1/*
2 * Copyright (c) 2000, 2019, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "compiler/compileLog.hpp"
27#include "compiler/oopMap.hpp"
28#include "memory/allocation.inline.hpp"
29#include "memory/resourceArea.hpp"
30#include "opto/addnode.hpp"
31#include "opto/block.hpp"
32#include "opto/callnode.hpp"
33#include "opto/cfgnode.hpp"
34#include "opto/chaitin.hpp"
35#include "opto/coalesce.hpp"
36#include "opto/connode.hpp"
37#include "opto/idealGraphPrinter.hpp"
38#include "opto/indexSet.hpp"
39#include "opto/machnode.hpp"
40#include "opto/memnode.hpp"
41#include "opto/movenode.hpp"
42#include "opto/opcodes.hpp"
43#include "opto/rootnode.hpp"
44#include "utilities/align.hpp"
45
46#ifndef PRODUCT
47void LRG::dump() const {
48 ttyLocker ttyl;
49 tty->print("%d ",num_regs());
50 _mask.dump();
51 if( _msize_valid ) {
52 if( mask_size() == compute_mask_size() ) tty->print(", #%d ",_mask_size);
53 else tty->print(", #!!!_%d_vs_%d ",_mask_size,_mask.Size());
54 } else {
55 tty->print(", #?(%d) ",_mask.Size());
56 }
57
58 tty->print("EffDeg: ");
59 if( _degree_valid ) tty->print( "%d ", _eff_degree );
60 else tty->print("? ");
61
62 if( is_multidef() ) {
63 tty->print("MultiDef ");
64 if (_defs != NULL) {
65 tty->print("(");
66 for (int i = 0; i < _defs->length(); i++) {
67 tty->print("N%d ", _defs->at(i)->_idx);
68 }
69 tty->print(") ");
70 }
71 }
72 else if( _def == 0 ) tty->print("Dead ");
73 else tty->print("Def: N%d ",_def->_idx);
74
75 tty->print("Cost:%4.2g Area:%4.2g Score:%4.2g ",_cost,_area, score());
76 // Flags
77 if( _is_oop ) tty->print("Oop ");
78 if( _is_float ) tty->print("Float ");
79 if( _is_vector ) tty->print("Vector ");
80 if( _was_spilled1 ) tty->print("Spilled ");
81 if( _was_spilled2 ) tty->print("Spilled2 ");
82 if( _direct_conflict ) tty->print("Direct_conflict ");
83 if( _fat_proj ) tty->print("Fat ");
84 if( _was_lo ) tty->print("Lo ");
85 if( _has_copy ) tty->print("Copy ");
86 if( _at_risk ) tty->print("Risk ");
87
88 if( _must_spill ) tty->print("Must_spill ");
89 if( _is_bound ) tty->print("Bound ");
90 if( _msize_valid ) {
91 if( _degree_valid && lo_degree() ) tty->print("Trivial ");
92 }
93
94 tty->cr();
95}
96#endif
97
98// Compute score from cost and area. Low score is best to spill.
99static double raw_score( double cost, double area ) {
100 return cost - (area*RegisterCostAreaRatio) * 1.52588e-5;
101}
102
103double LRG::score() const {
104 // Scale _area by RegisterCostAreaRatio/64K then subtract from cost.
105 // Bigger area lowers score, encourages spilling this live range.
106 // Bigger cost raise score, prevents spilling this live range.
107 // (Note: 1/65536 is the magic constant below; I dont trust the C optimizer
108 // to turn a divide by a constant into a multiply by the reciprical).
109 double score = raw_score( _cost, _area);
110
111 // Account for area. Basically, LRGs covering large areas are better
112 // to spill because more other LRGs get freed up.
113 if( _area == 0.0 ) // No area? Then no progress to spill
114 return 1e35;
115
116 if( _was_spilled2 ) // If spilled once before, we are unlikely
117 return score + 1e30; // to make progress again.
118
119 if( _cost >= _area*3.0 ) // Tiny area relative to cost
120 return score + 1e17; // Probably no progress to spill
121
122 if( (_cost+_cost) >= _area*3.0 ) // Small area relative to cost
123 return score + 1e10; // Likely no progress to spill
124
125 return score;
126}
127
128#define NUMBUCKS 3
129
130// Straight out of Tarjan's union-find algorithm
131uint LiveRangeMap::find_compress(uint lrg) {
132 uint cur = lrg;
133 uint next = _uf_map.at(cur);
134 while (next != cur) { // Scan chain of equivalences
135 assert( next < cur, "always union smaller");
136 cur = next; // until find a fixed-point
137 next = _uf_map.at(cur);
138 }
139
140 // Core of union-find algorithm: update chain of
141 // equivalences to be equal to the root.
142 while (lrg != next) {
143 uint tmp = _uf_map.at(lrg);
144 _uf_map.at_put(lrg, next);
145 lrg = tmp;
146 }
147 return lrg;
148}
149
150// Reset the Union-Find map to identity
151void LiveRangeMap::reset_uf_map(uint max_lrg_id) {
152 _max_lrg_id= max_lrg_id;
153 // Force the Union-Find mapping to be at least this large
154 _uf_map.at_put_grow(_max_lrg_id, 0);
155 // Initialize it to be the ID mapping.
156 for (uint i = 0; i < _max_lrg_id; ++i) {
157 _uf_map.at_put(i, i);
158 }
159}
160
161// Make all Nodes map directly to their final live range; no need for
162// the Union-Find mapping after this call.
163void LiveRangeMap::compress_uf_map_for_nodes() {
164 // For all Nodes, compress mapping
165 uint unique = _names.length();
166 for (uint i = 0; i < unique; ++i) {
167 uint lrg = _names.at(i);
168 uint compressed_lrg = find(lrg);
169 if (lrg != compressed_lrg) {
170 _names.at_put(i, compressed_lrg);
171 }
172 }
173}
174
175// Like Find above, but no path compress, so bad asymptotic behavior
176uint LiveRangeMap::find_const(uint lrg) const {
177 if (!lrg) {
178 return lrg; // Ignore the zero LRG
179 }
180
181 // Off the end? This happens during debugging dumps when you got
182 // brand new live ranges but have not told the allocator yet.
183 if (lrg >= _max_lrg_id) {
184 return lrg;
185 }
186
187 uint next = _uf_map.at(lrg);
188 while (next != lrg) { // Scan chain of equivalences
189 assert(next < lrg, "always union smaller");
190 lrg = next; // until find a fixed-point
191 next = _uf_map.at(lrg);
192 }
193 return next;
194}
195
196PhaseChaitin::PhaseChaitin(uint unique, PhaseCFG &cfg, Matcher &matcher, bool scheduling_info_generated)
197 : PhaseRegAlloc(unique, cfg, matcher,
198#ifndef PRODUCT
199 print_chaitin_statistics
200#else
201 NULL
202#endif
203 )
204 , _live(0)
205 , _spilled_once(Thread::current()->resource_area())
206 , _spilled_twice(Thread::current()->resource_area())
207 , _lo_degree(0), _lo_stk_degree(0), _hi_degree(0), _simplified(0)
208 , _oldphi(unique)
209#ifndef PRODUCT
210 , _trace_spilling(C->directive()->TraceSpillingOption)
211#endif
212 , _lrg_map(Thread::current()->resource_area(), unique)
213 , _scheduling_info_generated(scheduling_info_generated)
214 , _sched_int_pressure(0, INTPRESSURE)
215 , _sched_float_pressure(0, FLOATPRESSURE)
216 , _scratch_int_pressure(0, INTPRESSURE)
217 , _scratch_float_pressure(0, FLOATPRESSURE)
218{
219 Compile::TracePhase tp("ctorChaitin", &timers[_t_ctorChaitin]);
220
221 _high_frequency_lrg = MIN2(double(OPTO_LRG_HIGH_FREQ), _cfg.get_outer_loop_frequency());
222
223 // Build a list of basic blocks, sorted by frequency
224 _blks = NEW_RESOURCE_ARRAY(Block *, _cfg.number_of_blocks());
225 // Experiment with sorting strategies to speed compilation
226 double cutoff = BLOCK_FREQUENCY(1.0); // Cutoff for high frequency bucket
227 Block **buckets[NUMBUCKS]; // Array of buckets
228 uint buckcnt[NUMBUCKS]; // Array of bucket counters
229 double buckval[NUMBUCKS]; // Array of bucket value cutoffs
230 for (uint i = 0; i < NUMBUCKS; i++) {
231 buckets[i] = NEW_RESOURCE_ARRAY(Block *, _cfg.number_of_blocks());
232 buckcnt[i] = 0;
233 // Bump by three orders of magnitude each time
234 cutoff *= 0.001;
235 buckval[i] = cutoff;
236 for (uint j = 0; j < _cfg.number_of_blocks(); j++) {
237 buckets[i][j] = NULL;
238 }
239 }
240 // Sort blocks into buckets
241 for (uint i = 0; i < _cfg.number_of_blocks(); i++) {
242 for (uint j = 0; j < NUMBUCKS; j++) {
243 if ((j == NUMBUCKS - 1) || (_cfg.get_block(i)->_freq > buckval[j])) {
244 // Assign block to end of list for appropriate bucket
245 buckets[j][buckcnt[j]++] = _cfg.get_block(i);
246 break; // kick out of inner loop
247 }
248 }
249 }
250 // Dump buckets into final block array
251 uint blkcnt = 0;
252 for (uint i = 0; i < NUMBUCKS; i++) {
253 for (uint j = 0; j < buckcnt[i]; j++) {
254 _blks[blkcnt++] = buckets[i][j];
255 }
256 }
257
258 assert(blkcnt == _cfg.number_of_blocks(), "Block array not totally filled");
259}
260
261// union 2 sets together.
262void PhaseChaitin::Union( const Node *src_n, const Node *dst_n ) {
263 uint src = _lrg_map.find(src_n);
264 uint dst = _lrg_map.find(dst_n);
265 assert(src, "");
266 assert(dst, "");
267 assert(src < _lrg_map.max_lrg_id(), "oob");
268 assert(dst < _lrg_map.max_lrg_id(), "oob");
269 assert(src < dst, "always union smaller");
270 _lrg_map.uf_map(dst, src);
271}
272
273void PhaseChaitin::new_lrg(const Node *x, uint lrg) {
274 // Make the Node->LRG mapping
275 _lrg_map.extend(x->_idx,lrg);
276 // Make the Union-Find mapping an identity function
277 _lrg_map.uf_extend(lrg, lrg);
278}
279
280
281int PhaseChaitin::clone_projs(Block* b, uint idx, Node* orig, Node* copy, uint& max_lrg_id) {
282 assert(b->find_node(copy) == (idx - 1), "incorrect insert index for copy kill projections");
283 DEBUG_ONLY( Block* borig = _cfg.get_block_for_node(orig); )
284 int found_projs = 0;
285 uint cnt = orig->outcnt();
286 for (uint i = 0; i < cnt; i++) {
287 Node* proj = orig->raw_out(i);
288 if (proj->is_MachProj()) {
289 assert(proj->outcnt() == 0, "only kill projections are expected here");
290 assert(_cfg.get_block_for_node(proj) == borig, "incorrect block for kill projections");
291 found_projs++;
292 // Copy kill projections after the cloned node
293 Node* kills = proj->clone();
294 kills->set_req(0, copy);
295 b->insert_node(kills, idx++);
296 _cfg.map_node_to_block(kills, b);
297 new_lrg(kills, max_lrg_id++);
298 }
299 }
300 return found_projs;
301}
302
303// Renumber the live ranges to compact them. Makes the IFG smaller.
304void PhaseChaitin::compact() {
305 Compile::TracePhase tp("chaitinCompact", &timers[_t_chaitinCompact]);
306
307 // Current the _uf_map contains a series of short chains which are headed
308 // by a self-cycle. All the chains run from big numbers to little numbers.
309 // The Find() call chases the chains & shortens them for the next Find call.
310 // We are going to change this structure slightly. Numbers above a moving
311 // wave 'i' are unchanged. Numbers below 'j' point directly to their
312 // compacted live range with no further chaining. There are no chains or
313 // cycles below 'i', so the Find call no longer works.
314 uint j=1;
315 uint i;
316 for (i = 1; i < _lrg_map.max_lrg_id(); i++) {
317 uint lr = _lrg_map.uf_live_range_id(i);
318 // Ignore unallocated live ranges
319 if (!lr) {
320 continue;
321 }
322 assert(lr <= i, "");
323 _lrg_map.uf_map(i, ( lr == i ) ? j++ : _lrg_map.uf_live_range_id(lr));
324 }
325 // Now change the Node->LR mapping to reflect the compacted names
326 uint unique = _lrg_map.size();
327 for (i = 0; i < unique; i++) {
328 uint lrg_id = _lrg_map.live_range_id(i);
329 _lrg_map.map(i, _lrg_map.uf_live_range_id(lrg_id));
330 }
331
332 // Reset the Union-Find mapping
333 _lrg_map.reset_uf_map(j);
334}
335
336void PhaseChaitin::Register_Allocate() {
337
338 // Above the OLD FP (and in registers) are the incoming arguments. Stack
339 // slots in this area are called "arg_slots". Above the NEW FP (and in
340 // registers) is the outgoing argument area; above that is the spill/temp
341 // area. These are all "frame_slots". Arg_slots start at the zero
342 // stack_slots and count up to the known arg_size. Frame_slots start at
343 // the stack_slot #arg_size and go up. After allocation I map stack
344 // slots to actual offsets. Stack-slots in the arg_slot area are biased
345 // by the frame_size; stack-slots in the frame_slot area are biased by 0.
