1 | // Copyright 2016 The SwiftShader Authors. All Rights Reserved. |
2 | // |
3 | // Licensed under the Apache License, Version 2.0 (the "License"); |
4 | // you may not use this file except in compliance with the License. |
5 | // You may obtain a copy of the License at |
6 | // |
7 | // http://www.apache.org/licenses/LICENSE-2.0 |
8 | // |
9 | // Unless required by applicable law or agreed to in writing, software |
10 | // distributed under the License is distributed on an "AS IS" BASIS, |
11 | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
12 | // See the License for the specific language governing permissions and |
13 | // limitations under the License. |
14 | |
15 | // Program.cpp: Implements the Program class. Implements GL program objects |
16 | // and related functionality. [OpenGL ES 2.0.24] section 2.10.3 page 28. |
17 | |
18 | #include "Program.h" |
19 | |
20 | #include "main.h" |
21 | #include "Buffer.h" |
22 | #include "Shader.h" |
23 | #include "TransformFeedback.h" |
24 | #include "utilities.h" |
25 | #include "common/debug.h" |
26 | #include "Shader/PixelShader.hpp" |
27 | #include "Shader/VertexShader.hpp" |
28 | |
29 | #include <algorithm> |
30 | #include <string> |
31 | #include <stdlib.h> |
32 | |
33 | namespace es2 |
34 | { |
35 | unsigned int Program::currentSerial = 1; |
36 | |
37 | std::string str(int i) |
38 | { |
39 | char buffer[20]; |
40 | sprintf(buffer, "%d" , i); |
41 | return buffer; |
42 | } |
43 | |
44 | Uniform::BlockInfo::BlockInfo(const glsl::Uniform& uniform, int blockIndex) |
45 | { |
46 | if(blockIndex >= 0) |
47 | { |
48 | index = blockIndex; |
49 | offset = uniform.blockInfo.offset; |
50 | arrayStride = uniform.blockInfo.arrayStride; |
51 | matrixStride = uniform.blockInfo.matrixStride; |
52 | isRowMajorMatrix = uniform.blockInfo.isRowMajorMatrix; |
53 | } |
54 | } |
55 | |
56 | Uniform::Uniform(const glsl::Uniform &uniform, const BlockInfo &blockInfo) |
57 | : type(uniform.type), precision(uniform.precision), name(uniform.name), |
58 | arraySize(uniform.arraySize), blockInfo(blockInfo), fields(uniform.fields) |
59 | { |
60 | if((blockInfo.index == -1) && uniform.fields.empty()) |
61 | { |
62 | size_t bytes = UniformTypeSize(type) * size(); |
63 | data = new unsigned char[bytes]; |
64 | memset(data, 0, bytes); |
65 | } |
66 | } |
67 | |
68 | Uniform::~Uniform() |
69 | { |
70 | delete[] data; |
71 | } |
72 | |
73 | bool Uniform::isArray() const |
74 | { |
75 | return arraySize >= 1; |
76 | } |
77 | |
78 | int Uniform::size() const |
79 | { |
80 | return arraySize > 0 ? arraySize : 1; |
81 | } |
82 | |
83 | int Uniform::registerCount() const |
84 | { |
85 | return size() * VariableRegisterCount(type); |
86 | } |
87 | |
88 | UniformBlock::UniformBlock(const std::string &name, unsigned int elementIndex, unsigned int dataSize, std::vector<unsigned int> memberUniformIndexes) : |
89 | name(name), elementIndex(elementIndex), dataSize(dataSize), memberUniformIndexes(memberUniformIndexes), psRegisterIndex(GL_INVALID_INDEX), vsRegisterIndex(GL_INVALID_INDEX) |
90 | { |
91 | } |
92 | |
93 | void UniformBlock::setRegisterIndex(GLenum shader, unsigned int registerIndex) |
94 | { |
95 | switch(shader) |
96 | { |
97 | case GL_VERTEX_SHADER: |
98 | vsRegisterIndex = registerIndex; |
99 | break; |
100 | case GL_FRAGMENT_SHADER: |
101 | psRegisterIndex = registerIndex; |
102 | break; |
103 | default: |
104 | UNREACHABLE(shader); |
105 | } |
106 | } |
107 | |
108 | bool UniformBlock::isArrayElement() const |
109 | { |
110 | return elementIndex != GL_INVALID_INDEX; |
111 | } |
112 | |
113 | bool UniformBlock::isReferencedByVertexShader() const |
114 | { |
115 | return vsRegisterIndex != GL_INVALID_INDEX; |
116 | } |
117 | |
118 | bool UniformBlock::isReferencedByFragmentShader() const |
119 | { |
120 | return psRegisterIndex != GL_INVALID_INDEX; |
121 | } |
122 | |
123 | UniformLocation::UniformLocation(const std::string &name, unsigned int element, unsigned int index) : name(name), element(element), index(index) |
124 | { |
125 | } |
126 | |
127 | LinkedVarying::LinkedVarying() |
128 | { |
129 | } |
130 | |
131 | LinkedVarying::LinkedVarying(const std::string &name, GLenum type, GLsizei size, int reg, int col) |
132 | : name(name), type(type), size(size), reg(reg), col(col) |
133 | { |
134 | } |
135 | |
136 | Program::Program(ResourceManager *manager, GLuint handle) : serial(issueSerial()), resourceManager(manager), handle(handle) |
137 | { |
138 | fragmentShader = 0; |
139 | vertexShader = 0; |
140 | pixelBinary = 0; |
141 | vertexBinary = 0; |
142 | |
143 | transformFeedbackBufferMode = GL_INTERLEAVED_ATTRIBS; |
144 | totalLinkedVaryingsComponents = 0; |
145 | |
146 | infoLog = 0; |
147 | validated = false; |
148 | |
149 | resetUniformBlockBindings(); |
150 | unlink(); |
151 | |
152 | orphaned = false; |
153 | retrievableBinary = false; |
154 | referenceCount = 0; |
155 | } |
156 | |
157 | Program::~Program() |
158 | { |
159 | unlink(); |
160 | |
161 | if(vertexShader) |
162 | { |
163 | vertexShader->release(); |
164 | } |
165 | |
166 | if(fragmentShader) |
167 | { |
168 | fragmentShader->release(); |
169 | } |
170 | } |
171 | |
172 | bool Program::attachShader(Shader *shader) |
173 | { |
174 | if(shader->getType() == GL_VERTEX_SHADER) |
175 | { |
176 | if(vertexShader) |
177 | { |
178 | return false; |
179 | } |
180 | |
181 | vertexShader = (VertexShader*)shader; |
182 | vertexShader->addRef(); |
183 | } |
184 | else if(shader->getType() == GL_FRAGMENT_SHADER) |
185 | { |
186 | if(fragmentShader) |
187 | { |
188 | return false; |
189 | } |
190 | |
191 | fragmentShader = (FragmentShader*)shader; |
192 | fragmentShader->addRef(); |
193 | } |
194 | else UNREACHABLE(shader->getType()); |
195 | |
196 | return true; |
197 | } |
198 | |
199 | bool Program::detachShader(Shader *shader) |
200 | { |
201 | if(shader->getType() == GL_VERTEX_SHADER) |
202 | { |
203 | if(vertexShader != shader) |
204 | { |
205 | return false; |
206 | } |
207 | |
208 | vertexShader->release(); |
209 | vertexShader = 0; |
210 | } |
211 | else if(shader->getType() == GL_FRAGMENT_SHADER) |
212 | { |
213 | if(fragmentShader != shader) |
214 | { |
215 | return false; |
216 | } |
217 | |
218 | fragmentShader->release(); |
219 | fragmentShader = 0; |
220 | } |
221 | else UNREACHABLE(shader->getType()); |
222 | |
223 | return true; |
224 | } |
225 | |
226 | int Program::getAttachedShadersCount() const |
227 | { |
228 | return (vertexShader ? 1 : 0) + (fragmentShader ? 1 : 0); |
229 | } |
230 | |
231 | sw::PixelShader *Program::getPixelShader() |
232 | { |
233 | return pixelBinary; |
234 | } |
235 | |
236 | sw::VertexShader *Program::getVertexShader() |
237 | { |
238 | return vertexBinary; |
239 | } |
240 | |
241 | GLint Program::getFragDataLocation(const GLchar *name) |
242 | { |
243 | if(name && linked) |
244 | { |
245 | std::string baseName(name); |
246 | unsigned int subscript = GL_INVALID_INDEX; |
247 | baseName = ParseUniformName(baseName, &subscript); |
248 | for(auto const &varying : fragmentShader->varyings) |
249 | { |
250 | if(varying.qualifier == EvqFragmentOut) |
251 | { |
252 | if(varying.name == baseName) |
253 | { |
254 | ASSERT(varying.registerIndex >= 0); |
255 | |
256 | if(subscript == GL_INVALID_INDEX) // No subscript |
257 | { |
258 | return varying.registerIndex; |
259 | } |
260 | |
261 | int rowCount = VariableRowCount(varying.type); |
262 | int colCount = VariableColumnCount(varying.type); |
263 | |
264 | return varying.registerIndex + (rowCount > 1 ? colCount * subscript : subscript); |
265 | } |
266 | } |
267 | } |
268 | } |
269 | |
270 | return -1; |
271 | } |
272 | |
273 | void Program::bindAttributeLocation(GLuint index, const char *name) |
274 | { |
275 | attributeBinding[name] = index; |
276 | } |
277 | |
278 | GLint Program::getAttributeLocation(const char *name) |
279 | { |
280 | return name ? getAttributeLocation(std::string(name)) : -1; |
281 | } |
282 | |
283 | int Program::getAttributeStream(int attributeIndex) |
284 | { |
285 | ASSERT(attributeIndex >= 0 && attributeIndex < MAX_VERTEX_ATTRIBS); |
286 | |
287 | return attributeStream[attributeIndex]; |
288 | } |
289 | |
290 | // Returns the index of the texture image unit (0-19) corresponding to a sampler index (0-15 for the pixel shader and 0-3 for the vertex shader) |
291 | GLint Program::getSamplerMapping(sw::SamplerType type, unsigned int samplerIndex) |
292 | { |
293 | GLint logicalTextureUnit = -1; |
294 | |
295 | switch(type) |
296 | { |
297 | case sw::SAMPLER_PIXEL: |
298 | ASSERT(samplerIndex < sizeof(samplersPS) / sizeof(samplersPS[0])); |
299 | |
300 | if(samplersPS[samplerIndex].active) |
301 | { |
302 | logicalTextureUnit = samplersPS[samplerIndex].logicalTextureUnit; |
303 | } |
304 | break; |
305 | case sw::SAMPLER_VERTEX: |
306 | ASSERT(samplerIndex < sizeof(samplersVS) / sizeof(samplersVS[0])); |
307 | |
308 | if(samplersVS[samplerIndex].active) |
309 | { |
310 | logicalTextureUnit = samplersVS[samplerIndex].logicalTextureUnit; |
311 | } |
312 | break; |
313 | default: UNREACHABLE(type); |
314 | } |
315 | |
316 | if(logicalTextureUnit < MAX_COMBINED_TEXTURE_IMAGE_UNITS) |
317 | { |
318 | return logicalTextureUnit; |
319 | } |
320 | |
321 | return -1; |
322 | } |
323 | |
324 | // Returns the texture type for a given sampler type and index (0-15 for the pixel shader and 0-3 for the vertex shader) |
325 | TextureType Program::getSamplerTextureType(sw::SamplerType type, unsigned int samplerIndex) |
326 | { |
327 | switch(type) |
328 | { |
329 | case sw::SAMPLER_PIXEL: |
330 | ASSERT(samplerIndex < sizeof(samplersPS)/sizeof(samplersPS[0])); |
331 | ASSERT(samplersPS[samplerIndex].active); |
332 | return samplersPS[samplerIndex].textureType; |
333 | case sw::SAMPLER_VERTEX: |
334 | ASSERT(samplerIndex < sizeof(samplersVS)/sizeof(samplersVS[0])); |
335 | ASSERT(samplersVS[samplerIndex].active); |
336 | return samplersVS[samplerIndex].textureType; |
337 | default: UNREACHABLE(type); |
338 | } |
339 | |
340 | return TEXTURE_2D; |
341 | } |
342 | |
343 | Uniform *Program::getUniform(const std::string &name) const |
344 | { |
345 | unsigned int subscript = GL_INVALID_INDEX; |
346 | std::string baseName = es2::ParseUniformName(name, &subscript); |
347 | |
348 | for(size_t index = 0; index < uniforms.size(); index++) |
349 | { |
350 | if(uniforms[index]->name == baseName) |
351 | { |
352 | return uniforms[index]; |
353 | } |
354 | } |
355 | |
356 | return nullptr; |
357 | } |
358 | |
359 | GLint Program::getUniformLocation(const std::string &name) const |
360 | { |
361 | unsigned int subscript = GL_INVALID_INDEX; |
362 | std::string baseName = es2::ParseUniformName(name, &subscript); |
363 | |
364 | for(size_t location = 0; location < uniformIndex.size(); location++) |
365 | { |
366 | if(uniformIndex[location].name == baseName) |
367 | { |
368 | const unsigned int index = uniformIndex[location].index; |
369 | |
370 | if(index != GL_INVALID_INDEX) |
371 | { |
372 | if(subscript == GL_INVALID_INDEX) |
373 | { |
374 | return (GLint)location; |
375 | } |
376 | else if(uniforms[index]->isArray()) |
377 | { |
378 | if(uniformIndex[location].element == subscript) |
379 | { |
380 | return (GLint)location; |
381 | } |
382 | } |
383 | } |
384 | } |
385 | } |
386 | |
387 | return -1; |
388 | } |
389 | |
390 | GLuint Program::getUniformIndex(const std::string &name) const |
391 | { |
392 | unsigned int subscript = GL_INVALID_INDEX; |
393 | std::string baseName = es2::ParseUniformName(name, &subscript); |
394 | |
395 | // The app is not allowed to specify array indices other than 0 for arrays of basic types |
396 | if(subscript != 0 && subscript != GL_INVALID_INDEX) |
397 | { |
398 | return GL_INVALID_INDEX; |
399 | } |
400 | |
401 | size_t numUniforms = uniforms.size(); |
402 | for(GLuint index = 0; index < numUniforms; index++) |
403 | { |
404 | if(uniforms[index]->name == baseName) |
405 | { |
406 | if(uniforms[index]->isArray() || subscript == GL_INVALID_INDEX) |
407 | { |
408 | return index; |
409 | } |
410 | } |
411 | } |
412 | |
413 | return GL_INVALID_INDEX; |
414 | } |
415 | |
416 | void Program::getActiveUniformBlockiv(GLuint uniformBlockIndex, GLenum pname, GLint *params) const |
417 | { |
418 | ASSERT(uniformBlockIndex < getActiveUniformBlockCount()); |
419 | |
420 | const UniformBlock &uniformBlock = *uniformBlocks[uniformBlockIndex]; |
421 | |
422 | switch(pname) |
423 | { |
424 | case GL_UNIFORM_BLOCK_DATA_SIZE: |
425 | *params = static_cast<GLint>(uniformBlock.dataSize); |
426 | break; |
427 | case GL_UNIFORM_BLOCK_NAME_LENGTH: |
428 | *params = static_cast<GLint>(uniformBlock.name.size() + 1 + (uniformBlock.isArrayElement() ? 3 : 0)); |
429 | break; |
430 | case GL_UNIFORM_BLOCK_ACTIVE_UNIFORMS: |
431 | *params = static_cast<GLint>(uniformBlock.memberUniformIndexes.size()); |
432 | break; |
433 | case GL_UNIFORM_BLOCK_ACTIVE_UNIFORM_INDICES: |
434 | { |
435 | for(unsigned int blockMemberIndex = 0; blockMemberIndex < uniformBlock.memberUniformIndexes.size(); blockMemberIndex++) |
436 | { |
437 | params[blockMemberIndex] = static_cast<GLint>(uniformBlock.memberUniformIndexes[blockMemberIndex]); |
438 | } |
439 | } |
440 | break; |
441 | case GL_UNIFORM_BLOCK_REFERENCED_BY_VERTEX_SHADER: |
