytecode. This |
| 123 | * makes reordering / understanding the construction process awkward as there |
| 124 | * are hidden dependencies everywhere. We should start by shifting towards |
| 125 | * a model where the bytecode is only written to during the construction so that |
| 126 | * the dependencies can be understood by us mere mortals. |
| 127 | * |
| 128 | * I am sure the construction process is also bad from a number of other |
| 129 | * standpoints as well but the can come later. |
| 130 | * |
| 131 | * Actually, one other annoying issues the plague of member functions on the |
| 132 | * impl which tightly couples the internals of this file to all the other rose |
| 133 | * build files. Need more egregiously awesome free functions. |
| 134 | */ |
| 135 | |
| 136 | namespace /* anon */ { |
| 137 | |
| 138 | struct build_context : noncopyable { |
| 139 | /** \brief information about engines to the left of a vertex */ |
| 140 | map<RoseVertex, left_build_info> leftfix_info; |
| 141 | |
| 142 | /** \brief mapping from suffix to queue index. */ |
| 143 | map<suffix_id, u32> suffixes; |
| 144 | |
| 145 | /** \brief engine info by queue. */ |
| 146 | map<u32, engine_info> engine_info_by_queue; |
| 147 | |
| 148 | /** \brief Simple cache of programs written to engine blob, used for |
| 149 | * deduplication. */ |
| 150 | unordered_map<RoseProgram, u32, RoseProgramHash, |
| 151 | RoseProgramEquivalence> program_cache; |
| 152 | |
| 153 | /** \brief State indices, for those roles that have them. |
| 154 | * Each vertex present has a unique state index in the range |
| 155 | * [0, roleStateIndices.size()). */ |
| 156 | unordered_map<RoseVertex, u32> roleStateIndices; |
| 157 | |
| 158 | /** \brief Mapping from queue index to bytecode offset for built engines |
| 159 | * that have already been pushed into the engine_blob. */ |
| 160 | unordered_map<u32, u32> engineOffsets; |
| 161 | |
| 162 | /** \brief List of long literals (ones with CHECK_LONG_LIT instructions) |
| 163 | * that need hash table support. */ |
| 164 | vector<ue2_case_string> longLiterals; |
| 165 | |
| 166 | /** \brief Contents of the Rose bytecode immediately following the |
| 167 | * RoseEngine. */ |
| 168 | RoseEngineBlob engine_blob; |
| 169 | |
| 170 | /** \brief True if this Rose engine has an MPV engine. */ |
| 171 | bool needs_mpv_catchup = false; |
| 172 | |
| 173 | /** \brief Resources in use (tracked as programs are added). */ |
| 174 | RoseResources resources; |
| 175 | }; |
| 176 | |
| 177 | /** \brief subengine info including built engine and |
| 178 | * corresponding triggering rose vertices */ |
| 179 | struct ExclusiveSubengine { |
| 180 | bytecode_ptr<NFA> nfa; |
| 181 | vector<RoseVertex> vertices; |
| 182 | }; |
| 183 | |
| 184 | /** \brief exclusive info to build tamarama */ |
| 185 | struct ExclusiveInfo : noncopyable { |
| 186 | // subengine info |
| 187 | vector<ExclusiveSubengine> subengines; |
| 188 | // all the report in tamarama |
| 189 | set<ReportID> reports; |
| 190 | // assigned queue id |
| 191 | u32 queue; |
| 192 | }; |
| 193 | |
| 194 | } |
| 195 | |
| 196 | static |
| 197 | void add_nfa_to_blob(build_context &bc, NFA &nfa) { |
| 198 | u32 qi = nfa.queueIndex; |
| 199 | u32 nfa_offset = bc.engine_blob.add(nfa, nfa.length); |
| 200 | DEBUG_PRINTF("added nfa qi=%u, type=%u, length=%u at offset=%u\n" , qi, |
| 201 | nfa.type, nfa.length, nfa_offset); |
| 202 | |
| 203 | assert(!contains(bc.engineOffsets, qi)); |
| 204 | bc.engineOffsets.emplace(qi, nfa_offset); |
| 205 | } |
| 206 | |
| 207 | static |
| 208 | u32 countRosePrefixes(const vector<LeftNfaInfo> &roses) { |
| 209 | u32 num = 0; |
| 210 | for (const auto &r : roses) { |
| 211 | if (!r.infix) { |
| 212 | num++; |
| 213 | } |
| 214 | } |
| 215 | return num; |
| 216 | } |
| 217 | |
| 218 | /** |
| 219 | * \brief True if this Rose engine needs to run a catch up whenever a literal |
| 220 | * report is generated. |
| 221 | * |
| 222 | * Catch up is necessary if there are output-exposed engines (suffixes, |
| 223 | * outfixes). |
| 224 | */ |
| 225 | static |
| 226 | bool needsCatchup(const RoseBuildImpl &build) { |
| 227 | /* Note: we could be more selective about when we need to generate catch up |
| 228 | * instructions rather than just a boolean yes/no - for instance, if we know |
| 229 | * that a role can only match before the point that an outfix/suffix could |
| 230 | * match, we do not strictly need a catchup instruction. |
| 231 | * |
| 232 | * However, this would add a certain amount of complexity to the |
| 233 | * catchup logic and would likely have limited applicability - how many |
| 234 | * reporting roles have a fixed max offset and how much time is spent on |
| 235 | * catchup for these cases? |
| 236 | */ |
| 237 | |
| 238 | if (!build.outfixes.empty()) { |
| 239 | /* TODO: check that they have non-eod reports */ |
| 240 | DEBUG_PRINTF("has outfixes\n" ); |
| 241 | return true; |
| 242 | } |
| 243 | |
| 244 | const RoseGraph &g = build.g; |
| 245 | |
| 246 | for (auto v : vertices_range(g)) { |
| 247 | if (g[v].suffix) { |
| 248 | /* TODO: check that they have non-eod reports */ |
| 249 | DEBUG_PRINTF("vertex %zu has suffix\n" , g[v].index); |
| 250 | return true; |
| 251 | } |
| 252 | } |
| 253 | |
| 254 | DEBUG_PRINTF("no need for catch-up on report\n" ); |
| 255 | return false; |
| 256 | } |
| 257 | |
| 258 | static |
| 259 | bool isPureFloating(const RoseResources &resources, const CompileContext &cc) { |
| 260 | if (!resources.has_floating) { |
| 261 | DEBUG_PRINTF("no floating table\n" ); |
| 262 | return false; |
| 263 | } |
| 264 | |
| 265 | if (resources.has_outfixes || resources.has_suffixes || |
| 266 | resources.has_leftfixes) { |
| 267 | DEBUG_PRINTF("has engines\n" ); |
| 268 | return false; |
| 269 | } |
| 270 | |
| 271 | if (resources.has_anchored) { |
| 272 | DEBUG_PRINTF("has anchored matcher\n" ); |
| 273 | return false; |
| 274 | } |
| 275 | |
| 276 | if (resources.has_eod) { |
| 277 | DEBUG_PRINTF("has eod work to do\n" ); |
| 278 | return false; |
| 279 | } |
| 280 | |
| 281 | if (resources.has_states) { |
| 282 | DEBUG_PRINTF("has states\n" ); |
| 283 | return false; |
| 284 | } |
| 285 | |
| 286 | if (resources.has_lit_delay) { |
| 287 | DEBUG_PRINTF("has delayed literals\n" ); |
| 288 | return false; |
| 289 | } |
| 290 | |
| 291 | if (cc.streaming && resources.has_lit_check) { |
| 292 | DEBUG_PRINTF("has long literals in streaming mode, which needs long " |
| 293 | "literal table support\n" ); |
| 294 | return false; |
| 295 | } |
| 296 | |
| 297 | if (resources.checks_groups) { |
| 298 | DEBUG_PRINTF("has group checks\n" ); |
| 299 | return false; |
| 300 | } |
| 301 | |
| 302 | DEBUG_PRINTF("pure floating literals\n" ); |
| 303 | return true; |
| 304 | } |
| 305 | |
| 306 | static |
| 307 | bool isSingleOutfix(const RoseBuildImpl &tbi) { |
| 308 | for (auto v : vertices_range(tbi.g)) { |
| 309 | if (tbi.isAnyStart(v)) { |
| 310 | continue; |
| 311 | } |
| 312 | if (tbi.hasLiteralInTable(v, ROSE_ANCHORED_SMALL_BLOCK)) { |
| 313 | continue; |
| 314 | } |
| 315 | DEBUG_PRINTF("has role\n" ); |
| 316 | return false; |
| 317 | } |
| 318 | |
| 319 | if (tbi.ssm.numSomSlots()) { |
| 320 | return false; |
| 321 | } |
| 322 | |
| 323 | if (!tbi.boundary.report_at_eod.empty()) { |
| 324 | return false; /* streaming runtime makes liberal use of broken flag */ |
| 325 | } |
| 326 | |
| 327 | return tbi.outfixes.size() == 1; |
| 328 | } |
| 329 | |
| 330 | static |
| 331 | u8 pickRuntimeImpl(const RoseBuildImpl &build, const RoseResources &resources, |
| 332 | UNUSED u32 outfixEndQueue) { |
| 333 | DEBUG_PRINTF("has_outfixes=%d\n" , resources.has_outfixes); |
| 334 | DEBUG_PRINTF("has_suffixes=%d\n" , resources.has_suffixes); |
| 335 | DEBUG_PRINTF("has_leftfixes=%d\n" , resources.has_leftfixes); |
| 336 | DEBUG_PRINTF("has_literals=%d\n" , resources.has_literals); |
| 337 | DEBUG_PRINTF("has_states=%d\n" , resources.has_states); |
| 338 | DEBUG_PRINTF("checks_groups=%d\n" , resources.checks_groups); |
| 339 | DEBUG_PRINTF("has_lit_delay=%d\n" , resources.has_lit_delay); |
| 340 | DEBUG_PRINTF("has_lit_check=%d\n" , resources.has_lit_check); |
| 341 | DEBUG_PRINTF("has_anchored=%d\n" , resources.has_anchored); |
| 342 | DEBUG_PRINTF("has_floating=%d\n" , resources.has_floating); |
| 343 | DEBUG_PRINTF("has_eod=%d\n" , resources.has_eod); |
| 344 | |
| 345 | if (isPureFloating(resources, build.cc)) { |
| 346 | return ROSE_RUNTIME_PURE_LITERAL; |
| 347 | } |
| 348 | |
| 349 | if (isSingleOutfix(build)) { |
| 350 | return ROSE_RUNTIME_SINGLE_OUTFIX; |
| 351 | } |
| 352 | |
| 353 | return ROSE_RUNTIME_FULL_ROSE; |
| 354 | } |
| 355 | |
| 356 | /** |
| 357 | * \brief True if this Rose engine needs to run MPV catch up in front of |
| 358 | * non-MPV reports. |
| 359 | */ |
| 360 | static |
| 361 | bool needsMpvCatchup(const RoseBuildImpl &build) { |
| 362 | const auto &outfixes = build.outfixes; |
| 363 | bool has_mpv = |
| 364 | any_of(begin(outfixes), end(outfixes), [](const OutfixInfo &outfix) { |
| 365 | return outfix.is_nonempty_mpv(); |
| 366 | }); |
| 367 | |
| 368 | if (!has_mpv) { |
| 369 | DEBUG_PRINTF("no mpv\n" ); |
| 370 | return false; |
| 371 | } |
| 372 | |
| 373 | if (isSingleOutfix(build)) { |
| 374 | DEBUG_PRINTF("single outfix\n" ); |
| 375 | return false; |
| 376 | } |
| 377 | |
| 378 | return true; |
| 379 | } |
| 380 | |
| 381 | static |
| 382 | void fillStateOffsets(const RoseBuildImpl &build, u32 rolesWithStateCount, |
| 383 | u32 anchorStateSize, u32 activeArrayCount, |
| 384 | u32 activeLeftCount, u32 laggedRoseCount, |
| 385 | u32 longLitStreamStateRequired, u32 historyRequired, |
| 386 | RoseStateOffsets *so) { |
| 387 | u32 curr_offset = 0; |
| 388 | |
| 389 | // First, runtime status (stores per-stream state, like whether we need a |
| 390 | // delay rebuild or have been told to halt matching.) |
| 391 | curr_offset += sizeof(u8); |
| 392 | |
| 393 | // Role state storage. |
| 394 | curr_offset += mmbit_size(rolesWithStateCount); |
| 395 | |
| 396 | so->activeLeafArray = curr_offset; /* TODO: limit size of array */ |
| 397 | curr_offset += mmbit_size(activeArrayCount); |
| 398 | so->activeLeafArray_size = mmbit_size(activeArrayCount); |
| 399 | |
| 400 | so->activeLeftArray = curr_offset; /* TODO: limit size of array */ |
| 401 | curr_offset += mmbit_size(activeLeftCount); |
| 402 | so->activeLeftArray_size = mmbit_size(activeLeftCount); |
| 403 | |
| 404 | so->longLitState = curr_offset; |
| 405 | curr_offset += longLitStreamStateRequired; |
| 406 | so->longLitState_size = longLitStreamStateRequired; |
| 407 | |
| 408 | // ONE WHOLE BYTE for each active leftfix with lag. |
| 409 | so->leftfixLagTable = curr_offset; |
| 410 | curr_offset += laggedRoseCount; |
| 411 | |
| 412 | so->anchorState = curr_offset; |
| 413 | curr_offset += anchorStateSize; |
| 414 | |
| 415 | so->groups = curr_offset; |
| 416 | so->groups_size = (build.group_end + 7) / 8; |
| 417 | assert(so->groups_size <= sizeof(u64a)); |
| 418 | curr_offset += so->groups_size; |
| 419 | |
| 420 | // The history consists of the bytes in the history only. YAY |
| 421 | so->history = curr_offset; |
| 422 | curr_offset += historyRequired; |
| 423 | |
| 424 | // Exhaustion multibit. |
| 425 | so->exhausted = curr_offset; |
| 426 | curr_offset += mmbit_size(build.rm.numEkeys()); |
| 427 | so->exhausted_size = mmbit_size(build.rm.numEkeys()); |
| 428 | |
| 429 | // Logical multibit. |
| 430 | so->logicalVec = curr_offset; |
| 431 | so->logicalVec_size = mmbit_size(build.rm.numLogicalKeys() + |
| 432 | build.rm.numLogicalOps()); |
| 433 | curr_offset += so->logicalVec_size; |
| 434 | |
| 435 | // Combination multibit. |
| 436 | so->combVec = curr_offset; |
| 437 | so->combVec_size = mmbit_size(build.rm.numCkeys()); |
| 438 | curr_offset += so->combVec_size; |
| 439 | |
| 440 | // SOM locations and valid/writeable multibit structures. |
| 441 | if (build.ssm.numSomSlots()) { |
| 442 | const u32 somWidth = build.ssm.somPrecision(); |
| 443 | if (somWidth) { // somWidth is zero in block mode. |
| 444 | curr_offset = ROUNDUP_N(curr_offset, somWidth); |
| 445 | so->somLocation = curr_offset; |
| 446 | curr_offset += build.ssm.numSomSlots() * somWidth; |
| 447 | } else { |
| 448 | so->somLocation = 0; |
| 449 | } |
| 450 | so->somValid = curr_offset; |
| 451 | curr_offset += mmbit_size(build.ssm.numSomSlots()); |
| 452 | so->somWritable = curr_offset; |
| 453 | curr_offset += mmbit_size(build.ssm.numSomSlots()); |
| 454 | so->somMultibit_size = mmbit_size(build.ssm.numSomSlots()); |
| 455 | } else { |
| 456 | // No SOM handling, avoid growing the stream state any further. |
| 457 | so->somLocation = 0; |
| 458 | so->somValid = 0; |
| 459 | so->somWritable = 0; |
| 460 | } |
| 461 | |
| 462 | // note: state space for mask nfas is allocated later |
| 463 | so->nfaStateBegin = curr_offset; |
| 464 | so->end = curr_offset; |
| 465 | } |
| 466 | |
| 467 | // Get the mask of initial vertices due to root and anchored_root. |
| 468 | rose_group RoseBuildImpl::getInitialGroups() const { |
| 469 | rose_group groups = getSuccGroups(root) |
| 470 | | getSuccGroups(anchored_root) |
| 471 | | boundary_group_mask; |
| 472 | |
| 473 | DEBUG_PRINTF("initial groups = %016llx\n" , groups); |
| 474 | return groups; |
| 475 | } |
| 476 | |
| 477 | static |
| 478 | bool nfaStuckOn(const NGHolder &g) { |
| 479 | assert(!proper_out_degree(g.startDs, g)); |
| 480 | set<NFAVertex> succ; |
| 481 | insert(&succ, adjacent_vertices(g.start, g)); |
| 482 | succ.erase(g.startDs); |
| 483 | |
| 484 | set<NFAVertex> asucc; |
| 485 | set<u32> tops; |
| 486 | set<u32> done_tops; |
| 487 | |
| 488 | for (const auto &e : out_edges_range(g.start, g)) { |
| 489 | insert(&tops, g[e].tops); |
| 490 | if (!g[target(e, g)].char_reach.all()) { |
| 491 | continue; |
| 492 | } |
| 493 | |
| 494 | asucc.clear(); |
| 495 | insert(&asucc, adjacent_vertices(target(e, g), g)); |
| 496 | |
| 497 | if (asucc == succ) { |
| 498 | insert(&done_tops, g[e].tops); |
| 499 | } |
| 500 | } |
| 501 | |
| 502 | return tops == done_tops; |
| 503 | } |
| 504 | |
| 505 | namespace { |
| 506 | struct PredTopPair { |
| 507 | PredTopPair(RoseVertex v, u32 t) : pred(v), top(t) {} |
| 508 | bool operator<(const PredTopPair &b) const { |
| 509 | const PredTopPair &a = *this; |
| 510 | ORDER_CHECK(pred); |
| 511 | ORDER_CHECK(top); |
| 512 | return false; |
| 513 | } |
| 514 | RoseVertex pred; |
| 515 | u32 top; |
| 516 | }; |
| 517 | } |
| 518 | |
| 519 | static |
| 520 | void findFixedDepthTops(const RoseGraph &g, const set<PredTopPair> &triggers, |
| 521 | map<u32, u32> *fixed_depth_tops) { |
| 522 | DEBUG_PRINTF("|trig| %zu\n" , triggers.size()); |
| 523 | /* find all pred roles for this holder, group by top */ |
| 524 | /* if all pred roles for a given top have the same min and max offset, we |
| 525 | * add the top to the fixed_depth_top map */ |
| 526 | map<u32, set<RoseVertex> > pred_by_top; |
| 527 | for (const auto &ptp : triggers) { |
| 528 | u32 top = ptp.top; |
| 529 | RoseVertex u = ptp.pred; |
| 530 | pred_by_top[top].insert(u); |
| 531 | } |
| 532 | |
| 533 | for (const auto &e : pred_by_top) { |
| 534 | u32 top = e.first; |
| 535 | const set<RoseVertex> &preds = e.second; |
| 536 | if (!g[*preds.begin()].fixedOffset()) { |
| 537 | continue; |
| 538 | } |
| 539 | u32 depth = g[*preds.begin()].min_offset; |
| 540 | for (RoseVertex u : preds) { |
| 541 | if (g[u].min_offset != depth || g[u].max_offset != depth) { |
| 542 | goto next_top; |
| 543 | } |
| 544 | } |
| 545 | DEBUG_PRINTF("%u at depth %u\n" , top, depth); |
| 546 | (*fixed_depth_tops)[top] = depth; |
| 547 | next_top:; |
| 548 | } |
| 549 | } |
| 550 | |
| 551 | /** |
| 552 | * \brief Heuristic for picking between a DFA or NFA implementation of an |
| 553 | * engine. |
| 554 | */ |
| 555 | static |
| 556 | bytecode_ptr<NFA> pickImpl(bytecode_ptr<NFA> dfa_impl, |
| 557 | bytecode_ptr<NFA> nfa_impl) { |
| 558 | assert(nfa_impl); |
| 559 | assert(dfa_impl); |
| 560 | assert(isDfaType(dfa_impl->type)); |
| 561 | |
| 562 | // If our NFA is an LBR, it always wins. |
| 563 | if (isLbrType(nfa_impl->type)) { |
| 564 | return nfa_impl; |
| 565 | } |
| 566 | |
| 567 | // if our DFA is an accelerated Sheng, it always wins. |
| 568 | if (isShengType(dfa_impl->type) && has_accel(*dfa_impl)) { |
| 569 | return dfa_impl; |
| 570 | } |
| 571 | |
| 572 | bool d_accel = has_accel(*dfa_impl); |
| 573 | bool n_accel = has_accel(*nfa_impl); |
| 574 | bool d_big = isBigDfaType(dfa_impl->type); |
| 575 | bool n_vsmall = nfa_impl->nPositions <= 32; |
| 576 | bool n_br = has_bounded_repeats(*nfa_impl); |
| 577 | DEBUG_PRINTF("da %d na %d db %d nvs %d nbr %d\n" , (int)d_accel, |
| 578 | (int)n_accel, (int)d_big, (int)n_vsmall, (int)n_br); |
| 579 | if (d_big) { |
| 580 | if (!n_vsmall) { |
| 581 | if (d_accel || !n_accel) { |
| 582 | return dfa_impl; |
| 583 | } else { |
| 584 | return nfa_impl; |
| 585 | } |
| 586 | } else { |
| 587 | if (n_accel) { |
| 588 | return nfa_impl; |
| 589 | } else { |
| 590 | return dfa_impl; |
| 591 | } |
| 592 | } |
| 593 | } else { |
| 594 | /* favour a McClellan 8, unless the nfa looks really good and the dfa |
| 595 | * looks like trouble */ |
| 596 | if (!d_accel && n_vsmall && n_accel && !n_br) { |
| 597 | return nfa_impl; |
| 598 | } else { |
| 599 | return dfa_impl; |
| 600 | } |
| 601 | } |
| 602 | } |
| 603 | |
| 604 | /** |
| 605 | * \brief Builds an LBR if there's one repeat in the given CastleProto, |
| 606 | * otherwise a Castle. |
| 607 | */ |
| 608 | static |
| 609 | bytecode_ptr<NFA> |
| 610 | buildRepeatEngine(const CastleProto &proto, |
| 611 | const map<u32, vector<vector<CharReach>>> &triggers, |
