| 1 | /* |
| 2 | * Copyright (c) 2018, 2019, Red Hat, Inc. All rights reserved. |
| 3 | * |
| 4 | * This code is free software; you can redistribute it and/or modify it |
| 5 | * under the terms of the GNU General Public License version 2 only, as |
| 6 | * published by the Free Software Foundation. |
| 7 | * |
| 8 | * This code is distributed in the hope that it will be useful, but WITHOUT |
| 9 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| 10 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| 11 | * version 2 for more details (a copy is included in the LICENSE file that |
| 12 | * accompanied this code). |
| 13 | * |
| 14 | * You should have received a copy of the GNU General Public License version |
| 15 | * 2 along with this work; if not, write to the Free Software Foundation, |
| 16 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
| 17 | * |
| 18 | * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
| 19 | * or visit www.oracle.com if you need additional information or have any |
| 20 | * questions. |
| 21 | * |
| 22 | */ |
| 23 | |
| 24 | #include "precompiled.hpp" |
| 25 | #include "gc/shared/barrierSet.hpp" |
| 26 | #include "gc/shenandoah/shenandoahForwarding.hpp" |
| 27 | #include "gc/shenandoah/shenandoahHeap.hpp" |
| 28 | #include "gc/shenandoah/shenandoahHeuristics.hpp" |
| 29 | #include "gc/shenandoah/shenandoahRuntime.hpp" |
| 30 | #include "gc/shenandoah/shenandoahThreadLocalData.hpp" |
| 31 | #include "gc/shenandoah/c2/shenandoahBarrierSetC2.hpp" |
| 32 | #include "gc/shenandoah/c2/shenandoahSupport.hpp" |
| 33 | #include "opto/arraycopynode.hpp" |
| 34 | #include "opto/escape.hpp" |
| 35 | #include "opto/graphKit.hpp" |
| 36 | #include "opto/idealKit.hpp" |
| 37 | #include "opto/macro.hpp" |
| 38 | #include "opto/movenode.hpp" |
| 39 | #include "opto/narrowptrnode.hpp" |
| 40 | #include "opto/rootnode.hpp" |
| 41 | |
| 42 | ShenandoahBarrierSetC2* ShenandoahBarrierSetC2::bsc2() { |
| 43 | return reinterpret_cast<ShenandoahBarrierSetC2*>(BarrierSet::barrier_set()->barrier_set_c2()); |
| 44 | } |
| 45 | |
| 46 | ShenandoahBarrierSetC2State::ShenandoahBarrierSetC2State(Arena* comp_arena) |
| 47 | : _enqueue_barriers(new (comp_arena) GrowableArray<ShenandoahEnqueueBarrierNode*>(comp_arena, 8, 0, NULL)), |
| 48 | _load_reference_barriers(new (comp_arena) GrowableArray<ShenandoahLoadReferenceBarrierNode*>(comp_arena, 8, 0, NULL)) { |
| 49 | } |
| 50 | |
| 51 | int ShenandoahBarrierSetC2State::enqueue_barriers_count() const { |
| 52 | return _enqueue_barriers->length(); |
| 53 | } |
| 54 | |
| 55 | ShenandoahEnqueueBarrierNode* ShenandoahBarrierSetC2State::enqueue_barrier(int idx) const { |
| 56 | return _enqueue_barriers->at(idx); |
| 57 | } |
| 58 | |
| 59 | void ShenandoahBarrierSetC2State::add_enqueue_barrier(ShenandoahEnqueueBarrierNode * n) { |
| 60 | assert(!_enqueue_barriers->contains(n), "duplicate entry in barrier list" ); |
| 61 | _enqueue_barriers->append(n); |
| 62 | } |
| 63 | |
| 64 | void ShenandoahBarrierSetC2State::remove_enqueue_barrier(ShenandoahEnqueueBarrierNode * n) { |
| 65 | if (_enqueue_barriers->contains(n)) { |
| 66 | _enqueue_barriers->remove(n); |
| 67 | } |
| 68 | } |
| 69 | |
| 70 | int ShenandoahBarrierSetC2State::load_reference_barriers_count() const { |
| 71 | return _load_reference_barriers->length(); |
| 72 | } |
| 73 | |
| 74 | ShenandoahLoadReferenceBarrierNode* ShenandoahBarrierSetC2State::load_reference_barrier(int idx) const { |
| 75 | return _load_reference_barriers->at(idx); |
| 76 | } |
| 77 | |
| 78 | void ShenandoahBarrierSetC2State::add_load_reference_barrier(ShenandoahLoadReferenceBarrierNode * n) { |
| 79 | assert(!_load_reference_barriers->contains(n), "duplicate entry in barrier list" ); |
| 80 | _load_reference_barriers->append(n); |
| 81 | } |
| 82 | |
| 83 | void ShenandoahBarrierSetC2State::remove_load_reference_barrier(ShenandoahLoadReferenceBarrierNode * n) { |
| 84 | if (_load_reference_barriers->contains(n)) { |
| 85 | _load_reference_barriers->remove(n); |
| 86 | } |
| 87 | } |
| 88 | |
| 89 | Node* ShenandoahBarrierSetC2::shenandoah_storeval_barrier(GraphKit* kit, Node* obj) const { |
| 90 | if (ShenandoahStoreValEnqueueBarrier) { |
| 91 | obj = shenandoah_enqueue_barrier(kit, obj); |
| 92 | } |
| 93 | return obj; |
| 94 | } |
| 95 | |
| 96 | #define __ kit-> |
| 97 | |
| 98 | bool ShenandoahBarrierSetC2::satb_can_remove_pre_barrier(GraphKit* kit, PhaseTransform* phase, Node* adr, |
| 99 | BasicType bt, uint adr_idx) const { |
| 100 | intptr_t offset = 0; |
| 101 | Node* base = AddPNode::Ideal_base_and_offset(adr, phase, offset); |
| 102 | AllocateNode* alloc = AllocateNode::Ideal_allocation(base, phase); |
| 103 | |
| 104 | if (offset == Type::OffsetBot) { |
| 105 | return false; // cannot unalias unless there are precise offsets |
| 106 | } |
| 107 | |
| 108 | if (alloc == NULL) { |
| 109 | return false; // No allocation found |
| 110 | } |
| 111 | |
| 112 | intptr_t size_in_bytes = type2aelembytes(bt); |
| 113 | |
| 114 | Node* mem = __ memory(adr_idx); // start searching here... |
| 115 | |
| 116 | for (int cnt = 0; cnt < 50; cnt++) { |
| 117 | |
| 118 | if (mem->is_Store()) { |
| 119 | |
| 120 | Node* st_adr = mem->in(MemNode::Address); |
| 121 | intptr_t st_offset = 0; |
| 122 | Node* st_base = AddPNode::Ideal_base_and_offset(st_adr, phase, st_offset); |
| 123 | |
| 124 | if (st_base == NULL) { |
| 125 | break; // inscrutable pointer |
| 126 | } |
| 127 | |
| 128 | // Break we have found a store with same base and offset as ours so break |
| 129 | if (st_base == base && st_offset == offset) { |
| 130 | break; |
| 131 | } |
| 132 | |
| 133 | if (st_offset != offset && st_offset != Type::OffsetBot) { |
| 134 | const int MAX_STORE = BytesPerLong; |
| 135 | if (st_offset >= offset + size_in_bytes || |
| 136 | st_offset <= offset - MAX_STORE || |
| 137 | st_offset <= offset - mem->as_Store()->memory_size()) { |
| 138 | // Success: The offsets are provably independent. |
| 139 | // (You may ask, why not just test st_offset != offset and be done? |
| 140 | // The answer is that stores of different sizes can co-exist |
| 141 | // in the same sequence of RawMem effects. We sometimes initialize |
| 142 | // a whole 'tile' of array elements with a single jint or jlong.) |
| 143 | mem = mem->in(MemNode::Memory); |
| 144 | continue; // advance through independent store memory |
| 145 | } |
| 146 | } |
| 147 | |
| 148 | if (st_base != base |
| 149 | && MemNode::detect_ptr_independence(base, alloc, st_base, |
| 150 | AllocateNode::Ideal_allocation(st_base, phase), |
| 151 | phase)) { |
| 152 | // Success: The bases are provably independent. |
| 153 | mem = mem->in(MemNode::Memory); |
| 154 | continue; // advance through independent store memory |
| 155 | } |
| 156 | } else if (mem->is_Proj() && mem->in(0)->is_Initialize()) { |
| 157 | |