442 | *params = static_cast<GLint>(uniformBlock.isReferencedByVertexShader()); |
443 | break; |
444 | case GL_UNIFORM_BLOCK_REFERENCED_BY_FRAGMENT_SHADER: |
445 | *params = static_cast<GLint>(uniformBlock.isReferencedByFragmentShader()); |
446 | break; |
447 | default: UNREACHABLE(pname); |
448 | } |
449 | } |
450 | |
451 | GLuint Program::getUniformBlockIndex(const std::string &name) const |
452 | { |
453 | unsigned int subscript = GL_INVALID_INDEX; |
454 | std::string baseName = es2::ParseUniformName(name, &subscript); |
455 | |
456 | size_t numUniformBlocks = getActiveUniformBlockCount(); |
457 | for(GLuint blockIndex = 0; blockIndex < numUniformBlocks; blockIndex++) |
458 | { |
459 | const UniformBlock &uniformBlock = *uniformBlocks[blockIndex]; |
460 | if(uniformBlock.name == baseName) |
461 | { |
462 | const bool arrayElementZero = (subscript == GL_INVALID_INDEX && uniformBlock.elementIndex == 0); |
463 | if(subscript == uniformBlock.elementIndex || arrayElementZero) |
464 | { |
465 | return blockIndex; |
466 | } |
467 | } |
468 | } |
469 | |
470 | return GL_INVALID_INDEX; |
471 | } |
472 | |
473 | void Program::bindUniformBlock(GLuint uniformBlockIndex, GLuint uniformBlockBinding) |
474 | { |
475 | ASSERT(uniformBlockIndex < getActiveUniformBlockCount()); |
476 | |
477 | uniformBlockBindings[uniformBlockIndex] = uniformBlockBinding; |
478 | } |
479 | |
480 | GLuint Program::getUniformBlockBinding(GLuint uniformBlockIndex) const |
481 | { |
482 | ASSERT(uniformBlockIndex < getActiveUniformBlockCount()); |
483 | |
484 | return uniformBlockBindings[uniformBlockIndex]; |
485 | } |
486 | |
487 | void Program::resetUniformBlockBindings() |
488 | { |
489 | for(unsigned int blockId = 0; blockId < MAX_UNIFORM_BUFFER_BINDINGS; blockId++) |
490 | { |
491 | uniformBlockBindings[blockId] = 0; |
492 | } |
493 | } |
494 | |
495 | bool Program::setUniformfv(GLint location, GLsizei count, const GLfloat *v, int numElements) |
496 | { |
497 | ASSERT(numElements >= 1 && numElements <= 4); |
498 | |
499 | static GLenum floatType[] = { GL_FLOAT, GL_FLOAT_VEC2, GL_FLOAT_VEC3, GL_FLOAT_VEC4 }; |
500 | static GLenum boolType[] = { GL_BOOL, GL_BOOL_VEC2, GL_BOOL_VEC3, GL_BOOL_VEC4 }; |
501 | |
502 | if(location < 0 || location >= (int)uniformIndex.size() || (uniformIndex[location].index == GL_INVALID_INDEX)) |
503 | { |
504 | return false; |
505 | } |
506 | |
507 | Uniform *targetUniform = uniforms[uniformIndex[location].index]; |
508 | targetUniform->dirty = true; |
509 | |
510 | int size = targetUniform->size(); |
511 | |
512 | if(size == 1 && count > 1) |
513 | { |
514 | return false; // Attempting to write an array to a non-array uniform is an INVALID_OPERATION |
515 | } |
516 | |
517 | count = std::min(size - (int)uniformIndex[location].element, count); |
518 | |
519 | int index = numElements - 1; |
520 | if(targetUniform->type == floatType[index]) |
521 | { |
522 | memcpy(targetUniform->data + uniformIndex[location].element * sizeof(GLfloat)* numElements, |
523 | v, numElements * sizeof(GLfloat) * count); |
524 | } |
525 | else if(targetUniform->type == boolType[index]) |
526 | { |
527 | GLboolean *boolParams = (GLboolean*)targetUniform->data + uniformIndex[location].element * numElements; |
528 | |
529 | for(int i = 0; i < count * numElements; i++) |
530 | { |
531 | boolParams[i] = (v[i] == 0.0f) ? GL_FALSE : GL_TRUE; |
532 | } |
533 | } |
534 | else |
535 | { |
536 | return false; |
537 | } |
538 | |
539 | return true; |
540 | } |
541 | |
542 | bool Program::setUniform1fv(GLint location, GLsizei count, const GLfloat* v) |
543 | { |
544 | return setUniformfv(location, count, v, 1); |
545 | } |
546 | |
547 | bool Program::setUniform2fv(GLint location, GLsizei count, const GLfloat *v) |
548 | { |
549 | return setUniformfv(location, count, v, 2); |
550 | } |
551 | |
552 | bool Program::setUniform3fv(GLint location, GLsizei count, const GLfloat *v) |
553 | { |
554 | return setUniformfv(location, count, v, 3); |
555 | } |
556 | |
557 | bool Program::setUniform4fv(GLint location, GLsizei count, const GLfloat *v) |
558 | { |
559 | return setUniformfv(location, count, v, 4); |
560 | } |
561 | |
562 | bool Program::setUniformMatrixfv(GLint location, GLsizei count, GLboolean transpose, const GLfloat *value, GLenum type) |
563 | { |
564 | int numElements; |
565 | switch(type) |
566 | { |
567 | case GL_FLOAT_MAT2: |
568 | numElements = 4; |
569 | break; |
570 | case GL_FLOAT_MAT2x3: |
571 | case GL_FLOAT_MAT3x2: |
572 | numElements = 6; |
573 | break; |
574 | case GL_FLOAT_MAT2x4: |
575 | case GL_FLOAT_MAT4x2: |
576 | numElements = 8; |
577 | break; |
578 | case GL_FLOAT_MAT3: |
579 | numElements = 9; |
580 | break; |
581 | case GL_FLOAT_MAT3x4: |
582 | case GL_FLOAT_MAT4x3: |
583 | numElements = 12; |
584 | break; |
585 | case GL_FLOAT_MAT4: |
586 | numElements = 16; |
587 | break; |
588 | default: |
589 | return false; |
590 | } |
591 | |
592 | if(location < 0 || location >= (int)uniformIndex.size() || (uniformIndex[location].index == GL_INVALID_INDEX)) |
593 | { |
594 | return false; |
595 | } |
596 | |
597 | Uniform *targetUniform = uniforms[uniformIndex[location].index]; |
598 | targetUniform->dirty = true; |
599 | |
600 | if(targetUniform->type != type) |
601 | { |
602 | return false; |
603 | } |
604 | |
605 | int size = targetUniform->size(); |
606 | |
607 | if(size == 1 && count > 1) |
608 | { |
609 | return false; // Attempting to write an array to a non-array uniform is an INVALID_OPERATION |
610 | } |
611 | |
612 | count = std::min(size - (int)uniformIndex[location].element, count); |
613 | |
614 | GLfloat* dst = reinterpret_cast<GLfloat*>(targetUniform->data + uniformIndex[location].element * sizeof(GLfloat) * numElements); |
615 | |
616 | if(transpose == GL_FALSE) |
617 | { |
618 | memcpy(dst, value, numElements * sizeof(GLfloat) * count); |
619 | } |
620 | else |
621 | { |
622 | const int rowSize = VariableRowCount(type); |
623 | const int colSize = VariableColumnCount(type); |
624 | for(int n = 0; n < count; ++n) |
625 | { |
626 | for(int i = 0; i < colSize; ++i) |
627 | { |
628 | for(int j = 0; j < rowSize; ++j) |
629 | { |
630 | dst[i * rowSize + j] = value[j * colSize + i]; |
631 | } |
632 | } |
633 | dst += numElements; |
634 | value += numElements; |
635 | } |
636 | } |
637 | |
638 | |
639 | return true; |
640 | } |
641 | |
642 | bool Program::setUniformMatrix2fv(GLint location, GLsizei count, GLboolean transpose, const GLfloat *value) |
643 | { |
644 | return setUniformMatrixfv(location, count, transpose, value, GL_FLOAT_MAT2); |
645 | } |
646 | |
647 | bool Program::setUniformMatrix2x3fv(GLint location, GLsizei count, GLboolean transpose, const GLfloat *value) |
648 | { |
649 | return setUniformMatrixfv(location, count, transpose, value, GL_FLOAT_MAT2x3); |
650 | } |
651 | |
652 | bool Program::setUniformMatrix2x4fv(GLint location, GLsizei count, GLboolean transpose, const GLfloat *value) |
653 | { |
654 | return setUniformMatrixfv(location, count, transpose, value, GL_FLOAT_MAT2x4); |
655 | } |
656 | |
657 | bool Program::setUniformMatrix3fv(GLint location, GLsizei count, GLboolean transpose, const GLfloat *value) |
658 | { |
659 | return setUniformMatrixfv(location, count, transpose, value, GL_FLOAT_MAT3); |
660 | } |
661 | |
662 | bool Program::setUniformMatrix3x2fv(GLint location, GLsizei count, GLboolean transpose, const GLfloat *value) |
663 | { |
664 | return setUniformMatrixfv(location, count, transpose, value, GL_FLOAT_MAT3x2); |
665 | } |
666 | |
667 | bool Program::setUniformMatrix3x4fv(GLint location, GLsizei count, GLboolean transpose, const GLfloat *value) |
668 | { |
669 | return setUniformMatrixfv(location, count, transpose, value, GL_FLOAT_MAT3x4); |
670 | } |
671 | |
672 | bool Program::setUniformMatrix4fv(GLint location, GLsizei count, GLboolean transpose, const GLfloat *value) |
673 | { |
674 | return setUniformMatrixfv(location, count, transpose, value, GL_FLOAT_MAT4); |
675 | } |
676 | |
677 | bool Program::setUniformMatrix4x2fv(GLint location, GLsizei count, GLboolean transpose, const GLfloat *value) |
678 | { |
679 | return setUniformMatrixfv(location, count, transpose, value, GL_FLOAT_MAT4x2); |
680 | } |
681 | |
682 | bool Program::setUniformMatrix4x3fv(GLint location, GLsizei count, GLboolean transpose, const GLfloat *value) |
683 | { |
684 | return setUniformMatrixfv(location, count, transpose, value, GL_FLOAT_MAT4x3); |
685 | } |
686 | |
687 | bool Program::setUniform1iv(GLint location, GLsizei count, const GLint *v) |
688 | { |
689 | if(location < 0 || location >= (int)uniformIndex.size() || (uniformIndex[location].index == GL_INVALID_INDEX)) |
690 | { |
691 | return false; |
692 | } |
693 | |
694 | Uniform *targetUniform = uniforms[uniformIndex[location].index]; |
695 | targetUniform->dirty = true; |
696 | |
697 | int size = targetUniform->size(); |
698 | |
699 | if(size == 1 && count > 1) |
700 | { |
701 | return false; // Attempting to write an array to a non-array uniform is an INVALID_OPERATION |
702 | } |
703 | |
704 | count = std::min(size - (int)uniformIndex[location].element, count); |
705 | |
706 | if(targetUniform->type == GL_INT || IsSamplerUniform(targetUniform->type)) |
707 | { |
708 | memcpy(targetUniform->data + uniformIndex[location].element * sizeof(GLint), |
709 | v, sizeof(GLint) * count); |
710 | } |
711 | else if(targetUniform->type == GL_BOOL) |
712 | { |
713 | GLboolean *boolParams = new GLboolean[count]; |
714 | |
715 | for(int i = 0; i < count; i++) |
716 | { |
717 | if(v[i] == 0) |
718 | { |
719 | boolParams[i] = GL_FALSE; |
720 | } |
721 | else |
722 | { |
723 | boolParams[i] = GL_TRUE; |
724 | } |
725 | } |
726 | |
727 | memcpy(targetUniform->data + uniformIndex[location].element * sizeof(GLboolean), |
728 | boolParams, sizeof(GLboolean) * count); |
729 | |
730 | delete[] boolParams; |
731 | } |
732 | else |
733 | { |
734 | return false; |
735 | } |
736 | |
737 | return true; |
738 | } |
739 | |
740 | bool Program::setUniformiv(GLint location, GLsizei count, const GLint *v, int numElements) |
741 | { |
742 | static GLenum intType[] = { GL_INT, GL_INT_VEC2, GL_INT_VEC3, GL_INT_VEC4 }; |
743 | static GLenum boolType[] = { GL_BOOL, GL_BOOL_VEC2, GL_BOOL_VEC3, GL_BOOL_VEC4 }; |
744 | |
745 | if(location < 0 || location >= (int)uniformIndex.size() || (uniformIndex[location].index == GL_INVALID_INDEX)) |
746 | { |
747 | return false; |
748 | } |
749 | |
750 | Uniform *targetUniform = uniforms[uniformIndex[location].index]; |
751 | targetUniform->dirty = true; |
752 | |
753 | int size = targetUniform->size(); |
754 | |
755 | if(size == 1 && count > 1) |
756 | { |
757 | return false; // Attempting to write an array to a non-array uniform is an INVALID_OPERATION |
758 | } |
759 | |
760 | count = std::min(size - (int)uniformIndex[location].element, count); |
761 | |
762 | int index = numElements - 1; |
763 | if(targetUniform->type == intType[index]) |
764 | { |
765 | memcpy(targetUniform->data + uniformIndex[location].element * sizeof(GLint)* numElements, |
766 | v, numElements * sizeof(GLint)* count); |
767 | } |
768 | else if(targetUniform->type == boolType[index]) |
769 | { |
770 | GLboolean *boolParams = new GLboolean[count * numElements]; |
771 | |
772 | for(int i = 0; i < count * numElements; i++) |
773 | { |
774 | boolParams[i] = (v[i] == 0) ? GL_FALSE : GL_TRUE; |
775 | } |
776 | |
777 | memcpy(targetUniform->data + uniformIndex[location].element * sizeof(GLboolean)* numElements, |
778 | boolParams, numElements * sizeof(GLboolean)* count); |
779 | |
780 | delete[] boolParams; |
781 | } |
782 | else |
783 | { |
784 | return false; |
785 | } |
786 | |
787 | return true; |
788 | } |
789 | |
790 | bool Program::setUniform2iv(GLint location, GLsizei count, const GLint *v) |
791 | { |
792 | return setUniformiv(location, count, v, 2); |
793 | } |
794 | |
795 | bool Program::setUniform3iv(GLint location, GLsizei count, const GLint *v) |
796 | { |
797 | return setUniformiv(location, count, v, 3); |
798 | } |
799 | |
800 | bool Program::setUniform4iv(GLint location, GLsizei count, const GLint *v) |
801 | { |
802 | return setUniformiv(location, count, v, 4); |
803 | } |
804 | |
805 | bool Program::setUniform1uiv(GLint location, GLsizei count, const GLuint *v) |
806 | { |
807 | if(location < 0 || location >= (int)uniformIndex.size() || (uniformIndex[location].index == GL_INVALID_INDEX)) |
808 | { |
809 | return false; |
810 | } |
811 | |
812 | Uniform *targetUniform = uniforms[uniformIndex[location].index]; |
813 | targetUniform->dirty = true; |
814 | |
815 | int size = targetUniform->size(); |
816 | |
817 | if(size == 1 && count > 1) |
818 | { |
819 | return false; // Attempting to write an array to a non-array uniform is an INVALID_OPERATION |
820 | } |
821 | |
822 | count = std::min(size - (int)uniformIndex[location].element, count); |
823 | |
824 | if(targetUniform->type == GL_UNSIGNED_INT) |
825 | { |
826 | memcpy(targetUniform->data + uniformIndex[location].element * sizeof(GLuint), |
827 | v, sizeof(GLuint)* count); |
828 | } |
829 | else if(targetUniform->type == GL_BOOL) |
830 | { |
831 | GLboolean *boolParams = new GLboolean[count]; |
832 | |
833 | for(int i = 0; i < count; i++) |
834 | { |
835 | if(v[i] == 0) |
836 | { |
837 | boolParams[i] = GL_FALSE; |
