| 1 | /* |
| 2 | * Copyright (c) 2001, 2019, Oracle and/or its affiliates. All rights reserved. |
| 3 | * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
| 4 | * |
| 5 | * This code is free software; you can redistribute it and/or modify it |
| 6 | * under the terms of the GNU General Public License version 2 only, as |
| 7 | * published by the Free Software Foundation. |
| 8 | * |
| 9 | * This code is distributed in the hope that it will be useful, but WITHOUT |
| 10 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| 11 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| 12 | * version 2 for more details (a copy is included in the LICENSE file that |
| 13 | * accompanied this code). |
| 14 | * |
| 15 | * You should have received a copy of the GNU General Public License version |
| 16 | * 2 along with this work; if not, write to the Free Software Foundation, |
| 17 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
| 18 | * |
| 19 | * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
| 20 | * or visit www.oracle.com if you need additional information or have any |
| 21 | * questions. |
| 22 | * |
| 23 | */ |
| 24 | |
| 25 | #include "precompiled.hpp" |
| 26 | #include "classfile/stringTable.hpp" |
| 27 | #include "gc/cms/cmsHeap.inline.hpp" |
| 28 | #include "gc/cms/compactibleFreeListSpace.hpp" |
| 29 | #include "gc/cms/concurrentMarkSweepGeneration.hpp" |
| 30 | #include "gc/cms/parNewGeneration.inline.hpp" |
| 31 | #include "gc/cms/parOopClosures.inline.hpp" |
| 32 | #include "gc/serial/defNewGeneration.inline.hpp" |
| 33 | #include "gc/shared/adaptiveSizePolicy.hpp" |
| 34 | #include "gc/shared/ageTable.inline.hpp" |
| 35 | #include "gc/shared/copyFailedInfo.hpp" |
| 36 | #include "gc/shared/gcHeapSummary.hpp" |
| 37 | #include "gc/shared/gcTimer.hpp" |
| 38 | #include "gc/shared/gcTrace.hpp" |
| 39 | #include "gc/shared/gcTraceTime.inline.hpp" |
| 40 | #include "gc/shared/genOopClosures.inline.hpp" |
| 41 | #include "gc/shared/generation.hpp" |
| 42 | #include "gc/shared/plab.inline.hpp" |
| 43 | #include "gc/shared/preservedMarks.inline.hpp" |
| 44 | #include "gc/shared/referencePolicy.hpp" |
| 45 | #include "gc/shared/referenceProcessorPhaseTimes.hpp" |
| 46 | #include "gc/shared/space.hpp" |
| 47 | #include "gc/shared/spaceDecorator.hpp" |
| 48 | #include "gc/shared/strongRootsScope.hpp" |
| 49 | #include "gc/shared/taskqueue.inline.hpp" |
| 50 | #include "gc/shared/weakProcessor.hpp" |
| 51 | #include "gc/shared/workgroup.hpp" |
| 52 | #include "gc/shared/workerPolicy.hpp" |
| 53 | #include "logging/log.hpp" |
| 54 | #include "logging/logStream.hpp" |
| 55 | #include "memory/iterator.inline.hpp" |
| 56 | #include "memory/resourceArea.hpp" |
| 57 | #include "oops/access.inline.hpp" |
| 58 | #include "oops/compressedOops.inline.hpp" |
| 59 | #include "oops/objArrayOop.hpp" |
| 60 | #include "oops/oop.inline.hpp" |
| 61 | #include "runtime/atomic.hpp" |
| 62 | #include "runtime/handles.inline.hpp" |
| 63 | #include "runtime/java.hpp" |
| 64 | #include "runtime/thread.inline.hpp" |
| 65 | #include "utilities/copy.hpp" |
| 66 | #include "utilities/globalDefinitions.hpp" |
| 67 | #include "utilities/stack.inline.hpp" |
| 68 | |
| 69 | ParScanThreadState::ParScanThreadState(Space* to_space_, |
| 70 | ParNewGeneration* young_gen_, |
| 71 | Generation* old_gen_, |
| 72 | int thread_num_, |
| 73 | ObjToScanQueueSet* work_queue_set_, |
| 74 | Stack<oop, mtGC>* overflow_stacks_, |
| 75 | PreservedMarks* preserved_marks_, |
| 76 | size_t desired_plab_sz_, |
| 77 | TaskTerminator& term_) : |
| 78 | _work_queue(work_queue_set_->queue(thread_num_)), |
| 79 | _overflow_stack(overflow_stacks_ ? overflow_stacks_ + thread_num_ : NULL), |
| 80 | _preserved_marks(preserved_marks_), |
| 81 | _to_space_alloc_buffer(desired_plab_sz_), |
| 82 | _to_space_closure(young_gen_, this), |
| 83 | _old_gen_closure(young_gen_, this), |
| 84 | _to_space_root_closure(young_gen_, this), |
| 85 | _older_gen_closure(young_gen_, this), |
| 86 | _old_gen_root_closure(young_gen_, this), |
| 87 | _evacuate_followers(this, &_to_space_closure, &_old_gen_closure, |
| 88 | &_to_space_root_closure, young_gen_, &_old_gen_root_closure, |
| 89 | work_queue_set_, term_.terminator()), |
| 90 | _is_alive_closure(young_gen_), |
| 91 | _scan_weak_ref_closure(young_gen_, this), |
| 92 | _keep_alive_closure(&_scan_weak_ref_closure), |
| 93 | _to_space(to_space_), |
| 94 | _young_gen(young_gen_), |
| 95 | _old_gen(old_gen_), |
| 96 | _young_old_boundary(NULL), |
| 97 | _thread_num(thread_num_), |
| 98 | _ageTable(false), // false ==> not the global age table, no perf data. |
| 99 | _to_space_full(false), |
| 100 | _strong_roots_time(0.0), |
| 101 | _term_time(0.0) |
| 102 | { |
| 103 | #if TASKQUEUE_STATS |
| 104 | _term_attempts = 0; |
| 105 | _overflow_refills = 0; |
| 106 | _overflow_refill_objs = 0; |
| 107 | #endif // TASKQUEUE_STATS |
| 108 | |
| 109 | _survivor_chunk_array = (ChunkArray*) old_gen()->get_data_recorder(thread_num()); |
| 110 | _start = os::elapsedTime(); |
| 111 | _old_gen_closure.set_generation(old_gen_); |
| 112 | _old_gen_root_closure.set_generation(old_gen_); |
| 113 | } |
| 114 | |
| 115 | void ParScanThreadState::record_survivor_plab(HeapWord* plab_start, |
| 116 | size_t plab_word_size) { |
| 117 | ChunkArray* sca = survivor_chunk_array(); |
| 118 | if (sca != NULL) { |
| 119 | // A non-null SCA implies that we want the PLAB data recorded. |
| 120 | sca->record_sample(plab_start, plab_word_size); |
| 121 | } |
| 122 | } |
| 123 | |
| 124 | bool ParScanThreadState::should_be_partially_scanned(oop new_obj, oop old_obj) const { |
| 125 | return new_obj->is_objArray() && |
| 126 | arrayOop(new_obj)->length() > ParGCArrayScanChunk && |
| 127 | new_obj != old_obj; |
| 128 | } |
| 129 | |
| 130 | void ParScanThreadState::scan_partial_array_and_push_remainder(oop old) { |
| 131 | assert(old->is_objArray(), "must be obj array" ); |
| 132 | assert(old->is_forwarded(), "must be forwarded" ); |
| 133 | assert(CMSHeap::heap()->is_in_reserved(old), "must be in heap." ); |
| 134 | assert(!old_gen()->is_in(old), "must be in young generation." ); |
| 135 | |
| 136 | objArrayOop obj = objArrayOop(old->forwardee()); |
| 137 | // Process ParGCArrayScanChunk elements now |
| 138 | // and push the remainder back onto queue |
| 139 | int start = arrayOop(old)->length(); |
| 140 | int end = obj->length(); |
| 141 | int remainder = end - start; |
| 142 | assert(start <= end, "just checking" ); |
| 143 | if (remainder > 2 * ParGCArrayScanChunk) { |
| 144 | // Test above combines last partial chunk with a full chunk |
| 145 | end = start + ParGCArrayScanChunk; |
| 146 | arrayOop(old)->set_length(end); |
| 147 | // Push remainder. |
| 148 | bool ok = work_queue()->push(old); |
| 149 | assert(ok, "just popped, push must be okay" ); |
| 150 | } else { |
| 151 | // Restore length so that it can be used if there |
| 152 | // is a promotion failure and forwarding pointers |
| 153 | // must be removed. |
| 154 | arrayOop(old)->set_length(end); |
| 155 | } |
| 156 | |
| 157 | // process our set of indices (include header in first chunk) |
| 158 | // should make sure end is even (aligned to HeapWord in case of compressed oops) |
| 159 | if ((HeapWord *)obj < young_old_boundary()) { |
| 160 | // object is in to_space |
| 161 | obj->oop_iterate_range(&_to_space_closure, start, end); |
| 162 | } else { |
| 163 | // object is in old generation |
| 164 | obj->oop_iterate_range(&_old_gen_closure, start, end); |
| 165 | } |
| 166 | } |
| 167 | |
| 168 | void ParScanThreadState::trim_queues(int max_size) { |
| 169 | ObjToScanQueue* queue = work_queue(); |
| 170 | do { |
| 171 | while (queue->size() > (juint)max_size) { |
| 172 | oop obj_to_scan; |
| 173 | if (queue->pop_local(obj_to_scan)) { |
| 174 | if ((HeapWord *)obj_to_scan < young_old_boundary()) { |
| 175 | if (obj_to_scan->is_objArray() && |
| 176 | obj_to_scan->is_forwarded() && |
| 177 | obj_to_scan->forwardee() != obj_to_scan) { |
| 178 | scan_partial_array_and_push_remainder(obj_to_scan); |
| 179 | } else { |
| 180 | // object is in to_space |
| 181 | obj_to_scan->oop_iterate(&_to_space_closure); |