346
347 _trip_cnt = 0;
348 _alternate = 0;
349 _matcher._allocation_started = true;
350
351 ResourceArea split_arena(mtCompiler); // Arena for Split local resources
352 ResourceArea live_arena(mtCompiler); // Arena for liveness & IFG info
353 ResourceMark rm(&live_arena);
354
355 // Need live-ness for the IFG; need the IFG for coalescing. If the
356 // liveness is JUST for coalescing, then I can get some mileage by renaming
357 // all copy-related live ranges low and then using the max copy-related
358 // live range as a cut-off for LIVE and the IFG. In other words, I can
359 // build a subset of LIVE and IFG just for copies.
360 PhaseLive live(_cfg, _lrg_map.names(), &live_arena, false);
361
362 // Need IFG for coalescing and coloring
363 PhaseIFG ifg(&live_arena);
364 _ifg = &ifg;
365
366 // Come out of SSA world to the Named world. Assign (virtual) registers to
367 // Nodes. Use the same register for all inputs and the output of PhiNodes
368 // - effectively ending SSA form. This requires either coalescing live
369 // ranges or inserting copies. For the moment, we insert "virtual copies"
370 // - we pretend there is a copy prior to each Phi in predecessor blocks.
371 // We will attempt to coalesce such "virtual copies" before we manifest
372 // them for real.
373 de_ssa();
374
375#ifdef ASSERT
376 // Veify the graph before RA.
377 verify(&live_arena);
378#endif
379
380 {
381 Compile::TracePhase tp("computeLive", &timers[_t_computeLive]);
382 _live = NULL; // Mark live as being not available
383 rm.reset_to_mark(); // Reclaim working storage
384 IndexSet::reset_memory(C, &live_arena);
385 ifg.init(_lrg_map.max_lrg_id()); // Empty IFG
386 gather_lrg_masks( false ); // Collect LRG masks
387 live.compute(_lrg_map.max_lrg_id()); // Compute liveness
388 _live = &live; // Mark LIVE as being available
389 }
390
391 // Base pointers are currently "used" by instructions which define new
392 // derived pointers. This makes base pointers live up to the where the
393 // derived pointer is made, but not beyond. Really, they need to be live
394 // across any GC point where the derived value is live. So this code looks
395 // at all the GC points, and "stretches" the live range of any base pointer
396 // to the GC point.
397 if (stretch_base_pointer_live_ranges(&live_arena)) {
398 Compile::TracePhase tp("computeLive (sbplr)", &timers[_t_computeLive]);
399 // Since some live range stretched, I need to recompute live
400 _live = NULL;
401 rm.reset_to_mark(); // Reclaim working storage
402 IndexSet::reset_memory(C, &live_arena);
403 ifg.init(_lrg_map.max_lrg_id());
404 gather_lrg_masks(false);
405 live.compute(_lrg_map.max_lrg_id());
406 _live = &live;
407 }
408 // Create the interference graph using virtual copies
409 build_ifg_virtual(); // Include stack slots this time
410
411 // The IFG is/was triangular. I am 'squaring it up' so Union can run
412 // faster. Union requires a 'for all' operation which is slow on the
413 // triangular adjacency matrix (quick reminder: the IFG is 'sparse' -
414 // meaning I can visit all the Nodes neighbors less than a Node in time
415 // O(# of neighbors), but I have to visit all the Nodes greater than a
416 // given Node and search them for an instance, i.e., time O(#MaxLRG)).
417 _ifg->SquareUp();
418
419 // Aggressive (but pessimistic) copy coalescing.
420 // This pass works on virtual copies. Any virtual copies which are not
421 // coalesced get manifested as actual copies
422 {
423 Compile::TracePhase tp("chaitinCoalesce1", &timers[_t_chaitinCoalesce1]);
424
425 PhaseAggressiveCoalesce coalesce(*this);
426 coalesce.coalesce_driver();
427 // Insert un-coalesced copies. Visit all Phis. Where inputs to a Phi do
428 // not match the Phi itself, insert a copy.
429 coalesce.insert_copies(_matcher);
430 if (C->failing()) {
431 return;
432 }
433 }
434
435 // After aggressive coalesce, attempt a first cut at coloring.
436 // To color, we need the IFG and for that we need LIVE.
437 {
438 Compile::TracePhase tp("computeLive", &timers[_t_computeLive]);
439 _live = NULL;
440 rm.reset_to_mark(); // Reclaim working storage
441 IndexSet::reset_memory(C, &live_arena);
442 ifg.init(_lrg_map.max_lrg_id());
443 gather_lrg_masks( true );
444 live.compute(_lrg_map.max_lrg_id());
445 _live = &live;
446 }
447
448 // Build physical interference graph
449 uint must_spill = 0;
450 must_spill = build_ifg_physical(&live_arena);
451 // If we have a guaranteed spill, might as well spill now
452 if (must_spill) {
453 if(!_lrg_map.max_lrg_id()) {
454 return;
455 }
456 // Bail out if unique gets too large (ie - unique > MaxNodeLimit)
457 C->check_node_count(10*must_spill, "out of nodes before split");
458 if (C->failing()) {
459 return;
460 }
461
462 uint new_max_lrg_id = Split(_lrg_map.max_lrg_id(), &split_arena); // Split spilling LRG everywhere
463 _lrg_map.set_max_lrg_id(new_max_lrg_id);
464 // Bail out if unique gets too large (ie - unique > MaxNodeLimit - 2*NodeLimitFudgeFactor)
465 // or we failed to split
466 C->check_node_count(2*NodeLimitFudgeFactor, "out of nodes after physical split");
467 if (C->failing()) {
468 return;
469 }
470
471 NOT_PRODUCT(C->verify_graph_edges();)
472
473 compact(); // Compact LRGs; return new lower max lrg
474
475 {
476 Compile::TracePhase tp("computeLive", &timers[_t_computeLive]);
477 _live = NULL;
478 rm.reset_to_mark(); // Reclaim working storage
479 IndexSet::reset_memory(C, &live_arena);
480 ifg.init(_lrg_map.max_lrg_id()); // Build a new interference graph
481 gather_lrg_masks( true ); // Collect intersect mask
482 live.compute(_lrg_map.max_lrg_id()); // Compute LIVE
483 _live = &live;
484 }
485 build_ifg_physical(&live_arena);
486 _ifg->SquareUp();
487 _ifg->Compute_Effective_Degree();
488 // Only do conservative coalescing if requested
489 if (OptoCoalesce) {
490 Compile::TracePhase tp("chaitinCoalesce2", &timers[_t_chaitinCoalesce2]);
491 // Conservative (and pessimistic) copy coalescing of those spills
492 PhaseConservativeCoalesce coalesce(*this);
493 // If max live ranges greater than cutoff, don't color the stack.
494 // This cutoff can be larger than below since it is only done once.
495 coalesce.coalesce_driver();
496 }
497 _lrg_map.compress_uf_map_for_nodes();
498
499#ifdef ASSERT
500 verify(&live_arena, true);
501#endif
502 } else {
503 ifg.SquareUp();
504 ifg.Compute_Effective_Degree();
505#ifdef ASSERT
506 set_was_low();
507#endif
508 }
509
510 // Prepare for Simplify & Select
511 cache_lrg_info(); // Count degree of LRGs
512
513 // Simplify the InterFerence Graph by removing LRGs of low degree.
514 // LRGs of low degree are trivially colorable.
515 Simplify();
516
517 // Select colors by re-inserting LRGs back into the IFG in reverse order.
518 // Return whether or not something spills.
519 uint spills = Select( );
520
521 // If we spill, split and recycle the entire thing
522 while( spills ) {
523 if( _trip_cnt++ > 24 ) {
524 DEBUG_ONLY( dump_for_spill_split_recycle(); )
525 if( _trip_cnt > 27 ) {
526 C->record_method_not_compilable("failed spill-split-recycle sanity check");
527 return;
528 }
529 }
530
531 if (!_lrg_map.max_lrg_id()) {
532 return;
533 }
534 uint new_max_lrg_id = Split(_lrg_map.max_lrg_id(), &split_arena); // Split spilling LRG everywhere
535 _lrg_map.set_max_lrg_id(new_max_lrg_id);
536 // Bail out if unique gets too large (ie - unique > MaxNodeLimit - 2*NodeLimitFudgeFactor)
537 C->check_node_count(2 * NodeLimitFudgeFactor, "out of nodes after split");
538 if (C->failing()) {
539 return;
540 }
541
542 compact(); // Compact LRGs; return new lower max lrg
543
544 // Nuke the live-ness and interference graph and LiveRanGe info
545 {
546 Compile::TracePhase tp("computeLive", &timers[_t_computeLive]);
547 _live = NULL;
548 rm.reset_to_mark(); // Reclaim working storage
549 IndexSet::reset_memory(C, &live_arena);
550 ifg.init(_lrg_map.max_lrg_id());
551
552 // Create LiveRanGe array.
553 // Intersect register masks for all USEs and DEFs
554 gather_lrg_masks(true);
555 live.compute(_lrg_map.max_lrg_id());
556 _live = &live;
557 }
558 must_spill = build_ifg_physical(&live_arena);
559 _ifg->SquareUp();
560 _ifg->Compute_Effective_Degree();
561
562 // Only do conservative coalescing if requested
563 if (OptoCoalesce) {
564 Compile::TracePhase tp("chaitinCoalesce3", &timers[_t_chaitinCoalesce3]);
565 // Conservative (and pessimistic) copy coalescing
566 PhaseConservativeCoalesce coalesce(*this);
567 // Check for few live ranges determines how aggressive coalesce is.
568 coalesce.coalesce_driver();
569 }
570 _lrg_map.compress_uf_map_for_nodes();
571#ifdef ASSERT
572 verify(&live_arena, true);
573#endif
574 cache_lrg_info(); // Count degree of LRGs
575
576 // Simplify the InterFerence Graph by removing LRGs of low degree.
577 // LRGs of low degree are trivially colorable.
578 Simplify();
579
580 // Select colors by re-inserting LRGs back into the IFG in reverse order.
581 // Return whether or not something spills.
582 spills = Select();
583 }
584
585 // Count number of Simplify-Select trips per coloring success.
586 _allocator_attempts += _trip_cnt + 1;
587 _allocator_successes += 1;
588
589 // Peephole remove copies
590 post_allocate_copy_removal();
591
592 // Merge multidefs if multiple defs representing the same value are used in a single block.
593 merge_multidefs();
594
595#ifdef ASSERT
596 // Veify the graph after RA.
597 verify(&live_arena);
598#endif
599
600 // max_reg is past the largest *register* used.
601 // Convert that to a frame_slot number.
602 if (_max_reg <= _matcher._new_SP) {
603 _framesize = C->out_preserve_stack_slots();
604 }
605 else {
606 _framesize = _max_reg -_matcher._new_SP;
607 }
608 assert((int)(_matcher._new_SP+_framesize) >= (int)_matcher._out_arg_limit, "framesize must be large enough");
609
610 // This frame must preserve the required fp alignment
611 _framesize = align_up(_framesize, Matcher::stack_alignment_in_slots());
612 assert(_framesize <= 1000000, "sanity check");
613#ifndef PRODUCT
614 _total_framesize += _framesize;
615 if ((int)_framesize > _max_framesize) {
616 _max_framesize = _framesize;
617 }
618#endif
619
620 // Convert CISC spills
621 fixup_spills();
622
623 // Log regalloc results
624 CompileLog* log = Compile::current()->log();
625 if (log != NULL) {
626 log->elem("regalloc attempts='%d' success='%d'", _trip_cnt, !C->failing());
627 }
628
629 if (C->failing()) {
630 return;
631 }
632
633 NOT_PRODUCT(C->verify_graph_edges();)
634
635 // Move important info out of the live_arena to longer lasting storage.
636 alloc_node_regs(_lrg_map.size());
637 for (uint i=0; i < _lrg_map.size(); i++) {
638 if (_lrg_map.live_range_id(i)) { // Live range associated with Node?
639 LRG &lrg = lrgs(_lrg_map.live_range_id(i));
640 if (!lrg.alive()) {
641 set_bad(i);
642 } else if (lrg.num_regs() == 1) {
643 set1(i, lrg.reg());
644 } else { // Must be a register-set
645 if (!lrg._fat_proj) { // Must be aligned adjacent register set
646 // Live ranges record the highest register in their mask.