838 | } |
839 | else |
840 | { |
841 | boolParams[i] = GL_TRUE; |
842 | } |
843 | } |
844 | |
845 | memcpy(targetUniform->data + uniformIndex[location].element * sizeof(GLboolean), |
846 | boolParams, sizeof(GLboolean)* count); |
847 | |
848 | delete[] boolParams; |
849 | } |
850 | else |
851 | { |
852 | return false; |
853 | } |
854 | |
855 | return true; |
856 | } |
857 | |
858 | bool Program::setUniformuiv(GLint location, GLsizei count, const GLuint *v, int numElements) |
859 | { |
860 | static GLenum uintType[] = { GL_UNSIGNED_INT, GL_UNSIGNED_INT_VEC2, GL_UNSIGNED_INT_VEC3, GL_UNSIGNED_INT_VEC4 }; |
861 | static GLenum boolType[] = { GL_BOOL, GL_BOOL_VEC2, GL_BOOL_VEC3, GL_BOOL_VEC4 }; |
862 | |
863 | if(location < 0 || location >= (int)uniformIndex.size() || (uniformIndex[location].index == GL_INVALID_INDEX)) |
864 | { |
865 | return false; |
866 | } |
867 | |
868 | Uniform *targetUniform = uniforms[uniformIndex[location].index]; |
869 | targetUniform->dirty = true; |
870 | |
871 | int size = targetUniform->size(); |
872 | |
873 | if(size == 1 && count > 1) |
874 | { |
875 | return false; // Attempting to write an array to a non-array uniform is an INVALID_OPERATION |
876 | } |
877 | |
878 | count = std::min(size - (int)uniformIndex[location].element, count); |
879 | |
880 | int index = numElements - 1; |
881 | if(targetUniform->type == uintType[index]) |
882 | { |
883 | memcpy(targetUniform->data + uniformIndex[location].element * sizeof(GLuint)* numElements, |
884 | v, numElements * sizeof(GLuint)* count); |
885 | } |
886 | else if(targetUniform->type == boolType[index]) |
887 | { |
888 | GLboolean *boolParams = new GLboolean[count * numElements]; |
889 | |
890 | for(int i = 0; i < count * numElements; i++) |
891 | { |
892 | boolParams[i] = (v[i] == 0) ? GL_FALSE : GL_TRUE; |
893 | } |
894 | |
895 | memcpy(targetUniform->data + uniformIndex[location].element * sizeof(GLboolean)* numElements, |
896 | boolParams, numElements * sizeof(GLboolean)* count); |
897 | |
898 | delete[] boolParams; |
899 | } |
900 | else |
901 | { |
902 | return false; |
903 | } |
904 | |
905 | return true; |
906 | } |
907 | |
908 | bool Program::setUniform2uiv(GLint location, GLsizei count, const GLuint *v) |
909 | { |
910 | return setUniformuiv(location, count, v, 2); |
911 | } |
912 | |
913 | bool Program::setUniform3uiv(GLint location, GLsizei count, const GLuint *v) |
914 | { |
915 | return setUniformuiv(location, count, v, 3); |
916 | } |
917 | |
918 | bool Program::setUniform4uiv(GLint location, GLsizei count, const GLuint *v) |
919 | { |
920 | return setUniformuiv(location, count, v, 4); |
921 | } |
922 | |
923 | bool Program::getUniformfv(GLint location, GLsizei *bufSize, GLfloat *params) |
924 | { |
925 | if(location < 0 || location >= (int)uniformIndex.size() || (uniformIndex[location].index == GL_INVALID_INDEX)) |
926 | { |
927 | return false; |
928 | } |
929 | |
930 | Uniform *targetUniform = uniforms[uniformIndex[location].index]; |
931 | unsigned int count = UniformComponentCount(targetUniform->type); |
932 | |
933 | // Sized query - ensure the provided buffer is large enough |
934 | if(bufSize && static_cast<unsigned int>(*bufSize) < count * sizeof(GLfloat)) |
935 | { |
936 | return false; |
937 | } |
938 | |
939 | switch(UniformComponentType(targetUniform->type)) |
940 | { |
941 | case GL_BOOL: |
942 | { |
943 | GLboolean *boolParams = (GLboolean*)targetUniform->data + uniformIndex[location].element * count; |
944 | |
945 | for(unsigned int i = 0; i < count; i++) |
946 | { |
947 | params[i] = (boolParams[i] == GL_FALSE) ? 0.0f : 1.0f; |
948 | } |
949 | } |
950 | break; |
951 | case GL_FLOAT: |
952 | memcpy(params, targetUniform->data + uniformIndex[location].element * count * sizeof(GLfloat), |
953 | count * sizeof(GLfloat)); |
954 | break; |
955 | case GL_INT: |
956 | { |
957 | GLint *intParams = (GLint*)targetUniform->data + uniformIndex[location].element * count; |
958 | |
959 | for(unsigned int i = 0; i < count; i++) |
960 | { |
961 | params[i] = (float)intParams[i]; |
962 | } |
963 | } |
964 | break; |
965 | case GL_UNSIGNED_INT: |
966 | { |
967 | GLuint *uintParams = (GLuint*)targetUniform->data + uniformIndex[location].element * count; |
968 | |
969 | for(unsigned int i = 0; i < count; i++) |
970 | { |
971 | params[i] = (float)uintParams[i]; |
972 | } |
973 | } |
974 | break; |
975 | default: UNREACHABLE(targetUniform->type); |
976 | } |
977 | |
978 | return true; |
979 | } |
980 | |
981 | bool Program::getUniformiv(GLint location, GLsizei *bufSize, GLint *params) |
982 | { |
983 | if(location < 0 || location >= (int)uniformIndex.size() || (uniformIndex[location].index == GL_INVALID_INDEX)) |
984 | { |
985 | return false; |
986 | } |
987 | |
988 | Uniform *targetUniform = uniforms[uniformIndex[location].index]; |
989 | unsigned int count = UniformComponentCount(targetUniform->type); |
990 | |
991 | // Sized query - ensure the provided buffer is large enough |
992 | if(bufSize && static_cast<unsigned int>(*bufSize) < count * sizeof(GLint)) |
993 | { |
994 | return false; |
995 | } |
996 | |
997 | switch(UniformComponentType(targetUniform->type)) |
998 | { |
999 | case GL_BOOL: |
1000 | { |
1001 | GLboolean *boolParams = targetUniform->data + uniformIndex[location].element * count; |
1002 | |
1003 | for(unsigned int i = 0; i < count; i++) |
1004 | { |
1005 | params[i] = (GLint)boolParams[i]; |
1006 | } |
1007 | } |
1008 | break; |
1009 | case GL_FLOAT: |
1010 | { |
1011 | GLfloat *floatParams = (GLfloat*)targetUniform->data + uniformIndex[location].element * count; |
1012 | |
1013 | for(unsigned int i = 0; i < count; i++) |
1014 | { |
1015 | params[i] = (GLint)floatParams[i]; |
1016 | } |
1017 | } |
1018 | break; |
1019 | case GL_INT: |
1020 | case GL_UNSIGNED_INT: |
1021 | memcpy(params, targetUniform->data + uniformIndex[location].element * count * sizeof(GLint), |
1022 | count * sizeof(GLint)); |
1023 | break; |
1024 | default: UNREACHABLE(targetUniform->type); |
1025 | } |
1026 | |
1027 | return true; |
1028 | } |
1029 | |
1030 | bool Program::getUniformuiv(GLint location, GLsizei *bufSize, GLuint *params) |
1031 | { |
1032 | if(location < 0 || location >= (int)uniformIndex.size() || (uniformIndex[location].index == GL_INVALID_INDEX)) |
1033 | { |
1034 | return false; |
1035 | } |
1036 | |
1037 | Uniform *targetUniform = uniforms[uniformIndex[location].index]; |
1038 | unsigned int count = UniformComponentCount(targetUniform->type); |
1039 | |
1040 | // Sized query - ensure the provided buffer is large enough |
1041 | if(bufSize && static_cast<unsigned int>(*bufSize) < count * sizeof(GLuint)) |
1042 | { |
1043 | return false; |
1044 | } |
1045 | |
1046 | switch(UniformComponentType(targetUniform->type)) |
1047 | { |
1048 | case GL_BOOL: |
1049 | { |
1050 | GLboolean *boolParams = targetUniform->data + uniformIndex[location].element * count; |
1051 | |
1052 | for(unsigned int i = 0; i < count; i++) |
1053 | { |
1054 | params[i] = (GLuint)boolParams[i]; |
1055 | } |
1056 | } |
1057 | break; |
1058 | case GL_FLOAT: |
1059 | { |
1060 | GLfloat *floatParams = (GLfloat*)targetUniform->data + uniformIndex[location].element * count; |
1061 | |
1062 | for(unsigned int i = 0; i < count; i++) |
1063 | { |
1064 | params[i] = (GLuint)floatParams[i]; |
1065 | } |
1066 | } |
1067 | break; |
1068 | case GL_INT: |
1069 | case GL_UNSIGNED_INT: |
1070 | memcpy(params, targetUniform->data + uniformIndex[location].element * count * sizeof(GLuint), |
1071 | count * sizeof(GLuint)); |
1072 | break; |
1073 | default: UNREACHABLE(targetUniform->type); |
1074 | } |
1075 | |
1076 | return true; |
1077 | } |
1078 | |
1079 | void Program::dirtyAllUniforms() |
1080 | { |
1081 | size_t numUniforms = uniforms.size(); |
1082 | for(size_t index = 0; index < numUniforms; index++) |
1083 | { |
1084 | uniforms[index]->dirty = true; |
1085 | } |
1086 | } |
1087 | |
1088 | // Applies all the uniforms set for this program object to the device |
1089 | void Program::applyUniforms(Device *device) |
1090 | { |
1091 | GLint numUniforms = static_cast<GLint>(uniformIndex.size()); |
1092 | for(GLint location = 0; location < numUniforms; location++) |
1093 | { |
1094 | if((uniformIndex[location].element != 0) || (uniformIndex[location].index == GL_INVALID_INDEX)) |
1095 | { |
1096 | continue; |
1097 | } |
1098 | |
1099 | Uniform *targetUniform = uniforms[uniformIndex[location].index]; |
1100 | |
1101 | if(targetUniform->dirty && (targetUniform->blockInfo.index == -1)) |
1102 | { |
1103 | GLsizei size = targetUniform->size(); |
1104 | GLfloat *f = (GLfloat*)targetUniform->data; |
1105 | GLint *i = (GLint*)targetUniform->data; |
1106 | GLuint *ui = (GLuint*)targetUniform->data; |
1107 | GLboolean *b = (GLboolean*)targetUniform->data; |
1108 | |
1109 | switch(targetUniform->type) |
1110 | { |
1111 | case GL_BOOL: applyUniform1bv(device, location, size, b); break; |
1112 | case GL_BOOL_VEC2: applyUniform2bv(device, location, size, b); break; |
1113 | case GL_BOOL_VEC3: applyUniform3bv(device, location, size, b); break; |
1114 | case GL_BOOL_VEC4: applyUniform4bv(device, location, size, b); break; |
1115 | case GL_FLOAT: applyUniform1fv(device, location, size, f); break; |
1116 | case GL_FLOAT_VEC2: applyUniform2fv(device, location, size, f); break; |
1117 | case GL_FLOAT_VEC3: applyUniform3fv(device, location, size, f); break; |
1118 | case GL_FLOAT_VEC4: applyUniform4fv(device, location, size, f); break; |
1119 | case GL_FLOAT_MAT2: applyUniformMatrix2fv(device, location, size, f); break; |
1120 | case GL_FLOAT_MAT2x3: applyUniformMatrix2x3fv(device, location, size, f); break; |
1121 | case GL_FLOAT_MAT2x4: applyUniformMatrix2x4fv(device, location, size, f); break; |
1122 | case GL_FLOAT_MAT3x2: applyUniformMatrix3x2fv(device, location, size, f); break; |
1123 | case GL_FLOAT_MAT3: applyUniformMatrix3fv(device, location, size, f); break; |
1124 | case GL_FLOAT_MAT3x4: applyUniformMatrix3x4fv(device, location, size, f); break; |
1125 | case GL_FLOAT_MAT4x2: applyUniformMatrix4x2fv(device, location, size, f); break; |
1126 | case GL_FLOAT_MAT4x3: applyUniformMatrix4x3fv(device, location, size, f); break; |
1127 | case GL_FLOAT_MAT4: applyUniformMatrix4fv(device, location, size, f); break; |
1128 | case GL_SAMPLER_2D: |
1129 | case GL_SAMPLER_CUBE: |
1130 | case GL_SAMPLER_2D_RECT_ARB: |
1131 | case GL_SAMPLER_EXTERNAL_OES: |
1132 | case GL_SAMPLER_3D_OES: |
1133 | case GL_SAMPLER_2D_ARRAY: |
1134 | case GL_SAMPLER_2D_SHADOW: |
1135 | case GL_SAMPLER_CUBE_SHADOW: |
1136 | case GL_SAMPLER_2D_ARRAY_SHADOW: |
1137 | case GL_INT_SAMPLER_2D: |
1138 | case GL_UNSIGNED_INT_SAMPLER_2D: |
1139 | case GL_INT_SAMPLER_CUBE: |
1140 | case GL_UNSIGNED_INT_SAMPLER_CUBE: |
1141 | case GL_INT_SAMPLER_3D: |
1142 | case GL_UNSIGNED_INT_SAMPLER_3D: |
1143 | case GL_INT_SAMPLER_2D_ARRAY: |
1144 | case GL_UNSIGNED_INT_SAMPLER_2D_ARRAY: |
1145 | case GL_INT: applyUniform1iv(device, location, size, i); break; |
1146 | case GL_INT_VEC2: applyUniform2iv(device, location, size, i); break; |
1147 | case GL_INT_VEC3: applyUniform3iv(device, location, size, i); break; |
1148 | case GL_INT_VEC4: applyUniform4iv(device, location, size, i); break; |
1149 | case GL_UNSIGNED_INT: applyUniform1uiv(device, location, size, ui); break; |
1150 | case GL_UNSIGNED_INT_VEC2: applyUniform2uiv(device, location, size, ui); break; |
1151 | case GL_UNSIGNED_INT_VEC3: applyUniform3uiv(device, location, size, ui); break; |
1152 | case GL_UNSIGNED_INT_VEC4: applyUniform4uiv(device, location, size, ui); break; |
1153 | default: |
1154 | UNREACHABLE(targetUniform->type); |
1155 | } |
1156 | |
1157 | targetUniform->dirty = false; |
1158 | } |
1159 | } |
1160 | } |
1161 | |
1162 | void Program::applyUniformBuffers(Device *device, BufferBinding* uniformBuffers) |
1163 | { |
1164 | GLint vertexUniformBuffers[MAX_UNIFORM_BUFFER_BINDINGS]; |
1165 | GLint fragmentUniformBuffers[MAX_UNIFORM_BUFFER_BINDINGS]; |
1166 | |
1167 | for(unsigned int bufferBindingIndex = 0; bufferBindingIndex < MAX_UNIFORM_BUFFER_BINDINGS; bufferBindingIndex++) |
1168 | { |
1169 | vertexUniformBuffers[bufferBindingIndex] = -1; |
1170 | } |
1171 | |
1172 | for(unsigned int bufferBindingIndex = 0; bufferBindingIndex < MAX_UNIFORM_BUFFER_BINDINGS; bufferBindingIndex++) |
1173 | { |
1174 | fragmentUniformBuffers[bufferBindingIndex] = -1; |
1175 | } |
1176 | |
1177 | int vertexUniformBufferIndex = 0; |
1178 | int fragmentUniformBufferIndex = 0; |
1179 | for(unsigned int uniformBlockIndex = 0; uniformBlockIndex < uniformBlocks.size(); uniformBlockIndex++) |
1180 | { |
1181 | UniformBlock &uniformBlock = *uniformBlocks[uniformBlockIndex]; |
1182 | |
1183 | // Unnecessary to apply an unreferenced standard or shared UBO |
1184 | if(!uniformBlock.isReferencedByVertexShader() && !uniformBlock.isReferencedByFragmentShader()) |
1185 | { |
1186 | continue; |
1187 | } |
1188 | |
1189 | GLuint blockBinding = uniformBlockBindings[uniformBlockIndex]; |
1190 | |
1191 | if(uniformBlock.isReferencedByVertexShader()) |
1192 | { |
1193 | vertexUniformBuffers[vertexUniformBufferIndex++] = blockBinding; |
1194 | } |
1195 | |
1196 | if(uniformBlock.isReferencedByFragmentShader()) |
1197 | { |
1198 | fragmentUniformBuffers[fragmentUniformBufferIndex++] = blockBinding; |