| 182 | } |
| 183 | } else { |
| 184 | // object is in old generation |
| 185 | obj_to_scan->oop_iterate(&_old_gen_closure); |
| 186 | } |
| 187 | } |
| 188 | } |
| 189 | // For the case of compressed oops, we have a private, non-shared |
| 190 | // overflow stack, so we eagerly drain it so as to more evenly |
| 191 | // distribute load early. Note: this may be good to do in |
| 192 | // general rather than delay for the final stealing phase. |
| 193 | // If applicable, we'll transfer a set of objects over to our |
| 194 | // work queue, allowing them to be stolen and draining our |
| 195 | // private overflow stack. |
| 196 | } while (ParGCTrimOverflow && young_gen()->take_from_overflow_list(this)); |
| 197 | } |
| 198 | |
| 199 | bool ParScanThreadState::take_from_overflow_stack() { |
| 200 | assert(ParGCUseLocalOverflow, "Else should not call" ); |
| 201 | assert(young_gen()->overflow_list() == NULL, "Error" ); |
| 202 | ObjToScanQueue* queue = work_queue(); |
| 203 | Stack<oop, mtGC>* const of_stack = overflow_stack(); |
| 204 | const size_t num_overflow_elems = of_stack->size(); |
| 205 | const size_t space_available = queue->max_elems() - queue->size(); |
| 206 | const size_t num_take_elems = MIN3(space_available / 4, |
| 207 | (size_t)ParGCDesiredObjsFromOverflowList, |
| 208 | num_overflow_elems); |
| 209 | // Transfer the most recent num_take_elems from the overflow |
| 210 | // stack to our work queue. |
| 211 | for (size_t i = 0; i != num_take_elems; i++) { |
| 212 | oop cur = of_stack->pop(); |
| 213 | oop obj_to_push = cur->forwardee(); |
| 214 | assert(CMSHeap::heap()->is_in_reserved(cur), "Should be in heap" ); |
| 215 | assert(!old_gen()->is_in_reserved(cur), "Should be in young gen" ); |
| 216 | assert(CMSHeap::heap()->is_in_reserved(obj_to_push), "Should be in heap" ); |
| 217 | if (should_be_partially_scanned(obj_to_push, cur)) { |
| 218 | assert(arrayOop(cur)->length() == 0, "entire array remaining to be scanned" ); |
| 219 | obj_to_push = cur; |
| 220 | } |
| 221 | bool ok = queue->push(obj_to_push); |
| 222 | assert(ok, "Should have succeeded" ); |
| 223 | } |
| 224 | assert(young_gen()->overflow_list() == NULL, "Error" ); |
| 225 | return num_take_elems > 0; // was something transferred? |
| 226 | } |
| 227 | |
| 228 | void ParScanThreadState::push_on_overflow_stack(oop p) { |
| 229 | assert(ParGCUseLocalOverflow, "Else should not call" ); |
| 230 | overflow_stack()->push(p); |
| 231 | assert(young_gen()->overflow_list() == NULL, "Error" ); |
| 232 | } |
| 233 | |
| 234 | HeapWord* ParScanThreadState::alloc_in_to_space_slow(size_t word_sz) { |
| 235 | // If the object is small enough, try to reallocate the buffer. |
| 236 | HeapWord* obj = NULL; |
| 237 | if (!_to_space_full) { |
| 238 | PLAB* const plab = to_space_alloc_buffer(); |
| 239 | Space* const sp = to_space(); |
| 240 | if (word_sz * 100 < ParallelGCBufferWastePct * plab->word_sz()) { |
| 241 | // Is small enough; abandon this buffer and start a new one. |
| 242 | plab->retire(); |
| 243 | // The minimum size has to be twice SurvivorAlignmentInBytes to |
| 244 | // allow for padding used in the alignment of 1 word. A padding |
| 245 | // of 1 is too small for a filler word so the padding size will |
| 246 | // be increased by SurvivorAlignmentInBytes. |
| 247 | size_t min_usable_size = 2 * static_cast<size_t>(SurvivorAlignmentInBytes >> LogHeapWordSize); |
| 248 | size_t buf_size = MAX2(plab->word_sz(), min_usable_size); |
| 249 | HeapWord* buf_space = sp->par_allocate(buf_size); |
| 250 | if (buf_space == NULL) { |
| 251 | const size_t min_bytes = MAX2(PLAB::min_size(), min_usable_size) << LogHeapWordSize; |
| 252 | size_t free_bytes = sp->free(); |
| 253 | while(buf_space == NULL && free_bytes >= min_bytes) { |
| 254 | buf_size = free_bytes >> LogHeapWordSize; |
| 255 | assert(buf_size == (size_t)align_object_size(buf_size), "Invariant" ); |
| 256 | buf_space = sp->par_allocate(buf_size); |
| 257 | free_bytes = sp->free(); |
| 258 | } |
| 259 | } |
| 260 | if (buf_space != NULL) { |
| 261 | plab->set_buf(buf_space, buf_size); |
| 262 | record_survivor_plab(buf_space, buf_size); |
| 263 | obj = plab->allocate_aligned(word_sz, SurvivorAlignmentInBytes); |
| 264 | // Note that we cannot compare buf_size < word_sz below |
| 265 | // because of AlignmentReserve (see PLAB::allocate()). |
| 266 | assert(obj != NULL || plab->words_remaining() < word_sz, |
| 267 | "Else should have been able to allocate requested object size " |
| 268 | SIZE_FORMAT ", PLAB size " SIZE_FORMAT ", SurvivorAlignmentInBytes " |
| 269 | SIZE_FORMAT ", words_remaining " SIZE_FORMAT, |
| 270 | word_sz, buf_size, SurvivorAlignmentInBytes, plab->words_remaining()); |
| 271 | // It's conceivable that we may be able to use the |
| 272 | // buffer we just grabbed for subsequent small requests |
| 273 | // even if not for this one. |
| 274 | } else { |
| 275 | // We're used up. |
| 276 | _to_space_full = true; |
| 277 | } |
| 278 | } else { |
| 279 | // Too large; allocate the object individually. |
| 280 | obj = sp->par_allocate(word_sz); |
| 281 | } |
| 282 | } |
| 283 | return obj; |
| 284 | } |
| 285 | |
| 286 | void ParScanThreadState::undo_alloc_in_to_space(HeapWord* obj, size_t word_sz) { |
| 287 | to_space_alloc_buffer()->undo_allocation(obj, word_sz); |
| 288 | } |
| 289 | |
| 290 | void ParScanThreadState::print_promotion_failure_size() { |
| 291 | if (_promotion_failed_info.has_failed()) { |
| 292 | log_trace(gc, promotion)(" (%d: promotion failure size = " SIZE_FORMAT ") " , |
| 293 | _thread_num, _promotion_failed_info.first_size()); |
| 294 | } |
| 295 | } |
| 296 | |
| 297 | class ParScanThreadStateSet: StackObj { |
| 298 | public: |
| 299 | // Initializes states for the specified number of threads; |
| 300 | ParScanThreadStateSet(int num_threads, |
| 301 | Space& to_space, |
| 302 | ParNewGeneration& young_gen, |
| 303 | Generation& old_gen, |
| 304 | ObjToScanQueueSet& queue_set, |
| 305 | Stack<oop, mtGC>* overflow_stacks_, |
| 306 | PreservedMarksSet& preserved_marks_set, |
| 307 | size_t desired_plab_sz, |
| 308 | TaskTerminator& term); |
| 309 | |
| 310 | ~ParScanThreadStateSet() { TASKQUEUE_STATS_ONLY(reset_stats()); } |
| 311 | |
| 312 | inline ParScanThreadState& thread_state(int i); |
| 313 | |
| 314 | void trace_promotion_failed(const YoungGCTracer* gc_tracer); |
| 315 | void reset(uint active_workers, bool promotion_failed); |
| 316 | void flush(); |
| 317 | |
| 318 | #if TASKQUEUE_STATS |
| 319 | static void |
| 320 | print_termination_stats_hdr(outputStream* const st); |
| 321 | void print_termination_stats(); |
| 322 | static void |
| 323 | print_taskqueue_stats_hdr(outputStream* const st); |
| 324 | void print_taskqueue_stats(); |
| 325 | void reset_stats(); |
| 326 | #endif // TASKQUEUE_STATS |
| 327 | |
| 328 | private: |
| 329 | TaskTerminator& _term; |
| 330 | ParNewGeneration& _young_gen; |
| 331 | Generation& _old_gen; |
| 332 | ParScanThreadState* _per_thread_states; |
| 333 | const int _num_threads; |
| 334 | public: |
| 335 | bool is_valid(int id) const { return id < _num_threads; } |
| 336 | ParallelTaskTerminator* terminator() { return _term.terminator(); } |
| 337 | }; |
| 338 | |
| 339 | ParScanThreadStateSet::ParScanThreadStateSet(int num_threads, |
| 340 | Space& to_space, |
| 341 | ParNewGeneration& young_gen, |
| 342 | Generation& old_gen, |
| 343 | ObjToScanQueueSet& queue_set, |
| 344 | Stack<oop, mtGC>* overflow_stacks, |
| 345 | PreservedMarksSet& preserved_marks_set, |
| 346 | size_t desired_plab_sz, |
| 347 | TaskTerminator& term) |
| 348 | : _term(term), |
| 349 | _young_gen(young_gen), |
| 350 | _old_gen(old_gen), |
| 351 | _per_thread_states(NEW_RESOURCE_ARRAY(ParScanThreadState, num_threads)), |
| 352 | _num_threads(num_threads) |
| 353 | { |
| 354 | assert(num_threads > 0, "sanity check!" ); |
| 355 | assert(ParGCUseLocalOverflow == (overflow_stacks != NULL), |
| 356 | "overflow_stack allocation mismatch" ); |
| 357 | // Initialize states. |
| 358 | for (int i = 0; i < num_threads; ++i) { |
| 359 | new(_per_thread_states + i) |
| 360 | ParScanThreadState(&to_space, &young_gen, &old_gen, i, &queue_set, |
