1/*
2 * Copyright 2014 Google Inc.
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7#include "src/gpu/effects/GrMatrixConvolutionEffect.h"
8
9#include "include/private/SkHalf.h"
10#include "src/gpu/GrBitmapTextureMaker.h"
11#include "src/gpu/GrContextPriv.h"
12#include "src/gpu/GrProxyProvider.h"
13#include "src/gpu/GrRecordingContextPriv.h"
14#include "src/gpu/GrTexture.h"
15#include "src/gpu/GrTextureProxy.h"
16#include "src/gpu/effects/GrTextureEffect.h"
17#include "src/gpu/glsl/GrGLSLFragmentProcessor.h"
18#include "src/gpu/glsl/GrGLSLFragmentShaderBuilder.h"
19#include "src/gpu/glsl/GrGLSLProgramDataManager.h"
20#include "src/gpu/glsl/GrGLSLUniformHandler.h"
21
22class GrGLMatrixConvolutionEffect : public GrGLSLFragmentProcessor {
23public:
24 void emitCode(EmitArgs&) override;
25
26 static inline void GenKey(const GrProcessor&, const GrShaderCaps&, GrProcessorKeyBuilder*);
27
28protected:
29 void onSetData(const GrGLSLProgramDataManager&, const GrFragmentProcessor&) override;
30
31private:
32 typedef GrGLSLProgramDataManager::UniformHandle UniformHandle;
33
34 void emitKernelBlock(EmitArgs&, SkIPoint);
35
36 UniformHandle fKernelUni;
37 UniformHandle fKernelOffsetUni;
38 UniformHandle fGainUni;
39 UniformHandle fBiasUni;
40 UniformHandle fKernelBiasUni;
41
42 typedef GrGLSLFragmentProcessor INHERITED;
43};
44
45GrMatrixConvolutionEffect::KernelWrapper::MakeResult
46GrMatrixConvolutionEffect::KernelWrapper::Make(GrRecordingContext* context,
47 SkISize size,
48 const GrCaps& caps,
49 const SkScalar* values) {
50 if (!context || !values || size.isEmpty()) {
51 return {};
52 }
53 const int length = size.area();
54 // Small kernel -> just fill the array.
55 KernelWrapper result(size);
56 if (length <= kMaxUniformSize) {
57 for (int i = 0; i < length; i++) {
58 result.fArray[i] = SkScalarToFloat(values[i]);
59 }
60 return {result, nullptr};
61 }
62
63 BiasAndGain& scalableSampler = result.fBiasAndGain;
64 bool useA16 =
65 context->defaultBackendFormat(kA16_float_SkColorType, GrRenderable::kNo).isValid();
66 SkScalar min = values[0];
67 if (!useA16) {
68 // Determine min and max values to figure out inner gain & bias.
69 SkScalar max = values[0];
70 for (int i = 1; i < length; i++) {
71 if (values[i] < min) {
72 min = values[i];
73 }
74 if (values[i] > max) {
75 max = values[i];
76 }
77 }
78 // Treat near-0 gain (i.e. box blur) as 1, and let the kernelBias
79 // move everything up to the final value.
80 const SkScalar computedGain = max - min;
81 scalableSampler.fGain =
82 SkScalarNearlyZero(computedGain) ? 1.0f : SkScalarToFloat(computedGain);
83 // Inner bias is pre-inner-gain so we divide that out.
84 scalableSampler.fBias = SkScalarToFloat(min) / scalableSampler.fGain;
85 }
86
87 // TODO: Pick cache or dont-cache based on observed perf.
88 static constexpr bool kCacheKernelTexture = true;
89
90 GrUniqueKey key;
91 if (kCacheKernelTexture) {
92 static const GrUniqueKey::Domain kDomain = GrUniqueKey::GenerateDomain();
93 GrUniqueKey::Builder builder(&key, kDomain, length, "Matrix Convolution Kernel");
94 // Texture cache key is the exact content of the kernel.
95 static_assert(sizeof(float) == 4);
96 for (int i = 0; i < length; i++) {
97 builder[i] = *(const uint32_t*)&values[i];
98 }
99 builder.finish();
100 }
101
102 // Find or create a texture.
