| 1 | /* |
| 2 | * Copyright (c) 2018, Oracle and/or its affiliates. All rights reserved. |
| 3 | * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
| 4 | * |
| 5 | * This code is free software; you can redistribute it and/or modify it |
| 6 | * under the terms of the GNU General Public License version 2 only, as |
| 7 | * published by the Free Software Foundation. |
| 8 | * |
| 9 | * This code is distributed in the hope that it will be useful, but WITHOUT |
| 10 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| 11 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| 12 | * version 2 for more details (a copy is included in the LICENSE file that |
| 13 | * accompanied this code). |
| 14 | * |
| 15 | * You should have received a copy of the GNU General Public License version |
| 16 | * 2 along with this work; if not, write to the Free Software Foundation, |
| 17 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
| 18 | * |
| 19 | * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
| 20 | * or visit www.oracle.com if you need additional information or have any |
| 21 | * questions. |
| 22 | * |
| 23 | */ |
| 24 | |
| 25 | #include "precompiled.hpp" |
| 26 | #include "gc/shared/c2/barrierSetC2.hpp" |
| 27 | #include "opto/arraycopynode.hpp" |
| 28 | #include "opto/convertnode.hpp" |
| 29 | #include "opto/graphKit.hpp" |
| 30 | #include "opto/idealKit.hpp" |
| 31 | #include "opto/macro.hpp" |
| 32 | #include "opto/narrowptrnode.hpp" |
| 33 | #include "utilities/macros.hpp" |
| 34 | |
| 35 | // By default this is a no-op. |
| 36 | void BarrierSetC2::resolve_address(C2Access& access) const { } |
| 37 | |
| 38 | void* C2ParseAccess::barrier_set_state() const { |
| 39 | return _kit->barrier_set_state(); |
| 40 | } |
| 41 | |
| 42 | PhaseGVN& C2ParseAccess::gvn() const { return _kit->gvn(); } |
| 43 | |
| 44 | bool C2Access::needs_cpu_membar() const { |
| 45 | bool mismatched = (_decorators & C2_MISMATCHED) != 0; |
| 46 | bool is_unordered = (_decorators & MO_UNORDERED) != 0; |
| 47 | bool anonymous = (_decorators & C2_UNSAFE_ACCESS) != 0; |
| 48 | bool in_heap = (_decorators & IN_HEAP) != 0; |
| 49 | |
| 50 | bool is_write = (_decorators & C2_WRITE_ACCESS) != 0; |
| 51 | bool is_read = (_decorators & C2_READ_ACCESS) != 0; |
| 52 | bool is_atomic = is_read && is_write; |
| 53 | |
| 54 | if (is_atomic) { |
| 55 | // Atomics always need to be wrapped in CPU membars |
| 56 | return true; |
| 57 | } |
| 58 | |
| 59 | if (anonymous) { |
| 60 | // We will need memory barriers unless we can determine a unique |
| 61 | // alias category for this reference. (Note: If for some reason |
| 62 | // the barriers get omitted and the unsafe reference begins to "pollute" |
| 63 | // the alias analysis of the rest of the graph, either Compile::can_alias |
| 64 | // or Compile::must_alias will throw a diagnostic assert.) |
| 65 | if (!in_heap || !is_unordered || (mismatched && !_addr.type()->isa_aryptr())) { |
| 66 | return true; |
| 67 | } |
| 68 | } |
| 69 | |
| 70 | return false; |
| 71 | } |
| 72 | |
| 73 | Node* BarrierSetC2::store_at_resolved(C2Access& access, C2AccessValue& val) const { |
| 74 | DecoratorSet decorators = access.decorators(); |
| 75 | |
| 76 | bool mismatched = (decorators & C2_MISMATCHED) != 0; |
| 77 | bool unaligned = (decorators & C2_UNALIGNED) != 0; |
| 78 | bool unsafe = (decorators & C2_UNSAFE_ACCESS) != 0; |
| 79 | bool requires_atomic_access = (decorators & MO_UNORDERED) == 0; |
| 80 | |
| 81 | bool in_native = (decorators & IN_NATIVE) != 0; |
| 82 | assert(!in_native, "not supported yet" ); |
| 83 | |
| 84 | MemNode::MemOrd mo = access.mem_node_mo(); |
| 85 | |
| 86 | Node* store; |
| 87 | if (access.is_parse_access()) { |
| 88 | C2ParseAccess& parse_access = static_cast<C2ParseAccess&>(access); |
| 89 | |
| 90 | GraphKit* kit = parse_access.kit(); |
| 91 | if (access.type() == T_DOUBLE) { |
| 92 | Node* new_val = kit->dstore_rounding(val.node()); |
| 93 | val.set_node(new_val); |
| 94 | } |
| 95 | |
| 96 | store = kit->store_to_memory(kit->control(), access.addr().node(), val.node(), access.type(), |
| 97 | access.addr().type(), mo, requires_atomic_access, unaligned, mismatched, unsafe); |
| 98 | access.set_raw_access(store); |
| 99 | } else { |
| 100 | assert(!requires_atomic_access, "not yet supported" ); |
| 101 | assert(access.is_opt_access(), "either parse or opt access" ); |
| 102 | C2OptAccess& opt_access = static_cast<C2OptAccess&>(access); |
| 103 | Node* ctl = opt_access.ctl(); |
| 104 | MergeMemNode* mm = opt_access.mem(); |