| 158 | InitializeNode* st_init = mem->in(0)->as_Initialize(); |
| 159 | AllocateNode* st_alloc = st_init->allocation(); |
| 160 | |
| 161 | // Make sure that we are looking at the same allocation site. |
| 162 | // The alloc variable is guaranteed to not be null here from earlier check. |
| 163 | if (alloc == st_alloc) { |
| 164 | // Check that the initialization is storing NULL so that no previous store |
| 165 | // has been moved up and directly write a reference |
| 166 | Node* captured_store = st_init->find_captured_store(offset, |
| 167 | type2aelembytes(T_OBJECT), |
| 168 | phase); |
| 169 | if (captured_store == NULL || captured_store == st_init->zero_memory()) { |
| 170 | return true; |
| 171 | } |
| 172 | } |
| 173 | } |
| 174 | |
| 175 | // Unless there is an explicit 'continue', we must bail out here, |
| 176 | // because 'mem' is an inscrutable memory state (e.g., a call). |
| 177 | break; |
| 178 | } |
| 179 | |
| 180 | return false; |
| 181 | } |
| 182 | |
| 183 | #undef __ |
| 184 | #define __ ideal. |
| 185 | |
| 186 | void ShenandoahBarrierSetC2::satb_write_barrier_pre(GraphKit* kit, |
| 187 | bool do_load, |
| 188 | Node* obj, |
| 189 | Node* adr, |
| 190 | uint alias_idx, |
| 191 | Node* val, |
| 192 | const TypeOopPtr* val_type, |
| 193 | Node* pre_val, |
| 194 | BasicType bt) const { |
| 195 | // Some sanity checks |
| 196 | // Note: val is unused in this routine. |
| 197 | |
| 198 | if (do_load) { |
| 199 | // We need to generate the load of the previous value |
| 200 | assert(obj != NULL, "must have a base" ); |
| 201 | assert(adr != NULL, "where are loading from?" ); |
| 202 | assert(pre_val == NULL, "loaded already?" ); |
| 203 | assert(val_type != NULL, "need a type" ); |
| 204 | |
| 205 | if (ReduceInitialCardMarks |
| 206 | && satb_can_remove_pre_barrier(kit, &kit->gvn(), adr, bt, alias_idx)) { |
| 207 | return; |
| 208 | } |
| 209 | |
| 210 | } else { |
| 211 | // In this case both val_type and alias_idx are unused. |
| 212 | assert(pre_val != NULL, "must be loaded already" ); |
| 213 | // Nothing to be done if pre_val is null. |
| 214 | if (pre_val->bottom_type() == TypePtr::NULL_PTR) return; |
| 215 | assert(pre_val->bottom_type()->basic_type() == T_OBJECT, "or we shouldn't be here" ); |
| 216 | } |
| 217 | assert(bt == T_OBJECT, "or we shouldn't be here" ); |
| 218 | |
| 219 | IdealKit ideal(kit, true); |
| 220 | |
| 221 | Node* tls = __ thread(); // ThreadLocalStorage |
| 222 | |
| 223 | Node* no_base = __ top(); |
| 224 | Node* zero = __ ConI(0); |
| 225 | Node* zeroX = __ ConX(0); |
| 226 | |
| 227 | float likely = PROB_LIKELY(0.999); |
| 228 | float unlikely = PROB_UNLIKELY(0.999); |
| 229 | |
| 230 | // Offsets into the thread |
| 231 | const int index_offset = in_bytes(ShenandoahThreadLocalData::satb_mark_queue_index_offset()); |
| 232 | const int buffer_offset = in_bytes(ShenandoahThreadLocalData::satb_mark_queue_buffer_offset()); |
| 233 | |
| 234 | // Now the actual pointers into the thread |
| 235 | Node* buffer_adr = __ AddP(no_base, tls, __ ConX(buffer_offset)); |
| 236 | Node* index_adr = __ AddP(no_base, tls, __ ConX(index_offset)); |
| 237 | |
| 238 | // Now some of the values |
| 239 | Node* marking; |
| 240 | Node* gc_state = __ AddP(no_base, tls, __ ConX(in_bytes(ShenandoahThreadLocalData::gc_state_offset()))); |
| 241 | Node* ld = __ load(__ ctrl(), gc_state, TypeInt::BYTE, T_BYTE, Compile::AliasIdxRaw); |
| 242 | marking = __ AndI(ld, __ ConI(ShenandoahHeap::MARKING)); |
| 243 | assert(ShenandoahBarrierC2Support::is_gc_state_load(ld), "Should match the shape" ); |
| 244 | |
| 245 | // if (!marking) |
| 246 | __ if_then(marking, BoolTest::ne, zero, unlikely); { |
| 247 | BasicType index_bt = TypeX_X->basic_type(); |
| 248 | assert(sizeof(size_t) == type2aelembytes(index_bt), "Loading G1 SATBMarkQueue::_index with wrong size." ); |
| 249 | Node* index = __ load(__ ctrl(), index_adr, TypeX_X, index_bt, Compile::AliasIdxRaw); |
| 250 | |
| 251 | if (do_load) { |
| 252 | // load original value |
| 253 | // alias_idx correct?? |
| 254 | pre_val = __ load(__ ctrl(), adr, val_type, bt, alias_idx); |
| 255 | } |
| 256 | |
| 257 | // if (pre_val != NULL) |
| 258 | __ if_then(pre_val, BoolTest::ne, kit->null()); { |
| 259 | Node* buffer = __ load(__ ctrl(), buffer_adr, TypeRawPtr::NOTNULL, T_ADDRESS, Compile::AliasIdxRaw); |
| 260 | |
| 261 | // is the queue for this thread full? |
| 262 | __ if_then(index, BoolTest::ne, zeroX, likely); { |
| 263 | |
| 264 | // decrement the index |
| 265 | Node* next_index = kit->gvn().transform(new SubXNode(index, __ ConX(sizeof(intptr_t)))); |
| 266 | |
| 267 | // Now get the buffer location we will log the previous value into and store it |
| 268 | Node *log_addr = __ AddP(no_base, buffer, next_index); |
| 269 | __ store(__ ctrl(), log_addr, pre_val, T_OBJECT, Compile::AliasIdxRaw, MemNode::unordered); |
| 270 | // update the index |
| 271 | __ store(__ ctrl(), index_adr, next_index, index_bt, Compile::AliasIdxRaw, MemNode::unordered); |
| 272 | |
| 273 | } __ else_(); { |
| 274 | |
| 275 | // logging buffer is full, call the runtime |
| 276 | const TypeFunc *tf = ShenandoahBarrierSetC2::write_ref_field_pre_entry_Type(); |
| 277 | __ make_leaf_call(tf, CAST_FROM_FN_PTR(address, ShenandoahRuntime::write_ref_field_pre_entry), "shenandoah_wb_pre" , pre_val, tls); |
| 278 | } __ end_if(); // (!index) |
| 279 | } __ end_if(); // (pre_val != NULL) |
| 280 | } __ end_if(); // (!marking) |
| 281 | |
| 282 | // Final sync IdealKit and GraphKit. |
| 283 | kit->final_sync(ideal); |
| 284 | |
| 285 | if (ShenandoahSATBBarrier && adr != NULL) { |
| 286 | Node* c = kit->control(); |
| 287 | Node* call = c->in(1)->in(1)->in(1)->in(0); |
| 288 | assert(is_shenandoah_wb_pre_call(call), "shenandoah_wb_pre call expected" ); |
| 289 | call->add_req(adr); |
| 290 | } |
| 291 | } |
| 292 | |
| 293 | bool ShenandoahBarrierSetC2::is_shenandoah_wb_pre_call(Node* call) { |
| 294 | return call->is_CallLeaf() && |
| 295 | call->as_CallLeaf()->entry_point() == CAST_FROM_FN_PTR(address, ShenandoahRuntime::write_ref_field_pre_entry); |
| 296 | } |
| 297 | |
| 298 | bool ShenandoahBarrierSetC2::is_shenandoah_lrb_call(Node* call) { |
| 299 | return call->is_CallLeaf() && |
| 300 | call->as_CallLeaf()->entry_point() == CAST_FROM_FN_PTR(address, ShenandoahRuntime::load_reference_barrier_JRT); |
| 301 | } |
| 302 | |
| 303 | bool ShenandoahBarrierSetC2::is_shenandoah_marking_if(PhaseTransform *phase, Node* n) { |
| 304 | if (n->Opcode() != Op_If) { |
| 305 | return false; |
| 306 | } |
| 307 | |
| 308 | Node* bol = n->in(1); |
| 309 | assert(bol->is_Bool(), "" ); |
| 310 | Node* cmpx = bol->in(1); |
| 311 | if (bol->as_Bool()->_test._test == BoolTest::ne && |
| 312 | cmpx->is_Cmp() && cmpx->in(2) == phase->intcon(0) && |
| 313 | is_shenandoah_state_load(cmpx->in(1)->in(1)) && |