103 GrProxyProvider* proxyProvider = context->priv().proxyProvider();
104 GrSurfaceProxyView view;
105 SkColorType colorType = useA16 ? kA16_float_SkColorType : kAlpha_8_SkColorType;
106 sk_sp<GrTextureProxy> cachedKernel;
107 if (kCacheKernelTexture && (cachedKernel = proxyProvider->findOrCreateProxyByUniqueKey(key))) {
108 GrSwizzle swizzle =
109 context->priv().caps()->getReadSwizzle(cachedKernel->backendFormat(),
110 SkColorTypeToGrColorType(colorType));
111 view = {std::move(cachedKernel), kTopLeft_GrSurfaceOrigin, swizzle};
112 } else {
113 SkBitmap bm;
114 auto info = SkImageInfo::Make({length, 1}, colorType, kPremul_SkAlphaType, nullptr);
115 if (!bm.tryAllocPixels(info)) {
116 return {};
117 }
118 for (int i = 0; i < length; i++) {
119 if (useA16) {
120 *bm.getAddr16(i, 0) = SkFloatToHalf(values[i]);
121 } else {
122 *bm.getAddr8(i, 0) =
123 SkScalarRoundToInt((values[i] - min) / scalableSampler.fGain * 255);
124 }
125 }
126 bm.setImmutable();
127 GrBitmapTextureMaker maker(context, bm, GrImageTexGenPolicy::kNew_Uncached_Budgeted);
128 view = maker.view(GrMipmapped::kNo);
129 if (!view) {
130 return {};
131 }
132 if (kCacheKernelTexture) {
133 proxyProvider->assignUniqueKeyToProxy(key, view.asTextureProxy());
134 }
135 }
136 auto kernelFP = GrTextureEffect::Make(std::move(view), kUnknown_SkAlphaType);
137 return {result, std::move(kernelFP)};
138}
139
140bool GrMatrixConvolutionEffect::KernelWrapper::operator==(const KernelWrapper& k) const {
141 if (fSize != k.fSize) {
142 return false;
143 } else if (this->isSampled()) {
144 return fBiasAndGain == k.fBiasAndGain;
145 } else {
146 return std::equal(fArray.begin(), fArray.begin() + fSize.area(), k.fArray.begin());
147 }
148}
149
150bool GrMatrixConvolutionEffect::KernelWrapper::BiasAndGain::operator==(
151 const BiasAndGain& k) const {
152 return fGain == k.fGain && fBias == k.fBias;
153}
154
155// For sampled kernels, emit a for loop that does all the kernel accumulation.
156// For uniform kernels, emit a single iteration. Function is called repeatedly in a for loop.
157// loc is ignored for sampled kernels.
158void GrGLMatrixConvolutionEffect::emitKernelBlock(EmitArgs& args, SkIPoint loc) {
159 const GrMatrixConvolutionEffect& mce = args.fFp.cast<GrMatrixConvolutionEffect>();
160 GrGLSLFPFragmentBuilder* fragBuilder = args.fFragBuilder;
161 GrGLSLUniformHandler* uniformHandler = args.fUniformHandler;
162 int kernelWidth = mce.kernelSize().width();
163 int kernelHeight = mce.kernelSize().height();
164 int kernelArea = kernelWidth * kernelHeight;
165
166 if (mce.kernelIsSampled()) {
167 fragBuilder->codeAppendf("for (int i = 0; i < %d; ++i)", (int)kernelArea);
168 }
169
170 GrGLSLShaderBuilder::ShaderBlock block(fragBuilder);
171
172 fragBuilder->codeAppend("half k;");
173 fragBuilder->codeAppend("half2 sourceOffset;");
174 if (mce.kernelIsSampled()) {
175 const char* kernelBias = uniformHandler->getUniformCStr(fKernelBiasUni);
176 SkString kernelCoord = SkStringPrintf("float2(float(i) + 0.5, 0.5)");
177 SkString kernelSample = this->invokeChild(1, args, kernelCoord.c_str());
178 fragBuilder->codeAppendf("k = %s.w + %s;", kernelSample.c_str(), kernelBias);
179 fragBuilder->codeAppendf("sourceOffset.y = floor(i / %d);", kernelWidth);
180 fragBuilder->codeAppendf("sourceOffset.x = i - sourceOffset.y * %d;", kernelWidth);
181 } else {
182 fragBuilder->codeAppendf("sourceOffset = half2(%d, %d);", loc.x(), loc.y());
183 int offset = loc.y() * kernelWidth + loc.x();