| 105 | PhaseGVN& gvn = opt_access.gvn(); |
| 106 | const TypePtr* adr_type = access.addr().type(); |
| 107 | int alias = gvn.C->get_alias_index(adr_type); |
| 108 | Node* mem = mm->memory_at(alias); |
| 109 | |
| 110 | StoreNode* st = StoreNode::make(gvn, ctl, mem, access.addr().node(), adr_type, val.node(), access.type(), mo); |
| 111 | if (unaligned) { |
| 112 | st->set_unaligned_access(); |
| 113 | } |
| 114 | if (mismatched) { |
| 115 | st->set_mismatched_access(); |
| 116 | } |
| 117 | store = gvn.transform(st); |
| 118 | if (store == st) { |
| 119 | mm->set_memory_at(alias, st); |
| 120 | } |
| 121 | } |
| 122 | return store; |
| 123 | } |
| 124 | |
| 125 | Node* BarrierSetC2::load_at_resolved(C2Access& access, const Type* val_type) const { |
| 126 | DecoratorSet decorators = access.decorators(); |
| 127 | |
| 128 | Node* adr = access.addr().node(); |
| 129 | const TypePtr* adr_type = access.addr().type(); |
| 130 | |
| 131 | bool mismatched = (decorators & C2_MISMATCHED) != 0; |
| 132 | bool requires_atomic_access = (decorators & MO_UNORDERED) == 0; |
| 133 | bool unaligned = (decorators & C2_UNALIGNED) != 0; |
| 134 | bool control_dependent = (decorators & C2_CONTROL_DEPENDENT_LOAD) != 0; |
| 135 | bool pinned = (decorators & C2_PINNED_LOAD) != 0; |
| 136 | bool unsafe = (decorators & C2_UNSAFE_ACCESS) != 0; |
| 137 | |
| 138 | bool in_native = (decorators & IN_NATIVE) != 0; |
| 139 | |
| 140 | MemNode::MemOrd mo = access.mem_node_mo(); |
| 141 | LoadNode::ControlDependency dep = pinned ? LoadNode::Pinned : LoadNode::DependsOnlyOnTest; |
| 142 | |
| 143 | Node* load; |
| 144 | if (access.is_parse_access()) { |
| 145 | C2ParseAccess& parse_access = static_cast<C2ParseAccess&>(access); |
| 146 | GraphKit* kit = parse_access.kit(); |
| 147 | Node* control = control_dependent ? kit->control() : NULL; |
| 148 | |
| 149 | if (in_native) { |
| 150 | load = kit->make_load(control, adr, val_type, access.type(), mo); |
| 151 | } else { |
| 152 | load = kit->make_load(control, adr, val_type, access.type(), adr_type, mo, |
| 153 | dep, requires_atomic_access, unaligned, mismatched, unsafe); |
| 154 | } |
| 155 | access.set_raw_access(load); |
| 156 | } else { |
| 157 | assert(!requires_atomic_access, "not yet supported" ); |
| 158 | assert(access.is_opt_access(), "either parse or opt access" ); |
| 159 | C2OptAccess& opt_access = static_cast<C2OptAccess&>(access); |
| 160 | Node* control = control_dependent ? opt_access.ctl() : NULL; |
| 161 | MergeMemNode* mm = opt_access.mem(); |
| 162 | PhaseGVN& gvn = opt_access.gvn(); |
| 163 | Node* mem = mm->memory_at(gvn.C->get_alias_index(adr_type)); |
| 164 | load = LoadNode::make(gvn, control, mem, adr, adr_type, val_type, access.type(), mo, dep, unaligned, mismatched); |
| 165 | load = gvn.transform(load); |
| 166 | } |
| 167 | |
| 168 | return load; |
| 169 | } |
| 170 | |
| 171 | class C2AccessFence: public StackObj { |
| 172 | C2Access& _access; |
| 173 | Node* _leading_membar; |
| 174 | |
| 175 | public: |
| 176 | C2AccessFence(C2Access& access) : |
| 177 | _access(access), _leading_membar(NULL) { |
| 178 | GraphKit* kit = NULL; |
| 179 | if (access.is_parse_access()) { |
| 180 | C2ParseAccess& parse_access = static_cast<C2ParseAccess&>(access); |
| 181 | kit = parse_access.kit(); |
| 182 | } |
| 183 | DecoratorSet decorators = access.decorators(); |
| 184 | |
| 185 | bool is_write = (decorators & C2_WRITE_ACCESS) != 0; |
| 186 | bool is_read = (decorators & C2_READ_ACCESS) != 0; |
| 187 | bool is_atomic = is_read && is_write; |
| 188 | |
| 189 | bool is_volatile = (decorators & MO_SEQ_CST) != 0; |
| 190 | bool is_release = (decorators & MO_RELEASE) != 0; |
| 191 | |
| 192 | if (is_atomic) { |
| 193 | assert(kit != NULL, "unsupported at optimization time" ); |
| 194 | // Memory-model-wise, a LoadStore acts like a little synchronized |
| 195 | // block, so needs barriers on each side. These don't translate |
| 196 | // into actual barriers on most machines, but we still need rest of |
| 197 | // compiler to respect ordering. |
| 198 | if (is_release) { |
| 199 | _leading_membar = kit->insert_mem_bar(Op_MemBarRelease); |
| 200 | } else if (is_volatile) { |
| 201 | if (support_IRIW_for_not_multiple_copy_atomic_cpu) { |
| 202 | _leading_membar = kit->insert_mem_bar(Op_MemBarVolatile); |
| 203 | } else { |
| 204 | _leading_membar = kit->insert_mem_bar(Op_MemBarRelease); |
| 205 | } |
| 206 | } |
| 207 | } else if (is_write) { |
| 208 | // If reference is volatile, prevent following memory ops from |