647 // We want the low register for the AD file writer's convenience.
648 OptoReg::Name hi = lrg.reg(); // Get hi register
649 OptoReg::Name lo = OptoReg::add(hi, (1-lrg.num_regs())); // Find lo
650 // We have to use pair [lo,lo+1] even for wide vectors because
651 // the rest of code generation works only with pairs. It is safe
652 // since for registers encoding only 'lo' is used.
653 // Second reg from pair is used in ScheduleAndBundle on SPARC where
654 // vector max size is 8 which corresponds to registers pair.
655 // It is also used in BuildOopMaps but oop operations are not
656 // vectorized.
657 set2(i, lo);
658 } else { // Misaligned; extract 2 bits
659 OptoReg::Name hi = lrg.reg(); // Get hi register
660 lrg.Remove(hi); // Yank from mask
661 int lo = lrg.mask().find_first_elem(); // Find lo
662 set_pair(i, hi, lo);
663 }
664 }
665 if( lrg._is_oop ) _node_oops.set(i);
666 } else {
667 set_bad(i);
668 }
669 }
670
671 // Done!
672 _live = NULL;
673 _ifg = NULL;
674 C->set_indexSet_arena(NULL); // ResourceArea is at end of scope
675}
676
677void PhaseChaitin::de_ssa() {
678 // Set initial Names for all Nodes. Most Nodes get the virtual register
679 // number. A few get the ZERO live range number. These do not
680 // get allocated, but instead rely on correct scheduling to ensure that
681 // only one instance is simultaneously live at a time.
682 uint lr_counter = 1;
683 for( uint i = 0; i < _cfg.number_of_blocks(); i++ ) {
684 Block* block = _cfg.get_block(i);
685 uint cnt = block->number_of_nodes();
686
687 // Handle all the normal Nodes in the block
688 for( uint j = 0; j < cnt; j++ ) {
689 Node *n = block->get_node(j);
690 // Pre-color to the zero live range, or pick virtual register
691 const RegMask &rm = n->out_RegMask();
692 _lrg_map.map(n->_idx, rm.is_NotEmpty() ? lr_counter++ : 0);
693 }
694 }
695
696 // Reset the Union-Find mapping to be identity
697 _lrg_map.reset_uf_map(lr_counter);
698}
699
700void PhaseChaitin::mark_ssa() {
701 // Use ssa names to populate the live range maps or if no mask
702 // is available, use the 0 entry.
703 uint max_idx = 0;
704 for ( uint i = 0; i < _cfg.number_of_blocks(); i++ ) {
705 Block* block = _cfg.get_block(i);
706 uint cnt = block->number_of_nodes();
707
708 // Handle all the normal Nodes in the block
709 for ( uint j = 0; j < cnt; j++ ) {
710 Node *n = block->get_node(j);
711 // Pre-color to the zero live range, or pick virtual register
712 const RegMask &rm = n->out_RegMask();
713 _lrg_map.map(n->_idx, rm.is_NotEmpty() ? n->_idx : 0);
714 max_idx = (n->_idx > max_idx) ? n->_idx : max_idx;
715 }
716 }
717 _lrg_map.set_max_lrg_id(max_idx+1);
718
719 // Reset the Union-Find mapping to be identity
720 _lrg_map.reset_uf_map(max_idx+1);
721}
722
723
724// Gather LiveRanGe information, including register masks. Modification of
725// cisc spillable in_RegMasks should not be done before AggressiveCoalesce.
726void PhaseChaitin::gather_lrg_masks( bool after_aggressive ) {
727
728 // Nail down the frame pointer live range
729 uint fp_lrg = _lrg_map.live_range_id(_cfg.get_root_node()->in(1)->in(TypeFunc::FramePtr));
730 lrgs(fp_lrg)._cost += 1e12; // Cost is infinite
731
732 // For all blocks
733 for (uint i = 0; i < _cfg.number_of_blocks(); i++) {
734 Block* block = _cfg.get_block(i);
735
736 // For all instructions
737 for (uint j = 1; j < block->number_of_nodes(); j++) {
738 Node* n = block->get_node(j);
739 uint input_edge_start =1; // Skip control most nodes
740 bool is_machine_node = false;
741 if (n->is_Mach()) {
742 is_machine_node = true;
743 input_edge_start = n->as_Mach()->oper_input_base();
744 }
745 uint idx = n->is_Copy();
746
747 // Get virtual register number, same as LiveRanGe index
748 uint vreg = _lrg_map.live_range_id(n);
749 LRG& lrg = lrgs(vreg);
750 if (vreg) { // No vreg means un-allocable (e.g. memory)
751
752 // Check for float-vs-int live range (used in register-pressure
753 // calculations)
754 const Type *n_type = n->bottom_type();
755 if (n_type->is_floatingpoint()) {
756 lrg._is_float = 1;
757 }
758
759 // Check for twice prior spilling. Once prior spilling might have
760 // spilled 'soft', 2nd prior spill should have spilled 'hard' and
761 // further spilling is unlikely to make progress.
762 if (_spilled_once.test(n->_idx)) {
763 lrg._was_spilled1 = 1;
764 if (_spilled_twice.test(n->_idx)) {
765 lrg._was_spilled2 = 1;
766 }
767 }
768
769#ifndef PRODUCT
770 // Collect bits not used by product code, but which may be useful for
771 // debugging.
772
773 // Collect has-copy bit
774 if (idx) {
775 lrg._has_copy = 1;
776 uint clidx = _lrg_map.live_range_id(n->in(idx));
777 LRG& copy_src = lrgs(clidx);
778 copy_src._has_copy = 1;
779 }
780
781 if (trace_spilling() && lrg._def != NULL) {
782 // collect defs for MultiDef printing
783 if (lrg._defs == NULL) {
784 lrg._defs = new (_ifg->_arena) GrowableArray<Node*>(_ifg->_arena, 2, 0, NULL);
785 lrg._defs->append(lrg._def);
786 }
787 lrg._defs->append(n);
788 }
789#endif
790
791 // Check for a single def LRG; these can spill nicely
792 // via rematerialization. Flag as NULL for no def found
793 // yet, or 'n' for single def or -1 for many defs.
794 lrg._def = lrg._def ? NodeSentinel : n;
795
796 // Limit result register mask to acceptable registers
797 const RegMask &rm = n->out_RegMask();
798 lrg.AND( rm );
799
800 uint ireg = n->ideal_reg();
801 assert( !n->bottom_type()->isa_oop_ptr() || ireg == Op_RegP,
802 "oops must be in Op_RegP's" );
803
804 // Check for vector live range (only if vector register is used).
805 // On SPARC vector uses RegD which could be misaligned so it is not
806 // processes as vector in RA.
807 if (RegMask::is_vector(ireg))
808 lrg._is_vector = 1;
809 assert(n_type->isa_vect() == NULL || lrg._is_vector || ireg == Op_RegD || ireg == Op_RegL,
810 "vector must be in vector registers");
811
812 // Check for bound register masks
813 const RegMask &lrgmask = lrg.mask();
814 if (lrgmask.is_bound(ireg)) {
815 lrg._is_bound = 1;
816 }
817
818 // Check for maximum frequency value
819 if (lrg._maxfreq < block->_freq) {
820 lrg._maxfreq = block->_freq;
821 }
822
823 // Check for oop-iness, or long/double
824 // Check for multi-kill projection
825 switch (ireg) {
826 case MachProjNode::fat_proj:
827 // Fat projections have size equal to number of registers killed
828 lrg.set_num_regs(rm.Size());
829 lrg.set_reg_pressure(lrg.num_regs());
830 lrg._fat_proj = 1;
831 lrg._is_bound = 1;
832 break;
833 case Op_RegP:
834#ifdef _LP64
835 lrg.set_num_regs(2); // Size is 2 stack words
836#else
837 lrg.set_num_regs(1); // Size is 1 stack word
838#endif
839 // Register pressure is tracked relative to the maximum values
840 // suggested for that platform, INTPRESSURE and FLOATPRESSURE,
841 // and relative to other types which compete for the same regs.
842 //
843 // The following table contains suggested values based on the
844 // architectures as defined in each .ad file.
845 // INTPRESSURE and FLOATPRESSURE may be tuned differently for
846 // compile-speed or performance.
847 // Note1:
848 // SPARC and SPARCV9 reg_pressures are at 2 instead of 1
849 // since .ad registers are defined as high and low halves.
850 // These reg_pressure values remain compatible with the code
851 // in is_high_pressure() which relates get_invalid_mask_size(),
852 // Block::_reg_pressure and INTPRESSURE, FLOATPRESSURE.
853 // Note2:
854 // SPARC -d32 has 24 registers available for integral values,
855 // but only 10 of these are safe for 64-bit longs.
856 // Using set_reg_pressure(2) for both int and long means
857 // the allocator will believe it can fit 26 longs into
858 // registers. Using 2 for longs and 1 for ints means the
859 // allocator will attempt to put 52 integers into registers.
860 // The settings below limit this problem to methods with
861 // many long values which are being run on 32-bit SPARC.
862 //
863 // ------------------- reg_pressure --------------------
864 // Each entry is reg_pressure_per_value,number_of_regs
865 // RegL RegI RegFlags RegF RegD INTPRESSURE FLOATPRESSURE
866 // IA32 2 1 1 1 1 6 6
867 // IA64 1 1 1 1 1 50 41
868 // SPARC 2 2 2 2 2 48 (24) 52 (26)
869 // SPARCV9 2 2 2 2 2 48 (24) 52 (26)
870 // AMD64 1 1 1 1 1 14 15
871 // -----------------------------------------------------
872#if defined(SPARC)
873 lrg.set_reg_pressure(2); // use for v9 as well
874#else
875 lrg.set_reg_pressure(1); // normally one value per register
876#endif
877 if( n_type->isa_oop_ptr() ) {
878 lrg._is_oop = 1;
879 }
880 break;
881 case Op_RegL: // Check for long or double
882 case Op_RegD:
883 lrg.set_num_regs(2);
884 // Define platform specific register pressure
885#if defined(SPARC) || defined(ARM32)
886 lrg.set_reg_pressure(2);
887#elif defined(IA32)
888 if( ireg == Op_RegL ) {
889 lrg.set_reg_pressure(2);
890 } else {
891 lrg.set_reg_pressure(1);
892 }
893#else
894 lrg.set_reg_pressure(1); // normally one value per register
895#endif
896 // If this def of a double forces a mis-aligned double,
897 // flag as '_fat_proj' - really flag as allowing misalignment
898 // AND changes how we count interferences. A mis-aligned
899 // double can interfere with TWO aligned pairs, or effectively
900 // FOUR registers!