1199 | } |
1200 | } |
1201 | |
1202 | for(unsigned int bufferBindingIndex = 0; bufferBindingIndex < MAX_UNIFORM_BUFFER_BINDINGS; bufferBindingIndex++) |
1203 | { |
1204 | int index = vertexUniformBuffers[bufferBindingIndex]; |
1205 | Buffer* vsBuffer = (index != -1) ? (Buffer*)uniformBuffers[index].get() : nullptr; |
1206 | device->VertexProcessor::setUniformBuffer(bufferBindingIndex, |
1207 | vsBuffer ? vsBuffer->getResource() : nullptr, (index != -1) ? uniformBuffers[index].getOffset() : 0); |
1208 | index = fragmentUniformBuffers[bufferBindingIndex]; |
1209 | Buffer* psBuffer = (index != -1) ? (Buffer*)uniformBuffers[index].get() : nullptr; |
1210 | device->PixelProcessor::setUniformBuffer(bufferBindingIndex, |
1211 | psBuffer ? psBuffer->getResource() : nullptr, (index != -1) ? uniformBuffers[index].getOffset() : 0); |
1212 | } |
1213 | } |
1214 | |
1215 | void Program::applyTransformFeedback(Device *device, TransformFeedback* transformFeedback) |
1216 | { |
1217 | // Make sure the flags will fit in a 64 bit unsigned int variable |
1218 | ASSERT(sw::max<int>(MAX_TRANSFORM_FEEDBACK_SEPARATE_ATTRIBS, sw::MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS) <= 64); |
1219 | |
1220 | BufferBinding* transformFeedbackBuffers = (transformFeedback && transformFeedback->isActive() && !transformFeedback->isPaused()) ? transformFeedback->getBuffers() : nullptr; |
1221 | |
1222 | uint64_t enableTransformFeedback = 0; |
1223 | if(!transformFeedbackBuffers) |
1224 | { |
1225 | for(unsigned int index = 0; index < sw::MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS; ++index) |
1226 | { |
1227 | device->VertexProcessor::setTransformFeedbackBuffer(index, nullptr, 0, 0, 0, 0, 0); |
1228 | } |
1229 | device->VertexProcessor::enableTransformFeedback(enableTransformFeedback); |
1230 | return; |
1231 | } |
1232 | |
1233 | unsigned int maxVaryings = static_cast<unsigned int>(transformFeedbackLinkedVaryings.size()); |
1234 | switch(transformFeedbackBufferMode) |
1235 | { |
1236 | case GL_SEPARATE_ATTRIBS: |
1237 | { |
1238 | maxVaryings = sw::min(maxVaryings, (unsigned int)MAX_TRANSFORM_FEEDBACK_SEPARATE_ATTRIBS); |
1239 | // Attribs go to separate buffers |
1240 | for(unsigned int index = 0; index < maxVaryings; ++index) |
1241 | { |
1242 | int size = transformFeedbackLinkedVaryings[index].size; |
1243 | int rowCount = VariableRowCount(transformFeedbackLinkedVaryings[index].type); |
1244 | int colCount = VariableColumnCount(transformFeedbackLinkedVaryings[index].type); |
1245 | int nbRegs = rowCount > 1 ? colCount * size : size; |
1246 | int nbComponentsPerReg = rowCount > 1 ? rowCount : colCount; |
1247 | int componentStride = rowCount * colCount * size; |
1248 | int baseOffset = transformFeedback->vertexOffset() * componentStride * sizeof(float); |
1249 | device->VertexProcessor::setTransformFeedbackBuffer(index, |
1250 | transformFeedbackBuffers[index].get()->getResource(), |
1251 | transformFeedbackBuffers[index].getOffset() + baseOffset, |
1252 | transformFeedbackLinkedVaryings[index].reg * 4 + transformFeedbackLinkedVaryings[index].col, |
1253 | nbRegs, nbComponentsPerReg, componentStride); |
1254 | enableTransformFeedback |= 1ULL << index; |
1255 | } |
1256 | } |
1257 | break; |
1258 | case GL_INTERLEAVED_ATTRIBS: |
1259 | { |
1260 | // OpenGL ES 3.0.4 spec, section 2.15.2: |
1261 | // In INTERLEAVED_ATTRIBS mode, the values of one or more output variables |
1262 | // written by a vertex shader are written, interleaved, into the buffer object |
1263 | // bound to the first transform feedback binding point (index = 0). |
1264 | sw::Resource* resource = transformFeedbackBuffers[0].get() ? |
1265 | transformFeedbackBuffers[0].get()->getResource() : |
1266 | nullptr; |
1267 | int componentStride = static_cast<int>(totalLinkedVaryingsComponents); |
1268 | int baseOffset = transformFeedbackBuffers[0].getOffset() + (transformFeedback->vertexOffset() * componentStride * sizeof(float)); |
1269 | maxVaryings = sw::min(maxVaryings, (unsigned int)sw::MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS); |
1270 | ASSERT(resource || (maxVaryings == 0)); |
1271 | |
1272 | int totalComponents = 0; |
1273 | for(unsigned int index = 0; index < maxVaryings; ++index) |
1274 | { |
1275 | int size = transformFeedbackLinkedVaryings[index].size; |
1276 | int rowCount = VariableRowCount(transformFeedbackLinkedVaryings[index].type); |
1277 | int colCount = VariableColumnCount(transformFeedbackLinkedVaryings[index].type); |
1278 | int nbRegs = rowCount > 1 ? colCount * size : size; |
1279 | int nbComponentsPerReg = rowCount > 1 ? rowCount : colCount; |
1280 | device->VertexProcessor::setTransformFeedbackBuffer(index, resource, |
1281 | baseOffset + (totalComponents * sizeof(float)), |
1282 | transformFeedbackLinkedVaryings[index].reg * 4 + transformFeedbackLinkedVaryings[index].col, |
1283 | nbRegs, nbComponentsPerReg, componentStride); |
1284 | totalComponents += rowCount * colCount * size; |
1285 | enableTransformFeedback |= 1ULL << index; |
1286 | } |
1287 | } |
1288 | break; |
1289 | default: |
1290 | UNREACHABLE(transformFeedbackBufferMode); |
1291 | break; |
1292 | } |
1293 | |
1294 | // Unset all other transform feedback buffers |
1295 | for(unsigned int index = maxVaryings; index < sw::MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS; ++index) |
1296 | { |
1297 | device->VertexProcessor::setTransformFeedbackBuffer(index, nullptr, 0, 0, 0, 0, 0); |
1298 | } |
1299 | |
1300 | device->VertexProcessor::enableTransformFeedback(enableTransformFeedback); |
1301 | } |
1302 | |
1303 | bool Program::linkVaryings() |
1304 | { |
1305 | glsl::VaryingList &psVaryings = fragmentShader->varyings; |
1306 | glsl::VaryingList &vsVaryings = vertexShader->varyings; |
1307 | |
1308 | for(auto const &input : psVaryings) |
1309 | { |
1310 | bool matched = false; |
1311 | |
1312 | for(auto const &output : vsVaryings) |
1313 | { |
1314 | if(output.name == input.name) |
1315 | { |
1316 | if(output.type != input.type || output.size() != input.size()) |
1317 | { |
1318 | appendToInfoLog("Type of vertex varying %s does not match that of the fragment varying" , output.name.c_str()); |
1319 | |
1320 | return false; |
1321 | } |
1322 | |
1323 | if((output.qualifier == EvqFlatOut) ^ (input.qualifier == EvqFlatIn)) |
1324 | { |
1325 | appendToInfoLog("Interpolation qualifiers for %s differ between vertex and fragment shaders" , output.name.c_str()); |
1326 | |
1327 | return false; |
1328 | } |
1329 | |
1330 | if(!areMatchingFields(input.fields, output.fields, input.name)) |
1331 | { |
1332 | return false; |
1333 | } |
1334 | |
1335 | matched = true; |
1336 | break; |
1337 | } |
1338 | } |
1339 | |
1340 | if(!matched) |
1341 | { |
1342 | // If a fragment varying is declared but not statically used, it's not an error to not have a matching vertex varying. |
1343 | if(input.registerIndex >= 0) |
1344 | { |
1345 | appendToInfoLog("Fragment varying %s does not match any vertex varying" , input.name.c_str()); |
1346 | |
1347 | return false; |
1348 | } |
1349 | } |
1350 | } |
1351 | |
1352 | for(auto const &output : vsVaryings) |
1353 | { |
1354 | bool matched = false; |
1355 | |
1356 | for(auto const &input : psVaryings) |
1357 | { |
1358 | if(output.name == input.name) |
1359 | { |
1360 | int in = input.registerIndex; |
1361 | int out = output.registerIndex; |
1362 | int components = VariableRegisterSize(output.type); |
1363 | int registers = VariableRegisterCount(output.type) * output.size(); |
1364 | |
1365 | if(in < 0) // Fragment varying declared but not used |
1366 | { |
1367 | continue; |
1368 | } |
1369 | |
1370 | if(in + registers >= MAX_VARYING_VECTORS) |
1371 | { |
1372 | appendToInfoLog("Too many varyings" ); |
1373 | return false; |
1374 | } |
1375 | |
1376 | if(out >= 0) |
1377 | { |
1378 | if(out + registers >= MAX_VARYING_VECTORS) |
1379 | { |
1380 | appendToInfoLog("Too many varyings" ); |
1381 | return false; |
1382 | } |
1383 | |
1384 | for(int i = 0; i < registers; i++) |
1385 | { |
1386 | vertexBinary->setOutput(out + i, components, sw::Shader::Semantic(sw::Shader::USAGE_COLOR, in + i, pixelBinary->getInput(in + i, 0).flat)); |
1387 | } |
1388 | } |
1389 | else // Vertex varying is declared but not written to |
1390 | { |
1391 | for(int i = 0; i < registers; i++) |
1392 | { |
1393 | pixelBinary->setInput(in + i, components, sw::Shader::Semantic()); |
1394 | } |
1395 | } |
1396 | |
1397 | matched = true; |
1398 | break; |
1399 | } |
1400 | } |
1401 | |
1402 | if(!matched) |
1403 | { |
1404 | // For openGL ES 3.0, we need to still add the vertex shader outputs for unmatched varyings, for transform feedback. |
1405 | for(const std::string &indexedTfVaryingName : transformFeedbackVaryings) |
1406 | { |
1407 | std::string tfVaryingName = es2::ParseUniformName(indexedTfVaryingName, nullptr); |
1408 | |
1409 | if(tfVaryingName == output.name) |
1410 | { |
1411 | int out = output.registerIndex; |
1412 | int components = VariableRegisterSize(output.type); |
1413 | int registers = VariableRegisterCount(output.type) * output.size(); |
1414 | |
1415 | if(out >= 0) |
1416 | { |
1417 | if(out + registers >= MAX_VARYING_VECTORS) |
1418 | { |
1419 | appendToInfoLog("Too many varyings" ); |
1420 | return false; |
1421 | } |
1422 | |
1423 | for(int i = 0; i < registers; i++) |
1424 | { |
1425 | vertexBinary->setOutput(out + i, components, sw::Shader::Semantic(sw::Shader::USAGE_COLOR)); |
1426 | } |
1427 | } |
1428 | break; |
1429 | } |
1430 | } |
1431 | } |
1432 | } |
1433 | |
1434 | return true; |
1435 | } |
1436 | |
1437 | bool Program::linkTransformFeedback() |
1438 | { |
1439 | size_t totalComponents = 0; |
1440 | totalLinkedVaryingsComponents = 0; |
1441 | |
1442 | std::set<std::string> uniqueNames; |
1443 | |
1444 | for(const std::string &indexedTfVaryingName : transformFeedbackVaryings) |
1445 | { |
1446 | unsigned int subscript = GL_INVALID_INDEX; |
1447 | std::string tfVaryingName = es2::ParseUniformName(indexedTfVaryingName, &subscript); |
1448 | bool hasSubscript = (subscript != GL_INVALID_INDEX); |
1449 | |
1450 | if(tfVaryingName.find('[') != std::string::npos) |
1451 | { |
1452 | appendToInfoLog("Capture of array sub-elements is undefined and not supported." ); |
1453 | return false; |
1454 | } |
1455 | |
1456 | bool found = false; |
1457 | for(const glsl::Varying varying : vertexShader->varyings) |
1458 | { |
1459 | if(tfVaryingName == varying.name) |
1460 | { |
1461 | if(uniqueNames.count(indexedTfVaryingName) > 0) |
1462 | { |
1463 | appendToInfoLog("Two transform feedback varyings specify the same output variable (%s)" , indexedTfVaryingName.c_str()); |
1464 | return false; |
1465 | } |
1466 | uniqueNames.insert(indexedTfVaryingName); |
1467 | |
1468 | if(hasSubscript && ((static_cast<int>(subscript)) >= varying.size())) |
1469 | { |
1470 | appendToInfoLog("Specified transform feedback varying index out of bounds (%s)" , indexedTfVaryingName.c_str()); |
1471 | return false; |
1472 | } |
1473 | |
1474 | int size = hasSubscript ? 1 : varying.size(); |
1475 | |
1476 | int rowCount = VariableRowCount(varying.type); |
1477 | int colCount = VariableColumnCount(varying.type); |
1478 | int componentCount = rowCount * colCount * size; |
1479 | if(transformFeedbackBufferMode == GL_SEPARATE_ATTRIBS && |
1480 | componentCount > sw::MAX_TRANSFORM_FEEDBACK_SEPARATE_COMPONENTS) |
1481 | { |
1482 | appendToInfoLog("Transform feedback varying's %s components (%d) exceed the maximum separate components (%d)." , |
1483 | varying.name.c_str(), componentCount, sw::MAX_TRANSFORM_FEEDBACK_SEPARATE_COMPONENTS); |
1484 | return false; |
1485 | } |
1486 | |
1487 | totalComponents += componentCount; |
1488 | |
1489 | int reg = varying.registerIndex; |
1490 | if(hasSubscript) |
1491 | { |
1492 | reg += rowCount > 1 ? colCount * subscript : subscript; |
1493 | } |
1494 | int col = varying.column; |
1495 | if(tfVaryingName == "gl_PointSize" ) |
1496 | { |
1497 | // Point size is stored in the y element of the vector, not the x element |
1498 | col = 1; // FIXME: varying.col could already contain this information |
1499 | } |
1500 | transformFeedbackLinkedVaryings.push_back(LinkedVarying(varying.name, varying.type, size, reg, col)); |
1501 | |
1502 | found = true; |
1503 | break; |
1504 | } |
1505 | } |
1506 | |
1507 | if(!found) |
1508 | { |
1509 | appendToInfoLog("Transform feedback varying %s does not exist in the vertex shader." , tfVaryingName.c_str()); |
1510 | return false; |
1511 | } |
1512 | } |
1513 | |
1514 | if(transformFeedbackBufferMode == GL_INTERLEAVED_ATTRIBS && |
1515 | totalComponents > sw::MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS) |
1516 | { |
1517 | appendToInfoLog("Transform feedback varying total components (%d) exceed the maximum separate components (%d)." , |
1518 | totalComponents, sw::MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS); |
1519 | return false; |
1520 | } |
1521 | |
1522 | totalLinkedVaryingsComponents = totalComponents; |
1523 | |
1524 | return true; |
1525 | } |
1526 | |
1527 | // Links the code of the vertex and pixel shader by matching up their varyings, |
1528 | // compiling them into binaries, determining the attribute mappings, and collecting |