| 209 | // floating down past the volatile write. Also prevents commoning |
| 210 | // another volatile read. |
| 211 | if (is_volatile || is_release) { |
| 212 | assert(kit != NULL, "unsupported at optimization time" ); |
| 213 | _leading_membar = kit->insert_mem_bar(Op_MemBarRelease); |
| 214 | } |
| 215 | } else { |
| 216 | // Memory barrier to prevent normal and 'unsafe' accesses from |
| 217 | // bypassing each other. Happens after null checks, so the |
| 218 | // exception paths do not take memory state from the memory barrier, |
| 219 | // so there's no problems making a strong assert about mixing users |
| 220 | // of safe & unsafe memory. |
| 221 | if (is_volatile && support_IRIW_for_not_multiple_copy_atomic_cpu) { |
| 222 | assert(kit != NULL, "unsupported at optimization time" ); |
| 223 | _leading_membar = kit->insert_mem_bar(Op_MemBarVolatile); |
| 224 | } |
| 225 | } |
| 226 | |
| 227 | if (access.needs_cpu_membar()) { |
| 228 | assert(kit != NULL, "unsupported at optimization time" ); |
| 229 | kit->insert_mem_bar(Op_MemBarCPUOrder); |
| 230 | } |
| 231 | |
| 232 | if (is_atomic) { |
| 233 | // 4984716: MemBars must be inserted before this |
| 234 | // memory node in order to avoid a false |
| 235 | // dependency which will confuse the scheduler. |
| 236 | access.set_memory(); |
| 237 | } |
| 238 | } |
| 239 | |
| 240 | ~C2AccessFence() { |
| 241 | GraphKit* kit = NULL; |
| 242 | if (_access.is_parse_access()) { |
| 243 | C2ParseAccess& parse_access = static_cast<C2ParseAccess&>(_access); |
| 244 | kit = parse_access.kit(); |
| 245 | } |
| 246 | DecoratorSet decorators = _access.decorators(); |
| 247 | |
| 248 | bool is_write = (decorators & C2_WRITE_ACCESS) != 0; |
| 249 | bool is_read = (decorators & C2_READ_ACCESS) != 0; |
| 250 | bool is_atomic = is_read && is_write; |
| 251 | |
| 252 | bool is_volatile = (decorators & MO_SEQ_CST) != 0; |
| 253 | bool is_acquire = (decorators & MO_ACQUIRE) != 0; |
| 254 | |
| 255 | // If reference is volatile, prevent following volatiles ops from |
| 256 | // floating up before the volatile access. |
| 257 | if (_access.needs_cpu_membar()) { |
| 258 | kit->insert_mem_bar(Op_MemBarCPUOrder); |
| 259 | } |
| 260 | |
| 261 | if (is_atomic) { |
| 262 | assert(kit != NULL, "unsupported at optimization time" ); |
| 263 | if (is_acquire || is_volatile) { |
| 264 | Node* n = _access.raw_access(); |
| 265 | Node* mb = kit->insert_mem_bar(Op_MemBarAcquire, n); |
| 266 | if (_leading_membar != NULL) { |
| 267 | MemBarNode::set_load_store_pair(_leading_membar->as_MemBar(), mb->as_MemBar()); |
| 268 | } |
| 269 | } |
| 270 | } else if (is_write) { |
| 271 | // If not multiple copy atomic, we do the MemBarVolatile before the load. |
| 272 | if (is_volatile && !support_IRIW_for_not_multiple_copy_atomic_cpu) { |
| 273 | assert(kit != NULL, "unsupported at optimization time" ); |
| 274 | Node* n = _access.raw_access(); |
| 275 | Node* mb = kit->insert_mem_bar(Op_MemBarVolatile, n); // Use fat membar |
| 276 | if (_leading_membar != NULL) { |
| 277 | MemBarNode::set_store_pair(_leading_membar->as_MemBar(), mb->as_MemBar()); |
| 278 | } |
| 279 | } |
| 280 | } else { |
| 281 | if (is_volatile || is_acquire) { |
| 282 | assert(kit != NULL, "unsupported at optimization time" ); |
| 283 | Node* n = _access.raw_access(); |
| 284 | assert(_leading_membar == NULL || support_IRIW_for_not_multiple_copy_atomic_cpu, "no leading membar expected" ); |
| 285 | Node* mb = kit->insert_mem_bar(Op_MemBarAcquire, n); |
| 286 | mb->as_MemBar()->set_trailing_load(); |
| 287 | } |
| 288 | } |
| 289 | } |
| 290 | }; |
| 291 | |
| 292 | Node* BarrierSetC2::store_at(C2Access& access, C2AccessValue& val) const { |
| 293 | C2AccessFence fence(access); |
| 294 | resolve_address(access); |
| 295 | return store_at_resolved(access, val); |
| 296 | } |
| 297 | |
| 298 | Node* BarrierSetC2::load_at(C2Access& access, const Type* val_type) const { |
| 299 | C2AccessFence fence(access); |
| 300 | resolve_address(access); |
| 301 | return load_at_resolved(access, val_type); |
| 302 | } |
| 303 | |
| 304 | MemNode::MemOrd C2Access::mem_node_mo() const { |
| 305 | bool is_write = (_decorators & C2_WRITE_ACCESS) != 0; |
| 306 | bool is_read = (_decorators & C2_READ_ACCESS) != 0; |
| 307 | if ((_decorators & MO_SEQ_CST) != 0) { |
| 308 | if (is_write && is_read) { |
| 309 | // For atomic operations |
| 310 | return MemNode::seqcst; |
| 311 | } else if (is_write) { |
| 312 | return MemNode::release; |
| 313 | } else { |