| 612 | const CompileContext &cc, const ReportManager &rm) { |
| 613 | // If we only have one repeat, the LBR should always be the best possible |
| 614 | // implementation. |
| 615 | if (proto.repeats.size() == 1 && cc.grey.allowLbr) { |
| 616 | return constructLBR(proto, triggers.at(0), cc, rm); |
| 617 | } |
| 618 | |
| 619 | auto castle_nfa = buildCastle(proto, triggers, cc, rm); |
| 620 | assert(castle_nfa); // Should always be constructible. |
| 621 | return castle_nfa; |
| 622 | } |
| 623 | |
| 624 | static |
| 625 | bytecode_ptr<NFA> getDfa(raw_dfa &rdfa, bool is_transient, |
| 626 | const CompileContext &cc, const ReportManager &rm) { |
| 627 | // Unleash the Sheng!! |
| 628 | auto dfa = shengCompile(rdfa, cc, rm, false); |
| 629 | if (!dfa && !is_transient) { |
| 630 | // Sheng wasn't successful, so unleash McClellan! |
| 631 | /* We don't try the hybrid for transient prefixes due to the extra |
| 632 | * bytecode and that they are usually run on small blocks */ |
| 633 | dfa = mcshengCompile(rdfa, cc, rm); |
| 634 | } |
| 635 | if (!dfa) { |
| 636 | // Sheng wasn't successful, so unleash McClellan! |
| 637 | dfa = mcclellanCompile(rdfa, cc, rm, false); |
| 638 | } |
| 639 | return dfa; |
| 640 | } |
| 641 | |
| 642 | /* builds suffix nfas */ |
| 643 | static |
| 644 | bytecode_ptr<NFA> |
| 645 | buildSuffix(const ReportManager &rm, const SomSlotManager &ssm, |
| 646 | const map<u32, u32> &fixed_depth_tops, |
| 647 | const map<u32, vector<vector<CharReach>>> &triggers, |
| 648 | suffix_id suff, const CompileContext &cc) { |
| 649 | if (suff.castle()) { |
| 650 | auto n = buildRepeatEngine(*suff.castle(), triggers, cc, rm); |
| 651 | assert(n); |
| 652 | return n; |
| 653 | } |
| 654 | |
| 655 | if (suff.haig()) { |
| 656 | auto n = goughCompile(*suff.haig(), ssm.somPrecision(), cc, rm); |
| 657 | assert(n); |
| 658 | return n; |
| 659 | } |
| 660 | |
| 661 | if (suff.dfa()) { |
| 662 | auto d = getDfa(*suff.dfa(), false, cc, rm); |
| 663 | assert(d); |
| 664 | return d; |
| 665 | } |
| 666 | |
| 667 | assert(suff.graph()); |
| 668 | NGHolder &holder = *suff.graph(); |
| 669 | assert(holder.kind == NFA_SUFFIX); |
| 670 | const bool oneTop = onlyOneTop(holder); |
| 671 | bool compress_state = cc.streaming; |
| 672 | |
| 673 | // Take a shot at the LBR engine. |
| 674 | if (oneTop) { |
| 675 | auto lbr = constructLBR(holder, triggers.at(0), cc, rm); |
| 676 | if (lbr) { |
| 677 | return lbr; |
| 678 | } |
| 679 | } |
| 680 | |
| 681 | auto n = constructNFA(holder, &rm, fixed_depth_tops, triggers, |
| 682 | compress_state, cc); |
| 683 | assert(n); |
| 684 | |
| 685 | if (oneTop && cc.grey.roseMcClellanSuffix) { |
| 686 | if (cc.grey.roseMcClellanSuffix == 2 || n->nPositions > 128 || |
| 687 | !has_bounded_repeats_other_than_firsts(*n)) { |
| 688 | auto rdfa = buildMcClellan(holder, &rm, false, triggers.at(0), |
| 689 | cc.grey); |
| 690 | if (rdfa) { |
| 691 | auto d = getDfa(*rdfa, false, cc, rm); |
| 692 | assert(d); |
| 693 | if (cc.grey.roseMcClellanSuffix != 2) { |
| 694 | n = pickImpl(move(d), move(n)); |
| 695 | } else { |
| 696 | n = move(d); |
| 697 | } |
| 698 | |
| 699 | assert(n); |
| 700 | if (isMcClellanType(n->type)) { |
| 701 | // DFA chosen. We may be able to set some more properties |
| 702 | // in the NFA structure here. |
| 703 | u64a maxOffset = findMaxOffset(holder, rm); |
| 704 | if (maxOffset != MAX_OFFSET && maxOffset < 0xffffffffull) { |
| 705 | n->maxOffset = (u32)maxOffset; |
| 706 | DEBUG_PRINTF("dfa max offset %llu\n" , maxOffset); |
| 707 | } else { |
| 708 | n->maxOffset = 0; // inf |
| 709 | } |
| 710 | } |
| 711 | } |
| 712 | } |
| 713 | } |
| 714 | return n; |
| 715 | } |
| 716 | |
| 717 | static |
| 718 | void findInfixTriggers(const RoseBuildImpl &build, |
| 719 | map<left_id, set<PredTopPair> > *infixTriggers) { |
| 720 | const RoseGraph &g = build.g; |
| 721 | for (auto v : vertices_range(g)) { |
| 722 | if (!g[v].left) { |
| 723 | continue; |
| 724 | } |
| 725 | |
| 726 | set<PredTopPair> &triggers = (*infixTriggers)[left_id(g[v].left)]; |
| 727 | |
| 728 | for (const auto &e : in_edges_range(v, g)) { |
| 729 | RoseVertex u = source(e, g); |
| 730 | if (build.isAnyStart(u)) { |
| 731 | continue; |
| 732 | } |
| 733 | triggers.insert(PredTopPair(u, g[e].rose_top)); |
| 734 | } |
| 735 | } |
| 736 | } |
| 737 | |
| 738 | static |
| 739 | vector<CharReach> as_cr_seq(const rose_literal_id &lit) { |
| 740 | vector<CharReach> rv = as_cr_seq(lit.s); |
| 741 | for (u32 i = 0; i < lit.delay; i++) { |
| 742 | rv.push_back(CharReach::dot()); |
| 743 | } |
| 744 | |
| 745 | /* TODO: take into account cmp/msk */ |
| 746 | return rv; |
| 747 | } |
| 748 | |
| 749 | /** |
| 750 | * \brief Returns a map of trigger literals as sequences of CharReach, grouped |
| 751 | * by top index. |
| 752 | */ |
| 753 | static |
| 754 | void findTriggerSequences(const RoseBuildImpl &tbi, |
| 755 | const set<PredTopPair> &triggers, |
| 756 | map<u32, vector<vector<CharReach> > > *trigger_lits) { |
| 757 | map<u32, set<u32> > lit_ids_by_top; |
| 758 | for (const PredTopPair &t : triggers) { |
| 759 | insert(&lit_ids_by_top[t.top], tbi.g[t.pred].literals); |
| 760 | } |
| 761 | |
| 762 | for (const auto &e : lit_ids_by_top) { |
| 763 | const u32 top = e.first; |
| 764 | const set<u32> &lit_ids = e.second; |
| 765 | |
| 766 | for (u32 id : lit_ids) { |
| 767 | const rose_literal_id &lit = tbi.literals.at(id); |
| 768 | (*trigger_lits)[top].push_back(as_cr_seq(lit)); |
| 769 | } |
| 770 | } |
| 771 | } |
| 772 | |
| 773 | static |
| 774 | bytecode_ptr<NFA> makeLeftNfa(const RoseBuildImpl &tbi, left_id &left, |
| 775 | const bool is_prefix, const bool is_transient, |
| 776 | const map<left_id, set<PredTopPair>> &infixTriggers, |
| 777 | const CompileContext &cc) { |
| 778 | const ReportManager &rm = tbi.rm; |
| 779 | |
| 780 | bytecode_ptr<NFA> n; |
| 781 | |
| 782 | // Should compress state if this rose is non-transient and we're in |
| 783 | // streaming mode. |
| 784 | const bool compress_state = !is_transient; |
| 785 | |
| 786 | assert(is_prefix || !left.graph() || left.graph()->kind == NFA_INFIX); |
| 787 | assert(!is_prefix || !left.graph() || left.graph()->kind == NFA_PREFIX |
| 788 | || left.graph()->kind == NFA_EAGER_PREFIX); |
| 789 | |
| 790 | // Holder should be implementable as an NFA at the very least. |
| 791 | if (!left.dfa() && left.graph()) { |
| 792 | assert(isImplementableNFA(*left.graph(), nullptr, cc)); |
| 793 | } |
| 794 | |
| 795 | map<u32, u32> fixed_depth_tops; |
| 796 | if (!is_prefix /* infix */) { |
| 797 | const set<PredTopPair> &triggers = infixTriggers.at(left); |
| 798 | findFixedDepthTops(tbi.g, triggers, &fixed_depth_tops); |
| 799 | } |
| 800 | |
| 801 | if (left.castle()) { |
| 802 | assert(!is_prefix); |
| 803 | map<u32, vector<vector<CharReach> > > triggers; |
| 804 | findTriggerSequences(tbi, infixTriggers.at(left), &triggers); |
| 805 | n = buildRepeatEngine(*left.castle(), triggers, cc, rm); |
| 806 | assert(n); |
| 807 | return n; // Castles/LBRs are always best! |
| 808 | } |
| 809 | |
| 810 | if (left.dfa()) { |
| 811 | n = getDfa(*left.dfa(), is_transient, cc, rm); |
| 812 | } else if (left.graph() && cc.grey.roseMcClellanPrefix == 2 && is_prefix && |
| 813 | !is_transient) { |
| 814 | auto rdfa = buildMcClellan(*left.graph(), nullptr, cc.grey); |
| 815 | if (rdfa) { |
| 816 | n = getDfa(*rdfa, is_transient, cc, rm); |
| 817 | assert(n); |
| 818 | } |
| 819 | } |
| 820 | |
| 821 | // We can attempt to build LBRs for infixes. |
| 822 | if (!n && !is_prefix && left.graph() && onlyOneTop(*left.graph())) { |
| 823 | map<u32, vector<vector<CharReach> > > triggers; |
| 824 | findTriggerSequences(tbi, infixTriggers.at(left), &triggers); |
| 825 | assert(triggers.size() == 1); // single top |
| 826 | n = constructLBR(*left.graph(), triggers.begin()->second, cc, rm); |
| 827 | } |
| 828 | |
| 829 | if (!n && left.graph()) { |
| 830 | map<u32, vector<vector<CharReach>>> triggers; |
| 831 | if (left.graph()->kind == NFA_INFIX) { |
| 832 | findTriggerSequences(tbi, infixTriggers.at(left), &triggers); |
| 833 | } |
| 834 | n = constructNFA(*left.graph(), nullptr, fixed_depth_tops, triggers, |
| 835 | compress_state, cc); |
| 836 | } |
| 837 | |
| 838 | if (cc.grey.roseMcClellanPrefix == 1 && is_prefix && !left.dfa() |
| 839 | && left.graph() |
| 840 | && (!n || !has_bounded_repeats_other_than_firsts(*n) || !is_fast(*n))) { |
| 841 | auto rdfa = buildMcClellan(*left.graph(), nullptr, cc.grey); |
| 842 | if (rdfa) { |
| 843 | auto d = getDfa(*rdfa, is_transient, cc, rm); |
| 844 | assert(d); |
| 845 | n = pickImpl(move(d), move(n)); |
| 846 | } |
| 847 | } |
| 848 | |
| 849 | return n; |
| 850 | } |
| 851 | |
| 852 | static |
| 853 | void setLeftNfaProperties(NFA &n, const left_id &left) { |
| 854 | depth min_width = findMinWidth(left); |
| 855 | DEBUG_PRINTF("min_width=%s\n" , min_width.str().c_str()); |
| 856 | u32 min_width_value = min_width.is_finite() ? (u32)min_width : 0; |
| 857 | n.minWidth = min_width_value; |
| 858 | |
| 859 | depth max_width = findMaxWidth(left); |
| 860 | DEBUG_PRINTF("max_width=%s\n" , max_width.str().c_str()); |
| 861 | u32 max_width_value = max_width.is_finite() ? (u32)max_width : 0; |
| 862 | n.maxWidth = max_width_value; |
| 863 | |
| 864 | // FIXME: NFA::maxOffset in Rose can't be found from reports as they don't |
| 865 | // map to internal_report structures; it would have to come from the Rose |
| 866 | // graph. |
| 867 | } |
| 868 | |
| 869 | static |
| 870 | void appendTailToHolder(NGHolder &h, const flat_set<ReportID> &reports, |
| 871 | const vector<NFAVertex> &starts, |
| 872 | const vector<CharReach> &tail) { |
| 873 | assert(!tail.empty()); |
| 874 | NFAVertex curr = add_vertex(h); |
| 875 | for (NFAVertex v : starts) { |
| 876 | assert(!edge(v, h.acceptEod, h).second); |
| 877 | assert(h[v].reports == reports); |
| 878 | h[v].reports.clear(); |
| 879 | remove_edge(v, h.accept, h); |
| 880 | add_edge(v, curr, h); |
| 881 | } |
| 882 | auto it = tail.begin(); |
| 883 | h[curr].char_reach = *it; |
| 884 | ++it; |
| 885 | while (it != tail.end()) { |
| 886 | NFAVertex old = curr; |
| 887 | curr = add_vertex(h); |
| 888 | add_edge(old, curr, h); |
| 889 | assert(!it->none()); |
| 890 | h[curr].char_reach = *it; |
| 891 | ++it; |
| 892 | } |
| 893 | |
| 894 | h[curr].reports = reports; |
| 895 | add_edge(curr, h.accept, h); |
| 896 | } |
| 897 | |
| 898 | static |
| 899 | void appendTailToHolder(NGHolder &h, const vector<CharReach> &tail) { |
| 900 | assert(in_degree(h.acceptEod, h) == 1); |
| 901 | assert(!tail.empty()); |
| 902 | |
| 903 | map<flat_set<ReportID>, vector<NFAVertex> > reporters; |
| 904 | for (auto v : inv_adjacent_vertices_range(h.accept, h)) { |
| 905 | reporters[h[v].reports].push_back(v); |
| 906 | } |
| 907 | |
| 908 | for (const auto &e : reporters) { |
| 909 | appendTailToHolder(h, e.first, e.second, tail); |
| 910 | } |
| 911 | |
| 912 | renumber_edges(h); |
| 913 | } |
| 914 | |
| 915 | static |
| 916 | u32 decreaseLag(const RoseBuildImpl &build, NGHolder &h, |
| 917 | const vector<RoseVertex> &succs) { |
| 918 | const RoseGraph &rg = build.g; |
| 919 | static const size_t MAX_RESTORE_LEN = 5; |
| 920 | |
| 921 | vector<CharReach> restored(MAX_RESTORE_LEN); |
| 922 | for (RoseVertex v : succs) { |
| 923 | u32 lag = rg[v].left.lag; |
| 924 | for (u32 lit_id : rg[v].literals) { |
| 925 | u32 delay = build.literals.at(lit_id).delay; |
| 926 | const ue2_literal &literal = build.literals.at(lit_id).s; |
| 927 | assert(lag <= literal.length() + delay); |
| 928 | size_t base = literal.length() + delay - lag; |
| 929 | if (base >= literal.length()) { |
| 930 | return 0; |
| 931 | } |
| 932 | size_t len = literal.length() - base; |
| 933 | len = MIN(len, restored.size()); |
| 934 | restored.resize(len); |
| 935 | auto lit_it = literal.begin() + base; |
| 936 | for (u32 i = 0; i < len; i++) { |
| 937 | assert(lit_it != literal.end()); |
| 938 | restored[i] |= *lit_it; |
| 939 | ++lit_it; |
| 940 | } |
| 941 | } |
| 942 | } |
| 943 | |
| 944 | assert(!restored.empty()); |
| 945 | |
| 946 | appendTailToHolder(h, restored); |
| 947 | |
| 948 | return restored.size(); |
| 949 | } |
| 950 | |
| 951 | #define EAGER_DIE_BEFORE_LIMIT 10 |
| 952 | |
| 953 | struct eager_info { |
| 954 | shared_ptr<NGHolder> new_graph; |
| 955 | u32 lag_adjust = 0; |
| 956 | }; |
| 957 | |
| 958 | static |
| 959 | bool checkSuitableForEager(bool is_prefix, const left_id &left, |
| 960 | const RoseBuildImpl &build, |
| 961 | const vector<RoseVertex> &succs, |
| 962 | rose_group squash_mask, rose_group initial_groups, |
| 963 | eager_info &ei, const CompileContext &cc) { |
| 964 | DEBUG_PRINTF("checking prefix --> %016llx...\n" , squash_mask); |
| 965 | |
| 966 | const RoseGraph &rg = build.g; |
| 967 | |
| 968 | if (!is_prefix) { |
| 969 | DEBUG_PRINTF("not prefix\n" ); |
| 970 | return false; /* only prefixes (for now...) */ |
| 971 | } |
| 972 | |
| 973 | if ((initial_groups & squash_mask) == initial_groups) { |
| 974 | DEBUG_PRINTF("no squash -- useless\n" ); |
| 975 | return false; |
| 976 | } |
| 977 | |
| 978 | for (RoseVertex s : succs) { |
| 979 | if (build.isInETable(s) |
| 980 | || contains(rg[s].literals, build.eod_event_literal_id)) { |
| 981 | return false; /* Ignore EOD related prefixes */ |
| 982 | } |
| 983 | } |
| 984 | |
| 985 | if (left.dfa()) { |
| 986 | const raw_dfa &dfa = *left.dfa(); |
| 987 | if (dfa.start_floating != DEAD_STATE) { |
| 988 | return false; /* not purely anchored */ |
| 989 | } |
| 990 | if (!dfa.states[dfa.start_anchored].reports.empty()) { |
| 991 | return false; /* vacuous (todo: handle?) */ |
| 992 | } |
| 993 | |
| 994 | if (!can_die_early(dfa, EAGER_DIE_BEFORE_LIMIT)) { |
| 995 | return false; |
| 996 | } |
| 997 | ei.new_graph = rg[succs[0]].left.graph; |
| 998 | } else if (left.graph()) { |
| 999 | const NGHolder &g = *left.graph(); |
| 1000 | if (proper_out_degree(g.startDs, g)) { |
| 1001 | return false; /* not purely anchored */ |
| 1002 | } |
| 1003 | |
| 1004 | ei.new_graph = cloneHolder(*left.graph()); |
| 1005 | auto gg = ei.new_graph; |
| 1006 | gg->kind = NFA_EAGER_PREFIX; |
| 1007 | |
| 1008 | ei.lag_adjust = decreaseLag(build, *gg, succs); |
| 1009 | |
| 1010 | if (is_match_vertex(gg->start, *gg)) { |
| 1011 | return false; /* should not still be vacuous as lag decreased */ |
| 1012 | } |
| 1013 | |
| 1014 | if (!can_die_early(*gg, EAGER_DIE_BEFORE_LIMIT)) { |
| 1015 | DEBUG_PRINTF("not eager as stuck alive\n" ); |
| 1016 | return false; |
| 1017 | } |
| 1018 | |
| 1019 | /* We need to ensure that adding in the literals does not cause us to no |
| 1020 | * longer be able to build an nfa. */ |
| 1021 | bool ok = isImplementableNFA(*gg, nullptr, cc); |
| 1022 | if (!ok) { |
| 1023 | return false; |
| 1024 | } |
| 1025 | } else { |
| 1026 | DEBUG_PRINTF("unable to determine if good for eager running\n" ); |
| 1027 | return false; |
| 1028 | } |
| 1029 | |
| 1030 | DEBUG_PRINTF("eager prefix\n" ); |
| 1031 | return true; |
| 1032 | } |
| 1033 | |
| 1034 | static |
| 1035 | left_id updateLeftfixWithEager(RoseGraph &g, const eager_info &ei, |
| 1036 | const vector<RoseVertex> &succs) { |
| 1037 | u32 lag_adjust = ei.lag_adjust; |
| 1038 | auto gg = ei.new_graph; |
| 1039 | for (RoseVertex v : succs) { |
| 1040 | g[v].left.graph = gg; |
| 1041 | assert(g[v].left.lag >= lag_adjust); |
| 1042 | g[v].left.lag -= lag_adjust; |
| 1043 | DEBUG_PRINTF("added %u literal chars back, new lag %u\n" , lag_adjust, |
| 1044 | g[v].left.lag); |
| 1045 | } |
| 1046 | left_id leftfix = g[succs[0]].left; |
| 1047 | |
| 1048 | if (leftfix.graph()) { |
| 1049 | assert(leftfix.graph()->kind == NFA_PREFIX |
| 1050 | || leftfix.graph()->kind == NFA_EAGER_PREFIX); |
| 1051 | leftfix.graph()->kind = NFA_EAGER_PREFIX; |
| 1052 | } |
| 1053 | if (leftfix.dfa()) { |
| 1054 | assert(leftfix.dfa()->kind == NFA_PREFIX); |
| 1055 | leftfix.dfa()->kind = NFA_EAGER_PREFIX; |
| 1056 | } |
| 1057 | |
| 1058 | return leftfix; |
| 1059 | } |
| 1060 | |
| 1061 | static |
| 1062 | void enforceEngineSizeLimit(const NFA *n, const Grey &grey) { |
| 1063 | const size_t nfa_size = n->length; |
| 1064 | // Global limit. |
| 1065 | if (nfa_size > grey.limitEngineSize) { |
| 1066 | throw ResourceLimitError(); |
| 1067 | } |
| 1068 | |
| 1069 | // Type-specific limit checks follow. |
| 1070 | |
| 1071 | if (isDfaType(n->type)) { |
| 1072 | if (nfa_size > grey.limitDFASize) { |
| 1073 | throw ResourceLimitError(); |
| 1074 | } |
| 1075 | } else if (isNfaType(n->type)) { |
| 1076 | if (nfa_size > grey.limitNFASize) { |
| 1077 | throw ResourceLimitError(); |
| 1078 | } |
| 1079 | } else if (isLbrType(n->type)) { |
| 1080 | if (nfa_size > grey.limitLBRSize) { |
| 1081 | throw ResourceLimitError(); |
| 1082 | } |
| 1083 | } |
| 1084 | } |
| 1085 | |
| 1086 | static |
| 1087 | bool buildLeftfix(RoseBuildImpl &build, build_context &bc, bool prefix, u32 qi, |
| 1088 | const map<left_id, set<PredTopPair> > &infixTriggers, |
| 1089 | set<u32> *no_retrigger_queues, set<u32> *eager_queues, |
| 1090 | const map<left_id, eager_info> &eager, |
| 1091 | const vector<RoseVertex> &succs, left_id leftfix) { |
| 1092 | RoseGraph &g = build.g; |
| 1093 | const CompileContext &cc = build.cc; |
| 1094 | const ReportManager &rm = build.rm; |
| 1095 | |
| 1096 | bool is_transient = contains(build.transient, leftfix); |
| 1097 | rose_group squash_mask = build.rose_squash_masks.at(leftfix); |
| 1098 | |
| 1099 | DEBUG_PRINTF("making %sleftfix\n" , is_transient ? "transient " : "" ); |
| 1100 | |
| 1101 | if (contains(eager, leftfix)) { |
| 1102 | eager_queues->insert(qi); |