184 static constexpr const char kVecSuffix[][4] = { ".x", ".y", ".z", ".w" };
185 const char* kernel = uniformHandler->getUniformCStr(fKernelUni);
186 fragBuilder->codeAppendf("k = %s[%d]%s;", kernel, offset / 4,
187 kVecSuffix[offset & 0x3]);
188 }
189
190 auto sample = this->invokeChild(0, args, "coord + sourceOffset");
191 fragBuilder->codeAppendf("half4 c = %s;", sample.c_str());
192 if (!mce.convolveAlpha()) {
193 fragBuilder->codeAppend("c = unpremul(c);");
194 fragBuilder->codeAppend("c.rgb = saturate(c.rgb);");
195 }
196 fragBuilder->codeAppend("sum += c * k;");
197}
198
199void GrGLMatrixConvolutionEffect::emitCode(EmitArgs& args) {
200 const GrMatrixConvolutionEffect& mce = args.fFp.cast<GrMatrixConvolutionEffect>();
201
202 int kernelWidth = mce.kernelSize().width();
203 int kernelHeight = mce.kernelSize().height();
204
205 int arrayCount = (kernelWidth * kernelHeight + 3) / 4;
206 SkASSERT(4 * arrayCount >= kernelWidth * kernelHeight);
207
208 GrGLSLUniformHandler* uniformHandler = args.fUniformHandler;
209 if (mce.kernelIsSampled()) {
210 fKernelBiasUni = uniformHandler->addUniform(&mce, kFragment_GrShaderFlag,
211 kHalf_GrSLType, "KernelBias");
212 } else {
213 fKernelUni = uniformHandler->addUniformArray(&mce, kFragment_GrShaderFlag,
214 kHalf4_GrSLType, "Kernel", arrayCount);
215 }
216 fKernelOffsetUni = uniformHandler->addUniform(&mce, kFragment_GrShaderFlag, kHalf2_GrSLType,
217 "KernelOffset");
218 fGainUni = uniformHandler->addUniform(&mce, kFragment_GrShaderFlag, kHalf_GrSLType, "Gain");
219 fBiasUni = uniformHandler->addUniform(&mce, kFragment_GrShaderFlag, kHalf_GrSLType, "Bias");
220
221 const char* kernelOffset = uniformHandler->getUniformCStr(fKernelOffsetUni);
222 const char* gain = uniformHandler->getUniformCStr(fGainUni);
223 const char* bias = uniformHandler->getUniformCStr(fBiasUni);
224
225 GrGLSLFPFragmentBuilder* fragBuilder = args.fFragBuilder;
226 fragBuilder->codeAppend("half4 sum = half4(0, 0, 0, 0);");
227 fragBuilder->codeAppendf("float2 coord = %s - %s;", args.fSampleCoord, kernelOffset);
228
229 if (mce.kernelIsSampled()) {
230 this->emitKernelBlock(args, {});
231 } else {
232 for (int x = 0; x < kernelWidth; ++x) {
233 for (int y = 0; y < kernelHeight; ++y) {
234 this->emitKernelBlock(args, SkIPoint::Make(x, y));
235 }
236 }
237 }
238
239 if (mce.convolveAlpha()) {
240 fragBuilder->codeAppendf("%s = sum * %s + %s;", args.fOutputColor, gain, bias);
241 fragBuilder->codeAppendf("%s.a = saturate(%s.a);", args.fOutputColor, args.fOutputColor);
242 fragBuilder->codeAppendf("%s.rgb = clamp(%s.rgb, 0.0, %s.a);",
243 args.fOutputColor, args.fOutputColor, args.fOutputColor);
244 } else {
245 auto sample = this->invokeChild(0, args);
246 fragBuilder->codeAppendf("half4 c = %s;", sample.c_str());
247 fragBuilder->codeAppendf("%s.a = c.a;", args.fOutputColor);
248 fragBuilder->codeAppendf("%s.rgb = saturate(sum.rgb * %s + %s);", args.fOutputColor, gain, bias);
249 fragBuilder->codeAppendf("%s.rgb *= %s.a;", args.fOutputColor, args.fOutputColor);
250 }
251 fragBuilder->codeAppendf("%s *= %s;\n", args.fOutputColor, args.fInputColor);
252}
253
254void GrGLMatrixConvolutionEffect::GenKey(const GrProcessor& processor,
255 const GrShaderCaps&, GrProcessorKeyBuilder* b) {
256 const GrMatrixConvolutionEffect& m = processor.cast<GrMatrixConvolutionEffect>();
257 SkASSERT(m.kernelSize().width() <= 0x7FFF && m.kernelSize().height() <= 0xFFFF);
258 uint32_t key = m.kernelSize().width() << 16 | m.kernelSize().height();
259 key |= m.convolveAlpha() ? 1U << 31 : 0;