| 361 | overflow_stacks, preserved_marks_set.get(i), |
| 362 | desired_plab_sz, term); |
| 363 | } |
| 364 | } |
| 365 | |
| 366 | inline ParScanThreadState& ParScanThreadStateSet::thread_state(int i) { |
| 367 | assert(i >= 0 && i < _num_threads, "sanity check!" ); |
| 368 | return _per_thread_states[i]; |
| 369 | } |
| 370 | |
| 371 | void ParScanThreadStateSet::trace_promotion_failed(const YoungGCTracer* gc_tracer) { |
| 372 | for (int i = 0; i < _num_threads; ++i) { |
| 373 | if (thread_state(i).promotion_failed()) { |
| 374 | gc_tracer->report_promotion_failed(thread_state(i).promotion_failed_info()); |
| 375 | thread_state(i).promotion_failed_info().reset(); |
| 376 | } |
| 377 | } |
| 378 | } |
| 379 | |
| 380 | void ParScanThreadStateSet::reset(uint active_threads, bool promotion_failed) { |
| 381 | _term.terminator()->reset_for_reuse(active_threads); |
| 382 | if (promotion_failed) { |
| 383 | for (int i = 0; i < _num_threads; ++i) { |
| 384 | thread_state(i).print_promotion_failure_size(); |
| 385 | } |
| 386 | } |
| 387 | } |
| 388 | |
| 389 | #if TASKQUEUE_STATS |
| 390 | void ParScanThreadState::reset_stats() { |
| 391 | taskqueue_stats().reset(); |
| 392 | _term_attempts = 0; |
| 393 | _overflow_refills = 0; |
| 394 | _overflow_refill_objs = 0; |
| 395 | } |
| 396 | |
| 397 | void ParScanThreadStateSet::reset_stats() { |
| 398 | for (int i = 0; i < _num_threads; ++i) { |
| 399 | thread_state(i).reset_stats(); |
| 400 | } |
| 401 | } |
| 402 | |
| 403 | void ParScanThreadStateSet::print_termination_stats_hdr(outputStream* const st) { |
| 404 | st->print_raw_cr("GC Termination Stats" ); |
| 405 | st->print_raw_cr(" elapsed --strong roots-- -------termination-------" ); |
| 406 | st->print_raw_cr("thr ms ms % ms % attempts" ); |
| 407 | st->print_raw_cr("--- --------- --------- ------ --------- ------ --------" ); |
| 408 | } |
| 409 | |
| 410 | void ParScanThreadStateSet::print_termination_stats() { |
| 411 | Log(gc, task, stats) log; |
| 412 | if (!log.is_debug()) { |
| 413 | return; |
| 414 | } |
| 415 | |
| 416 | ResourceMark rm; |
| 417 | LogStream ls(log.debug()); |
| 418 | outputStream* st = &ls; |
| 419 | |
| 420 | print_termination_stats_hdr(st); |
| 421 | |
| 422 | for (int i = 0; i < _num_threads; ++i) { |
| 423 | const ParScanThreadState & pss = thread_state(i); |
| 424 | const double elapsed_ms = pss.elapsed_time() * 1000.0; |
| 425 | const double s_roots_ms = pss.strong_roots_time() * 1000.0; |
| 426 | const double term_ms = pss.term_time() * 1000.0; |
| 427 | st->print_cr("%3d %9.2f %9.2f %6.2f %9.2f %6.2f " SIZE_FORMAT_W(8), |
| 428 | i, elapsed_ms, s_roots_ms, s_roots_ms * 100 / elapsed_ms, |
| 429 | term_ms, term_ms * 100 / elapsed_ms, pss.term_attempts()); |
| 430 | } |
| 431 | } |
| 432 | |
| 433 | // Print stats related to work queue activity. |
| 434 | void ParScanThreadStateSet::print_taskqueue_stats_hdr(outputStream* const st) { |
| 435 | st->print_raw_cr("GC Task Stats" ); |
| 436 | st->print_raw("thr " ); TaskQueueStats::print_header(1, st); st->cr(); |
| 437 | st->print_raw("--- " ); TaskQueueStats::print_header(2, st); st->cr(); |
| 438 | } |
| 439 | |
| 440 | void ParScanThreadStateSet::print_taskqueue_stats() { |
| 441 | if (!log_is_enabled(Trace, gc, task, stats)) { |
| 442 | return; |
| 443 | } |
| 444 | Log(gc, task, stats) log; |
| 445 | ResourceMark rm; |
| 446 | LogStream ls(log.trace()); |
| 447 | outputStream* st = &ls; |
| 448 | print_taskqueue_stats_hdr(st); |
| 449 | |
| 450 | TaskQueueStats totals; |
| 451 | for (int i = 0; i < _num_threads; ++i) { |
| 452 | const ParScanThreadState & pss = thread_state(i); |
| 453 | const TaskQueueStats & stats = pss.taskqueue_stats(); |
| 454 | st->print("%3d " , i); stats.print(st); st->cr(); |
| 455 | totals += stats; |
| 456 | |
| 457 | if (pss.overflow_refills() > 0) { |
| 458 | st->print_cr(" " SIZE_FORMAT_W(10) " overflow refills " |
| 459 | SIZE_FORMAT_W(10) " overflow objects" , |
| 460 | pss.overflow_refills(), pss.overflow_refill_objs()); |
| 461 | } |
| 462 | } |
| 463 | st->print("tot " ); totals.print(st); st->cr(); |
| 464 | |
| 465 | DEBUG_ONLY(totals.verify()); |
| 466 | } |
| 467 | #endif // TASKQUEUE_STATS |
| 468 | |
| 469 | void ParScanThreadStateSet::flush() { |
| 470 | // Work in this loop should be kept as lightweight as |
| 471 | // possible since this might otherwise become a bottleneck |
| 472 | // to scaling. Should we add heavy-weight work into this |
| 473 | // loop, consider parallelizing the loop into the worker threads. |
| 474 | for (int i = 0; i < _num_threads; ++i) { |
| 475 | ParScanThreadState& par_scan_state = thread_state(i); |
| 476 | |
| 477 | // Flush stats related to To-space PLAB activity and |
| 478 | // retire the last buffer. |
| 479 | par_scan_state.to_space_alloc_buffer()->flush_and_retire_stats(_young_gen.plab_stats()); |
| 480 | |
| 481 | // Every thread has its own age table. We need to merge |
| 482 | // them all into one. |
| 483 | AgeTable *local_table = par_scan_state.age_table(); |
| 484 | _young_gen.age_table()->merge(local_table); |
| 485 | |
| 486 | // Inform old gen that we're done. |
| 487 | _old_gen.par_promote_alloc_done(i); |
| 488 | } |
| 489 | |
| 490 | if (UseConcMarkSweepGC) { |
| 491 | // We need to call this even when ResizeOldPLAB is disabled |
| 492 | // so as to avoid breaking some asserts. While we may be able |
| 493 | // to avoid this by reorganizing the code a bit, I am loathe |
| 494 | // to do that unless we find cases where ergo leads to bad |
| 495 | // performance. |
| 496 | CompactibleFreeListSpaceLAB::compute_desired_plab_size(); |
| 497 | } |
| 498 | } |
| 499 | |
| 500 | ParScanClosure::ParScanClosure(ParNewGeneration* g, |
| 501 | ParScanThreadState* par_scan_state) : |
| 502 | OopsInClassLoaderDataOrGenClosure(g), _par_scan_state(par_scan_state), _g(g) { |
| 503 | _boundary = _g->reserved().end(); |
| 504 | } |
| 505 | |
| 506 | void ParRootScanWithBarrierTwoGensClosure::do_oop(oop* p) { ParScanClosure::do_oop_work(p, true, true); } |
| 507 | void ParRootScanWithBarrierTwoGensClosure::do_oop(narrowOop* p) { ParScanClosure::do_oop_work(p, true, true); } |
| 508 | |
| 509 | void ParRootScanWithoutBarrierClosure::do_oop(oop* p) { ParScanClosure::do_oop_work(p, false, true); } |
| 510 | void ParRootScanWithoutBarrierClosure::do_oop(narrowOop* p) { ParScanClosure::do_oop_work(p, false, true); } |
| 511 | |
| 512 | ParScanWeakRefClosure::ParScanWeakRefClosure(ParNewGeneration* g, |
| 513 | ParScanThreadState* par_scan_state) |
| 514 | : ScanWeakRefClosure(g), _par_scan_state(par_scan_state) |
| 515 | {} |
| 516 | |
| 517 | #ifdef WIN32 |
| 518 | #pragma warning(disable: 4786) /* identifier was truncated to '255' characters in the browser information */ |
| 519 | #endif |
| 520 | |
| 521 | ParEvacuateFollowersClosure::ParEvacuateFollowersClosure( |
| 522 | ParScanThreadState* par_scan_state_, |
| 523 | ParScanWithoutBarrierClosure* to_space_closure_, |
| 524 | ParScanWithBarrierClosure* old_gen_closure_, |
| 525 | ParRootScanWithoutBarrierClosure* to_space_root_closure_, |
| 526 | ParNewGeneration* par_gen_, |
| 527 | ParRootScanWithBarrierTwoGensClosure* old_gen_root_closure_, |
| 528 | ObjToScanQueueSet* task_queues_, |
| 529 | ParallelTaskTerminator* terminator_) : |
| 530 | |
| 531 | _par_scan_state(par_scan_state_), |
| 532 | _to_space_closure(to_space_closure_), |
| 533 | _to_space_root_closure(to_space_root_closure_), |
| 534 | _old_gen_closure(old_gen_closure_), |
| 535 | _old_gen_root_closure(old_gen_root_closure_), |
| 536 | _par_gen(par_gen_), |
| 537 | _task_queues(task_queues_), |
| 538 | _terminator(terminator_) |
| 539 | {} |
| 540 | |
| 541 | void ParEvacuateFollowersClosure::do_void() { |
| 542 | ObjToScanQueue* work_q = par_scan_state()->work_queue(); |
| 543 | |
| 544 | while (true) { |
| 545 | // Scan to-space and old-gen objs until we run out of both. |
| 546 | oop obj_to_scan; |
| 547 | par_scan_state()->trim_queues(0); |
| 548 | |
| 549 | // We have no local work, attempt to steal from other threads. |
| 550 | |
| 551 | // Attempt to steal work from promoted. |