1529 | // a list of uniforms |
1530 | void Program::link() |
1531 | { |
1532 | unlink(); |
1533 | |
1534 | resetUniformBlockBindings(); |
1535 | |
1536 | if(!fragmentShader || !fragmentShader->isCompiled()) |
1537 | { |
1538 | return; |
1539 | } |
1540 | |
1541 | if(!vertexShader || !vertexShader->isCompiled()) |
1542 | { |
1543 | return; |
1544 | } |
1545 | |
1546 | vertexBinary = new sw::VertexShader(vertexShader->getVertexShader()); |
1547 | pixelBinary = new sw::PixelShader(fragmentShader->getPixelShader()); |
1548 | |
1549 | if(!linkVaryings()) |
1550 | { |
1551 | return; |
1552 | } |
1553 | |
1554 | if(!linkAttributes()) |
1555 | { |
1556 | return; |
1557 | } |
1558 | |
1559 | // Link uniform blocks before uniforms to make it easy to assign block indices to fields |
1560 | if(!linkUniformBlocks(vertexShader, fragmentShader)) |
1561 | { |
1562 | return; |
1563 | } |
1564 | |
1565 | if(!linkUniforms(fragmentShader)) |
1566 | { |
1567 | return; |
1568 | } |
1569 | |
1570 | if(!linkUniforms(vertexShader)) |
1571 | { |
1572 | return; |
1573 | } |
1574 | |
1575 | if(!linkTransformFeedback()) |
1576 | { |
1577 | return; |
1578 | } |
1579 | |
1580 | linked = true; // Success |
1581 | } |
1582 | |
1583 | // Determines the mapping between GL attributes and vertex stream usage indices |
1584 | bool Program::linkAttributes() |
1585 | { |
1586 | static_assert(MAX_VERTEX_ATTRIBS <= 32, "attribute count exceeds bitfield count" ); |
1587 | unsigned int usedLocations = 0; |
1588 | |
1589 | // Link attributes that have a GLSL layout location qualifier |
1590 | for(auto const &attribute : vertexShader->activeAttributes) |
1591 | { |
1592 | if(attribute.layoutLocation != -1) |
1593 | { |
1594 | if(!linkAttribute(attribute, attribute.layoutLocation, usedLocations)) |
1595 | { |
1596 | return false; |
1597 | } |
1598 | } |
1599 | } |
1600 | |
1601 | // Link attributes that have an API provided binding location but no GLSL layout location |
1602 | for(auto const &attribute : vertexShader->activeAttributes) |
1603 | { |
1604 | int bindingLocation = (attributeBinding.find(attribute.name) != attributeBinding.end()) ? attributeBinding[attribute.name] : -1; |
1605 | |
1606 | if(attribute.layoutLocation == -1 && bindingLocation != -1) |
1607 | { |
1608 | if(!linkAttribute(attribute, bindingLocation, usedLocations)) |
1609 | { |
1610 | return false; |
1611 | } |
1612 | } |
1613 | } |
1614 | |
1615 | // Link attributes that don't have a binding location nor a layout location |
1616 | for(auto const &attribute : vertexShader->activeAttributes) |
1617 | { |
1618 | if(attribute.layoutLocation == -1 && attributeBinding.find(attribute.name) == attributeBinding.end()) |
1619 | { |
1620 | if(!linkAttribute(attribute, -1, usedLocations)) |
1621 | { |
1622 | return false; |
1623 | } |
1624 | } |
1625 | } |
1626 | |
1627 | ASSERT(linkedAttribute.size() == vertexShader->activeAttributes.size()); |
1628 | |
1629 | for(auto const &attribute : linkedAttribute) |
1630 | { |
1631 | int location = getAttributeLocation(attribute.name); |
1632 | ASSERT(location >= 0); |
1633 | int index = vertexShader->getSemanticIndex(attribute.name); |
1634 | int rows = VariableRegisterCount(attribute.type); |
1635 | |
1636 | for(int r = 0; r < rows; r++) |
1637 | { |
1638 | attributeStream[r + location] = index++; |
1639 | } |
1640 | } |
1641 | |
1642 | return true; |
1643 | } |
1644 | |
1645 | bool Program::linkAttribute(const glsl::Attribute &attribute, int location, unsigned int &usedLocations) |
1646 | { |
1647 | int rows = VariableRegisterCount(attribute.type); |
1648 | |
1649 | if(location == -1) |
1650 | { |
1651 | location = AllocateFirstFreeBits(&usedLocations, rows, MAX_VERTEX_ATTRIBS); |
1652 | |
1653 | if(location == -1 || location + rows > MAX_VERTEX_ATTRIBS) |
1654 | { |
1655 | appendToInfoLog("Too many active attributes (%s)" , attribute.name.c_str()); |
1656 | return false; // Fail to link |
1657 | } |
1658 | } |
1659 | else |
1660 | { |
1661 | if(rows + location > MAX_VERTEX_ATTRIBS) |
1662 | { |
1663 | appendToInfoLog("Active attribute (%s) at location %d is too big to fit" , attribute.name.c_str(), location); |
1664 | return false; |
1665 | } |
1666 | |
1667 | // In GLSL 3.00, attribute aliasing produces a link error |
1668 | // In GLSL 1.00, attribute aliasing is allowed |
1669 | if(vertexShader->getShaderVersion() >= 300) |
1670 | { |
1671 | for(auto const &previousAttrib : linkedAttribute) |
1672 | { |
1673 | int previousLocation = getAttributeLocation(previousAttrib.name); |
1674 | int previousRows = VariableRegisterCount(previousAttrib.type); |
1675 | |
1676 | if(location >= previousLocation && location < previousLocation + previousRows) |
1677 | { |
1678 | appendToInfoLog("Attribute '%s' aliases attribute '%s' at location %d" , attribute.name.c_str(), previousAttrib.name.c_str(), location); |
1679 | return false; |
1680 | } |
1681 | |
1682 | if(location <= previousLocation && location + rows > previousLocation) |
1683 | { |
1684 | appendToInfoLog("Attribute '%s' aliases attribute '%s' at location %d" , attribute.name.c_str(), previousAttrib.name.c_str(), previousLocation); |
1685 | return false; |
1686 | } |
1687 | } |
1688 | } |
1689 | |
1690 | for(int i = 0; i < rows; i++) |
1691 | { |
1692 | usedLocations |= 1 << (location + i); |
1693 | } |
1694 | } |
1695 | |
1696 | linkedAttributeLocation[attribute.name] = location; |
1697 | linkedAttribute.push_back(attribute); |
1698 | |
1699 | return true; |
1700 | } |
1701 | |
1702 | int Program::getAttributeLocation(const std::string &name) |
1703 | { |
1704 | std::map<std::string, GLuint>::const_iterator attribute = linkedAttributeLocation.find(name); |
1705 | if(attribute != linkedAttributeLocation.end()) |
1706 | { |
1707 | return attribute->second; |
1708 | } |
1709 | |
1710 | return -1; |
1711 | } |
1712 | |
1713 | bool Program::linkUniforms(const Shader *shader) |
1714 | { |
1715 | for(const auto &uniform : shader->activeUniforms) |
1716 | { |
1717 | unsigned int blockIndex = GL_INVALID_INDEX; |
1718 | if(uniform.blockId >= 0) |
1719 | { |
1720 | const glsl::ActiveUniformBlocks &activeUniformBlocks = shader->activeUniformBlocks; |
1721 | ASSERT(static_cast<size_t>(uniform.blockId) < activeUniformBlocks.size()); |
1722 | const std::string &uniformBlockName = activeUniformBlocks[uniform.blockId].name; |
1723 | blockIndex = getUniformBlockIndex(uniformBlockName); |
1724 | ASSERT(blockIndex != GL_INVALID_INDEX); |
1725 | |
1726 | if(activeUniformBlocks[uniform.blockId].dataSize > MAX_UNIFORM_BLOCK_SIZE) |
1727 | { |
1728 | if(shader->getType() == GL_VERTEX_SHADER) |
1729 | { |
1730 | appendToInfoLog("Vertex shader active uniform block (%s) exceeds GL_MAX_UNIFORM_BLOCK_SIZE (%d)" , uniformBlockName.c_str(), MAX_UNIFORM_BLOCK_SIZE); |
1731 | return false; |
1732 | } |
1733 | else if(shader->getType() == GL_FRAGMENT_SHADER) |
1734 | { |
1735 | appendToInfoLog("Fragment shader active uniform block (%s) exceeds GL_MAX_UNIFORM_BLOCK_SIZE (%d)" , uniformBlockName.c_str(), MAX_UNIFORM_BLOCK_SIZE); |
1736 | return false; |
1737 | } |
1738 | else UNREACHABLE(shader->getType()); |
1739 | } |
1740 | } |
1741 | |
1742 | if(!defineUniform(shader->getType(), uniform, Uniform::BlockInfo(uniform, blockIndex))) |
1743 | { |
1744 | return false; |
1745 | } |
1746 | } |
1747 | |
1748 | for(const auto &uniformStruct : shader->activeUniformStructs) |
1749 | { |
1750 | if(!validateUniformStruct(shader->getType(), uniformStruct)) |
1751 | { |
1752 | return false; |
1753 | } |
1754 | } |
1755 | |
1756 | return true; |
1757 | } |
1758 | |
1759 | bool Program::defineUniform(GLenum shader, const glsl::Uniform &glslUniform, const Uniform::BlockInfo& blockInfo) |
1760 | { |
1761 | if(IsSamplerUniform(glslUniform.type)) |
1762 | { |
1763 | int index = glslUniform.registerIndex; |
1764 | |
1765 | do |
1766 | { |
1767 | if(shader == GL_VERTEX_SHADER) |
1768 | { |
1769 | if(index < MAX_VERTEX_TEXTURE_IMAGE_UNITS) |
1770 | { |
1771 | samplersVS[index].active = true; |
1772 | |
1773 | switch(glslUniform.type) |
1774 | { |
1775 | default: UNREACHABLE(glslUniform.type); |
1776 | case GL_INT_SAMPLER_2D: |
1777 | case GL_UNSIGNED_INT_SAMPLER_2D: |
1778 | case GL_SAMPLER_2D_SHADOW: |
1779 | case GL_SAMPLER_2D: samplersVS[index].textureType = TEXTURE_2D; break; |
1780 | case GL_INT_SAMPLER_CUBE: |
1781 | case GL_UNSIGNED_INT_SAMPLER_CUBE: |
1782 | case GL_SAMPLER_CUBE_SHADOW: |
1783 | case GL_SAMPLER_CUBE: samplersVS[index].textureType = TEXTURE_CUBE; break; |
1784 | case GL_INT_SAMPLER_3D: |
1785 | case GL_UNSIGNED_INT_SAMPLER_3D: |
1786 | case GL_SAMPLER_3D_OES: samplersVS[index].textureType = TEXTURE_3D; break; |
1787 | case GL_SAMPLER_2D_RECT_ARB: samplersVS[index].textureType = TEXTURE_2D_RECT; break; |
1788 | case GL_SAMPLER_EXTERNAL_OES: samplersVS[index].textureType = TEXTURE_EXTERNAL; break; |
1789 | case GL_INT_SAMPLER_2D_ARRAY: |
1790 | case GL_UNSIGNED_INT_SAMPLER_2D_ARRAY: |
1791 | case GL_SAMPLER_2D_ARRAY_SHADOW: |
1792 | case GL_SAMPLER_2D_ARRAY: samplersVS[index].textureType = TEXTURE_2D_ARRAY; break; |
1793 | } |
1794 | |
1795 | samplersVS[index].logicalTextureUnit = 0; |
1796 | } |
1797 | else |
1798 | { |
1799 | appendToInfoLog("Vertex shader sampler count exceeds MAX_VERTEX_TEXTURE_IMAGE_UNITS (%d)." , MAX_VERTEX_TEXTURE_IMAGE_UNITS); |
1800 | return false; |
1801 | } |
1802 | } |
1803 | else if(shader == GL_FRAGMENT_SHADER) |
1804 | { |
1805 | if(index < MAX_TEXTURE_IMAGE_UNITS) |
1806 | { |
1807 | samplersPS[index].active = true; |
1808 | |
1809 | switch(glslUniform.type) |
1810 | { |
1811 | default: UNREACHABLE(glslUniform.type); |
1812 | case GL_INT_SAMPLER_2D: |
1813 | case GL_UNSIGNED_INT_SAMPLER_2D: |
1814 | case GL_SAMPLER_2D_SHADOW: |
1815 | case GL_SAMPLER_2D: samplersPS[index].textureType = TEXTURE_2D; break; |
1816 | case GL_INT_SAMPLER_CUBE: |
1817 | case GL_UNSIGNED_INT_SAMPLER_CUBE: |
1818 | case GL_SAMPLER_CUBE_SHADOW: |
1819 | case GL_SAMPLER_CUBE: samplersPS[index].textureType = TEXTURE_CUBE; break; |
1820 | case GL_INT_SAMPLER_3D: |
1821 | case GL_UNSIGNED_INT_SAMPLER_3D: |
1822 | case GL_SAMPLER_3D_OES: samplersPS[index].textureType = TEXTURE_3D; break; |
1823 | case GL_SAMPLER_2D_RECT_ARB: samplersPS[index].textureType = TEXTURE_2D_RECT; break; |
1824 | case GL_SAMPLER_EXTERNAL_OES: samplersPS[index].textureType = TEXTURE_EXTERNAL; break; |
1825 | case GL_INT_SAMPLER_2D_ARRAY: |
1826 | case GL_UNSIGNED_INT_SAMPLER_2D_ARRAY: |
1827 | case GL_SAMPLER_2D_ARRAY_SHADOW: |
1828 | case GL_SAMPLER_2D_ARRAY: samplersPS[index].textureType = TEXTURE_2D_ARRAY; break; |
1829 | } |
1830 | |
1831 | samplersPS[index].logicalTextureUnit = 0; |
1832 | } |
1833 | else |
1834 | { |
1835 | appendToInfoLog("Pixel shader sampler count exceeds MAX_TEXTURE_IMAGE_UNITS (%d)." , MAX_TEXTURE_IMAGE_UNITS); |
1836 | return false; |
1837 | } |
1838 | } |
1839 | else UNREACHABLE(shader); |
1840 | |
1841 | index++; |
1842 | } |
1843 | while(index < glslUniform.registerIndex + static_cast<int>(glslUniform.arraySize)); |
1844 | } |
1845 | |
1846 | Uniform *uniform = getUniform(glslUniform.name); |
1847 | |
1848 | if(!uniform) |
1849 | { |
1850 | uniform = new Uniform(glslUniform, blockInfo); |
1851 | uniforms.push_back(uniform); |
1852 | |
1853 | unsigned int index = (blockInfo.index == -1) ? static_cast<unsigned int>(uniforms.size() - 1) : GL_INVALID_INDEX; |
1854 | |
1855 | for(int i = 0; i < uniform->size(); i++) |
1856 | { |
1857 | uniformIndex.push_back(UniformLocation(glslUniform.name, i, index)); |
1858 | } |
1859 | } |
1860 | else // Previously defined, types must match |
1861 | { |
1862 | if(uniform->type != glslUniform.type) |
1863 | { |
1864 | appendToInfoLog("Types for uniform %s do not match between the vertex and fragment shader" , uniform->name.c_str()); |
1865 | return false; |
1866 | } |
1867 | |
1868 | if(uniform->precision != glslUniform.precision) |
1869 | { |
1870 | appendToInfoLog("Precisions for uniform %s do not match between the vertex and fragment shader" , uniform->name.c_str()); |
1871 | return false; |
1872 | } |
1873 | |
1874 | if(!areMatchingFields(uniform->fields, glslUniform.fields, uniform->name)) |
1875 | { |
1876 | return false; |
1877 | } |
1878 | } |
1879 | |
1880 | if(shader == GL_VERTEX_SHADER) |
1881 | { |
1882 | uniform->vsRegisterIndex = glslUniform.registerIndex; |
1883 | } |
1884 | else if(shader == GL_FRAGMENT_SHADER) |
1885 | { |
1886 | uniform->psRegisterIndex = glslUniform.registerIndex; |
1887 | } |
1888 | else UNREACHABLE(shader); |
1889 | |
1890 | if(uniform->blockInfo.index < 0) |
1891 | { |
1892 | if(shader == GL_VERTEX_SHADER) |
1893 | { |
1894 | if(glslUniform.registerIndex + uniform->registerCount() > MAX_VERTEX_UNIFORM_VECTORS) |
1895 | { |
1896 | appendToInfoLog("Vertex shader active uniforms exceed GL_MAX_VERTEX_UNIFORM_VECTORS (%d)" , MAX_VERTEX_UNIFORM_VECTORS); |
1897 | return false; |
1898 | } |
1899 | } |
1900 | else if(shader == GL_FRAGMENT_SHADER) |
1901 | { |
1902 | if(glslUniform.registerIndex + uniform->registerCount() > MAX_FRAGMENT_UNIFORM_VECTORS) |
1903 | { |
1904 | appendToInfoLog("Fragment shader active uniforms exceed GL_MAX_FRAGMENT_UNIFORM_VECTORS (%d)" , MAX_FRAGMENT_UNIFORM_VECTORS); |
1905 | return false; |
1906 | } |
1907 | } |