| 314 | assert(is_read, "what else?" ); |
| 315 | return MemNode::acquire; |
| 316 | } |
| 317 | } else if ((_decorators & MO_RELEASE) != 0) { |
| 318 | return MemNode::release; |
| 319 | } else if ((_decorators & MO_ACQUIRE) != 0) { |
| 320 | return MemNode::acquire; |
| 321 | } else if (is_write) { |
| 322 | // Volatile fields need releasing stores. |
| 323 | // Non-volatile fields also need releasing stores if they hold an |
| 324 | // object reference, because the object reference might point to |
| 325 | // a freshly created object. |
| 326 | // Conservatively release stores of object references. |
| 327 | return StoreNode::release_if_reference(_type); |
| 328 | } else { |
| 329 | return MemNode::unordered; |
| 330 | } |
| 331 | } |
| 332 | |
| 333 | void C2Access::fixup_decorators() { |
| 334 | bool default_mo = (_decorators & MO_DECORATOR_MASK) == 0; |
| 335 | bool is_unordered = (_decorators & MO_UNORDERED) != 0 || default_mo; |
| 336 | bool anonymous = (_decorators & C2_UNSAFE_ACCESS) != 0; |
| 337 | |
| 338 | bool is_read = (_decorators & C2_READ_ACCESS) != 0; |
| 339 | bool is_write = (_decorators & C2_WRITE_ACCESS) != 0; |
| 340 | |
| 341 | if (AlwaysAtomicAccesses && is_unordered) { |
| 342 | _decorators &= ~MO_DECORATOR_MASK; // clear the MO bits |
| 343 | _decorators |= MO_RELAXED; // Force the MO_RELAXED decorator with AlwaysAtomicAccess |
| 344 | } |
| 345 | |
| 346 | _decorators = AccessInternal::decorator_fixup(_decorators); |
| 347 | |
| 348 | if (is_read && !is_write && anonymous) { |
| 349 | // To be valid, unsafe loads may depend on other conditions than |
| 350 | // the one that guards them: pin the Load node |
| 351 | _decorators |= C2_CONTROL_DEPENDENT_LOAD; |
| 352 | _decorators |= C2_PINNED_LOAD; |
| 353 | const TypePtr* adr_type = _addr.type(); |
| 354 | Node* adr = _addr.node(); |
| 355 | if (!needs_cpu_membar() && adr_type->isa_instptr()) { |
| 356 | assert(adr_type->meet(TypePtr::NULL_PTR) != adr_type->remove_speculative(), "should be not null" ); |
| 357 | intptr_t offset = Type::OffsetBot; |
| 358 | AddPNode::Ideal_base_and_offset(adr, &gvn(), offset); |
| 359 | if (offset >= 0) { |
| 360 | int s = Klass::layout_helper_size_in_bytes(adr_type->isa_instptr()->klass()->layout_helper()); |
| 361 | if (offset < s) { |
| 362 | // Guaranteed to be a valid access, no need to pin it |
| 363 | _decorators ^= C2_CONTROL_DEPENDENT_LOAD; |
| 364 | _decorators ^= C2_PINNED_LOAD; |
| 365 | } |
| 366 | } |
| 367 | } |
| 368 | } |
| 369 | } |
| 370 | |
| 371 | //--------------------------- atomic operations--------------------------------- |
| 372 | |
| 373 | void BarrierSetC2::pin_atomic_op(C2AtomicParseAccess& access) const { |
| 374 | if (!access.needs_pinning()) { |
| 375 | return; |
| 376 | } |
| 377 | // SCMemProjNodes represent the memory state of a LoadStore. Their |
| 378 | // main role is to prevent LoadStore nodes from being optimized away |
| 379 | // when their results aren't used. |
| 380 | assert(access.is_parse_access(), "entry not supported at optimization time" ); |
| 381 | C2ParseAccess& parse_access = static_cast<C2ParseAccess&>(access); |
| 382 | GraphKit* kit = parse_access.kit(); |
| 383 | Node* load_store = access.raw_access(); |
| 384 | assert(load_store != NULL, "must pin atomic op" ); |
| 385 | Node* proj = kit->gvn().transform(new SCMemProjNode(load_store)); |
| 386 | kit->set_memory(proj, access.alias_idx()); |
| 387 | } |
| 388 | |
| 389 | void C2AtomicParseAccess::set_memory() { |
| 390 | Node *mem = _kit->memory(_alias_idx); |
| 391 | _memory = mem; |
| 392 | } |
| 393 | |
| 394 | Node* BarrierSetC2::atomic_cmpxchg_val_at_resolved(C2AtomicParseAccess& access, Node* expected_val, |
| 395 | Node* new_val, const Type* value_type) const { |
| 396 | GraphKit* kit = access.kit(); |
| 397 | MemNode::MemOrd mo = access.mem_node_mo(); |
| 398 | Node* mem = access.memory(); |
| 399 | |
| 400 | Node* adr = access.addr().node(); |
| 401 | const TypePtr* adr_type = access.addr().type(); |
| 402 | |
| 403 | Node* load_store = NULL; |
| 404 | |
| 405 | if (access.is_oop()) { |
| 406 | #ifdef _LP64 |
| 407 | if (adr->bottom_type()->is_ptr_to_narrowoop()) { |
| 408 | Node *newval_enc = kit->gvn().transform(new EncodePNode(new_val, new_val->bottom_type()->make_narrowoop())); |
| 409 | Node *oldval_enc = kit->gvn().transform(new EncodePNode(expected_val, expected_val->bottom_type()->make_narrowoop())); |
| 410 | load_store = kit->gvn().transform(new CompareAndExchangeNNode(kit->control(), mem, adr, newval_enc, oldval_enc, adr_type, value_type->make_narrowoop(), mo)); |