| 1103 | leftfix = updateLeftfixWithEager(g, eager.at(leftfix), succs); |
| 1104 | } |
| 1105 | |
| 1106 | bytecode_ptr<NFA> nfa; |
| 1107 | // Need to build NFA, which is either predestined to be a Haig (in SOM mode) |
| 1108 | // or could be all manner of things. |
| 1109 | if (leftfix.haig()) { |
| 1110 | nfa = goughCompile(*leftfix.haig(), build.ssm.somPrecision(), cc, rm); |
| 1111 | } else { |
| 1112 | nfa = makeLeftNfa(build, leftfix, prefix, is_transient, infixTriggers, |
| 1113 | cc); |
| 1114 | } |
| 1115 | |
| 1116 | if (!nfa) { |
| 1117 | assert(!"failed to build leftfix" ); |
| 1118 | return false; |
| 1119 | } |
| 1120 | |
| 1121 | setLeftNfaProperties(*nfa, leftfix); |
| 1122 | |
| 1123 | nfa->queueIndex = qi; |
| 1124 | enforceEngineSizeLimit(nfa.get(), cc.grey); |
| 1125 | bc.engine_info_by_queue.emplace(nfa->queueIndex, |
| 1126 | engine_info(nfa.get(), is_transient)); |
| 1127 | |
| 1128 | if (!prefix && !leftfix.haig() && leftfix.graph() |
| 1129 | && nfaStuckOn(*leftfix.graph())) { |
| 1130 | DEBUG_PRINTF("%u sticks on\n" , qi); |
| 1131 | no_retrigger_queues->insert(qi); |
| 1132 | } |
| 1133 | |
| 1134 | DEBUG_PRINTF("built leftfix, qi=%u\n" , qi); |
| 1135 | add_nfa_to_blob(bc, *nfa); |
| 1136 | |
| 1137 | // Leftfixes can have stop alphabets. |
| 1138 | vector<u8> stop(N_CHARS, 0); |
| 1139 | /* haigs track som information - need more care */ |
| 1140 | som_type som = leftfix.haig() ? SOM_LEFT : SOM_NONE; |
| 1141 | if (leftfix.graph()) { |
| 1142 | stop = findLeftOffsetStopAlphabet(*leftfix.graph(), som); |
| 1143 | } else if (leftfix.castle()) { |
| 1144 | stop = findLeftOffsetStopAlphabet(*leftfix.castle(), som); |
| 1145 | } |
| 1146 | |
| 1147 | // Infix NFAs can have bounds on their queue lengths. |
| 1148 | u32 max_queuelen = UINT32_MAX; |
| 1149 | if (!prefix) { |
| 1150 | set<ue2_literal> lits; |
| 1151 | for (RoseVertex v : succs) { |
| 1152 | for (auto u : inv_adjacent_vertices_range(v, g)) { |
| 1153 | for (u32 lit_id : g[u].literals) { |
| 1154 | lits.insert(build.literals.at(lit_id).s); |
| 1155 | } |
| 1156 | } |
| 1157 | } |
| 1158 | DEBUG_PRINTF("%zu literals\n" , lits.size()); |
| 1159 | max_queuelen = findMaxInfixMatches(leftfix, lits); |
| 1160 | if (max_queuelen < UINT32_MAX) { |
| 1161 | max_queuelen++; |
| 1162 | } |
| 1163 | } |
| 1164 | |
| 1165 | u32 max_width; |
| 1166 | if (is_transient) { |
| 1167 | depth d = findMaxWidth(leftfix); |
| 1168 | assert(d.is_finite()); |
| 1169 | max_width = d; |
| 1170 | } else { |
| 1171 | max_width = 0; |
| 1172 | } |
| 1173 | |
| 1174 | u8 cm_count = 0; |
| 1175 | CharReach cm_cr; |
| 1176 | if (cc.grey.allowCountingMiracles) { |
| 1177 | findCountingMiracleInfo(leftfix, stop, &cm_count, &cm_cr); |
| 1178 | } |
| 1179 | |
| 1180 | for (RoseVertex v : succs) { |
| 1181 | bc.leftfix_info.emplace(v, left_build_info(qi, g[v].left.lag, max_width, |
| 1182 | squash_mask, stop, |
| 1183 | max_queuelen, cm_count, |
| 1184 | cm_cr)); |
| 1185 | } |
| 1186 | |
| 1187 | return true; |
| 1188 | } |
| 1189 | |
| 1190 | static |
| 1191 | unique_ptr<TamaInfo> constructTamaInfo(const RoseGraph &g, |
| 1192 | const vector<ExclusiveSubengine> &subengines, |
| 1193 | const bool is_suffix) { |
| 1194 | unique_ptr<TamaInfo> tamaInfo = ue2::make_unique<TamaInfo>(); |
| 1195 | for (const auto &sub : subengines) { |
| 1196 | const auto &rose_vertices = sub.vertices; |
| 1197 | NFA *nfa = sub.nfa.get(); |
| 1198 | set<u32> tops; |
| 1199 | for (const auto &v : rose_vertices) { |
| 1200 | if (is_suffix) { |
| 1201 | tops.insert(g[v].suffix.top); |
| 1202 | } else { |
| 1203 | for (const auto &e : in_edges_range(v, g)) { |
| 1204 | tops.insert(g[e].rose_top); |
| 1205 | } |
| 1206 | } |
| 1207 | } |
| 1208 | tamaInfo->add(nfa, tops); |
| 1209 | } |
| 1210 | |
| 1211 | return tamaInfo; |
| 1212 | } |
| 1213 | |
| 1214 | static |
| 1215 | void updateTops(const RoseGraph &g, const TamaInfo &tamaInfo, |
| 1216 | TamaProto &tamaProto, |
| 1217 | const vector<ExclusiveSubengine> &subengines, |
| 1218 | const map<pair<const NFA *, u32>, u32> &out_top_remap, |
| 1219 | const bool is_suffix) { |
| 1220 | u32 i = 0; |
| 1221 | for (const auto &n : tamaInfo.subengines) { |
| 1222 | for (const auto &v : subengines[i].vertices) { |
| 1223 | if (is_suffix) { |
| 1224 | tamaProto.add(n, g[v].index, g[v].suffix.top, out_top_remap); |
| 1225 | } else { |
| 1226 | for (const auto &e : in_edges_range(v, g)) { |
| 1227 | tamaProto.add(n, g[v].index, g[e].rose_top, out_top_remap); |
| 1228 | } |
| 1229 | } |
| 1230 | } |
| 1231 | i++; |
| 1232 | } |
| 1233 | } |
| 1234 | |
| 1235 | static |
| 1236 | shared_ptr<TamaProto> constructContainerEngine(const RoseGraph &g, |
| 1237 | build_context &bc, |
| 1238 | const ExclusiveInfo &info, |
| 1239 | const u32 queue, |
| 1240 | const bool is_suffix, |
| 1241 | const Grey &grey) { |
| 1242 | const auto &subengines = info.subengines; |
| 1243 | auto tamaInfo = constructTamaInfo(g, subengines, is_suffix); |
| 1244 | |
| 1245 | map<pair<const NFA *, u32>, u32> out_top_remap; |
| 1246 | auto n = buildTamarama(*tamaInfo, queue, out_top_remap); |
| 1247 | enforceEngineSizeLimit(n.get(), grey); |
| 1248 | bc.engine_info_by_queue.emplace(n->queueIndex, engine_info(n.get(), false)); |
| 1249 | add_nfa_to_blob(bc, *n); |
| 1250 | |
| 1251 | DEBUG_PRINTF("queue id:%u\n" , queue); |
| 1252 | shared_ptr<TamaProto> tamaProto = make_shared<TamaProto>(); |
| 1253 | tamaProto->reports = info.reports; |
| 1254 | updateTops(g, *tamaInfo, *tamaProto, subengines, out_top_remap, is_suffix); |
| 1255 | return tamaProto; |
| 1256 | } |
| 1257 | |
| 1258 | static |
| 1259 | void buildInfixContainer(RoseGraph &g, build_context &bc, |
| 1260 | const vector<ExclusiveInfo> &exclusive_info, |
| 1261 | const Grey &grey) { |
| 1262 | // Build tamarama engine |
| 1263 | for (const auto &info : exclusive_info) { |
| 1264 | const u32 queue = info.queue; |
| 1265 | const auto &subengines = info.subengines; |
| 1266 | auto tamaProto = |
| 1267 | constructContainerEngine(g, bc, info, queue, false, grey); |
| 1268 | |
| 1269 | for (const auto &sub : subengines) { |
| 1270 | const auto &verts = sub.vertices; |
| 1271 | for (const auto &v : verts) { |
| 1272 | DEBUG_PRINTF("vert id:%zu\n" , g[v].index); |
| 1273 | g[v].left.tamarama = tamaProto; |
| 1274 | } |
| 1275 | } |
| 1276 | } |
| 1277 | } |
| 1278 | |
| 1279 | static |
| 1280 | void buildSuffixContainer(RoseGraph &g, build_context &bc, |
| 1281 | const vector<ExclusiveInfo> &exclusive_info, |
| 1282 | const Grey &grey) { |
| 1283 | // Build tamarama engine |
| 1284 | for (const auto &info : exclusive_info) { |
| 1285 | const u32 queue = info.queue; |
| 1286 | const auto &subengines = info.subengines; |
| 1287 | auto tamaProto = constructContainerEngine(g, bc, info, queue, true, |
| 1288 | grey); |
| 1289 | for (const auto &sub : subengines) { |
| 1290 | const auto &verts = sub.vertices; |
| 1291 | for (const auto &v : verts) { |
| 1292 | DEBUG_PRINTF("vert id:%zu\n" , g[v].index); |
| 1293 | g[v].suffix.tamarama = tamaProto; |
| 1294 | } |
| 1295 | const auto &v = verts[0]; |
| 1296 | suffix_id newSuffix(g[v].suffix); |
| 1297 | bc.suffixes.emplace(newSuffix, queue); |
| 1298 | } |
| 1299 | } |
| 1300 | } |
| 1301 | |
| 1302 | static |
| 1303 | void updateExclusiveInfixProperties(const RoseBuildImpl &build, |
| 1304 | const vector<ExclusiveInfo> &exclusive_info, |
| 1305 | map<RoseVertex, left_build_info> &leftfix_info, |
| 1306 | set<u32> *no_retrigger_queues) { |
| 1307 | const RoseGraph &g = build.g; |
| 1308 | for (const auto &info : exclusive_info) { |
| 1309 | // Set leftfix optimisations, disabled for tamarama subengines |
| 1310 | rose_group squash_mask = ~rose_group{0}; |
| 1311 | // Leftfixes can have stop alphabets. |
| 1312 | vector<u8> stop(N_CHARS, 0); |
| 1313 | // Infix NFAs can have bounds on their queue lengths. |
| 1314 | u32 max_queuelen = 0; |
| 1315 | u32 max_width = 0; |
| 1316 | u8 cm_count = 0; |
| 1317 | CharReach cm_cr; |
| 1318 | |
| 1319 | const auto &qi = info.queue; |
| 1320 | const auto &subengines = info.subengines; |
| 1321 | bool no_retrigger = true; |
| 1322 | for (const auto &sub : subengines) { |
| 1323 | const auto &verts = sub.vertices; |
| 1324 | const auto &v_first = verts[0]; |
| 1325 | left_id leftfix(g[v_first].left); |
| 1326 | if (leftfix.haig() || !leftfix.graph() || |
| 1327 | !nfaStuckOn(*leftfix.graph())) { |
| 1328 | no_retrigger = false; |
| 1329 | } |
| 1330 | |
| 1331 | for (const auto &v : verts) { |
| 1332 | set<ue2_literal> lits; |
| 1333 | for (auto u : inv_adjacent_vertices_range(v, build.g)) { |
| 1334 | for (u32 lit_id : build.g[u].literals) { |
| 1335 | lits.insert(build.literals.at(lit_id).s); |
| 1336 | } |
| 1337 | } |
| 1338 | DEBUG_PRINTF("%zu literals\n" , lits.size()); |
| 1339 | |
| 1340 | u32 queuelen = findMaxInfixMatches(leftfix, lits); |
| 1341 | if (queuelen < UINT32_MAX) { |
| 1342 | queuelen++; |
| 1343 | } |
| 1344 | max_queuelen = max(max_queuelen, queuelen); |
| 1345 | } |
| 1346 | } |
| 1347 | |
| 1348 | if (no_retrigger) { |
| 1349 | no_retrigger_queues->insert(qi); |
| 1350 | } |
| 1351 | |
| 1352 | for (const auto &sub : subengines) { |
| 1353 | const auto &verts = sub.vertices; |
| 1354 | for (const auto &v : verts) { |
| 1355 | u32 lag = g[v].left.lag; |
| 1356 | leftfix_info.emplace(v, left_build_info(qi, lag, max_width, |
| 1357 | squash_mask, stop, |
| 1358 | max_queuelen, cm_count, |
| 1359 | cm_cr)); |
| 1360 | } |
| 1361 | } |
| 1362 | } |
| 1363 | } |
| 1364 | |
| 1365 | static |
| 1366 | void updateExclusiveSuffixProperties(const RoseBuildImpl &build, |
| 1367 | const vector<ExclusiveInfo> &exclusive_info, |
| 1368 | set<u32> *no_retrigger_queues) { |
| 1369 | const RoseGraph &g = build.g; |
| 1370 | for (auto &info : exclusive_info) { |
| 1371 | const auto &qi = info.queue; |
| 1372 | const auto &subengines = info.subengines; |
| 1373 | bool no_retrigger = true; |
| 1374 | for (const auto &sub : subengines) { |
| 1375 | const auto &v_first = sub.vertices[0]; |
| 1376 | suffix_id suffix(g[v_first].suffix); |
| 1377 | if (!suffix.graph() || !nfaStuckOn(*suffix.graph())) { |
| 1378 | no_retrigger = false; |
| 1379 | break; |
| 1380 | } |
| 1381 | } |
| 1382 | |
| 1383 | if (no_retrigger) { |
| 1384 | no_retrigger_queues->insert(qi); |
| 1385 | } |
| 1386 | } |
| 1387 | } |
| 1388 | |
| 1389 | static |
| 1390 | void buildExclusiveInfixes(RoseBuildImpl &build, build_context &bc, |
| 1391 | QueueIndexFactory &qif, |
| 1392 | const map<left_id, set<PredTopPair>> &infixTriggers, |
| 1393 | const map<u32, vector<RoseVertex>> &vertex_map, |
| 1394 | const vector<vector<u32>> &groups, |
| 1395 | set<u32> *no_retrigger_queues) { |
| 1396 | RoseGraph &g = build.g; |
| 1397 | const CompileContext &cc = build.cc; |
| 1398 | |
| 1399 | vector<ExclusiveInfo> exclusive_info; |
| 1400 | for (const auto &gp : groups) { |
| 1401 | ExclusiveInfo info; |
| 1402 | for (const auto &id : gp) { |
| 1403 | const auto &verts = vertex_map.at(id); |
| 1404 | left_id leftfix(g[verts[0]].left); |
| 1405 | |
| 1406 | bool is_transient = false; |
| 1407 | auto n = makeLeftNfa(build, leftfix, false, is_transient, |
| 1408 | infixTriggers, cc); |
| 1409 | assert(n); |
| 1410 | |
| 1411 | setLeftNfaProperties(*n, leftfix); |
| 1412 | |
| 1413 | ExclusiveSubengine engine; |
| 1414 | engine.nfa = move(n); |
| 1415 | engine.vertices = verts; |
| 1416 | info.subengines.push_back(move(engine)); |
| 1417 | } |
| 1418 | info.queue = qif.get_queue(); |
| 1419 | exclusive_info.push_back(move(info)); |
| 1420 | } |
| 1421 | updateExclusiveInfixProperties(build, exclusive_info, bc.leftfix_info, |
| 1422 | no_retrigger_queues); |
| 1423 | buildInfixContainer(g, bc, exclusive_info, build.cc.grey); |
| 1424 | } |
| 1425 | |
| 1426 | static |
| 1427 | void findExclusiveInfixes(RoseBuildImpl &build, build_context &bc, |
| 1428 | QueueIndexFactory &qif, |
| 1429 | const map<left_id, set<PredTopPair>> &infixTriggers, |
| 1430 | set<u32> *no_retrigger_queues) { |
| 1431 | const RoseGraph &g = build.g; |
| 1432 | |
| 1433 | set<RoleInfo<left_id>> roleInfoSet; |
| 1434 | map<u32, vector<RoseVertex>> vertex_map; |
| 1435 | |
| 1436 | u32 role_id = 0; |
| 1437 | map<left_id, u32> leftfixes; |
| 1438 | for (auto v : vertices_range(g)) { |
| 1439 | if (!g[v].left || build.isRootSuccessor(v)) { |
| 1440 | continue; |
| 1441 | } |
| 1442 | |
| 1443 | left_id leftfix(g[v].left); |
| 1444 | |
| 1445 | // Sanity check: our NFA should contain each of the tops mentioned on |
| 1446 | // our in-edges. |
| 1447 | assert(roseHasTops(build, v)); |
| 1448 | |
| 1449 | if (contains(leftfixes, leftfix)) { |
| 1450 | // NFA already built. |
| 1451 | u32 id = leftfixes[leftfix]; |
| 1452 | if (contains(vertex_map, id)) { |
| 1453 | vertex_map[id].push_back(v); |
| 1454 | } |
| 1455 | DEBUG_PRINTF("sharing leftfix, id=%u\n" , id); |
| 1456 | continue; |
| 1457 | } |
| 1458 | |
| 1459 | if (leftfix.haig()) { |
| 1460 | continue; |
| 1461 | } |
| 1462 | |
| 1463 | if (leftfix.graph() || leftfix.castle()) { |
| 1464 | leftfixes.emplace(leftfix, role_id); |
| 1465 | vertex_map[role_id].push_back(v); |
| 1466 | |
| 1467 | map<u32, vector<vector<CharReach>>> triggers; |
| 1468 | findTriggerSequences(build, infixTriggers.at(leftfix), &triggers); |
| 1469 | RoleInfo<left_id> info(leftfix, role_id); |
| 1470 | if (setTriggerLiteralsInfix(info, triggers)) { |
| 1471 | roleInfoSet.insert(info); |
| 1472 | } |
| 1473 | role_id++; |
| 1474 | } |
| 1475 | } |
| 1476 | |
| 1477 | if (leftfixes.size() > 1) { |
| 1478 | DEBUG_PRINTF("leftfix size:%zu\n" , leftfixes.size()); |
| 1479 | vector<vector<u32>> groups; |
| 1480 | exclusiveAnalysisInfix(build, vertex_map, roleInfoSet, groups); |
| 1481 | buildExclusiveInfixes(build, bc, qif, infixTriggers, vertex_map, |
| 1482 | groups, no_retrigger_queues); |
| 1483 | } |
| 1484 | } |
| 1485 | |
| 1486 | static |
| 1487 | bool buildLeftfixes(RoseBuildImpl &tbi, build_context &bc, |
| 1488 | QueueIndexFactory &qif, set<u32> *no_retrigger_queues, |
| 1489 | set<u32> *eager_queues, bool do_prefix) { |
| 1490 | RoseGraph &g = tbi.g; |
| 1491 | const CompileContext &cc = tbi.cc; |
| 1492 | |
| 1493 | map<left_id, set<PredTopPair>> infixTriggers; |
| 1494 | findInfixTriggers(tbi, &infixTriggers); |
| 1495 | |
| 1496 | insertion_ordered_map<left_id, vector<RoseVertex>> succs; |
| 1497 | |
| 1498 | if (cc.grey.allowTamarama && cc.streaming && !do_prefix) { |
| 1499 | findExclusiveInfixes(tbi, bc, qif, infixTriggers, no_retrigger_queues); |
| 1500 | } |
| 1501 | |
| 1502 | for (auto v : vertices_range(g)) { |
| 1503 | if (!g[v].left || g[v].left.tamarama) { |
| 1504 | continue; |
| 1505 | } |
| 1506 | |
| 1507 | assert(tbi.isNonRootSuccessor(v) != tbi.isRootSuccessor(v)); |
| 1508 | bool is_prefix = tbi.isRootSuccessor(v); |
| 1509 | |
| 1510 | if (do_prefix != is_prefix) { |
| 1511 | /* we require prefixes and then infixes */ |
| 1512 | continue; |
| 1513 | } |
| 1514 | |
| 1515 | left_id leftfix(g[v].left); |
| 1516 | |
| 1517 | // Sanity check: our NFA should contain each of the tops mentioned on |
| 1518 | // our in-edges. |
| 1519 | assert(roseHasTops(tbi, v)); |
| 1520 | |
| 1521 | bool is_transient = contains(tbi.transient, leftfix); |
| 1522 | |
| 1523 | // Transient leftfixes can sometimes be implemented solely with |
| 1524 | // lookarounds, in which case we don't need to build an engine. |
| 1525 | // TODO: Handle SOM-tracking cases as well. |
| 1526 | if (cc.grey.roseLookaroundMasks && is_transient && |
| 1527 | !g[v].left.tracksSom()) { |
| 1528 | vector<vector<LookEntry>> lookaround; |
| 1529 | if (makeLeftfixLookaround(tbi, v, lookaround)) { |
| 1530 | DEBUG_PRINTF("implementing as lookaround!\n" ); |
| 1531 | bc.leftfix_info.emplace(v, left_build_info(lookaround)); |
| 1532 | continue; |
| 1533 | } |
| 1534 | } |
| 1535 | |
| 1536 | succs[leftfix].push_back(v); |
| 1537 | } |
| 1538 | |
| 1539 | rose_group initial_groups = tbi.getInitialGroups(); |
| 1540 | rose_group combined_eager_squashed_mask = ~0ULL; |
| 1541 | |
| 1542 | map<left_id, eager_info> eager; |
| 1543 | |
| 1544 | for (const auto &m : succs) { |
| 1545 | const left_id &leftfix = m.first; |
| 1546 | const auto &left_succs = m.second; |
| 1547 | |
| 1548 | rose_group squash_mask = tbi.rose_squash_masks.at(leftfix); |
| 1549 | eager_info ei; |
| 1550 | |
| 1551 | if (checkSuitableForEager(do_prefix, leftfix, tbi, left_succs, |
| 1552 | squash_mask, initial_groups, ei, cc)) { |
| 1553 | eager[leftfix] = ei; |
| 1554 | combined_eager_squashed_mask &= squash_mask; |
| 1555 | DEBUG_PRINTF("combo %016llx...\n" , combined_eager_squashed_mask); |
| 1556 | } |
| 1557 | } |
| 1558 | |
| 1559 | if (do_prefix && combined_eager_squashed_mask & initial_groups) { |
| 1560 | DEBUG_PRINTF("eager groups won't squash everyone - be lazy\n" ); |
| 1561 | eager_queues->clear(); |
| 1562 | eager.clear(); |
| 1563 | } |
| 1564 | |
| 1565 | for (const auto &m : succs) { |
| 1566 | const left_id &leftfix = m.first; |
| 1567 | const auto &left_succs = m.second; |
| 1568 | buildLeftfix(tbi, bc, do_prefix, qif.get_queue(), infixTriggers, |
| 1569 | no_retrigger_queues, eager_queues, eager, left_succs, |
| 1570 | leftfix); |
| 1571 | } |
| 1572 | |
| 1573 | return true; |
| 1574 | } |
| 1575 | |
| 1576 | static |
| 1577 | void findSuffixTriggers(const RoseBuildImpl &tbi, |
| 1578 | map<suffix_id, set<PredTopPair> > *suffixTriggers) { |
| 1579 | const RoseGraph &g = tbi.g; |
| 1580 | for (auto v : vertices_range(g)) { |
| 1581 | if (!g[v].suffix) { |
| 1582 | continue; |
| 1583 | } |
| 1584 | PredTopPair ptp(v, g[v].suffix.top); |
| 1585 | (*suffixTriggers)[g[v].suffix].insert(ptp); |
