| 1 | /* | 
|---|
| 2 | * Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved. | 
|---|
| 3 | * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. | 
|---|
| 4 | * | 
|---|
| 5 | * This code is free software; you can redistribute it and/or modify it | 
|---|
| 6 | * under the terms of the GNU General Public License version 2 only, as | 
|---|
| 7 | * published by the Free Software Foundation. | 
|---|
| 8 | * | 
|---|
| 9 | * This code is distributed in the hope that it will be useful, but WITHOUT | 
|---|
| 10 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | 
|---|
| 11 | * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License | 
|---|
| 12 | * version 2 for more details (a copy is included in the LICENSE file that | 
|---|
| 13 | * accompanied this code). | 
|---|
| 14 | * | 
|---|
| 15 | * You should have received a copy of the GNU General Public License version | 
|---|
| 16 | * 2 along with this work; if not, write to the Free Software Foundation, | 
|---|
| 17 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. | 
|---|
| 18 | * | 
|---|
| 19 | * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA | 
|---|
| 20 | * or visit www.oracle.com if you need additional information or have any | 
|---|
| 21 | * questions. | 
|---|
| 22 | * | 
|---|
| 23 | */ | 
|---|
| 24 |  | 
|---|
| 25 | #include "precompiled.hpp" | 
|---|
| 26 | #include "classfile/systemDictionary.hpp" | 
|---|
| 27 | #include "compiler/compileLog.hpp" | 
|---|
| 28 | #include "gc/shared/barrierSet.hpp" | 
|---|
| 29 | #include "gc/shared/c2/barrierSetC2.hpp" | 
|---|
| 30 | #include "memory/allocation.inline.hpp" | 
|---|
| 31 | #include "memory/resourceArea.hpp" | 
|---|
| 32 | #include "oops/objArrayKlass.hpp" | 
|---|
| 33 | #include "opto/addnode.hpp" | 
|---|
| 34 | #include "opto/arraycopynode.hpp" | 
|---|
| 35 | #include "opto/cfgnode.hpp" | 
|---|
| 36 | #include "opto/compile.hpp" | 
|---|
| 37 | #include "opto/connode.hpp" | 
|---|
| 38 | #include "opto/convertnode.hpp" | 
|---|
| 39 | #include "opto/loopnode.hpp" | 
|---|
| 40 | #include "opto/machnode.hpp" | 
|---|
| 41 | #include "opto/matcher.hpp" | 
|---|
| 42 | #include "opto/memnode.hpp" | 
|---|
| 43 | #include "opto/mulnode.hpp" | 
|---|
| 44 | #include "opto/narrowptrnode.hpp" | 
|---|
| 45 | #include "opto/phaseX.hpp" | 
|---|
| 46 | #include "opto/regmask.hpp" | 
|---|
| 47 | #include "opto/rootnode.hpp" | 
|---|
| 48 | #include "utilities/align.hpp" | 
|---|
| 49 | #include "utilities/copy.hpp" | 
|---|
| 50 | #include "utilities/macros.hpp" | 
|---|
| 51 | #include "utilities/vmError.hpp" | 
|---|
| 52 | #if INCLUDE_ZGC | 
|---|
| 53 | #include "gc/z/c2/zBarrierSetC2.hpp" | 
|---|
| 54 | #endif | 
|---|
| 55 |  | 
|---|
| 56 | // Portions of code courtesy of Clifford Click | 
|---|
| 57 |  | 
|---|
| 58 | // Optimization - Graph Style | 
|---|
| 59 |  | 
|---|
| 60 | static Node *step_through_mergemem(PhaseGVN *phase, MergeMemNode *mmem,  const TypePtr *tp, const TypePtr *adr_check, outputStream *st); | 
|---|
| 61 |  | 
|---|
| 62 | //============================================================================= | 
|---|
| 63 | uint MemNode::size_of() const { return sizeof(*this); } | 
|---|
| 64 |  | 
|---|
| 65 | const TypePtr *MemNode::adr_type() const { | 
|---|
| 66 | Node* adr = in(Address); | 
|---|
| 67 | if (adr == NULL)  return NULL; // node is dead | 
|---|
| 68 | const TypePtr* cross_check = NULL; | 
|---|
| 69 | DEBUG_ONLY(cross_check = _adr_type); | 
|---|
| 70 | return calculate_adr_type(adr->bottom_type(), cross_check); | 
|---|
| 71 | } | 
|---|
| 72 |  | 
|---|
| 73 | bool MemNode::check_if_adr_maybe_raw(Node* adr) { | 
|---|
| 74 | if (adr != NULL) { | 
|---|
| 75 | if (adr->bottom_type()->base() == Type::RawPtr || adr->bottom_type()->base() == Type::AnyPtr) { | 
|---|
| 76 | return true; | 
|---|
| 77 | } | 
|---|
| 78 | } | 
|---|
| 79 | return false; | 
|---|
| 80 | } | 
|---|
| 81 |  | 
|---|
| 82 | #ifndef PRODUCT | 
|---|
| 83 | void MemNode::dump_spec(outputStream *st) const { | 
|---|
| 84 | if (in(Address) == NULL)  return; // node is dead | 
|---|
| 85 | #ifndef ASSERT | 
|---|
| 86 | // fake the missing field | 
|---|
| 87 | const TypePtr* _adr_type = NULL; | 
|---|
| 88 | if (in(Address) != NULL) | 
|---|
| 89 | _adr_type = in(Address)->bottom_type()->isa_ptr(); | 
|---|
| 90 | #endif | 
|---|
| 91 | dump_adr_type(this, _adr_type, st); | 
|---|
| 92 |  | 
|---|
| 93 | Compile* C = Compile::current(); | 
|---|
| 94 | if (C->alias_type(_adr_type)->is_volatile()) { | 
|---|
| 95 | st->print( " Volatile!"); | 
|---|
| 96 | } | 
|---|
| 97 | if (_unaligned_access) { | 
|---|
| 98 | st->print( " unaligned"); | 
|---|
| 99 | } | 
|---|
| 100 | if (_mismatched_access) { | 
|---|
| 101 | st->print( " mismatched"); | 
|---|
| 102 | } | 
|---|
| 103 | if (_unsafe_access) { | 
|---|
| 104 | st->print( " unsafe"); | 
|---|
| 105 | } | 
|---|
| 106 | } | 
|---|
| 107 |  | 
|---|
| 108 | void MemNode::dump_adr_type(const Node* mem, const TypePtr* adr_type, outputStream *st) { | 
|---|
| 109 | st->print( " @"); | 
|---|
| 110 | if (adr_type == NULL) { | 
|---|
| 111 | st->print( "NULL"); | 
|---|
| 112 | } else { | 
|---|
| 113 | adr_type->dump_on(st); | 
|---|
| 114 | Compile* C = Compile::current(); | 
|---|
| 115 | Compile::AliasType* atp = NULL; | 
|---|
| 116 | if (C->have_alias_type(adr_type))  atp = C->alias_type(adr_type); | 
|---|
| 117 | if (atp == NULL) | 
|---|
| 118 | st->print( ", idx=?\?;"); | 
|---|
| 119 | else if (atp->index() == Compile::AliasIdxBot) | 
|---|
| 120 | st->print( ", idx=Bot;"); | 
|---|
| 121 | else if (atp->index() == Compile::AliasIdxTop) | 
|---|
| 122 | st->print( ", idx=Top;"); | 
|---|
| 123 | else if (atp->index() == Compile::AliasIdxRaw) | 
|---|
| 124 | st->print( ", idx=Raw;"); | 
|---|
| 125 | else { | 
|---|
| 126 | ciField* field = atp->field(); | 
|---|
| 127 | if (field) { | 
|---|
| 128 | st->print( ", name="); | 
|---|
| 129 | field->print_name_on(st); | 
|---|
| 130 | } | 
|---|
| 131 | st->print( ", idx=%d;", atp->index()); | 
|---|
| 132 | } | 
|---|
| 133 | } | 
|---|
| 134 | } | 
|---|
| 135 |  | 
|---|
| 136 | extern void print_alias_types(); | 
|---|
| 137 |  | 
|---|
| 138 | #endif | 
|---|
| 139 |  | 
|---|
| 140 | Node *MemNode::optimize_simple_memory_chain(Node *mchain, const TypeOopPtr *t_oop, Node *load, PhaseGVN *phase) { | 
|---|
| 141 | assert((t_oop != NULL), "sanity"); | 
|---|
| 142 | bool is_instance = t_oop->is_known_instance_field(); | 
|---|
| 143 | bool is_boxed_value_load = t_oop->is_ptr_to_boxed_value() && | 
|---|
| 144 | (load != NULL) && load->is_Load() && | 
|---|
| 145 | (phase->is_IterGVN() != NULL); | 
|---|
| 146 | if (!(is_instance || is_boxed_value_load)) | 
|---|
| 147 | return mchain;  // don't try to optimize non-instance types | 
|---|
| 148 | uint instance_id = t_oop->instance_id(); | 
|---|
| 149 | Node *start_mem = phase->C->start()->proj_out_or_null(TypeFunc::Memory); | 
|---|
| 150 | Node *prev = NULL; | 
|---|
| 151 | Node *result = mchain; | 
|---|
| 152 | while (prev != result) { | 
|---|
| 153 | prev = result; | 
|---|
| 154 | if (result == start_mem) | 
|---|
| 155 | break;  // hit one of our sentinels | 
|---|
| 156 | // skip over a call which does not affect this memory slice | 
|---|
| 157 | if (result->is_Proj() && result->as_Proj()->_con == TypeFunc::Memory) { | 
|---|
| 158 | Node *proj_in = result->in(0); | 
|---|
| 159 | if (proj_in->is_Allocate() && proj_in->_idx == instance_id) { | 
|---|
| 160 | break;  // hit one of our sentinels | 
|---|
| 161 | } else if (proj_in->is_Call()) { | 
|---|
| 162 | // ArrayCopyNodes processed here as well | 
|---|
| 163 | CallNode *call = proj_in->as_Call(); | 
|---|
| 164 | if (!call->may_modify(t_oop, phase)) { // returns false for instances | 
|---|
| 165 | result = call->in(TypeFunc::Memory); | 
|---|
| 166 | } | 
|---|
| 167 | } else if (proj_in->is_Initialize()) { | 
|---|
| 168 | AllocateNode* alloc = proj_in->as_Initialize()->allocation(); | 
|---|
| 169 | // Stop if this is the initialization for the object instance which | 
|---|
| 170 | // contains this memory slice, otherwise skip over it. | 
|---|
| 171 | if ((alloc == NULL) || (alloc->_idx == instance_id)) { | 
|---|
| 172 | break; | 
|---|
| 173 | } | 
|---|
| 174 | if (is_instance) { | 
|---|
| 175 | result = proj_in->in(TypeFunc::Memory); | 
|---|
| 176 | } else if (is_boxed_value_load) { | 
|---|
| 177 | Node* klass = alloc->in(AllocateNode::KlassNode); | 
|---|
| 178 | const TypeKlassPtr* tklass = phase->type(klass)->is_klassptr(); | 
|---|
| 179 | if (tklass->klass_is_exact() && !tklass->klass()->equals(t_oop->klass())) { | 
|---|
| 180 | result = proj_in->in(TypeFunc::Memory); // not related allocation | 
|---|
| 181 | } | 
|---|
| 182 | } | 
|---|
| 183 | } else if (proj_in->is_MemBar()) { | 
|---|
| 184 | ArrayCopyNode* ac = NULL; | 
|---|
| 185 | if (ArrayCopyNode::may_modify(t_oop, proj_in->as_MemBar(), phase, ac)) { | 
|---|
| 186 | break; | 
|---|
| 187 | } | 
|---|
| 188 | result = proj_in->in(TypeFunc::Memory); | 
|---|
| 189 | } else { | 
|---|
| 190 | assert(false, "unexpected projection"); | 
|---|
| 191 | } | 
|---|
| 192 | } else if (result->is_ClearArray()) { | 
|---|
| 193 | if (!is_instance || !ClearArrayNode::step_through(&result, instance_id, phase)) { | 
|---|
| 194 | // Can not bypass initialization of the instance | 
|---|
| 195 | // we are looking for. | 
|---|
| 196 | break; | 
|---|
| 197 | } | 
|---|
| 198 | // Otherwise skip it (the call updated 'result' value). | 
|---|
| 199 | } else if (result->is_MergeMem()) { | 
|---|
| 200 | result = step_through_mergemem(phase, result->as_MergeMem(), t_oop, NULL, tty); | 
|---|
| 201 | } | 
|---|
| 202 | } | 
|---|
| 203 | return result; | 
|---|
| 204 | } | 
|---|
| 205 |  | 
|---|
| 206 | Node *MemNode::optimize_memory_chain(Node *mchain, const TypePtr *t_adr, Node *load, PhaseGVN *phase) { | 
|---|
| 207 | const TypeOopPtr* t_oop = t_adr->isa_oopptr(); | 
|---|
| 208 | if (t_oop == NULL) | 
|---|
| 209 | return mchain;  // don't try to optimize non-oop types | 
|---|
| 210 | Node* result = optimize_simple_memory_chain(mchain, t_oop, load, phase); | 
|---|