| 314 | cmpx->in(1)->in(2)->is_Con() && |
| 315 | cmpx->in(1)->in(2) == phase->intcon(ShenandoahHeap::MARKING)) { |
| 316 | return true; |
| 317 | } |
| 318 | |
| 319 | return false; |
| 320 | } |
| 321 | |
| 322 | bool ShenandoahBarrierSetC2::is_shenandoah_state_load(Node* n) { |
| 323 | if (!n->is_Load()) return false; |
| 324 | const int state_offset = in_bytes(ShenandoahThreadLocalData::gc_state_offset()); |
| 325 | return n->in(2)->is_AddP() && n->in(2)->in(2)->Opcode() == Op_ThreadLocal |
| 326 | && n->in(2)->in(3)->is_Con() |
| 327 | && n->in(2)->in(3)->bottom_type()->is_intptr_t()->get_con() == state_offset; |
| 328 | } |
| 329 | |
| 330 | void ShenandoahBarrierSetC2::shenandoah_write_barrier_pre(GraphKit* kit, |
| 331 | bool do_load, |
| 332 | Node* obj, |
| 333 | Node* adr, |
| 334 | uint alias_idx, |
| 335 | Node* val, |
| 336 | const TypeOopPtr* val_type, |
| 337 | Node* pre_val, |
| 338 | BasicType bt) const { |
| 339 | if (ShenandoahSATBBarrier) { |
| 340 | IdealKit ideal(kit); |
| 341 | kit->sync_kit(ideal); |
| 342 | |
| 343 | satb_write_barrier_pre(kit, do_load, obj, adr, alias_idx, val, val_type, pre_val, bt); |
| 344 | |
| 345 | ideal.sync_kit(kit); |
| 346 | kit->final_sync(ideal); |
| 347 | } |
| 348 | } |
| 349 | |
| 350 | Node* ShenandoahBarrierSetC2::shenandoah_enqueue_barrier(GraphKit* kit, Node* pre_val) const { |
| 351 | return kit->gvn().transform(new ShenandoahEnqueueBarrierNode(pre_val)); |
| 352 | } |
| 353 | |
| 354 | // Helper that guards and inserts a pre-barrier. |
| 355 | void ShenandoahBarrierSetC2::insert_pre_barrier(GraphKit* kit, Node* base_oop, Node* offset, |
| 356 | Node* pre_val, bool need_mem_bar) const { |
| 357 | // We could be accessing the referent field of a reference object. If so, when G1 |
| 358 | // is enabled, we need to log the value in the referent field in an SATB buffer. |
| 359 | // This routine performs some compile time filters and generates suitable |
| 360 | // runtime filters that guard the pre-barrier code. |
| 361 | // Also add memory barrier for non volatile load from the referent field |
| 362 | // to prevent commoning of loads across safepoint. |
| 363 | |
| 364 | // Some compile time checks. |
| 365 | |
| 366 | // If offset is a constant, is it java_lang_ref_Reference::_reference_offset? |
| 367 | const TypeX* otype = offset->find_intptr_t_type(); |
| 368 | if (otype != NULL && otype->is_con() && |
| 369 | otype->get_con() != java_lang_ref_Reference::referent_offset) { |
| 370 | // Constant offset but not the reference_offset so just return |
| 371 | return; |
| 372 | } |
| 373 | |
| 374 | // We only need to generate the runtime guards for instances. |
| 375 | const TypeOopPtr* btype = base_oop->bottom_type()->isa_oopptr(); |
| 376 | if (btype != NULL) { |
| 377 | if (btype->isa_aryptr()) { |
| 378 | // Array type so nothing to do |
| 379 | return; |
| 380 | } |
| 381 | |
| 382 | const TypeInstPtr* itype = btype->isa_instptr(); |
| 383 | if (itype != NULL) { |
| 384 | // Can the klass of base_oop be statically determined to be |
| 385 | // _not_ a sub-class of Reference and _not_ Object? |
| 386 | ciKlass* klass = itype->klass(); |
| 387 | if ( klass->is_loaded() && |
| 388 | !klass->is_subtype_of(kit->env()->Reference_klass()) && |
| 389 | !kit->env()->Object_klass()->is_subtype_of(klass)) { |
| 390 | return; |
| 391 | } |
| 392 | } |
| 393 | } |
| 394 | |
| 395 | // The compile time filters did not reject base_oop/offset so |
| 396 | // we need to generate the following runtime filters |
| 397 | // |
| 398 | // if (offset == java_lang_ref_Reference::_reference_offset) { |
| 399 | // if (instance_of(base, java.lang.ref.Reference)) { |
| 400 | // pre_barrier(_, pre_val, ...); |
| 401 | // } |
| 402 | // } |
| 403 | |
| 404 | float likely = PROB_LIKELY( 0.999); |
| 405 | float unlikely = PROB_UNLIKELY(0.999); |
| 406 | |
| 407 | IdealKit ideal(kit); |
| 408 | |
| 409 | Node* referent_off = __ ConX(java_lang_ref_Reference::referent_offset); |
| 410 | |
| 411 | __ if_then(offset, BoolTest::eq, referent_off, unlikely); { |
| 412 | // Update graphKit memory and control from IdealKit. |
| 413 | kit->sync_kit(ideal); |
| 414 | |
| 415 | Node* ref_klass_con = kit->makecon(TypeKlassPtr::make(kit->env()->Reference_klass())); |
| 416 | Node* is_instof = kit->gen_instanceof(base_oop, ref_klass_con); |
| 417 | |
| 418 | // Update IdealKit memory and control from graphKit. |
| 419 | __ sync_kit(kit); |
| 420 | |
| 421 | Node* one = __ ConI(1); |
| 422 | // is_instof == 0 if base_oop == NULL |
| 423 | __ if_then(is_instof, BoolTest::eq, one, unlikely); { |
| 424 | |
| 425 | // Update graphKit from IdeakKit. |
| 426 | kit->sync_kit(ideal); |
| 427 | |
| 428 | // Use the pre-barrier to record the value in the referent field |
| 429 | satb_write_barrier_pre(kit, false /* do_load */, |
| 430 | NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */, |
| 431 | pre_val /* pre_val */, |
| 432 | T_OBJECT); |
| 433 | if (need_mem_bar) { |
| 434 | // Add memory barrier to prevent commoning reads from this field |
| 435 | // across safepoint since GC can change its value. |
| 436 | kit->insert_mem_bar(Op_MemBarCPUOrder); |
| 437 | } |
| 438 | // Update IdealKit from graphKit. |
| 439 | __ sync_kit(kit); |
| 440 | |
| 441 | } __ end_if(); // _ref_type != ref_none |
| 442 | } __ end_if(); // offset == referent_offset |
| 443 | |
| 444 | // Final sync IdealKit and GraphKit. |
| 445 | kit->final_sync(ideal); |
| 446 | } |
| 447 | |
| 448 | #undef __ |
| 449 | |
| 450 | const TypeFunc* ShenandoahBarrierSetC2::write_ref_field_pre_entry_Type() { |
| 451 | const Type **fields = TypeTuple::fields(2); |
| 452 | fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // original field value |
| 453 | fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL; // thread |
| 454 | const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields); |
| 455 | |
| 456 | // create result type (range) |
| 457 | fields = TypeTuple::fields(0); |
| 458 | const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields); |
| 459 | |
| 460 | return TypeFunc::make(domain, range); |
| 461 | } |
| 462 | |
| 463 | const TypeFunc* ShenandoahBarrierSetC2::shenandoah_clone_barrier_Type() { |
| 464 | const Type **fields = TypeTuple::fields(1); |
| 465 | fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // original field value |
| 466 | const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields); |
| 467 | |
| 468 | // create result type (range) |
| 469 | fields = TypeTuple::fields(0); |
| 470 | const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields); |
| 471 | |
| 472 | return TypeFunc::make(domain, range); |
| 473 | } |
| 474 | |
| 475 | const TypeFunc* ShenandoahBarrierSetC2::shenandoah_load_reference_barrier_Type() { |
| 476 | const Type **fields = TypeTuple::fields(1); |