| 411 | } else |
| 412 | #endif |
| 413 | { |
| 414 | load_store = kit->gvn().transform(new CompareAndExchangePNode(kit->control(), mem, adr, new_val, expected_val, adr_type, value_type->is_oopptr(), mo)); |
| 415 | } |
| 416 | } else { |
| 417 | switch (access.type()) { |
| 418 | case T_BYTE: { |
| 419 | load_store = kit->gvn().transform(new CompareAndExchangeBNode(kit->control(), mem, adr, new_val, expected_val, adr_type, mo)); |
| 420 | break; |
| 421 | } |
| 422 | case T_SHORT: { |
| 423 | load_store = kit->gvn().transform(new CompareAndExchangeSNode(kit->control(), mem, adr, new_val, expected_val, adr_type, mo)); |
| 424 | break; |
| 425 | } |
| 426 | case T_INT: { |
| 427 | load_store = kit->gvn().transform(new CompareAndExchangeINode(kit->control(), mem, adr, new_val, expected_val, adr_type, mo)); |
| 428 | break; |
| 429 | } |
| 430 | case T_LONG: { |
| 431 | load_store = kit->gvn().transform(new CompareAndExchangeLNode(kit->control(), mem, adr, new_val, expected_val, adr_type, mo)); |
| 432 | break; |
| 433 | } |
| 434 | default: |
| 435 | ShouldNotReachHere(); |
| 436 | } |
| 437 | } |
| 438 | |
| 439 | access.set_raw_access(load_store); |
| 440 | pin_atomic_op(access); |
| 441 | |
| 442 | #ifdef _LP64 |
| 443 | if (access.is_oop() && adr->bottom_type()->is_ptr_to_narrowoop()) { |
| 444 | return kit->gvn().transform(new DecodeNNode(load_store, load_store->get_ptr_type())); |
| 445 | } |
| 446 | #endif |
| 447 | |
| 448 | return load_store; |
| 449 | } |
| 450 | |
| 451 | Node* BarrierSetC2::atomic_cmpxchg_bool_at_resolved(C2AtomicParseAccess& access, Node* expected_val, |
| 452 | Node* new_val, const Type* value_type) const { |
| 453 | GraphKit* kit = access.kit(); |
| 454 | DecoratorSet decorators = access.decorators(); |
| 455 | MemNode::MemOrd mo = access.mem_node_mo(); |
| 456 | Node* mem = access.memory(); |
| 457 | bool is_weak_cas = (decorators & C2_WEAK_CMPXCHG) != 0; |
| 458 | Node* load_store = NULL; |
| 459 | Node* adr = access.addr().node(); |
| 460 | |
| 461 | if (access.is_oop()) { |
| 462 | #ifdef _LP64 |
| 463 | if (adr->bottom_type()->is_ptr_to_narrowoop()) { |
| 464 | Node *newval_enc = kit->gvn().transform(new EncodePNode(new_val, new_val->bottom_type()->make_narrowoop())); |
| 465 | Node *oldval_enc = kit->gvn().transform(new EncodePNode(expected_val, expected_val->bottom_type()->make_narrowoop())); |
| 466 | if (is_weak_cas) { |
| 467 | load_store = kit->gvn().transform(new WeakCompareAndSwapNNode(kit->control(), mem, adr, newval_enc, oldval_enc, mo)); |
| 468 | } else { |
| 469 | load_store = kit->gvn().transform(new CompareAndSwapNNode(kit->control(), mem, adr, newval_enc, oldval_enc, mo)); |
| 470 | } |
| 471 | } else |
| 472 | #endif |
| 473 | { |
| 474 | if (is_weak_cas) { |
| 475 | load_store = kit->gvn().transform(new WeakCompareAndSwapPNode(kit->control(), mem, adr, new_val, expected_val, mo)); |
| 476 | } else { |
| 477 | load_store = kit->gvn().transform(new CompareAndSwapPNode(kit->control(), mem, adr, new_val, expected_val, mo)); |
| 478 | } |
| 479 | } |
| 480 | } else { |
| 481 | switch(access.type()) { |
| 482 | case T_BYTE: { |
| 483 | if (is_weak_cas) { |
| 484 | load_store = kit->gvn().transform(new WeakCompareAndSwapBNode(kit->control(), mem, adr, new_val, expected_val, mo)); |
| 485 | } else { |
| 486 | load_store = kit->gvn().transform(new CompareAndSwapBNode(kit->control(), mem, adr, new_val, expected_val, mo)); |
| 487 | } |
| 488 | break; |
| 489 | } |
| 490 | case T_SHORT: { |
| 491 | if (is_weak_cas) { |
| 492 | load_store = kit->gvn().transform(new WeakCompareAndSwapSNode(kit->control(), mem, adr, new_val, expected_val, mo)); |
| 493 | } else { |
| 494 | load_store = kit->gvn().transform(new CompareAndSwapSNode(kit->control(), mem, adr, new_val, expected_val, mo)); |
| 495 | } |
| 496 | break; |
| 497 | } |
| 498 | case T_INT: { |
| 499 | if (is_weak_cas) { |
| 500 | load_store = kit->gvn().transform(new WeakCompareAndSwapINode(kit->control(), mem, adr, new_val, expected_val, mo)); |
| 501 | } else { |
| 502 | load_store = kit->gvn().transform(new CompareAndSwapINode(kit->control(), mem, adr, new_val, expected_val, mo)); |
| 503 | } |
| 504 | break; |
| 505 | } |
| 506 | case T_LONG: { |
| 507 | if (is_weak_cas) { |
| 508 | load_store = kit->gvn().transform(new WeakCompareAndSwapLNode(kit->control(), mem, adr, new_val, expected_val, mo)); |
| 509 | } else { |