| 1586 | } |
| 1587 | } |
| 1588 | |
| 1589 | static |
| 1590 | bool hasNonSmallBlockOutfix(const vector<OutfixInfo> &outfixes) { |
| 1591 | for (const auto &out : outfixes) { |
| 1592 | if (!out.in_sbmatcher) { |
| 1593 | return true; |
| 1594 | } |
| 1595 | } |
| 1596 | return false; |
| 1597 | } |
| 1598 | |
| 1599 | namespace { |
| 1600 | class OutfixBuilder : public boost::static_visitor<bytecode_ptr<NFA>> { |
| 1601 | public: |
| 1602 | explicit OutfixBuilder(const RoseBuildImpl &build_in) : build(build_in) {} |
| 1603 | |
| 1604 | bytecode_ptr<NFA> operator()(boost::blank&) const { |
| 1605 | return nullptr; |
| 1606 | }; |
| 1607 | |
| 1608 | bytecode_ptr<NFA> operator()(unique_ptr<raw_dfa> &rdfa) const { |
| 1609 | // Unleash the mighty DFA! |
| 1610 | return getDfa(*rdfa, false, build.cc, build.rm); |
| 1611 | } |
| 1612 | |
| 1613 | bytecode_ptr<NFA> operator()(unique_ptr<raw_som_dfa> &haig) const { |
| 1614 | // Unleash the Goughfish! |
| 1615 | return goughCompile(*haig, build.ssm.somPrecision(), build.cc, |
| 1616 | build.rm); |
| 1617 | } |
| 1618 | |
| 1619 | bytecode_ptr<NFA> operator()(unique_ptr<NGHolder> &holder) const { |
| 1620 | const CompileContext &cc = build.cc; |
| 1621 | const ReportManager &rm = build.rm; |
| 1622 | |
| 1623 | NGHolder &h = *holder; |
| 1624 | assert(h.kind == NFA_OUTFIX); |
| 1625 | |
| 1626 | // Build NFA. |
| 1627 | const map<u32, u32> fixed_depth_tops; /* no tops */ |
| 1628 | const map<u32, vector<vector<CharReach>>> triggers; /* no tops */ |
| 1629 | bool compress_state = cc.streaming; |
| 1630 | auto n = constructNFA(h, &rm, fixed_depth_tops, triggers, |
| 1631 | compress_state, cc); |
| 1632 | |
| 1633 | // Try for a DFA upgrade. |
| 1634 | if (n && cc.grey.roseMcClellanOutfix && |
| 1635 | !has_bounded_repeats_other_than_firsts(*n)) { |
| 1636 | auto rdfa = buildMcClellan(h, &rm, cc.grey); |
| 1637 | if (rdfa) { |
| 1638 | auto d = getDfa(*rdfa, false, cc, rm); |
| 1639 | if (d) { |
| 1640 | n = pickImpl(move(d), move(n)); |
| 1641 | } |
| 1642 | } |
| 1643 | } |
| 1644 | |
| 1645 | return n; |
| 1646 | } |
| 1647 | |
| 1648 | bytecode_ptr<NFA> operator()(UNUSED MpvProto &mpv) const { |
| 1649 | // MPV construction handled separately. |
| 1650 | assert(mpv.puffettes.empty()); |
| 1651 | return nullptr; |
| 1652 | } |
| 1653 | |
| 1654 | private: |
| 1655 | const RoseBuildImpl &build; |
| 1656 | }; |
| 1657 | } |
| 1658 | |
| 1659 | static |
| 1660 | bytecode_ptr<NFA> buildOutfix(const RoseBuildImpl &build, OutfixInfo &outfix) { |
| 1661 | assert(!outfix.is_dead()); // should not be marked dead. |
| 1662 | |
| 1663 | auto n = boost::apply_visitor(OutfixBuilder(build), outfix.proto); |
| 1664 | if (n && build.cc.grey.reverseAccelerate) { |
| 1665 | buildReverseAcceleration(n.get(), outfix.rev_info, outfix.minWidth); |
| 1666 | } |
| 1667 | |
| 1668 | return n; |
| 1669 | } |
| 1670 | |
| 1671 | static |
| 1672 | void prepMpv(RoseBuildImpl &tbi, build_context &bc, size_t *historyRequired, |
| 1673 | bool *mpv_as_outfix) { |
| 1674 | assert(bc.engineOffsets.empty()); // MPV should be first |
| 1675 | *mpv_as_outfix = false; |
| 1676 | OutfixInfo *mpv_outfix = nullptr; |
| 1677 | |
| 1678 | /* assume outfixes are just above chain tails in queue indices */ |
| 1679 | for (auto &out : tbi.outfixes) { |
| 1680 | if (out.is_nonempty_mpv()) { |
| 1681 | assert(!mpv_outfix); |
| 1682 | mpv_outfix = &out; |
| 1683 | } else { |
| 1684 | assert(!out.mpv()); |
| 1685 | } |
| 1686 | } |
| 1687 | |
| 1688 | if (!mpv_outfix) { |
| 1689 | return; |
| 1690 | } |
| 1691 | |
| 1692 | auto *mpv = mpv_outfix->mpv(); |
| 1693 | auto nfa = mpvCompile(mpv->puffettes, mpv->triggered_puffettes, tbi.rm); |
| 1694 | assert(nfa); |
| 1695 | if (!nfa) { |
| 1696 | throw CompileError("Unable to generate bytecode." ); |
| 1697 | } |
| 1698 | |
| 1699 | if (tbi.cc.grey.reverseAccelerate) { |
| 1700 | buildReverseAcceleration(nfa.get(), mpv_outfix->rev_info, |
| 1701 | mpv_outfix->minWidth); |
| 1702 | } |
| 1703 | |
| 1704 | u32 qi = mpv_outfix->get_queue(tbi.qif); |
| 1705 | nfa->queueIndex = qi; |
| 1706 | enforceEngineSizeLimit(nfa.get(), tbi.cc.grey); |
| 1707 | bc.engine_info_by_queue.emplace(nfa->queueIndex, |
| 1708 | engine_info(nfa.get(), false)); |
| 1709 | |
| 1710 | DEBUG_PRINTF("built mpv\n" ); |
| 1711 | |
| 1712 | if (!*historyRequired && requires_decompress_key(*nfa)) { |
| 1713 | *historyRequired = 1; |
| 1714 | } |
| 1715 | |
| 1716 | add_nfa_to_blob(bc, *nfa); |
| 1717 | *mpv_as_outfix = !mpv->puffettes.empty(); |
| 1718 | } |
| 1719 | |
| 1720 | static |
| 1721 | void setOutfixProperties(NFA &n, const OutfixInfo &outfix) { |
| 1722 | depth min_width = outfix.minWidth; |
| 1723 | DEBUG_PRINTF("min_width=%s\n" , min_width.str().c_str()); |
| 1724 | u32 min_width_value = min_width.is_finite() ? (u32)min_width : 0; |
| 1725 | n.minWidth = min_width_value; |
| 1726 | |
| 1727 | depth max_width = outfix.maxWidth; |
| 1728 | DEBUG_PRINTF("max_width=%s\n" , max_width.str().c_str()); |
| 1729 | u32 max_width_value = max_width.is_finite() ? (u32)max_width : 0; |
| 1730 | n.maxWidth = max_width_value; |
| 1731 | |
| 1732 | DEBUG_PRINTF("max_offset=%llu\n" , outfix.maxOffset); |
| 1733 | u32 max_offset_value = outfix.maxOffset < ~0U ? (u32)outfix.maxOffset : 0; |
| 1734 | n.maxOffset = max_offset_value; |
| 1735 | |
| 1736 | DEBUG_PRINTF("maxBAWidth=%u\n" , outfix.maxBAWidth); |
| 1737 | if (outfix.maxBAWidth != ROSE_BOUND_INF && outfix.maxBAWidth < 256) { |
| 1738 | n.maxBiAnchoredWidth = verify_u8(outfix.maxBAWidth); |
| 1739 | } |
| 1740 | } |
| 1741 | |
| 1742 | static |
| 1743 | bool prepOutfixes(RoseBuildImpl &tbi, build_context &bc, |
| 1744 | size_t *historyRequired) { |
| 1745 | if (tbi.cc.grey.onlyOneOutfix && tbi.outfixes.size() > 1) { |
| 1746 | DEBUG_PRINTF("we have %zu outfixes, but Grey::onlyOneOutfix is set\n" , |
| 1747 | tbi.outfixes.size()); |
| 1748 | throw ResourceLimitError(); |
| 1749 | } |
| 1750 | |
| 1751 | assert(tbi.qif.allocated_count() == bc.engineOffsets.size()); |
| 1752 | |
| 1753 | for (auto &out : tbi.outfixes) { |
| 1754 | if (out.mpv()) { |
| 1755 | continue; /* already done */ |
| 1756 | } |
| 1757 | DEBUG_PRINTF("building outfix %zd\n" , &out - &tbi.outfixes[0]); |
| 1758 | auto n = buildOutfix(tbi, out); |
| 1759 | if (!n) { |
| 1760 | assert(0); |
| 1761 | return false; |
| 1762 | } |
| 1763 | |
| 1764 | setOutfixProperties(*n, out); |
| 1765 | |
| 1766 | n->queueIndex = out.get_queue(tbi.qif); |
| 1767 | enforceEngineSizeLimit(n.get(), tbi.cc.grey); |
| 1768 | bc.engine_info_by_queue.emplace(n->queueIndex, |
| 1769 | engine_info(n.get(), false)); |
| 1770 | |
| 1771 | if (!*historyRequired && requires_decompress_key(*n)) { |
| 1772 | *historyRequired = 1; |
| 1773 | } |
| 1774 | |
| 1775 | add_nfa_to_blob(bc, *n); |
| 1776 | } |
| 1777 | |
| 1778 | return true; |
| 1779 | } |
| 1780 | |
| 1781 | static |
| 1782 | void assignSuffixQueues(RoseBuildImpl &build, map<suffix_id, u32> &suffixes) { |
| 1783 | const RoseGraph &g = build.g; |
| 1784 | |
| 1785 | for (auto v : vertices_range(g)) { |
| 1786 | if (!g[v].suffix) { |
| 1787 | continue; |
| 1788 | } |
| 1789 | |
| 1790 | const suffix_id s(g[v].suffix); |
| 1791 | |
| 1792 | DEBUG_PRINTF("vertex %zu triggers suffix %p\n" , g[v].index, s.graph()); |
| 1793 | |
| 1794 | // We may have already built this NFA. |
| 1795 | if (contains(suffixes, s)) { |
| 1796 | continue; |
| 1797 | } |
| 1798 | |
| 1799 | u32 queue = build.qif.get_queue(); |
| 1800 | DEBUG_PRINTF("assigning %p to queue %u\n" , s.graph(), queue); |
| 1801 | suffixes.emplace(s, queue); |
| 1802 | } |
| 1803 | } |
| 1804 | |
| 1805 | static |
| 1806 | void setSuffixProperties(NFA &n, const suffix_id &suff, |
| 1807 | const ReportManager &rm) { |
| 1808 | depth min_width = findMinWidth(suff); |
| 1809 | DEBUG_PRINTF("min_width=%s\n" , min_width.str().c_str()); |
| 1810 | u32 min_width_value = min_width.is_finite() ? (u32)min_width : 0; |
| 1811 | n.minWidth = min_width_value; |
| 1812 | |
| 1813 | depth max_width = findMaxWidth(suff); |
| 1814 | DEBUG_PRINTF("max_width=%s\n" , max_width.str().c_str()); |
| 1815 | u32 max_width_value = max_width.is_finite() ? (u32)max_width : 0; |
| 1816 | n.maxWidth = max_width_value; |
| 1817 | |
| 1818 | u64a max_offset = findMaxOffset(all_reports(suff), rm); |
| 1819 | DEBUG_PRINTF("max_offset=%llu\n" , max_offset); |
| 1820 | u32 max_offset_value = max_offset < ~0U ? (u32)max_offset : 0; |
| 1821 | n.maxOffset = max_offset_value; |
| 1822 | } |
| 1823 | |
| 1824 | static |
| 1825 | void buildExclusiveSuffixes(RoseBuildImpl &build, build_context &bc, |
| 1826 | QueueIndexFactory &qif, |
| 1827 | map<suffix_id, set<PredTopPair>> &suffixTriggers, |
| 1828 | const map<u32, vector<RoseVertex>> &vertex_map, |
| 1829 | const vector<vector<u32>> &groups, |
| 1830 | set<u32> *no_retrigger_queues) { |
| 1831 | RoseGraph &g = build.g; |
| 1832 | |
| 1833 | vector<ExclusiveInfo> exclusive_info; |
| 1834 | for (const auto &gp : groups) { |
| 1835 | ExclusiveInfo info; |
| 1836 | for (const auto &id : gp) { |
| 1837 | const auto &verts = vertex_map.at(id); |
| 1838 | suffix_id s(g[verts[0]].suffix); |
| 1839 | |
| 1840 | const set<PredTopPair> &s_triggers = suffixTriggers.at(s); |
| 1841 | |
| 1842 | map<u32, u32> fixed_depth_tops; |
| 1843 | findFixedDepthTops(g, s_triggers, &fixed_depth_tops); |
| 1844 | |
| 1845 | map<u32, vector<vector<CharReach>>> triggers; |
| 1846 | findTriggerSequences(build, s_triggers, &triggers); |
| 1847 | |
| 1848 | auto n = buildSuffix(build.rm, build.ssm, fixed_depth_tops, |
| 1849 | triggers, s, build.cc); |
| 1850 | assert(n); |
| 1851 | |
| 1852 | setSuffixProperties(*n, s, build.rm); |
| 1853 | |
| 1854 | ExclusiveSubengine engine; |
| 1855 | engine.nfa = move(n); |
| 1856 | engine.vertices = verts; |
| 1857 | info.subengines.push_back(move(engine)); |
| 1858 | |
| 1859 | const auto &reports = all_reports(s); |
| 1860 | info.reports.insert(reports.begin(), reports.end()); |
| 1861 | } |
| 1862 | info.queue = qif.get_queue(); |
| 1863 | exclusive_info.push_back(move(info)); |
| 1864 | } |
| 1865 | updateExclusiveSuffixProperties(build, exclusive_info, |
| 1866 | no_retrigger_queues); |
| 1867 | buildSuffixContainer(g, bc, exclusive_info, build.cc.grey); |
| 1868 | } |
| 1869 | |
| 1870 | static |
| 1871 | void findExclusiveSuffixes(RoseBuildImpl &tbi, build_context &bc, |
| 1872 | QueueIndexFactory &qif, |
| 1873 | map<suffix_id, set<PredTopPair>> &suffixTriggers, |
| 1874 | set<u32> *no_retrigger_queues) { |
| 1875 | const RoseGraph &g = tbi.g; |
| 1876 | |
| 1877 | map<suffix_id, u32> suffixes; |
| 1878 | set<RoleInfo<suffix_id>> roleInfoSet; |
| 1879 | map<u32, vector<RoseVertex>> vertex_map; |
| 1880 | u32 role_id = 0; |
| 1881 | for (auto v : vertices_range(g)) { |
| 1882 | if (!g[v].suffix) { |
| 1883 | continue; |
| 1884 | } |
| 1885 | |
| 1886 | const suffix_id s(g[v].suffix); |
| 1887 | |
| 1888 | DEBUG_PRINTF("vertex %zu triggers suffix %p\n" , g[v].index, s.graph()); |
| 1889 | |
| 1890 | // We may have already built this NFA. |
| 1891 | if (contains(suffixes, s)) { |
| 1892 | u32 id = suffixes[s]; |
| 1893 | if (!tbi.isInETable(v)) { |
| 1894 | vertex_map[id].push_back(v); |
| 1895 | } |
| 1896 | continue; |
| 1897 | } |
| 1898 | |
| 1899 | if (s.haig()) { |
| 1900 | continue; |
| 1901 | } |
| 1902 | |
| 1903 | // Currently disable eod suffixes for exclusive analysis |
| 1904 | if (!tbi.isInETable(v) && (s.graph() || s.castle())) { |
| 1905 | DEBUG_PRINTF("assigning %p to id %u\n" , s.graph(), role_id); |
| 1906 | suffixes.emplace(s, role_id); |
| 1907 | |
| 1908 | vertex_map[role_id].push_back(v); |
| 1909 | const set<PredTopPair> &s_triggers = suffixTriggers.at(s); |
| 1910 | map<u32, vector<vector<CharReach>>> triggers; |
| 1911 | findTriggerSequences(tbi, s_triggers, &triggers); |
| 1912 | |
| 1913 | RoleInfo<suffix_id> info(s, role_id); |
| 1914 | if (setTriggerLiteralsSuffix(info, triggers)) { |
| 1915 | roleInfoSet.insert(info); |
| 1916 | } |
| 1917 | role_id++; |
| 1918 | } |
| 1919 | } |
| 1920 | |
| 1921 | if (suffixes.size() > 1) { |
| 1922 | DEBUG_PRINTF("suffix size:%zu\n" , suffixes.size()); |
| 1923 | vector<vector<u32>> groups; |
| 1924 | exclusiveAnalysisSuffix(tbi, vertex_map, roleInfoSet, groups); |
| 1925 | buildExclusiveSuffixes(tbi, bc, qif, suffixTriggers, vertex_map, |
| 1926 | groups, no_retrigger_queues); |
| 1927 | } |
| 1928 | } |
| 1929 | |
| 1930 | static |
| 1931 | bool buildSuffixes(const RoseBuildImpl &tbi, build_context &bc, |
| 1932 | set<u32> *no_retrigger_queues, |
| 1933 | const map<suffix_id, set<PredTopPair>> &suffixTriggers) { |
| 1934 | // To ensure compile determinism, build suffix engines in order of their |
| 1935 | // (unique) queue indices, so that we call add_nfa_to_blob in the same |
| 1936 | // order. |
| 1937 | vector<pair<u32, suffix_id>> ordered; |
| 1938 | for (const auto &e : bc.suffixes) { |
| 1939 | ordered.emplace_back(e.second, e.first); |
| 1940 | } |
| 1941 | sort(begin(ordered), end(ordered)); |
| 1942 | |
| 1943 | for (const auto &e : ordered) { |
| 1944 | const u32 queue = e.first; |
| 1945 | const suffix_id &s = e.second; |
| 1946 | |
| 1947 | if (s.tamarama()) { |
| 1948 | continue; |
| 1949 | } |
| 1950 | |
| 1951 | const set<PredTopPair> &s_triggers = suffixTriggers.at(s); |
| 1952 | |
| 1953 | map<u32, u32> fixed_depth_tops; |
| 1954 | findFixedDepthTops(tbi.g, s_triggers, &fixed_depth_tops); |
| 1955 | |
| 1956 | map<u32, vector<vector<CharReach>>> triggers; |
| 1957 | findTriggerSequences(tbi, s_triggers, &triggers); |
| 1958 | |
| 1959 | auto n = buildSuffix(tbi.rm, tbi.ssm, fixed_depth_tops, triggers, |
| 1960 | s, tbi.cc); |
| 1961 | if (!n) { |
| 1962 | return false; |
| 1963 | } |
| 1964 | |
| 1965 | setSuffixProperties(*n, s, tbi.rm); |
| 1966 | |
| 1967 | n->queueIndex = queue; |
| 1968 | enforceEngineSizeLimit(n.get(), tbi.cc.grey); |
| 1969 | bc.engine_info_by_queue.emplace(n->queueIndex, |
| 1970 | engine_info(n.get(), false)); |
| 1971 | |
| 1972 | if (s.graph() && nfaStuckOn(*s.graph())) { /* todo: have corresponding |
| 1973 | * haig analysis */ |
| 1974 | assert(!s.haig()); |
| 1975 | DEBUG_PRINTF("%u sticks on\n" , queue); |
| 1976 | no_retrigger_queues->insert(queue); |
| 1977 | } |
| 1978 | |
| 1979 | add_nfa_to_blob(bc, *n); |
| 1980 | } |
| 1981 | |
| 1982 | return true; |
| 1983 | } |
| 1984 | |
| 1985 | static |
| 1986 | void buildCountingMiracles(build_context &bc) { |
| 1987 | map<pair<CharReach, u8>, u32> pre_built; |
| 1988 | |
| 1989 | for (left_build_info &lbi : bc.leftfix_info | map_values) { |
| 1990 | if (!lbi.countingMiracleCount) { |
| 1991 | continue; |
| 1992 | } |
| 1993 | |
| 1994 | const CharReach &cr = lbi.countingMiracleReach; |
| 1995 | assert(!cr.all() && !cr.none()); |
| 1996 | |
| 1997 | auto key = make_pair(cr, lbi.countingMiracleCount); |
| 1998 | if (contains(pre_built, key)) { |
| 1999 | lbi.countingMiracleOffset = pre_built[key]; |
| 2000 | continue; |
| 2001 | } |
| 2002 | |
| 2003 | RoseCountingMiracle rcm; |
| 2004 | memset(&rcm, 0, sizeof(rcm)); |
| 2005 | |
| 2006 | if (cr.count() == 1) { |
| 2007 | rcm.c = cr.find_first(); |
| 2008 | } else { |
| 2009 | rcm.shufti = 1; |
| 2010 | int rv = shuftiBuildMasks(cr, (u8 *)&rcm.lo, (u8 *)&rcm.hi); |
| 2011 | if (rv == -1) { |
| 2012 | DEBUG_PRINTF("failed to build shufti\n" ); |
| 2013 | lbi.countingMiracleCount = 0; /* remove counting miracle */ |
| 2014 | continue; |
| 2015 | } |
| 2016 | |
| 2017 | rcm.poison = (~cr).find_first(); |
| 2018 | } |
| 2019 | |
| 2020 | rcm.count = lbi.countingMiracleCount; |
| 2021 | |
| 2022 | lbi.countingMiracleOffset = bc.engine_blob.add(rcm); |
| 2023 | pre_built[key] = lbi.countingMiracleOffset; |
| 2024 | DEBUG_PRINTF("built cm for count of %u @ %u\n" , rcm.count, |
| 2025 | lbi.countingMiracleOffset); |
| 2026 | } |
| 2027 | } |
| 2028 | |
| 2029 | /* Note: buildNfas may reduce the lag for vertices that have prefixes */ |
| 2030 | static |
| 2031 | bool buildNfas(RoseBuildImpl &tbi, build_context &bc, QueueIndexFactory &qif, |
| 2032 | set<u32> *no_retrigger_queues, set<u32> *eager_queues, |
| 2033 | u32 *leftfixBeginQueue) { |
| 2034 | map<suffix_id, set<PredTopPair>> suffixTriggers; |
| 2035 | findSuffixTriggers(tbi, &suffixTriggers); |
| 2036 | |
| 2037 | if (tbi.cc.grey.allowTamarama && tbi.cc.streaming) { |
| 2038 | findExclusiveSuffixes(tbi, bc, qif, suffixTriggers, |
| 2039 | no_retrigger_queues); |
| 2040 | } |
| 2041 | |
| 2042 | assignSuffixQueues(tbi, bc.suffixes); |
| 2043 | |
| 2044 | if (!buildSuffixes(tbi, bc, no_retrigger_queues, suffixTriggers)) { |
| 2045 | return false; |
| 2046 | } |
| 2047 | suffixTriggers.clear(); |
| 2048 | |
| 2049 | *leftfixBeginQueue = qif.allocated_count(); |
| 2050 | |
| 2051 | if (!buildLeftfixes(tbi, bc, qif, no_retrigger_queues, eager_queues, |
| 2052 | true)) { |
| 2053 | return false; |
| 2054 | } |
| 2055 | |
| 2056 | if (!buildLeftfixes(tbi, bc, qif, no_retrigger_queues, eager_queues, |
| 2057 | false)) { |
| 2058 | return false; |
| 2059 | } |
| 2060 | |
| 2061 | return true; |
| 2062 | } |
| 2063 | |
| 2064 | static |
| 2065 | void allocateStateSpace(const engine_info &eng_info, NfaInfo &nfa_info, |
| 2066 | RoseStateOffsets *so, u32 *scratchStateSize, |
| 2067 | u32 *transientStateSize) { |
| 2068 | u32 state_offset; |
| 2069 | if (eng_info.transient) { |
| 2070 | // Transient engines do not use stream state, but must have room in |
| 2071 | // transient state (stored in scratch). |
| 2072 | state_offset = *transientStateSize; |
| 2073 | *transientStateSize += eng_info.stream_size; |
| 2074 | } else { |
| 2075 | // Pack NFA stream state on to the end of the Rose stream state. |