| 211 | bool is_instance = t_oop->is_known_instance_field(); | 
|---|
| 212 | PhaseIterGVN *igvn = phase->is_IterGVN(); | 
|---|
| 213 | if (is_instance && igvn != NULL  && result->is_Phi()) { | 
|---|
| 214 | PhiNode *mphi = result->as_Phi(); | 
|---|
| 215 | assert(mphi->bottom_type() == Type::MEMORY, "memory phi required"); | 
|---|
| 216 | const TypePtr *t = mphi->adr_type(); | 
|---|
| 217 | if (t == TypePtr::BOTTOM || t == TypeRawPtr::BOTTOM || | 
|---|
| 218 | (t->isa_oopptr() && !t->is_oopptr()->is_known_instance() && | 
|---|
| 219 | t->is_oopptr()->cast_to_exactness(true) | 
|---|
| 220 | ->is_oopptr()->cast_to_ptr_type(t_oop->ptr()) | 
|---|
| 221 | ->is_oopptr()->cast_to_instance_id(t_oop->instance_id()) == t_oop)) { | 
|---|
| 222 | // clone the Phi with our address type | 
|---|
| 223 | result = mphi->split_out_instance(t_adr, igvn); | 
|---|
| 224 | } else { | 
|---|
| 225 | assert(phase->C->get_alias_index(t) == phase->C->get_alias_index(t_adr), "correct memory chain"); | 
|---|
| 226 | } | 
|---|
| 227 | } | 
|---|
| 228 | return result; | 
|---|
| 229 | } | 
|---|
| 230 |  | 
|---|
| 231 | static Node *step_through_mergemem(PhaseGVN *phase, MergeMemNode *mmem,  const TypePtr *tp, const TypePtr *adr_check, outputStream *st) { | 
|---|
| 232 | uint alias_idx = phase->C->get_alias_index(tp); | 
|---|
| 233 | Node *mem = mmem; | 
|---|
| 234 | #ifdef ASSERT | 
|---|
| 235 | { | 
|---|
| 236 | // Check that current type is consistent with the alias index used during graph construction | 
|---|
| 237 | assert(alias_idx >= Compile::AliasIdxRaw, "must not be a bad alias_idx"); | 
|---|
| 238 | bool consistent =  adr_check == NULL || adr_check->empty() || | 
|---|
| 239 | phase->C->must_alias(adr_check, alias_idx ); | 
|---|
| 240 | // Sometimes dead array references collapse to a[-1], a[-2], or a[-3] | 
|---|
| 241 | if( !consistent && adr_check != NULL && !adr_check->empty() && | 
|---|
| 242 | tp->isa_aryptr() &&        tp->offset() == Type::OffsetBot && | 
|---|
| 243 | adr_check->isa_aryptr() && adr_check->offset() != Type::OffsetBot && | 
|---|
| 244 | ( adr_check->offset() == arrayOopDesc::length_offset_in_bytes() || | 
|---|
| 245 | adr_check->offset() == oopDesc::klass_offset_in_bytes() || | 
|---|
| 246 | adr_check->offset() == oopDesc::mark_offset_in_bytes() ) ) { | 
|---|
| 247 | // don't assert if it is dead code. | 
|---|
| 248 | consistent = true; | 
|---|
| 249 | } | 
|---|
| 250 | if( !consistent ) { | 
|---|
| 251 | st->print( "alias_idx==%d, adr_check==", alias_idx); | 
|---|
| 252 | if( adr_check == NULL ) { | 
|---|
| 253 | st->print( "NULL"); | 
|---|
| 254 | } else { | 
|---|
| 255 | adr_check->dump(); | 
|---|
| 256 | } | 
|---|
| 257 | st->cr(); | 
|---|
| 258 | print_alias_types(); | 
|---|
| 259 | assert(consistent, "adr_check must match alias idx"); | 
|---|
| 260 | } | 
|---|
| 261 | } | 
|---|
| 262 | #endif | 
|---|
| 263 | // TypeOopPtr::NOTNULL+any is an OOP with unknown offset - generally | 
|---|
| 264 | // means an array I have not precisely typed yet.  Do not do any | 
|---|
| 265 | // alias stuff with it any time soon. | 
|---|
| 266 | const TypeOopPtr *toop = tp->isa_oopptr(); | 
|---|
| 267 | if( tp->base() != Type::AnyPtr && | 
|---|
| 268 | !(toop && | 
|---|
| 269 | toop->klass() != NULL && | 
|---|
| 270 | toop->klass()->is_java_lang_Object() && | 
|---|
| 271 | toop->offset() == Type::OffsetBot) ) { | 
|---|
| 272 | // compress paths and change unreachable cycles to TOP | 
|---|
| 273 | // If not, we can update the input infinitely along a MergeMem cycle | 
|---|
| 274 | // Equivalent code in PhiNode::Ideal | 
|---|
| 275 | Node* m  = phase->transform(mmem); | 
|---|
| 276 | // If transformed to a MergeMem, get the desired slice | 
|---|
| 277 | // Otherwise the returned node represents memory for every slice | 
|---|
| 278 | mem = (m->is_MergeMem())? m->as_MergeMem()->memory_at(alias_idx) : m; | 
|---|
| 279 | // Update input if it is progress over what we have now | 
|---|
| 280 | } | 
|---|
| 281 | return mem; | 
|---|
| 282 | } | 
|---|
| 283 |  | 
|---|
| 284 | //--------------------------Ideal_common--------------------------------------- | 
|---|
| 285 | // Look for degenerate control and memory inputs.  Bypass MergeMem inputs. | 
|---|
| 286 | // Unhook non-raw memories from complete (macro-expanded) initializations. | 
|---|
| 287 | Node *MemNode::Ideal_common(PhaseGVN *phase, bool can_reshape) { | 
|---|
| 288 | // If our control input is a dead region, kill all below the region | 
|---|
| 289 | Node *ctl = in(MemNode::Control); | 
|---|
| 290 | if (ctl && remove_dead_region(phase, can_reshape)) | 
|---|
| 291 | return this; | 
|---|
| 292 | ctl = in(MemNode::Control); | 
|---|
| 293 | // Don't bother trying to transform a dead node | 
|---|
| 294 | if (ctl && ctl->is_top())  return NodeSentinel; | 
|---|
| 295 |  | 
|---|
| 296 | PhaseIterGVN *igvn = phase->is_IterGVN(); | 
|---|
| 297 | // Wait if control on the worklist. | 
|---|
| 298 | if (ctl && can_reshape && igvn != NULL) { | 
|---|
| 299 | Node* bol = NULL; | 
|---|
| 300 | Node* cmp = NULL; | 
|---|
| 301 | if (ctl->in(0)->is_If()) { | 
|---|
| 302 | assert(ctl->is_IfTrue() || ctl->is_IfFalse(), "sanity"); | 
|---|
| 303 | bol = ctl->in(0)->in(1); | 
|---|
| 304 | if (bol->is_Bool()) | 
|---|
| 305 | cmp = ctl->in(0)->in(1)->in(1); | 
|---|
| 306 | } | 
|---|
| 307 | if (igvn->_worklist.member(ctl) || | 
|---|
| 308 | (bol != NULL && igvn->_worklist.member(bol)) || | 
|---|
| 309 | (cmp != NULL && igvn->_worklist.member(cmp)) ) { | 
|---|
| 310 | // This control path may be dead. | 
|---|
| 311 | // Delay this memory node transformation until the control is processed. | 
|---|
| 312 | phase->is_IterGVN()->_worklist.push(this); | 
|---|
| 313 | return NodeSentinel; // caller will return NULL | 
|---|
| 314 | } | 
|---|
| 315 | } | 
|---|
| 316 | // Ignore if memory is dead, or self-loop | 
|---|
| 317 | Node *mem = in(MemNode::Memory); | 
|---|
| 318 | if (phase->type( mem ) == Type::TOP) return NodeSentinel; // caller will return NULL | 
|---|
| 319 | assert(mem != this, "dead loop in MemNode::Ideal"); | 
|---|
| 320 |  | 
|---|
| 321 | if (can_reshape && igvn != NULL && igvn->_worklist.member(mem)) { | 
|---|
| 322 | // This memory slice may be dead. | 
|---|
| 323 | // Delay this mem node transformation until the memory is processed. | 
|---|
| 324 | phase->is_IterGVN()->_worklist.push(this); | 
|---|
| 325 | return NodeSentinel; // caller will return NULL | 
|---|
| 326 | } | 
|---|
| 327 |  | 
|---|
| 328 | Node *address = in(MemNode::Address); | 
|---|
| 329 | const Type *t_adr = phase->type(address); | 
|---|
| 330 | if (t_adr == Type::TOP)              return NodeSentinel; // caller will return NULL | 
|---|
| 331 |  | 
|---|
| 332 | if (can_reshape && is_unsafe_access() && (t_adr == TypePtr::NULL_PTR)) { | 
|---|
| 333 | // Unsafe off-heap access with zero address. Remove access and other control users | 
|---|
| 334 | // to not confuse optimizations and add a HaltNode to fail if this is ever executed. | 
|---|
| 335 | assert(ctl != NULL, "unsafe accesses should be control dependent"); | 
|---|
| 336 | for (DUIterator_Fast imax, i = ctl->fast_outs(imax); i < imax; i++) { | 
|---|
| 337 | Node* u = ctl->fast_out(i); | 
|---|
| 338 | if (u != ctl) { | 
|---|
| 339 | igvn->rehash_node_delayed(u); | 
|---|
| 340 | int nb = u->replace_edge(ctl, phase->C->top()); | 
|---|
| 341 | --i, imax -= nb; | 
|---|
| 342 | } | 
|---|
| 343 | } | 
|---|
| 344 | Node* frame = igvn->transform(new ParmNode(phase->C->start(), TypeFunc::FramePtr)); | 
|---|
| 345 | Node* halt = igvn->transform(new HaltNode(ctl, frame)); | 
|---|
| 346 | phase->C->root()->add_req(halt); | 
|---|
| 347 | return this; | 
|---|
| 348 | } | 
|---|
| 349 |  | 
|---|
| 350 | if (can_reshape && igvn != NULL && | 
|---|
| 351 | (igvn->_worklist.member(address) || | 
|---|
| 352 | (igvn->_worklist.size() > 0 && t_adr != adr_type())) ) { | 
|---|
| 353 | // The address's base and type may change when the address is processed. | 
|---|
| 354 | // Delay this mem node transformation until the address is processed. | 
|---|
| 355 | phase->is_IterGVN()->_worklist.push(this); | 
|---|
| 356 | return NodeSentinel; // caller will return NULL | 
|---|
| 357 | } | 
|---|
| 358 |  | 
|---|
| 359 | // Do NOT remove or optimize the next lines: ensure a new alias index | 
|---|
| 360 | // is allocated for an oop pointer type before Escape Analysis. | 
|---|
| 361 | // Note: C++ will not remove it since the call has side effect. | 
|---|
| 362 | if (t_adr->isa_oopptr()) { | 
|---|
| 363 | int alias_idx = phase->C->get_alias_index(t_adr->is_ptr()); | 
|---|
| 364 | } | 
|---|
| 365 |  | 
|---|
| 366 | Node* base = NULL; | 
|---|
| 367 | if (address->is_AddP()) { | 
|---|
| 368 | base = address->in(AddPNode::Base); | 
|---|
| 369 | } | 
|---|
| 370 | if (base != NULL && phase->type(base)->higher_equal(TypePtr::NULL_PTR) && | 
|---|
| 371 | !t_adr->isa_rawptr()) { | 
|---|
| 372 | // Note: raw address has TOP base and top->higher_equal(TypePtr::NULL_PTR) is true. | 
|---|
| 373 | // Skip this node optimization if its address has TOP base. | 
|---|
| 374 | return NodeSentinel; // caller will return NULL | 
|---|
| 375 | } | 
|---|
| 376 |  | 
|---|
| 377 | // Avoid independent memory operations | 
|---|
| 378 | Node* old_mem = mem; | 
|---|
| 379 |  | 
|---|
| 380 | // The code which unhooks non-raw memories from complete (macro-expanded) | 
|---|
| 381 | // initializations was removed. After macro-expansion all stores catched | 
|---|
| 382 | // by Initialize node became raw stores and there is no information | 
|---|
| 383 | // which memory slices they modify. So it is unsafe to move any memory | 
|---|
| 384 | // operation above these stores. Also in most cases hooked non-raw memories | 
|---|
| 385 | // were already unhooked by using information from detect_ptr_independence() | 
|---|
| 386 | // and find_previous_store(). | 
|---|
| 387 |  | 
|---|
| 388 | if (mem->is_MergeMem()) { | 
|---|
| 389 | MergeMemNode* mmem = mem->as_MergeMem(); | 
|---|
| 390 | const TypePtr *tp = t_adr->is_ptr(); | 
|---|
| 391 |  | 
|---|
| 392 | mem = step_through_mergemem(phase, mmem, tp, adr_type(), tty); | 
|---|