| 477 | fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // original field value |
| 478 | const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields); |
| 479 | |
| 480 | // create result type (range) |
| 481 | fields = TypeTuple::fields(1); |
| 482 | fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; |
| 483 | const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields); |
| 484 | |
| 485 | return TypeFunc::make(domain, range); |
| 486 | } |
| 487 | |
| 488 | Node* ShenandoahBarrierSetC2::store_at_resolved(C2Access& access, C2AccessValue& val) const { |
| 489 | DecoratorSet decorators = access.decorators(); |
| 490 | |
| 491 | const TypePtr* adr_type = access.addr().type(); |
| 492 | Node* adr = access.addr().node(); |
| 493 | |
| 494 | bool anonymous = (decorators & ON_UNKNOWN_OOP_REF) != 0; |
| 495 | bool on_heap = (decorators & IN_HEAP) != 0; |
| 496 | |
| 497 | if (!access.is_oop() || (!on_heap && !anonymous)) { |
| 498 | return BarrierSetC2::store_at_resolved(access, val); |
| 499 | } |
| 500 | |
| 501 | if (access.is_parse_access()) { |
| 502 | C2ParseAccess& parse_access = static_cast<C2ParseAccess&>(access); |
| 503 | GraphKit* kit = parse_access.kit(); |
| 504 | |
| 505 | uint adr_idx = kit->C->get_alias_index(adr_type); |
| 506 | assert(adr_idx != Compile::AliasIdxTop, "use other store_to_memory factory" ); |
| 507 | Node* value = val.node(); |
| 508 | value = shenandoah_storeval_barrier(kit, value); |
| 509 | val.set_node(value); |
| 510 | shenandoah_write_barrier_pre(kit, true /* do_load */, /*kit->control(),*/ access.base(), adr, adr_idx, val.node(), |
| 511 | static_cast<const TypeOopPtr*>(val.type()), NULL /* pre_val */, access.type()); |
| 512 | } else { |
| 513 | assert(access.is_opt_access(), "only for optimization passes" ); |
| 514 | assert(((decorators & C2_TIGHTLY_COUPLED_ALLOC) != 0 || !ShenandoahSATBBarrier) && (decorators & C2_ARRAY_COPY) != 0, "unexpected caller of this code" ); |
| 515 | C2OptAccess& opt_access = static_cast<C2OptAccess&>(access); |
| 516 | PhaseGVN& gvn = opt_access.gvn(); |
| 517 | MergeMemNode* mm = opt_access.mem(); |
| 518 | |
| 519 | if (ShenandoahStoreValEnqueueBarrier) { |
| 520 | Node* enqueue = gvn.transform(new ShenandoahEnqueueBarrierNode(val.node())); |
| 521 | val.set_node(enqueue); |
| 522 | } |
| 523 | } |
| 524 | return BarrierSetC2::store_at_resolved(access, val); |
| 525 | } |
| 526 | |
| 527 | Node* ShenandoahBarrierSetC2::load_at_resolved(C2Access& access, const Type* val_type) const { |
| 528 | DecoratorSet decorators = access.decorators(); |
| 529 | |
| 530 | Node* adr = access.addr().node(); |
| 531 | Node* obj = access.base(); |
| 532 | |
| 533 | bool mismatched = (decorators & C2_MISMATCHED) != 0; |
| 534 | bool unknown = (decorators & ON_UNKNOWN_OOP_REF) != 0; |
| 535 | bool on_heap = (decorators & IN_HEAP) != 0; |
| 536 | bool on_weak = (decorators & ON_WEAK_OOP_REF) != 0; |
| 537 | bool is_unordered = (decorators & MO_UNORDERED) != 0; |
| 538 | bool need_cpu_mem_bar = !is_unordered || mismatched || !on_heap; |
| 539 | |
| 540 | Node* top = Compile::current()->top(); |
| 541 | |
| 542 | Node* offset = adr->is_AddP() ? adr->in(AddPNode::Offset) : top; |
| 543 | Node* load = BarrierSetC2::load_at_resolved(access, val_type); |
| 544 | |
| 545 | if (access.is_oop()) { |
| 546 | if (ShenandoahLoadRefBarrier) { |
| 547 | load = new ShenandoahLoadReferenceBarrierNode(NULL, load); |
| 548 | if (access.is_parse_access()) { |
| 549 | load = static_cast<C2ParseAccess &>(access).kit()->gvn().transform(load); |
| 550 | } else { |
| 551 | load = static_cast<C2OptAccess &>(access).gvn().transform(load); |
| 552 | } |
| 553 | } |
| 554 | } |
| 555 | |
| 556 | // If we are reading the value of the referent field of a Reference |
| 557 | // object (either by using Unsafe directly or through reflection) |
| 558 | // then, if SATB is enabled, we need to record the referent in an |
| 559 | // SATB log buffer using the pre-barrier mechanism. |
| 560 | // Also we need to add memory barrier to prevent commoning reads |
| 561 | // from this field across safepoint since GC can change its value. |
| 562 | bool need_read_barrier = ShenandoahKeepAliveBarrier && |
| 563 | (on_heap && (on_weak || (unknown && offset != top && obj != top))); |
| 564 | |
| 565 | if (!access.is_oop() || !need_read_barrier) { |
| 566 | return load; |
| 567 | } |
| 568 | |
| 569 | assert(access.is_parse_access(), "entry not supported at optimization time" ); |
| 570 | C2ParseAccess& parse_access = static_cast<C2ParseAccess&>(access); |
| 571 | GraphKit* kit = parse_access.kit(); |
| 572 | |
| 573 | if (on_weak) { |
| 574 | // Use the pre-barrier to record the value in the referent field |
| 575 | satb_write_barrier_pre(kit, false /* do_load */, |
| 576 | NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */, |
| 577 | load /* pre_val */, T_OBJECT); |
| 578 | // Add memory barrier to prevent commoning reads from this field |
| 579 | // across safepoint since GC can change its value. |
| 580 | kit->insert_mem_bar(Op_MemBarCPUOrder); |
| 581 | } else if (unknown) { |
| 582 | // We do not require a mem bar inside pre_barrier if need_mem_bar |
| 583 | // is set: the barriers would be emitted by us. |
| 584 | insert_pre_barrier(kit, obj, offset, load, !need_cpu_mem_bar); |
| 585 | } |
| 586 | |
| 587 | return load; |
| 588 | } |
| 589 | |
| 590 | Node* ShenandoahBarrierSetC2::atomic_cmpxchg_val_at_resolved(C2AtomicParseAccess& access, Node* expected_val, |
| 591 | Node* new_val, const Type* value_type) const { |
| 592 | GraphKit* kit = access.kit(); |
| 593 | if (access.is_oop()) { |
| 594 | new_val = shenandoah_storeval_barrier(kit, new_val); |
| 595 | shenandoah_write_barrier_pre(kit, false /* do_load */, |
| 596 | NULL, NULL, max_juint, NULL, NULL, |
| 597 | expected_val /* pre_val */, T_OBJECT); |
| 598 | |
| 599 | MemNode::MemOrd mo = access.mem_node_mo(); |
| 600 | Node* mem = access.memory(); |
| 601 | Node* adr = access.addr().node(); |
| 602 | const TypePtr* adr_type = access.addr().type(); |
| 603 | Node* load_store = NULL; |
| 604 | |
| 605 | #ifdef _LP64 |
| 606 | if (adr->bottom_type()->is_ptr_to_narrowoop()) { |
| 607 | Node *newval_enc = kit->gvn().transform(new EncodePNode(new_val, new_val->bottom_type()->make_narrowoop())); |
| 608 | Node *oldval_enc = kit->gvn().transform(new EncodePNode(expected_val, expected_val->bottom_type()->make_narrowoop())); |
| 609 | if (ShenandoahCASBarrier) { |
| 610 | load_store = kit->gvn().transform(new ShenandoahCompareAndExchangeNNode(kit->control(), mem, adr, newval_enc, oldval_enc, adr_type, value_type->make_narrowoop(), mo)); |
| 611 | } else { |
| 612 | load_store = kit->gvn().transform(new CompareAndExchangeNNode(kit->control(), mem, adr, newval_enc, oldval_enc, adr_type, value_type->make_narrowoop(), mo)); |
| 613 | } |
| 614 | } else |