901 if (rm.is_misaligned_pair()) {
902 lrg._fat_proj = 1;
903 lrg._is_bound = 1;
904 }
905 break;
906 case Op_RegF:
907 case Op_RegI:
908 case Op_RegN:
909 case Op_RegFlags:
910 case 0: // not an ideal register
911 lrg.set_num_regs(1);
912#ifdef SPARC
913 lrg.set_reg_pressure(2);
914#else
915 lrg.set_reg_pressure(1);
916#endif
917 break;
918 case Op_VecS:
919 assert(Matcher::vector_size_supported(T_BYTE,4), "sanity");
920 assert(RegMask::num_registers(Op_VecS) == RegMask::SlotsPerVecS, "sanity");
921 lrg.set_num_regs(RegMask::SlotsPerVecS);
922 lrg.set_reg_pressure(1);
923 break;
924 case Op_VecD:
925 assert(Matcher::vector_size_supported(T_FLOAT,RegMask::SlotsPerVecD), "sanity");
926 assert(RegMask::num_registers(Op_VecD) == RegMask::SlotsPerVecD, "sanity");
927 assert(lrgmask.is_aligned_sets(RegMask::SlotsPerVecD), "vector should be aligned");
928 lrg.set_num_regs(RegMask::SlotsPerVecD);
929 lrg.set_reg_pressure(1);
930 break;
931 case Op_VecX:
932 assert(Matcher::vector_size_supported(T_FLOAT,RegMask::SlotsPerVecX), "sanity");
933 assert(RegMask::num_registers(Op_VecX) == RegMask::SlotsPerVecX, "sanity");
934 assert(lrgmask.is_aligned_sets(RegMask::SlotsPerVecX), "vector should be aligned");
935 lrg.set_num_regs(RegMask::SlotsPerVecX);
936 lrg.set_reg_pressure(1);
937 break;
938 case Op_VecY:
939 assert(Matcher::vector_size_supported(T_FLOAT,RegMask::SlotsPerVecY), "sanity");
940 assert(RegMask::num_registers(Op_VecY) == RegMask::SlotsPerVecY, "sanity");
941 assert(lrgmask.is_aligned_sets(RegMask::SlotsPerVecY), "vector should be aligned");
942 lrg.set_num_regs(RegMask::SlotsPerVecY);
943 lrg.set_reg_pressure(1);
944 break;
945 case Op_VecZ:
946 assert(Matcher::vector_size_supported(T_FLOAT,RegMask::SlotsPerVecZ), "sanity");
947 assert(RegMask::num_registers(Op_VecZ) == RegMask::SlotsPerVecZ, "sanity");
948 assert(lrgmask.is_aligned_sets(RegMask::SlotsPerVecZ), "vector should be aligned");
949 lrg.set_num_regs(RegMask::SlotsPerVecZ);
950 lrg.set_reg_pressure(1);
951 break;
952 default:
953 ShouldNotReachHere();
954 }
955 }
956
957 // Now do the same for inputs
958 uint cnt = n->req();
959 // Setup for CISC SPILLING
960 uint inp = (uint)AdlcVMDeps::Not_cisc_spillable;
961 if( UseCISCSpill && after_aggressive ) {
962 inp = n->cisc_operand();
963 if( inp != (uint)AdlcVMDeps::Not_cisc_spillable )
964 // Convert operand number to edge index number
965 inp = n->as_Mach()->operand_index(inp);
966 }
967
968 // Prepare register mask for each input
969 for( uint k = input_edge_start; k < cnt; k++ ) {
970 uint vreg = _lrg_map.live_range_id(n->in(k));
971 if (!vreg) {
972 continue;
973 }
974
975 // If this instruction is CISC Spillable, add the flags
976 // bit to its appropriate input
977 if( UseCISCSpill && after_aggressive && inp == k ) {
978#ifndef PRODUCT
979 if( TraceCISCSpill ) {
980 tty->print(" use_cisc_RegMask: ");
981 n->dump();
982 }
983#endif
984 n->as_Mach()->use_cisc_RegMask();
985 }
986
987 if (is_machine_node && _scheduling_info_generated) {
988 MachNode* cur_node = n->as_Mach();
989 // this is cleaned up by register allocation
990 if (k >= cur_node->num_opnds()) continue;
991 }
992
993 LRG &lrg = lrgs(vreg);
994 // // Testing for floating point code shape
995 // Node *test = n->in(k);
996 // if( test->is_Mach() ) {
997 // MachNode *m = test->as_Mach();
998 // int op = m->ideal_Opcode();
999 // if (n->is_Call() && (op == Op_AddF || op == Op_MulF) ) {
1000 // int zzz = 1;
1001 // }
1002 // }
1003
1004 // Limit result register mask to acceptable registers.
1005 // Do not limit registers from uncommon uses before
1006 // AggressiveCoalesce. This effectively pre-virtual-splits
1007 // around uncommon uses of common defs.
1008 const RegMask &rm = n->in_RegMask(k);
1009 if (!after_aggressive && _cfg.get_block_for_node(n->in(k))->_freq > 1000 * block->_freq) {
1010 // Since we are BEFORE aggressive coalesce, leave the register
1011 // mask untrimmed by the call. This encourages more coalescing.
1012 // Later, AFTER aggressive, this live range will have to spill
1013 // but the spiller handles slow-path calls very nicely.
1014 } else {
1015 lrg.AND( rm );
1016 }
1017
1018 // Check for bound register masks
1019 const RegMask &lrgmask = lrg.mask();
1020 uint kreg = n->in(k)->ideal_reg();
1021 bool is_vect = RegMask::is_vector(kreg);
1022 assert(n->in(k)->bottom_type()->isa_vect() == NULL ||
1023 is_vect || kreg == Op_RegD || kreg == Op_RegL,
1024 "vector must be in vector registers");
1025 if (lrgmask.is_bound(kreg))
1026 lrg._is_bound = 1;
1027
1028 // If this use of a double forces a mis-aligned double,
1029 // flag as '_fat_proj' - really flag as allowing misalignment
1030 // AND changes how we count interferences. A mis-aligned
1031 // double can interfere with TWO aligned pairs, or effectively
1032 // FOUR registers!
1033#ifdef ASSERT
1034 if (is_vect && !_scheduling_info_generated) {
1035 if (lrg.num_regs() != 0) {
1036 assert(lrgmask.is_aligned_sets(lrg.num_regs()), "vector should be aligned");
1037 assert(!lrg._fat_proj, "sanity");
1038 assert(RegMask::num_registers(kreg) == lrg.num_regs(), "sanity");
1039 } else {
1040 assert(n->is_Phi(), "not all inputs processed only if Phi");
1041 }
1042 }
1043#endif
1044 if (!is_vect && lrg.num_regs() == 2 && !lrg._fat_proj && rm.is_misaligned_pair()) {
1045 lrg._fat_proj = 1;
1046 lrg._is_bound = 1;
1047 }
1048 // if the LRG is an unaligned pair, we will have to spill
1049 // so clear the LRG's register mask if it is not already spilled
1050 if (!is_vect && !n->is_SpillCopy() &&
1051 (lrg._def == NULL || lrg.is_multidef() || !lrg._def->is_SpillCopy()) &&
1052 lrgmask.is_misaligned_pair()) {
1053 lrg.Clear();
1054 }
1055
1056 // Check for maximum frequency value
1057 if (lrg._maxfreq < block->_freq) {
1058 lrg._maxfreq = block->_freq;
1059 }
1060
1061 } // End for all allocated inputs
1062 } // end for all instructions
1063 } // end for all blocks
1064
1065 // Final per-liverange setup
1066 for (uint i2 = 0; i2 < _lrg_map.max_lrg_id(); i2++) {
1067 LRG &lrg = lrgs(i2);
1068 assert(!lrg._is_vector || !lrg._fat_proj, "sanity");
1069 if (lrg.num_regs() > 1 && !lrg._fat_proj) {
1070 lrg.clear_to_sets();
1071 }
1072 lrg.compute_set_mask_size();
1073 if (lrg.not_free()) { // Handle case where we lose from the start
1074 lrg.set_reg(OptoReg::Name(LRG::SPILL_REG));
1075 lrg._direct_conflict = 1;
1076 }
1077 lrg.set_degree(0); // no neighbors in IFG yet
1078 }
1079}
1080
1081// Set the was-lo-degree bit. Conservative coalescing should not change the
1082// colorability of the graph. If any live range was of low-degree before
1083// coalescing, it should Simplify. This call sets the was-lo-degree bit.
1084// The bit is checked in Simplify.
1085void PhaseChaitin::set_was_low() {
1086#ifdef ASSERT
1087 for (uint i = 1; i < _lrg_map.max_lrg_id(); i++) {
1088 int size = lrgs(i).num_regs();
1089 uint old_was_lo = lrgs(i)._was_lo;
1090 lrgs(i)._was_lo = 0;
1091 if( lrgs(i).lo_degree() ) {
1092 lrgs(i)._was_lo = 1; // Trivially of low degree
1093 } else { // Else check the Brigg's assertion
1094 // Brigg's observation is that the lo-degree neighbors of a
1095 // hi-degree live range will not interfere with the color choices
1096 // of said hi-degree live range. The Simplify reverse-stack-coloring
1097 // order takes care of the details. Hence you do not have to count
1098 // low-degree neighbors when determining if this guy colors.
1099 int briggs_degree = 0;
1100 IndexSet *s = _ifg->neighbors(i);
1101 IndexSetIterator elements(s);
1102 uint lidx;
1103 while((lidx = elements.next()) != 0) {
1104 if( !lrgs(lidx).lo_degree() )
1105 briggs_degree += MAX2(size,lrgs(lidx).num_regs());
1106 }
1107 if( briggs_degree < lrgs(i).degrees_of_freedom() )
1108 lrgs(i)._was_lo = 1; // Low degree via the briggs assertion
1109 }
1110 assert(old_was_lo <= lrgs(i)._was_lo, "_was_lo may not decrease");
1111 }
1112#endif
1113}
1114
1115// Compute cost/area ratio, in case we spill. Build the lo-degree list.
1116void PhaseChaitin::cache_lrg_info( ) {
1117 Compile::TracePhase tp("chaitinCacheLRG", &timers[_t_chaitinCacheLRG]);
1118
1119 for (uint i = 1; i < _lrg_map.max_lrg_id(); i++) {
1120 LRG &lrg = lrgs(i);
1121
1122 // Check for being of low degree: means we can be trivially colored.
1123 // Low degree, dead or must-spill guys just get to simplify right away
1124 if( lrg.lo_degree() ||
1125 !lrg.alive() ||
1126 lrg._must_spill ) {
1127 // Split low degree list into those guys that must get a
1128 // register and those that can go to register or stack.
1129 // The idea is LRGs that can go register or stack color first when
1130 // they have a good chance of getting a register. The register-only
1131 // lo-degree live ranges always get a register.
1132 OptoReg::Name hi_reg = lrg.mask().find_last_elem();
1133 if( OptoReg::is_stack(hi_reg)) { // Can go to stack?
1134 lrg._next = _lo_stk_degree;
1135 _lo_stk_degree = i;
1136 } else {
1137 lrg._next = _lo_degree;
1138 _lo_degree = i;
1139 }
1140 } else { // Else high degree
1141 lrgs(_hi_degree)._prev = i;
1142 lrg._next = _hi_degree;
1143 lrg._prev = 0;
1144 _hi_degree = i;
1145 }
1146 }
1147}
1148
1149// Simplify the IFG by removing LRGs of low degree.
1150void PhaseChaitin::Simplify( ) {
1151 Compile::TracePhase tp("chaitinSimplify", &timers[_t_chaitinSimplify]);
1152
1153 while( 1 ) { // Repeat till simplified it all
1154 // May want to explore simplifying lo_degree before _lo_stk_degree.
1155 // This might result in more spills coloring into registers during
1156 // Select().
1157 while( _lo_degree || _lo_stk_degree ) {
1158 // If possible, pull from lo_stk first
1159 uint lo;
1160 if( _lo_degree ) {
1161 lo = _lo_degree;
1162 _lo_degree = lrgs(lo)._next;
1163 } else {
1164 lo = _lo_stk_degree;
1165 _lo_stk_degree = lrgs(lo)._next;
1166 }
1167
1168 // Put the simplified guy on the simplified list.
1169 lrgs(lo)._next = _simplified;
1170 _simplified = lo;
1171 // If this guy is "at risk" then mark his current neighbors
1172 if( lrgs(lo)._at_risk ) {
1173 IndexSetIterator elements(_ifg->neighbors(lo));
1174 uint datum;
1175 while ((datum = elements.next()) != 0) {
1176 lrgs(datum)._risk_bias = lo;
1177 }
1178 }
1179
1180 // Yank this guy from the IFG.
1181 IndexSet *adj = _ifg->remove_node( lo );
1182
1183 // If any neighbors' degrees fall below their number of
1184 // allowed registers, then put that neighbor on the low degree
1185 // list. Note that 'degree' can only fall and 'numregs' is
1186 // unchanged by this action. Thus the two are equal at most once,
1187 // so LRGs hit the lo-degree worklist at most once.
1188 IndexSetIterator elements(adj);
1189 uint neighbor;
1190 while ((neighbor = elements.next()) != 0) {
1191 LRG *n = &lrgs(neighbor);
1192#ifdef ASSERT
1193 if( VerifyOpto || VerifyRegisterAllocator ) {
1194 assert( _ifg->effective_degree(neighbor) == n->degree(), "" );
1195 }
1196#endif
1197
1198 // Check for just becoming of-low-degree just counting registers.
1199 // _must_spill live ranges are already on the low degree list.
1200 if( n->just_lo_degree() && !n->_must_spill ) {
1201 assert(!(*_ifg->_yanked)[neighbor],"Cannot move to lo degree twice");
1202 // Pull from hi-degree list
1203 uint prev = n->_prev;
1204 uint next = n->_next;
1205 if( prev ) lrgs(prev)._next = next;
1206 else _hi_degree = next;
1207 lrgs(next)._prev = prev;
1208 n->_next = _lo_degree;
1209 _lo_degree = neighbor;
1210 }
1211 }
1212 } // End of while lo-degree/lo_stk_degree worklist not empty
1213
1214 // Check for got everything: is hi-degree list empty?
1215 if( !_hi_degree ) break;
1216
1217 // Time to pick a potential spill guy
1218 uint lo_score = _hi_degree;
1219 double score = lrgs(lo_score).score();
1220 double area = lrgs(lo_score)._area;
1221 double cost = lrgs(lo_score)._cost;
1222 bool bound = lrgs(lo_score)._is_bound;
1223
1224 // Find cheapest guy
1225 debug_only( int lo_no_simplify=0; );
1226 for( uint i = _hi_degree; i; i = lrgs(i)._next ) {
1227 assert( !(*_ifg->_yanked)[i], "" );
1228 // It's just vaguely possible to move hi-degree to lo-degree without
1229 // going through a just-lo-degree stage: If you remove a double from
1230 // a float live range it's degree will drop by 2 and you can skip the
1231 // just-lo-degree stage. It's very rare (shows up after 5000+ methods
1232 // in -Xcomp of Java2Demo). So just choose this guy to simplify next.