| 393 | } | 
|---|
| 394 |  | 
|---|
| 395 | if (mem != old_mem) { | 
|---|
| 396 | set_req(MemNode::Memory, mem); | 
|---|
| 397 | if (can_reshape && old_mem->outcnt() == 0 && igvn != NULL) { | 
|---|
| 398 | igvn->_worklist.push(old_mem); | 
|---|
| 399 | } | 
|---|
| 400 | if (phase->type(mem) == Type::TOP) return NodeSentinel; | 
|---|
| 401 | return this; | 
|---|
| 402 | } | 
|---|
| 403 |  | 
|---|
| 404 | // let the subclass continue analyzing... | 
|---|
| 405 | return NULL; | 
|---|
| 406 | } | 
|---|
| 407 |  | 
|---|
| 408 | // Helper function for proving some simple control dominations. | 
|---|
| 409 | // Attempt to prove that all control inputs of 'dom' dominate 'sub'. | 
|---|
| 410 | // Already assumes that 'dom' is available at 'sub', and that 'sub' | 
|---|
| 411 | // is not a constant (dominated by the method's StartNode). | 
|---|
| 412 | // Used by MemNode::find_previous_store to prove that the | 
|---|
| 413 | // control input of a memory operation predates (dominates) | 
|---|
| 414 | // an allocation it wants to look past. | 
|---|
| 415 | bool MemNode::all_controls_dominate(Node* dom, Node* sub) { | 
|---|
| 416 | if (dom == NULL || dom->is_top() || sub == NULL || sub->is_top()) | 
|---|
| 417 | return false; // Conservative answer for dead code | 
|---|
| 418 |  | 
|---|
| 419 | // Check 'dom'. Skip Proj and CatchProj nodes. | 
|---|
| 420 | dom = dom->find_exact_control(dom); | 
|---|
| 421 | if (dom == NULL || dom->is_top()) | 
|---|
| 422 | return false; // Conservative answer for dead code | 
|---|
| 423 |  | 
|---|
| 424 | if (dom == sub) { | 
|---|
| 425 | // For the case when, for example, 'sub' is Initialize and the original | 
|---|
| 426 | // 'dom' is Proj node of the 'sub'. | 
|---|
| 427 | return false; | 
|---|
| 428 | } | 
|---|
| 429 |  | 
|---|
| 430 | if (dom->is_Con() || dom->is_Start() || dom->is_Root() || dom == sub) | 
|---|
| 431 | return true; | 
|---|
| 432 |  | 
|---|
| 433 | // 'dom' dominates 'sub' if its control edge and control edges | 
|---|
| 434 | // of all its inputs dominate or equal to sub's control edge. | 
|---|
| 435 |  | 
|---|
| 436 | // Currently 'sub' is either Allocate, Initialize or Start nodes. | 
|---|
| 437 | // Or Region for the check in LoadNode::Ideal(); | 
|---|
| 438 | // 'sub' should have sub->in(0) != NULL. | 
|---|
| 439 | assert(sub->is_Allocate() || sub->is_Initialize() || sub->is_Start() || | 
|---|
| 440 | sub->is_Region() || sub->is_Call(), "expecting only these nodes"); | 
|---|
| 441 |  | 
|---|
| 442 | // Get control edge of 'sub'. | 
|---|
| 443 | Node* orig_sub = sub; | 
|---|
| 444 | sub = sub->find_exact_control(sub->in(0)); | 
|---|
| 445 | if (sub == NULL || sub->is_top()) | 
|---|
| 446 | return false; // Conservative answer for dead code | 
|---|
| 447 |  | 
|---|
| 448 | assert(sub->is_CFG(), "expecting control"); | 
|---|
| 449 |  | 
|---|
| 450 | if (sub == dom) | 
|---|
| 451 | return true; | 
|---|
| 452 |  | 
|---|
| 453 | if (sub->is_Start() || sub->is_Root()) | 
|---|
| 454 | return false; | 
|---|
| 455 |  | 
|---|
| 456 | { | 
|---|
| 457 | // Check all control edges of 'dom'. | 
|---|
| 458 |  | 
|---|
| 459 | ResourceMark rm; | 
|---|
| 460 | Arena* arena = Thread::current()->resource_area(); | 
|---|
| 461 | Node_List nlist(arena); | 
|---|
| 462 | Unique_Node_List dom_list(arena); | 
|---|
| 463 |  | 
|---|
| 464 | dom_list.push(dom); | 
|---|
| 465 | bool only_dominating_controls = false; | 
|---|
| 466 |  | 
|---|
| 467 | for (uint next = 0; next < dom_list.size(); next++) { | 
|---|
| 468 | Node* n = dom_list.at(next); | 
|---|
| 469 | if (n == orig_sub) | 
|---|
| 470 | return false; // One of dom's inputs dominated by sub. | 
|---|
| 471 | if (!n->is_CFG() && n->pinned()) { | 
|---|
| 472 | // Check only own control edge for pinned non-control nodes. | 
|---|
| 473 | n = n->find_exact_control(n->in(0)); | 
|---|
| 474 | if (n == NULL || n->is_top()) | 
|---|
| 475 | return false; // Conservative answer for dead code | 
|---|
| 476 | assert(n->is_CFG(), "expecting control"); | 
|---|
| 477 | dom_list.push(n); | 
|---|
| 478 | } else if (n->is_Con() || n->is_Start() || n->is_Root()) { | 
|---|
| 479 | only_dominating_controls = true; | 
|---|
| 480 | } else if (n->is_CFG()) { | 
|---|
| 481 | if (n->dominates(sub, nlist)) | 
|---|
| 482 | only_dominating_controls = true; | 
|---|
| 483 | else | 
|---|
| 484 | return false; | 
|---|
| 485 | } else { | 
|---|
| 486 | // First, own control edge. | 
|---|
| 487 | Node* m = n->find_exact_control(n->in(0)); | 
|---|
| 488 | if (m != NULL) { | 
|---|
| 489 | if (m->is_top()) | 
|---|
| 490 | return false; // Conservative answer for dead code | 
|---|
| 491 | dom_list.push(m); | 
|---|
| 492 | } | 
|---|
| 493 | // Now, the rest of edges. | 
|---|
| 494 | uint cnt = n->req(); | 
|---|
| 495 | for (uint i = 1; i < cnt; i++) { | 
|---|
| 496 | m = n->find_exact_control(n->in(i)); | 
|---|
| 497 | if (m == NULL || m->is_top()) | 
|---|
| 498 | continue; | 
|---|
| 499 | dom_list.push(m); | 
|---|
| 500 | } | 
|---|
| 501 | } | 
|---|
| 502 | } | 
|---|
| 503 | return only_dominating_controls; | 
|---|
| 504 | } | 
|---|
| 505 | } | 
|---|
| 506 |  | 
|---|
| 507 | //---------------------detect_ptr_independence--------------------------------- | 
|---|
| 508 | // Used by MemNode::find_previous_store to prove that two base | 
|---|
| 509 | // pointers are never equal. | 
|---|
| 510 | // The pointers are accompanied by their associated allocations, | 
|---|
| 511 | // if any, which have been previously discovered by the caller. | 
|---|
| 512 | bool MemNode::detect_ptr_independence(Node* p1, AllocateNode* a1, | 
|---|
| 513 | Node* p2, AllocateNode* a2, | 
|---|
| 514 | PhaseTransform* phase) { | 
|---|
| 515 | // Attempt to prove that these two pointers cannot be aliased. | 
|---|
| 516 | // They may both manifestly be allocations, and they should differ. | 
|---|
| 517 | // Or, if they are not both allocations, they can be distinct constants. | 
|---|
| 518 | // Otherwise, one is an allocation and the other a pre-existing value. | 
|---|
| 519 | if (a1 == NULL && a2 == NULL) {           // neither an allocation | 
|---|
| 520 | return (p1 != p2) && p1->is_Con() && p2->is_Con(); | 
|---|
| 521 | } else if (a1 != NULL && a2 != NULL) {    // both allocations | 
|---|
| 522 | return (a1 != a2); | 
|---|
| 523 | } else if (a1 != NULL) {                  // one allocation a1 | 
|---|
| 524 | // (Note:  p2->is_Con implies p2->in(0)->is_Root, which dominates.) | 
|---|
| 525 | return all_controls_dominate(p2, a1); | 
|---|
| 526 | } else { //(a2 != NULL)                   // one allocation a2 | 
|---|
| 527 | return all_controls_dominate(p1, a2); | 
|---|
| 528 | } | 
|---|
| 529 | return false; | 
|---|
| 530 | } | 
|---|
| 531 |  | 
|---|
| 532 |  | 
|---|
| 533 | // Find an arraycopy that must have set (can_see_stored_value=true) or | 
|---|
| 534 | // could have set (can_see_stored_value=false) the value for this load | 
|---|
| 535 | Node* LoadNode::find_previous_arraycopy(PhaseTransform* phase, Node* ld_alloc, Node*& mem, bool can_see_stored_value) const { | 
|---|
| 536 | if (mem->is_Proj() && mem->in(0) != NULL && (mem->in(0)->Opcode() == Op_MemBarStoreStore || | 
|---|
| 537 | mem->in(0)->Opcode() == Op_MemBarCPUOrder)) { | 
|---|
| 538 | Node* mb = mem->in(0); | 
|---|
| 539 | if (mb->in(0) != NULL && mb->in(0)->is_Proj() && | 
|---|
| 540 | mb->in(0)->in(0) != NULL && mb->in(0)->in(0)->is_ArrayCopy()) { | 
|---|
| 541 | ArrayCopyNode* ac = mb->in(0)->in(0)->as_ArrayCopy(); | 
|---|
| 542 | if (ac->is_clonebasic()) { | 
|---|
| 543 | intptr_t offset; | 
|---|
| 544 | AllocateNode* alloc = AllocateNode::Ideal_allocation(ac->in(ArrayCopyNode::Dest), phase, offset); | 
|---|
| 545 | if (alloc != NULL && alloc == ld_alloc) { | 
|---|
| 546 | return ac; | 
|---|
| 547 | } | 
|---|
| 548 | } | 
|---|
| 549 | } | 
|---|
| 550 | } else if (mem->is_Proj() && mem->in(0) != NULL && mem->in(0)->is_ArrayCopy()) { | 
|---|
| 551 | ArrayCopyNode* ac = mem->in(0)->as_ArrayCopy(); | 
|---|
| 552 |  | 
|---|
| 553 | if (ac->is_arraycopy_validated() || | 
|---|
| 554 | ac->is_copyof_validated() || | 
|---|
| 555 | ac->is_copyofrange_validated()) { | 
|---|
| 556 | Node* ld_addp = in(MemNode::Address); | 
|---|
| 557 | if (ld_addp->is_AddP()) { | 
|---|
| 558 | Node* ld_base = ld_addp->in(AddPNode::Address); | 
|---|
| 559 | Node* ld_offs = ld_addp->in(AddPNode::Offset); | 
|---|
| 560 |  | 
|---|
| 561 | Node* dest = ac->in(ArrayCopyNode::Dest); | 
|---|
| 562 |  | 
|---|
| 563 | if (dest == ld_base) { | 
|---|
| 564 | const TypeX *ld_offs_t = phase->type(ld_offs)->isa_intptr_t(); | 
|---|
| 565 | if (ac->modifies(ld_offs_t->_lo, ld_offs_t->_hi, phase, can_see_stored_value)) { | 
|---|
| 566 | return ac; | 
|---|
| 567 | } | 
|---|
| 568 | if (!can_see_stored_value) { | 
|---|
| 569 | mem = ac->in(TypeFunc::Memory); | 
|---|
| 570 | } | 
|---|
| 571 | } | 
|---|
| 572 | } | 
|---|
| 573 | } | 
|---|
| 574 | } | 
|---|
| 575 | return NULL; | 
|---|
| 576 | } | 
|---|
| 577 |  | 
|---|
| 578 | // The logic for reordering loads and stores uses four steps: | 
|---|
| 579 | // (a) Walk carefully past stores and initializations which we | 
|---|
| 580 | //     can prove are independent of this load. | 
|---|
| 581 | // (b) Observe that the next memory state makes an exact match | 
|---|
| 582 | //     with self (load or store), and locate the relevant store. | 
|---|
| 583 | // (c) Ensure that, if we were to wire self directly to the store, | 
|---|
| 584 | //     the optimizer would fold it up somehow. | 
|---|
| 585 | // (d) Do the rewiring, and return, depending on some other part of | 
|---|
| 586 | //     the optimizer to fold up the load. | 
|---|
| 587 | // This routine handles steps (a) and (b).  Steps (c) and (d) are | 
|---|
| 588 | // specific to loads and stores, so they are handled by the callers. | 
|---|
| 589 | // (Currently, only LoadNode::Ideal has steps (c), (d).  More later.) | 
|---|
| 590 | // | 
|---|
| 591 | Node* MemNode::find_previous_store(PhaseTransform* phase) { | 
|---|
| 592 | Node*         ctrl   = in(MemNode::Control); | 
|---|
| 593 | Node*         adr    = in(MemNode::Address); | 