| 615 | #endif |
| 616 | { |
| 617 | if (ShenandoahCASBarrier) { |
| 618 | load_store = kit->gvn().transform(new ShenandoahCompareAndExchangePNode(kit->control(), mem, adr, new_val, expected_val, adr_type, value_type->is_oopptr(), mo)); |
| 619 | } else { |
| 620 | load_store = kit->gvn().transform(new CompareAndExchangePNode(kit->control(), mem, adr, new_val, expected_val, adr_type, value_type->is_oopptr(), mo)); |
| 621 | } |
| 622 | } |
| 623 | |
| 624 | access.set_raw_access(load_store); |
| 625 | pin_atomic_op(access); |
| 626 | |
| 627 | #ifdef _LP64 |
| 628 | if (adr->bottom_type()->is_ptr_to_narrowoop()) { |
| 629 | load_store = kit->gvn().transform(new DecodeNNode(load_store, load_store->get_ptr_type())); |
| 630 | } |
| 631 | #endif |
| 632 | load_store = kit->gvn().transform(new ShenandoahLoadReferenceBarrierNode(NULL, load_store)); |
| 633 | return load_store; |
| 634 | } |
| 635 | return BarrierSetC2::atomic_cmpxchg_val_at_resolved(access, expected_val, new_val, value_type); |
| 636 | } |
| 637 | |
| 638 | Node* ShenandoahBarrierSetC2::atomic_cmpxchg_bool_at_resolved(C2AtomicParseAccess& access, Node* expected_val, |
| 639 | Node* new_val, const Type* value_type) const { |
| 640 | GraphKit* kit = access.kit(); |
| 641 | if (access.is_oop()) { |
| 642 | new_val = shenandoah_storeval_barrier(kit, new_val); |
| 643 | shenandoah_write_barrier_pre(kit, false /* do_load */, |
| 644 | NULL, NULL, max_juint, NULL, NULL, |
| 645 | expected_val /* pre_val */, T_OBJECT); |
| 646 | DecoratorSet decorators = access.decorators(); |
| 647 | MemNode::MemOrd mo = access.mem_node_mo(); |
| 648 | Node* mem = access.memory(); |
| 649 | bool is_weak_cas = (decorators & C2_WEAK_CMPXCHG) != 0; |
| 650 | Node* load_store = NULL; |
| 651 | Node* adr = access.addr().node(); |
| 652 | #ifdef _LP64 |
| 653 | if (adr->bottom_type()->is_ptr_to_narrowoop()) { |
| 654 | Node *newval_enc = kit->gvn().transform(new EncodePNode(new_val, new_val->bottom_type()->make_narrowoop())); |
| 655 | Node *oldval_enc = kit->gvn().transform(new EncodePNode(expected_val, expected_val->bottom_type()->make_narrowoop())); |
| 656 | if (ShenandoahCASBarrier) { |
| 657 | if (is_weak_cas) { |
| 658 | load_store = kit->gvn().transform(new ShenandoahWeakCompareAndSwapNNode(kit->control(), mem, adr, newval_enc, oldval_enc, mo)); |
| 659 | } else { |
| 660 | load_store = kit->gvn().transform(new ShenandoahCompareAndSwapNNode(kit->control(), mem, adr, newval_enc, oldval_enc, mo)); |
| 661 | } |
| 662 | } else { |
| 663 | if (is_weak_cas) { |
| 664 | load_store = kit->gvn().transform(new WeakCompareAndSwapNNode(kit->control(), mem, adr, newval_enc, oldval_enc, mo)); |
| 665 | } else { |
| 666 | load_store = kit->gvn().transform(new CompareAndSwapNNode(kit->control(), mem, adr, newval_enc, oldval_enc, mo)); |
| 667 | } |
| 668 | } |
| 669 | } else |
| 670 | #endif |
| 671 | { |
| 672 | if (ShenandoahCASBarrier) { |
| 673 | if (is_weak_cas) { |
| 674 | load_store = kit->gvn().transform(new ShenandoahWeakCompareAndSwapPNode(kit->control(), mem, adr, new_val, expected_val, mo)); |
| 675 | } else { |
| 676 | load_store = kit->gvn().transform(new ShenandoahCompareAndSwapPNode(kit->control(), mem, adr, new_val, expected_val, mo)); |
| 677 | } |
| 678 | } else { |
| 679 | if (is_weak_cas) { |
| 680 | load_store = kit->gvn().transform(new WeakCompareAndSwapPNode(kit->control(), mem, adr, new_val, expected_val, mo)); |
| 681 | } else { |
| 682 | load_store = kit->gvn().transform(new CompareAndSwapPNode(kit->control(), mem, adr, new_val, expected_val, mo)); |
| 683 | } |
| 684 | } |
| 685 | } |
| 686 | access.set_raw_access(load_store); |
| 687 | pin_atomic_op(access); |
| 688 | return load_store; |
| 689 | } |
| 690 | return BarrierSetC2::atomic_cmpxchg_bool_at_resolved(access, expected_val, new_val, value_type); |
| 691 | } |
| 692 | |
| 693 | Node* ShenandoahBarrierSetC2::atomic_xchg_at_resolved(C2AtomicParseAccess& access, Node* val, const Type* value_type) const { |
| 694 | GraphKit* kit = access.kit(); |
| 695 | if (access.is_oop()) { |
| 696 | val = shenandoah_storeval_barrier(kit, val); |
| 697 | } |
| 698 | Node* result = BarrierSetC2::atomic_xchg_at_resolved(access, val, value_type); |
| 699 | if (access.is_oop()) { |
| 700 | result = kit->gvn().transform(new ShenandoahLoadReferenceBarrierNode(NULL, result)); |
| 701 | shenandoah_write_barrier_pre(kit, false /* do_load */, |
| 702 | NULL, NULL, max_juint, NULL, NULL, |
| 703 | result /* pre_val */, T_OBJECT); |
| 704 | } |
| 705 | return result; |
| 706 | } |
| 707 | |
| 708 | void ShenandoahBarrierSetC2::clone(GraphKit* kit, Node* src, Node* dst, Node* size, bool is_array) const { |
| 709 | assert(!src->is_AddP(), "unexpected input" ); |
| 710 | BarrierSetC2::clone(kit, src, dst, size, is_array); |
| 711 | } |
| 712 | |
| 713 | // Support for GC barriers emitted during parsing |
| 714 | bool ShenandoahBarrierSetC2::is_gc_barrier_node(Node* node) const { |
| 715 | if (node->Opcode() == Op_ShenandoahLoadReferenceBarrier) return true; |
| 716 | if (node->Opcode() != Op_CallLeaf && node->Opcode() != Op_CallLeafNoFP) { |
| 717 | return false; |
| 718 | } |
| 719 | CallLeafNode *call = node->as_CallLeaf(); |
| 720 | if (call->_name == NULL) { |
| 721 | return false; |
| 722 | } |
| 723 | |
| 724 | return strcmp(call->_name, "shenandoah_clone_barrier" ) == 0 || |
| 725 | strcmp(call->_name, "shenandoah_cas_obj" ) == 0 || |
| 726 | strcmp(call->_name, "shenandoah_wb_pre" ) == 0; |
| 727 | } |
| 728 | |
| 729 | Node* ShenandoahBarrierSetC2::step_over_gc_barrier(Node* c) const { |
| 730 | if (c->Opcode() == Op_ShenandoahLoadReferenceBarrier) { |
| 731 | return c->in(ShenandoahLoadReferenceBarrierNode::ValueIn); |
| 732 | } |
| 733 | if (c->Opcode() == Op_ShenandoahEnqueueBarrier) { |
| 734 | c = c->in(1); |
| 735 | } |
| 736 | return c; |
| 737 | } |
| 738 | |
| 739 | bool ShenandoahBarrierSetC2::expand_barriers(Compile* C, PhaseIterGVN& igvn) const { |
| 740 | return !ShenandoahBarrierC2Support::expand(C, igvn); |
| 741 | } |
| 742 | |
| 743 | bool ShenandoahBarrierSetC2::optimize_loops(PhaseIdealLoop* phase, LoopOptsMode mode, VectorSet& visited, Node_Stack& nstack, Node_List& worklist) const { |
| 744 | if (mode == LoopOptsShenandoahExpand) { |
| 745 | assert(UseShenandoahGC, "only for shenandoah" ); |
| 746 | ShenandoahBarrierC2Support::pin_and_expand(phase); |
| 747 | return true; |
| 748 | } else if (mode == LoopOptsShenandoahPostExpand) { |
| 749 | assert(UseShenandoahGC, "only for shenandoah" ); |
| 750 | visited.Clear(); |
| 751 | ShenandoahBarrierC2Support::optimize_after_expansion(visited, nstack, worklist, phase); |
| 752 | return true; |
| 753 | } |
| 754 | return false; |
| 755 | } |
| 756 | |
| 757 | bool ShenandoahBarrierSetC2::array_copy_requires_gc_barriers(bool tightly_coupled_alloc, BasicType type, bool is_clone, ArrayCopyPhase phase) const { |