| 510 | load_store = kit->gvn().transform(new CompareAndSwapLNode(kit->control(), mem, adr, new_val, expected_val, mo)); |
| 511 | } |
| 512 | break; |
| 513 | } |
| 514 | default: |
| 515 | ShouldNotReachHere(); |
| 516 | } |
| 517 | } |
| 518 | |
| 519 | access.set_raw_access(load_store); |
| 520 | pin_atomic_op(access); |
| 521 | |
| 522 | return load_store; |
| 523 | } |
| 524 | |
| 525 | Node* BarrierSetC2::atomic_xchg_at_resolved(C2AtomicParseAccess& access, Node* new_val, const Type* value_type) const { |
| 526 | GraphKit* kit = access.kit(); |
| 527 | Node* mem = access.memory(); |
| 528 | Node* adr = access.addr().node(); |
| 529 | const TypePtr* adr_type = access.addr().type(); |
| 530 | Node* load_store = NULL; |
| 531 | |
| 532 | if (access.is_oop()) { |
| 533 | #ifdef _LP64 |
| 534 | if (adr->bottom_type()->is_ptr_to_narrowoop()) { |
| 535 | Node *newval_enc = kit->gvn().transform(new EncodePNode(new_val, new_val->bottom_type()->make_narrowoop())); |
| 536 | load_store = kit->gvn().transform(new GetAndSetNNode(kit->control(), mem, adr, newval_enc, adr_type, value_type->make_narrowoop())); |
| 537 | } else |
| 538 | #endif |
| 539 | { |
| 540 | load_store = kit->gvn().transform(new GetAndSetPNode(kit->control(), mem, adr, new_val, adr_type, value_type->is_oopptr())); |
| 541 | } |
| 542 | } else { |
| 543 | switch (access.type()) { |
| 544 | case T_BYTE: |
| 545 | load_store = kit->gvn().transform(new GetAndSetBNode(kit->control(), mem, adr, new_val, adr_type)); |
| 546 | break; |
| 547 | case T_SHORT: |
| 548 | load_store = kit->gvn().transform(new GetAndSetSNode(kit->control(), mem, adr, new_val, adr_type)); |
| 549 | break; |
| 550 | case T_INT: |
| 551 | load_store = kit->gvn().transform(new GetAndSetINode(kit->control(), mem, adr, new_val, adr_type)); |
| 552 | break; |
| 553 | case T_LONG: |
| 554 | load_store = kit->gvn().transform(new GetAndSetLNode(kit->control(), mem, adr, new_val, adr_type)); |
| 555 | break; |
| 556 | default: |
| 557 | ShouldNotReachHere(); |
| 558 | } |
| 559 | } |
| 560 | |
| 561 | access.set_raw_access(load_store); |
| 562 | pin_atomic_op(access); |
| 563 | |
| 564 | #ifdef _LP64 |
| 565 | if (access.is_oop() && adr->bottom_type()->is_ptr_to_narrowoop()) { |
| 566 | return kit->gvn().transform(new DecodeNNode(load_store, load_store->get_ptr_type())); |
| 567 | } |
| 568 | #endif |
| 569 | |
| 570 | return load_store; |
| 571 | } |
| 572 | |
| 573 | Node* BarrierSetC2::atomic_add_at_resolved(C2AtomicParseAccess& access, Node* new_val, const Type* value_type) const { |
| 574 | Node* load_store = NULL; |
| 575 | GraphKit* kit = access.kit(); |
| 576 | Node* adr = access.addr().node(); |
| 577 | const TypePtr* adr_type = access.addr().type(); |
| 578 | Node* mem = access.memory(); |
| 579 | |
| 580 | switch(access.type()) { |
| 581 | case T_BYTE: |
| 582 | load_store = kit->gvn().transform(new GetAndAddBNode(kit->control(), mem, adr, new_val, adr_type)); |
| 583 | break; |
| 584 | case T_SHORT: |
| 585 | load_store = kit->gvn().transform(new GetAndAddSNode(kit->control(), mem, adr, new_val, adr_type)); |
| 586 | break; |
| 587 | case T_INT: |
| 588 | load_store = kit->gvn().transform(new GetAndAddINode(kit->control(), mem, adr, new_val, adr_type)); |
| 589 | break; |
| 590 | case T_LONG: |
| 591 | load_store = kit->gvn().transform(new GetAndAddLNode(kit->control(), mem, adr, new_val, adr_type)); |
| 592 | break; |
| 593 | default: |
| 594 | ShouldNotReachHere(); |
| 595 | } |
| 596 | |
| 597 | access.set_raw_access(load_store); |
| 598 | pin_atomic_op(access); |
| 599 | |
| 600 | return load_store; |
| 601 | } |
| 602 | |
| 603 | Node* BarrierSetC2::atomic_cmpxchg_val_at(C2AtomicParseAccess& access, Node* expected_val, |
| 604 | Node* new_val, const Type* value_type) const { |
| 605 | C2AccessFence fence(access); |
| 606 | resolve_address(access); |
| 607 | return atomic_cmpxchg_val_at_resolved(access, expected_val, new_val, value_type); |
| 608 | } |
| 609 | |
| 610 | Node* BarrierSetC2::atomic_cmpxchg_bool_at(C2AtomicParseAccess& access, Node* expected_val, |
| 611 | Node* new_val, const Type* value_type) const { |
| 612 | C2AccessFence fence(access); |
| 613 | resolve_address(access); |
| 614 | return atomic_cmpxchg_bool_at_resolved(access, expected_val, new_val, value_type); |
| 615 | } |
| 616 | |
| 617 | Node* BarrierSetC2::atomic_xchg_at(C2AtomicParseAccess& access, Node* new_val, const Type* value_type) const { |
| 618 | C2AccessFence fence(access); |
| 619 | resolve_address(access); |
| 620 | return atomic_xchg_at_resolved(access, new_val, value_type); |