1908 | else UNREACHABLE(shader); |
1909 | } |
1910 | |
1911 | return true; |
1912 | } |
1913 | |
1914 | bool Program::validateUniformStruct(GLenum shader, const glsl::Uniform &newUniformStruct) |
1915 | { |
1916 | for(const auto &uniformStruct : uniformStructs) |
1917 | { |
1918 | if(uniformStruct.name == newUniformStruct.name) |
1919 | { |
1920 | return areMatchingFields(uniformStruct.fields, newUniformStruct.fields, newUniformStruct.name); |
1921 | } |
1922 | } |
1923 | |
1924 | uniformStructs.push_back(Uniform(newUniformStruct, Uniform::BlockInfo(newUniformStruct, -1))); |
1925 | |
1926 | return true; |
1927 | } |
1928 | |
1929 | bool Program::areMatchingUniformBlocks(const glsl::UniformBlock &block1, const glsl::UniformBlock &block2, const Shader *shader1, const Shader *shader2) |
1930 | { |
1931 | // validate blocks for the same member types |
1932 | if(block1.fields.size() != block2.fields.size()) |
1933 | { |
1934 | appendToInfoLog("Types for interface block '%s' differ between vertex and fragment shaders" , block1.name.c_str()); |
1935 | return false; |
1936 | } |
1937 | if(block1.arraySize != block2.arraySize) |
1938 | { |
1939 | appendToInfoLog("Array sizes differ for interface block '%s' between vertex and fragment shaders" , block1.name.c_str()); |
1940 | return false; |
1941 | } |
1942 | if(block1.layout != block2.layout || block1.isRowMajorLayout != block2.isRowMajorLayout) |
1943 | { |
1944 | appendToInfoLog("Layout qualifiers differ for interface block '%s' between vertex and fragment shaders" , block1.name.c_str()); |
1945 | return false; |
1946 | } |
1947 | const size_t numBlockMembers = block1.fields.size(); |
1948 | for(size_t blockMemberIndex = 0; blockMemberIndex < numBlockMembers; blockMemberIndex++) |
1949 | { |
1950 | const glsl::Uniform& member1 = shader1->activeUniforms[block1.fields[blockMemberIndex]]; |
1951 | const glsl::Uniform& member2 = shader2->activeUniforms[block2.fields[blockMemberIndex]]; |
1952 | if(member1.name != member2.name) |
1953 | { |
1954 | appendToInfoLog("Name mismatch for field %d of interface block '%s': (in vertex: '%s', in fragment: '%s')" , |
1955 | blockMemberIndex, block1.name.c_str(), member1.name.c_str(), member2.name.c_str()); |
1956 | return false; |
1957 | } |
1958 | if(member1.arraySize != member2.arraySize) |
1959 | { |
1960 | appendToInfoLog("Array sizes for %s differ between vertex and fragment shaders" , member1.name.c_str()); |
1961 | return false; |
1962 | } |
1963 | if(member1.precision != member2.precision) |
1964 | { |
1965 | appendToInfoLog("Precisions for %s differ between vertex and fragment shaders" , member1.name.c_str()); |
1966 | return false; |
1967 | } |
1968 | if(member1.type != member2.type) |
1969 | { |
1970 | appendToInfoLog("Types for %s differ between vertex and fragment shaders" , member1.name.c_str()); |
1971 | return false; |
1972 | } |
1973 | if(member1.blockInfo.isRowMajorMatrix != member2.blockInfo.isRowMajorMatrix) |
1974 | { |
1975 | appendToInfoLog("Matrix packings for %s differ between vertex and fragment shaders" , member1.name.c_str()); |
1976 | return false; |
1977 | } |
1978 | } |
1979 | return true; |
1980 | } |
1981 | |
1982 | bool Program::areMatchingFields(const std::vector<glsl::ShaderVariable>& fields1, const std::vector<glsl::ShaderVariable>& fields2, const std::string& name) |
1983 | { |
1984 | if(fields1.size() != fields2.size()) |
1985 | { |
1986 | appendToInfoLog("Structure lengths for %s differ between vertex and fragment shaders" , name.c_str()); |
1987 | return false; |
1988 | } |
1989 | |
1990 | for(size_t i = 0; i < fields1.size(); ++i) |
1991 | { |
1992 | if(fields1[i].name != fields2[i].name) |
1993 | { |
1994 | appendToInfoLog("Name mismatch for field '%d' of %s: ('%s', '%s')" , |
1995 | i, name.c_str(), fields1[i].name.c_str(), fields2[i].name.c_str()); |
1996 | return false; |
1997 | } |
1998 | if(fields1[i].type != fields2[i].type) |
1999 | { |
2000 | appendToInfoLog("Type for %s.%s differ between vertex and fragment shaders" , name.c_str(), fields1[i].name.c_str()); |
2001 | return false; |
2002 | } |
2003 | if(fields1[i].arraySize != fields2[i].arraySize) |
2004 | { |
2005 | appendToInfoLog("Array size for %s.%s differ between vertex and fragment shaders" , name.c_str(), fields1[i].name.c_str()); |
2006 | return false; |
2007 | } |
2008 | if(!areMatchingFields(fields1[i].fields, fields2[i].fields, fields1[i].name)) |
2009 | { |
2010 | return false; |
2011 | } |
2012 | } |
2013 | |
2014 | return true; |
2015 | } |
2016 | |
2017 | bool Program::linkUniformBlocks(const Shader *vertexShader, const Shader *fragmentShader) |
2018 | { |
2019 | const glsl::ActiveUniformBlocks &vertexUniformBlocks = vertexShader->activeUniformBlocks; |
2020 | const glsl::ActiveUniformBlocks &fragmentUniformBlocks = fragmentShader->activeUniformBlocks; |
2021 | // Check that interface blocks defined in the vertex and fragment shaders are identical |
2022 | typedef std::map<std::string, const glsl::UniformBlock*> UniformBlockMap; |
2023 | UniformBlockMap linkedUniformBlocks; |
2024 | for(unsigned int blockIndex = 0; blockIndex < vertexUniformBlocks.size(); blockIndex++) |
2025 | { |
2026 | const glsl::UniformBlock &vertexUniformBlock = vertexUniformBlocks[blockIndex]; |
2027 | linkedUniformBlocks[vertexUniformBlock.name] = &vertexUniformBlock; |
2028 | } |
2029 | for(unsigned int blockIndex = 0; blockIndex < fragmentUniformBlocks.size(); blockIndex++) |
2030 | { |
2031 | const glsl::UniformBlock &fragmentUniformBlock = fragmentUniformBlocks[blockIndex]; |
2032 | UniformBlockMap::const_iterator entry = linkedUniformBlocks.find(fragmentUniformBlock.name); |
2033 | if(entry != linkedUniformBlocks.end()) |
2034 | { |
2035 | const glsl::UniformBlock &vertexUniformBlock = *entry->second; |
2036 | if(!areMatchingUniformBlocks(vertexUniformBlock, fragmentUniformBlock, vertexShader, fragmentShader)) |
2037 | { |
2038 | return false; |
2039 | } |
2040 | } |
2041 | } |
2042 | for(unsigned int blockIndex = 0; blockIndex < vertexUniformBlocks.size(); blockIndex++) |
2043 | { |
2044 | const glsl::UniformBlock &uniformBlock = vertexUniformBlocks[blockIndex]; |
2045 | if(!defineUniformBlock(vertexShader, uniformBlock)) |
2046 | { |
2047 | return false; |
2048 | } |
2049 | } |
2050 | for(unsigned int blockIndex = 0; blockIndex < fragmentUniformBlocks.size(); blockIndex++) |
2051 | { |
2052 | const glsl::UniformBlock &uniformBlock = fragmentUniformBlocks[blockIndex]; |
2053 | if(!defineUniformBlock(fragmentShader, uniformBlock)) |
2054 | { |
2055 | return false; |
2056 | } |
2057 | } |
2058 | return true; |
2059 | } |
2060 | |
2061 | bool Program::defineUniformBlock(const Shader *shader, const glsl::UniformBlock &block) |
2062 | { |
2063 | GLuint blockIndex = getUniformBlockIndex(block.name); |
2064 | |
2065 | if(blockIndex == GL_INVALID_INDEX) |
2066 | { |
2067 | const std::vector<int>& fields = block.fields; |
2068 | std::vector<unsigned int> memberUniformIndexes; |
2069 | for(size_t i = 0; i < fields.size(); ++i) |
2070 | { |
2071 | memberUniformIndexes.push_back(fields[i]); |
2072 | } |
2073 | |
2074 | if(block.arraySize > 0) |
2075 | { |
2076 | int regIndex = block.registerIndex; |
2077 | int regInc = block.dataSize / (glsl::BlockLayoutEncoder::BytesPerComponent * glsl::BlockLayoutEncoder::ComponentsPerRegister); |
2078 | for(unsigned int i = 0; i < block.arraySize; ++i, regIndex += regInc) |
2079 | { |
2080 | uniformBlocks.push_back(new UniformBlock(block.name, i, block.dataSize, memberUniformIndexes)); |
2081 | uniformBlocks[uniformBlocks.size() - 1]->setRegisterIndex(shader->getType(), regIndex); |
2082 | } |
2083 | } |
2084 | else |
2085 | { |
2086 | uniformBlocks.push_back(new UniformBlock(block.name, GL_INVALID_INDEX, block.dataSize, memberUniformIndexes)); |
2087 | uniformBlocks[uniformBlocks.size() - 1]->setRegisterIndex(shader->getType(), block.registerIndex); |
2088 | } |
2089 | } |
2090 | else |
2091 | { |
2092 | int regIndex = block.registerIndex; |
2093 | int regInc = block.dataSize / (glsl::BlockLayoutEncoder::BytesPerComponent * glsl::BlockLayoutEncoder::ComponentsPerRegister); |
2094 | int nbBlocks = (block.arraySize > 0) ? block.arraySize : 1; |
2095 | for(int i = 0; i < nbBlocks; ++i, regIndex += regInc) |
2096 | { |
2097 | uniformBlocks[blockIndex + i]->setRegisterIndex(shader->getType(), regIndex); |
2098 | } |
2099 | } |
2100 | |
2101 | return true; |
2102 | } |
2103 | |
2104 | bool Program::applyUniform(Device *device, GLint location, float* data) |
2105 | { |
2106 | Uniform *targetUniform = uniforms[uniformIndex[location].index]; |
2107 | |
2108 | if(targetUniform->psRegisterIndex != -1) |
2109 | { |
2110 | device->setPixelShaderConstantF(targetUniform->psRegisterIndex, data, targetUniform->registerCount()); |
2111 | } |
2112 | |
2113 | if(targetUniform->vsRegisterIndex != -1) |
2114 | { |
2115 | device->setVertexShaderConstantF(targetUniform->vsRegisterIndex, data, targetUniform->registerCount()); |
2116 | } |
2117 | |
2118 | return true; |
2119 | } |
2120 | |
2121 | bool Program::applyUniform1bv(Device *device, GLint location, GLsizei count, const GLboolean *v) |
2122 | { |
2123 | int vector[MAX_UNIFORM_VECTORS][4]; |
2124 | |
2125 | for(int i = 0; i < count; i++) |
2126 | { |
2127 | vector[i][0] = (v[0] == GL_FALSE ? 0x00000000 : 0xFFFFFFFF); |
2128 | vector[i][1] = 0; |
2129 | vector[i][2] = 0; |
2130 | vector[i][3] = 0; |
2131 | |
2132 | v += 1; |
2133 | } |
2134 | |
2135 | return applyUniform(device, location, (float*)vector); |
2136 | } |
2137 | |
2138 | bool Program::applyUniform2bv(Device *device, GLint location, GLsizei count, const GLboolean *v) |
2139 | { |
2140 | int vector[MAX_UNIFORM_VECTORS][4]; |
2141 | |
2142 | for(int i = 0; i < count; i++) |
2143 | { |
2144 | vector[i][0] = (v[0] == GL_FALSE ? 0x00000000 : 0xFFFFFFFF); |
2145 | vector[i][1] = (v[1] == GL_FALSE ? 0x00000000 : 0xFFFFFFFF); |
2146 | vector[i][2] = 0; |
2147 | vector[i][3] = 0; |
2148 | |
2149 | v += 2; |
2150 | } |
2151 | |
2152 | return applyUniform(device, location, (float*)vector); |
2153 | } |
2154 | |
2155 | bool Program::applyUniform3bv(Device *device, GLint location, GLsizei count, const GLboolean *v) |
2156 | { |
2157 | int vector[MAX_UNIFORM_VECTORS][4]; |
2158 | |
2159 | for(int i = 0; i < count; i++) |
2160 | { |
2161 | vector[i][0] = (v[0] == GL_FALSE ? 0x00000000 : 0xFFFFFFFF); |
2162 | vector[i][1] = (v[1] == GL_FALSE ? 0x00000000 : 0xFFFFFFFF); |
2163 | vector[i][2] = (v[2] == GL_FALSE ? 0x00000000 : 0xFFFFFFFF); |
2164 | vector[i][3] = 0; |
2165 | |
2166 | v += 3; |
2167 | } |
2168 | |
2169 | return applyUniform(device, location, (float*)vector); |
2170 | } |
2171 | |
2172 | bool Program::applyUniform4bv(Device *device, GLint location, GLsizei count, const GLboolean *v) |
2173 | { |
2174 | int vector[MAX_UNIFORM_VECTORS][4]; |
2175 | |
2176 | for(int i = 0; i < count; i++) |
2177 | { |
2178 | vector[i][0] = (v[0] == GL_FALSE ? 0x00000000 : 0xFFFFFFFF); |
2179 | vector[i][1] = (v[1] == GL_FALSE ? 0x00000000 : 0xFFFFFFFF); |
2180 | vector[i][2] = (v[2] == GL_FALSE ? 0x00000000 : 0xFFFFFFFF); |
2181 | vector[i][3] = (v[3] == GL_FALSE ? 0x00000000 : 0xFFFFFFFF); |
2182 | |
2183 | v += 4; |
2184 | } |
2185 | |
2186 | return applyUniform(device, location, (float*)vector); |
2187 | } |
2188 | |
2189 | bool Program::applyUniform1fv(Device *device, GLint location, GLsizei count, const GLfloat *v) |
2190 | { |
2191 | float vector[MAX_UNIFORM_VECTORS][4]; |
2192 | |
2193 | for(int i = 0; i < count; i++) |
2194 | { |
2195 | vector[i][0] = v[0]; |
2196 | vector[i][1] = 0; |
2197 | vector[i][2] = 0; |
2198 | vector[i][3] = 0; |
2199 | |
2200 | v += 1; |
2201 | } |
2202 | |
2203 | return applyUniform(device, location, (float*)vector); |
2204 | } |
2205 | |
2206 | bool Program::applyUniform2fv(Device *device, GLint location, GLsizei count, const GLfloat *v) |
2207 | { |
2208 | float vector[MAX_UNIFORM_VECTORS][4]; |
2209 | |
2210 | for(int i = 0; i < count; i++) |
2211 | { |
2212 | vector[i][0] = v[0]; |
2213 | vector[i][1] = v[1]; |
2214 | vector[i][2] = 0; |
2215 | vector[i][3] = 0; |
2216 | |
2217 | v += 2; |
2218 | } |
2219 | |
2220 | return applyUniform(device, location, (float*)vector); |
2221 | } |
2222 | |
2223 | bool Program::applyUniform3fv(Device *device, GLint location, GLsizei count, const GLfloat *v) |
2224 | { |
2225 | float vector[MAX_UNIFORM_VECTORS][4]; |
2226 | |
2227 | for(int i = 0; i < count; i++) |
2228 | { |
2229 | vector[i][0] = v[0]; |
2230 | vector[i][1] = v[1]; |
2231 | vector[i][2] = v[2]; |
2232 | vector[i][3] = 0; |
2233 | |
2234 | v += 3; |
2235 | } |
2236 | |
2237 | return applyUniform(device, location, (float*)vector); |
2238 | } |
2239 | |
2240 | bool Program::applyUniform4fv(Device *device, GLint location, GLsizei count, const GLfloat *v) |
2241 | { |
2242 | return applyUniform(device, location, (float*)v); |
2243 | } |
2244 | |
2245 | bool Program::applyUniformMatrix2fv(Device *device, GLint location, GLsizei count, const GLfloat *value) |
2246 | { |
2247 | float matrix[(MAX_UNIFORM_VECTORS + 1) / 2][2][4]; |
2248 | |
2249 | for(int i = 0; i < count; i++) |
2250 | { |
2251 | matrix[i][0][0] = value[0]; matrix[i][0][1] = value[1]; matrix[i][0][2] = 0; matrix[i][0][3] = 0; |