| 758 | bool is_oop = type == T_OBJECT || type == T_ARRAY; |
| 759 | if (!is_oop) { |
| 760 | return false; |
| 761 | } |
| 762 | if (tightly_coupled_alloc) { |
| 763 | if (phase == Optimization) { |
| 764 | return false; |
| 765 | } |
| 766 | return !is_clone; |
| 767 | } |
| 768 | if (phase == Optimization) { |
| 769 | return !ShenandoahStoreValEnqueueBarrier; |
| 770 | } |
| 771 | return true; |
| 772 | } |
| 773 | |
| 774 | bool ShenandoahBarrierSetC2::clone_needs_postbarrier(ArrayCopyNode *ac, PhaseIterGVN& igvn) { |
| 775 | Node* src = ac->in(ArrayCopyNode::Src); |
| 776 | const TypeOopPtr* src_type = igvn.type(src)->is_oopptr(); |
| 777 | if (src_type->isa_instptr() != NULL) { |
| 778 | ciInstanceKlass* ik = src_type->klass()->as_instance_klass(); |
| 779 | if ((src_type->klass_is_exact() || (!ik->is_interface() && !ik->has_subklass())) && !ik->has_injected_fields()) { |
| 780 | if (ik->has_object_fields()) { |
| 781 | return true; |
| 782 | } else { |
| 783 | if (!src_type->klass_is_exact()) { |
| 784 | igvn.C->dependencies()->assert_leaf_type(ik); |
| 785 | } |
| 786 | } |
| 787 | } else { |
| 788 | return true; |
| 789 | } |
| 790 | } else if (src_type->isa_aryptr()) { |
| 791 | BasicType src_elem = src_type->klass()->as_array_klass()->element_type()->basic_type(); |
| 792 | if (src_elem == T_OBJECT || src_elem == T_ARRAY) { |
| 793 | return true; |
| 794 | } |
| 795 | } else { |
| 796 | return true; |
| 797 | } |
| 798 | return false; |
| 799 | } |
| 800 | |
| 801 | void ShenandoahBarrierSetC2::clone_barrier_at_expansion(ArrayCopyNode* ac, Node* call, PhaseIterGVN& igvn) const { |
| 802 | assert(ac->is_clonebasic(), "no other kind of arraycopy here" ); |
| 803 | |
| 804 | if (!clone_needs_postbarrier(ac, igvn)) { |
| 805 | BarrierSetC2::clone_barrier_at_expansion(ac, call, igvn); |
| 806 | return; |
| 807 | } |
| 808 | |
| 809 | const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM; |
| 810 | Node* c = new ProjNode(call,TypeFunc::Control); |
| 811 | c = igvn.transform(c); |
| 812 | Node* m = new ProjNode(call, TypeFunc::Memory); |
| 813 | m = igvn.transform(m); |
| 814 | |
| 815 | Node* dest = ac->in(ArrayCopyNode::Dest); |
| 816 | assert(dest->is_AddP(), "bad input" ); |
| 817 | Node* barrier_call = new CallLeafNode(ShenandoahBarrierSetC2::shenandoah_clone_barrier_Type(), |
| 818 | CAST_FROM_FN_PTR(address, ShenandoahRuntime::shenandoah_clone_barrier), |
| 819 | "shenandoah_clone_barrier" , raw_adr_type); |
| 820 | barrier_call->init_req(TypeFunc::Control, c); |
| 821 | barrier_call->init_req(TypeFunc::I_O , igvn.C->top()); |
| 822 | barrier_call->init_req(TypeFunc::Memory , m); |
| 823 | barrier_call->init_req(TypeFunc::ReturnAdr, igvn.C->top()); |
| 824 | barrier_call->init_req(TypeFunc::FramePtr, igvn.C->top()); |
| 825 | barrier_call->init_req(TypeFunc::Parms+0, dest->in(AddPNode::Base)); |
| 826 | |
| 827 | barrier_call = igvn.transform(barrier_call); |
| 828 | c = new ProjNode(barrier_call,TypeFunc::Control); |
| 829 | c = igvn.transform(c); |
| 830 | m = new ProjNode(barrier_call, TypeFunc::Memory); |
| 831 | m = igvn.transform(m); |
| 832 | |
| 833 | Node* out_c = ac->proj_out(TypeFunc::Control); |
| 834 | Node* out_m = ac->proj_out(TypeFunc::Memory); |
| 835 | igvn.replace_node(out_c, c); |
| 836 | igvn.replace_node(out_m, m); |
| 837 | } |
| 838 | |
| 839 | |
| 840 | // Support for macro expanded GC barriers |
| 841 | void ShenandoahBarrierSetC2::register_potential_barrier_node(Node* node) const { |
| 842 | if (node->Opcode() == Op_ShenandoahEnqueueBarrier) { |
| 843 | state()->add_enqueue_barrier((ShenandoahEnqueueBarrierNode*) node); |
| 844 | } |
| 845 | if (node->Opcode() == Op_ShenandoahLoadReferenceBarrier) { |
| 846 | state()->add_load_reference_barrier((ShenandoahLoadReferenceBarrierNode*) node); |
| 847 | } |
| 848 | } |
| 849 | |
| 850 | void ShenandoahBarrierSetC2::unregister_potential_barrier_node(Node* node) const { |
| 851 | if (node->Opcode() == Op_ShenandoahEnqueueBarrier) { |
| 852 | state()->remove_enqueue_barrier((ShenandoahEnqueueBarrierNode*) node); |
| 853 | } |
| 854 | if (node->Opcode() == Op_ShenandoahLoadReferenceBarrier) { |
| 855 | state()->remove_load_reference_barrier((ShenandoahLoadReferenceBarrierNode*) node); |
| 856 | } |
| 857 | } |
| 858 | |
| 859 | void ShenandoahBarrierSetC2::eliminate_gc_barrier(PhaseMacroExpand* macro, Node* n) const { |
| 860 | if (is_shenandoah_wb_pre_call(n)) { |
| 861 | shenandoah_eliminate_wb_pre(n, ¯o->igvn()); |
| 862 | } |
| 863 | } |
| 864 | |
| 865 | void ShenandoahBarrierSetC2::shenandoah_eliminate_wb_pre(Node* call, PhaseIterGVN* igvn) const { |
| 866 | assert(UseShenandoahGC && is_shenandoah_wb_pre_call(call), "" ); |
| 867 | Node* c = call->as_Call()->proj_out(TypeFunc::Control); |
| 868 | c = c->unique_ctrl_out(); |
| 869 | assert(c->is_Region() && c->req() == 3, "where's the pre barrier control flow?" ); |
| 870 | c = c->unique_ctrl_out(); |
| 871 | assert(c->is_Region() && c->req() == 3, "where's the pre barrier control flow?" ); |
| 872 | Node* iff = c->in(1)->is_IfProj() ? c->in(1)->in(0) : c->in(2)->in(0); |
| 873 | assert(iff->is_If(), "expect test" ); |
| 874 | if (!is_shenandoah_marking_if(igvn, iff)) { |
| 875 | c = c->unique_ctrl_out(); |
| 876 | assert(c->is_Region() && c->req() == 3, "where's the pre barrier control flow?" ); |
| 877 | iff = c->in(1)->is_IfProj() ? c->in(1)->in(0) : c->in(2)->in(0); |
| 878 | assert(is_shenandoah_marking_if(igvn, iff), "expect marking test" ); |
| 879 | } |
| 880 | Node* cmpx = iff->in(1)->in(1); |
| 881 | igvn->replace_node(cmpx, igvn->makecon(TypeInt::CC_EQ)); |
| 882 | igvn->rehash_node_delayed(call); |
| 883 | call->del_req(call->req()-1); |
| 884 | } |
| 885 | |
| 886 | void ShenandoahBarrierSetC2::enqueue_useful_gc_barrier(PhaseIterGVN* igvn, Node* node) const { |
| 887 | if (node->Opcode() == Op_AddP && ShenandoahBarrierSetC2::has_only_shenandoah_wb_pre_uses(node)) { |
| 888 | igvn->add_users_to_worklist(node); |
| 889 | } |
| 890 | } |
| 891 | |
| 892 | void ShenandoahBarrierSetC2::eliminate_useless_gc_barriers(Unique_Node_List &useful, Compile* C) const { |
| 893 | for (uint i = 0; i < useful.size(); i++) { |
| 894 | Node* n = useful.at(i); |
| 895 | if (n->Opcode() == Op_AddP && ShenandoahBarrierSetC2::has_only_shenandoah_wb_pre_uses(n)) { |
| 896 | for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { |
| 897 | C->record_for_igvn(n->fast_out(i)); |
| 898 | } |
| 899 | } |
| 900 | } |
| 901 | for (int i = state()->enqueue_barriers_count() - 1; i >= 0; i--) { |
| 902 | ShenandoahEnqueueBarrierNode* n = state()->enqueue_barrier(i); |
| 903 | if (!useful.member(n)) { |
| 904 | state()->remove_enqueue_barrier(n); |
| 905 | } |
| 906 | } |
| 907 | for (int i = state()->load_reference_barriers_count() - 1; i >= 0; i--) { |