| 621 | } |
| 622 | |
| 623 | Node* BarrierSetC2::atomic_add_at(C2AtomicParseAccess& access, Node* new_val, const Type* value_type) const { |
| 624 | C2AccessFence fence(access); |
| 625 | resolve_address(access); |
| 626 | return atomic_add_at_resolved(access, new_val, value_type); |
| 627 | } |
| 628 | |
| 629 | void BarrierSetC2::clone(GraphKit* kit, Node* src, Node* dst, Node* size, bool is_array) const { |
| 630 | // Exclude the header but include array length to copy by 8 bytes words. |
| 631 | // Can't use base_offset_in_bytes(bt) since basic type is unknown. |
| 632 | int base_off = is_array ? arrayOopDesc::length_offset_in_bytes() : |
| 633 | instanceOopDesc::base_offset_in_bytes(); |
| 634 | // base_off: |
| 635 | // 8 - 32-bit VM |
| 636 | // 12 - 64-bit VM, compressed klass |
| 637 | // 16 - 64-bit VM, normal klass |
| 638 | if (base_off % BytesPerLong != 0) { |
| 639 | assert(UseCompressedClassPointers, "" ); |
| 640 | if (is_array) { |
| 641 | // Exclude length to copy by 8 bytes words. |
| 642 | base_off += sizeof(int); |
| 643 | } else { |
| 644 | // Include klass to copy by 8 bytes words. |
| 645 | base_off = instanceOopDesc::klass_offset_in_bytes(); |
| 646 | } |
| 647 | assert(base_off % BytesPerLong == 0, "expect 8 bytes alignment" ); |
| 648 | } |
| 649 | Node* src_base = kit->basic_plus_adr(src, base_off); |
| 650 | Node* dst_base = kit->basic_plus_adr(dst, base_off); |
| 651 | |
| 652 | // Compute the length also, if needed: |
| 653 | Node* countx = size; |
| 654 | countx = kit->gvn().transform(new SubXNode(countx, kit->MakeConX(base_off))); |
| 655 | countx = kit->gvn().transform(new URShiftXNode(countx, kit->intcon(LogBytesPerLong) )); |
| 656 | |
| 657 | const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM; |
| 658 | |
| 659 | ArrayCopyNode* ac = ArrayCopyNode::make(kit, false, src_base, NULL, dst_base, NULL, countx, true, false); |
| 660 | ac->set_clonebasic(); |
| 661 | Node* n = kit->gvn().transform(ac); |
| 662 | if (n == ac) { |
| 663 | ac->_adr_type = TypeRawPtr::BOTTOM; |
| 664 | kit->set_predefined_output_for_runtime_call(ac, ac->in(TypeFunc::Memory), raw_adr_type); |
| 665 | } else { |
| 666 | kit->set_all_memory(n); |
| 667 | } |
| 668 | } |
| 669 | |
| 670 | Node* BarrierSetC2::obj_allocate(PhaseMacroExpand* macro, Node* ctrl, Node* mem, Node* toobig_false, Node* size_in_bytes, |
| 671 | Node*& i_o, Node*& needgc_ctrl, |
| 672 | Node*& fast_oop_ctrl, Node*& fast_oop_rawmem, |
| 673 | intx prefetch_lines) const { |
| 674 | |
| 675 | Node* eden_top_adr; |
| 676 | Node* eden_end_adr; |
| 677 | |
| 678 | macro->set_eden_pointers(eden_top_adr, eden_end_adr); |
| 679 | |
| 680 | // Load Eden::end. Loop invariant and hoisted. |
| 681 | // |
| 682 | // Note: We set the control input on "eden_end" and "old_eden_top" when using |
| 683 | // a TLAB to work around a bug where these values were being moved across |
| 684 | // a safepoint. These are not oops, so they cannot be include in the oop |
| 685 | // map, but they can be changed by a GC. The proper way to fix this would |
| 686 | // be to set the raw memory state when generating a SafepointNode. However |
| 687 | // this will require extensive changes to the loop optimization in order to |
| 688 | // prevent a degradation of the optimization. |
| 689 | // See comment in memnode.hpp, around line 227 in class LoadPNode. |
| 690 | Node *eden_end = macro->make_load(ctrl, mem, eden_end_adr, 0, TypeRawPtr::BOTTOM, T_ADDRESS); |
| 691 | |
| 692 | // We need a Region for the loop-back contended case. |
| 693 | enum { fall_in_path = 1, contended_loopback_path = 2 }; |
| 694 | Node *contended_region; |
| 695 | Node *contended_phi_rawmem; |
| 696 | if (UseTLAB) { |
| 697 | contended_region = toobig_false; |
| 698 | contended_phi_rawmem = mem; |
| 699 | } else { |
| 700 | contended_region = new RegionNode(3); |
| 701 | contended_phi_rawmem = new PhiNode(contended_region, Type::MEMORY, TypeRawPtr::BOTTOM); |
| 702 | // Now handle the passing-too-big test. We fall into the contended |
| 703 | // loop-back merge point. |
| 704 | contended_region ->init_req(fall_in_path, toobig_false); |
| 705 | contended_phi_rawmem->init_req(fall_in_path, mem); |
| 706 | macro->transform_later(contended_region); |
| 707 | macro->transform_later(contended_phi_rawmem); |
| 708 | } |
| 709 | |
| 710 | // Load(-locked) the heap top. |
| 711 | // See note above concerning the control input when using a TLAB |
| 712 | Node *old_eden_top = UseTLAB |