| 2076 | state_offset = so->end; |
| 2077 | so->end += eng_info.stream_size; |
| 2078 | } |
| 2079 | |
| 2080 | nfa_info.stateOffset = state_offset; |
| 2081 | |
| 2082 | // Uncompressed state in scratch must be aligned. |
| 2083 | *scratchStateSize = ROUNDUP_N(*scratchStateSize, eng_info.scratch_align); |
| 2084 | nfa_info.fullStateOffset = *scratchStateSize; |
| 2085 | *scratchStateSize += eng_info.scratch_size; |
| 2086 | } |
| 2087 | |
| 2088 | static |
| 2089 | void updateNfaState(const build_context &bc, vector<NfaInfo> &nfa_infos, |
| 2090 | RoseStateOffsets *so, u32 *scratchStateSize, |
| 2091 | u32 *transientStateSize) { |
| 2092 | if (nfa_infos.empty()) { |
| 2093 | return; |
| 2094 | } |
| 2095 | |
| 2096 | *transientStateSize = 0; |
| 2097 | *scratchStateSize = 0; |
| 2098 | |
| 2099 | for (u32 qi = 0; qi < nfa_infos.size(); qi++) { |
| 2100 | NfaInfo &nfa_info = nfa_infos[qi]; |
| 2101 | const auto &eng_info = bc.engine_info_by_queue.at(qi); |
| 2102 | allocateStateSpace(eng_info, nfa_info, so, scratchStateSize, |
| 2103 | transientStateSize); |
| 2104 | } |
| 2105 | } |
| 2106 | |
| 2107 | /* does not include history requirements for outfixes or literal matchers */ |
| 2108 | u32 RoseBuildImpl::calcHistoryRequired() const { |
| 2109 | u32 m = cc.grey.minHistoryAvailable; |
| 2110 | |
| 2111 | for (auto v : vertices_range(g)) { |
| 2112 | if (g[v].suffix) { |
| 2113 | m = MAX(m, 2); // so that history req is at least 1, for state |
| 2114 | // compression. |
| 2115 | /* TODO: check if suffix uses state compression */ |
| 2116 | } |
| 2117 | |
| 2118 | if (g[v].left) { |
| 2119 | const u32 lag = g[v].left.lag; |
| 2120 | const left_id leftfix(g[v].left); |
| 2121 | if (contains(transient, leftfix)) { |
| 2122 | u32 mv = lag + findMaxWidth(leftfix); |
| 2123 | |
| 2124 | // If this vertex has an event literal, we need to add one to |
| 2125 | // cope with it. |
| 2126 | if (hasLiteralInTable(v, ROSE_EVENT)) { |
| 2127 | mv++; |
| 2128 | } |
| 2129 | |
| 2130 | m = MAX(m, mv); |
| 2131 | } else { |
| 2132 | /* rose will be caught up from (lag - 1), also need an extra |
| 2133 | * byte behind that to find the decompression key */ |
| 2134 | m = MAX(m, lag + 1); |
| 2135 | m = MAX(m, 2); // so that history req is at least 1, for state |
| 2136 | // compression. |
| 2137 | } |
| 2138 | } |
| 2139 | } |
| 2140 | |
| 2141 | // Delayed literals contribute to history requirement as well. |
| 2142 | for (u32 id = 0; id < literals.size(); id++) { |
| 2143 | const auto &lit = literals.at(id); |
| 2144 | if (lit.delay) { |
| 2145 | // If the literal is delayed _and_ has a mask that is longer than |
| 2146 | // the literal, we need enough history to match the whole mask as |
| 2147 | // well when rebuilding delayed matches. |
| 2148 | size_t len = std::max(lit.elength(), lit.msk.size() + lit.delay); |
| 2149 | ENSURE_AT_LEAST(&m, verify_u32(len)); |
| 2150 | } |
| 2151 | |
| 2152 | /* Benefit checks require data is available. */ |
| 2153 | if (literal_info.at(id).requires_benefits) { |
| 2154 | ENSURE_AT_LEAST(&m, |
| 2155 | MIN(verify_u32(lit.elength()), MAX_MASK2_WIDTH)); |
| 2156 | } |
| 2157 | } |
| 2158 | |
| 2159 | m = MAX(m, max_rose_anchored_floating_overlap); |
| 2160 | |
| 2161 | DEBUG_PRINTF("m=%u, ematcher_region_size=%u\n" , m, ematcher_region_size); |
| 2162 | |
| 2163 | if (ematcher_region_size >= m) { |
| 2164 | return ematcher_region_size; |
| 2165 | } |
| 2166 | |
| 2167 | return m ? m - 1 : 0; |
| 2168 | } |
| 2169 | |
| 2170 | static |
| 2171 | u32 buildLastByteIter(const RoseGraph &g, build_context &bc) { |
| 2172 | vector<u32> lb_roles; |
| 2173 | |
| 2174 | for (auto v : vertices_range(g)) { |
| 2175 | if (!hasLastByteHistorySucc(g, v)) { |
| 2176 | continue; |
| 2177 | } |
| 2178 | // Eager EOD reporters won't have state indices. |
| 2179 | auto it = bc.roleStateIndices.find(v); |
| 2180 | if (it != end(bc.roleStateIndices)) { |
| 2181 | lb_roles.push_back(it->second); |
| 2182 | DEBUG_PRINTF("last byte %u\n" , it->second); |
| 2183 | } |
| 2184 | } |
| 2185 | |
| 2186 | if (lb_roles.empty()) { |
| 2187 | return 0; /* invalid offset */ |
| 2188 | } |
| 2189 | |
| 2190 | auto iter = mmbBuildSparseIterator(lb_roles, bc.roleStateIndices.size()); |
| 2191 | return bc.engine_blob.add_iterator(iter); |
| 2192 | } |
| 2193 | |
| 2194 | static |
| 2195 | u32 findMinFloatingLiteralMatch(const RoseBuildImpl &build, |
| 2196 | const vector<raw_dfa> &anchored_dfas) { |
| 2197 | if (anchored_dfas.size() > 1) { |
| 2198 | DEBUG_PRINTF("multiple anchored dfas\n" ); |
| 2199 | /* We must regard matches from other anchored tables as unordered, as |
| 2200 | * we do for floating matches. */ |
| 2201 | return 1; |
| 2202 | } |
| 2203 | |
| 2204 | const RoseGraph &g = build.g; |
| 2205 | u32 minWidth = ROSE_BOUND_INF; |
| 2206 | for (auto v : vertices_range(g)) { |
| 2207 | if (build.isAnchored(v) || build.isVirtualVertex(v)) { |
| 2208 | DEBUG_PRINTF("skipping %zu anchored or root\n" , g[v].index); |
| 2209 | continue; |
| 2210 | } |
| 2211 | |
| 2212 | u32 w = g[v].min_offset; |
| 2213 | DEBUG_PRINTF("%zu m_o = %u\n" , g[v].index, w); |
| 2214 | |
| 2215 | if (w < minWidth) { |
| 2216 | minWidth = w; |
| 2217 | } |
| 2218 | } |
| 2219 | |
| 2220 | return minWidth; |
| 2221 | } |
| 2222 | |
| 2223 | static |
| 2224 | vector<u32> buildSuffixEkeyLists(const RoseBuildImpl &build, build_context &bc, |
| 2225 | const QueueIndexFactory &qif) { |
| 2226 | vector<u32> out(qif.allocated_count()); |
| 2227 | |
| 2228 | map<u32, vector<u32>> qi_to_ekeys; /* for determinism */ |
| 2229 | |
| 2230 | for (const auto &e : bc.suffixes) { |
| 2231 | const suffix_id &s = e.first; |
| 2232 | u32 qi = e.second; |
| 2233 | set<u32> ekeys = reportsToEkeys(all_reports(s), build.rm); |
| 2234 | |
| 2235 | if (!ekeys.empty()) { |
| 2236 | qi_to_ekeys[qi] = {ekeys.begin(), ekeys.end()}; |
| 2237 | } |
| 2238 | } |
| 2239 | |
| 2240 | /* for each outfix also build elists */ |
| 2241 | for (const auto &outfix : build.outfixes) { |
| 2242 | u32 qi = outfix.get_queue(); |
| 2243 | set<u32> ekeys = reportsToEkeys(all_reports(outfix), build.rm); |
| 2244 | |
| 2245 | if (!ekeys.empty()) { |
| 2246 | qi_to_ekeys[qi] = {ekeys.begin(), ekeys.end()}; |
| 2247 | } |
| 2248 | } |
| 2249 | |
| 2250 | for (auto &e : qi_to_ekeys) { |
| 2251 | u32 qi = e.first; |
| 2252 | auto &ekeys = e.second; |
| 2253 | assert(!ekeys.empty()); |
| 2254 | ekeys.push_back(INVALID_EKEY); /* terminator */ |
| 2255 | out[qi] = bc.engine_blob.add_range(ekeys); |
| 2256 | } |
| 2257 | |
| 2258 | return out; |
| 2259 | } |
| 2260 | |
| 2261 | /** Returns sparse iter offset in engine blob. */ |
| 2262 | static |
| 2263 | u32 buildEodNfaIterator(build_context &bc, const u32 activeQueueCount) { |
| 2264 | vector<u32> keys; |
| 2265 | for (u32 qi = 0; qi < activeQueueCount; ++qi) { |
| 2266 | const auto &eng_info = bc.engine_info_by_queue.at(qi); |
| 2267 | if (eng_info.accepts_eod) { |
| 2268 | DEBUG_PRINTF("nfa qi=%u accepts eod\n" , qi); |
| 2269 | keys.push_back(qi); |
| 2270 | } |
| 2271 | } |
| 2272 | |
| 2273 | if (keys.empty()) { |
| 2274 | return 0; |
| 2275 | } |
| 2276 | |
| 2277 | DEBUG_PRINTF("building iter for %zu nfas\n" , keys.size()); |
| 2278 | |
| 2279 | auto iter = mmbBuildSparseIterator(keys, activeQueueCount); |
| 2280 | return bc.engine_blob.add_iterator(iter); |
| 2281 | } |
| 2282 | |
| 2283 | static |
| 2284 | bool hasMpvTrigger(const set<u32> &reports, const ReportManager &rm) { |
| 2285 | for (u32 r : reports) { |
| 2286 | if (rm.getReport(r).type == INTERNAL_ROSE_CHAIN) { |
| 2287 | return true; |
| 2288 | } |
| 2289 | } |
| 2290 | |
| 2291 | return false; |
| 2292 | } |
| 2293 | |
| 2294 | static |
| 2295 | bool anyEndfixMpvTriggers(const RoseBuildImpl &build) { |
| 2296 | const RoseGraph &g = build.g; |
| 2297 | unordered_set<suffix_id> done; |
| 2298 | |
| 2299 | /* suffixes */ |
| 2300 | for (auto v : vertices_range(g)) { |
| 2301 | if (!g[v].suffix) { |
| 2302 | continue; |
| 2303 | } |
| 2304 | if (contains(done, g[v].suffix)) { |
| 2305 | continue; /* already done */ |
| 2306 | } |
| 2307 | done.insert(g[v].suffix); |
| 2308 | |
| 2309 | if (hasMpvTrigger(all_reports(g[v].suffix), build.rm)) { |
| 2310 | return true; |
| 2311 | } |
| 2312 | } |
| 2313 | |
| 2314 | /* outfixes */ |
| 2315 | for (const auto &out : build.outfixes) { |
| 2316 | if (hasMpvTrigger(all_reports(out), build.rm)) { |
| 2317 | return true; |
| 2318 | } |
| 2319 | } |
| 2320 | |
| 2321 | return false; |
| 2322 | } |
| 2323 | |
| 2324 | struct DerivedBoundaryReports { |
| 2325 | explicit DerivedBoundaryReports(const BoundaryReports &boundary) { |
| 2326 | insert(&report_at_0_eod_full, boundary.report_at_0_eod); |
| 2327 | insert(&report_at_0_eod_full, boundary.report_at_eod); |
| 2328 | insert(&report_at_0_eod_full, boundary.report_at_0); |
| 2329 | } |
| 2330 | set<ReportID> report_at_0_eod_full; |
| 2331 | }; |
| 2332 | |
| 2333 | static |
| 2334 | void addSomRevNfas(build_context &bc, RoseEngine &proto, |
| 2335 | const SomSlotManager &ssm) { |
| 2336 | const auto &nfas = ssm.getRevNfas(); |
| 2337 | vector<u32> nfa_offsets; |
| 2338 | nfa_offsets.reserve(nfas.size()); |
| 2339 | for (const auto &nfa : nfas) { |
| 2340 | assert(nfa); |
| 2341 | u32 offset = bc.engine_blob.add(*nfa, nfa->length); |
| 2342 | DEBUG_PRINTF("wrote SOM rev NFA %zu (len %u) to offset %u\n" , |
| 2343 | nfa_offsets.size(), nfa->length, offset); |
| 2344 | nfa_offsets.push_back(offset); |
| 2345 | /* note: som rev nfas don't need a queue assigned as only run in block |
| 2346 | * mode reverse */ |
| 2347 | } |
| 2348 | |
| 2349 | proto.somRevCount = verify_u32(nfas.size()); |
| 2350 | proto.somRevOffsetOffset = bc.engine_blob.add_range(nfa_offsets); |
| 2351 | } |
| 2352 | |
| 2353 | static |
| 2354 | void recordResources(RoseResources &resources, const RoseBuildImpl &build, |
| 2355 | const vector<raw_dfa> &anchored_dfas, |
| 2356 | const vector<LitFragment> &fragments) { |
| 2357 | if (!build.outfixes.empty()) { |
| 2358 | resources.has_outfixes = true; |
| 2359 | } |
| 2360 | |
| 2361 | resources.has_literals = !fragments.empty(); |
| 2362 | |
| 2363 | const auto &g = build.g; |
| 2364 | for (const auto &v : vertices_range(g)) { |
| 2365 | if (g[v].eod_accept) { |
| 2366 | resources.has_eod = true; |
| 2367 | break; |
| 2368 | } |
| 2369 | if (g[v].suffix && has_eod_accepts(g[v].suffix)) { |
| 2370 | resources.has_eod = true; |
| 2371 | break; |
| 2372 | } |
| 2373 | } |
| 2374 | |
| 2375 | resources.has_anchored = !anchored_dfas.empty(); |
| 2376 | resources.has_anchored_multiple = anchored_dfas.size() > 1; |
| 2377 | for (const auto &rdfa : anchored_dfas) { |
| 2378 | if (rdfa.states.size() > 256) { |
| 2379 | resources.has_anchored_large = true; |
| 2380 | } |
| 2381 | } |
| 2382 | |
| 2383 | } |
| 2384 | |
| 2385 | static |
| 2386 | u32 writeProgram(build_context &bc, RoseProgram &&program) { |
| 2387 | if (program.empty()) { |
| 2388 | DEBUG_PRINTF("no program\n" ); |
| 2389 | return 0; |
| 2390 | } |
| 2391 | |
| 2392 | applyFinalSpecialisation(program); |
| 2393 | |
| 2394 | auto it = bc.program_cache.find(program); |
| 2395 | if (it != end(bc.program_cache)) { |
| 2396 | DEBUG_PRINTF("reusing cached program at %u\n" , it->second); |
| 2397 | return it->second; |
| 2398 | } |
| 2399 | |
| 2400 | recordResources(bc.resources, program); |
| 2401 | recordLongLiterals(bc.longLiterals, program); |
| 2402 | |
| 2403 | auto prog_bytecode = writeProgram(bc.engine_blob, program); |
| 2404 | u32 offset = bc.engine_blob.add(prog_bytecode); |
| 2405 | DEBUG_PRINTF("prog len %zu written at offset %u\n" , prog_bytecode.size(), |
| 2406 | offset); |
| 2407 | bc.program_cache.emplace(move(program), offset); |
| 2408 | return offset; |
| 2409 | } |
| 2410 | |
| 2411 | static |
| 2412 | u32 writeActiveLeftIter(RoseEngineBlob &engine_blob, |
| 2413 | const vector<LeftNfaInfo> &leftInfoTable) { |
| 2414 | vector<u32> keys; |
| 2415 | for (size_t i = 0; i < leftInfoTable.size(); i++) { |
| 2416 | if (!leftInfoTable[i].transient) { |
| 2417 | DEBUG_PRINTF("leftfix %zu is active\n" , i); |
| 2418 | keys.push_back(verify_u32(i)); |
| 2419 | } |
| 2420 | } |
| 2421 | |
| 2422 | DEBUG_PRINTF("%zu active leftfixes\n" , keys.size()); |
| 2423 | |
| 2424 | if (keys.empty()) { |
| 2425 | return 0; |
| 2426 | } |
| 2427 | |
| 2428 | auto iter = mmbBuildSparseIterator(keys, verify_u32(leftInfoTable.size())); |
| 2429 | return engine_blob.add_iterator(iter); |
| 2430 | } |
| 2431 | |
| 2432 | static |
| 2433 | bool hasEodAnchors(const RoseBuildImpl &build, const build_context &bc, |
| 2434 | u32 outfixEndQueue) { |
| 2435 | for (u32 i = 0; i < outfixEndQueue; i++) { |
| 2436 | const auto &eng_info = bc.engine_info_by_queue.at(i); |
| 2437 | if (eng_info.accepts_eod) { |
| 2438 | DEBUG_PRINTF("outfix has eod\n" ); |
| 2439 | return true; |
| 2440 | } |
| 2441 | } |
| 2442 | |
| 2443 | if (build.eod_event_literal_id != MO_INVALID_IDX) { |
| 2444 | DEBUG_PRINTF("eod is an event to be celebrated\n" ); |
| 2445 | return true; |
| 2446 | } |
| 2447 | |
| 2448 | const RoseGraph &g = build.g; |
| 2449 | for (auto v : vertices_range(g)) { |
| 2450 | if (g[v].eod_accept) { |
| 2451 | DEBUG_PRINTF("literally report eod\n" ); |
| 2452 | return true; |
| 2453 | } |
| 2454 | if (g[v].suffix && has_eod_accepts(g[v].suffix)) { |
| 2455 | DEBUG_PRINTF("eod suffix\n" ); |
| 2456 | return true; |
| 2457 | } |
| 2458 | } |
| 2459 | DEBUG_PRINTF("yawn\n" ); |
| 2460 | return false; |
| 2461 | } |
| 2462 | |
| 2463 | static |
| 2464 | void writeDkeyInfo(const ReportManager &rm, RoseEngineBlob &engine_blob, |
| 2465 | RoseEngine &proto) { |
| 2466 | const auto inv_dkeys = rm.getDkeyToReportTable(); |
| 2467 | proto.invDkeyOffset = engine_blob.add_range(inv_dkeys); |
| 2468 | proto.dkeyCount = rm.numDkeys(); |
| 2469 | proto.dkeyLogSize = fatbit_size(proto.dkeyCount); |
| 2470 | } |
| 2471 | |
| 2472 | static |
| 2473 | void writeLeftInfo(RoseEngineBlob &engine_blob, RoseEngine &proto, |
| 2474 | const vector<LeftNfaInfo> &leftInfoTable) { |
| 2475 | proto.leftOffset = engine_blob.add_range(leftInfoTable); |
| 2476 | proto.activeLeftIterOffset |
| 2477 | = writeActiveLeftIter(engine_blob, leftInfoTable); |
| 2478 | proto.roseCount = verify_u32(leftInfoTable.size()); |
| 2479 | proto.activeLeftCount = verify_u32(leftInfoTable.size()); |
| 2480 | proto.rosePrefixCount = countRosePrefixes(leftInfoTable); |
| 2481 | } |
| 2482 | |
| 2483 | static |
| 2484 | void writeLogicalInfo(const ReportManager &rm, RoseEngineBlob &engine_blob, |
| 2485 | RoseEngine &proto) { |
| 2486 | const auto &tree = rm.getLogicalTree(); |
| 2487 | proto.logicalTreeOffset = engine_blob.add_range(tree); |
| 2488 | const auto &combMap = rm.getCombInfoMap(); |
| 2489 | proto.combInfoMapOffset = engine_blob.add_range(combMap); |
| 2490 | proto.lkeyCount = rm.numLogicalKeys(); |
| 2491 | proto.lopCount = rm.numLogicalOps(); |
| 2492 | proto.ckeyCount = rm.numCkeys(); |
| 2493 | } |
| 2494 | |
| 2495 | static |
| 2496 | void writeNfaInfo(const RoseBuildImpl &build, build_context &bc, |
| 2497 | RoseEngine &proto, const set<u32> &no_retrigger_queues) { |
| 2498 | const u32 queue_count = build.qif.allocated_count(); |
| 2499 | if (!queue_count) { |
| 2500 | return; |
| 2501 | } |
| 2502 | |
| 2503 | auto ekey_lists = buildSuffixEkeyLists(build, bc, build.qif); |
| 2504 | |
| 2505 | vector<NfaInfo> infos(queue_count); |
| 2506 | memset(infos.data(), 0, sizeof(NfaInfo) * queue_count); |
| 2507 | |
| 2508 | for (u32 qi = 0; qi < queue_count; qi++) { |
| 2509 | NfaInfo &info = infos[qi]; |
| 2510 | info.nfaOffset = bc.engineOffsets.at(qi); |
| 2511 | assert(qi < ekey_lists.size()); |
| 2512 | info.ekeyListOffset = ekey_lists.at(qi); |
| 2513 | info.no_retrigger = contains(no_retrigger_queues, qi) ? 1 : 0; |
| 2514 | } |
| 2515 | |
| 2516 | // Mark outfixes that are in the small block matcher. |
| 2517 | for (const auto &out : build.outfixes) { |
| 2518 | const u32 qi = out.get_queue(); |
| 2519 | assert(qi < infos.size()); |
| 2520 | infos.at(qi).in_sbmatcher = out.in_sbmatcher; |
| 2521 | } |
| 2522 | |
| 2523 | // Mark suffixes triggered by EOD table literals. |
| 2524 | const RoseGraph &g = build.g; |
| 2525 | for (auto v : vertices_range(g)) { |
| 2526 | if (!g[v].suffix) { |
| 2527 | continue; |
| 2528 | } |
| 2529 | u32 qi = bc.suffixes.at(g[v].suffix); |
| 2530 | assert(qi < infos.size()); |
| 2531 | if (build.isInETable(v)) { |
| 2532 | infos.at(qi).eod = 1; |
| 2533 | } |
| 2534 | } |
| 2535 | |
| 2536 | // Update state offsets to do with NFAs in proto and in the NfaInfo |
| 2537 | // structures. |
| 2538 | updateNfaState(bc, infos, &proto.stateOffsets, &proto.scratchStateSize, |
| 2539 | &proto.tStateSize); |
| 2540 | |
| 2541 | proto.nfaInfoOffset = bc.engine_blob.add_range(infos); |
| 2542 | } |
| 2543 | |
| 2544 | static |
| 2545 | bool hasBoundaryReports(const BoundaryReports &boundary) { |
| 2546 | if (!boundary.report_at_0.empty()) { |
| 2547 | DEBUG_PRINTF("has boundary reports at 0\n" ); |
| 2548 | return true; |
| 2549 | } |
| 2550 | if (!boundary.report_at_0_eod.empty()) { |
| 2551 | DEBUG_PRINTF("has boundary reports at 0 eod\n" ); |
| 2552 | return true; |
| 2553 | } |
| 2554 | if (!boundary.report_at_eod.empty()) { |
| 2555 | DEBUG_PRINTF("has boundary reports at eod\n" ); |
| 2556 | return true; |
| 2557 | } |
| 2558 | DEBUG_PRINTF("no boundary reports\n" ); |
| 2559 | return false; |
| 2560 | } |
| 2561 | |
| 2562 | static |
| 2563 | void makeBoundaryPrograms(const RoseBuildImpl &build, build_context &bc, |
| 2564 | const BoundaryReports &boundary, |