1233 if( lrgs(i).lo_degree() ) {
1234 lo_score = i;
1235 break;
1236 }
1237 debug_only( if( lrgs(i)._was_lo ) lo_no_simplify=i; );
1238 double iscore = lrgs(i).score();
1239 double iarea = lrgs(i)._area;
1240 double icost = lrgs(i)._cost;
1241 bool ibound = lrgs(i)._is_bound;
1242
1243 // Compare cost/area of i vs cost/area of lo_score. Smaller cost/area
1244 // wins. Ties happen because all live ranges in question have spilled
1245 // a few times before and the spill-score adds a huge number which
1246 // washes out the low order bits. We are choosing the lesser of 2
1247 // evils; in this case pick largest area to spill.
1248 // Ties also happen when live ranges are defined and used only inside
1249 // one block. In which case their area is 0 and score set to max.
1250 // In such case choose bound live range over unbound to free registers
1251 // or with smaller cost to spill.
1252 if( iscore < score ||
1253 (iscore == score && iarea > area && lrgs(lo_score)._was_spilled2) ||
1254 (iscore == score && iarea == area &&
1255 ( (ibound && !bound) || (ibound == bound && (icost < cost)) )) ) {
1256 lo_score = i;
1257 score = iscore;
1258 area = iarea;
1259 cost = icost;
1260 bound = ibound;
1261 }
1262 }
1263 LRG *lo_lrg = &lrgs(lo_score);
1264 // The live range we choose for spilling is either hi-degree, or very
1265 // rarely it can be low-degree. If we choose a hi-degree live range
1266 // there better not be any lo-degree choices.
1267 assert( lo_lrg->lo_degree() || !lo_no_simplify, "Live range was lo-degree before coalesce; should simplify" );
1268
1269 // Pull from hi-degree list
1270 uint prev = lo_lrg->_prev;
1271 uint next = lo_lrg->_next;
1272 if( prev ) lrgs(prev)._next = next;
1273 else _hi_degree = next;
1274 lrgs(next)._prev = prev;
1275 // Jam him on the lo-degree list, despite his high degree.
1276 // Maybe he'll get a color, and maybe he'll spill.
1277 // Only Select() will know.
1278 lrgs(lo_score)._at_risk = true;
1279 _lo_degree = lo_score;
1280 lo_lrg->_next = 0;
1281
1282 } // End of while not simplified everything
1283
1284}
1285
1286// Is 'reg' register legal for 'lrg'?
1287static bool is_legal_reg(LRG &lrg, OptoReg::Name reg, int chunk) {
1288 if (reg >= chunk && reg < (chunk + RegMask::CHUNK_SIZE) &&
1289 lrg.mask().Member(OptoReg::add(reg,-chunk))) {
1290 // RA uses OptoReg which represent the highest element of a registers set.
1291 // For example, vectorX (128bit) on x86 uses [XMM,XMMb,XMMc,XMMd] set
1292 // in which XMMd is used by RA to represent such vectors. A double value
1293 // uses [XMM,XMMb] pairs and XMMb is used by RA for it.
1294 // The register mask uses largest bits set of overlapping register sets.
1295 // On x86 with AVX it uses 8 bits for each XMM registers set.
1296 //
1297 // The 'lrg' already has cleared-to-set register mask (done in Select()
1298 // before calling choose_color()). Passing mask.Member(reg) check above
1299 // indicates that the size (num_regs) of 'reg' set is less or equal to
1300 // 'lrg' set size.
1301 // For set size 1 any register which is member of 'lrg' mask is legal.
1302 if (lrg.num_regs()==1)
1303 return true;
1304 // For larger sets only an aligned register with the same set size is legal.
1305 int mask = lrg.num_regs()-1;
1306 if ((reg&mask) == mask)
1307 return true;
1308 }
1309 return false;
1310}
1311
1312// Choose a color using the biasing heuristic
1313OptoReg::Name PhaseChaitin::bias_color( LRG &lrg, int chunk ) {
1314
1315 // Check for "at_risk" LRG's
1316 uint risk_lrg = _lrg_map.find(lrg._risk_bias);
1317 if( risk_lrg != 0 ) {
1318 // Walk the colored neighbors of the "at_risk" candidate
1319 // Choose a color which is both legal and already taken by a neighbor
1320 // of the "at_risk" candidate in order to improve the chances of the
1321 // "at_risk" candidate of coloring
1322 IndexSetIterator elements(_ifg->neighbors(risk_lrg));
1323 uint datum;
1324 while ((datum = elements.next()) != 0) {
1325 OptoReg::Name reg = lrgs(datum).reg();
1326 // If this LRG's register is legal for us, choose it
1327 if (is_legal_reg(lrg, reg, chunk))
1328 return reg;
1329 }
1330 }
1331
1332 uint copy_lrg = _lrg_map.find(lrg._copy_bias);
1333 if( copy_lrg != 0 ) {
1334 // If he has a color,
1335 if( !(*(_ifg->_yanked))[copy_lrg] ) {
1336 OptoReg::Name reg = lrgs(copy_lrg).reg();
1337 // And it is legal for you,
1338 if (is_legal_reg(lrg, reg, chunk))
1339 return reg;
1340 } else if( chunk == 0 ) {
1341 // Choose a color which is legal for him
1342 RegMask tempmask = lrg.mask();
1343 tempmask.AND(lrgs(copy_lrg).mask());
1344 tempmask.clear_to_sets(lrg.num_regs());
1345 OptoReg::Name reg = tempmask.find_first_set(lrg.num_regs());
1346 if (OptoReg::is_valid(reg))
1347 return reg;
1348 }
1349 }
1350
1351 // If no bias info exists, just go with the register selection ordering
1352 if (lrg._is_vector || lrg.num_regs() == 2) {
1353 // Find an aligned set
1354 return OptoReg::add(lrg.mask().find_first_set(lrg.num_regs()),chunk);
1355 }
1356
1357 // CNC - Fun hack. Alternate 1st and 2nd selection. Enables post-allocate
1358 // copy removal to remove many more copies, by preventing a just-assigned
1359 // register from being repeatedly assigned.
1360 OptoReg::Name reg = lrg.mask().find_first_elem();
1361 if( (++_alternate & 1) && OptoReg::is_valid(reg) ) {
1362 // This 'Remove; find; Insert' idiom is an expensive way to find the
1363 // SECOND element in the mask.
1364 lrg.Remove(reg);
1365 OptoReg::Name reg2 = lrg.mask().find_first_elem();
1366 lrg.Insert(reg);
1367 if( OptoReg::is_reg(reg2))
1368 reg = reg2;
1369 }
1370 return OptoReg::add( reg, chunk );
1371}
1372
1373// Choose a color in the current chunk
1374OptoReg::Name PhaseChaitin::choose_color( LRG &lrg, int chunk ) {
1375 assert( C->in_preserve_stack_slots() == 0 || chunk != 0 || lrg._is_bound || lrg.mask().is_bound1() || !lrg.mask().Member(OptoReg::Name(_matcher._old_SP-1)), "must not allocate stack0 (inside preserve area)");
1376 assert(C->out_preserve_stack_slots() == 0 || chunk != 0 || lrg._is_bound || lrg.mask().is_bound1() || !lrg.mask().Member(OptoReg::Name(_matcher._old_SP+0)), "must not allocate stack0 (inside preserve area)");
1377
1378 if( lrg.num_regs() == 1 || // Common Case
1379 !lrg._fat_proj ) // Aligned+adjacent pairs ok
1380 // Use a heuristic to "bias" the color choice
1381 return bias_color(lrg, chunk);
1382
1383 assert(!lrg._is_vector, "should be not vector here" );
1384 assert( lrg.num_regs() >= 2, "dead live ranges do not color" );
1385
1386 // Fat-proj case or misaligned double argument.
1387 assert(lrg.compute_mask_size() == lrg.num_regs() ||
1388 lrg.num_regs() == 2,"fat projs exactly color" );
1389 assert( !chunk, "always color in 1st chunk" );
1390 // Return the highest element in the set.
1391 return lrg.mask().find_last_elem();
1392}
1393
1394// Select colors by re-inserting LRGs back into the IFG. LRGs are re-inserted
1395// in reverse order of removal. As long as nothing of hi-degree was yanked,
1396// everything going back is guaranteed a color. Select that color. If some
1397// hi-degree LRG cannot get a color then we record that we must spill.
1398uint PhaseChaitin::Select( ) {
1399 Compile::TracePhase tp("chaitinSelect", &timers[_t_chaitinSelect]);
1400
1401 uint spill_reg = LRG::SPILL_REG;
1402 _max_reg = OptoReg::Name(0); // Past max register used
1403 while( _simplified ) {
1404 // Pull next LRG from the simplified list - in reverse order of removal
1405 uint lidx = _simplified;
1406 LRG *lrg = &lrgs(lidx);
1407 _simplified = lrg->_next;
1408
1409
1410#ifndef PRODUCT
1411 if (trace_spilling()) {
1412 ttyLocker ttyl;
1413 tty->print_cr("L%d selecting degree %d degrees_of_freedom %d", lidx, lrg->degree(),
1414 lrg->degrees_of_freedom());
1415 lrg->dump();
1416 }
1417#endif
1418
1419 // Re-insert into the IFG
1420 _ifg->re_insert(lidx);
1421 if( !lrg->alive() ) continue;
1422 // capture allstackedness flag before mask is hacked
1423 const int is_allstack = lrg->mask().is_AllStack();
1424
1425 // Yeah, yeah, yeah, I know, I know. I can refactor this
1426 // to avoid the GOTO, although the refactored code will not
1427 // be much clearer. We arrive here IFF we have a stack-based
1428 // live range that cannot color in the current chunk, and it
1429 // has to move into the next free stack chunk.
1430 int chunk = 0; // Current chunk is first chunk
1431 retry_next_chunk:
1432
1433 // Remove neighbor colors
1434 IndexSet *s = _ifg->neighbors(lidx);
1435
1436 debug_only(RegMask orig_mask = lrg->mask();)
1437 IndexSetIterator elements(s);
1438 uint neighbor;
1439 while ((neighbor = elements.next()) != 0) {
1440 // Note that neighbor might be a spill_reg. In this case, exclusion
1441 // of its color will be a no-op, since the spill_reg chunk is in outer
1442 // space. Also, if neighbor is in a different chunk, this exclusion
1443 // will be a no-op. (Later on, if lrg runs out of possible colors in
1444 // its chunk, a new chunk of color may be tried, in which case
1445 // examination of neighbors is started again, at retry_next_chunk.)
1446 LRG &nlrg = lrgs(neighbor);
1447 OptoReg::Name nreg = nlrg.reg();
1448 // Only subtract masks in the same chunk
1449 if( nreg >= chunk && nreg < chunk + RegMask::CHUNK_SIZE ) {
1450#ifndef PRODUCT
1451 uint size = lrg->mask().Size();
1452 RegMask rm = lrg->mask();
1453#endif
1454 lrg->SUBTRACT(nlrg.mask());
1455#ifndef PRODUCT
1456 if (trace_spilling() && lrg->mask().Size() != size) {
1457 ttyLocker ttyl;
1458 tty->print("L%d ", lidx);
1459 rm.dump();
1460 tty->print(" intersected L%d ", neighbor);
1461 nlrg.mask().dump();
1462 tty->print(" removed ");
1463 rm.SUBTRACT(lrg->mask());
1464 rm.dump();
1465 tty->print(" leaving ");
1466 lrg->mask().dump();
1467 tty->cr();
1468 }
1469#endif
1470 }
1471 }
1472 //assert(is_allstack == lrg->mask().is_AllStack(), "nbrs must not change AllStackedness");
1473 // Aligned pairs need aligned masks
1474 assert(!lrg->_is_vector || !lrg->_fat_proj, "sanity");
1475 if (lrg->num_regs() > 1 && !lrg->_fat_proj) {
1476 lrg->clear_to_sets();
1477 }
1478
1479 // Check if a color is available and if so pick the color
1480 OptoReg::Name reg = choose_color( *lrg, chunk );
1481#ifdef SPARC
1482 debug_only(lrg->compute_set_mask_size());
1483 assert(lrg->num_regs() < 2 || lrg->is_bound() || is_even(reg-1), "allocate all doubles aligned");
1484#endif
1485
1486 //---------------
1487 // If we fail to color and the AllStack flag is set, trigger
1488 // a chunk-rollover event
1489 if(!OptoReg::is_valid(OptoReg::add(reg,-chunk)) && is_allstack) {
1490 // Bump register mask up to next stack chunk
1491 chunk += RegMask::CHUNK_SIZE;
1492 lrg->Set_All();
1493
1494 goto retry_next_chunk;
1495 }
1496
1497 //---------------
1498 // Did we get a color?