| 552 | if (task_queues()->steal(par_scan_state()->thread_num(), |
| 553 | obj_to_scan)) { |
| 554 | bool res = work_q->push(obj_to_scan); |
| 555 | assert(res, "Empty queue should have room for a push." ); |
| 556 | |
| 557 | // If successful, goto Start. |
| 558 | continue; |
| 559 | |
| 560 | // Try global overflow list. |
| 561 | } else if (par_gen()->take_from_overflow_list(par_scan_state())) { |
| 562 | continue; |
| 563 | } |
| 564 | |
| 565 | // Otherwise, offer termination. |
| 566 | par_scan_state()->start_term_time(); |
| 567 | if (terminator()->offer_termination()) break; |
| 568 | par_scan_state()->end_term_time(); |
| 569 | } |
| 570 | assert(par_gen()->_overflow_list == NULL && par_gen()->_num_par_pushes == 0, |
| 571 | "Broken overflow list?" ); |
| 572 | // Finish the last termination pause. |
| 573 | par_scan_state()->end_term_time(); |
| 574 | } |
| 575 | |
| 576 | ParNewGenTask::ParNewGenTask(ParNewGeneration* young_gen, |
| 577 | Generation* old_gen, |
| 578 | HeapWord* young_old_boundary, |
| 579 | ParScanThreadStateSet* state_set, |
| 580 | StrongRootsScope* strong_roots_scope) : |
| 581 | AbstractGangTask("ParNewGeneration collection" ), |
| 582 | _young_gen(young_gen), _old_gen(old_gen), |
| 583 | _young_old_boundary(young_old_boundary), |
| 584 | _state_set(state_set), |
| 585 | _strong_roots_scope(strong_roots_scope) |
| 586 | {} |
| 587 | |
| 588 | void ParNewGenTask::work(uint worker_id) { |
| 589 | CMSHeap* heap = CMSHeap::heap(); |
| 590 | // Since this is being done in a separate thread, need new resource |
| 591 | // and handle marks. |
| 592 | ResourceMark rm; |
| 593 | HandleMark hm; |
| 594 | |
| 595 | ParScanThreadState& par_scan_state = _state_set->thread_state(worker_id); |
| 596 | assert(_state_set->is_valid(worker_id), "Should not have been called" ); |
| 597 | |
| 598 | par_scan_state.set_young_old_boundary(_young_old_boundary); |
| 599 | |
| 600 | CLDScanClosure cld_scan_closure(&par_scan_state.to_space_root_closure(), |
| 601 | heap->rem_set()->cld_rem_set()->accumulate_modified_oops()); |
| 602 | |
| 603 | par_scan_state.start_strong_roots(); |
| 604 | heap->young_process_roots(_strong_roots_scope, |
| 605 | &par_scan_state.to_space_root_closure(), |
| 606 | &par_scan_state.older_gen_closure(), |
| 607 | &cld_scan_closure); |
| 608 | |
| 609 | par_scan_state.end_strong_roots(); |
| 610 | |
| 611 | // "evacuate followers". |
| 612 | par_scan_state.evacuate_followers_closure().do_void(); |
| 613 | |
| 614 | // This will collapse this worker's promoted object list that's |
| 615 | // created during the main ParNew parallel phase of ParNew. This has |
| 616 | // to be called after all workers have finished promoting objects |
| 617 | // and scanning promoted objects. It should be safe calling it from |
| 618 | // here, given that we can only reach here after all thread have |
| 619 | // offered termination, i.e., after there is no more work to be |
| 620 | // done. It will also disable promotion tracking for the rest of |
| 621 | // this GC as it's not necessary to be on during reference processing. |
| 622 | _old_gen->par_oop_since_save_marks_iterate_done((int) worker_id); |
| 623 | } |
| 624 | |
| 625 | ParNewGeneration::ParNewGeneration(ReservedSpace rs, |
| 626 | size_t initial_byte_size, |
| 627 | size_t min_byte_size, |
| 628 | size_t max_byte_size) |
| 629 | : DefNewGeneration(rs, initial_byte_size, min_byte_size, max_byte_size, "CMS young collection pauses" ), |
| 630 | _plab_stats("Young" , YoungPLABSize, PLABWeight), |
| 631 | _overflow_list(NULL), |
| 632 | _is_alive_closure(this) |
| 633 | { |
| 634 | NOT_PRODUCT(_overflow_counter = ParGCWorkQueueOverflowInterval;) |
| 635 | NOT_PRODUCT(_num_par_pushes = 0;) |
| 636 | _task_queues = new ObjToScanQueueSet(ParallelGCThreads); |
| 637 | guarantee(_task_queues != NULL, "task_queues allocation failure." ); |
| 638 | |
| 639 | for (uint i = 0; i < ParallelGCThreads; i++) { |
| 640 | ObjToScanQueue *q = new ObjToScanQueue(); |
| 641 | guarantee(q != NULL, "work_queue Allocation failure." ); |
| 642 | _task_queues->register_queue(i, q); |
| 643 | } |
| 644 | |
| 645 | for (uint i = 0; i < ParallelGCThreads; i++) { |
| 646 | _task_queues->queue(i)->initialize(); |
| 647 | } |
| 648 | |
| 649 | _overflow_stacks = NULL; |
| 650 | if (ParGCUseLocalOverflow) { |
| 651 | // typedef to workaround NEW_C_HEAP_ARRAY macro, which can not deal with ',' |
| 652 | typedef Stack<oop, mtGC> GCOopStack; |
| 653 | |
| 654 | _overflow_stacks = NEW_C_HEAP_ARRAY(GCOopStack, ParallelGCThreads, mtGC); |
| 655 | for (size_t i = 0; i < ParallelGCThreads; ++i) { |
| 656 | new (_overflow_stacks + i) Stack<oop, mtGC>(); |
| 657 | } |
| 658 | } |
| 659 | |
| 660 | if (UsePerfData) { |
| 661 | EXCEPTION_MARK; |
| 662 | ResourceMark rm; |
| 663 | |
| 664 | const char* cname = |
| 665 | PerfDataManager::counter_name(_gen_counters->name_space(), "threads" ); |
| 666 | PerfDataManager::create_constant(SUN_GC, cname, PerfData::U_None, |
| 667 | ParallelGCThreads, CHECK); |
| 668 | } |
| 669 | } |
| 670 | |
| 671 | // ParNewGeneration:: |
| 672 | ParKeepAliveClosure::ParKeepAliveClosure(ParScanWeakRefClosure* cl) : |
| 673 | DefNewGeneration::KeepAliveClosure(cl), _par_cl(cl) {} |
| 674 | |
| 675 | template <class T> |
| 676 | void /*ParNewGeneration::*/ParKeepAliveClosure::do_oop_work(T* p) { |
| 677 | #ifdef ASSERT |
| 678 | { |
| 679 | oop obj = RawAccess<IS_NOT_NULL>::oop_load(p); |
| 680 | // We never expect to see a null reference being processed |
| 681 | // as a weak reference. |
| 682 | assert(oopDesc::is_oop(obj), "expected an oop while scanning weak refs" ); |
| 683 | } |
| 684 | #endif // ASSERT |
| 685 | |
| 686 | Devirtualizer::do_oop_no_verify(_par_cl, p); |
| 687 | |
| 688 | if (CMSHeap::heap()->is_in_reserved(p)) { |
| 689 | oop obj = RawAccess<IS_NOT_NULL>::oop_load(p);; |
| 690 | _rs->write_ref_field_gc_par(p, obj); |
| 691 | } |
| 692 | } |
| 693 | |
| 694 | void /*ParNewGeneration::*/ParKeepAliveClosure::do_oop(oop* p) { ParKeepAliveClosure::do_oop_work(p); } |
| 695 | void /*ParNewGeneration::*/ParKeepAliveClosure::do_oop(narrowOop* p) { ParKeepAliveClosure::do_oop_work(p); } |
| 696 | |
| 697 | // ParNewGeneration:: |
| 698 | KeepAliveClosure::KeepAliveClosure(ScanWeakRefClosure* cl) : |
| 699 | DefNewGeneration::KeepAliveClosure(cl) {} |
| 700 | |
| 701 | template <class T> |
| 702 | void /*ParNewGeneration::*/KeepAliveClosure::do_oop_work(T* p) { |
| 703 | #ifdef ASSERT |
| 704 | { |
| 705 | oop obj = RawAccess<IS_NOT_NULL>::oop_load(p); |
| 706 | // We never expect to see a null reference being processed |
| 707 | // as a weak reference. |
| 708 | assert(oopDesc::is_oop(obj), "expected an oop while scanning weak refs" ); |
| 709 | } |
| 710 | #endif // ASSERT |
| 711 | |
| 712 | Devirtualizer::do_oop_no_verify(_cl, p); |
| 713 | |
| 714 | if (CMSHeap::heap()->is_in_reserved(p)) { |
| 715 | oop obj = RawAccess<IS_NOT_NULL>::oop_load(p); |
| 716 | _rs->write_ref_field_gc_par(p, obj); |
| 717 | } |
| 718 | } |
| 719 | |
| 720 | void /*ParNewGeneration::*/KeepAliveClosure::do_oop(oop* p) { KeepAliveClosure::do_oop_work(p); } |
| 721 | void /*ParNewGeneration::*/KeepAliveClosure::do_oop(narrowOop* p) { KeepAliveClosure::do_oop_work(p); } |
| 722 | |
| 723 | template <class T> void ScanClosureWithParBarrier::do_oop_work(T* p) { |
| 724 | T heap_oop = RawAccess<>::oop_load(p); |
| 725 | if (!CompressedOops::is_null(heap_oop)) { |
| 726 | oop obj = CompressedOops::decode_not_null(heap_oop); |
| 727 | if ((HeapWord*)obj < _boundary) { |
| 728 | assert(!_g->to()->is_in_reserved(obj), "Scanning field twice?" ); |
| 729 | oop new_obj = obj->is_forwarded() |
| 730 | ? obj->forwardee() |
| 731 | : _g->DefNewGeneration::copy_to_survivor_space(obj); |
| 732 | RawAccess<IS_NOT_NULL>::oop_store(p, new_obj); |
| 733 | } |
| 734 | if (_gc_barrier) { |
| 735 | // If p points to a younger generation, mark the card. |
| 736 | if ((HeapWord*)obj < _gen_boundary) { |
| 737 | _rs->write_ref_field_gc_par(p, obj); |
| 738 | } |
| 739 | } |
| 740 | } |
| 741 | } |
| 742 | |
| 743 | void ScanClosureWithParBarrier::do_oop(oop* p) { ScanClosureWithParBarrier::do_oop_work(p); } |