| 2565 | const DerivedBoundaryReports &dboundary, |
| 2566 | RoseBoundaryReports &out) { |
| 2567 | DEBUG_PRINTF("report ^: %zu\n" , boundary.report_at_0.size()); |
| 2568 | DEBUG_PRINTF("report $: %zu\n" , boundary.report_at_eod.size()); |
| 2569 | DEBUG_PRINTF("report ^$: %zu\n" , dboundary.report_at_0_eod_full.size()); |
| 2570 | |
| 2571 | auto eod_prog = makeBoundaryProgram(build, boundary.report_at_eod); |
| 2572 | out.reportEodOffset = writeProgram(bc, move(eod_prog)); |
| 2573 | |
| 2574 | auto zero_prog = makeBoundaryProgram(build, boundary.report_at_0); |
| 2575 | out.reportZeroOffset = writeProgram(bc, move(zero_prog)); |
| 2576 | |
| 2577 | auto zeod_prog = makeBoundaryProgram(build, dboundary.report_at_0_eod_full); |
| 2578 | out.reportZeroEodOffset = writeProgram(bc, move(zeod_prog)); |
| 2579 | } |
| 2580 | |
| 2581 | static |
| 2582 | unordered_map<RoseVertex, u32> assignStateIndices(const RoseBuildImpl &build) { |
| 2583 | const auto &g = build.g; |
| 2584 | |
| 2585 | u32 state = 0; |
| 2586 | unordered_map<RoseVertex, u32> roleStateIndices; |
| 2587 | for (auto v : vertices_range(g)) { |
| 2588 | // Virtual vertices (starts, EOD accept vertices) never need state |
| 2589 | // indices. |
| 2590 | if (build.isVirtualVertex(v)) { |
| 2591 | continue; |
| 2592 | } |
| 2593 | |
| 2594 | // We only need a state index if we have successors that are not |
| 2595 | // eagerly-reported EOD vertices. |
| 2596 | bool needs_state_index = false; |
| 2597 | for (const auto &e : out_edges_range(v, g)) { |
| 2598 | if (!canEagerlyReportAtEod(build, e)) { |
| 2599 | needs_state_index = true; |
| 2600 | break; |
| 2601 | } |
| 2602 | } |
| 2603 | |
| 2604 | if (!needs_state_index) { |
| 2605 | continue; |
| 2606 | } |
| 2607 | |
| 2608 | /* TODO: also don't need a state index if all edges are nfa based */ |
| 2609 | roleStateIndices.emplace(v, state++); |
| 2610 | } |
| 2611 | |
| 2612 | DEBUG_PRINTF("assigned %u states (from %zu vertices)\n" , state, |
| 2613 | num_vertices(g)); |
| 2614 | |
| 2615 | return roleStateIndices; |
| 2616 | } |
| 2617 | |
| 2618 | static |
| 2619 | bool hasUsefulStops(const left_build_info &build) { |
| 2620 | for (u32 i = 0; i < N_CHARS; i++) { |
| 2621 | if (build.stopAlphabet[i]) { |
| 2622 | return true; |
| 2623 | } |
| 2624 | } |
| 2625 | return false; |
| 2626 | } |
| 2627 | |
| 2628 | static |
| 2629 | void buildLeftInfoTable(const RoseBuildImpl &tbi, build_context &bc, |
| 2630 | const set<u32> &eager_queues, u32 leftfixBeginQueue, |
| 2631 | u32 leftfixCount, vector<LeftNfaInfo> &leftTable, |
| 2632 | u32 *laggedRoseCount, size_t *history) { |
| 2633 | const RoseGraph &g = tbi.g; |
| 2634 | const CompileContext &cc = tbi.cc; |
| 2635 | |
| 2636 | unordered_set<u32> done_core; |
| 2637 | |
| 2638 | leftTable.resize(leftfixCount); |
| 2639 | |
| 2640 | u32 lagIndex = 0; |
| 2641 | |
| 2642 | for (RoseVertex v : vertices_range(g)) { |
| 2643 | if (!g[v].left) { |
| 2644 | continue; |
| 2645 | } |
| 2646 | assert(contains(bc.leftfix_info, v)); |
| 2647 | const left_build_info &lbi = bc.leftfix_info.at(v); |
| 2648 | if (lbi.has_lookaround) { |
| 2649 | continue; |
| 2650 | } |
| 2651 | |
| 2652 | assert(lbi.queue >= leftfixBeginQueue); |
| 2653 | u32 left_index = lbi.queue - leftfixBeginQueue; |
| 2654 | assert(left_index < leftfixCount); |
| 2655 | |
| 2656 | /* seedy hack to make miracles more effective. |
| 2657 | * |
| 2658 | * TODO: make miracle seeking not depend on history length and have |
| 2659 | * runt scans */ |
| 2660 | if (hasUsefulStops(lbi)) { |
| 2661 | ENSURE_AT_LEAST(history, |
| 2662 | (size_t)MIN(cc.grey.maxHistoryAvailable, |
| 2663 | g[v].left.lag + 1 |
| 2664 | + cc.grey.miracleHistoryBonus)); |
| 2665 | } |
| 2666 | |
| 2667 | LeftNfaInfo &left = leftTable[left_index]; |
| 2668 | if (!contains(done_core, left_index)) { |
| 2669 | done_core.insert(left_index); |
| 2670 | memset(&left, 0, sizeof(left)); |
| 2671 | left.squash_mask = ~0ULL; |
| 2672 | |
| 2673 | DEBUG_PRINTF("populating info for %u\n" , left_index); |
| 2674 | |
| 2675 | left.maxQueueLen = lbi.max_queuelen; |
| 2676 | |
| 2677 | if (hasUsefulStops(lbi)) { |
| 2678 | assert(lbi.stopAlphabet.size() == N_CHARS); |
| 2679 | left.stopTable = bc.engine_blob.add_range(lbi.stopAlphabet); |
| 2680 | } |
| 2681 | |
| 2682 | assert(lbi.countingMiracleOffset || !lbi.countingMiracleCount); |
| 2683 | left.countingMiracleOffset = lbi.countingMiracleOffset; |
| 2684 | |
| 2685 | DEBUG_PRINTF("mw = %u\n" , lbi.transient); |
| 2686 | left.transient = verify_u8(lbi.transient); |
| 2687 | left.infix = tbi.isNonRootSuccessor(v); |
| 2688 | left.eager = contains(eager_queues, lbi.queue); |
| 2689 | |
| 2690 | // A rose has a lagIndex if it's non-transient and we are |
| 2691 | // streaming. |
| 2692 | if (!lbi.transient && cc.streaming) { |
| 2693 | assert(lagIndex < ROSE_OFFSET_INVALID); |
| 2694 | left.lagIndex = lagIndex++; |
| 2695 | } else { |
| 2696 | left.lagIndex = ROSE_OFFSET_INVALID; |
| 2697 | } |
| 2698 | } |
| 2699 | |
| 2700 | DEBUG_PRINTF("rose %u is %s\n" , left_index, |
| 2701 | left.infix ? "infix" : "prefix" ); |
| 2702 | |
| 2703 | // Update squash mask. |
| 2704 | left.squash_mask &= lbi.squash_mask; |
| 2705 | |
| 2706 | // Update the max delay. |
| 2707 | ENSURE_AT_LEAST(&left.maxLag, lbi.lag); |
| 2708 | |
| 2709 | if (contains(g[v].literals, tbi.eod_event_literal_id)) { |
| 2710 | left.eod_check = 1; |
| 2711 | } |
| 2712 | } |
| 2713 | |
| 2714 | DEBUG_PRINTF("built %u roses with lag indices\n" , lagIndex); |
| 2715 | *laggedRoseCount = lagIndex; |
| 2716 | } |
| 2717 | |
| 2718 | static |
| 2719 | RoseProgram makeLiteralProgram(const RoseBuildImpl &build, build_context &bc, |
| 2720 | ProgramBuild &prog_build, u32 lit_id, |
| 2721 | const vector<vector<RoseEdge>> &lit_edge_map, |
| 2722 | bool is_anchored_replay_program) { |
| 2723 | DEBUG_PRINTF("lit_id=%u\n" , lit_id); |
| 2724 | assert(lit_id < lit_edge_map.size()); |
| 2725 | |
| 2726 | return makeLiteralProgram(build, bc.leftfix_info, bc.suffixes, |
| 2727 | bc.engine_info_by_queue, bc.roleStateIndices, |
| 2728 | prog_build, lit_id, lit_edge_map.at(lit_id), |
| 2729 | is_anchored_replay_program); |
| 2730 | } |
| 2731 | |
| 2732 | static |
| 2733 | RoseProgram makeFragmentProgram(const RoseBuildImpl &build, build_context &bc, |
| 2734 | ProgramBuild &prog_build, |
| 2735 | const vector<u32> &lit_ids, |
| 2736 | const vector<vector<RoseEdge>> &lit_edge_map) { |
| 2737 | assert(!lit_ids.empty()); |
| 2738 | |
| 2739 | vector<RoseProgram> blocks; |
| 2740 | for (const auto &lit_id : lit_ids) { |
| 2741 | auto prog = makeLiteralProgram(build, bc, prog_build, lit_id, |
| 2742 | lit_edge_map, false); |
| 2743 | blocks.push_back(move(prog)); |
| 2744 | } |
| 2745 | |
| 2746 | return assembleProgramBlocks(move(blocks)); |
| 2747 | } |
| 2748 | |
| 2749 | /** |
| 2750 | * \brief Returns a map from literal ID to a list of edges leading into |
| 2751 | * vertices with that literal ID. |
| 2752 | */ |
| 2753 | static |
| 2754 | vector<vector<RoseEdge>> findEdgesByLiteral(const RoseBuildImpl &build) { |
| 2755 | vector<vector<RoseEdge>> lit_edge_map(build.literals.size()); |
| 2756 | |
| 2757 | const auto &g = build.g; |
| 2758 | for (const auto &v : vertices_range(g)) { |
| 2759 | for (const auto &lit_id : g[v].literals) { |
| 2760 | assert(lit_id < lit_edge_map.size()); |
| 2761 | auto &edge_list = lit_edge_map.at(lit_id); |
| 2762 | insert(&edge_list, edge_list.end(), in_edges(v, g)); |
| 2763 | } |
| 2764 | } |
| 2765 | |
| 2766 | // Sort edges in each edge list by (source, target) indices. This gives us |
| 2767 | // less surprising ordering in program generation for a literal with many |
| 2768 | // edges. |
| 2769 | for (auto &edge_list : lit_edge_map) { |
| 2770 | sort(begin(edge_list), end(edge_list), [&g](const RoseEdge &a, |
| 2771 | const RoseEdge &b) { |
| 2772 | return tie(g[source(a, g)].index, g[target(a, g)].index) < |
| 2773 | tie(g[source(b, g)].index, g[target(b, g)].index); |
| 2774 | }); |
| 2775 | } |
| 2776 | |
| 2777 | return lit_edge_map; |
| 2778 | } |
| 2779 | |
| 2780 | static |
| 2781 | bool isUsedLiteral(const RoseBuildImpl &build, u32 lit_id) { |
| 2782 | assert(lit_id < build.literal_info.size()); |
| 2783 | const auto &info = build.literal_info[lit_id]; |
| 2784 | if (!info.vertices.empty()) { |
| 2785 | return true; |
| 2786 | } |
| 2787 | |
| 2788 | for (const u32 &delayed_id : info.delayed_ids) { |
| 2789 | assert(delayed_id < build.literal_info.size()); |
| 2790 | const rose_literal_info &delayed_info = build.literal_info[delayed_id]; |
| 2791 | if (!delayed_info.vertices.empty()) { |
| 2792 | return true; |
| 2793 | } |
| 2794 | } |
| 2795 | |
| 2796 | DEBUG_PRINTF("literal %u has no refs\n" , lit_id); |
| 2797 | return false; |
| 2798 | } |
| 2799 | |
| 2800 | static |
| 2801 | rose_literal_id getFragment(rose_literal_id lit) { |
| 2802 | if (lit.s.length() > ROSE_SHORT_LITERAL_LEN_MAX) { |
| 2803 | // Trim to last ROSE_SHORT_LITERAL_LEN_MAX bytes. |
| 2804 | lit.s.erase(0, lit.s.length() - ROSE_SHORT_LITERAL_LEN_MAX); |
| 2805 | } |
| 2806 | DEBUG_PRINTF("fragment: %s\n" , dumpString(lit.s).c_str()); |
| 2807 | return lit; |
| 2808 | } |
| 2809 | |
| 2810 | static |
| 2811 | vector<LitFragment> groupByFragment(const RoseBuildImpl &build) { |
| 2812 | vector<LitFragment> fragments; |
| 2813 | u32 frag_id = 0; |
| 2814 | |
| 2815 | struct FragmentInfo { |
| 2816 | vector<u32> lit_ids; |
| 2817 | rose_group groups = 0; |
| 2818 | }; |
| 2819 | |
| 2820 | map<rose_literal_id, FragmentInfo> frag_info; |
| 2821 | |
| 2822 | for (u32 lit_id = 0; lit_id < build.literals.size(); lit_id++) { |
| 2823 | const auto &lit = build.literals.at(lit_id); |
| 2824 | const auto &info = build.literal_info.at(lit_id); |
| 2825 | |
| 2826 | if (!isUsedLiteral(build, lit_id)) { |
| 2827 | DEBUG_PRINTF("lit %u is unused\n" , lit_id); |
| 2828 | continue; |
| 2829 | } |
| 2830 | |
| 2831 | if (lit.table == ROSE_EVENT) { |
| 2832 | DEBUG_PRINTF("lit %u is an event\n" , lit_id); |
| 2833 | continue; |
| 2834 | } |
| 2835 | |
| 2836 | auto groups = info.group_mask; |
| 2837 | |
| 2838 | if (lit.s.length() < ROSE_SHORT_LITERAL_LEN_MAX) { |
| 2839 | fragments.emplace_back(frag_id, lit.s, groups, lit_id); |
| 2840 | frag_id++; |
| 2841 | continue; |
| 2842 | } |
| 2843 | |
| 2844 | DEBUG_PRINTF("fragment candidate: lit_id=%u %s\n" , lit_id, |
| 2845 | dumpString(lit.s).c_str()); |
| 2846 | |
| 2847 | /** 0:/xxabcdefgh/ */ |
| 2848 | /** 1:/yyabcdefgh/ */ |
| 2849 | /** 2:/yyabcdefgh.+/ */ |
| 2850 | // Above 3 patterns should firstly convert into RoseLiteralMap with |
| 2851 | // 2 elements ("xxabcdefgh" and "yyabcdefgh"), then convert into |
| 2852 | // LitFragment with 1 element ("abcdefgh"). Special care should be |
| 2853 | // taken to handle the 'pure' flag during the conversion. |
| 2854 | |
| 2855 | rose_literal_id lit_frag = getFragment(lit); |
| 2856 | auto it = frag_info.find(lit_frag); |
| 2857 | if (it != frag_info.end()) { |
| 2858 | if (!lit_frag.s.get_pure() && it->first.s.get_pure()) { |
| 2859 | struct FragmentInfo f_info = it->second; |
| 2860 | f_info.lit_ids.push_back(lit_id); |
| 2861 | f_info.groups |= groups; |
| 2862 | frag_info.erase(it->first); |
| 2863 | frag_info.emplace(lit_frag, f_info); |
| 2864 | } else { |
| 2865 | it->second.lit_ids.push_back(lit_id); |
| 2866 | it->second.groups |= groups; |
| 2867 | } |
| 2868 | } else { |
| 2869 | struct FragmentInfo f_info; |
| 2870 | f_info.lit_ids.push_back(lit_id); |
| 2871 | f_info.groups |= groups; |
| 2872 | frag_info.emplace(lit_frag, f_info); |
| 2873 | } |
| 2874 | } |
| 2875 | |
| 2876 | for (auto &m : frag_info) { |
| 2877 | auto &lit = m.first; |
| 2878 | auto &fi = m.second; |
| 2879 | DEBUG_PRINTF("frag %s -> ids: %s\n" , dumpString(m.first.s).c_str(), |
| 2880 | as_string_list(fi.lit_ids).c_str()); |
| 2881 | fragments.emplace_back(frag_id, lit.s, fi.groups, move(fi.lit_ids)); |
| 2882 | frag_id++; |
| 2883 | assert(frag_id == fragments.size()); |
| 2884 | } |
| 2885 | |
| 2886 | return fragments; |
| 2887 | } |
| 2888 | |
| 2889 | static |
| 2890 | void buildIncludedIdMap(unordered_map<u32, pair<u32, u8>> &includedIdMap, |
| 2891 | const LitProto *litProto) { |
| 2892 | if (!litProto) { |
| 2893 | return; |
| 2894 | } |
| 2895 | const auto &proto = *litProto->hwlmProto; |
| 2896 | for (const auto &lit : proto.lits) { |
| 2897 | if (contains(includedIdMap, lit.id)) { |
| 2898 | const auto &included_id = includedIdMap[lit.id].first; |
| 2899 | const auto &squash = includedIdMap[lit.id].second; |
| 2900 | // The squash behavior should be the same for the same literal |
| 2901 | // in different literal matchers. |
| 2902 | if (lit.included_id != included_id || |
| 2903 | lit.squash != squash) { |
| 2904 | includedIdMap[lit.id] = make_pair(INVALID_LIT_ID, 0); |
| 2905 | DEBUG_PRINTF("find different included info for the" |
| 2906 | " same literal\n" ); |
| 2907 | } |
| 2908 | } else if (lit.included_id != INVALID_LIT_ID) { |
| 2909 | includedIdMap[lit.id] = make_pair(lit.included_id, lit.squash); |
| 2910 | } else { |
| 2911 | includedIdMap[lit.id] = make_pair(INVALID_LIT_ID, 0); |
| 2912 | } |
| 2913 | } |
| 2914 | } |
| 2915 | |
| 2916 | static |
| 2917 | void findInclusionGroups(vector<LitFragment> &fragments, |
| 2918 | LitProto *fproto, LitProto *drproto, |
| 2919 | LitProto *eproto, LitProto *sbproto) { |
| 2920 | unordered_map<u32, pair<u32, u8>> includedIdMap; |
| 2921 | unordered_map<u32, pair<u32, u8>> includedDelayIdMap; |
| 2922 | buildIncludedIdMap(includedIdMap, fproto); |
| 2923 | buildIncludedIdMap(includedDelayIdMap, drproto); |
| 2924 | buildIncludedIdMap(includedIdMap, eproto); |
| 2925 | buildIncludedIdMap(includedIdMap, sbproto); |
| 2926 | |
| 2927 | size_t fragNum = fragments.size(); |
| 2928 | vector<u32> candidates; |
| 2929 | for (size_t j = 0; j < fragNum; j++) { |
| 2930 | DEBUG_PRINTF("frag id %lu\n" , j); |
| 2931 | u32 id = j; |
| 2932 | if (contains(includedIdMap, id) || |
| 2933 | contains(includedDelayIdMap, id)) { |
| 2934 | candidates.push_back(j); |
| 2935 | DEBUG_PRINTF("find candidate\n" ); |
| 2936 | } |
| 2937 | } |
| 2938 | |
| 2939 | for (const auto &c : candidates) { |
| 2940 | auto &frag = fragments[c]; |
| 2941 | u32 id = c; |
| 2942 | if (contains(includedIdMap, id) && |
| 2943 | includedIdMap[id].first != INVALID_LIT_ID) { |
| 2944 | const auto &childId = includedIdMap[id]; |
| 2945 | frag.included_frag_id = childId.first; |
| 2946 | frag.squash = childId.second; |
| 2947 | DEBUG_PRINTF("frag id %u child frag id %u\n" , c, |
| 2948 | frag.included_frag_id); |
| 2949 | } |
| 2950 | |
| 2951 | if (contains(includedDelayIdMap, id) && |
| 2952 | includedDelayIdMap[id].first != INVALID_LIT_ID) { |
| 2953 | const auto &childId = includedDelayIdMap[id]; |
| 2954 | frag.included_delay_frag_id = childId.first; |
| 2955 | frag.delay_squash = childId.second; |
| 2956 | |
| 2957 | DEBUG_PRINTF("delay frag id %u child frag id %u\n" , c, |
| 2958 | frag.included_delay_frag_id); |
| 2959 | } |
| 2960 | } |
| 2961 | } |
| 2962 | |
| 2963 | static |
| 2964 | void buildFragmentPrograms(const RoseBuildImpl &build, |
| 2965 | vector<LitFragment> &fragments, |
| 2966 | build_context &bc, ProgramBuild &prog_build, |
| 2967 | const vector<vector<RoseEdge>> &lit_edge_map) { |
| 2968 | // Sort fragments based on literal length and case info to build |
| 2969 | // included literal programs before their parent programs. |
| 2970 | vector<LitFragment> ordered_fragments(fragments); |
| 2971 | stable_sort(begin(ordered_fragments), end(ordered_fragments), |
| 2972 | [](const LitFragment &a, const LitFragment &b) { |
| 2973 | auto len1 = a.s.length(); |
| 2974 | auto caseful1 = !a.s.any_nocase(); |
| 2975 | auto len2 = b.s.length(); |
| 2976 | auto caseful2 = !b.s.any_nocase(); |
| 2977 | return tie(len1, caseful1) < tie(len2, caseful2); |
| 2978 | }); |
| 2979 | |
| 2980 | for (auto &frag : ordered_fragments) { |
| 2981 | auto &pfrag = fragments[frag.fragment_id]; |
| 2982 | DEBUG_PRINTF("frag_id=%u, lit_ids=[%s]\n" , pfrag.fragment_id, |
| 2983 | as_string_list(pfrag.lit_ids).c_str()); |
| 2984 | |
| 2985 | auto lit_prog = makeFragmentProgram(build, bc, prog_build, |
| 2986 | pfrag.lit_ids, lit_edge_map); |
| 2987 | if (pfrag.included_frag_id != INVALID_FRAG_ID && |
| 2988 | !lit_prog.empty()) { |
| 2989 | auto &cfrag = fragments[pfrag.included_frag_id]; |
| 2990 | assert(pfrag.s.length() >= cfrag.s.length() && |
| 2991 | !pfrag.s.any_nocase() >= !cfrag.s.any_nocase()); |
| 2992 | u32 child_offset = cfrag.lit_program_offset; |
| 2993 | DEBUG_PRINTF("child %u offset %u\n" , cfrag.fragment_id, |
| 2994 | child_offset); |
| 2995 | addIncludedJumpProgram(lit_prog, child_offset, pfrag.squash); |
| 2996 | } |
| 2997 | pfrag.lit_program_offset = writeProgram(bc, move(lit_prog)); |
| 2998 | |
| 2999 | // We only do delayed rebuild in streaming mode. |
| 3000 | if (!build.cc.streaming) { |
| 3001 | continue; |
| 3002 | } |
| 3003 | |
| 3004 | auto rebuild_prog = makeDelayRebuildProgram(build, prog_build, |
| 3005 | pfrag.lit_ids); |
| 3006 | if (pfrag.included_delay_frag_id != INVALID_FRAG_ID && |
| 3007 | !rebuild_prog.empty()) { |
| 3008 | auto &cfrag = fragments[pfrag.included_delay_frag_id]; |
| 3009 | assert(pfrag.s.length() >= cfrag.s.length() && |
| 3010 | !pfrag.s.any_nocase() >= !cfrag.s.any_nocase()); |
| 3011 | u32 child_offset = cfrag.delay_program_offset; |
| 3012 | DEBUG_PRINTF("child %u offset %u\n" , cfrag.fragment_id, |
| 3013 | child_offset); |
| 3014 | addIncludedJumpProgram(rebuild_prog, child_offset, |
| 3015 | pfrag.delay_squash); |
| 3016 | } |
| 3017 | pfrag.delay_program_offset = writeProgram(bc, move(rebuild_prog)); |