|---|
| 594 | intptr_t      offset = 0; | 
|---|
| 595 | Node*         base   = AddPNode::Ideal_base_and_offset(adr, phase, offset); | 
|---|
| 596 | AllocateNode* alloc  = AllocateNode::Ideal_allocation(base, phase); | 
|---|
| 597 |  | 
|---|
| 598 | if (offset == Type::OffsetBot) | 
|---|
| 599 | return NULL;            // cannot unalias unless there are precise offsets | 
|---|
| 600 |  | 
|---|
| 601 | const bool adr_maybe_raw = check_if_adr_maybe_raw(adr); | 
|---|
| 602 | const TypeOopPtr *addr_t = adr->bottom_type()->isa_oopptr(); | 
|---|
| 603 |  | 
|---|
| 604 | intptr_t size_in_bytes = memory_size(); | 
|---|
| 605 |  | 
|---|
| 606 | Node* mem = in(MemNode::Memory);   // start searching here... | 
|---|
| 607 |  | 
|---|
| 608 | int cnt = 50;             // Cycle limiter | 
|---|
| 609 | for (;;) {                // While we can dance past unrelated stores... | 
|---|
| 610 | if (--cnt < 0)  break;  // Caught in cycle or a complicated dance? | 
|---|
| 611 |  | 
|---|
| 612 | Node* prev = mem; | 
|---|
| 613 | if (mem->is_Store()) { | 
|---|
| 614 | Node* st_adr = mem->in(MemNode::Address); | 
|---|
| 615 | intptr_t st_offset = 0; | 
|---|
| 616 | Node* st_base = AddPNode::Ideal_base_and_offset(st_adr, phase, st_offset); | 
|---|
| 617 | if (st_base == NULL) | 
|---|
| 618 | break;              // inscrutable pointer | 
|---|
| 619 |  | 
|---|
| 620 | // For raw accesses it's not enough to prove that constant offsets don't intersect. | 
|---|
| 621 | // We need the bases to be the equal in order for the offset check to make sense. | 
|---|
| 622 | if ((adr_maybe_raw || check_if_adr_maybe_raw(st_adr)) && st_base != base) { | 
|---|
| 623 | break; | 
|---|
| 624 | } | 
|---|
| 625 |  | 
|---|
| 626 | if (st_offset != offset && st_offset != Type::OffsetBot) { | 
|---|
| 627 | const int MAX_STORE = BytesPerLong; | 
|---|
| 628 | if (st_offset >= offset + size_in_bytes || | 
|---|
| 629 | st_offset <= offset - MAX_STORE || | 
|---|
| 630 | st_offset <= offset - mem->as_Store()->memory_size()) { | 
|---|
| 631 | // Success:  The offsets are provably independent. | 
|---|
| 632 | // (You may ask, why not just test st_offset != offset and be done? | 
|---|
| 633 | // The answer is that stores of different sizes can co-exist | 
|---|
| 634 | // in the same sequence of RawMem effects.  We sometimes initialize | 
|---|
| 635 | // a whole 'tile' of array elements with a single jint or jlong.) | 
|---|
| 636 | mem = mem->in(MemNode::Memory); | 
|---|
| 637 | continue;           // (a) advance through independent store memory | 
|---|
| 638 | } | 
|---|
| 639 | } | 
|---|
| 640 | if (st_base != base && | 
|---|
| 641 | detect_ptr_independence(base, alloc, | 
|---|
| 642 | st_base, | 
|---|
| 643 | AllocateNode::Ideal_allocation(st_base, phase), | 
|---|
| 644 | phase)) { | 
|---|
| 645 | // Success:  The bases are provably independent. | 
|---|
| 646 | mem = mem->in(MemNode::Memory); | 
|---|
| 647 | continue;           // (a) advance through independent store memory | 
|---|
| 648 | } | 
|---|
| 649 |  | 
|---|
| 650 | // (b) At this point, if the bases or offsets do not agree, we lose, | 
|---|
| 651 | // since we have not managed to prove 'this' and 'mem' independent. | 
|---|
| 652 | if (st_base == base && st_offset == offset) { | 
|---|
| 653 | return mem;         // let caller handle steps (c), (d) | 
|---|
| 654 | } | 
|---|
| 655 |  | 
|---|
| 656 | } else if (mem->is_Proj() && mem->in(0)->is_Initialize()) { | 
|---|
| 657 | InitializeNode* st_init = mem->in(0)->as_Initialize(); | 
|---|
| 658 | AllocateNode*  st_alloc = st_init->allocation(); | 
|---|
| 659 | if (st_alloc == NULL) | 
|---|
| 660 | break;              // something degenerated | 
|---|
| 661 | bool known_identical = false; | 
|---|
| 662 | bool known_independent = false; | 
|---|
| 663 | if (alloc == st_alloc) | 
|---|
| 664 | known_identical = true; | 
|---|
| 665 | else if (alloc != NULL) | 
|---|
| 666 | known_independent = true; | 
|---|
| 667 | else if (all_controls_dominate(this, st_alloc)) | 
|---|
| 668 | known_independent = true; | 
|---|
| 669 |  | 
|---|
| 670 | if (known_independent) { | 
|---|
| 671 | // The bases are provably independent: Either they are | 
|---|
| 672 | // manifestly distinct allocations, or else the control | 
|---|
| 673 | // of this load dominates the store's allocation. | 
|---|
| 674 | int alias_idx = phase->C->get_alias_index(adr_type()); | 
|---|
| 675 | if (alias_idx == Compile::AliasIdxRaw) { | 
|---|
| 676 | mem = st_alloc->in(TypeFunc::Memory); | 
|---|
| 677 | } else { | 
|---|
| 678 | mem = st_init->memory(alias_idx); | 
|---|
| 679 | } | 
|---|
| 680 | continue;           // (a) advance through independent store memory | 
|---|
| 681 | } | 
|---|
| 682 |  | 
|---|
| 683 | // (b) at this point, if we are not looking at a store initializing | 
|---|
| 684 | // the same allocation we are loading from, we lose. | 
|---|
| 685 | if (known_identical) { | 
|---|
| 686 | // From caller, can_see_stored_value will consult find_captured_store. | 
|---|
| 687 | return mem;         // let caller handle steps (c), (d) | 
|---|
| 688 | } | 
|---|
| 689 |  | 
|---|
| 690 | } else if (find_previous_arraycopy(phase, alloc, mem, false) != NULL) { | 
|---|
| 691 | if (prev != mem) { | 
|---|
| 692 | // Found an arraycopy but it doesn't affect that load | 
|---|
| 693 | continue; | 
|---|
| 694 | } | 
|---|
| 695 | // Found an arraycopy that may affect that load | 
|---|
| 696 | return mem; | 
|---|
| 697 | } else if (addr_t != NULL && addr_t->is_known_instance_field()) { | 
|---|
| 698 | // Can't use optimize_simple_memory_chain() since it needs PhaseGVN. | 
|---|
| 699 | if (mem->is_Proj() && mem->in(0)->is_Call()) { | 
|---|
| 700 | // ArrayCopyNodes processed here as well. | 
|---|
| 701 | CallNode *call = mem->in(0)->as_Call(); | 
|---|
| 702 | if (!call->may_modify(addr_t, phase)) { | 
|---|
| 703 | mem = call->in(TypeFunc::Memory); | 
|---|
| 704 | continue;         // (a) advance through independent call memory | 
|---|
| 705 | } | 
|---|
| 706 | } else if (mem->is_Proj() && mem->in(0)->is_MemBar()) { | 
|---|
| 707 | ArrayCopyNode* ac = NULL; | 
|---|
| 708 | if (ArrayCopyNode::may_modify(addr_t, mem->in(0)->as_MemBar(), phase, ac)) { | 
|---|
| 709 | break; | 
|---|
| 710 | } | 
|---|
| 711 | mem = mem->in(0)->in(TypeFunc::Memory); | 
|---|
| 712 | continue;           // (a) advance through independent MemBar memory | 
|---|
| 713 | } else if (mem->is_ClearArray()) { | 
|---|
| 714 | if (ClearArrayNode::step_through(&mem, (uint)addr_t->instance_id(), phase)) { | 
|---|
| 715 | // (the call updated 'mem' value) | 
|---|
| 716 | continue;         // (a) advance through independent allocation memory | 
|---|
| 717 | } else { | 
|---|
| 718 | // Can not bypass initialization of the instance | 
|---|
| 719 | // we are looking for. | 
|---|
| 720 | return mem; | 
|---|
| 721 | } | 
|---|
| 722 | } else if (mem->is_MergeMem()) { | 
|---|
| 723 | int alias_idx = phase->C->get_alias_index(adr_type()); | 
|---|
| 724 | mem = mem->as_MergeMem()->memory_at(alias_idx); | 
|---|
| 725 | continue;           // (a) advance through independent MergeMem memory | 
|---|
| 726 | } | 
|---|
| 727 | } | 
|---|
| 728 |  | 
|---|
| 729 | // Unless there is an explicit 'continue', we must bail out here, | 
|---|
| 730 | // because 'mem' is an inscrutable memory state (e.g., a call). | 
|---|
| 731 | break; | 
|---|
| 732 | } | 
|---|
| 733 |  | 
|---|
| 734 | return NULL;              // bail out | 
|---|
| 735 | } | 
|---|
| 736 |  | 
|---|
| 737 | //----------------------calculate_adr_type------------------------------------- | 
|---|
| 738 | // Helper function.  Notices when the given type of address hits top or bottom. | 
|---|
| 739 | // Also, asserts a cross-check of the type against the expected address type. | 
|---|
| 740 | const TypePtr* MemNode::calculate_adr_type(const Type* t, const TypePtr* cross_check) { | 
|---|
| 741 | if (t == Type::TOP)  return NULL; // does not touch memory any more? | 
|---|
| 742 | #ifdef PRODUCT | 
|---|
| 743 | cross_check = NULL; | 
|---|
| 744 | #else | 
|---|
| 745 | if (!VerifyAliases || VMError::is_error_reported() || Node::in_dump())  cross_check = NULL; | 
|---|
| 746 | #endif | 
|---|
| 747 | const TypePtr* tp = t->isa_ptr(); | 
|---|
| 748 | if (tp == NULL) { | 
|---|
| 749 | assert(cross_check == NULL || cross_check == TypePtr::BOTTOM, "expected memory type must be wide"); | 
|---|
| 750 | return TypePtr::BOTTOM;           // touches lots of memory | 
|---|
| 751 | } else { | 
|---|
| 752 | #ifdef ASSERT | 
|---|
| 753 | // %%%% [phh] We don't check the alias index if cross_check is | 
|---|
| 754 | //            TypeRawPtr::BOTTOM.  Needs to be investigated. | 
|---|
| 755 | if (cross_check != NULL && | 
|---|
| 756 | cross_check != TypePtr::BOTTOM && | 
|---|
| 757 | cross_check != TypeRawPtr::BOTTOM) { | 
|---|
| 758 | // Recheck the alias index, to see if it has changed (due to a bug). | 
|---|
| 759 | Compile* C = Compile::current(); | 
|---|
| 760 | assert(C->get_alias_index(cross_check) == C->get_alias_index(tp), | 
|---|
| 761 | "must stay in the original alias category"); | 
|---|
| 762 | // The type of the address must be contained in the adr_type, | 
|---|
| 763 | // disregarding "null"-ness. | 
|---|
| 764 | // (We make an exception for TypeRawPtr::BOTTOM, which is a bit bucket.) | 
|---|
| 765 | const TypePtr* tp_notnull = tp->join(TypePtr::NOTNULL)->is_ptr(); | 
|---|
| 766 | assert(cross_check->meet(tp_notnull) == cross_check->remove_speculative(), | 
|---|
| 767 | "real address must not escape from expected memory type"); | 
|---|
| 768 | } | 
|---|
| 769 | #endif | 
|---|
| 770 | return tp; | 
|---|
| 771 | } | 
|---|
| 772 | } | 
|---|
| 773 |  | 
|---|
| 774 | //============================================================================= | 
|---|
| 775 | // Should LoadNode::Ideal() attempt to remove control edges? | 
|---|
| 776 | bool LoadNode::can_remove_control() const { | 
|---|
| 777 | return true; | 
|---|
| 778 | } | 
|---|
| 779 | uint LoadNode::size_of() const { return sizeof(*this); } | 
|---|
| 780 | bool LoadNode::cmp( const Node &n ) const | 
|---|