| 744 | void ScanClosureWithParBarrier::do_oop(narrowOop* p) { ScanClosureWithParBarrier::do_oop_work(p); } |
| 745 | |
| 746 | class ParNewRefProcTaskProxy: public AbstractGangTask { |
| 747 | typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask; |
| 748 | public: |
| 749 | ParNewRefProcTaskProxy(ProcessTask& task, |
| 750 | ParNewGeneration& young_gen, |
| 751 | Generation& old_gen, |
| 752 | HeapWord* young_old_boundary, |
| 753 | ParScanThreadStateSet& state_set); |
| 754 | |
| 755 | private: |
| 756 | virtual void work(uint worker_id); |
| 757 | private: |
| 758 | ParNewGeneration& _young_gen; |
| 759 | ProcessTask& _task; |
| 760 | Generation& _old_gen; |
| 761 | HeapWord* _young_old_boundary; |
| 762 | ParScanThreadStateSet& _state_set; |
| 763 | }; |
| 764 | |
| 765 | ParNewRefProcTaskProxy::ParNewRefProcTaskProxy(ProcessTask& task, |
| 766 | ParNewGeneration& young_gen, |
| 767 | Generation& old_gen, |
| 768 | HeapWord* young_old_boundary, |
| 769 | ParScanThreadStateSet& state_set) |
| 770 | : AbstractGangTask("ParNewGeneration parallel reference processing" ), |
| 771 | _young_gen(young_gen), |
| 772 | _task(task), |
| 773 | _old_gen(old_gen), |
| 774 | _young_old_boundary(young_old_boundary), |
| 775 | _state_set(state_set) |
| 776 | { } |
| 777 | |
| 778 | void ParNewRefProcTaskProxy::work(uint worker_id) { |
| 779 | ResourceMark rm; |
| 780 | HandleMark hm; |
| 781 | ParScanThreadState& par_scan_state = _state_set.thread_state(worker_id); |
| 782 | par_scan_state.set_young_old_boundary(_young_old_boundary); |
| 783 | _task.work(worker_id, par_scan_state.is_alive_closure(), |
| 784 | par_scan_state.keep_alive_closure(), |
| 785 | par_scan_state.evacuate_followers_closure()); |
| 786 | } |
| 787 | |
| 788 | void ParNewRefProcTaskExecutor::execute(ProcessTask& task, uint ergo_workers) { |
| 789 | CMSHeap* gch = CMSHeap::heap(); |
| 790 | WorkGang* workers = gch->workers(); |
| 791 | assert(workers != NULL, "Need parallel worker threads." ); |
| 792 | assert(workers->active_workers() == ergo_workers, |
| 793 | "Ergonomically chosen workers (%u) must be equal to active workers (%u)" , |
| 794 | ergo_workers, workers->active_workers()); |
| 795 | _state_set.reset(workers->active_workers(), _young_gen.promotion_failed()); |
| 796 | ParNewRefProcTaskProxy rp_task(task, _young_gen, _old_gen, |
| 797 | _young_gen.reserved().end(), _state_set); |
| 798 | workers->run_task(&rp_task, workers->active_workers()); |
| 799 | _state_set.reset(0 /* bad value in debug if not reset */, |
| 800 | _young_gen.promotion_failed()); |
| 801 | } |
| 802 | |
| 803 | void ParNewRefProcTaskExecutor::set_single_threaded_mode() { |
| 804 | _state_set.flush(); |
| 805 | CMSHeap* heap = CMSHeap::heap(); |
| 806 | heap->save_marks(); |
| 807 | } |
| 808 | |
| 809 | ScanClosureWithParBarrier:: |
| 810 | ScanClosureWithParBarrier(ParNewGeneration* g, bool gc_barrier) : |
| 811 | OopsInClassLoaderDataOrGenClosure(g), _g(g), _boundary(g->reserved().end()), _gc_barrier(gc_barrier) |
| 812 | { } |
| 813 | |
| 814 | template <typename OopClosureType1, typename OopClosureType2> |
| 815 | EvacuateFollowersClosureGeneral<OopClosureType1, OopClosureType2>:: |
| 816 | EvacuateFollowersClosureGeneral(CMSHeap* heap, |
| 817 | OopClosureType1* cur, |
| 818 | OopClosureType2* older) : |
| 819 | _heap(heap), |
| 820 | _scan_cur_or_nonheap(cur), _scan_older(older) |
| 821 | { } |
| 822 | |
| 823 | template <typename OopClosureType1, typename OopClosureType2> |
| 824 | void EvacuateFollowersClosureGeneral<OopClosureType1, OopClosureType2>::do_void() { |
| 825 | do { |
| 826 | _heap->oop_since_save_marks_iterate(_scan_cur_or_nonheap, |
| 827 | _scan_older); |
| 828 | } while (!_heap->no_allocs_since_save_marks()); |
| 829 | } |
| 830 | |
| 831 | // A Generation that does parallel young-gen collection. |
| 832 | |
| 833 | void ParNewGeneration::handle_promotion_failed(CMSHeap* gch, ParScanThreadStateSet& thread_state_set) { |
| 834 | assert(_promo_failure_scan_stack.is_empty(), "post condition" ); |
| 835 | _promo_failure_scan_stack.clear(true); // Clear cached segments. |
| 836 | |
| 837 | remove_forwarding_pointers(); |
| 838 | log_info(gc, promotion)("Promotion failed" ); |
| 839 | // All the spaces are in play for mark-sweep. |
| 840 | swap_spaces(); // Make life simpler for CMS || rescan; see 6483690. |
| 841 | from()->set_next_compaction_space(to()); |
| 842 | gch->set_incremental_collection_failed(); |
| 843 | // Inform the next generation that a promotion failure occurred. |
| 844 | _old_gen->promotion_failure_occurred(); |
| 845 | |
| 846 | // Trace promotion failure in the parallel GC threads |
| 847 | thread_state_set.trace_promotion_failed(gc_tracer()); |
| 848 | // Single threaded code may have reported promotion failure to the global state |
| 849 | if (_promotion_failed_info.has_failed()) { |
| 850 | _gc_tracer.report_promotion_failed(_promotion_failed_info); |
| 851 | } |
| 852 | // Reset the PromotionFailureALot counters. |
| 853 | NOT_PRODUCT(gch->reset_promotion_should_fail();) |
| 854 | } |
| 855 | |
| 856 | void ParNewGeneration::collect(bool full, |
| 857 | bool clear_all_soft_refs, |
| 858 | size_t size, |
| 859 | bool is_tlab) { |
| 860 | assert(full || size > 0, "otherwise we don't want to collect" ); |
| 861 | |
| 862 | CMSHeap* gch = CMSHeap::heap(); |
| 863 | |
| 864 | _gc_timer->register_gc_start(); |
| 865 | |
| 866 | AdaptiveSizePolicy* size_policy = gch->size_policy(); |
| 867 | WorkGang* workers = gch->workers(); |
| 868 | assert(workers != NULL, "Need workgang for parallel work" ); |
| 869 | uint active_workers = |
| 870 | WorkerPolicy::calc_active_workers(workers->total_workers(), |
| 871 | workers->active_workers(), |
| 872 | Threads::number_of_non_daemon_threads()); |
| 873 | active_workers = workers->update_active_workers(active_workers); |
| 874 | log_info(gc,task)("Using %u workers of %u for evacuation" , active_workers, workers->total_workers()); |
| 875 | |
| 876 | _old_gen = gch->old_gen(); |
| 877 | |
| 878 | // If the next generation is too full to accommodate worst-case promotion |
| 879 | // from this generation, pass on collection; let the next generation |
| 880 | // do it. |
| 881 | if (!collection_attempt_is_safe()) { |
| 882 | gch->set_incremental_collection_failed(); // slight lie, in that we did not even attempt one |
| 883 | return; |
| 884 | } |
| 885 | assert(to()->is_empty(), "Else not collection_attempt_is_safe" ); |
| 886 | |
| 887 | _gc_tracer.report_gc_start(gch->gc_cause(), _gc_timer->gc_start()); |
| 888 | gch->trace_heap_before_gc(gc_tracer()); |
| 889 | |
| 890 | init_assuming_no_promotion_failure(); |
| 891 | |
| 892 | GCTraceTime(Trace, gc, phases) t1("ParNew" , NULL, gch->gc_cause()); |
| 893 | |
| 894 | age_table()->clear(); |
| 895 | to()->clear(SpaceDecorator::Mangle); |
| 896 | |
| 897 | gch->save_marks(); |
| 898 | |
| 899 | // Set the correct parallelism (number of queues) in the reference processor |
| 900 | ref_processor()->set_active_mt_degree(active_workers); |
| 901 | |
| 902 | // Need to initialize the preserved marks before the ThreadStateSet c'tor. |
| 903 | _preserved_marks_set.init(active_workers); |
| 904 | |
| 905 | // Always set the terminator for the active number of workers |
| 906 | // because only those workers go through the termination protocol. |
| 907 | TaskTerminator _term(active_workers, task_queues()); |
| 908 | ParScanThreadStateSet thread_state_set(active_workers, |
| 909 | *to(), *this, *_old_gen, *task_queues(), |
| 910 | _overflow_stacks, _preserved_marks_set, |
| 911 | desired_plab_sz(), _term); |
| 912 | |
| 913 | thread_state_set.reset(active_workers, promotion_failed()); |
| 914 | |
| 915 | { |
| 916 | StrongRootsScope srs(active_workers); |
| 917 | |
| 918 | ParNewGenTask tsk(this, _old_gen, reserved().end(), &thread_state_set, &srs); |
| 919 | gch->rem_set()->prepare_for_younger_refs_iterate(true); |
| 920 | // It turns out that even when we're using 1 thread, doing the work in a |
| 921 | // separate thread causes wide variance in run times. We can't help this |