| 3018 | } |
| 3019 | } |
| 3020 | |
| 3021 | static |
| 3022 | void updateLitProtoProgramOffset(vector<LitFragment> &fragments, |
| 3023 | LitProto &litProto, bool delay) { |
| 3024 | auto &proto = *litProto.hwlmProto; |
| 3025 | for (auto &lit : proto.lits) { |
| 3026 | auto fragId = lit.id; |
| 3027 | auto &frag = fragments[fragId]; |
| 3028 | if (delay) { |
| 3029 | DEBUG_PRINTF("delay_program_offset:%u\n" , |
| 3030 | frag.delay_program_offset); |
| 3031 | lit.id = frag.delay_program_offset; |
| 3032 | } else { |
| 3033 | DEBUG_PRINTF("lit_program_offset:%u\n" , |
| 3034 | frag.lit_program_offset); |
| 3035 | lit.id = frag.lit_program_offset; |
| 3036 | } |
| 3037 | } |
| 3038 | } |
| 3039 | |
| 3040 | static |
| 3041 | void updateLitProgramOffset(vector<LitFragment> &fragments, |
| 3042 | LitProto *fproto, LitProto *drproto, |
| 3043 | LitProto *eproto, LitProto *sbproto) { |
| 3044 | if (fproto) { |
| 3045 | updateLitProtoProgramOffset(fragments, *fproto, false); |
| 3046 | } |
| 3047 | |
| 3048 | if (drproto) { |
| 3049 | updateLitProtoProgramOffset(fragments, *drproto, true); |
| 3050 | } |
| 3051 | |
| 3052 | if (eproto) { |
| 3053 | updateLitProtoProgramOffset(fragments, *eproto, false); |
| 3054 | } |
| 3055 | |
| 3056 | if (sbproto) { |
| 3057 | updateLitProtoProgramOffset(fragments, *sbproto, false); |
| 3058 | } |
| 3059 | } |
| 3060 | |
| 3061 | /** |
| 3062 | * \brief Build the interpreter programs for each literal. |
| 3063 | */ |
| 3064 | static |
| 3065 | void buildLiteralPrograms(const RoseBuildImpl &build, |
| 3066 | vector<LitFragment> &fragments, build_context &bc, |
| 3067 | ProgramBuild &prog_build, LitProto *fproto, |
| 3068 | LitProto *drproto, LitProto *eproto, |
| 3069 | LitProto *sbproto) { |
| 3070 | DEBUG_PRINTF("%zu fragments\n" , fragments.size()); |
| 3071 | auto lit_edge_map = findEdgesByLiteral(build); |
| 3072 | |
| 3073 | findInclusionGroups(fragments, fproto, drproto, eproto, sbproto); |
| 3074 | |
| 3075 | buildFragmentPrograms(build, fragments, bc, prog_build, lit_edge_map); |
| 3076 | |
| 3077 | // update literal program offsets for literal matcher prototypes |
| 3078 | updateLitProgramOffset(fragments, fproto, drproto, eproto, sbproto); |
| 3079 | } |
| 3080 | |
| 3081 | /** |
| 3082 | * \brief Write delay replay programs to the bytecode. |
| 3083 | * |
| 3084 | * Returns the offset of the beginning of the program array, and the number of |
| 3085 | * programs. |
| 3086 | */ |
| 3087 | static |
| 3088 | pair<u32, u32> writeDelayPrograms(const RoseBuildImpl &build, |
| 3089 | const vector<LitFragment> &fragments, |
| 3090 | build_context &bc, |
| 3091 | ProgramBuild &prog_build) { |
| 3092 | auto lit_edge_map = findEdgesByLiteral(build); |
| 3093 | |
| 3094 | vector<u32> programs; // program offsets indexed by (delayed) lit id |
| 3095 | unordered_map<u32, u32> cache; // program offsets we have already seen |
| 3096 | |
| 3097 | for (const auto &frag : fragments) { |
| 3098 | for (const u32 lit_id : frag.lit_ids) { |
| 3099 | const auto &info = build.literal_info.at(lit_id); |
| 3100 | |
| 3101 | for (const auto &delayed_lit_id : info.delayed_ids) { |
| 3102 | DEBUG_PRINTF("lit id %u delay id %u\n" , lit_id, delayed_lit_id); |
| 3103 | auto prog = makeLiteralProgram(build, bc, prog_build, |
| 3104 | delayed_lit_id, lit_edge_map, |
| 3105 | false); |
| 3106 | u32 offset = writeProgram(bc, move(prog)); |
| 3107 | |
| 3108 | u32 delay_id; |
| 3109 | auto it = cache.find(offset); |
| 3110 | if (it != end(cache)) { |
| 3111 | delay_id = it->second; |
| 3112 | DEBUG_PRINTF("reusing delay_id %u for offset %u\n" , |
| 3113 | delay_id, offset); |
| 3114 | } else { |
| 3115 | delay_id = verify_u32(programs.size()); |
| 3116 | programs.push_back(offset); |
| 3117 | cache.emplace(offset, delay_id); |
| 3118 | DEBUG_PRINTF("assigned new delay_id %u for offset %u\n" , |
| 3119 | delay_id, offset); |
| 3120 | } |
| 3121 | prog_build.delay_programs.emplace(delayed_lit_id, delay_id); |
| 3122 | } |
| 3123 | } |
| 3124 | } |
| 3125 | |
| 3126 | DEBUG_PRINTF("%zu delay programs\n" , programs.size()); |
| 3127 | return {bc.engine_blob.add_range(programs), verify_u32(programs.size())}; |
| 3128 | } |
| 3129 | |
| 3130 | /** |
| 3131 | * \brief Write anchored replay programs to the bytecode. |
| 3132 | * |
| 3133 | * Returns the offset of the beginning of the program array, and the number of |
| 3134 | * programs. |
| 3135 | */ |
| 3136 | static |
| 3137 | pair<u32, u32> writeAnchoredPrograms(const RoseBuildImpl &build, |
| 3138 | const vector<LitFragment> &fragments, |
| 3139 | build_context &bc, |
| 3140 | ProgramBuild &prog_build) { |
| 3141 | auto lit_edge_map = findEdgesByLiteral(build); |
| 3142 | |
| 3143 | vector<u32> programs; // program offsets indexed by anchored id |
| 3144 | unordered_map<u32, u32> cache; // program offsets we have already seen |
| 3145 | |
| 3146 | for (const auto &frag : fragments) { |
| 3147 | for (const u32 lit_id : frag.lit_ids) { |
| 3148 | const auto &lit = build.literals.at(lit_id); |
| 3149 | |
| 3150 | if (lit.table != ROSE_ANCHORED) { |
| 3151 | continue; |
| 3152 | } |
| 3153 | |
| 3154 | // If this anchored literal can never match past |
| 3155 | // floatingMinLiteralMatchOffset, we will never have to record it. |
| 3156 | if (findMaxOffset(build, lit_id) |
| 3157 | <= prog_build.floatingMinLiteralMatchOffset) { |
| 3158 | DEBUG_PRINTF("can never match after " |
| 3159 | "floatingMinLiteralMatchOffset=%u\n" , |
| 3160 | prog_build.floatingMinLiteralMatchOffset); |
| 3161 | continue; |
| 3162 | } |
| 3163 | |
| 3164 | auto prog = makeLiteralProgram(build, bc, prog_build, lit_id, |
| 3165 | lit_edge_map, true); |
| 3166 | u32 offset = writeProgram(bc, move(prog)); |
| 3167 | DEBUG_PRINTF("lit_id=%u -> anch prog at %u\n" , lit_id, offset); |
| 3168 | |
| 3169 | u32 anch_id; |
| 3170 | auto it = cache.find(offset); |
| 3171 | if (it != end(cache)) { |
| 3172 | anch_id = it->second; |
| 3173 | DEBUG_PRINTF("reusing anch_id %u for offset %u\n" , anch_id, |
| 3174 | offset); |
| 3175 | } else { |
| 3176 | anch_id = verify_u32(programs.size()); |
| 3177 | programs.push_back(offset); |
| 3178 | cache.emplace(offset, anch_id); |
| 3179 | DEBUG_PRINTF("assigned new anch_id %u for offset %u\n" , anch_id, |
| 3180 | offset); |
| 3181 | } |
| 3182 | prog_build.anchored_programs.emplace(lit_id, anch_id); |
| 3183 | } |
| 3184 | } |
| 3185 | |
| 3186 | DEBUG_PRINTF("%zu anchored programs\n" , programs.size()); |
| 3187 | return {bc.engine_blob.add_range(programs), verify_u32(programs.size())}; |
| 3188 | } |
| 3189 | |
| 3190 | /** |
| 3191 | * \brief Returns all reports used by output-exposed engines, for which we need |
| 3192 | * to generate programs. |
| 3193 | */ |
| 3194 | static |
| 3195 | set<ReportID> findEngineReports(const RoseBuildImpl &build) { |
| 3196 | set<ReportID> reports; |
| 3197 | |
| 3198 | // The small write engine uses these engine report programs. |
| 3199 | insert(&reports, build.smwr.all_reports()); |
| 3200 | |
| 3201 | for (const auto &outfix : build.outfixes) { |
| 3202 | insert(&reports, all_reports(outfix)); |
| 3203 | } |
| 3204 | |
| 3205 | const auto &g = build.g; |
| 3206 | for (auto v : vertices_range(g)) { |
| 3207 | if (g[v].suffix) { |
| 3208 | insert(&reports, all_reports(g[v].suffix)); |
| 3209 | } |
| 3210 | } |
| 3211 | |
| 3212 | DEBUG_PRINTF("%zu engine reports (of %zu)\n" , reports.size(), |
| 3213 | build.rm.numReports()); |
| 3214 | return reports; |
| 3215 | } |
| 3216 | |
| 3217 | static |
| 3218 | pair<u32, u32> buildReportPrograms(const RoseBuildImpl &build, |
| 3219 | build_context &bc) { |
| 3220 | const auto reports = findEngineReports(build); |
| 3221 | vector<u32> programs; |
| 3222 | programs.reserve(reports.size()); |
| 3223 | |
| 3224 | for (ReportID id : reports) { |
| 3225 | auto program = makeReportProgram(build, bc.needs_mpv_catchup, id); |
| 3226 | u32 offset = writeProgram(bc, move(program)); |
| 3227 | programs.push_back(offset); |
| 3228 | build.rm.setProgramOffset(id, offset); |
| 3229 | DEBUG_PRINTF("program for report %u @ %u (%zu instructions)\n" , id, |
| 3230 | programs.back(), program.size()); |
| 3231 | } |
| 3232 | |
| 3233 | u32 offset = bc.engine_blob.add_range(programs); |
| 3234 | u32 count = verify_u32(programs.size()); |
| 3235 | return {offset, count}; |
| 3236 | } |
| 3237 | |
| 3238 | static |
| 3239 | bool hasEodAnchoredSuffix(const RoseBuildImpl &build) { |
| 3240 | const RoseGraph &g = build.g; |
| 3241 | for (auto v : vertices_range(g)) { |
| 3242 | if (g[v].suffix && build.isInETable(v)) { |
| 3243 | DEBUG_PRINTF("vertex %zu is in eod table and has a suffix\n" , |
| 3244 | g[v].index); |
| 3245 | return true; |
| 3246 | } |
| 3247 | } |
| 3248 | return false; |
| 3249 | } |
| 3250 | |
| 3251 | static |
| 3252 | bool hasEodMatcher(const RoseBuildImpl &build) { |
| 3253 | const RoseGraph &g = build.g; |
| 3254 | for (auto v : vertices_range(g)) { |
| 3255 | if (build.isInETable(v)) { |
| 3256 | DEBUG_PRINTF("vertex %zu is in eod table\n" , g[v].index); |
| 3257 | return true; |
| 3258 | } |
| 3259 | } |
| 3260 | return false; |
| 3261 | } |
| 3262 | |
| 3263 | static |
| 3264 | void addEodAnchorProgram(const RoseBuildImpl &build, const build_context &bc, |
| 3265 | ProgramBuild &prog_build, bool in_etable, |
| 3266 | RoseProgram &program) { |
| 3267 | const RoseGraph &g = build.g; |
| 3268 | |
| 3269 | // Predecessor state id -> program block. |
| 3270 | map<u32, RoseProgram> pred_blocks; |
| 3271 | |
| 3272 | for (auto v : vertices_range(g)) { |
| 3273 | if (!g[v].eod_accept) { |
| 3274 | continue; |
| 3275 | } |
| 3276 | |
| 3277 | DEBUG_PRINTF("vertex %zu (with %zu preds) fires on EOD\n" , g[v].index, |
| 3278 | in_degree(v, g)); |
| 3279 | |
| 3280 | vector<RoseEdge> edge_list; |
| 3281 | for (const auto &e : in_edges_range(v, g)) { |
| 3282 | RoseVertex u = source(e, g); |
| 3283 | if (build.isInETable(u) != in_etable) { |
| 3284 | DEBUG_PRINTF("pred %zu %s in etable\n" , g[u].index, |
| 3285 | in_etable ? "is not" : "is" ); |
| 3286 | continue; |
| 3287 | } |
| 3288 | if (canEagerlyReportAtEod(build, e)) { |
| 3289 | DEBUG_PRINTF("already done report for vertex %zu\n" , |
| 3290 | g[u].index); |
| 3291 | continue; |
| 3292 | } |
| 3293 | edge_list.push_back(e); |
| 3294 | } |
| 3295 | |
| 3296 | const bool multiple_preds = edge_list.size() > 1; |
| 3297 | for (const auto &e : edge_list) { |
| 3298 | RoseVertex u = source(e, g); |
| 3299 | assert(contains(bc.roleStateIndices, u)); |
| 3300 | u32 pred_state = bc.roleStateIndices.at(u); |
| 3301 | pred_blocks[pred_state].add_block( |
| 3302 | makeEodAnchorProgram(build, prog_build, e, multiple_preds)); |
| 3303 | } |
| 3304 | } |
| 3305 | |
| 3306 | addPredBlocks(pred_blocks, bc.roleStateIndices.size(), program); |
| 3307 | } |
| 3308 | |
| 3309 | static |
| 3310 | void addEodEventProgram(const RoseBuildImpl &build, build_context &bc, |
| 3311 | ProgramBuild &prog_build, RoseProgram &program) { |
| 3312 | if (build.eod_event_literal_id == MO_INVALID_IDX) { |
| 3313 | return; |
| 3314 | } |
| 3315 | |
| 3316 | const RoseGraph &g = build.g; |
| 3317 | const auto &lit_info = build.literal_info.at(build.eod_event_literal_id); |
| 3318 | assert(lit_info.delayed_ids.empty()); |
| 3319 | assert(!lit_info.squash_group); |
| 3320 | assert(!lit_info.requires_benefits); |
| 3321 | |
| 3322 | // Collect all edges leading into EOD event literal vertices. |
| 3323 | vector<RoseEdge> edge_list; |
| 3324 | for (const auto &v : lit_info.vertices) { |
| 3325 | for (const auto &e : in_edges_range(v, g)) { |
| 3326 | edge_list.push_back(e); |
| 3327 | } |
| 3328 | } |
| 3329 | |
| 3330 | // Sort edge list for determinism, prettiness. |
| 3331 | sort(begin(edge_list), end(edge_list), |
| 3332 | [&g](const RoseEdge &a, const RoseEdge &b) { |
| 3333 | return tie(g[source(a, g)].index, g[target(a, g)].index) < |
| 3334 | tie(g[source(b, g)].index, g[target(b, g)].index); |
| 3335 | }); |
| 3336 | |
| 3337 | auto block = makeLiteralProgram(build, bc.leftfix_info, bc.suffixes, |
| 3338 | bc.engine_info_by_queue, |
| 3339 | bc.roleStateIndices, prog_build, |
| 3340 | build.eod_event_literal_id, edge_list, |
| 3341 | false); |
| 3342 | program.add_block(move(block)); |
| 3343 | } |
| 3344 | |
| 3345 | static |
| 3346 | RoseProgram makeEodProgram(const RoseBuildImpl &build, build_context &bc, |
| 3347 | ProgramBuild &prog_build, u32 eodNfaIterOffset) { |
| 3348 | RoseProgram program; |
| 3349 | |
| 3350 | addEodEventProgram(build, bc, prog_build, program); |
| 3351 | addEnginesEodProgram(eodNfaIterOffset, program); |
| 3352 | addEodAnchorProgram(build, bc, prog_build, false, program); |
| 3353 | if (hasEodMatcher(build)) { |
| 3354 | addMatcherEodProgram(program); |
| 3355 | } |
| 3356 | addEodAnchorProgram(build, bc, prog_build, true, program); |
| 3357 | if (hasEodAnchoredSuffix(build)) { |
| 3358 | addSuffixesEodProgram(program); |
| 3359 | } |
| 3360 | |
| 3361 | return program; |
| 3362 | } |
| 3363 | |
| 3364 | static |
| 3365 | RoseProgram makeFlushCombProgram(const RoseEngine &t) { |
| 3366 | RoseProgram program; |
| 3367 | if (t.ckeyCount) { |
| 3368 | addFlushCombinationProgram(program); |
| 3369 | } |
| 3370 | return program; |
| 3371 | } |
| 3372 | |
| 3373 | static |
| 3374 | u32 history_required(const rose_literal_id &key) { |
| 3375 | if (key.msk.size() < key.s.length()) { |
| 3376 | return key.elength() - 1; |
| 3377 | } else { |
| 3378 | return key.msk.size() + key.delay - 1; |
| 3379 | } |
| 3380 | } |
| 3381 | |
| 3382 | static |
| 3383 | void fillMatcherDistances(const RoseBuildImpl &build, RoseEngine *engine) { |
| 3384 | const RoseGraph &g = build.g; |
| 3385 | |
| 3386 | engine->floatingDistance = 0; |
| 3387 | engine->floatingMinDistance = ROSE_BOUND_INF; |
| 3388 | engine->anchoredDistance = 0; |
| 3389 | engine->maxFloatingDelayedMatch = 0; |
| 3390 | u32 delayRebuildLength = 0; |
| 3391 | engine->smallBlockDistance = 0; |
| 3392 | |
| 3393 | for (auto v : vertices_range(g)) { |
| 3394 | if (g[v].literals.empty()) { |
| 3395 | continue; |
| 3396 | } |
| 3397 | |
| 3398 | assert(g[v].min_offset < ROSE_BOUND_INF); // cannot == ROSE_BOUND_INF |
| 3399 | assert(g[v].min_offset <= g[v].max_offset); |
| 3400 | |
| 3401 | for (u32 lit_id : g[v].literals) { |
| 3402 | const rose_literal_id &key = build.literals.at(lit_id); |
| 3403 | u32 max_d = g[v].max_offset; |
| 3404 | u32 min_d = g[v].min_offset; |
| 3405 | |
| 3406 | DEBUG_PRINTF("checking %u: elen %zu min/max %u/%u\n" , lit_id, |
| 3407 | key.elength_including_mask(), min_d, max_d); |
| 3408 | |
| 3409 | if (build.literal_info[lit_id].undelayed_id != lit_id) { |
| 3410 | /* this is a delayed match; need to update delay properties */ |
| 3411 | /* TODO: can delayed literals ever be in another table ? */ |
| 3412 | if (key.table == ROSE_FLOATING) { |
| 3413 | ENSURE_AT_LEAST(&engine->maxFloatingDelayedMatch, max_d); |
| 3414 | ENSURE_AT_LEAST(&delayRebuildLength, history_required(key)); |
| 3415 | } |
| 3416 | } |
| 3417 | |
| 3418 | /* for the FloatingDistances we need the true max depth of the |
| 3419 | string */ |
| 3420 | if (max_d != ROSE_BOUND_INF && key.table != ROSE_ANCHORED) { |
| 3421 | assert(max_d >= key.delay); |
| 3422 | max_d -= key.delay; |
| 3423 | } |
| 3424 | |
| 3425 | switch (key.table) { |
| 3426 | case ROSE_FLOATING: |
| 3427 | ENSURE_AT_LEAST(&engine->floatingDistance, max_d); |
| 3428 | if (min_d >= key.elength_including_mask()) { |
| 3429 | LIMIT_TO_AT_MOST(&engine->floatingMinDistance, |
| 3430 | min_d - (u32)key.elength_including_mask()); |
| 3431 | } else { |
| 3432 | /* overlapped literals from rose + anchored table can |
| 3433 | * cause us to underflow due to sloppiness in |
| 3434 | * estimates */ |
| 3435 | engine->floatingMinDistance = 0; |
| 3436 | } |
| 3437 | break; |
| 3438 | case ROSE_ANCHORED_SMALL_BLOCK: |
| 3439 | ENSURE_AT_LEAST(&engine->smallBlockDistance, max_d); |
| 3440 | break; |
| 3441 | case ROSE_ANCHORED: |
| 3442 | ENSURE_AT_LEAST(&engine->anchoredDistance, max_d); |
| 3443 | break; |
| 3444 | case ROSE_EOD_ANCHORED: |
| 3445 | // EOD anchored literals are in another table, so they |
| 3446 | // don't contribute to these calculations. |
| 3447 | break; |
| 3448 | case ROSE_EVENT: |
| 3449 | break; // Not a real literal. |
| 3450 | } |
| 3451 | } |
| 3452 | } |
| 3453 | |
| 3454 | // Floating literals go in the small block table too. |
| 3455 | ENSURE_AT_LEAST(&engine->smallBlockDistance, engine->floatingDistance); |
| 3456 | |
| 3457 | // Clipped by its very nature. |
| 3458 | LIMIT_TO_AT_MOST(&engine->smallBlockDistance, 32U); |
| 3459 | |
| 3460 | engine->delayRebuildLength = delayRebuildLength; |
| 3461 | |
| 3462 | DEBUG_PRINTF("anchoredDistance = %u\n" , engine->anchoredDistance); |
| 3463 | DEBUG_PRINTF("floatingDistance = %u\n" , engine->floatingDistance); |
| 3464 | DEBUG_PRINTF("smallBlockDistance = %u\n" , engine->smallBlockDistance); |
| 3465 | assert(engine->anchoredDistance <= build.cc.grey.maxAnchoredRegion); |
| 3466 | |
| 3467 | /* anchored->floating squash literals may lower floating min distance */ |
| 3468 | /* TODO: find actual value */ |
| 3469 | if (!engine->anchoredDistance) { |
| 3470 | return; |
| 3471 | } |
| 3472 | } |
| 3473 | |
| 3474 | static |
| 3475 | u32 writeEagerQueueIter(const set<u32> &eager, u32 leftfixBeginQueue, |
| 3476 | u32 queue_count, RoseEngineBlob &engine_blob) { |
| 3477 | if (eager.empty()) { |
| 3478 | return 0; |
| 3479 | } |
| 3480 | |
| 3481 | vector<u32> vec; |
| 3482 | for (u32 q : eager) { |
| 3483 | assert(q >= leftfixBeginQueue); |
| 3484 | vec.push_back(q - leftfixBeginQueue); |