1499 else if( OptoReg::is_valid(reg)) {
1500#ifndef PRODUCT
1501 RegMask avail_rm = lrg->mask();
1502#endif
1503
1504 // Record selected register
1505 lrg->set_reg(reg);
1506
1507 if( reg >= _max_reg ) // Compute max register limit
1508 _max_reg = OptoReg::add(reg,1);
1509 // Fold reg back into normal space
1510 reg = OptoReg::add(reg,-chunk);
1511
1512 // If the live range is not bound, then we actually had some choices
1513 // to make. In this case, the mask has more bits in it than the colors
1514 // chosen. Restrict the mask to just what was picked.
1515 int n_regs = lrg->num_regs();
1516 assert(!lrg->_is_vector || !lrg->_fat_proj, "sanity");
1517 if (n_regs == 1 || !lrg->_fat_proj) {
1518 assert(!lrg->_is_vector || n_regs <= RegMask::SlotsPerVecZ, "sanity");
1519 lrg->Clear(); // Clear the mask
1520 lrg->Insert(reg); // Set regmask to match selected reg
1521 // For vectors and pairs, also insert the low bit of the pair
1522 for (int i = 1; i < n_regs; i++)
1523 lrg->Insert(OptoReg::add(reg,-i));
1524 lrg->set_mask_size(n_regs);
1525 } else { // Else fatproj
1526 // mask must be equal to fatproj bits, by definition
1527 }
1528#ifndef PRODUCT
1529 if (trace_spilling()) {
1530 ttyLocker ttyl;
1531 tty->print("L%d selected ", lidx);
1532 lrg->mask().dump();
1533 tty->print(" from ");
1534 avail_rm.dump();
1535 tty->cr();
1536 }
1537#endif
1538 // Note that reg is the highest-numbered register in the newly-bound mask.
1539 } // end color available case
1540
1541 //---------------
1542 // Live range is live and no colors available
1543 else {
1544 assert( lrg->alive(), "" );
1545 assert( !lrg->_fat_proj || lrg->is_multidef() ||
1546 lrg->_def->outcnt() > 0, "fat_proj cannot spill");
1547 assert( !orig_mask.is_AllStack(), "All Stack does not spill" );
1548
1549 // Assign the special spillreg register
1550 lrg->set_reg(OptoReg::Name(spill_reg++));
1551 // Do not empty the regmask; leave mask_size lying around
1552 // for use during Spilling
1553#ifndef PRODUCT
1554 if( trace_spilling() ) {
1555 ttyLocker ttyl;
1556 tty->print("L%d spilling with neighbors: ", lidx);
1557 s->dump();
1558 debug_only(tty->print(" original mask: "));
1559 debug_only(orig_mask.dump());
1560 dump_lrg(lidx);
1561 }
1562#endif
1563 } // end spill case
1564
1565 }
1566
1567 return spill_reg-LRG::SPILL_REG; // Return number of spills
1568}
1569
1570// Set the 'spilled_once' or 'spilled_twice' flag on a node.
1571void PhaseChaitin::set_was_spilled( Node *n ) {
1572 if( _spilled_once.test_set(n->_idx) )
1573 _spilled_twice.set(n->_idx);
1574}
1575
1576// Convert Ideal spill instructions into proper FramePtr + offset Loads and
1577// Stores. Use-def chains are NOT preserved, but Node->LRG->reg maps are.
1578void PhaseChaitin::fixup_spills() {
1579 // This function does only cisc spill work.
1580 if( !UseCISCSpill ) return;
1581
1582 Compile::TracePhase tp("fixupSpills", &timers[_t_fixupSpills]);
1583
1584 // Grab the Frame Pointer
1585 Node *fp = _cfg.get_root_block()->head()->in(1)->in(TypeFunc::FramePtr);
1586
1587 // For all blocks
1588 for (uint i = 0; i < _cfg.number_of_blocks(); i++) {
1589 Block* block = _cfg.get_block(i);
1590
1591 // For all instructions in block
1592 uint last_inst = block->end_idx();
1593 for (uint j = 1; j <= last_inst; j++) {
1594 Node* n = block->get_node(j);
1595
1596 // Dead instruction???
1597 assert( n->outcnt() != 0 ||// Nothing dead after post alloc
1598 C->top() == n || // Or the random TOP node
1599 n->is_Proj(), // Or a fat-proj kill node
1600 "No dead instructions after post-alloc" );
1601
1602 int inp = n->cisc_operand();
1603 if( inp != AdlcVMDeps::Not_cisc_spillable ) {
1604 // Convert operand number to edge index number
1605 MachNode *mach = n->as_Mach();
1606 inp = mach->operand_index(inp);
1607 Node *src = n->in(inp); // Value to load or store
1608 LRG &lrg_cisc = lrgs(_lrg_map.find_const(src));
1609 OptoReg::Name src_reg = lrg_cisc.reg();
1610 // Doubles record the HIGH register of an adjacent pair.
1611 src_reg = OptoReg::add(src_reg,1-lrg_cisc.num_regs());
1612 if( OptoReg::is_stack(src_reg) ) { // If input is on stack
1613 // This is a CISC Spill, get stack offset and construct new node
1614#ifndef PRODUCT
1615 if( TraceCISCSpill ) {
1616 tty->print(" reg-instr: ");
1617 n->dump();
1618 }
1619#endif
1620 int stk_offset = reg2offset(src_reg);
1621 // Bailout if we might exceed node limit when spilling this instruction
1622 C->check_node_count(0, "out of nodes fixing spills");
1623 if (C->failing()) return;
1624 // Transform node
1625 MachNode *cisc = mach->cisc_version(stk_offset)->as_Mach();
1626 cisc->set_req(inp,fp); // Base register is frame pointer
1627 if( cisc->oper_input_base() > 1 && mach->oper_input_base() <= 1 ) {
1628 assert( cisc->oper_input_base() == 2, "Only adding one edge");
1629 cisc->ins_req(1,src); // Requires a memory edge
1630 }
1631 block->map_node(cisc, j); // Insert into basic block
1632 n->subsume_by(cisc, C); // Correct graph
1633 //
1634 ++_used_cisc_instructions;
1635#ifndef PRODUCT
1636 if( TraceCISCSpill ) {
1637 tty->print(" cisc-instr: ");
1638 cisc->dump();
1639 }
1640#endif
1641 } else {
1642#ifndef PRODUCT
1643 if( TraceCISCSpill ) {
1644 tty->print(" using reg-instr: ");
1645 n->dump();
1646 }
1647#endif
1648 ++_unused_cisc_instructions; // input can be on stack
1649 }
1650 }
1651
1652 } // End of for all instructions
1653
1654 } // End of for all blocks
1655}
1656
1657// Helper to stretch above; recursively discover the base Node for a
1658// given derived Node. Easy for AddP-related machine nodes, but needs
1659// to be recursive for derived Phis.
1660Node *PhaseChaitin::find_base_for_derived( Node **derived_base_map, Node *derived, uint &maxlrg ) {
1661 // See if already computed; if so return it
1662 if( derived_base_map[derived->_idx] )
1663 return derived_base_map[derived->_idx];
1664
1665 // See if this happens to be a base.
1666 // NOTE: we use TypePtr instead of TypeOopPtr because we can have
1667 // pointers derived from NULL! These are always along paths that
1668 // can't happen at run-time but the optimizer cannot deduce it so
1669 // we have to handle it gracefully.
1670 assert(!derived->bottom_type()->isa_narrowoop() ||
1671 derived->bottom_type()->make_ptr()->is_ptr()->_offset == 0, "sanity");
1672 const TypePtr *tj = derived->bottom_type()->isa_ptr();
1673 // If its an OOP with a non-zero offset, then it is derived.
1674 if( tj == NULL || tj->_offset == 0 ) {
1675 derived_base_map[derived->_idx] = derived;
1676 return derived;
1677 }
1678 // Derived is NULL+offset? Base is NULL!
1679 if( derived->is_Con() ) {
1680 Node *base = _matcher.mach_null();
1681 assert(base != NULL, "sanity");
1682 if (base->in(0) == NULL) {
1683 // Initialize it once and make it shared:
1684 // set control to _root and place it into Start block
1685 // (where top() node is placed).
1686 base->init_req(0, _cfg.get_root_node());
1687 Block *startb = _cfg.get_block_for_node(C->top());
1688 uint node_pos = startb->find_node(C->top());
1689 startb->insert_node(base, node_pos);
1690 _cfg.map_node_to_block(base, startb);
1691 assert(_lrg_map.live_range_id(base) == 0, "should not have LRG yet");
1692
1693 // The loadConP0 might have projection nodes depending on architecture
1694 // Add the projection nodes to the CFG
1695 for (DUIterator_Fast imax, i = base->fast_outs(imax); i < imax; i++) {
1696 Node* use = base->fast_out(i);
1697 if (use->is_MachProj()) {
1698 startb->insert_node(use, ++node_pos);
1699 _cfg.map_node_to_block(use, startb);
1700 new_lrg(use, maxlrg++);
1701 }
1702 }
1703 }
1704 if (_lrg_map.live_range_id(base) == 0) {
1705 new_lrg(base, maxlrg++);
1706 }
1707 assert(base->in(0) == _cfg.get_root_node() && _cfg.get_block_for_node(base) == _cfg.get_block_for_node(C->top()), "base NULL should be shared");
1708 derived_base_map[derived->_idx] = base;
1709 return base;
1710 }
1711
1712 // Check for AddP-related opcodes
1713 if (!derived->is_Phi()) {
1714 assert(derived->as_Mach()->ideal_Opcode() == Op_AddP, "but is: %s", derived->Name());
1715 Node *base = derived->in(AddPNode::Base);
1716 derived_base_map[derived->_idx] = base;
1717 return base;
1718 }
1719
1720 // Recursively find bases for Phis.
1721 // First check to see if we can avoid a base Phi here.
1722 Node *base = find_base_for_derived( derived_base_map, derived->in(1),maxlrg);
1723 uint i;
1724 for( i = 2; i < derived->req(); i++ )
1725 if( base != find_base_for_derived( derived_base_map,derived->in(i),maxlrg))
1726 break;
1727 // Went to the end without finding any different bases?
1728 if( i == derived->req() ) { // No need for a base Phi here
1729 derived_base_map[derived->_idx] = base;
1730 return base;
1731 }
1732
1733 // Now we see we need a base-Phi here to merge the bases
1734 const Type *t = base->bottom_type();
1735 base = new PhiNode( derived->in(0), t );
1736 for( i = 1; i < derived->req(); i++ ) {
1737 base->init_req(i, find_base_for_derived(derived_base_map, derived->in(i), maxlrg));
1738 t = t->meet(base->in(i)->bottom_type());
1739 }
1740 base->as_Phi()->set_type(t);
1741
1742 // Search the current block for an existing base-Phi
1743 Block *b = _cfg.get_block_for_node(derived);
1744 for( i = 1; i <= b->end_idx(); i++ ) {// Search for matching Phi
1745 Node *phi = b->get_node(i);
1746 if( !phi->is_Phi() ) { // Found end of Phis with no match?
1747 b->insert_node(base, i); // Must insert created Phi here as base
1748 _cfg.map_node_to_block(base, b);
1749 new_lrg(base,maxlrg++);
1750 break;
1751 }
1752 // See if Phi matches.
1753 uint j;
1754 for( j = 1; j < base->req(); j++ )
1755 if( phi->in(j) != base->in(j) &&
1756 !(phi->in(j)->is_Con() && base->in(j)->is_Con()) ) // allow different NULLs
1757 break;
1758 if( j == base->req() ) { // All inputs match?
1759 base = phi; // Then use existing 'phi' and drop 'base'
1760 break;
1761 }
1762 }
1763
1764
1765 // Cache info for later passes
1766 derived_base_map[derived->_idx] = base;
1767 return base;
1768}
1769
1770// At each Safepoint, insert extra debug edges for each pair of derived value/
1771// base pointer that is live across the Safepoint for oopmap building. The
1772// edge pairs get added in after sfpt->jvmtail()->oopoff(), but are in the
1773// required edge set.
1774bool PhaseChaitin::stretch_base_pointer_live_ranges(ResourceArea *a) {
1775 int must_recompute_live = false;
1776 uint maxlrg = _lrg_map.max_lrg_id();
1777 Node **derived_base_map = (Node**)a->Amalloc(sizeof(Node*)*C->unique());
1778 memset( derived_base_map, 0, sizeof(Node*)*C->unique() );
1779
1780 // For all blocks in RPO do...
1781 for (uint i = 0; i < _cfg.number_of_blocks(); i++) {
1782 Block* block = _cfg.get_block(i);
1783 // Note use of deep-copy constructor. I cannot hammer the original
1784 // liveout bits, because they are needed by the following coalesce pass.