2252 | matrix[i][1][0] = value[2]; matrix[i][1][1] = value[3]; matrix[i][1][2] = 0; matrix[i][1][3] = 0; |
2253 | |
2254 | value += 4; |
2255 | } |
2256 | |
2257 | return applyUniform(device, location, (float*)matrix); |
2258 | } |
2259 | |
2260 | bool Program::applyUniformMatrix2x3fv(Device *device, GLint location, GLsizei count, const GLfloat *value) |
2261 | { |
2262 | float matrix[(MAX_UNIFORM_VECTORS + 1) / 2][2][4]; |
2263 | |
2264 | for(int i = 0; i < count; i++) |
2265 | { |
2266 | matrix[i][0][0] = value[0]; matrix[i][0][1] = value[1]; matrix[i][0][2] = value[2]; matrix[i][0][3] = 0; |
2267 | matrix[i][1][0] = value[3]; matrix[i][1][1] = value[4]; matrix[i][1][2] = value[5]; matrix[i][1][3] = 0; |
2268 | |
2269 | value += 6; |
2270 | } |
2271 | |
2272 | return applyUniform(device, location, (float*)matrix); |
2273 | } |
2274 | |
2275 | bool Program::applyUniformMatrix2x4fv(Device *device, GLint location, GLsizei count, const GLfloat *value) |
2276 | { |
2277 | float matrix[(MAX_UNIFORM_VECTORS + 1) / 2][2][4]; |
2278 | |
2279 | for(int i = 0; i < count; i++) |
2280 | { |
2281 | matrix[i][0][0] = value[0]; matrix[i][0][1] = value[1]; matrix[i][0][2] = value[2]; matrix[i][0][3] = value[3]; |
2282 | matrix[i][1][0] = value[4]; matrix[i][1][1] = value[5]; matrix[i][1][2] = value[6]; matrix[i][1][3] = value[7]; |
2283 | |
2284 | value += 8; |
2285 | } |
2286 | |
2287 | return applyUniform(device, location, (float*)matrix); |
2288 | } |
2289 | |
2290 | bool Program::applyUniformMatrix3fv(Device *device, GLint location, GLsizei count, const GLfloat *value) |
2291 | { |
2292 | float matrix[(MAX_UNIFORM_VECTORS + 2) / 3][3][4]; |
2293 | |
2294 | for(int i = 0; i < count; i++) |
2295 | { |
2296 | matrix[i][0][0] = value[0]; matrix[i][0][1] = value[1]; matrix[i][0][2] = value[2]; matrix[i][0][3] = 0; |
2297 | matrix[i][1][0] = value[3]; matrix[i][1][1] = value[4]; matrix[i][1][2] = value[5]; matrix[i][1][3] = 0; |
2298 | matrix[i][2][0] = value[6]; matrix[i][2][1] = value[7]; matrix[i][2][2] = value[8]; matrix[i][2][3] = 0; |
2299 | |
2300 | value += 9; |
2301 | } |
2302 | |
2303 | return applyUniform(device, location, (float*)matrix); |
2304 | } |
2305 | |
2306 | bool Program::applyUniformMatrix3x2fv(Device *device, GLint location, GLsizei count, const GLfloat *value) |
2307 | { |
2308 | float matrix[(MAX_UNIFORM_VECTORS + 2) / 3][3][4]; |
2309 | |
2310 | for(int i = 0; i < count; i++) |
2311 | { |
2312 | matrix[i][0][0] = value[0]; matrix[i][0][1] = value[1]; matrix[i][0][2] = 0; matrix[i][0][3] = 0; |
2313 | matrix[i][1][0] = value[2]; matrix[i][1][1] = value[3]; matrix[i][1][2] = 0; matrix[i][1][3] = 0; |
2314 | matrix[i][2][0] = value[4]; matrix[i][2][1] = value[5]; matrix[i][2][2] = 0; matrix[i][2][3] = 0; |
2315 | |
2316 | value += 6; |
2317 | } |
2318 | |
2319 | return applyUniform(device, location, (float*)matrix); |
2320 | } |
2321 | |
2322 | bool Program::applyUniformMatrix3x4fv(Device *device, GLint location, GLsizei count, const GLfloat *value) |
2323 | { |
2324 | float matrix[(MAX_UNIFORM_VECTORS + 2) / 3][3][4]; |
2325 | |
2326 | for(int i = 0; i < count; i++) |
2327 | { |
2328 | matrix[i][0][0] = value[0]; matrix[i][0][1] = value[1]; matrix[i][0][2] = value[2]; matrix[i][0][3] = value[3]; |
2329 | matrix[i][1][0] = value[4]; matrix[i][1][1] = value[5]; matrix[i][1][2] = value[6]; matrix[i][1][3] = value[7]; |
2330 | matrix[i][2][0] = value[8]; matrix[i][2][1] = value[9]; matrix[i][2][2] = value[10]; matrix[i][2][3] = value[11]; |
2331 | |
2332 | value += 12; |
2333 | } |
2334 | |
2335 | return applyUniform(device, location, (float*)matrix); |
2336 | } |
2337 | |
2338 | bool Program::applyUniformMatrix4fv(Device *device, GLint location, GLsizei count, const GLfloat *value) |
2339 | { |
2340 | return applyUniform(device, location, (float*)value); |
2341 | } |
2342 | |
2343 | bool Program::applyUniformMatrix4x2fv(Device *device, GLint location, GLsizei count, const GLfloat *value) |
2344 | { |
2345 | float matrix[(MAX_UNIFORM_VECTORS + 3) / 4][4][4]; |
2346 | |
2347 | for(int i = 0; i < count; i++) |
2348 | { |
2349 | matrix[i][0][0] = value[0]; matrix[i][0][1] = value[1]; matrix[i][0][2] = 0; matrix[i][0][3] = 0; |
2350 | matrix[i][1][0] = value[2]; matrix[i][1][1] = value[3]; matrix[i][1][2] = 0; matrix[i][1][3] = 0; |
2351 | matrix[i][2][0] = value[4]; matrix[i][2][1] = value[5]; matrix[i][2][2] = 0; matrix[i][2][3] = 0; |
2352 | matrix[i][3][0] = value[6]; matrix[i][3][1] = value[7]; matrix[i][3][2] = 0; matrix[i][3][3] = 0; |
2353 | |
2354 | value += 8; |
2355 | } |
2356 | |
2357 | return applyUniform(device, location, (float*)matrix); |
2358 | } |
2359 | |
2360 | bool Program::applyUniformMatrix4x3fv(Device *device, GLint location, GLsizei count, const GLfloat *value) |
2361 | { |
2362 | float matrix[(MAX_UNIFORM_VECTORS + 3) / 4][4][4]; |
2363 | |
2364 | for(int i = 0; i < count; i++) |
2365 | { |
2366 | matrix[i][0][0] = value[0]; matrix[i][0][1] = value[1]; matrix[i][0][2] = value[2]; matrix[i][0][3] = 0; |
2367 | matrix[i][1][0] = value[3]; matrix[i][1][1] = value[4]; matrix[i][1][2] = value[5]; matrix[i][1][3] = 0; |
2368 | matrix[i][2][0] = value[6]; matrix[i][2][1] = value[7]; matrix[i][2][2] = value[8]; matrix[i][2][3] = 0; |
2369 | matrix[i][3][0] = value[9]; matrix[i][3][1] = value[10]; matrix[i][3][2] = value[11]; matrix[i][3][3] = 0; |
2370 | |
2371 | value += 12; |
2372 | } |
2373 | |
2374 | return applyUniform(device, location, (float*)matrix); |
2375 | } |
2376 | |
2377 | bool Program::applyUniform1iv(Device *device, GLint location, GLsizei count, const GLint *v) |
2378 | { |
2379 | GLint vector[MAX_UNIFORM_VECTORS][4]; |
2380 | |
2381 | for(int i = 0; i < count; i++) |
2382 | { |
2383 | vector[i][0] = v[i]; |
2384 | vector[i][1] = 0; |
2385 | vector[i][2] = 0; |
2386 | vector[i][3] = 0; |
2387 | } |
2388 | |
2389 | Uniform *targetUniform = uniforms[uniformIndex[location].index]; |
2390 | if(IsSamplerUniform(targetUniform->type)) |
2391 | { |
2392 | if(targetUniform->psRegisterIndex != -1) |
2393 | { |
2394 | for(int i = 0; i < count; i++) |
2395 | { |
2396 | unsigned int samplerIndex = targetUniform->psRegisterIndex + i; |
2397 | |
2398 | if(samplerIndex < MAX_TEXTURE_IMAGE_UNITS) |
2399 | { |
2400 | ASSERT(samplersPS[samplerIndex].active); |
2401 | samplersPS[samplerIndex].logicalTextureUnit = v[i]; |
2402 | } |
2403 | } |
2404 | } |
2405 | |
2406 | if(targetUniform->vsRegisterIndex != -1) |
2407 | { |
2408 | for(int i = 0; i < count; i++) |
2409 | { |
2410 | unsigned int samplerIndex = targetUniform->vsRegisterIndex + i; |
2411 | |
2412 | if(samplerIndex < MAX_VERTEX_TEXTURE_IMAGE_UNITS) |
2413 | { |
2414 | ASSERT(samplersVS[samplerIndex].active); |
2415 | samplersVS[samplerIndex].logicalTextureUnit = v[i]; |
2416 | } |
2417 | } |
2418 | } |
2419 | } |
2420 | else |
2421 | { |
2422 | return applyUniform(device, location, (float*)vector); |
2423 | } |
2424 | |
2425 | return true; |
2426 | } |
2427 | |
2428 | bool Program::applyUniform2iv(Device *device, GLint location, GLsizei count, const GLint *v) |
2429 | { |
2430 | GLint vector[MAX_UNIFORM_VECTORS][4]; |
2431 | |
2432 | for(int i = 0; i < count; i++) |
2433 | { |
2434 | vector[i][0] = v[0]; |
2435 | vector[i][1] = v[1]; |
2436 | vector[i][2] = 0; |
2437 | vector[i][3] = 0; |
2438 | |
2439 | v += 2; |
2440 | } |
2441 | |
2442 | return applyUniform(device, location, (float*)vector); |
2443 | } |
2444 | |
2445 | bool Program::applyUniform3iv(Device *device, GLint location, GLsizei count, const GLint *v) |
2446 | { |
2447 | GLint vector[MAX_UNIFORM_VECTORS][4]; |
2448 | |
2449 | for(int i = 0; i < count; i++) |
2450 | { |
2451 | vector[i][0] = v[0]; |
2452 | vector[i][1] = v[1]; |
2453 | vector[i][2] = v[2]; |
2454 | vector[i][3] = 0; |
2455 | |
2456 | v += 3; |
2457 | } |
2458 | |
2459 | return applyUniform(device, location, (float*)vector); |
2460 | } |
2461 | |
2462 | bool Program::applyUniform4iv(Device *device, GLint location, GLsizei count, const GLint *v) |
2463 | { |
2464 | GLint vector[MAX_UNIFORM_VECTORS][4]; |
2465 | |
2466 | for(int i = 0; i < count; i++) |
2467 | { |
2468 | vector[i][0] = v[0]; |
2469 | vector[i][1] = v[1]; |
2470 | vector[i][2] = v[2]; |
2471 | vector[i][3] = v[3]; |
2472 | |
2473 | v += 4; |
2474 | } |
2475 | |
2476 | return applyUniform(device, location, (float*)vector); |
2477 | } |
2478 | |
2479 | bool Program::applyUniform1uiv(Device *device, GLint location, GLsizei count, const GLuint *v) |
2480 | { |
2481 | GLuint vector[MAX_UNIFORM_VECTORS][4]; |
2482 | |
2483 | for(int i = 0; i < count; i++) |
2484 | { |
2485 | vector[i][0] = v[i]; |
2486 | vector[i][1] = 0; |
2487 | vector[i][2] = 0; |
2488 | vector[i][3] = 0; |
2489 | } |
2490 | |
2491 | Uniform *targetUniform = uniforms[uniformIndex[location].index]; |
2492 | if(IsSamplerUniform(targetUniform->type)) |
2493 | { |
2494 | if(targetUniform->psRegisterIndex != -1) |
2495 | { |
2496 | for(int i = 0; i < count; i++) |
2497 | { |
2498 | unsigned int samplerIndex = targetUniform->psRegisterIndex + i; |
2499 | |
2500 | if(samplerIndex < MAX_TEXTURE_IMAGE_UNITS) |
2501 | { |
2502 | ASSERT(samplersPS[samplerIndex].active); |
2503 | samplersPS[samplerIndex].logicalTextureUnit = v[i]; |
2504 | } |
2505 | } |
2506 | } |
2507 | |
2508 | if(targetUniform->vsRegisterIndex != -1) |
2509 | { |
2510 | for(int i = 0; i < count; i++) |
2511 | { |
2512 | unsigned int samplerIndex = targetUniform->vsRegisterIndex + i; |
2513 | |
2514 | if(samplerIndex < MAX_VERTEX_TEXTURE_IMAGE_UNITS) |
2515 | { |
2516 | ASSERT(samplersVS[samplerIndex].active); |
2517 | samplersVS[samplerIndex].logicalTextureUnit = v[i]; |
2518 | } |
2519 | } |
2520 | } |
2521 | } |
2522 | else |
2523 | { |
2524 | return applyUniform(device, location, (float*)vector); |
2525 | } |
2526 | |
2527 | return true; |
2528 | } |
2529 | |
2530 | bool Program::applyUniform2uiv(Device *device, GLint location, GLsizei count, const GLuint *v) |
2531 | { |
2532 | GLuint vector[MAX_UNIFORM_VECTORS][4]; |
2533 | |
2534 | for(int i = 0; i < count; i++) |
2535 | { |
2536 | vector[i][0] = v[0]; |
2537 | vector[i][1] = v[1]; |
2538 | vector[i][2] = 0; |
2539 | vector[i][3] = 0; |
2540 | |
2541 | v += 2; |
2542 | } |
2543 | |
2544 | return applyUniform(device, location, (float*)vector); |
2545 | } |
2546 | |
2547 | bool Program::applyUniform3uiv(Device *device, GLint location, GLsizei count, const GLuint *v) |
2548 | { |
2549 | GLuint vector[MAX_UNIFORM_VECTORS][4]; |
2550 | |
2551 | for(int i = 0; i < count; i++) |
2552 | { |
2553 | vector[i][0] = v[0]; |
2554 | vector[i][1] = v[1]; |
2555 | vector[i][2] = v[2]; |
2556 | vector[i][3] = 0; |
2557 | |
2558 | v += 3; |
2559 | } |
2560 | |
2561 | return applyUniform(device, location, (float*)vector); |
2562 | } |
2563 | |
2564 | bool Program::applyUniform4uiv(Device *device, GLint location, GLsizei count, const GLuint *v) |
2565 | { |
2566 | GLuint vector[MAX_UNIFORM_VECTORS][4]; |
2567 | |
2568 | for(int i = 0; i < count; i++) |
2569 | { |
2570 | vector[i][0] = v[0]; |
2571 | vector[i][1] = v[1]; |
2572 | vector[i][2] = v[2]; |
2573 | vector[i][3] = v[3]; |
2574 | |
2575 | v += 4; |
2576 | } |
2577 | |
2578 | return applyUniform(device, location, (float*)vector); |
2579 | } |
2580 | |
2581 | void Program::appendToInfoLog(const char *format, ...) |
2582 | { |
2583 | if(!format) |
2584 | { |
2585 | return; |
2586 | } |
2587 | |
2588 | char info[1024]; |
2589 | |
2590 | va_list vararg; |
2591 | va_start(vararg, format); |
2592 | vsnprintf(info, sizeof(info), format, vararg); |
2593 | va_end(vararg); |
2594 | |
2595 | size_t infoLength = strlen(info); |
2596 | |
2597 | if(!infoLog) |
2598 | { |
2599 | infoLog = new char[infoLength + 2]; |
2600 | strcpy(infoLog, info); |
2601 | strcpy(infoLog + infoLength, "\n" ); |
2602 | } |
2603 | else |
2604 | { |
2605 | size_t logLength = strlen(infoLog); |
2606 | char *newLog = new char[logLength + infoLength + 2]; |
2607 | strcpy(newLog, infoLog); |
2608 | strcpy(newLog + logLength, info); |
2609 | strcpy(newLog + logLength + infoLength, "\n" ); |
2610 | |
2611 | delete[] infoLog; |
2612 | infoLog = newLog; |
2613 | } |
2614 | } |
2615 | |
2616 | void Program::resetInfoLog() |
2617 | { |
2618 | if(infoLog) |
2619 | { |
2620 | delete[] infoLog; |
2621 | infoLog = 0; |
2622 | } |
2623 | } |
2624 | |
2625 | // Returns the program object to an unlinked state, before re-linking, or at destruction |
2626 | void Program::unlink() |
2627 | { |
2628 | delete vertexBinary; |
2629 | vertexBinary = 0; |
2630 | delete pixelBinary; |
2631 | pixelBinary = 0; |
2632 | |
2633 | linkedAttribute.clear(); |
2634 | linkedAttributeLocation.clear(); |
2635 | |
2636 | for(int index = 0; index < MAX_VERTEX_ATTRIBS; index++) |
2637 | { |
2638 | attributeStream[index] = -1; |
2639 | } |
2640 | |
2641 | for(int index = 0; index < MAX_TEXTURE_IMAGE_UNITS; index++) |
2642 | { |
2643 | samplersPS[index].active = false; |
2644 | } |
2645 | |
2646 | for(int index = 0; index < MAX_VERTEX_TEXTURE_IMAGE_UNITS; index++) |
2647 | { |
2648 | samplersVS[index].active = false; |
2649 | } |
2650 | |
2651 | while(!uniforms.empty()) |
2652 | { |
2653 | delete uniforms.back(); |
2654 | uniforms.pop_back(); |
2655 | } |
2656 | |