260 b->add32(key);
261}
262
263void GrGLMatrixConvolutionEffect::onSetData(const GrGLSLProgramDataManager& pdman,
264 const GrFragmentProcessor& processor) {
265 const GrMatrixConvolutionEffect& conv = processor.cast<GrMatrixConvolutionEffect>();
266 pdman.set2f(fKernelOffsetUni, conv.kernelOffset().fX, conv.kernelOffset().fY);
267 float totalGain = conv.gain();
268 if (conv.kernelIsSampled()) {
269 totalGain *= conv.kernelSampleGain();
270 pdman.set1f(fKernelBiasUni, conv.kernelSampleBias());
271 } else {
272 int kernelCount = conv.kernelSize().area();
273 int arrayCount = (kernelCount + 3) / 4;
274 SkASSERT(4 * arrayCount >= kernelCount);
275 pdman.set4fv(fKernelUni, arrayCount, conv.kernel());
276 }
277 pdman.set1f(fBiasUni, conv.bias());
278 pdman.set1f(fGainUni, totalGain);
279}
280
281GrMatrixConvolutionEffect::GrMatrixConvolutionEffect(std::unique_ptr<GrFragmentProcessor> child,
282 const KernelWrapper& kernel,
283 std::unique_ptr<GrFragmentProcessor> kernelFP,
284 SkScalar gain,
285 SkScalar bias,
286 const SkIPoint& kernelOffset,
287 bool convolveAlpha)
288 // To advertise either the modulation or opaqueness optimizations we'd have to examine the
289 // parameters.
290 : INHERITED(kGrMatrixConvolutionEffect_ClassID, kNone_OptimizationFlags)
291 , fKernel(kernel)
292 , fGain(SkScalarToFloat(gain))
293 , fBias(SkScalarToFloat(bias) / 255.0f)
294 , fConvolveAlpha(convolveAlpha) {
295 this->registerChild(std::move(child), SkSL::SampleUsage::Explicit());
296 this->registerChild(std::move(kernelFP), SkSL::SampleUsage::Explicit());
297 fKernelOffset = {static_cast<float>(kernelOffset.x()),
298 static_cast<float>(kernelOffset.y())};
299 this->setUsesSampleCoordsDirectly();
300}
301
302GrMatrixConvolutionEffect::GrMatrixConvolutionEffect(const GrMatrixConvolutionEffect& that)
303 : INHERITED(kGrMatrixConvolutionEffect_ClassID, kNone_OptimizationFlags)
304 , fKernel(that.fKernel)
305 , fGain(that.fGain)
306 , fBias(that.fBias)
307 , fKernelOffset(that.fKernelOffset)
308 , fConvolveAlpha(that.fConvolveAlpha) {
309 this->cloneAndRegisterAllChildProcessors(that);
310 this->setUsesSampleCoordsDirectly();
311}
312
313std::unique_ptr<GrFragmentProcessor> GrMatrixConvolutionEffect::clone() const {
314 return std::unique_ptr<GrFragmentProcessor>(new GrMatrixConvolutionEffect(*this));
315}
316
317void GrMatrixConvolutionEffect::onGetGLSLProcessorKey(const GrShaderCaps& caps,
318 GrProcessorKeyBuilder* b) const {
319 GrGLMatrixConvolutionEffect::GenKey(*this, caps, b);
320}
321
322GrGLSLFragmentProcessor* GrMatrixConvolutionEffect::onCreateGLSLInstance() const {
323 return new GrGLMatrixConvolutionEffect;
324}
325
326bool GrMatrixConvolutionEffect::onIsEqual(const GrFragmentProcessor& sBase) const {
327 const GrMatrixConvolutionEffect& s = sBase.cast<GrMatrixConvolutionEffect>();
328 return fKernel == s.fKernel &&
329 fGain == s.gain() &&
330 fBias == s.bias() &&
331 fKernelOffset == s.kernelOffset() &&
332 fConvolveAlpha == s.convolveAlpha();
333}
334
335static void fill_in_1D_gaussian_kernel_with_stride(float* kernel, int size, int stride,
336 float twoSigmaSqrd) {
337 SkASSERT(!SkScalarNearlyZero(twoSigmaSqrd, SK_ScalarNearlyZero));
338
339 const float sigmaDenom = 1.0f / twoSigmaSqrd;
340 const int radius = size / 2;
341
342 float sum = 0.0f;
343 for (int i = 0; i < size; ++i) {
344 float term = static_cast<float>(i - radius);
345 // Note that the constant term (1/(sqrt(2*pi*sigma^2)) of the Gaussian
346 // is dropped here, since we renormalize the kernel below.