| 781 | { return !Type::cmp( _type, ((LoadNode&)n)._type ); } | 
|---|
| 782 | const Type *LoadNode::bottom_type() const { return _type; } | 
|---|
| 783 | uint LoadNode::ideal_reg() const { | 
|---|
| 784 | return _type->ideal_reg(); | 
|---|
| 785 | } | 
|---|
| 786 |  | 
|---|
| 787 | #ifndef PRODUCT | 
|---|
| 788 | void LoadNode::dump_spec(outputStream *st) const { | 
|---|
| 789 | MemNode::dump_spec(st); | 
|---|
| 790 | if( !Verbose && !WizardMode ) { | 
|---|
| 791 | // standard dump does this in Verbose and WizardMode | 
|---|
| 792 | st->print( " #"); _type->dump_on(st); | 
|---|
| 793 | } | 
|---|
| 794 | if (!depends_only_on_test()) { | 
|---|
| 795 | st->print( " (does not depend only on test)"); | 
|---|
| 796 | } | 
|---|
| 797 | } | 
|---|
| 798 | #endif | 
|---|
| 799 |  | 
|---|
| 800 | #ifdef ASSERT | 
|---|
| 801 | //----------------------------is_immutable_value------------------------------- | 
|---|
| 802 | // Helper function to allow a raw load without control edge for some cases | 
|---|
| 803 | bool LoadNode::is_immutable_value(Node* adr) { | 
|---|
| 804 | return (adr->is_AddP() && adr->in(AddPNode::Base)->is_top() && | 
|---|
| 805 | adr->in(AddPNode::Address)->Opcode() == Op_ThreadLocal && | 
|---|
| 806 | (adr->in(AddPNode::Offset)->find_intptr_t_con(-1) == | 
|---|
| 807 | in_bytes(JavaThread::osthread_offset()))); | 
|---|
| 808 | } | 
|---|
| 809 | #endif | 
|---|
| 810 |  | 
|---|
| 811 | //----------------------------LoadNode::make----------------------------------- | 
|---|
| 812 | // Polymorphic factory method: | 
|---|
| 813 | Node *LoadNode::make(PhaseGVN& gvn, Node *ctl, Node *mem, Node *adr, const TypePtr* adr_type, const Type *rt, BasicType bt, MemOrd mo, | 
|---|
| 814 | ControlDependency control_dependency, bool unaligned, bool mismatched, bool unsafe) { | 
|---|
| 815 | Compile* C = gvn.C; | 
|---|
| 816 |  | 
|---|
| 817 | // sanity check the alias category against the created node type | 
|---|
| 818 | assert(!(adr_type->isa_oopptr() && | 
|---|
| 819 | adr_type->offset() == oopDesc::klass_offset_in_bytes()), | 
|---|
| 820 | "use LoadKlassNode instead"); | 
|---|
| 821 | assert(!(adr_type->isa_aryptr() && | 
|---|
| 822 | adr_type->offset() == arrayOopDesc::length_offset_in_bytes()), | 
|---|
| 823 | "use LoadRangeNode instead"); | 
|---|
| 824 | // Check control edge of raw loads | 
|---|
| 825 | assert( ctl != NULL || C->get_alias_index(adr_type) != Compile::AliasIdxRaw || | 
|---|
| 826 | // oop will be recorded in oop map if load crosses safepoint | 
|---|
| 827 | rt->isa_oopptr() || is_immutable_value(adr), | 
|---|
| 828 | "raw memory operations should have control edge"); | 
|---|
| 829 | LoadNode* load = NULL; | 
|---|
| 830 | switch (bt) { | 
|---|
| 831 | case T_BOOLEAN: load = new LoadUBNode(ctl, mem, adr, adr_type, rt->is_int(),  mo, control_dependency); break; | 
|---|
| 832 | case T_BYTE:    load = new LoadBNode (ctl, mem, adr, adr_type, rt->is_int(),  mo, control_dependency); break; | 
|---|
| 833 | case T_INT:     load = new LoadINode (ctl, mem, adr, adr_type, rt->is_int(),  mo, control_dependency); break; | 
|---|
| 834 | case T_CHAR:    load = new LoadUSNode(ctl, mem, adr, adr_type, rt->is_int(),  mo, control_dependency); break; | 
|---|
| 835 | case T_SHORT:   load = new LoadSNode (ctl, mem, adr, adr_type, rt->is_int(),  mo, control_dependency); break; | 
|---|
| 836 | case T_LONG:    load = new LoadLNode (ctl, mem, adr, adr_type, rt->is_long(), mo, control_dependency); break; | 
|---|
| 837 | case T_FLOAT:   load = new LoadFNode (ctl, mem, adr, adr_type, rt,            mo, control_dependency); break; | 
|---|
| 838 | case T_DOUBLE:  load = new LoadDNode (ctl, mem, adr, adr_type, rt,            mo, control_dependency); break; | 
|---|
| 839 | case T_ADDRESS: load = new LoadPNode (ctl, mem, adr, adr_type, rt->is_ptr(),  mo, control_dependency); break; | 
|---|
| 840 | case T_OBJECT: | 
|---|
| 841 | #ifdef _LP64 | 
|---|
| 842 | if (adr->bottom_type()->is_ptr_to_narrowoop()) { | 
|---|
| 843 | load = new LoadNNode(ctl, mem, adr, adr_type, rt->make_narrowoop(), mo, control_dependency); | 
|---|
| 844 | } else | 
|---|
| 845 | #endif | 
|---|
| 846 | { | 
|---|
| 847 | assert(!adr->bottom_type()->is_ptr_to_narrowoop() && !adr->bottom_type()->is_ptr_to_narrowklass(), "should have got back a narrow oop"); | 
|---|
| 848 | load = new LoadPNode(ctl, mem, adr, adr_type, rt->is_ptr(), mo, control_dependency); | 
|---|
| 849 | } | 
|---|
| 850 | break; | 
|---|
| 851 | default: | 
|---|
| 852 | ShouldNotReachHere(); | 
|---|
| 853 | break; | 
|---|
| 854 | } | 
|---|
| 855 | assert(load != NULL, "LoadNode should have been created"); | 
|---|
| 856 | if (unaligned) { | 
|---|
| 857 | load->set_unaligned_access(); | 
|---|
| 858 | } | 
|---|
| 859 | if (mismatched) { | 
|---|
| 860 | load->set_mismatched_access(); | 
|---|
| 861 | } | 
|---|
| 862 | if (unsafe) { | 
|---|
| 863 | load->set_unsafe_access(); | 
|---|
| 864 | } | 
|---|
| 865 | if (load->Opcode() == Op_LoadN) { | 
|---|
| 866 | Node* ld = gvn.transform(load); | 
|---|
| 867 | return new DecodeNNode(ld, ld->bottom_type()->make_ptr()); | 
|---|
| 868 | } | 
|---|
| 869 |  | 
|---|
| 870 | return load; | 
|---|
| 871 | } | 
|---|
| 872 |  | 
|---|
| 873 | LoadLNode* LoadLNode::make_atomic(Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, const Type* rt, MemOrd mo, | 
|---|
| 874 | ControlDependency control_dependency, bool unaligned, bool mismatched, bool unsafe) { | 
|---|
| 875 | bool require_atomic = true; | 
|---|
| 876 | LoadLNode* load = new LoadLNode(ctl, mem, adr, adr_type, rt->is_long(), mo, control_dependency, require_atomic); | 
|---|
| 877 | if (unaligned) { | 
|---|
| 878 | load->set_unaligned_access(); | 
|---|
| 879 | } | 
|---|
| 880 | if (mismatched) { | 
|---|
| 881 | load->set_mismatched_access(); | 
|---|
| 882 | } | 
|---|
| 883 | if (unsafe) { | 
|---|
| 884 | load->set_unsafe_access(); | 
|---|
| 885 | } | 
|---|
| 886 | return load; | 
|---|
| 887 | } | 
|---|
| 888 |  | 
|---|
| 889 | LoadDNode* LoadDNode::make_atomic(Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, const Type* rt, MemOrd mo, | 
|---|
| 890 | ControlDependency control_dependency, bool unaligned, bool mismatched, bool unsafe) { | 
|---|
| 891 | bool require_atomic = true; | 
|---|
| 892 | LoadDNode* load = new LoadDNode(ctl, mem, adr, adr_type, rt, mo, control_dependency, require_atomic); | 
|---|
| 893 | if (unaligned) { | 
|---|
| 894 | load->set_unaligned_access(); | 
|---|
| 895 | } | 
|---|
| 896 | if (mismatched) { | 
|---|
| 897 | load->set_mismatched_access(); | 
|---|
| 898 | } | 
|---|
| 899 | if (unsafe) { | 
|---|
| 900 | load->set_unsafe_access(); | 
|---|
| 901 | } | 
|---|
| 902 | return load; | 
|---|
| 903 | } | 
|---|
| 904 |  | 
|---|
| 905 |  | 
|---|
| 906 |  | 
|---|
| 907 | //------------------------------hash------------------------------------------- | 
|---|
| 908 | uint LoadNode::hash() const { | 
|---|
| 909 | // unroll addition of interesting fields | 
|---|
| 910 | return (uintptr_t)in(Control) + (uintptr_t)in(Memory) + (uintptr_t)in(Address); | 
|---|
| 911 | } | 
|---|
| 912 |  | 
|---|
| 913 | static bool skip_through_membars(Compile::AliasType* atp, const TypeInstPtr* tp, bool eliminate_boxing) { | 
|---|
| 914 | if ((atp != NULL) && (atp->index() >= Compile::AliasIdxRaw)) { | 
|---|
| 915 | bool non_volatile = (atp->field() != NULL) && !atp->field()->is_volatile(); | 
|---|
| 916 | bool is_stable_ary = FoldStableValues && | 
|---|
| 917 | (tp != NULL) && (tp->isa_aryptr() != NULL) && | 
|---|
| 918 | tp->isa_aryptr()->is_stable(); | 
|---|
| 919 |  | 
|---|
| 920 | return (eliminate_boxing && non_volatile) || is_stable_ary; | 
|---|
| 921 | } | 
|---|
| 922 |  | 
|---|
| 923 | return false; | 
|---|
| 924 | } | 
|---|
| 925 |  | 
|---|
| 926 | // Is the value loaded previously stored by an arraycopy? If so return | 
|---|
| 927 | // a load node that reads from the source array so we may be able to | 
|---|
| 928 | // optimize out the ArrayCopy node later. | 
|---|
| 929 | Node* LoadNode::can_see_arraycopy_value(Node* st, PhaseGVN* phase) const { | 
|---|
| 930 | Node* ld_adr = in(MemNode::Address); | 
|---|
| 931 | intptr_t ld_off = 0; | 
|---|
| 932 | AllocateNode* ld_alloc = AllocateNode::Ideal_allocation(ld_adr, phase, ld_off); | 
|---|
| 933 | Node* ac = find_previous_arraycopy(phase, ld_alloc, st, true); | 
|---|
| 934 | if (ac != NULL) { | 
|---|
| 935 | assert(ac->is_ArrayCopy(), "what kind of node can this be?"); | 
|---|
| 936 |  | 
|---|
| 937 | Node* mem = ac->in(TypeFunc::Memory); | 
|---|
| 938 | Node* ctl = ac->in(0); | 
|---|
| 939 | Node* src = ac->in(ArrayCopyNode::Src); | 
|---|
| 940 |  | 
|---|
| 941 | if (!ac->as_ArrayCopy()->is_clonebasic() && !phase->type(src)->isa_aryptr()) { | 
|---|
| 942 | return NULL; | 
|---|
| 943 | } | 
|---|
| 944 |  | 
|---|
| 945 | LoadNode* ld = clone()->as_Load(); | 
|---|
| 946 | Node* addp = in(MemNode::Address)->clone(); | 
|---|
| 947 | if (ac->as_ArrayCopy()->is_clonebasic()) { | 
|---|
| 948 | assert(ld_alloc != NULL, "need an alloc"); | 
|---|
| 949 | assert(addp->is_AddP(), "address must be addp"); | 
|---|
| 950 | assert(ac->in(ArrayCopyNode::Dest)->is_AddP(), "dest must be an address"); | 
|---|
| 951 | BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); | 
|---|
| 952 | assert(bs->step_over_gc_barrier(addp->in(AddPNode::Base)) == bs->step_over_gc_barrier(ac->in(ArrayCopyNode::Dest)->in(AddPNode::Base)), "strange pattern"); | 
|---|
| 953 | assert(bs->step_over_gc_barrier(addp->in(AddPNode::Address)) == bs->step_over_gc_barrier(ac->in(ArrayCopyNode::Dest)->in(AddPNode::Address)), "strange pattern"); | 
|---|
| 954 | addp->set_req(AddPNode::Base, src->in(AddPNode::Base)); | 
|---|
| 955 | addp->set_req(AddPNode::Address, src->in(AddPNode::Address)); | 
|---|
| 956 | } else { | 
|---|
| 957 | assert(ac->as_ArrayCopy()->is_arraycopy_validated() || | 
|---|
| 958 | ac->as_ArrayCopy()->is_copyof_validated() || | 
|---|
| 959 | ac->as_ArrayCopy()->is_copyofrange_validated(), "only supported cases"); | 
|---|
| 960 | assert(addp->in(AddPNode::Base) == addp->in(AddPNode::Address), "should be"); | 
|---|
| 961 | addp->set_req(AddPNode::Base, src); | 