| 908 | ShenandoahLoadReferenceBarrierNode* n = state()->load_reference_barrier(i); |
| 909 | if (!useful.member(n)) { |
| 910 | state()->remove_load_reference_barrier(n); |
| 911 | } |
| 912 | } |
| 913 | } |
| 914 | |
| 915 | void* ShenandoahBarrierSetC2::create_barrier_state(Arena* comp_arena) const { |
| 916 | return new(comp_arena) ShenandoahBarrierSetC2State(comp_arena); |
| 917 | } |
| 918 | |
| 919 | ShenandoahBarrierSetC2State* ShenandoahBarrierSetC2::state() const { |
| 920 | return reinterpret_cast<ShenandoahBarrierSetC2State*>(Compile::current()->barrier_set_state()); |
| 921 | } |
| 922 | |
| 923 | // If the BarrierSetC2 state has kept macro nodes in its compilation unit state to be |
| 924 | // expanded later, then now is the time to do so. |
| 925 | bool ShenandoahBarrierSetC2::expand_macro_nodes(PhaseMacroExpand* macro) const { return false; } |
| 926 | |
| 927 | #ifdef ASSERT |
| 928 | void ShenandoahBarrierSetC2::verify_gc_barriers(Compile* compile, CompilePhase phase) const { |
| 929 | if (ShenandoahVerifyOptoBarriers && phase == BarrierSetC2::BeforeMacroExpand) { |
| 930 | ShenandoahBarrierC2Support::verify(Compile::current()->root()); |
| 931 | } else if (phase == BarrierSetC2::BeforeCodeGen) { |
| 932 | // Verify G1 pre-barriers |
| 933 | const int marking_offset = in_bytes(ShenandoahThreadLocalData::satb_mark_queue_active_offset()); |
| 934 | |
| 935 | ResourceArea *area = Thread::current()->resource_area(); |
| 936 | Unique_Node_List visited(area); |
| 937 | Node_List worklist(area); |
| 938 | // We're going to walk control flow backwards starting from the Root |
| 939 | worklist.push(compile->root()); |
| 940 | while (worklist.size() > 0) { |
| 941 | Node *x = worklist.pop(); |
| 942 | if (x == NULL || x == compile->top()) continue; |
| 943 | if (visited.member(x)) { |
| 944 | continue; |
| 945 | } else { |
| 946 | visited.push(x); |
| 947 | } |
| 948 | |
| 949 | if (x->is_Region()) { |
| 950 | for (uint i = 1; i < x->req(); i++) { |
| 951 | worklist.push(x->in(i)); |
| 952 | } |
| 953 | } else { |
| 954 | worklist.push(x->in(0)); |
| 955 | // We are looking for the pattern: |
| 956 | // /->ThreadLocal |
| 957 | // If->Bool->CmpI->LoadB->AddP->ConL(marking_offset) |
| 958 | // \->ConI(0) |
| 959 | // We want to verify that the If and the LoadB have the same control |
| 960 | // See GraphKit::g1_write_barrier_pre() |
| 961 | if (x->is_If()) { |
| 962 | IfNode *iff = x->as_If(); |
| 963 | if (iff->in(1)->is_Bool() && iff->in(1)->in(1)->is_Cmp()) { |
| 964 | CmpNode *cmp = iff->in(1)->in(1)->as_Cmp(); |
| 965 | if (cmp->Opcode() == Op_CmpI && cmp->in(2)->is_Con() && cmp->in(2)->bottom_type()->is_int()->get_con() == 0 |
| 966 | && cmp->in(1)->is_Load()) { |
| 967 | LoadNode *load = cmp->in(1)->as_Load(); |
| 968 | if (load->Opcode() == Op_LoadB && load->in(2)->is_AddP() && load->in(2)->in(2)->Opcode() == Op_ThreadLocal |
| 969 | && load->in(2)->in(3)->is_Con() |
| 970 | && load->in(2)->in(3)->bottom_type()->is_intptr_t()->get_con() == marking_offset) { |
| 971 | |
| 972 | Node *if_ctrl = iff->in(0); |
| 973 | Node *load_ctrl = load->in(0); |
| 974 | |
| 975 | if (if_ctrl != load_ctrl) { |
| 976 | // Skip possible CProj->NeverBranch in infinite loops |
| 977 | if ((if_ctrl->is_Proj() && if_ctrl->Opcode() == Op_CProj) |
| 978 | && (if_ctrl->in(0)->is_MultiBranch() && if_ctrl->in(0)->Opcode() == Op_NeverBranch)) { |
| 979 | if_ctrl = if_ctrl->in(0)->in(0); |
| 980 | } |
| 981 | } |
| 982 | assert(load_ctrl != NULL && if_ctrl == load_ctrl, "controls must match" ); |
| 983 | } |
| 984 | } |
| 985 | } |
| 986 | } |
| 987 | } |
| 988 | } |
| 989 | } |
| 990 | } |
| 991 | #endif |
| 992 | |
| 993 | Node* ShenandoahBarrierSetC2::ideal_node(PhaseGVN* phase, Node* n, bool can_reshape) const { |
| 994 | if (is_shenandoah_wb_pre_call(n)) { |
| 995 | uint cnt = ShenandoahBarrierSetC2::write_ref_field_pre_entry_Type()->domain()->cnt(); |
| 996 | if (n->req() > cnt) { |
| 997 | Node* addp = n->in(cnt); |
| 998 | if (has_only_shenandoah_wb_pre_uses(addp)) { |
| 999 | n->del_req(cnt); |
| 1000 | if (can_reshape) { |
| 1001 | phase->is_IterGVN()->_worklist.push(addp); |
| 1002 | } |
| 1003 | return n; |
| 1004 | } |
| 1005 | } |
| 1006 | } |
| 1007 | if (n->Opcode() == Op_CmpP) { |
| 1008 | Node* in1 = n->in(1); |
| 1009 | Node* in2 = n->in(2); |
| 1010 | if (in1->bottom_type() == TypePtr::NULL_PTR) { |
| 1011 | in2 = step_over_gc_barrier(in2); |
| 1012 | } |
| 1013 | if (in2->bottom_type() == TypePtr::NULL_PTR) { |
| 1014 | in1 = step_over_gc_barrier(in1); |
| 1015 | } |
| 1016 | PhaseIterGVN* igvn = phase->is_IterGVN(); |
| 1017 | if (in1 != n->in(1)) { |
| 1018 | if (igvn != NULL) { |
| 1019 | n->set_req_X(1, in1, igvn); |
| 1020 | } else { |
| 1021 | n->set_req(1, in1); |
| 1022 | } |
| 1023 | assert(in2 == n->in(2), "only one change" ); |
| 1024 | return n; |
| 1025 | } |
| 1026 | if (in2 != n->in(2)) { |
| 1027 | if (igvn != NULL) { |
| 1028 | n->set_req_X(2, in2, igvn); |
| 1029 | } else { |
| 1030 | n->set_req(2, in2); |
| 1031 | } |
| 1032 | return n; |
| 1033 | } |
| 1034 | } else if (can_reshape && |
| 1035 | n->Opcode() == Op_If && |
| 1036 | ShenandoahBarrierC2Support::is_heap_stable_test(n) && |
| 1037 | n->in(0) != NULL) { |
| 1038 | Node* dom = n->in(0); |
| 1039 | Node* prev_dom = n; |
| 1040 | int op = n->Opcode(); |
| 1041 | int dist = 16; |
| 1042 | // Search up the dominator tree for another heap stable test |
| 1043 | while (dom->Opcode() != op || // Not same opcode? |
| 1044 | !ShenandoahBarrierC2Support::is_heap_stable_test(dom) || // Not same input 1? |
| 1045 | prev_dom->in(0) != dom) { // One path of test does not dominate? |
| 1046 | if (dist < 0) return NULL; |
| 1047 | |
| 1048 | dist--; |
| 1049 | prev_dom = dom; |
| 1050 | dom = IfNode::up_one_dom(dom); |
| 1051 | if (!dom) return NULL; |
| 1052 | } |
| 1053 | |
| 1054 | // Check that we did not follow a loop back to ourselves |
| 1055 | if (n == dom) { |
| 1056 | return NULL; |
| 1057 | } |
| 1058 | |
| 1059 | return n->as_If()->dominated_by(prev_dom, phase->is_IterGVN()); |
| 1060 | } |
| 1061 | |
| 1062 | return NULL; |
| 1063 | } |
| 1064 | |
| 1065 | bool ShenandoahBarrierSetC2::has_only_shenandoah_wb_pre_uses(Node* n) { |
| 1066 | for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { |
| 1067 | Node* u = n->fast_out(i); |
| 1068 | if (!is_shenandoah_wb_pre_call(u)) { |
| 1069 | return false; |
| 1070 | } |
| 1071 | } |
| 1072 | return n->outcnt() > 0; |
| 1073 | } |
| 1074 | |
| 1075 | bool ShenandoahBarrierSetC2::final_graph_reshaping(Compile* compile, Node* n, uint opcode) const { |
| 1076 | switch (opcode) { |
| 1077 | case Op_CallLeaf: |
| 1078 | case Op_CallLeafNoFP: { |
| 1079 | assert (n->is_Call(), "" ); |
| 1080 | CallNode *call = n->as_Call(); |
| 1081 | if (ShenandoahBarrierSetC2::is_shenandoah_wb_pre_call(call)) { |