| 922 | // in the multi-threaded case, but we special-case n=1 here to get |
| 923 | // repeatable measurements of the 1-thread overhead of the parallel code. |
| 924 | // Might multiple workers ever be used? If yes, initialization |
| 925 | // has been done such that the single threaded path should not be used. |
| 926 | if (workers->total_workers() > 1) { |
| 927 | workers->run_task(&tsk); |
| 928 | } else { |
| 929 | tsk.work(0); |
| 930 | } |
| 931 | } |
| 932 | |
| 933 | thread_state_set.reset(0 /* Bad value in debug if not reset */, |
| 934 | promotion_failed()); |
| 935 | |
| 936 | // Trace and reset failed promotion info. |
| 937 | if (promotion_failed()) { |
| 938 | thread_state_set.trace_promotion_failed(gc_tracer()); |
| 939 | } |
| 940 | |
| 941 | // Process (weak) reference objects found during scavenge. |
| 942 | ReferenceProcessor* rp = ref_processor(); |
| 943 | IsAliveClosure is_alive(this); |
| 944 | ScanWeakRefClosure scan_weak_ref(this); |
| 945 | KeepAliveClosure keep_alive(&scan_weak_ref); |
| 946 | ScanClosure scan_without_gc_barrier(this, false); |
| 947 | ScanClosureWithParBarrier scan_with_gc_barrier(this, true); |
| 948 | set_promo_failure_scan_stack_closure(&scan_without_gc_barrier); |
| 949 | EvacuateFollowersClosureGeneral<ScanClosure, ScanClosureWithParBarrier> evacuate_followers( |
| 950 | gch, &scan_without_gc_barrier, &scan_with_gc_barrier); |
| 951 | rp->setup_policy(clear_all_soft_refs); |
| 952 | // Can the mt_degree be set later (at run_task() time would be best)? |
| 953 | rp->set_active_mt_degree(active_workers); |
| 954 | ReferenceProcessorStats stats; |
| 955 | ReferenceProcessorPhaseTimes pt(_gc_timer, rp->max_num_queues()); |
| 956 | if (rp->processing_is_mt()) { |
| 957 | ParNewRefProcTaskExecutor task_executor(*this, *_old_gen, thread_state_set); |
| 958 | stats = rp->process_discovered_references(&is_alive, &keep_alive, |
| 959 | &evacuate_followers, &task_executor, |
| 960 | &pt); |
| 961 | } else { |
| 962 | thread_state_set.flush(); |
| 963 | gch->save_marks(); |
| 964 | stats = rp->process_discovered_references(&is_alive, &keep_alive, |
| 965 | &evacuate_followers, NULL, |
| 966 | &pt); |
| 967 | } |
| 968 | _gc_tracer.report_gc_reference_stats(stats); |
| 969 | _gc_tracer.report_tenuring_threshold(tenuring_threshold()); |
| 970 | pt.print_all_references(); |
| 971 | |
| 972 | assert(gch->no_allocs_since_save_marks(), "evacuation should be done at this point" ); |
| 973 | |
| 974 | WeakProcessor::weak_oops_do(&is_alive, &keep_alive); |
| 975 | |
| 976 | // Verify that the usage of keep_alive only forwarded |
| 977 | // the oops and did not find anything new to copy. |
| 978 | assert(gch->no_allocs_since_save_marks(), "unexpectedly copied objects" ); |
| 979 | |
| 980 | if (!promotion_failed()) { |
| 981 | // Swap the survivor spaces. |
| 982 | eden()->clear(SpaceDecorator::Mangle); |
| 983 | from()->clear(SpaceDecorator::Mangle); |
| 984 | if (ZapUnusedHeapArea) { |
| 985 | // This is now done here because of the piece-meal mangling which |
| 986 | // can check for valid mangling at intermediate points in the |
| 987 | // collection(s). When a young collection fails to collect |
| 988 | // sufficient space resizing of the young generation can occur |
| 989 | // and redistribute the spaces in the young generation. Mangle |
| 990 | // here so that unzapped regions don't get distributed to |
| 991 | // other spaces. |
| 992 | to()->mangle_unused_area(); |
| 993 | } |
| 994 | swap_spaces(); |
| 995 | |
| 996 | // A successful scavenge should restart the GC time limit count which is |
| 997 | // for full GC's. |
| 998 | size_policy->reset_gc_overhead_limit_count(); |
| 999 | |
| 1000 | assert(to()->is_empty(), "to space should be empty now" ); |
| 1001 | |
| 1002 | adjust_desired_tenuring_threshold(); |
| 1003 | } else { |
| 1004 | handle_promotion_failed(gch, thread_state_set); |
| 1005 | } |
| 1006 | _preserved_marks_set.reclaim(); |
| 1007 | // set new iteration safe limit for the survivor spaces |
| 1008 | from()->set_concurrent_iteration_safe_limit(from()->top()); |
| 1009 | to()->set_concurrent_iteration_safe_limit(to()->top()); |
| 1010 | |
| 1011 | plab_stats()->adjust_desired_plab_sz(); |
| 1012 | |
| 1013 | TASKQUEUE_STATS_ONLY(thread_state_set.print_termination_stats()); |
| 1014 | TASKQUEUE_STATS_ONLY(thread_state_set.print_taskqueue_stats()); |
| 1015 | |
| 1016 | // We need to use a monotonically non-decreasing time in ms |
| 1017 | // or we will see time-warp warnings and os::javaTimeMillis() |
| 1018 | // does not guarantee monotonicity. |
| 1019 | jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC; |
| 1020 | update_time_of_last_gc(now); |
| 1021 | |
| 1022 | rp->set_enqueuing_is_done(true); |
| 1023 | rp->verify_no_references_recorded(); |
| 1024 | |
| 1025 | gch->trace_heap_after_gc(gc_tracer()); |
| 1026 | |
| 1027 | _gc_timer->register_gc_end(); |
| 1028 | |
| 1029 | _gc_tracer.report_gc_end(_gc_timer->gc_end(), _gc_timer->time_partitions()); |
| 1030 | } |
| 1031 | |
| 1032 | size_t ParNewGeneration::desired_plab_sz() { |
| 1033 | return _plab_stats.desired_plab_sz(CMSHeap::heap()->workers()->active_workers()); |
| 1034 | } |
| 1035 | |
| 1036 | static int sum; |
| 1037 | void ParNewGeneration::waste_some_time() { |
| 1038 | for (int i = 0; i < 100; i++) { |
| 1039 | sum += i; |
| 1040 | } |
| 1041 | } |
| 1042 | |
| 1043 | static const oop ClaimedForwardPtr = cast_to_oop<intptr_t>(0x4); |
| 1044 | |
| 1045 | // Because of concurrency, there are times where an object for which |
| 1046 | // "is_forwarded()" is true contains an "interim" forwarding pointer |
| 1047 | // value. Such a value will soon be overwritten with a real value. |
| 1048 | // This method requires "obj" to have a forwarding pointer, and waits, if |
| 1049 | // necessary for a real one to be inserted, and returns it. |
| 1050 | |
| 1051 | oop ParNewGeneration::real_forwardee(oop obj) { |
| 1052 | oop forward_ptr = obj->forwardee(); |
| 1053 | if (forward_ptr != ClaimedForwardPtr) { |
| 1054 | return forward_ptr; |
| 1055 | } else { |
| 1056 | return real_forwardee_slow(obj); |
| 1057 | } |
| 1058 | } |
| 1059 | |
| 1060 | oop ParNewGeneration::real_forwardee_slow(oop obj) { |
| 1061 | // Spin-read if it is claimed but not yet written by another thread. |
| 1062 | oop forward_ptr = obj->forwardee(); |
| 1063 | while (forward_ptr == ClaimedForwardPtr) { |
| 1064 | waste_some_time(); |
| 1065 | assert(obj->is_forwarded(), "precondition" ); |
| 1066 | forward_ptr = obj->forwardee(); |
| 1067 | } |
| 1068 | return forward_ptr; |
| 1069 | } |
| 1070 | |
| 1071 | // Multiple GC threads may try to promote an object. If the object |
| 1072 | // is successfully promoted, a forwarding pointer will be installed in |
| 1073 | // the object in the young generation. This method claims the right |
| 1074 | // to install the forwarding pointer before it copies the object, |
| 1075 | // thus avoiding the need to undo the copy as in |
| 1076 | // copy_to_survivor_space_avoiding_with_undo. |
| 1077 | |
| 1078 | oop ParNewGeneration::copy_to_survivor_space(ParScanThreadState* par_scan_state, |
| 1079 | oop old, |
| 1080 | size_t sz, |
| 1081 | markOop m) { |
| 1082 | // In the sequential version, this assert also says that the object is |
| 1083 | // not forwarded. That might not be the case here. It is the case that |
| 1084 | // the caller observed it to be not forwarded at some time in the past. |
| 1085 | assert(is_in_reserved(old), "shouldn't be scavenging this oop" ); |
| 1086 | |
| 1087 | // The sequential code read "old->age()" below. That doesn't work here, |
| 1088 | // since the age is in the mark word, and that might be overwritten with |
| 1089 | // a forwarding pointer by a parallel thread. So we must save the mark |
| 1090 | // word in a local and then analyze it. |
| 1091 | oopDesc dummyOld; |
| 1092 | dummyOld.set_mark_raw(m); |
| 1093 | assert(!dummyOld.is_forwarded(), |
| 1094 | "should not be called with forwarding pointer mark word." ); |
| 1095 | |
| 1096 | oop new_obj = NULL; |
| 1097 | oop forward_ptr; |
| 1098 | |
| 1099 | // Try allocating obj in to-space (unless too old) |