|---|
| 962 | addp->set_req(AddPNode::Address, src); | 
|---|
| 963 |  | 
|---|
| 964 | const TypeAryPtr* ary_t = phase->type(in(MemNode::Address))->isa_aryptr(); | 
|---|
| 965 | BasicType ary_elem  = ary_t->klass()->as_array_klass()->element_type()->basic_type(); | 
|---|
| 966 | uint  = arrayOopDesc::base_offset_in_bytes(ary_elem); | 
|---|
| 967 | uint shift  = exact_log2(type2aelembytes(ary_elem)); | 
|---|
| 968 |  | 
|---|
| 969 | Node* diff = phase->transform(new SubINode(ac->in(ArrayCopyNode::SrcPos), ac->in(ArrayCopyNode::DestPos))); | 
|---|
| 970 | #ifdef _LP64 | 
|---|
| 971 | diff = phase->transform(new ConvI2LNode(diff)); | 
|---|
| 972 | #endif | 
|---|
| 973 | diff = phase->transform(new LShiftXNode(diff, phase->intcon(shift))); | 
|---|
| 974 |  | 
|---|
| 975 | Node* offset = phase->transform(new AddXNode(addp->in(AddPNode::Offset), diff)); | 
|---|
| 976 | addp->set_req(AddPNode::Offset, offset); | 
|---|
| 977 | } | 
|---|
| 978 | addp = phase->transform(addp); | 
|---|
| 979 | #ifdef ASSERT | 
|---|
| 980 | const TypePtr* adr_type = phase->type(addp)->is_ptr(); | 
|---|
| 981 | ld->_adr_type = adr_type; | 
|---|
| 982 | #endif | 
|---|
| 983 | ld->set_req(MemNode::Address, addp); | 
|---|
| 984 | ld->set_req(0, ctl); | 
|---|
| 985 | ld->set_req(MemNode::Memory, mem); | 
|---|
| 986 | // load depends on the tests that validate the arraycopy | 
|---|
| 987 | ld->_control_dependency = Pinned; | 
|---|
| 988 | return ld; | 
|---|
| 989 | } | 
|---|
| 990 | return NULL; | 
|---|
| 991 | } | 
|---|
| 992 |  | 
|---|
| 993 |  | 
|---|
| 994 | //---------------------------can_see_stored_value------------------------------ | 
|---|
| 995 | // This routine exists to make sure this set of tests is done the same | 
|---|
| 996 | // everywhere.  We need to make a coordinated change: first LoadNode::Ideal | 
|---|
| 997 | // will change the graph shape in a way which makes memory alive twice at the | 
|---|
| 998 | // same time (uses the Oracle model of aliasing), then some | 
|---|
| 999 | // LoadXNode::Identity will fold things back to the equivalence-class model | 
|---|
| 1000 | // of aliasing. | 
|---|
| 1001 | Node* MemNode::can_see_stored_value(Node* st, PhaseTransform* phase) const { | 
|---|
| 1002 | Node* ld_adr = in(MemNode::Address); | 
|---|
| 1003 | intptr_t ld_off = 0; | 
|---|
| 1004 | Node* ld_base = AddPNode::Ideal_base_and_offset(ld_adr, phase, ld_off); | 
|---|
| 1005 | Node* ld_alloc = AllocateNode::Ideal_allocation(ld_base, phase); | 
|---|
| 1006 | const TypeInstPtr* tp = phase->type(ld_adr)->isa_instptr(); | 
|---|
| 1007 | Compile::AliasType* atp = (tp != NULL) ? phase->C->alias_type(tp) : NULL; | 
|---|
| 1008 | // This is more general than load from boxing objects. | 
|---|
| 1009 | if (skip_through_membars(atp, tp, phase->C->eliminate_boxing())) { | 
|---|
| 1010 | uint alias_idx = atp->index(); | 
|---|
| 1011 | bool final = !atp->is_rewritable(); | 
|---|
| 1012 | Node* result = NULL; | 
|---|
| 1013 | Node* current = st; | 
|---|
| 1014 | // Skip through chains of MemBarNodes checking the MergeMems for | 
|---|
| 1015 | // new states for the slice of this load.  Stop once any other | 
|---|
| 1016 | // kind of node is encountered.  Loads from final memory can skip | 
|---|
| 1017 | // through any kind of MemBar but normal loads shouldn't skip | 
|---|
| 1018 | // through MemBarAcquire since the could allow them to move out of | 
|---|
| 1019 | // a synchronized region. | 
|---|
| 1020 | while (current->is_Proj()) { | 
|---|
| 1021 | int opc = current->in(0)->Opcode(); | 
|---|
| 1022 | if ((final && (opc == Op_MemBarAcquire || | 
|---|
| 1023 | opc == Op_MemBarAcquireLock || | 
|---|
| 1024 | opc == Op_LoadFence)) || | 
|---|
| 1025 | opc == Op_MemBarRelease || | 
|---|
| 1026 | opc == Op_StoreFence || | 
|---|
| 1027 | opc == Op_MemBarReleaseLock || | 
|---|
| 1028 | opc == Op_MemBarStoreStore || | 
|---|
| 1029 | opc == Op_MemBarCPUOrder) { | 
|---|
| 1030 | Node* mem = current->in(0)->in(TypeFunc::Memory); | 
|---|
| 1031 | if (mem->is_MergeMem()) { | 
|---|
| 1032 | MergeMemNode* merge = mem->as_MergeMem(); | 
|---|
| 1033 | Node* new_st = merge->memory_at(alias_idx); | 
|---|
| 1034 | if (new_st == merge->base_memory()) { | 
|---|
| 1035 | // Keep searching | 
|---|
| 1036 | current = new_st; | 
|---|
| 1037 | continue; | 
|---|
| 1038 | } | 
|---|
| 1039 | // Save the new memory state for the slice and fall through | 
|---|
| 1040 | // to exit. | 
|---|
| 1041 | result = new_st; | 
|---|
| 1042 | } | 
|---|
| 1043 | } | 
|---|
| 1044 | break; | 
|---|
| 1045 | } | 
|---|
| 1046 | if (result != NULL) { | 
|---|
| 1047 | st = result; | 
|---|
| 1048 | } | 
|---|
| 1049 | } | 
|---|
| 1050 |  | 
|---|
| 1051 | // Loop around twice in the case Load -> Initialize -> Store. | 
|---|
| 1052 | // (See PhaseIterGVN::add_users_to_worklist, which knows about this case.) | 
|---|
| 1053 | for (int trip = 0; trip <= 1; trip++) { | 
|---|
| 1054 |  | 
|---|
| 1055 | if (st->is_Store()) { | 
|---|
| 1056 | Node* st_adr = st->in(MemNode::Address); | 
|---|
| 1057 | if (!phase->eqv(st_adr, ld_adr)) { | 
|---|
| 1058 | // Try harder before giving up. Unify base pointers with casts (e.g., raw/non-raw pointers). | 
|---|
| 1059 | intptr_t st_off = 0; | 
|---|
| 1060 | Node* st_base = AddPNode::Ideal_base_and_offset(st_adr, phase, st_off); | 
|---|
| 1061 | if (ld_base == NULL)                                   return NULL; | 
|---|
| 1062 | if (st_base == NULL)                                   return NULL; | 
|---|
| 1063 | if (!ld_base->eqv_uncast(st_base, /*keep_deps=*/true)) return NULL; | 
|---|
| 1064 | if (ld_off != st_off)                                  return NULL; | 
|---|
| 1065 | if (ld_off == Type::OffsetBot)                         return NULL; | 
|---|
| 1066 | // Same base, same offset. | 
|---|
| 1067 | // Possible improvement for arrays: check index value instead of absolute offset. | 
|---|
| 1068 |  | 
|---|
| 1069 | // At this point we have proven something like this setup: | 
|---|
| 1070 | //   B = << base >> | 
|---|
| 1071 | //   L =  LoadQ(AddP(Check/CastPP(B), #Off)) | 
|---|
| 1072 | //   S = StoreQ(AddP(             B , #Off), V) | 
|---|
| 1073 | // (Actually, we haven't yet proven the Q's are the same.) | 
|---|
| 1074 | // In other words, we are loading from a casted version of | 
|---|
| 1075 | // the same pointer-and-offset that we stored to. | 
|---|
| 1076 | // Casted version may carry a dependency and it is respected. | 
|---|
| 1077 | // Thus, we are able to replace L by V. | 
|---|
| 1078 | } | 
|---|
| 1079 | // Now prove that we have a LoadQ matched to a StoreQ, for some Q. | 
|---|
| 1080 | if (store_Opcode() != st->Opcode()) | 
|---|
| 1081 | return NULL; | 
|---|
| 1082 | return st->in(MemNode::ValueIn); | 
|---|
| 1083 | } | 
|---|
| 1084 |  | 
|---|
| 1085 | // A load from a freshly-created object always returns zero. | 
|---|
| 1086 | // (This can happen after LoadNode::Ideal resets the load's memory input | 
|---|
| 1087 | // to find_captured_store, which returned InitializeNode::zero_memory.) | 
|---|
| 1088 | if (st->is_Proj() && st->in(0)->is_Allocate() && | 
|---|
| 1089 | (st->in(0) == ld_alloc) && | 
|---|
| 1090 | (ld_off >= st->in(0)->as_Allocate()->minimum_header_size())) { | 
|---|
| 1091 | // return a zero value for the load's basic type | 
|---|
| 1092 | // (This is one of the few places where a generic PhaseTransform | 
|---|
| 1093 | // can create new nodes.  Think of it as lazily manifesting | 
|---|
| 1094 | // virtually pre-existing constants.) | 
|---|
| 1095 | return phase->zerocon(memory_type()); | 
|---|
| 1096 | } | 
|---|
| 1097 |  | 
|---|
| 1098 | // A load from an initialization barrier can match a captured store. | 
|---|
| 1099 | if (st->is_Proj() && st->in(0)->is_Initialize()) { | 
|---|
| 1100 | InitializeNode* init = st->in(0)->as_Initialize(); | 
|---|
| 1101 | AllocateNode* alloc = init->allocation(); | 
|---|
| 1102 | if ((alloc != NULL) && (alloc == ld_alloc)) { | 
|---|
| 1103 | // examine a captured store value | 
|---|
| 1104 | st = init->find_captured_store(ld_off, memory_size(), phase); | 
|---|
| 1105 | if (st != NULL) { | 
|---|
| 1106 | continue;             // take one more trip around | 
|---|
| 1107 | } | 
|---|
| 1108 | } | 
|---|
| 1109 | } | 
|---|
| 1110 |  | 
|---|
| 1111 | // Load boxed value from result of valueOf() call is input parameter. | 
|---|
| 1112 | if (this->is_Load() && ld_adr->is_AddP() && | 
|---|
| 1113 | (tp != NULL) && tp->is_ptr_to_boxed_value()) { | 
|---|
| 1114 | intptr_t ignore = 0; | 
|---|
| 1115 | Node* base = AddPNode::Ideal_base_and_offset(ld_adr, phase, ignore); | 
|---|
| 1116 | BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); | 
|---|
| 1117 | base = bs->step_over_gc_barrier(base); | 
|---|
| 1118 | if (base != NULL && base->is_Proj() && | 
|---|
| 1119 | base->as_Proj()->_con == TypeFunc::Parms && | 
|---|
| 1120 | base->in(0)->is_CallStaticJava() && | 
|---|
| 1121 | base->in(0)->as_CallStaticJava()->is_boxing_method()) { | 
|---|
| 1122 | return base->in(0)->in(TypeFunc::Parms); | 
|---|
| 1123 | } | 
|---|
| 1124 | } | 
|---|
| 1125 |  | 
|---|
| 1126 | break; | 
|---|
| 1127 | } | 
|---|
| 1128 |  | 
|---|
| 1129 | return NULL; | 
|---|
| 1130 | } | 
|---|
| 1131 |  | 
|---|
| 1132 | //----------------------is_instance_field_load_with_local_phi------------------ | 
|---|
| 1133 | bool LoadNode::is_instance_field_load_with_local_phi(Node* ctrl) { | 
|---|
| 1134 | if( in(Memory)->is_Phi() && in(Memory)->in(0) == ctrl && | 
|---|
| 1135 | in(Address)->is_AddP() ) { | 
|---|
| 1136 | const TypeOopPtr* t_oop = in(Address)->bottom_type()->isa_oopptr(); | 
|---|
| 1137 | // Only instances and boxed values. | 
|---|
| 1138 | if( t_oop != NULL && | 
|---|
| 1139 | (t_oop->is_ptr_to_boxed_value() || | 
|---|
| 1140 | t_oop->is_known_instance_field()) && | 
|---|
| 1141 | t_oop->offset() != Type::OffsetBot && | 
|---|
| 1142 | t_oop->offset() != Type::OffsetTop) { | 
|---|
| 1143 | return true; | 
|---|
| 1144 | } | 
|---|
| 1145 | } | 
|---|
| 1146 | return false; | 
|---|
| 1147 | } | 
|---|
| 1148 |  | 
|---|
| 1149 | //------------------------------Identity--------------------------------------- | 