| 1082 | uint cnt = ShenandoahBarrierSetC2::write_ref_field_pre_entry_Type()->domain()->cnt(); |
| 1083 | if (call->req() > cnt) { |
| 1084 | assert(call->req() == cnt + 1, "only one extra input" ); |
| 1085 | Node *addp = call->in(cnt); |
| 1086 | assert(!ShenandoahBarrierSetC2::has_only_shenandoah_wb_pre_uses(addp), "useless address computation?" ); |
| 1087 | call->del_req(cnt); |
| 1088 | } |
| 1089 | } |
| 1090 | return false; |
| 1091 | } |
| 1092 | case Op_ShenandoahCompareAndSwapP: |
| 1093 | case Op_ShenandoahCompareAndSwapN: |
| 1094 | case Op_ShenandoahWeakCompareAndSwapN: |
| 1095 | case Op_ShenandoahWeakCompareAndSwapP: |
| 1096 | case Op_ShenandoahCompareAndExchangeP: |
| 1097 | case Op_ShenandoahCompareAndExchangeN: |
| 1098 | #ifdef ASSERT |
| 1099 | if( VerifyOptoOopOffsets ) { |
| 1100 | MemNode* mem = n->as_Mem(); |
| 1101 | // Check to see if address types have grounded out somehow. |
| 1102 | const TypeInstPtr *tp = mem->in(MemNode::Address)->bottom_type()->isa_instptr(); |
| 1103 | ciInstanceKlass *k = tp->klass()->as_instance_klass(); |
| 1104 | bool oop_offset_is_sane = k->contains_field_offset(tp->offset()); |
| 1105 | assert( !tp || oop_offset_is_sane, "" ); |
| 1106 | } |
| 1107 | #endif |
| 1108 | return true; |
| 1109 | case Op_ShenandoahLoadReferenceBarrier: |
| 1110 | assert(false, "should have been expanded already" ); |
| 1111 | return true; |
| 1112 | default: |
| 1113 | return false; |
| 1114 | } |
| 1115 | } |
| 1116 | |
| 1117 | bool ShenandoahBarrierSetC2::escape_add_to_con_graph(ConnectionGraph* conn_graph, PhaseGVN* gvn, Unique_Node_List* delayed_worklist, Node* n, uint opcode) const { |
| 1118 | switch (opcode) { |
| 1119 | case Op_ShenandoahCompareAndExchangeP: |
| 1120 | case Op_ShenandoahCompareAndExchangeN: |
| 1121 | conn_graph->add_objload_to_connection_graph(n, delayed_worklist); |
| 1122 | // fallthrough |
| 1123 | case Op_ShenandoahWeakCompareAndSwapP: |
| 1124 | case Op_ShenandoahWeakCompareAndSwapN: |
| 1125 | case Op_ShenandoahCompareAndSwapP: |
| 1126 | case Op_ShenandoahCompareAndSwapN: |
| 1127 | conn_graph->add_to_congraph_unsafe_access(n, opcode, delayed_worklist); |
| 1128 | return true; |
| 1129 | case Op_StoreP: { |
| 1130 | Node* adr = n->in(MemNode::Address); |
| 1131 | const Type* adr_type = gvn->type(adr); |
| 1132 | // Pointer stores in G1 barriers looks like unsafe access. |
| 1133 | // Ignore such stores to be able scalar replace non-escaping |
| 1134 | // allocations. |
| 1135 | if (adr_type->isa_rawptr() && adr->is_AddP()) { |
| 1136 | Node* base = conn_graph->get_addp_base(adr); |
| 1137 | if (base->Opcode() == Op_LoadP && |
| 1138 | base->in(MemNode::Address)->is_AddP()) { |
| 1139 | adr = base->in(MemNode::Address); |
| 1140 | Node* tls = conn_graph->get_addp_base(adr); |
| 1141 | if (tls->Opcode() == Op_ThreadLocal) { |
| 1142 | int offs = (int) gvn->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot); |
| 1143 | const int buf_offset = in_bytes(ShenandoahThreadLocalData::satb_mark_queue_buffer_offset()); |
| 1144 | if (offs == buf_offset) { |
| 1145 | return true; // Pre barrier previous oop value store. |
| 1146 | } |
| 1147 | } |
| 1148 | } |
| 1149 | } |
| 1150 | return false; |
| 1151 | } |
| 1152 | case Op_ShenandoahEnqueueBarrier: |
| 1153 | conn_graph->add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(1), delayed_worklist); |
| 1154 | break; |
| 1155 | case Op_ShenandoahLoadReferenceBarrier: |
| 1156 | conn_graph->add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(ShenandoahLoadReferenceBarrierNode::ValueIn), delayed_worklist); |
| 1157 | return true; |
| 1158 | default: |
| 1159 | // Nothing |
| 1160 | break; |
| 1161 | } |
| 1162 | return false; |
| 1163 | } |
| 1164 | |
| 1165 | bool ShenandoahBarrierSetC2::escape_add_final_edges(ConnectionGraph* conn_graph, PhaseGVN* gvn, Node* n, uint opcode) const { |
| 1166 | switch (opcode) { |
| 1167 | case Op_ShenandoahCompareAndExchangeP: |
| 1168 | case Op_ShenandoahCompareAndExchangeN: { |
| 1169 | Node *adr = n->in(MemNode::Address); |
| 1170 | conn_graph->add_local_var_and_edge(n, PointsToNode::NoEscape, adr, NULL); |
| 1171 | // fallthrough |
| 1172 | } |
| 1173 | case Op_ShenandoahCompareAndSwapP: |
| 1174 | case Op_ShenandoahCompareAndSwapN: |
| 1175 | case Op_ShenandoahWeakCompareAndSwapP: |
| 1176 | case Op_ShenandoahWeakCompareAndSwapN: |
| 1177 | return conn_graph->add_final_edges_unsafe_access(n, opcode); |
| 1178 | case Op_ShenandoahEnqueueBarrier: |
| 1179 | conn_graph->add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(1), NULL); |
| 1180 | return true; |
| 1181 | case Op_ShenandoahLoadReferenceBarrier: |
| 1182 | conn_graph->add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(ShenandoahLoadReferenceBarrierNode::ValueIn), NULL); |
| 1183 | return true; |
| 1184 | default: |
| 1185 | // Nothing |
| 1186 | break; |
| 1187 | } |
| 1188 | return false; |
| 1189 | } |
| 1190 | |
| 1191 | bool ShenandoahBarrierSetC2::escape_has_out_with_unsafe_object(Node* n) const { |
| 1192 | return n->has_out_with(Op_ShenandoahCompareAndExchangeP) || n->has_out_with(Op_ShenandoahCompareAndExchangeN) || |
| 1193 | n->has_out_with(Op_ShenandoahCompareAndSwapP, Op_ShenandoahCompareAndSwapN, Op_ShenandoahWeakCompareAndSwapP, Op_ShenandoahWeakCompareAndSwapN); |
| 1194 | |
| 1195 | } |
| 1196 | |
| 1197 | bool ShenandoahBarrierSetC2::escape_is_barrier_node(Node* n) const { |
| 1198 | return n->Opcode() == Op_ShenandoahLoadReferenceBarrier; |
| 1199 | } |
| 1200 | |
| 1201 | bool ShenandoahBarrierSetC2::matcher_find_shared_post_visit(Matcher* matcher, Node* n, uint opcode) const { |
| 1202 | switch (opcode) { |
| 1203 | case Op_ShenandoahCompareAndExchangeP: |
| 1204 | case Op_ShenandoahCompareAndExchangeN: |
| 1205 | case Op_ShenandoahWeakCompareAndSwapP: |
| 1206 | case Op_ShenandoahWeakCompareAndSwapN: |
| 1207 | case Op_ShenandoahCompareAndSwapP: |
| 1208 | case Op_ShenandoahCompareAndSwapN: { // Convert trinary to binary-tree |
| 1209 | Node* newval = n->in(MemNode::ValueIn); |
| 1210 | Node* oldval = n->in(LoadStoreConditionalNode::ExpectedIn); |
| 1211 | Node* pair = new BinaryNode(oldval, newval); |
| 1212 | n->set_req(MemNode::ValueIn,pair); |
| 1213 | n->del_req(LoadStoreConditionalNode::ExpectedIn); |
| 1214 | return true; |
| 1215 | } |
| 1216 | default: |
| 1217 | break; |
| 1218 | } |
| 1219 | return false; |
| 1220 | } |
| 1221 | |
| 1222 | bool ShenandoahBarrierSetC2::matcher_is_store_load_barrier(Node* x, uint xop) const { |
| 1223 | return xop == Op_ShenandoahCompareAndExchangeP || |
| 1224 | xop == Op_ShenandoahCompareAndExchangeN || |
| 1225 | xop == Op_ShenandoahWeakCompareAndSwapP || |
| 1226 | xop == Op_ShenandoahWeakCompareAndSwapN || |
| 1227 | xop == Op_ShenandoahCompareAndSwapN || |
| 1228 | xop == Op_ShenandoahCompareAndSwapP; |
| 1229 | } |
| 1230 | |