347 kernel[i * stride] = sk_float_exp(-term * term * sigmaDenom);
348 sum += kernel[i * stride];
349 }
350 // Normalize the kernel
351 float scale = 1.0f / sum;
352 for (int i = 0; i < size; ++i) {
353 kernel[i * stride] *= scale;
354 }
355}
356
357static void fill_in_2D_gaussian_kernel(float* kernel, int width, int height,
358 SkScalar sigmaX, SkScalar sigmaY) {
359 const float twoSigmaSqrdX = 2.0f * SkScalarToFloat(SkScalarSquare(sigmaX));
360 const float twoSigmaSqrdY = 2.0f * SkScalarToFloat(SkScalarSquare(sigmaY));
361
362 // TODO: in all of these degenerate cases we're uploading (and using) a whole lot of zeros.
363 if (SkScalarNearlyZero(twoSigmaSqrdX, SK_ScalarNearlyZero) ||
364 SkScalarNearlyZero(twoSigmaSqrdY, SK_ScalarNearlyZero)) {
365 // In this case the 2D Gaussian degenerates to a 1D Gaussian (in X or Y) or a point
366 SkASSERT(3 == width || 3 == height);
367 std::fill_n(kernel, width*height, 0);
368
369 if (SkScalarNearlyZero(twoSigmaSqrdX, SK_ScalarNearlyZero) &&
370 SkScalarNearlyZero(twoSigmaSqrdY, SK_ScalarNearlyZero)) {
371 // A point
372 SkASSERT(3 == width && 3 == height);
373 kernel[4] = 1.0f;
374 } else if (SkScalarNearlyZero(twoSigmaSqrdX, SK_ScalarNearlyZero)) {
375 // A 1D Gaussian in Y
376 SkASSERT(3 == width);
377 // Down the middle column of the kernel with a stride of width
378 fill_in_1D_gaussian_kernel_with_stride(&kernel[1], height, width, twoSigmaSqrdY);
379 } else {
380 // A 1D Gaussian in X
381 SkASSERT(SkScalarNearlyZero(twoSigmaSqrdY, SK_ScalarNearlyZero));
382 SkASSERT(3 == height);
383 // Down the middle row of the kernel with a stride of 1
384 fill_in_1D_gaussian_kernel_with_stride(&kernel[width], width, 1, twoSigmaSqrdX);
385 }
386 return;
387 }
388
389 const float sigmaXDenom = 1.0f / twoSigmaSqrdX;
390 const float sigmaYDenom = 1.0f / twoSigmaSqrdY;
391 const int xRadius = width / 2;
392 const int yRadius = height / 2;
393
394 float sum = 0.0f;
395 for (int x = 0; x < width; x++) {
396 float xTerm = static_cast<float>(x - xRadius);
397 xTerm = xTerm * xTerm * sigmaXDenom;
398 for (int y = 0; y < height; y++) {
399 float yTerm = static_cast<float>(y - yRadius);
400 float xyTerm = sk_float_exp(-(xTerm + yTerm * yTerm * sigmaYDenom));
401 // Note that the constant term (1/(sqrt(2*pi*sigma^2)) of the Gaussian
402 // is dropped here, since we renormalize the kernel below.