1785 IndexSet liveout(_live->live(block));
1786
1787 for (uint j = block->end_idx() + 1; j > 1; j--) {
1788 Node* n = block->get_node(j - 1);
1789
1790 // Pre-split compares of loop-phis. Loop-phis form a cycle we would
1791 // like to see in the same register. Compare uses the loop-phi and so
1792 // extends its live range BUT cannot be part of the cycle. If this
1793 // extended live range overlaps with the update of the loop-phi value
1794 // we need both alive at the same time -- which requires at least 1
1795 // copy. But because Intel has only 2-address registers we end up with
1796 // at least 2 copies, one before the loop-phi update instruction and
1797 // one after. Instead we split the input to the compare just after the
1798 // phi.
1799 if( n->is_Mach() && n->as_Mach()->ideal_Opcode() == Op_CmpI ) {
1800 Node *phi = n->in(1);
1801 if( phi->is_Phi() && phi->as_Phi()->region()->is_Loop() ) {
1802 Block *phi_block = _cfg.get_block_for_node(phi);
1803 if (_cfg.get_block_for_node(phi_block->pred(2)) == block) {
1804 const RegMask *mask = C->matcher()->idealreg2spillmask[Op_RegI];
1805 Node *spill = new MachSpillCopyNode(MachSpillCopyNode::LoopPhiInput, phi, *mask, *mask);
1806 insert_proj( phi_block, 1, spill, maxlrg++ );
1807 n->set_req(1,spill);
1808 must_recompute_live = true;
1809 }
1810 }
1811 }
1812
1813 // Get value being defined
1814 uint lidx = _lrg_map.live_range_id(n);
1815 // Ignore the occasional brand-new live range
1816 if (lidx && lidx < _lrg_map.max_lrg_id()) {
1817 // Remove from live-out set
1818 liveout.remove(lidx);
1819
1820 // Copies do not define a new value and so do not interfere.
1821 // Remove the copies source from the liveout set before interfering.
1822 uint idx = n->is_Copy();
1823 if (idx) {
1824 liveout.remove(_lrg_map.live_range_id(n->in(idx)));
1825 }
1826 }
1827
1828 // Found a safepoint?
1829 JVMState *jvms = n->jvms();
1830 if( jvms ) {
1831 // Now scan for a live derived pointer
1832 IndexSetIterator elements(&liveout);
1833 uint neighbor;
1834 while ((neighbor = elements.next()) != 0) {
1835 // Find reaching DEF for base and derived values
1836 // This works because we are still in SSA during this call.
1837 Node *derived = lrgs(neighbor)._def;
1838 const TypePtr *tj = derived->bottom_type()->isa_ptr();
1839 assert(!derived->bottom_type()->isa_narrowoop() ||
1840 derived->bottom_type()->make_ptr()->is_ptr()->_offset == 0, "sanity");
1841 // If its an OOP with a non-zero offset, then it is derived.
1842 if( tj && tj->_offset != 0 && tj->isa_oop_ptr() ) {
1843 Node *base = find_base_for_derived(derived_base_map, derived, maxlrg);
1844 assert(base->_idx < _lrg_map.size(), "");
1845 // Add reaching DEFs of derived pointer and base pointer as a
1846 // pair of inputs
1847 n->add_req(derived);
1848 n->add_req(base);
1849
1850 // See if the base pointer is already live to this point.
1851 // Since I'm working on the SSA form, live-ness amounts to
1852 // reaching def's. So if I find the base's live range then
1853 // I know the base's def reaches here.
1854 if ((_lrg_map.live_range_id(base) >= _lrg_map.max_lrg_id() || // (Brand new base (hence not live) or
1855 !liveout.member(_lrg_map.live_range_id(base))) && // not live) AND
1856 (_lrg_map.live_range_id(base) > 0) && // not a constant
1857 _cfg.get_block_for_node(base) != block) { // base not def'd in blk)
1858 // Base pointer is not currently live. Since I stretched
1859 // the base pointer to here and it crosses basic-block
1860 // boundaries, the global live info is now incorrect.
1861 // Recompute live.
1862 must_recompute_live = true;
1863 } // End of if base pointer is not live to debug info
1864 }
1865 } // End of scan all live data for derived ptrs crossing GC point
1866 } // End of if found a GC point
1867
1868 // Make all inputs live
1869 if (!n->is_Phi()) { // Phi function uses come from prior block
1870 for (uint k = 1; k < n->req(); k++) {
1871 uint lidx = _lrg_map.live_range_id(n->in(k));
1872 if (lidx < _lrg_map.max_lrg_id()) {
1873 liveout.insert(lidx);
1874 }
1875 }
1876 }
1877
1878 } // End of forall instructions in block
1879 liveout.clear(); // Free the memory used by liveout.
1880
1881 } // End of forall blocks
1882 _lrg_map.set_max_lrg_id(maxlrg);
1883
1884 // If I created a new live range I need to recompute live
1885 if (maxlrg != _ifg->_maxlrg) {
1886 must_recompute_live = true;
1887 }
1888
1889 return must_recompute_live != 0;
1890}
1891
1892// Extend the node to LRG mapping
1893
1894void PhaseChaitin::add_reference(const Node *node, const Node *old_node) {
1895 _lrg_map.extend(node->_idx, _lrg_map.live_range_id(old_node));
1896}
1897
1898#ifndef PRODUCT
1899void PhaseChaitin::dump(const Node *n) const {
1900 uint r = (n->_idx < _lrg_map.size()) ? _lrg_map.find_const(n) : 0;
1901 tty->print("L%d",r);
1902 if (r && n->Opcode() != Op_Phi) {
1903 if( _node_regs ) { // Got a post-allocation copy of allocation?
1904 tty->print("[");
1905 OptoReg::Name second = get_reg_second(n);
1906 if( OptoReg::is_valid(second) ) {
1907 if( OptoReg::is_reg(second) )
1908 tty->print("%s:",Matcher::regName[second]);
1909 else
1910 tty->print("%s+%d:",OptoReg::regname(OptoReg::c_frame_pointer), reg2offset_unchecked(second));
1911 }
1912 OptoReg::Name first = get_reg_first(n);
1913 if( OptoReg::is_reg(first) )
1914 tty->print("%s]",Matcher::regName[first]);
1915 else
1916 tty->print("%s+%d]",OptoReg::regname(OptoReg::c_frame_pointer), reg2offset_unchecked(first));
1917 } else
1918 n->out_RegMask().dump();
1919 }
1920 tty->print("/N%d\t",n->_idx);
1921 tty->print("%s === ", n->Name());
1922 uint k;
1923 for (k = 0; k < n->req(); k++) {
1924 Node *m = n->in(k);
1925 if (!m) {
1926 tty->print("_ ");
1927 }
1928 else {
1929 uint r = (m->_idx < _lrg_map.size()) ? _lrg_map.find_const(m) : 0;
1930 tty->print("L%d",r);
1931 // Data MultiNode's can have projections with no real registers.
1932 // Don't die while dumping them.
1933 int op = n->Opcode();
1934 if( r && op != Op_Phi && op != Op_Proj && op != Op_SCMemProj) {
1935 if( _node_regs ) {
1936 tty->print("[");
1937 OptoReg::Name second = get_reg_second(n->in(k));
1938 if( OptoReg::is_valid(second) ) {
1939 if( OptoReg::is_reg(second) )
1940 tty->print("%s:",Matcher::regName[second]);
1941 else
1942 tty->print("%s+%d:",OptoReg::regname(OptoReg::c_frame_pointer),
1943 reg2offset_unchecked(second));
1944 }
1945 OptoReg::Name first = get_reg_first(n->in(k));
1946 if( OptoReg::is_reg(first) )
1947 tty->print("%s]",Matcher::regName[first]);
1948 else
1949 tty->print("%s+%d]",OptoReg::regname(OptoReg::c_frame_pointer),
1950 reg2offset_unchecked(first));
1951 } else
1952 n->in_RegMask(k).dump();
1953 }
1954 tty->print("/N%d ",m->_idx);
1955 }
1956 }
1957 if( k < n->len() && n->in(k) ) tty->print("| ");
1958 for( ; k < n->len(); k++ ) {
1959 Node *m = n->in(k);
1960 if(!m) {
1961 break;
1962 }
1963 uint r = (m->_idx < _lrg_map.size()) ? _lrg_map.find_const(m) : 0;
1964 tty->print("L%d",r);
1965 tty->print("/N%d ",m->_idx);
1966 }
1967 if( n->is_Mach() ) n->as_Mach()->dump_spec(tty);
1968 else n->dump_spec(tty);
1969 if( _spilled_once.test(n->_idx ) ) {
1970 tty->print(" Spill_1");
1971 if( _spilled_twice.test(n->_idx ) )
1972 tty->print(" Spill_2");
1973 }
1974 tty->print("\n");
1975}
1976
1977void PhaseChaitin::dump(const Block *b) const {
1978 b->dump_head(&_cfg);
1979
1980 // For all instructions
1981 for( uint j = 0; j < b->number_of_nodes(); j++ )
1982 dump(b->get_node(j));
1983 // Print live-out info at end of block
1984 if( _live ) {
1985 tty->print("Liveout: ");
1986 IndexSet *live = _live->live(b);
1987 IndexSetIterator elements(live);
1988 tty->print("{");
1989 uint i;
1990 while ((i = elements.next()) != 0) {
1991 tty->print("L%d ", _lrg_map.find_const(i));
1992 }
1993 tty->print_cr("}");
1994 }
1995 tty->print("\n");
1996}
1997
1998void PhaseChaitin::dump() const {
1999 tty->print( "--- Chaitin -- argsize: %d framesize: %d ---\n",
2000 _matcher._new_SP, _framesize );
2001
2002 // For all blocks
2003 for (uint i = 0; i < _cfg.number_of_blocks(); i++) {
2004 dump(_cfg.get_block(i));
2005 }
2006 // End of per-block dump
2007 tty->print("\n");
2008
2009 if (!_ifg) {
2010 tty->print("(No IFG.)\n");
2011 return;
2012 }
2013
2014 // Dump LRG array
2015 tty->print("--- Live RanGe Array ---\n");
2016 for (uint i2 = 1; i2 < _lrg_map.max_lrg_id(); i2++) {
2017 tty->print("L%d: ",i2);
2018 if (i2 < _ifg->_maxlrg) {
2019 lrgs(i2).dump();
2020 }
2021 else {
2022 tty->print_cr("new LRG");
2023 }
2024 }
2025 tty->cr();
2026
2027 // Dump lo-degree list
2028 tty->print("Lo degree: ");
2029 for(uint i3 = _lo_degree; i3; i3 = lrgs(i3)._next )
2030 tty->print("L%d ",i3);
2031 tty->cr();
2032
2033 // Dump lo-stk-degree list
2034 tty->print("Lo stk degree: ");
2035 for(uint i4 = _lo_stk_degree; i4; i4 = lrgs(i4)._next )
2036 tty->print("L%d ",i4);
2037 tty->cr();
2038
2039 // Dump lo-degree list
2040 tty->print("Hi degree: ");
2041 for(uint i5 = _hi_degree; i5; i5 = lrgs(i5)._next )
2042 tty->print("L%d ",i5);
2043 tty->cr();
2044}
2045
2046void PhaseChaitin::dump_degree_lists() const {
2047 // Dump lo-degree list
2048 tty->print("Lo degree: ");
2049 for( uint i = _lo_degree; i; i = lrgs(i)._next )
2050 tty->print("L%d ",i);
2051 tty->cr();
2052
2053 // Dump lo-stk-degree list
2054 tty->print("Lo stk degree: ");
2055 for(uint i2 = _lo_stk_degree; i2; i2 = lrgs(i2)._next )
2056 tty->print("L%d ",i2);
2057 tty->cr();
2058
2059 // Dump lo-degree list
2060 tty->print("Hi degree: ");
2061 for(uint i3 = _hi_degree; i3; i3 = lrgs(i3)._next )
2062 tty->print("L%d ",i3);
2063 tty->cr();
2064}
2065
2066void PhaseChaitin::dump_simplified() const {
2067 tty->print("Simplified: ");
2068 for( uint i = _simplified; i; i = lrgs(i)._next )
2069 tty->print("L%d ",i);
2070 tty->cr();
2071}
2072
2073static char *print_reg( OptoReg::Name reg, const PhaseChaitin *pc, char *buf ) {
2074 if ((int)reg < 0)
2075 sprintf(buf, "<OptoReg::%d>", (int)reg);
2076 else if (OptoReg::is_reg(reg))
2077 strcpy(buf, Matcher::regName[reg]);
2078 else
2079 sprintf(buf,"%s + #%d",OptoReg::regname(OptoReg::c_frame_pointer),
2080 pc->reg2offset(reg));
2081 return buf+strlen(buf);
2082}
2083
2084// Dump a register name into a buffer. Be intelligent if we get called
2085// before allocation is complete.