|---|
| 1150 | // Loads are identity if previous store is to same address | 
|---|
| 1151 | Node* LoadNode::Identity(PhaseGVN* phase) { | 
|---|
| 1152 | // If the previous store-maker is the right kind of Store, and the store is | 
|---|
| 1153 | // to the same address, then we are equal to the value stored. | 
|---|
| 1154 | Node* mem = in(Memory); | 
|---|
| 1155 | Node* value = can_see_stored_value(mem, phase); | 
|---|
| 1156 | if( value ) { | 
|---|
| 1157 | // byte, short & char stores truncate naturally. | 
|---|
| 1158 | // A load has to load the truncated value which requires | 
|---|
| 1159 | // some sort of masking operation and that requires an | 
|---|
| 1160 | // Ideal call instead of an Identity call. | 
|---|
| 1161 | if (memory_size() < BytesPerInt) { | 
|---|
| 1162 | // If the input to the store does not fit with the load's result type, | 
|---|
| 1163 | // it must be truncated via an Ideal call. | 
|---|
| 1164 | if (!phase->type(value)->higher_equal(phase->type(this))) | 
|---|
| 1165 | return this; | 
|---|
| 1166 | } | 
|---|
| 1167 | // (This works even when value is a Con, but LoadNode::Value | 
|---|
| 1168 | // usually runs first, producing the singleton type of the Con.) | 
|---|
| 1169 | return value; | 
|---|
| 1170 | } | 
|---|
| 1171 |  | 
|---|
| 1172 | // Search for an existing data phi which was generated before for the same | 
|---|
| 1173 | // instance's field to avoid infinite generation of phis in a loop. | 
|---|
| 1174 | Node *region = mem->in(0); | 
|---|
| 1175 | if (is_instance_field_load_with_local_phi(region)) { | 
|---|
| 1176 | const TypeOopPtr *addr_t = in(Address)->bottom_type()->isa_oopptr(); | 
|---|
| 1177 | int this_index  = phase->C->get_alias_index(addr_t); | 
|---|
| 1178 | int this_offset = addr_t->offset(); | 
|---|
| 1179 | int this_iid    = addr_t->instance_id(); | 
|---|
| 1180 | if (!addr_t->is_known_instance() && | 
|---|
| 1181 | addr_t->is_ptr_to_boxed_value()) { | 
|---|
| 1182 | // Use _idx of address base (could be Phi node) for boxed values. | 
|---|
| 1183 | intptr_t   ignore = 0; | 
|---|
| 1184 | Node*      base = AddPNode::Ideal_base_and_offset(in(Address), phase, ignore); | 
|---|
| 1185 | if (base == NULL) { | 
|---|
| 1186 | return this; | 
|---|
| 1187 | } | 
|---|
| 1188 | this_iid = base->_idx; | 
|---|
| 1189 | } | 
|---|
| 1190 | const Type* this_type = bottom_type(); | 
|---|
| 1191 | for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) { | 
|---|
| 1192 | Node* phi = region->fast_out(i); | 
|---|
| 1193 | if (phi->is_Phi() && phi != mem && | 
|---|
| 1194 | phi->as_Phi()->is_same_inst_field(this_type, (int)mem->_idx, this_iid, this_index, this_offset)) { | 
|---|
| 1195 | return phi; | 
|---|
| 1196 | } | 
|---|
| 1197 | } | 
|---|
| 1198 | } | 
|---|
| 1199 |  | 
|---|
| 1200 | return this; | 
|---|
| 1201 | } | 
|---|
| 1202 |  | 
|---|
| 1203 | // Construct an equivalent unsigned load. | 
|---|
| 1204 | Node* LoadNode::convert_to_unsigned_load(PhaseGVN& gvn) { | 
|---|
| 1205 | BasicType bt = T_ILLEGAL; | 
|---|
| 1206 | const Type* rt = NULL; | 
|---|
| 1207 | switch (Opcode()) { | 
|---|
| 1208 | case Op_LoadUB: return this; | 
|---|
| 1209 | case Op_LoadUS: return this; | 
|---|
| 1210 | case Op_LoadB: bt = T_BOOLEAN; rt = TypeInt::UBYTE; break; | 
|---|
| 1211 | case Op_LoadS: bt = T_CHAR;    rt = TypeInt::CHAR;  break; | 
|---|
| 1212 | default: | 
|---|
| 1213 | assert(false, "no unsigned variant: %s", Name()); | 
|---|
| 1214 | return NULL; | 
|---|
| 1215 | } | 
|---|
| 1216 | return LoadNode::make(gvn, in(MemNode::Control), in(MemNode::Memory), in(MemNode::Address), | 
|---|
| 1217 | raw_adr_type(), rt, bt, _mo, _control_dependency, | 
|---|
| 1218 | is_unaligned_access(), is_mismatched_access()); | 
|---|
| 1219 | } | 
|---|
| 1220 |  | 
|---|
| 1221 | // Construct an equivalent signed load. | 
|---|
| 1222 | Node* LoadNode::convert_to_signed_load(PhaseGVN& gvn) { | 
|---|
| 1223 | BasicType bt = T_ILLEGAL; | 
|---|
| 1224 | const Type* rt = NULL; | 
|---|
| 1225 | switch (Opcode()) { | 
|---|
| 1226 | case Op_LoadUB: bt = T_BYTE;  rt = TypeInt::BYTE;  break; | 
|---|
| 1227 | case Op_LoadUS: bt = T_SHORT; rt = TypeInt::SHORT; break; | 
|---|
| 1228 | case Op_LoadB: // fall through | 
|---|
| 1229 | case Op_LoadS: // fall through | 
|---|
| 1230 | case Op_LoadI: // fall through | 
|---|
| 1231 | case Op_LoadL: return this; | 
|---|
| 1232 | default: | 
|---|
| 1233 | assert(false, "no signed variant: %s", Name()); | 
|---|
| 1234 | return NULL; | 
|---|
| 1235 | } | 
|---|
| 1236 | return LoadNode::make(gvn, in(MemNode::Control), in(MemNode::Memory), in(MemNode::Address), | 
|---|
| 1237 | raw_adr_type(), rt, bt, _mo, _control_dependency, | 
|---|
| 1238 | is_unaligned_access(), is_mismatched_access()); | 
|---|
| 1239 | } | 
|---|
| 1240 |  | 
|---|
| 1241 | // We're loading from an object which has autobox behaviour. | 
|---|
| 1242 | // If this object is result of a valueOf call we'll have a phi | 
|---|
| 1243 | // merging a newly allocated object and a load from the cache. | 
|---|
| 1244 | // We want to replace this load with the original incoming | 
|---|
| 1245 | // argument to the valueOf call. | 
|---|
| 1246 | Node* LoadNode::eliminate_autobox(PhaseGVN* phase) { | 
|---|
| 1247 | assert(phase->C->eliminate_boxing(), "sanity"); | 
|---|
| 1248 | intptr_t ignore = 0; | 
|---|
| 1249 | Node* base = AddPNode::Ideal_base_and_offset(in(Address), phase, ignore); | 
|---|
| 1250 | if ((base == NULL) || base->is_Phi()) { | 
|---|
| 1251 | // Push the loads from the phi that comes from valueOf up | 
|---|
| 1252 | // through it to allow elimination of the loads and the recovery | 
|---|
| 1253 | // of the original value. It is done in split_through_phi(). | 
|---|
| 1254 | return NULL; | 
|---|
| 1255 | } else if (base->is_Load() || | 
|---|
| 1256 | (base->is_DecodeN() && base->in(1)->is_Load())) { | 
|---|
| 1257 | // Eliminate the load of boxed value for integer types from the cache | 
|---|
| 1258 | // array by deriving the value from the index into the array. | 
|---|
| 1259 | // Capture the offset of the load and then reverse the computation. | 
|---|
| 1260 |  | 
|---|
| 1261 | // Get LoadN node which loads a boxing object from 'cache' array. | 
|---|
| 1262 | if (base->is_DecodeN()) { | 
|---|
| 1263 | base = base->in(1); | 
|---|
| 1264 | } | 
|---|
| 1265 | if (!base->in(Address)->is_AddP()) { | 
|---|
| 1266 | return NULL; // Complex address | 
|---|
| 1267 | } | 
|---|
| 1268 | AddPNode* address = base->in(Address)->as_AddP(); | 
|---|
| 1269 | Node* cache_base = address->in(AddPNode::Base); | 
|---|
| 1270 | if ((cache_base != NULL) && cache_base->is_DecodeN()) { | 
|---|
| 1271 | // Get ConP node which is static 'cache' field. | 
|---|
| 1272 | cache_base = cache_base->in(1); | 
|---|
| 1273 | } | 
|---|
| 1274 | if ((cache_base != NULL) && cache_base->is_Con()) { | 
|---|
| 1275 | const TypeAryPtr* base_type = cache_base->bottom_type()->isa_aryptr(); | 
|---|
| 1276 | if ((base_type != NULL) && base_type->is_autobox_cache()) { | 
|---|
| 1277 | Node* elements[4]; | 
|---|
| 1278 | int shift = exact_log2(type2aelembytes(T_OBJECT)); | 
|---|
| 1279 | int count = address->unpack_offsets(elements, ARRAY_SIZE(elements)); | 
|---|
| 1280 | if (count > 0 && elements[0]->is_Con() && | 
|---|
| 1281 | (count == 1 || | 
|---|
| 1282 | (count == 2 && elements[1]->Opcode() == Op_LShiftX && | 
|---|
| 1283 | elements[1]->in(2) == phase->intcon(shift)))) { | 
|---|
| 1284 | ciObjArray* array = base_type->const_oop()->as_obj_array(); | 
|---|
| 1285 | // Fetch the box object cache[0] at the base of the array and get its value | 
|---|
| 1286 | ciInstance* box = array->obj_at(0)->as_instance(); | 
|---|
| 1287 | ciInstanceKlass* ik = box->klass()->as_instance_klass(); | 
|---|
| 1288 | assert(ik->is_box_klass(), "sanity"); | 
|---|
| 1289 | assert(ik->nof_nonstatic_fields() == 1, "change following code"); | 
|---|
| 1290 | if (ik->nof_nonstatic_fields() == 1) { | 
|---|
| 1291 | // This should be true nonstatic_field_at requires calling | 
|---|
| 1292 | // nof_nonstatic_fields so check it anyway | 
|---|
| 1293 | ciConstant c = box->field_value(ik->nonstatic_field_at(0)); | 
|---|
| 1294 | BasicType bt = c.basic_type(); | 
|---|
| 1295 | // Only integer types have boxing cache. | 
|---|
| 1296 | assert(bt == T_BOOLEAN || bt == T_CHAR  || | 
|---|
| 1297 | bt == T_BYTE    || bt == T_SHORT || | 
|---|
| 1298 | bt == T_INT     || bt == T_LONG, "wrong type = %s", type2name(bt)); | 
|---|
| 1299 | jlong cache_low = (bt == T_LONG) ? c.as_long() : c.as_int(); | 
|---|
| 1300 | if (cache_low != (int)cache_low) { | 
|---|
| 1301 | return NULL; // should not happen since cache is array indexed by value | 
|---|
| 1302 | } | 
|---|
| 1303 | jlong offset = arrayOopDesc::base_offset_in_bytes(T_OBJECT) - (cache_low << shift); | 
|---|
| 1304 | if (offset != (int)offset) { | 
|---|
| 1305 | return NULL; // should not happen since cache is array indexed by value | 
|---|
| 1306 | } | 
|---|
| 1307 | // Add up all the offsets making of the address of the load | 
|---|
| 1308 | Node* result = elements[0]; | 
|---|
| 1309 | for (int i = 1; i < count; i++) { | 
|---|
| 1310 | result = phase->transform(new AddXNode(result, elements[i])); | 
|---|
| 1311 | } | 
|---|
| 1312 | // Remove the constant offset from the address and then | 
|---|
| 1313 | result = phase->transform(new AddXNode(result, phase->MakeConX(-(int)offset))); | 
|---|
| 1314 | // remove the scaling of the offset to recover the original index. | 
|---|
| 1315 | if (result->Opcode() == Op_LShiftX && result->in(2) == phase->intcon(shift)) { | 
|---|
| 1316 | // Peel the shift off directly but wrap it in a dummy node | 
|---|
| 1317 | // since Ideal can't return existing nodes | 
|---|
| 1318 | result = new RShiftXNode(result->in(1), phase->intcon(0)); | 
|---|
| 1319 | } else if (result->is_Add() && result->in(2)->is_Con() && | 
|---|
| 1320 | result->in(1)->Opcode() == Op_LShiftX && | 
|---|
| 1321 | result->in(1)->in(2) == phase->intcon(shift)) { | 
|---|
| 1322 | // We can't do general optimization: ((X<<Z) + Y) >> Z ==> X + (Y>>Z) | 
|---|