| 1100 | if (dummyOld.age() < tenuring_threshold()) { |
| 1101 | new_obj = (oop)par_scan_state->alloc_in_to_space(sz); |
| 1102 | } |
| 1103 | |
| 1104 | if (new_obj == NULL) { |
| 1105 | // Either to-space is full or we decided to promote try allocating obj tenured |
| 1106 | |
| 1107 | // Attempt to install a null forwarding pointer (atomically), |
| 1108 | // to claim the right to install the real forwarding pointer. |
| 1109 | forward_ptr = old->forward_to_atomic(ClaimedForwardPtr, m); |
| 1110 | if (forward_ptr != NULL) { |
| 1111 | // someone else beat us to it. |
| 1112 | return real_forwardee(old); |
| 1113 | } |
| 1114 | |
| 1115 | if (!_promotion_failed) { |
| 1116 | new_obj = _old_gen->par_promote(par_scan_state->thread_num(), |
| 1117 | old, m, sz); |
| 1118 | } |
| 1119 | |
| 1120 | if (new_obj == NULL) { |
| 1121 | // promotion failed, forward to self |
| 1122 | _promotion_failed = true; |
| 1123 | new_obj = old; |
| 1124 | |
| 1125 | par_scan_state->preserved_marks()->push_if_necessary(old, m); |
| 1126 | par_scan_state->register_promotion_failure(sz); |
| 1127 | } |
| 1128 | |
| 1129 | old->forward_to(new_obj); |
| 1130 | forward_ptr = NULL; |
| 1131 | } else { |
| 1132 | // Is in to-space; do copying ourselves. |
| 1133 | Copy::aligned_disjoint_words((HeapWord*)old, (HeapWord*)new_obj, sz); |
| 1134 | assert(CMSHeap::heap()->is_in_reserved(new_obj), "illegal forwarding pointer value." ); |
| 1135 | forward_ptr = old->forward_to_atomic(new_obj, m); |
| 1136 | // Restore the mark word copied above. |
| 1137 | new_obj->set_mark_raw(m); |
| 1138 | // Increment age if obj still in new generation |
| 1139 | new_obj->incr_age(); |
| 1140 | par_scan_state->age_table()->add(new_obj, sz); |
| 1141 | } |
| 1142 | assert(new_obj != NULL, "just checking" ); |
| 1143 | |
| 1144 | // This code must come after the CAS test, or it will print incorrect |
| 1145 | // information. |
| 1146 | log_develop_trace(gc, scavenge)("{%s %s " PTR_FORMAT " -> " PTR_FORMAT " (%d)}" , |
| 1147 | is_in_reserved(new_obj) ? "copying" : "tenuring" , |
| 1148 | new_obj->klass()->internal_name(), p2i(old), p2i(new_obj), new_obj->size()); |
| 1149 | |
| 1150 | if (forward_ptr == NULL) { |
| 1151 | oop obj_to_push = new_obj; |
| 1152 | if (par_scan_state->should_be_partially_scanned(obj_to_push, old)) { |
| 1153 | // Length field used as index of next element to be scanned. |
| 1154 | // Real length can be obtained from real_forwardee() |
| 1155 | arrayOop(old)->set_length(0); |
| 1156 | obj_to_push = old; |
| 1157 | assert(obj_to_push->is_forwarded() && obj_to_push->forwardee() != obj_to_push, |
| 1158 | "push forwarded object" ); |
| 1159 | } |
| 1160 | // Push it on one of the queues of to-be-scanned objects. |
| 1161 | bool simulate_overflow = false; |
| 1162 | NOT_PRODUCT( |
| 1163 | if (ParGCWorkQueueOverflowALot && should_simulate_overflow()) { |
| 1164 | // simulate a stack overflow |
| 1165 | simulate_overflow = true; |
| 1166 | } |
| 1167 | ) |
| 1168 | if (simulate_overflow || !par_scan_state->work_queue()->push(obj_to_push)) { |
| 1169 | // Add stats for overflow pushes. |
| 1170 | log_develop_trace(gc)("Queue Overflow" ); |
| 1171 | push_on_overflow_list(old, par_scan_state); |
| 1172 | TASKQUEUE_STATS_ONLY(par_scan_state->taskqueue_stats().record_overflow(0)); |
| 1173 | } |
| 1174 | |
| 1175 | return new_obj; |
| 1176 | } |
| 1177 | |
| 1178 | // Oops. Someone beat us to it. Undo the allocation. Where did we |
| 1179 | // allocate it? |
| 1180 | if (is_in_reserved(new_obj)) { |
| 1181 | // Must be in to_space. |
| 1182 | assert(to()->is_in_reserved(new_obj), "Checking" ); |
| 1183 | if (forward_ptr == ClaimedForwardPtr) { |
| 1184 | // Wait to get the real forwarding pointer value. |
| 1185 | forward_ptr = real_forwardee(old); |
| 1186 | } |
| 1187 | par_scan_state->undo_alloc_in_to_space((HeapWord*)new_obj, sz); |
| 1188 | } |
| 1189 | |
| 1190 | return forward_ptr; |
| 1191 | } |
| 1192 | |
| 1193 | #ifndef PRODUCT |
| 1194 | // It's OK to call this multi-threaded; the worst thing |
| 1195 | // that can happen is that we'll get a bunch of closely |
| 1196 | // spaced simulated overflows, but that's OK, in fact |
| 1197 | // probably good as it would exercise the overflow code |
| 1198 | // under contention. |
| 1199 | bool ParNewGeneration::should_simulate_overflow() { |
| 1200 | if (_overflow_counter-- <= 0) { // just being defensive |
| 1201 | _overflow_counter = ParGCWorkQueueOverflowInterval; |
| 1202 | return true; |
| 1203 | } else { |
| 1204 | return false; |
| 1205 | } |
| 1206 | } |
| 1207 | #endif |
| 1208 | |
| 1209 | // In case we are using compressed oops, we need to be careful. |
| 1210 | // If the object being pushed is an object array, then its length |
| 1211 | // field keeps track of the "grey boundary" at which the next |
| 1212 | // incremental scan will be done (see ParGCArrayScanChunk). |
| 1213 | // When using compressed oops, this length field is kept in the |
| 1214 | // lower 32 bits of the erstwhile klass word and cannot be used |
| 1215 | // for the overflow chaining pointer (OCP below). As such the OCP |
| 1216 | // would itself need to be compressed into the top 32-bits in this |
| 1217 | // case. Unfortunately, see below, in the event that we have a |
| 1218 | // promotion failure, the node to be pushed on the list can be |
| 1219 | // outside of the Java heap, so the heap-based pointer compression |
| 1220 | // would not work (we would have potential aliasing between C-heap |
| 1221 | // and Java-heap pointers). For this reason, when using compressed |
| 1222 | // oops, we simply use a worker-thread-local, non-shared overflow |
| 1223 | // list in the form of a growable array, with a slightly different |
| 1224 | // overflow stack draining strategy. If/when we start using fat |
| 1225 | // stacks here, we can go back to using (fat) pointer chains |
| 1226 | // (although some performance comparisons would be useful since |
| 1227 | // single global lists have their own performance disadvantages |
| 1228 | // as we were made painfully aware not long ago, see 6786503). |
| 1229 | #define BUSY (cast_to_oop<intptr_t>(0x1aff1aff)) |
| 1230 | void ParNewGeneration::push_on_overflow_list(oop from_space_obj, ParScanThreadState* par_scan_state) { |
| 1231 | assert(is_in_reserved(from_space_obj), "Should be from this generation" ); |
| 1232 | if (ParGCUseLocalOverflow) { |
| 1233 | // In the case of compressed oops, we use a private, not-shared |
| 1234 | // overflow stack. |
| 1235 | par_scan_state->push_on_overflow_stack(from_space_obj); |
| 1236 | } else { |
| 1237 | assert(!UseCompressedOops, "Error" ); |
| 1238 | // if the object has been forwarded to itself, then we cannot |
| 1239 | // use the klass pointer for the linked list. Instead we have |
| 1240 | // to allocate an oopDesc in the C-Heap and use that for the linked list. |
| 1241 | // XXX This is horribly inefficient when a promotion failure occurs |
| 1242 | // and should be fixed. XXX FIX ME !!! |
| 1243 | #ifndef PRODUCT |
| 1244 | Atomic::inc(&_num_par_pushes); |
| 1245 | assert(_num_par_pushes > 0, "Tautology" ); |
| 1246 | #endif |
| 1247 | if (from_space_obj->forwardee() == from_space_obj) { |
| 1248 | oopDesc* listhead = NEW_C_HEAP_ARRAY(oopDesc, 1, mtGC); |
| 1249 | listhead->forward_to(from_space_obj); |
| 1250 | from_space_obj = listhead; |
| 1251 | } |
| 1252 | oop observed_overflow_list = _overflow_list; |
| 1253 | oop cur_overflow_list; |
| 1254 | do { |
| 1255 | cur_overflow_list = observed_overflow_list; |
| 1256 | if (cur_overflow_list != BUSY) { |
| 1257 | from_space_obj->set_klass_to_list_ptr(cur_overflow_list); |
| 1258 | } else { |
| 1259 | from_space_obj->set_klass_to_list_ptr(NULL); |
| 1260 | } |
| 1261 | observed_overflow_list = |
| 1262 | Atomic::cmpxchg((oopDesc*)from_space_obj, &_overflow_list, (oopDesc*)cur_overflow_list); |
| 1263 | } while (cur_overflow_list != observed_overflow_list); |
| 1264 | } |
| 1265 | } |
| 1266 | |
| 1267 | bool ParNewGeneration::take_from_overflow_list(ParScanThreadState* par_scan_state) { |
| 1268 | bool res; |
| 1269 | |
| 1270 | if (ParGCUseLocalOverflow) { |