| 3485 | } |
| 3486 | |
| 3487 | auto iter = mmbBuildSparseIterator(vec, queue_count - leftfixBeginQueue); |
| 3488 | return engine_blob.add_iterator(iter); |
| 3489 | } |
| 3490 | |
| 3491 | static |
| 3492 | bytecode_ptr<RoseEngine> addSmallWriteEngine(const RoseBuildImpl &build, |
| 3493 | const RoseResources &res, |
| 3494 | bytecode_ptr<RoseEngine> rose) { |
| 3495 | assert(rose); |
| 3496 | |
| 3497 | if (roseIsPureLiteral(rose.get())) { |
| 3498 | DEBUG_PRINTF("pure literal case, not adding smwr\n" ); |
| 3499 | return rose; |
| 3500 | } |
| 3501 | |
| 3502 | u32 qual = roseQuality(res, rose.get()); |
| 3503 | auto smwr_engine = build.smwr.build(qual); |
| 3504 | if (!smwr_engine) { |
| 3505 | DEBUG_PRINTF("no smwr built\n" ); |
| 3506 | return rose; |
| 3507 | } |
| 3508 | |
| 3509 | const size_t mainSize = rose.size(); |
| 3510 | const size_t smallWriteSize = smwr_engine.size(); |
| 3511 | DEBUG_PRINTF("adding smwr engine, size=%zu\n" , smallWriteSize); |
| 3512 | |
| 3513 | const size_t smwrOffset = ROUNDUP_CL(mainSize); |
| 3514 | const size_t newSize = smwrOffset + smallWriteSize; |
| 3515 | |
| 3516 | auto rose2 = make_zeroed_bytecode_ptr<RoseEngine>(newSize, 64); |
| 3517 | char *ptr = (char *)rose2.get(); |
| 3518 | memcpy(ptr, rose.get(), mainSize); |
| 3519 | memcpy(ptr + smwrOffset, smwr_engine.get(), smallWriteSize); |
| 3520 | |
| 3521 | rose2->smallWriteOffset = verify_u32(smwrOffset); |
| 3522 | rose2->size = verify_u32(newSize); |
| 3523 | |
| 3524 | return rose2; |
| 3525 | } |
| 3526 | |
| 3527 | /** |
| 3528 | * \brief Returns the pair (number of literals, max length) for all real |
| 3529 | * literals in the floating table that are in-use. |
| 3530 | */ |
| 3531 | static |
| 3532 | pair<size_t, size_t> floatingCountAndMaxLen(const RoseBuildImpl &build) { |
| 3533 | size_t num = 0; |
| 3534 | size_t max_len = 0; |
| 3535 | |
| 3536 | for (u32 id = 0; id < build.literals.size(); id++) { |
| 3537 | const rose_literal_id &lit = build.literals.at(id); |
| 3538 | |
| 3539 | if (lit.table != ROSE_FLOATING) { |
| 3540 | continue; |
| 3541 | } |
| 3542 | if (lit.delay) { |
| 3543 | // Skip delayed literals, so that we only count the undelayed |
| 3544 | // version that ends up in the HWLM table. |
| 3545 | continue; |
| 3546 | } |
| 3547 | if (!isUsedLiteral(build, id)) { |
| 3548 | continue; |
| 3549 | } |
| 3550 | |
| 3551 | num++; |
| 3552 | max_len = max(max_len, lit.s.length()); |
| 3553 | } |
| 3554 | DEBUG_PRINTF("%zu floating literals with max_len=%zu\n" , num, max_len); |
| 3555 | return {num, max_len}; |
| 3556 | } |
| 3557 | |
| 3558 | size_t calcLongLitThreshold(const RoseBuildImpl &build, |
| 3559 | const size_t historyRequired) { |
| 3560 | const auto &cc = build.cc; |
| 3561 | |
| 3562 | // In block mode, we don't have history, so we don't need long literal |
| 3563 | // support and can just use "medium-length" literal confirm. TODO: we could |
| 3564 | // specialize further and have a block mode literal confirm instruction. |
| 3565 | if (!cc.streaming) { |
| 3566 | return SIZE_MAX; |
| 3567 | } |
| 3568 | |
| 3569 | size_t longLitLengthThreshold = ROSE_LONG_LITERAL_THRESHOLD_MIN; |
| 3570 | |
| 3571 | // Expand to size of history we've already allocated. Note that we need N-1 |
| 3572 | // bytes of history to match a literal of length N. |
| 3573 | longLitLengthThreshold = max(longLitLengthThreshold, historyRequired + 1); |
| 3574 | |
| 3575 | // If we only have one literal, allow for a larger value in order to avoid |
| 3576 | // building a long literal table for a trivial Noodle case that we could |
| 3577 | // fit in history. |
| 3578 | const auto num_len = floatingCountAndMaxLen(build); |
| 3579 | if (num_len.first == 1) { |
| 3580 | if (num_len.second > longLitLengthThreshold) { |
| 3581 | DEBUG_PRINTF("expanding for single literal of length %zu\n" , |
| 3582 | num_len.second); |
| 3583 | longLitLengthThreshold = num_len.second; |
| 3584 | } |
| 3585 | } |
| 3586 | |
| 3587 | // Clamp to max history available. |
| 3588 | longLitLengthThreshold = |
| 3589 | min(longLitLengthThreshold, size_t{cc.grey.maxHistoryAvailable} + 1); |
| 3590 | |
| 3591 | return longLitLengthThreshold; |
| 3592 | } |
| 3593 | |
| 3594 | static |
| 3595 | map<left_id, u32> makeLeftQueueMap(const RoseGraph &g, |
| 3596 | const map<RoseVertex, left_build_info> &leftfix_info) { |
| 3597 | map<left_id, u32> lqm; |
| 3598 | for (const auto &e : leftfix_info) { |
| 3599 | if (e.second.has_lookaround) { |
| 3600 | continue; |
| 3601 | } |
| 3602 | DEBUG_PRINTF("%zu: using queue %u\n" , g[e.first].index, e.second.queue); |
| 3603 | assert(e.second.queue != INVALID_QUEUE); |
| 3604 | left_id left(g[e.first].left); |
| 3605 | assert(!contains(lqm, left) || lqm[left] == e.second.queue); |
| 3606 | lqm[left] = e.second.queue; |
| 3607 | } |
| 3608 | |
| 3609 | return lqm; |
| 3610 | } |
| 3611 | |
| 3612 | bytecode_ptr<RoseEngine> RoseBuildImpl::buildFinalEngine(u32 minWidth) { |
| 3613 | // We keep all our offsets, counts etc. in a prototype RoseEngine which we |
| 3614 | // will copy into the real one once it is allocated: we can't do this |
| 3615 | // until we know how big it will be. |
| 3616 | RoseEngine proto; |
| 3617 | memset(&proto, 0, sizeof(proto)); |
| 3618 | |
| 3619 | // Set scanning mode. |
| 3620 | if (!cc.streaming) { |
| 3621 | proto.mode = HS_MODE_BLOCK; |
| 3622 | } else if (cc.vectored) { |
| 3623 | proto.mode = HS_MODE_VECTORED; |
| 3624 | } else { |
| 3625 | proto.mode = HS_MODE_STREAM; |
| 3626 | } |
| 3627 | |
| 3628 | DerivedBoundaryReports dboundary(boundary); |
| 3629 | |
| 3630 | size_t historyRequired = calcHistoryRequired(); // Updated by HWLM. |
| 3631 | size_t longLitLengthThreshold = calcLongLitThreshold(*this, |
| 3632 | historyRequired); |
| 3633 | DEBUG_PRINTF("longLitLengthThreshold=%zu\n" , longLitLengthThreshold); |
| 3634 | |
| 3635 | vector<LitFragment> fragments = groupByFragment(*this); |
| 3636 | |
| 3637 | auto anchored_dfas = buildAnchoredDfas(*this, fragments); |
| 3638 | |
| 3639 | build_context bc; |
| 3640 | u32 floatingMinLiteralMatchOffset |
| 3641 | = findMinFloatingLiteralMatch(*this, anchored_dfas); |
| 3642 | recordResources(bc.resources, *this, anchored_dfas, fragments); |
| 3643 | bc.needs_mpv_catchup = needsMpvCatchup(*this); |
| 3644 | |
| 3645 | makeBoundaryPrograms(*this, bc, boundary, dboundary, proto.boundary); |
| 3646 | |
| 3647 | tie(proto.reportProgramOffset, proto.reportProgramCount) = |
| 3648 | buildReportPrograms(*this, bc); |
| 3649 | |
| 3650 | // Build NFAs |
| 3651 | bool mpv_as_outfix; |
| 3652 | prepMpv(*this, bc, &historyRequired, &mpv_as_outfix); |
| 3653 | proto.outfixBeginQueue = qif.allocated_count(); |
| 3654 | if (!prepOutfixes(*this, bc, &historyRequired)) { |
| 3655 | return nullptr; |
| 3656 | } |
| 3657 | proto.outfixEndQueue = qif.allocated_count(); |
| 3658 | proto.leftfixBeginQueue = proto.outfixEndQueue; |
| 3659 | |
| 3660 | set<u32> no_retrigger_queues; |
| 3661 | set<u32> eager_queues; |
| 3662 | |
| 3663 | /* Note: buildNfas may reduce the lag for vertices that have prefixes */ |
| 3664 | if (!buildNfas(*this, bc, qif, &no_retrigger_queues, &eager_queues, |
| 3665 | &proto.leftfixBeginQueue)) { |
| 3666 | return nullptr; |
| 3667 | } |
| 3668 | u32 eodNfaIterOffset = buildEodNfaIterator(bc, proto.leftfixBeginQueue); |
| 3669 | buildCountingMiracles(bc); |
| 3670 | |
| 3671 | u32 queue_count = qif.allocated_count(); /* excludes anchored matcher q; |
| 3672 | * som rev nfas */ |
| 3673 | if (queue_count > cc.grey.limitRoseEngineCount) { |
| 3674 | throw ResourceLimitError(); |
| 3675 | } |
| 3676 | |
| 3677 | // Enforce role table resource limit. |
| 3678 | if (num_vertices(g) > cc.grey.limitRoseRoleCount) { |
| 3679 | throw ResourceLimitError(); |
| 3680 | } |
| 3681 | |
| 3682 | bc.roleStateIndices = assignStateIndices(*this); |
| 3683 | |
| 3684 | u32 laggedRoseCount = 0; |
| 3685 | vector<LeftNfaInfo> leftInfoTable; |
| 3686 | buildLeftInfoTable(*this, bc, eager_queues, proto.leftfixBeginQueue, |
| 3687 | queue_count - proto.leftfixBeginQueue, leftInfoTable, |
| 3688 | &laggedRoseCount, &historyRequired); |
| 3689 | |
| 3690 | // Information only needed for program construction. |
| 3691 | ProgramBuild prog_build(floatingMinLiteralMatchOffset, |
| 3692 | longLitLengthThreshold, needsCatchup(*this)); |
| 3693 | prog_build.vertex_group_map = getVertexGroupMap(*this); |
| 3694 | prog_build.squashable_groups = getSquashableGroups(*this); |
| 3695 | |
| 3696 | tie(proto.anchoredProgramOffset, proto.anchored_count) = |
| 3697 | writeAnchoredPrograms(*this, fragments, bc, prog_build); |
| 3698 | |
| 3699 | tie(proto.delayProgramOffset, proto.delay_count) = |
| 3700 | writeDelayPrograms(*this, fragments, bc, prog_build); |
| 3701 | |
| 3702 | // Build floating HWLM matcher prototype. |
| 3703 | rose_group fgroups = 0; |
| 3704 | auto fproto = buildFloatingMatcherProto(*this, fragments, |
| 3705 | longLitLengthThreshold, |
| 3706 | &fgroups, &historyRequired); |
| 3707 | |
| 3708 | // Build delay rebuild HWLM matcher prototype. |
| 3709 | auto drproto = buildDelayRebuildMatcherProto(*this, fragments, |
| 3710 | longLitLengthThreshold); |
| 3711 | |
| 3712 | // Build EOD-anchored HWLM matcher prototype. |
| 3713 | auto eproto = buildEodAnchoredMatcherProto(*this, fragments); |
| 3714 | |
| 3715 | // Build small-block HWLM matcher prototype. |
| 3716 | auto sbproto = buildSmallBlockMatcherProto(*this, fragments); |
| 3717 | |
| 3718 | buildLiteralPrograms(*this, fragments, bc, prog_build, fproto.get(), |
| 3719 | drproto.get(), eproto.get(), sbproto.get()); |
| 3720 | |
| 3721 | auto eod_prog = makeEodProgram(*this, bc, prog_build, eodNfaIterOffset); |
| 3722 | proto.eodProgramOffset = writeProgram(bc, move(eod_prog)); |
| 3723 | |
| 3724 | size_t longLitStreamStateRequired = 0; |
| 3725 | proto.longLitTableOffset |
| 3726 | = buildLongLiteralTable(*this, bc.engine_blob, bc.longLiterals, |
| 3727 | longLitLengthThreshold, &historyRequired, |
| 3728 | &longLitStreamStateRequired); |
| 3729 | |
| 3730 | proto.lastByteHistoryIterOffset = buildLastByteIter(g, bc); |
| 3731 | proto.eagerIterOffset = writeEagerQueueIter( |
| 3732 | eager_queues, proto.leftfixBeginQueue, queue_count, bc.engine_blob); |
| 3733 | |
| 3734 | addSomRevNfas(bc, proto, ssm); |
| 3735 | |
| 3736 | writeDkeyInfo(rm, bc.engine_blob, proto); |
| 3737 | writeLeftInfo(bc.engine_blob, proto, leftInfoTable); |
| 3738 | writeLogicalInfo(rm, bc.engine_blob, proto); |
| 3739 | |
| 3740 | auto flushComb_prog = makeFlushCombProgram(proto); |
| 3741 | proto.flushCombProgramOffset = writeProgram(bc, move(flushComb_prog)); |
| 3742 | |
| 3743 | // Build anchored matcher. |
| 3744 | auto atable = buildAnchoredMatcher(*this, fragments, anchored_dfas); |
| 3745 | if (atable) { |
| 3746 | proto.amatcherOffset = bc.engine_blob.add(atable); |
| 3747 | } |
| 3748 | |
| 3749 | // Build floating HWLM matcher. |
| 3750 | auto ftable = buildHWLMMatcher(*this, fproto.get()); |
| 3751 | if (ftable) { |
| 3752 | proto.fmatcherOffset = bc.engine_blob.add(ftable); |
| 3753 | bc.resources.has_floating = true; |
| 3754 | } |
| 3755 | |
| 3756 | // Build delay rebuild HWLM matcher. |
| 3757 | auto drtable = buildHWLMMatcher(*this, drproto.get()); |
| 3758 | if (drtable) { |
| 3759 | proto.drmatcherOffset = bc.engine_blob.add(drtable); |
| 3760 | } |
| 3761 | |
| 3762 | // Build EOD-anchored HWLM matcher. |
| 3763 | auto etable = buildHWLMMatcher(*this, eproto.get()); |
| 3764 | if (etable) { |
| 3765 | proto.ematcherOffset = bc.engine_blob.add(etable); |
| 3766 | } |
| 3767 | |
| 3768 | // Build small-block HWLM matcher. |
| 3769 | auto sbtable = buildHWLMMatcher(*this, sbproto.get()); |
| 3770 | if (sbtable) { |
| 3771 | proto.sbmatcherOffset = bc.engine_blob.add(sbtable); |
| 3772 | } |
| 3773 | |
| 3774 | proto.activeArrayCount = proto.leftfixBeginQueue; |
| 3775 | |
| 3776 | proto.anchorStateSize = atable ? anchoredStateSize(*atable) : 0; |
| 3777 | |
| 3778 | DEBUG_PRINTF("rose history required %zu\n" , historyRequired); |
| 3779 | assert(!cc.streaming || historyRequired <= cc.grey.maxHistoryAvailable); |
| 3780 | |
| 3781 | // Some SOM schemes (reverse NFAs, for example) may require more history. |
| 3782 | historyRequired = max(historyRequired, (size_t)ssm.somHistoryRequired()); |
| 3783 | |
| 3784 | assert(!cc.streaming || historyRequired <= |
| 3785 | max(cc.grey.maxHistoryAvailable, cc.grey.somMaxRevNfaLength)); |
| 3786 | |
| 3787 | fillStateOffsets(*this, bc.roleStateIndices.size(), proto.anchorStateSize, |
| 3788 | proto.activeArrayCount, proto.activeLeftCount, |
| 3789 | laggedRoseCount, longLitStreamStateRequired, |
| 3790 | historyRequired, &proto.stateOffsets); |
| 3791 | |
| 3792 | // Write in NfaInfo structures. This will also update state size |
| 3793 | // information in proto. |
| 3794 | writeNfaInfo(*this, bc, proto, no_retrigger_queues); |
| 3795 | |
| 3796 | scatter_plan_raw state_scatter = buildStateScatterPlan( |
| 3797 | sizeof(u8), bc.roleStateIndices.size(), proto.activeLeftCount, |
| 3798 | proto.rosePrefixCount, proto.stateOffsets, cc.streaming, |
| 3799 | proto.activeArrayCount, proto.outfixBeginQueue, proto.outfixEndQueue); |
| 3800 | |
| 3801 | u32 currOffset; /* relative to base of RoseEngine */ |
| 3802 | if (!bc.engine_blob.empty()) { |
| 3803 | currOffset = bc.engine_blob.base_offset + bc.engine_blob.size(); |
| 3804 | } else { |
| 3805 | currOffset = sizeof(RoseEngine); |
| 3806 | } |
| 3807 | |
| 3808 | currOffset = ROUNDUP_CL(currOffset); |
| 3809 | DEBUG_PRINTF("currOffset %u\n" , currOffset); |
| 3810 | |
| 3811 | currOffset = ROUNDUP_N(currOffset, alignof(scatter_unit_u64a)); |
| 3812 | u32 state_scatter_aux_offset = currOffset; |
| 3813 | currOffset += aux_size(state_scatter); |
| 3814 | |
| 3815 | proto.historyRequired = verify_u32(historyRequired); |
| 3816 | proto.ekeyCount = rm.numEkeys(); |
| 3817 | |
| 3818 | proto.somHorizon = ssm.somPrecision(); |
| 3819 | proto.somLocationCount = ssm.numSomSlots(); |
| 3820 | proto.somLocationFatbitSize = fatbit_size(proto.somLocationCount); |
| 3821 | |
| 3822 | proto.runtimeImpl = pickRuntimeImpl(*this, bc.resources, |
| 3823 | proto.outfixEndQueue); |
| 3824 | proto.mpvTriggeredByLeaf = anyEndfixMpvTriggers(*this); |
| 3825 | |
| 3826 | proto.queueCount = queue_count; |
| 3827 | proto.activeQueueArraySize = fatbit_size(queue_count); |
| 3828 | proto.handledKeyCount = prog_build.handledKeys.size(); |
| 3829 | proto.handledKeyFatbitSize = fatbit_size(proto.handledKeyCount); |
| 3830 | |
| 3831 | proto.rolesWithStateCount = bc.roleStateIndices.size(); |
| 3832 | |
| 3833 | proto.initMpvNfa = mpv_as_outfix ? 0 : MO_INVALID_IDX; |
| 3834 | proto.stateSize = mmbit_size(bc.roleStateIndices.size()); |
| 3835 | |
| 3836 | proto.delay_fatbit_size = fatbit_size(proto.delay_count); |
| 3837 | proto.anchored_fatbit_size = fatbit_size(proto.anchored_count); |
| 3838 | |
| 3839 | // The Small Write matcher is (conditionally) added to the RoseEngine in |
| 3840 | // another pass by the caller. Set to zero (meaning no SMWR engine) for |
| 3841 | // now. |
| 3842 | proto.smallWriteOffset = 0; |
| 3843 | |
| 3844 | proto.amatcherMinWidth = findMinWidth(*this, ROSE_ANCHORED); |
| 3845 | proto.fmatcherMinWidth = findMinWidth(*this, ROSE_FLOATING); |
| 3846 | proto.eodmatcherMinWidth = findMinWidth(*this, ROSE_EOD_ANCHORED); |
| 3847 | proto.amatcherMaxBiAnchoredWidth = findMaxBAWidth(*this, ROSE_ANCHORED); |
| 3848 | proto.fmatcherMaxBiAnchoredWidth = findMaxBAWidth(*this, ROSE_FLOATING); |
| 3849 | proto.minWidth = hasBoundaryReports(boundary) ? 0 : minWidth; |
| 3850 | proto.minWidthExcludingBoundaries = minWidth; |
| 3851 | proto.floatingMinLiteralMatchOffset = floatingMinLiteralMatchOffset; |
| 3852 | |
| 3853 | proto.maxBiAnchoredWidth = findMaxBAWidth(*this); |
| 3854 | proto.noFloatingRoots = hasNoFloatingRoots(); |
| 3855 | proto.requiresEodCheck = hasEodAnchors(*this, bc, proto.outfixEndQueue); |
| 3856 | proto.hasOutfixesInSmallBlock = hasNonSmallBlockOutfix(outfixes); |
| 3857 | proto.canExhaust = rm.patternSetCanExhaust(); |
| 3858 | proto.hasSom = hasSom; |
| 3859 | |
| 3860 | /* populate anchoredDistance, floatingDistance, floatingMinDistance, etc */ |
| 3861 | fillMatcherDistances(*this, &proto); |
| 3862 | |
| 3863 | proto.initialGroups = getInitialGroups(); |
| 3864 | proto.floating_group_mask = fgroups; |
| 3865 | proto.totalNumLiterals = verify_u32(literal_info.size()); |
| 3866 | proto.asize = verify_u32(atable.size()); |
| 3867 | proto.ematcherRegionSize = ematcher_region_size; |
| 3868 | |
| 3869 | proto.size = currOffset; |
| 3870 | |
| 3871 | // Time to allocate the real RoseEngine structure, at cacheline alignment. |
| 3872 | auto engine = make_zeroed_bytecode_ptr<RoseEngine>(currOffset, 64); |
| 3873 | assert(engine); // will have thrown bad_alloc otherwise. |
| 3874 | |
| 3875 | // Copy in our prototype engine data. |
| 3876 | memcpy(engine.get(), &proto, sizeof(proto)); |
| 3877 | |
| 3878 | write_out(&engine->state_init, (char *)engine.get(), state_scatter, |
| 3879 | state_scatter_aux_offset); |
| 3880 | |
| 3881 | // Copy in the engine blob. |
| 3882 | bc.engine_blob.write_bytes(engine.get()); |
| 3883 | |
| 3884 | // Add a small write engine if appropriate. |
| 3885 | engine = addSmallWriteEngine(*this, bc.resources, move(engine)); |
| 3886 | |
| 3887 | DEBUG_PRINTF("rose done %p\n" , engine.get()); |
| 3888 | |
| 3889 | dumpRose(*this, fragments, makeLeftQueueMap(g, bc.leftfix_info), |
| 3890 | bc.suffixes, engine.get()); |
| 3891 | |
| 3892 | return engine; |
| 3893 | } |
| 3894 | |
| 3895 | } // namespace ue2 |
| 3896 | |