| 713 | ? new LoadPNode (ctrl, contended_phi_rawmem, eden_top_adr, TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM, MemNode::unordered) |
| 714 | : new LoadPLockedNode(contended_region, contended_phi_rawmem, eden_top_adr, MemNode::acquire); |
| 715 | |
| 716 | macro->transform_later(old_eden_top); |
| 717 | // Add to heap top to get a new heap top |
| 718 | Node *new_eden_top = new AddPNode(macro->top(), old_eden_top, size_in_bytes); |
| 719 | macro->transform_later(new_eden_top); |
| 720 | // Check for needing a GC; compare against heap end |
| 721 | Node *needgc_cmp = new CmpPNode(new_eden_top, eden_end); |
| 722 | macro->transform_later(needgc_cmp); |
| 723 | Node *needgc_bol = new BoolNode(needgc_cmp, BoolTest::ge); |
| 724 | macro->transform_later(needgc_bol); |
| 725 | IfNode *needgc_iff = new IfNode(contended_region, needgc_bol, PROB_UNLIKELY_MAG(4), COUNT_UNKNOWN); |
| 726 | macro->transform_later(needgc_iff); |
| 727 | |
| 728 | // Plug the failing-heap-space-need-gc test into the slow-path region |
| 729 | Node *needgc_true = new IfTrueNode(needgc_iff); |
| 730 | macro->transform_later(needgc_true); |
| 731 | needgc_ctrl = needgc_true; |
| 732 | |
| 733 | // No need for a GC. Setup for the Store-Conditional |
| 734 | Node *needgc_false = new IfFalseNode(needgc_iff); |
| 735 | macro->transform_later(needgc_false); |
| 736 | |
| 737 | i_o = macro->prefetch_allocation(i_o, needgc_false, contended_phi_rawmem, |
| 738 | old_eden_top, new_eden_top, prefetch_lines); |
| 739 | |
| 740 | Node* fast_oop = old_eden_top; |
| 741 | |
| 742 | // Store (-conditional) the modified eden top back down. |
| 743 | // StorePConditional produces flags for a test PLUS a modified raw |
| 744 | // memory state. |
| 745 | if (UseTLAB) { |
| 746 | Node* store_eden_top = |
| 747 | new StorePNode(needgc_false, contended_phi_rawmem, eden_top_adr, |
| 748 | TypeRawPtr::BOTTOM, new_eden_top, MemNode::unordered); |
| 749 | macro->transform_later(store_eden_top); |
| 750 | fast_oop_ctrl = needgc_false; // No contention, so this is the fast path |
| 751 | fast_oop_rawmem = store_eden_top; |
| 752 | } else { |
| 753 | Node* store_eden_top = |
| 754 | new StorePConditionalNode(needgc_false, contended_phi_rawmem, eden_top_adr, |
| 755 | new_eden_top, fast_oop/*old_eden_top*/); |
| 756 | macro->transform_later(store_eden_top); |
| 757 | Node *contention_check = new BoolNode(store_eden_top, BoolTest::ne); |
| 758 | macro->transform_later(contention_check); |
| 759 | store_eden_top = new SCMemProjNode(store_eden_top); |
| 760 | macro->transform_later(store_eden_top); |
| 761 | |
| 762 | // If not using TLABs, check to see if there was contention. |
| 763 | IfNode *contention_iff = new IfNode (needgc_false, contention_check, PROB_MIN, COUNT_UNKNOWN); |
| 764 | macro->transform_later(contention_iff); |
| 765 | Node *contention_true = new IfTrueNode(contention_iff); |
| 766 | macro->transform_later(contention_true); |
| 767 | // If contention, loopback and try again. |
| 768 | contended_region->init_req(contended_loopback_path, contention_true); |
| 769 | contended_phi_rawmem->init_req(contended_loopback_path, store_eden_top); |
| 770 | |
| 771 | // Fast-path succeeded with no contention! |
| 772 | Node *contention_false = new IfFalseNode(contention_iff); |
| 773 | macro->transform_later(contention_false); |
| 774 | fast_oop_ctrl = contention_false; |
| 775 | |
| 776 | // Bump total allocated bytes for this thread |
| 777 | Node* thread = new ThreadLocalNode(); |
| 778 | macro->transform_later(thread); |
| 779 | Node* alloc_bytes_adr = macro->basic_plus_adr(macro->top()/*not oop*/, thread, |
| 780 | in_bytes(JavaThread::allocated_bytes_offset())); |
| 781 | Node* alloc_bytes = macro->make_load(fast_oop_ctrl, store_eden_top, alloc_bytes_adr, |
| 782 | 0, TypeLong::LONG, T_LONG); |
| 783 | #ifdef _LP64 |
| 784 | Node* alloc_size = size_in_bytes; |
| 785 | #else |
| 786 | Node* alloc_size = new ConvI2LNode(size_in_bytes); |
| 787 | macro->transform_later(alloc_size); |
| 788 | #endif |
| 789 | Node* new_alloc_bytes = new AddLNode(alloc_bytes, alloc_size); |
| 790 | macro->transform_later(new_alloc_bytes); |
| 791 | fast_oop_rawmem = macro->make_store(fast_oop_ctrl, store_eden_top, alloc_bytes_adr, |
| 792 | 0, new_alloc_bytes, T_LONG); |
| 793 | } |
| 794 | return fast_oop; |
| 795 | } |
| 796 | |
| 797 | void BarrierSetC2::clone_barrier_at_expansion(ArrayCopyNode* ac, Node* call, PhaseIterGVN& igvn) const { |
| 798 | // no barrier |
| 799 | igvn.replace_node(ac, call); |
| 800 | } |
| 801 | |