403 kernel[y * width + x] = xyTerm;
404 sum += xyTerm;
405 }
406 }
407 // Normalize the kernel
408 float scale = 1.0f / sum;
409 for (int i = 0; i < width * height; ++i) {
410 kernel[i] *= scale;
411 }
412}
413
414std::unique_ptr<GrFragmentProcessor> GrMatrixConvolutionEffect::Make(GrRecordingContext* context,
415 GrSurfaceProxyView srcView,
416 const SkIRect& srcBounds,
417 const SkISize& kernelSize,
418 const SkScalar* kernel,
419 SkScalar gain,
420 SkScalar bias,
421 const SkIPoint& kernelOffset,
422 GrSamplerState::WrapMode wm,
423 bool convolveAlpha,
424 const GrCaps& caps) {
425 auto [kernelWrapper, kernelFP] = KernelWrapper::Make(context, kernelSize, caps, kernel);
426 if (!kernelWrapper.isValid()) {
427 return nullptr;
428 }
429 GrSamplerState sampler(wm, GrSamplerState::Filter::kNearest);
430 auto child = GrTextureEffect::MakeSubset(std::move(srcView), kPremul_SkAlphaType, SkMatrix::I(),
431 sampler, SkRect::Make(srcBounds), caps);
432 return std::unique_ptr<GrFragmentProcessor>(
433 new GrMatrixConvolutionEffect(std::move(child), kernelWrapper, std::move(kernelFP),
434 gain, bias, kernelOffset, convolveAlpha));
435}
436
437std::unique_ptr<GrFragmentProcessor> GrMatrixConvolutionEffect::MakeGaussian(
438 GrRecordingContext* context,
439 GrSurfaceProxyView srcView,
440 const SkIRect& srcBounds,
441 const SkISize& kernelSize,
442 SkScalar gain,
443 SkScalar bias,
444 const SkIPoint& kernelOffset,
445 GrSamplerState::WrapMode wm,
446 bool convolveAlpha,
447 SkScalar sigmaX,
448 SkScalar sigmaY,
449 const GrCaps& caps) {
450 SkAutoSTMalloc<32, float> kernel(kernelSize.area());
451 fill_in_2D_gaussian_kernel(kernel.get(), kernelSize.width(), kernelSize.height(),
452 sigmaX, sigmaY);
453 return Make(context, std::move(srcView), srcBounds, kernelSize, kernel.get(),
454 gain, bias, kernelOffset, wm, convolveAlpha, caps);
455}
456
457GR_DEFINE_FRAGMENT_PROCESSOR_TEST(GrMatrixConvolutionEffect);
458
459#if GR_TEST_UTILS
460std::unique_ptr<GrFragmentProcessor> GrMatrixConvolutionEffect::TestCreate(GrProcessorTestData* d) {
461 auto [view, ct, at] = d->randomView();
462
463 static constexpr size_t kMaxTestKernelSize = 2 * kMaxUniformSize;
464 int width = d->fRandom->nextRangeU(1, kMaxTestKernelSize);
465 int height = d->fRandom->nextRangeU(1, kMaxTestKernelSize / width);
466 SkISize kernelSize = SkISize::Make(width, height);
467 std::unique_ptr<SkScalar[]> kernel(new SkScalar[width * height]);
468 for (int i = 0; i < width * height; i++) {
469 kernel.get()[i] = d->fRandom->nextSScalar1();
470 }
471 SkScalar gain = d->fRandom->nextSScalar1();
472 SkScalar bias = d->fRandom->nextSScalar1();
473
474 uint32_t kernalOffsetX = d->fRandom->nextRangeU(0, kernelSize.width());
475 uint32_t kernalOffsetY = d->fRandom->nextRangeU(0, kernelSize.height());
476 SkIPoint kernelOffset = SkIPoint::Make(kernalOffsetX, kernalOffsetY);
477
478 uint32_t boundsX = d->fRandom->nextRangeU(0, view.width());
479 uint32_t boundsY = d->fRandom->nextRangeU(0, view.height());
480 uint32_t boundsW = d->fRandom->nextRangeU(0, view.width());
481 uint32_t boundsH = d->fRandom->nextRangeU(0, view.height());
482 SkIRect bounds = SkIRect::MakeXYWH(boundsX, boundsY, boundsW, boundsH);
483
484 auto wm = static_cast<GrSamplerState::WrapMode>(
485 d->fRandom->nextULessThan(GrSamplerState::kWrapModeCount));
486 bool convolveAlpha = d->fRandom->nextBool();
487 return GrMatrixConvolutionEffect::Make(d->context(),
488 std::move(view),
489 bounds,
490 kernelSize,
491 kernel.get(),
492 gain,
493 bias,
494 kernelOffset,
495 wm,
496 convolveAlpha,
497 *d->caps());
498}
499#endif
500