2657 | while(!uniformBlocks.empty()) |
2658 | { |
2659 | delete uniformBlocks.back(); |
2660 | uniformBlocks.pop_back(); |
2661 | } |
2662 | |
2663 | uniformIndex.clear(); |
2664 | transformFeedbackLinkedVaryings.clear(); |
2665 | |
2666 | delete[] infoLog; |
2667 | infoLog = 0; |
2668 | |
2669 | linked = false; |
2670 | } |
2671 | |
2672 | bool Program::isLinked() const |
2673 | { |
2674 | return linked; |
2675 | } |
2676 | |
2677 | bool Program::isValidated() const |
2678 | { |
2679 | return validated; |
2680 | } |
2681 | |
2682 | GLint Program::getBinaryLength() const |
2683 | { |
2684 | UNIMPLEMENTED(); |
2685 | return 0; |
2686 | } |
2687 | |
2688 | void Program::release() |
2689 | { |
2690 | referenceCount--; |
2691 | |
2692 | if(referenceCount == 0 && orphaned) |
2693 | { |
2694 | resourceManager->deleteProgram(handle); |
2695 | } |
2696 | } |
2697 | |
2698 | void Program::addRef() |
2699 | { |
2700 | referenceCount++; |
2701 | } |
2702 | |
2703 | unsigned int Program::getRefCount() const |
2704 | { |
2705 | return referenceCount; |
2706 | } |
2707 | |
2708 | unsigned int Program::getSerial() const |
2709 | { |
2710 | return serial; |
2711 | } |
2712 | |
2713 | unsigned int Program::issueSerial() |
2714 | { |
2715 | return currentSerial++; |
2716 | } |
2717 | |
2718 | size_t Program::getInfoLogLength() const |
2719 | { |
2720 | if(!infoLog) |
2721 | { |
2722 | return 0; |
2723 | } |
2724 | else |
2725 | { |
2726 | return strlen(infoLog) + 1; |
2727 | } |
2728 | } |
2729 | |
2730 | void Program::getInfoLog(GLsizei bufSize, GLsizei *length, char *buffer) |
2731 | { |
2732 | int index = 0; |
2733 | |
2734 | if(bufSize > 0) |
2735 | { |
2736 | if(infoLog) |
2737 | { |
2738 | index = std::min(bufSize - 1, (int)strlen(infoLog)); |
2739 | memcpy(buffer, infoLog, index); |
2740 | } |
2741 | |
2742 | buffer[index] = '\0'; |
2743 | } |
2744 | |
2745 | if(length) |
2746 | { |
2747 | *length = index; |
2748 | } |
2749 | } |
2750 | |
2751 | void Program::getAttachedShaders(GLsizei maxCount, GLsizei *count, GLuint *shaders) |
2752 | { |
2753 | int total = 0; |
2754 | |
2755 | if(vertexShader && (total < maxCount)) |
2756 | { |
2757 | shaders[total++] = vertexShader->getName(); |
2758 | } |
2759 | |
2760 | if(fragmentShader && (total < maxCount)) |
2761 | { |
2762 | shaders[total++] = fragmentShader->getName(); |
2763 | } |
2764 | |
2765 | if(count) |
2766 | { |
2767 | *count = total; |
2768 | } |
2769 | } |
2770 | |
2771 | void Program::getActiveAttribute(GLuint index, GLsizei bufsize, GLsizei *length, GLint *size, GLenum *type, GLchar *name) const |
2772 | { |
2773 | ASSERT(index < linkedAttribute.size()); |
2774 | |
2775 | std::vector<glsl::Attribute>::const_iterator it = linkedAttribute.begin() + index; |
2776 | |
2777 | if(bufsize > 0) |
2778 | { |
2779 | const char *string = it->name.c_str(); |
2780 | |
2781 | strncpy(name, string, bufsize); |
2782 | name[bufsize - 1] = '\0'; |
2783 | |
2784 | if(length) |
2785 | { |
2786 | *length = static_cast<GLsizei>(strlen(name)); |
2787 | } |
2788 | } |
2789 | |
2790 | *size = 1; // Always a single 'type' instance |
2791 | |
2792 | *type = it->type; |
2793 | } |
2794 | |
2795 | size_t Program::getActiveAttributeCount() const |
2796 | { |
2797 | return linkedAttribute.size(); |
2798 | } |
2799 | |
2800 | GLint Program::getActiveAttributeMaxLength() const |
2801 | { |
2802 | int maxLength = 0; |
2803 | |
2804 | std::vector<glsl::Attribute>::const_iterator it = linkedAttribute.begin(); |
2805 | std::vector<glsl::Attribute>::const_iterator itEnd = linkedAttribute.end(); |
2806 | for(; it != itEnd; ++it) |
2807 | { |
2808 | maxLength = std::max((int)(it->name.length() + 1), maxLength); |
2809 | } |
2810 | |
2811 | return maxLength; |
2812 | } |
2813 | |
2814 | void Program::getActiveUniform(GLuint index, GLsizei bufsize, GLsizei *length, GLint *size, GLenum *type, GLchar *name) const |
2815 | { |
2816 | if(bufsize > 0) |
2817 | { |
2818 | std::string string = uniforms[index]->name; |
2819 | |
2820 | if(uniforms[index]->isArray()) |
2821 | { |
2822 | string += "[0]" ; |
2823 | } |
2824 | |
2825 | strncpy(name, string.c_str(), bufsize); |
2826 | name[bufsize - 1] = '\0'; |
2827 | |
2828 | if(length) |
2829 | { |
2830 | *length = static_cast<GLsizei>(strlen(name)); |
2831 | } |
2832 | } |
2833 | |
2834 | *size = uniforms[index]->size(); |
2835 | |
2836 | *type = uniforms[index]->type; |
2837 | } |
2838 | |
2839 | size_t Program::getActiveUniformCount() const |
2840 | { |
2841 | return uniforms.size(); |
2842 | } |
2843 | |
2844 | GLint Program::getActiveUniformMaxLength() const |
2845 | { |
2846 | int maxLength = 0; |
2847 | |
2848 | size_t numUniforms = uniforms.size(); |
2849 | for(size_t uniformIndex = 0; uniformIndex < numUniforms; uniformIndex++) |
2850 | { |
2851 | if(!uniforms[uniformIndex]->name.empty()) |
2852 | { |
2853 | int length = (int)(uniforms[uniformIndex]->name.length() + 1); |
2854 | if(uniforms[uniformIndex]->isArray()) |
2855 | { |
2856 | length += 3; // Counting in "[0]". |
2857 | } |
2858 | maxLength = std::max(length, maxLength); |
2859 | } |
2860 | } |
2861 | |
2862 | return maxLength; |
2863 | } |
2864 | |
2865 | GLint Program::getActiveUniformi(GLuint index, GLenum pname) const |
2866 | { |
2867 | const Uniform& uniform = *uniforms[index]; |
2868 | switch(pname) |
2869 | { |
2870 | case GL_UNIFORM_TYPE: return static_cast<GLint>(uniform.type); |
2871 | case GL_UNIFORM_SIZE: return static_cast<GLint>(uniform.size()); |
2872 | case GL_UNIFORM_NAME_LENGTH: return static_cast<GLint>(uniform.name.size() + 1 + (uniform.isArray() ? 3 : 0)); |
2873 | case GL_UNIFORM_BLOCK_INDEX: return uniform.blockInfo.index; |
2874 | case GL_UNIFORM_OFFSET: return uniform.blockInfo.offset; |
2875 | case GL_UNIFORM_ARRAY_STRIDE: return uniform.blockInfo.arrayStride; |
2876 | case GL_UNIFORM_MATRIX_STRIDE: return uniform.blockInfo.matrixStride; |
2877 | case GL_UNIFORM_IS_ROW_MAJOR: return static_cast<GLint>(uniform.blockInfo.isRowMajorMatrix); |
2878 | default: |
2879 | UNREACHABLE(pname); |
2880 | break; |
2881 | } |
2882 | return 0; |
2883 | } |
2884 | |
2885 | void Program::getActiveUniformBlockName(GLuint index, GLsizei bufSize, GLsizei *length, GLchar *name) const |
2886 | { |
2887 | ASSERT(index < getActiveUniformBlockCount()); |
2888 | |
2889 | const UniformBlock &uniformBlock = *uniformBlocks[index]; |
2890 | |
2891 | if(bufSize > 0) |
2892 | { |
2893 | std::string string = uniformBlock.name; |
2894 | |
2895 | if(uniformBlock.isArrayElement()) |
2896 | { |
2897 | std::ostringstream elementIndex; |
2898 | elementIndex << uniformBlock.elementIndex; |
2899 | string += "[" + elementIndex.str() + "]" ; |
2900 | } |
2901 | |
2902 | strncpy(name, string.c_str(), bufSize); |
2903 | name[bufSize - 1] = '\0'; |
2904 | |
2905 | if(length) |
2906 | { |
2907 | *length = static_cast<GLsizei>(strlen(name)); |
2908 | } |
2909 | } |
2910 | } |
2911 | |
2912 | size_t Program::getActiveUniformBlockCount() const |
2913 | { |
2914 | return uniformBlocks.size(); |
2915 | } |
2916 | |
2917 | GLint Program::getActiveUniformBlockMaxLength() const |
2918 | { |
2919 | GLint maxLength = 0; |
2920 | |
2921 | if(isLinked()) |
2922 | { |
2923 | size_t numUniformBlocks = getActiveUniformBlockCount(); |
2924 | for(size_t uniformBlockIndex = 0; uniformBlockIndex < numUniformBlocks; uniformBlockIndex++) |
2925 | { |
2926 | const UniformBlock &uniformBlock = *uniformBlocks[uniformBlockIndex]; |
2927 | if(!uniformBlock.name.empty()) |
2928 | { |
2929 | GLint length = static_cast<GLint>(uniformBlock.name.length() + 1); |
2930 | |
2931 | // Counting in "[0]". |
2932 | const GLint arrayLength = (uniformBlock.isArrayElement() ? 3 : 0); |
2933 | |
2934 | maxLength = std::max(length + arrayLength, maxLength); |
2935 | } |
2936 | } |
2937 | } |
2938 | |
2939 | return maxLength; |
2940 | } |
2941 | |
2942 | void Program::setTransformFeedbackVaryings(GLsizei count, const GLchar *const *varyings, GLenum bufferMode) |
2943 | { |
2944 | transformFeedbackVaryings.resize(count); |
2945 | for(GLsizei i = 0; i < count; i++) |
2946 | { |
2947 | transformFeedbackVaryings[i] = varyings[i]; |
2948 | } |
2949 | |
2950 | transformFeedbackBufferMode = bufferMode; |
2951 | } |
2952 | |
2953 | void Program::getTransformFeedbackVarying(GLuint index, GLsizei bufSize, GLsizei *length, GLsizei *size, GLenum *type, GLchar *name) const |
2954 | { |
2955 | if(linked) |
2956 | { |
2957 | ASSERT(index < transformFeedbackLinkedVaryings.size()); |
2958 | const LinkedVarying &varying = transformFeedbackLinkedVaryings[index]; |
2959 | GLsizei lastNameIdx = std::min(bufSize - 1, static_cast<GLsizei>(varying.name.length())); |
2960 | if(length) |
2961 | { |
2962 | *length = lastNameIdx; |
2963 | } |
2964 | if(size) |
2965 | { |
2966 | *size = varying.size; |
2967 | } |
2968 | if(type) |
2969 | { |
2970 | *type = varying.type; |
2971 | } |
2972 | if(name) |
2973 | { |
2974 | memcpy(name, varying.name.c_str(), lastNameIdx); |
2975 | name[lastNameIdx] = '\0'; |
2976 | } |
2977 | } |
2978 | } |
2979 | |
2980 | GLsizei Program::getTransformFeedbackVaryingCount() const |
2981 | { |
2982 | if(linked) |
2983 | { |
2984 | return static_cast<GLsizei>(transformFeedbackLinkedVaryings.size()); |
2985 | } |
2986 | else |
2987 | { |
2988 | return 0; |
2989 | } |
2990 | } |
2991 | |
2992 | GLsizei Program::getTransformFeedbackVaryingMaxLength() const |
2993 | { |
2994 | if(linked) |
2995 | { |
2996 | GLsizei maxSize = 0; |
2997 | for(size_t i = 0; i < transformFeedbackLinkedVaryings.size(); i++) |
2998 | { |
2999 | const LinkedVarying &varying = transformFeedbackLinkedVaryings[i]; |
3000 | maxSize = std::max(maxSize, static_cast<GLsizei>(varying.name.length() + 1)); |
3001 | } |
3002 | |
3003 | return maxSize; |
3004 | } |
3005 | else |
3006 | { |
3007 | return 0; |
3008 | } |
3009 | } |
3010 | |
3011 | GLenum Program::getTransformFeedbackBufferMode() const |
3012 | { |
3013 | return transformFeedbackBufferMode; |
3014 | } |
3015 | |
3016 | void Program::flagForDeletion() |
3017 | { |
3018 | orphaned = true; |
3019 | } |
3020 | |
3021 | bool Program::isFlaggedForDeletion() const |
3022 | { |
3023 | return orphaned; |
3024 | } |
3025 | |
3026 | void Program::validate(Device* device) |
3027 | { |
3028 | resetInfoLog(); |
3029 | |
3030 | if(!isLinked()) |
3031 | { |
3032 | appendToInfoLog("Program has not been successfully linked." ); |
3033 | validated = false; |
3034 | } |
3035 | else |
3036 | { |
3037 | applyUniforms(device); |
3038 | if(!validateSamplers(true)) |
3039 | { |
3040 | validated = false; |
3041 | } |
3042 | else |
3043 | { |
3044 | validated = true; |
3045 | } |
3046 | } |
3047 | } |
3048 | |
3049 | bool Program::validateSamplers(bool logErrors) |
3050 | { |
3051 | // if any two active samplers in a program are of different types, but refer to the same |
3052 | // texture image unit, and this is the current program, then ValidateProgram will fail, and |
3053 | // DrawArrays and DrawElements will issue the INVALID_OPERATION error. |
3054 | |
3055 | TextureType textureUnitType[MAX_COMBINED_TEXTURE_IMAGE_UNITS]; |
3056 | |
3057 | for(unsigned int i = 0; i < MAX_COMBINED_TEXTURE_IMAGE_UNITS; i++) |
3058 | { |
3059 | textureUnitType[i] = TEXTURE_UNKNOWN; |
3060 | } |
3061 | |
3062 | for(unsigned int i = 0; i < MAX_TEXTURE_IMAGE_UNITS; i++) |
3063 | { |
3064 | if(samplersPS[i].active) |
3065 | { |
3066 | unsigned int unit = samplersPS[i].logicalTextureUnit; |
3067 | |
3068 | if(unit >= MAX_COMBINED_TEXTURE_IMAGE_UNITS) |
3069 | { |
3070 | if(logErrors) |
3071 | { |
3072 | appendToInfoLog("Sampler uniform (%d) exceeds MAX_COMBINED_TEXTURE_IMAGE_UNITS (%d)" , unit, MAX_COMBINED_TEXTURE_IMAGE_UNITS); |
3073 | } |
3074 | |
3075 | return false; |
3076 | } |
3077 | |
3078 | if(textureUnitType[unit] != TEXTURE_UNKNOWN) |
3079 | { |
3080 | if(samplersPS[i].textureType != textureUnitType[unit]) |
3081 | { |
3082 | if(logErrors) |
3083 | { |
3084 | appendToInfoLog("Samplers of conflicting types refer to the same texture image unit (%d)." , unit); |
3085 | } |
3086 | |
3087 | return false; |
3088 | } |
3089 | } |
3090 | else |
3091 | { |
3092 | textureUnitType[unit] = samplersPS[i].textureType; |
3093 | } |
3094 | } |
3095 | } |
3096 | |
3097 | for(unsigned int i = 0; i < MAX_VERTEX_TEXTURE_IMAGE_UNITS; i++) |
3098 | { |
3099 | if(samplersVS[i].active) |
3100 | { |
3101 | unsigned int unit = samplersVS[i].logicalTextureUnit; |
3102 | |
3103 | if(unit >= MAX_COMBINED_TEXTURE_IMAGE_UNITS) |
3104 | { |
3105 | if(logErrors) |
3106 | { |
3107 | appendToInfoLog("Sampler uniform (%d) exceeds MAX_COMBINED_TEXTURE_IMAGE_UNITS (%d)" , unit, MAX_COMBINED_TEXTURE_IMAGE_UNITS); |
3108 | } |
3109 | |
3110 | return false; |
3111 | } |
3112 | |
3113 | if(textureUnitType[unit] != TEXTURE_UNKNOWN) |
3114 | { |
3115 | if(samplersVS[i].textureType != textureUnitType[unit]) |
3116 | { |
3117 | if(logErrors) |
3118 | { |
3119 | appendToInfoLog("Samplers of conflicting types refer to the same texture image unit (%d)." , unit); |
3120 | } |
3121 | |
3122 | return false; |
3123 | } |
3124 | } |
3125 | else |
3126 | { |
3127 | textureUnitType[unit] = samplersVS[i].textureType; |
3128 | } |
3129 | } |
3130 | } |
3131 | |
3132 | return true; |
3133 | } |
3134 | } |
3135 | |