| 1271 | res = par_scan_state->take_from_overflow_stack(); |
| 1272 | } else { |
| 1273 | assert(!UseCompressedOops, "Error" ); |
| 1274 | res = take_from_overflow_list_work(par_scan_state); |
| 1275 | } |
| 1276 | return res; |
| 1277 | } |
| 1278 | |
| 1279 | |
| 1280 | // *NOTE*: The overflow list manipulation code here and |
| 1281 | // in CMSCollector:: are very similar in shape, |
| 1282 | // except that in the CMS case we thread the objects |
| 1283 | // directly into the list via their mark word, and do |
| 1284 | // not need to deal with special cases below related |
| 1285 | // to chunking of object arrays and promotion failure |
| 1286 | // handling. |
| 1287 | // CR 6797058 has been filed to attempt consolidation of |
| 1288 | // the common code. |
| 1289 | // Because of the common code, if you make any changes in |
| 1290 | // the code below, please check the CMS version to see if |
| 1291 | // similar changes might be needed. |
| 1292 | // See CMSCollector::par_take_from_overflow_list() for |
| 1293 | // more extensive documentation comments. |
| 1294 | bool ParNewGeneration::take_from_overflow_list_work(ParScanThreadState* par_scan_state) { |
| 1295 | ObjToScanQueue* work_q = par_scan_state->work_queue(); |
| 1296 | // How many to take? |
| 1297 | size_t objsFromOverflow = MIN2((size_t)(work_q->max_elems() - work_q->size())/4, |
| 1298 | (size_t)ParGCDesiredObjsFromOverflowList); |
| 1299 | |
| 1300 | assert(!UseCompressedOops, "Error" ); |
| 1301 | assert(par_scan_state->overflow_stack() == NULL, "Error" ); |
| 1302 | if (_overflow_list == NULL) return false; |
| 1303 | |
| 1304 | // Otherwise, there was something there; try claiming the list. |
| 1305 | oop prefix = cast_to_oop(Atomic::xchg((oopDesc*)BUSY, &_overflow_list)); |
| 1306 | // Trim off a prefix of at most objsFromOverflow items |
| 1307 | Thread* tid = Thread::current(); |
| 1308 | size_t spin_count = ParallelGCThreads; |
| 1309 | size_t sleep_time_millis = MAX2((size_t)1, objsFromOverflow/100); |
| 1310 | for (size_t spin = 0; prefix == BUSY && spin < spin_count; spin++) { |
| 1311 | // someone grabbed it before we did ... |
| 1312 | // ... we spin for a short while... |
| 1313 | os::sleep(tid, sleep_time_millis, false); |
| 1314 | if (_overflow_list == NULL) { |
| 1315 | // nothing left to take |
| 1316 | return false; |
| 1317 | } else if (_overflow_list != BUSY) { |
| 1318 | // try and grab the prefix |
| 1319 | prefix = cast_to_oop(Atomic::xchg((oopDesc*)BUSY, &_overflow_list)); |
| 1320 | } |
| 1321 | } |
| 1322 | if (prefix == NULL || prefix == BUSY) { |
| 1323 | // Nothing to take or waited long enough |
| 1324 | if (prefix == NULL) { |
| 1325 | // Write back the NULL in case we overwrote it with BUSY above |
| 1326 | // and it is still the same value. |
| 1327 | (void) Atomic::cmpxchg((oopDesc*)NULL, &_overflow_list, (oopDesc*)BUSY); |
| 1328 | } |
| 1329 | return false; |
| 1330 | } |
| 1331 | assert(prefix != NULL && prefix != BUSY, "Error" ); |
| 1332 | oop cur = prefix; |
| 1333 | for (size_t i = 1; i < objsFromOverflow; ++i) { |
| 1334 | oop next = cur->list_ptr_from_klass(); |
| 1335 | if (next == NULL) break; |
| 1336 | cur = next; |
| 1337 | } |
| 1338 | assert(cur != NULL, "Loop postcondition" ); |
| 1339 | |
| 1340 | // Reattach remaining (suffix) to overflow list |
| 1341 | oop suffix = cur->list_ptr_from_klass(); |
| 1342 | if (suffix == NULL) { |
| 1343 | // Write back the NULL in lieu of the BUSY we wrote |
| 1344 | // above and it is still the same value. |
| 1345 | if (_overflow_list == BUSY) { |
| 1346 | (void) Atomic::cmpxchg((oopDesc*)NULL, &_overflow_list, (oopDesc*)BUSY); |
| 1347 | } |
| 1348 | } else { |
| 1349 | assert(suffix != BUSY, "Error" ); |
| 1350 | // suffix will be put back on global list |
| 1351 | cur->set_klass_to_list_ptr(NULL); // break off suffix |
| 1352 | // It's possible that the list is still in the empty(busy) state |
| 1353 | // we left it in a short while ago; in that case we may be |
| 1354 | // able to place back the suffix. |
| 1355 | oop observed_overflow_list = _overflow_list; |
| 1356 | oop cur_overflow_list = observed_overflow_list; |
| 1357 | bool attached = false; |
| 1358 | while (observed_overflow_list == BUSY || observed_overflow_list == NULL) { |
| 1359 | observed_overflow_list = |
| 1360 | Atomic::cmpxchg((oopDesc*)suffix, &_overflow_list, (oopDesc*)cur_overflow_list); |
| 1361 | if (cur_overflow_list == observed_overflow_list) { |
| 1362 | attached = true; |
| 1363 | break; |
| 1364 | } else cur_overflow_list = observed_overflow_list; |
| 1365 | } |
| 1366 | if (!attached) { |
| 1367 | // Too bad, someone else got in in between; we'll need to do a splice. |
| 1368 | // Find the last item of suffix list |
| 1369 | oop last = suffix; |
| 1370 | while (true) { |
| 1371 | oop next = last->list_ptr_from_klass(); |
| 1372 | if (next == NULL) break; |
| 1373 | last = next; |
| 1374 | } |
| 1375 | // Atomically prepend suffix to current overflow list |
| 1376 | observed_overflow_list = _overflow_list; |
| 1377 | do { |
| 1378 | cur_overflow_list = observed_overflow_list; |
| 1379 | if (cur_overflow_list != BUSY) { |
| 1380 | // Do the splice ... |
| 1381 | last->set_klass_to_list_ptr(cur_overflow_list); |
| 1382 | } else { // cur_overflow_list == BUSY |
| 1383 | last->set_klass_to_list_ptr(NULL); |
| 1384 | } |
| 1385 | observed_overflow_list = |
| 1386 | Atomic::cmpxchg((oopDesc*)suffix, &_overflow_list, (oopDesc*)cur_overflow_list); |
| 1387 | } while (cur_overflow_list != observed_overflow_list); |
| 1388 | } |
| 1389 | } |
| 1390 | |
| 1391 | // Push objects on prefix list onto this thread's work queue |
| 1392 | assert(prefix != NULL && prefix != BUSY, "program logic" ); |
| 1393 | cur = prefix; |
| 1394 | ssize_t n = 0; |
| 1395 | while (cur != NULL) { |
| 1396 | oop obj_to_push = cur->forwardee(); |
| 1397 | oop next = cur->list_ptr_from_klass(); |
| 1398 | cur->set_klass(obj_to_push->klass()); |
| 1399 | // This may be an array object that is self-forwarded. In that case, the list pointer |
| 1400 | // space, cur, is not in the Java heap, but rather in the C-heap and should be freed. |
| 1401 | if (!is_in_reserved(cur)) { |
| 1402 | // This can become a scaling bottleneck when there is work queue overflow coincident |
| 1403 | // with promotion failure. |
| 1404 | oopDesc* f = cur; |
| 1405 | FREE_C_HEAP_ARRAY(oopDesc, f); |
| 1406 | } else if (par_scan_state->should_be_partially_scanned(obj_to_push, cur)) { |
| 1407 | assert(arrayOop(cur)->length() == 0, "entire array remaining to be scanned" ); |
| 1408 | obj_to_push = cur; |
| 1409 | } |
| 1410 | bool ok = work_q->push(obj_to_push); |
| 1411 | assert(ok, "Should have succeeded" ); |
| 1412 | cur = next; |
| 1413 | n++; |
| 1414 | } |
| 1415 | TASKQUEUE_STATS_ONLY(par_scan_state->note_overflow_refill(n)); |
| 1416 | #ifndef PRODUCT |
| 1417 | assert(_num_par_pushes >= n, "Too many pops?" ); |
| 1418 | Atomic::sub(n, &_num_par_pushes); |
| 1419 | #endif |
| 1420 | return true; |
| 1421 | } |
| 1422 | #undef BUSY |
| 1423 | |
| 1424 | void ParNewGeneration::ref_processor_init() { |
| 1425 | if (_ref_processor == NULL) { |
| 1426 | // Allocate and initialize a reference processor |
| 1427 | _span_based_discoverer.set_span(_reserved); |
| 1428 | _ref_processor = |
| 1429 | new ReferenceProcessor(&_span_based_discoverer, // span |
| 1430 | ParallelRefProcEnabled && (ParallelGCThreads > 1), // mt processing |
| 1431 | ParallelGCThreads, // mt processing degree |
| 1432 | refs_discovery_is_mt(), // mt discovery |
| 1433 | ParallelGCThreads, // mt discovery degree |
| 1434 | refs_discovery_is_atomic(), // atomic_discovery |
| 1435 | NULL, // is_alive_non_header |
| 1436 | false); // disable adjusting number of processing threads |
| 1437 | } |
| 1438 | } |
| 1439 | |
| 1440 | const char* ParNewGeneration::name() const { |
| 1441 | return "par new generation" ; |
| 1442 | } |
| 1443 | |
| 1444 | void ParNewGeneration::restore_preserved_marks() { |
| 1445 | SharedRestorePreservedMarksTaskExecutor task_executor(CMSHeap::heap()->workers()); |
| 1446 | _preserved_marks_set.restore(&task_executor); |
| 1447 | } |
| 1448 | |