2086char *PhaseChaitin::dump_register( const Node *n, char *buf ) const {
2087 if( _node_regs ) {
2088 // Post allocation, use direct mappings, no LRG info available
2089 print_reg( get_reg_first(n), this, buf );
2090 } else {
2091 uint lidx = _lrg_map.find_const(n); // Grab LRG number
2092 if( !_ifg ) {
2093 sprintf(buf,"L%d",lidx); // No register binding yet
2094 } else if( !lidx ) { // Special, not allocated value
2095 strcpy(buf,"Special");
2096 } else {
2097 if (lrgs(lidx)._is_vector) {
2098 if (lrgs(lidx).mask().is_bound_set(lrgs(lidx).num_regs()))
2099 print_reg( lrgs(lidx).reg(), this, buf ); // a bound machine register
2100 else
2101 sprintf(buf,"L%d",lidx); // No register binding yet
2102 } else if( (lrgs(lidx).num_regs() == 1)
2103 ? lrgs(lidx).mask().is_bound1()
2104 : lrgs(lidx).mask().is_bound_pair() ) {
2105 // Hah! We have a bound machine register
2106 print_reg( lrgs(lidx).reg(), this, buf );
2107 } else {
2108 sprintf(buf,"L%d",lidx); // No register binding yet
2109 }
2110 }
2111 }
2112 return buf+strlen(buf);
2113}
2114
2115void PhaseChaitin::dump_for_spill_split_recycle() const {
2116 if( WizardMode && (PrintCompilation || PrintOpto) ) {
2117 // Display which live ranges need to be split and the allocator's state
2118 tty->print_cr("Graph-Coloring Iteration %d will split the following live ranges", _trip_cnt);
2119 for (uint bidx = 1; bidx < _lrg_map.max_lrg_id(); bidx++) {
2120 if( lrgs(bidx).alive() && lrgs(bidx).reg() >= LRG::SPILL_REG ) {
2121 tty->print("L%d: ", bidx);
2122 lrgs(bidx).dump();
2123 }
2124 }
2125 tty->cr();
2126 dump();
2127 }
2128}
2129
2130void PhaseChaitin::dump_frame() const {
2131 const char *fp = OptoReg::regname(OptoReg::c_frame_pointer);
2132 const TypeTuple *domain = C->tf()->domain();
2133 const int argcnt = domain->cnt() - TypeFunc::Parms;
2134
2135 // Incoming arguments in registers dump
2136 for( int k = 0; k < argcnt; k++ ) {
2137 OptoReg::Name parmreg = _matcher._parm_regs[k].first();
2138 if( OptoReg::is_reg(parmreg)) {
2139 const char *reg_name = OptoReg::regname(parmreg);
2140 tty->print("#r%3.3d %s", parmreg, reg_name);
2141 parmreg = _matcher._parm_regs[k].second();
2142 if( OptoReg::is_reg(parmreg)) {
2143 tty->print(":%s", OptoReg::regname(parmreg));
2144 }
2145 tty->print(" : parm %d: ", k);
2146 domain->field_at(k + TypeFunc::Parms)->dump();
2147 tty->cr();
2148 }
2149 }
2150
2151 // Check for un-owned padding above incoming args
2152 OptoReg::Name reg = _matcher._new_SP;
2153 if( reg > _matcher._in_arg_limit ) {
2154 reg = OptoReg::add(reg, -1);
2155 tty->print_cr("#r%3.3d %s+%2d: pad0, owned by CALLER", reg, fp, reg2offset_unchecked(reg));
2156 }
2157
2158 // Incoming argument area dump
2159 OptoReg::Name begin_in_arg = OptoReg::add(_matcher._old_SP,C->out_preserve_stack_slots());
2160 while( reg > begin_in_arg ) {
2161 reg = OptoReg::add(reg, -1);
2162 tty->print("#r%3.3d %s+%2d: ",reg,fp,reg2offset_unchecked(reg));
2163 int j;
2164 for( j = 0; j < argcnt; j++) {
2165 if( _matcher._parm_regs[j].first() == reg ||
2166 _matcher._parm_regs[j].second() == reg ) {
2167 tty->print("parm %d: ",j);
2168 domain->field_at(j + TypeFunc::Parms)->dump();
2169 tty->cr();
2170 break;
2171 }
2172 }
2173 if( j >= argcnt )
2174 tty->print_cr("HOLE, owned by SELF");
2175 }
2176
2177 // Old outgoing preserve area
2178 while( reg > _matcher._old_SP ) {
2179 reg = OptoReg::add(reg, -1);
2180 tty->print_cr("#r%3.3d %s+%2d: old out preserve",reg,fp,reg2offset_unchecked(reg));
2181 }
2182
2183 // Old SP
2184 tty->print_cr("# -- Old %s -- Framesize: %d --",fp,
2185 reg2offset_unchecked(OptoReg::add(_matcher._old_SP,-1)) - reg2offset_unchecked(_matcher._new_SP)+jintSize);
2186
2187 // Preserve area dump
2188 int fixed_slots = C->fixed_slots();
2189 OptoReg::Name begin_in_preserve = OptoReg::add(_matcher._old_SP, -(int)C->in_preserve_stack_slots());
2190 OptoReg::Name return_addr = _matcher.return_addr();
2191
2192 reg = OptoReg::add(reg, -1);
2193 while (OptoReg::is_stack(reg)) {
2194 tty->print("#r%3.3d %s+%2d: ",reg,fp,reg2offset_unchecked(reg));
2195 if (return_addr == reg) {
2196 tty->print_cr("return address");
2197 } else if (reg >= begin_in_preserve) {
2198 // Preserved slots are present on x86
2199 if (return_addr == OptoReg::add(reg, VMRegImpl::slots_per_word))
2200 tty->print_cr("saved fp register");
2201 else if (return_addr == OptoReg::add(reg, 2*VMRegImpl::slots_per_word) &&
2202 VerifyStackAtCalls)
2203 tty->print_cr("0xBADB100D +VerifyStackAtCalls");
2204 else
2205 tty->print_cr("in_preserve");
2206 } else if ((int)OptoReg::reg2stack(reg) < fixed_slots) {
2207 tty->print_cr("Fixed slot %d", OptoReg::reg2stack(reg));
2208 } else {
2209 tty->print_cr("pad2, stack alignment");
2210 }
2211 reg = OptoReg::add(reg, -1);
2212 }
2213
2214 // Spill area dump
2215 reg = OptoReg::add(_matcher._new_SP, _framesize );
2216 while( reg > _matcher._out_arg_limit ) {
2217 reg = OptoReg::add(reg, -1);
2218 tty->print_cr("#r%3.3d %s+%2d: spill",reg,fp,reg2offset_unchecked(reg));
2219 }
2220
2221 // Outgoing argument area dump
2222 while( reg > OptoReg::add(_matcher._new_SP, C->out_preserve_stack_slots()) ) {
2223 reg = OptoReg::add(reg, -1);
2224 tty->print_cr("#r%3.3d %s+%2d: outgoing argument",reg,fp,reg2offset_unchecked(reg));
2225 }
2226
2227 // Outgoing new preserve area
2228 while( reg > _matcher._new_SP ) {
2229 reg = OptoReg::add(reg, -1);
2230 tty->print_cr("#r%3.3d %s+%2d: new out preserve",reg,fp,reg2offset_unchecked(reg));
2231 }
2232 tty->print_cr("#");
2233}
2234
2235void PhaseChaitin::dump_bb( uint pre_order ) const {
2236 tty->print_cr("---dump of B%d---",pre_order);
2237 for (uint i = 0; i < _cfg.number_of_blocks(); i++) {
2238 Block* block = _cfg.get_block(i);
2239 if (block->_pre_order == pre_order) {
2240 dump(block);
2241 }
2242 }
2243}
2244
2245void PhaseChaitin::dump_lrg( uint lidx, bool defs_only ) const {
2246 tty->print_cr("---dump of L%d---",lidx);
2247
2248 if (_ifg) {
2249 if (lidx >= _lrg_map.max_lrg_id()) {
2250 tty->print("Attempt to print live range index beyond max live range.\n");
2251 return;
2252 }
2253 tty->print("L%d: ",lidx);
2254 if (lidx < _ifg->_maxlrg) {
2255 lrgs(lidx).dump();
2256 } else {
2257 tty->print_cr("new LRG");
2258 }
2259 }
2260 if( _ifg && lidx < _ifg->_maxlrg) {
2261 tty->print("Neighbors: %d - ", _ifg->neighbor_cnt(lidx));
2262 _ifg->neighbors(lidx)->dump();
2263 tty->cr();
2264 }
2265 // For all blocks
2266 for (uint i = 0; i < _cfg.number_of_blocks(); i++) {
2267 Block* block = _cfg.get_block(i);
2268 int dump_once = 0;
2269
2270 // For all instructions
2271 for( uint j = 0; j < block->number_of_nodes(); j++ ) {
2272 Node *n = block->get_node(j);
2273 if (_lrg_map.find_const(n) == lidx) {
2274 if (!dump_once++) {
2275 tty->cr();
2276 block->dump_head(&_cfg);
2277 }
2278 dump(n);
2279 continue;
2280 }
2281 if (!defs_only) {
2282 uint cnt = n->req();
2283 for( uint k = 1; k < cnt; k++ ) {
2284 Node *m = n->in(k);
2285 if (!m) {
2286 continue; // be robust in the dumper
2287 }
2288 if (_lrg_map.find_const(m) == lidx) {
2289 if (!dump_once++) {
2290 tty->cr();
2291 block->dump_head(&_cfg);
2292 }
2293 dump(n);
2294 }
2295 }
2296 }
2297 }
2298 } // End of per-block dump
2299 tty->cr();
2300}
2301#endif // not PRODUCT
2302
2303int PhaseChaitin::_final_loads = 0;
2304int PhaseChaitin::_final_stores = 0;
2305int PhaseChaitin::_final_memoves= 0;
2306int PhaseChaitin::_final_copies = 0;
2307double PhaseChaitin::_final_load_cost = 0;
2308double PhaseChaitin::_final_store_cost = 0;
2309double PhaseChaitin::_final_memove_cost= 0;
2310double PhaseChaitin::_final_copy_cost = 0;
2311int PhaseChaitin::_conserv_coalesce = 0;
2312int PhaseChaitin::_conserv_coalesce_pair = 0;
2313int PhaseChaitin::_conserv_coalesce_trie = 0;
2314int PhaseChaitin::_conserv_coalesce_quad = 0;
2315int PhaseChaitin::_post_alloc = 0;
2316int PhaseChaitin::_lost_opp_pp_coalesce = 0;
2317int PhaseChaitin::_lost_opp_cflow_coalesce = 0;
2318int PhaseChaitin::_used_cisc_instructions = 0;
2319int PhaseChaitin::_unused_cisc_instructions = 0;
2320int PhaseChaitin::_allocator_attempts = 0;
2321int PhaseChaitin::_allocator_successes = 0;
2322
2323#ifndef PRODUCT
2324uint PhaseChaitin::_high_pressure = 0;
2325uint PhaseChaitin::_low_pressure = 0;
2326
2327void PhaseChaitin::print_chaitin_statistics() {
2328 tty->print_cr("Inserted %d spill loads, %d spill stores, %d mem-mem moves and %d copies.", _final_loads, _final_stores, _final_memoves, _final_copies);
2329 tty->print_cr("Total load cost= %6.0f, store cost = %6.0f, mem-mem cost = %5.2f, copy cost = %5.0f.", _final_load_cost, _final_store_cost, _final_memove_cost, _final_copy_cost);
2330 tty->print_cr("Adjusted spill cost = %7.0f.",
2331 _final_load_cost*4.0 + _final_store_cost * 2.0 +
2332 _final_copy_cost*1.0 + _final_memove_cost*12.0);
2333 tty->print("Conservatively coalesced %d copies, %d pairs",
2334 _conserv_coalesce, _conserv_coalesce_pair);
2335 if( _conserv_coalesce_trie || _conserv_coalesce_quad )
2336 tty->print(", %d tries, %d quads", _conserv_coalesce_trie, _conserv_coalesce_quad);
2337 tty->print_cr(", %d post alloc.", _post_alloc);
2338 if( _lost_opp_pp_coalesce || _lost_opp_cflow_coalesce )
2339 tty->print_cr("Lost coalesce opportunity, %d private-private, and %d cflow interfered.",
2340 _lost_opp_pp_coalesce, _lost_opp_cflow_coalesce );
2341 if( _used_cisc_instructions || _unused_cisc_instructions )
2342 tty->print_cr("Used cisc instruction %d, remained in register %d",
2343 _used_cisc_instructions, _unused_cisc_instructions);
2344 if( _allocator_successes != 0 )
2345 tty->print_cr("Average allocation trips %f", (float)_allocator_attempts/(float)_allocator_successes);
2346 tty->print_cr("High Pressure Blocks = %d, Low Pressure Blocks = %d", _high_pressure, _low_pressure);
2347}
2348#endif // not PRODUCT
2349