| 1323 | // but for boxing cache access we know that X<<Z will not overflow | 
|---|
| 1324 | // (there is range check) so we do this optimizatrion by hand here. | 
|---|
| 1325 | Node* add_con = new RShiftXNode(result->in(2), phase->intcon(shift)); | 
|---|
| 1326 | result = new AddXNode(result->in(1)->in(1), phase->transform(add_con)); | 
|---|
| 1327 | } else { | 
|---|
| 1328 | result = new RShiftXNode(result, phase->intcon(shift)); | 
|---|
| 1329 | } | 
|---|
| 1330 | #ifdef _LP64 | 
|---|
| 1331 | if (bt != T_LONG) { | 
|---|
| 1332 | result = new ConvL2INode(phase->transform(result)); | 
|---|
| 1333 | } | 
|---|
| 1334 | #else | 
|---|
| 1335 | if (bt == T_LONG) { | 
|---|
| 1336 | result = new ConvI2LNode(phase->transform(result)); | 
|---|
| 1337 | } | 
|---|
| 1338 | #endif | 
|---|
| 1339 | // Boxing/unboxing can be done from signed & unsigned loads (e.g. LoadUB -> ... -> LoadB pair). | 
|---|
| 1340 | // Need to preserve unboxing load type if it is unsigned. | 
|---|
| 1341 | switch(this->Opcode()) { | 
|---|
| 1342 | case Op_LoadUB: | 
|---|
| 1343 | result = new AndINode(phase->transform(result), phase->intcon(0xFF)); | 
|---|
| 1344 | break; | 
|---|
| 1345 | case Op_LoadUS: | 
|---|
| 1346 | result = new AndINode(phase->transform(result), phase->intcon(0xFFFF)); | 
|---|
| 1347 | break; | 
|---|
| 1348 | } | 
|---|
| 1349 | return result; | 
|---|
| 1350 | } | 
|---|
| 1351 | } | 
|---|
| 1352 | } | 
|---|
| 1353 | } | 
|---|
| 1354 | } | 
|---|
| 1355 | return NULL; | 
|---|
| 1356 | } | 
|---|
| 1357 |  | 
|---|
| 1358 | static bool stable_phi(PhiNode* phi, PhaseGVN *phase) { | 
|---|
| 1359 | Node* region = phi->in(0); | 
|---|
| 1360 | if (region == NULL) { | 
|---|
| 1361 | return false; // Wait stable graph | 
|---|
| 1362 | } | 
|---|
| 1363 | uint cnt = phi->req(); | 
|---|
| 1364 | for (uint i = 1; i < cnt; i++) { | 
|---|
| 1365 | Node* rc = region->in(i); | 
|---|
| 1366 | if (rc == NULL || phase->type(rc) == Type::TOP) | 
|---|
| 1367 | return false; // Wait stable graph | 
|---|
| 1368 | Node* in = phi->in(i); | 
|---|
| 1369 | if (in == NULL || phase->type(in) == Type::TOP) | 
|---|
| 1370 | return false; // Wait stable graph | 
|---|
| 1371 | } | 
|---|
| 1372 | return true; | 
|---|
| 1373 | } | 
|---|
| 1374 | //------------------------------split_through_phi------------------------------ | 
|---|
| 1375 | // Split instance or boxed field load through Phi. | 
|---|
| 1376 | Node *LoadNode::split_through_phi(PhaseGVN *phase) { | 
|---|
| 1377 | Node* mem     = in(Memory); | 
|---|
| 1378 | Node* address = in(Address); | 
|---|
| 1379 | const TypeOopPtr *t_oop = phase->type(address)->isa_oopptr(); | 
|---|
| 1380 |  | 
|---|
| 1381 | assert((t_oop != NULL) && | 
|---|
| 1382 | (t_oop->is_known_instance_field() || | 
|---|
| 1383 | t_oop->is_ptr_to_boxed_value()), "invalide conditions"); | 
|---|
| 1384 |  | 
|---|
| 1385 | Compile* C = phase->C; | 
|---|
| 1386 | intptr_t ignore = 0; | 
|---|
| 1387 | Node*    base = AddPNode::Ideal_base_and_offset(address, phase, ignore); | 
|---|
| 1388 | bool base_is_phi = (base != NULL) && base->is_Phi(); | 
|---|
| 1389 | bool load_boxed_values = t_oop->is_ptr_to_boxed_value() && C->aggressive_unboxing() && | 
|---|
| 1390 | (base != NULL) && (base == address->in(AddPNode::Base)) && | 
|---|
| 1391 | phase->type(base)->higher_equal(TypePtr::NOTNULL); | 
|---|
| 1392 |  | 
|---|
| 1393 | if (!((mem->is_Phi() || base_is_phi) && | 
|---|
| 1394 | (load_boxed_values || t_oop->is_known_instance_field()))) { | 
|---|
| 1395 | return NULL; // memory is not Phi | 
|---|
| 1396 | } | 
|---|
| 1397 |  | 
|---|
| 1398 | if (mem->is_Phi()) { | 
|---|
| 1399 | if (!stable_phi(mem->as_Phi(), phase)) { | 
|---|
| 1400 | return NULL; // Wait stable graph | 
|---|
| 1401 | } | 
|---|
| 1402 | uint cnt = mem->req(); | 
|---|
| 1403 | // Check for loop invariant memory. | 
|---|
| 1404 | if (cnt == 3) { | 
|---|
| 1405 | for (uint i = 1; i < cnt; i++) { | 
|---|
| 1406 | Node* in = mem->in(i); | 
|---|
| 1407 | Node*  m = optimize_memory_chain(in, t_oop, this, phase); | 
|---|
| 1408 | if (m == mem) { | 
|---|
| 1409 | if (i == 1) { | 
|---|
| 1410 | // if the first edge was a loop, check second edge too. | 
|---|
| 1411 | // If both are replaceable - we are in an infinite loop | 
|---|
| 1412 | Node *n = optimize_memory_chain(mem->in(2), t_oop, this, phase); | 
|---|
| 1413 | if (n == mem) { | 
|---|
| 1414 | break; | 
|---|
| 1415 | } | 
|---|
| 1416 | } | 
|---|
| 1417 | set_req(Memory, mem->in(cnt - i)); | 
|---|
| 1418 | return this; // made change | 
|---|
| 1419 | } | 
|---|
| 1420 | } | 
|---|
| 1421 | } | 
|---|
| 1422 | } | 
|---|
| 1423 | if (base_is_phi) { | 
|---|
| 1424 | if (!stable_phi(base->as_Phi(), phase)) { | 
|---|
| 1425 | return NULL; // Wait stable graph | 
|---|
| 1426 | } | 
|---|
| 1427 | uint cnt = base->req(); | 
|---|
| 1428 | // Check for loop invariant memory. | 
|---|
| 1429 | if (cnt == 3) { | 
|---|
| 1430 | for (uint i = 1; i < cnt; i++) { | 
|---|
| 1431 | if (base->in(i) == base) { | 
|---|
| 1432 | return NULL; // Wait stable graph | 
|---|
| 1433 | } | 
|---|
| 1434 | } | 
|---|
| 1435 | } | 
|---|
| 1436 | } | 
|---|
| 1437 |  | 
|---|
| 1438 | bool load_boxed_phi = load_boxed_values && base_is_phi && (base->in(0) == mem->in(0)); | 
|---|
| 1439 |  | 
|---|
| 1440 | // Split through Phi (see original code in loopopts.cpp). | 
|---|
| 1441 | assert(C->have_alias_type(t_oop), "instance should have alias type"); | 
|---|
| 1442 |  | 
|---|
| 1443 | // Do nothing here if Identity will find a value | 
|---|
| 1444 | // (to avoid infinite chain of value phis generation). | 
|---|
| 1445 | if (!phase->eqv(this, phase->apply_identity(this))) | 
|---|
| 1446 | return NULL; | 
|---|
| 1447 |  | 
|---|
| 1448 | // Select Region to split through. | 
|---|
| 1449 | Node* region; | 
|---|
| 1450 | if (!base_is_phi) { | 
|---|
| 1451 | assert(mem->is_Phi(), "sanity"); | 
|---|
| 1452 | region = mem->in(0); | 
|---|
| 1453 | // Skip if the region dominates some control edge of the address. | 
|---|
| 1454 | if (!MemNode::all_controls_dominate(address, region)) | 
|---|
| 1455 | return NULL; | 
|---|
| 1456 | } else if (!mem->is_Phi()) { | 
|---|
| 1457 | assert(base_is_phi, "sanity"); | 
|---|
| 1458 | region = base->in(0); | 
|---|
| 1459 | // Skip if the region dominates some control edge of the memory. | 
|---|
| 1460 | if (!MemNode::all_controls_dominate(mem, region)) | 
|---|
| 1461 | return NULL; | 
|---|
| 1462 | } else if (base->in(0) != mem->in(0)) { | 
|---|
| 1463 | assert(base_is_phi && mem->is_Phi(), "sanity"); | 
|---|
| 1464 | if (MemNode::all_controls_dominate(mem, base->in(0))) { | 
|---|
| 1465 | region = base->in(0); | 
|---|
| 1466 | } else if (MemNode::all_controls_dominate(address, mem->in(0))) { | 
|---|
| 1467 | region = mem->in(0); | 
|---|
| 1468 | } else { | 
|---|
| 1469 | return NULL; // complex graph | 
|---|
| 1470 | } | 
|---|
| 1471 | } else { | 
|---|
| 1472 | assert(base->in(0) == mem->in(0), "sanity"); | 
|---|
| 1473 | region = mem->in(0); | 
|---|
| 1474 | } | 
|---|
| 1475 |  | 
|---|
| 1476 | const Type* this_type = this->bottom_type(); | 
|---|
| 1477 | int this_index  = C->get_alias_index(t_oop); | 
|---|
| 1478 | int this_offset = t_oop->offset(); | 
|---|
| 1479 | int this_iid    = t_oop->instance_id(); | 
|---|
| 1480 | if (!t_oop->is_known_instance() && load_boxed_values) { | 
|---|
| 1481 | // Use _idx of address base for boxed values. | 
|---|
| 1482 | this_iid = base->_idx; | 
|---|
| 1483 | } | 
|---|
| 1484 | PhaseIterGVN* igvn = phase->is_IterGVN(); | 
|---|
| 1485 | Node* phi = new PhiNode(region, this_type, NULL, mem->_idx, this_iid, this_index, this_offset); | 
|---|
| 1486 | for (uint i = 1; i < region->req(); i++) { | 
|---|
| 1487 | Node* x; | 
|---|
| 1488 | Node* the_clone = NULL; | 
|---|
| 1489 | if (region->in(i) == C->top()) { | 
|---|
| 1490 | x = C->top();      // Dead path?  Use a dead data op | 
|---|
| 1491 | } else { | 
|---|
| 1492 | x = this->clone();        // Else clone up the data op | 
|---|
| 1493 | the_clone = x;            // Remember for possible deletion. | 
|---|
| 1494 | // Alter data node to use pre-phi inputs | 
|---|
| 1495 | if (this->in(0) == region) { | 
|---|
| 1496 | x->set_req(0, region->in(i)); | 
|---|
| 1497 | } else { | 
|---|
| 1498 | x->set_req(0, NULL); | 
|---|
| 1499 | } | 
|---|
| 1500 | if (mem->is_Phi() && (mem->in(0) == region)) { | 
|---|
| 1501 | x->set_req(Memory, mem->in(i)); // Use pre-Phi input for the clone. | 
|---|
| 1502 | } | 
|---|
| 1503 | if (address->is_Phi() && address->in(0) == region) { | 
|---|
| 1504 | x->set_req(Address, address->in(i)); // Use pre-Phi input for the clone | 
|---|
| 1505 | } | 
|---|
| 1506 | if (base_is_phi && (base->in(0) == region)) { | 
|---|
| 1507 | Node* base_x = base->in(i); // Clone address for loads from boxed objects. | 
|---|
| 1508 | Node* adr_x = phase->transform(new AddPNode(base_x,base_x,address->in(AddPNode::Offset))); | 
|---|
| 1509 | x->set_req(Address, adr_x); | 
|---|
| 1510 | } | 
|---|
| 1511 | } | 
|---|
| 1512 | // Check for a 'win' on some paths | 
|---|
| 1513 | const Type *t = x->Value(igvn); | 
|---|
| 1514 |  | 
|---|
| 1515 | bool singleton = t->singleton(); | 
|---|
| 1516 |  | 
|---|
| 1517 | // See comments in PhaseIdealLoop::split_thru_phi(). | 
|---|
| 1518 | if (singleton && t == Type::TOP) { | 
|---|
| 1519 | singleton &= region->is_Loop() && (i != LoopNode::EntryControl); | 
|---|
| 1520 | } | 
|---|
| 1521 |  | 
|---|
| 1522 | if (singleton) { | 
|---|
| 1523 | x = igvn->makecon(t); | 
|---|
| 1524 | } else { | 
|---|
| 1525 | // We now call Identity to try to simplify the cloned node. | 
|---|
| 1526 | // Note that some Identity methods call phase->type(this). | 
|---|
| 1527 | // Make sure that the type array is big enough for | 
|---|
| 1528 | // our new node, even though we may throw the node away. | 
|---|
| 1529 | // (This tweaking with igvn only works because x is a new node.) | 
|---|
| 1530 | igvn->set_type(x, t); | 
|---|
| 1531 | // If x is a TypeNode, capture any more-precise type permanently into Node | 
|---|
| 1532 | // otherwise it will be not updated during igvn->transform since | 
|---|
| 1533 | // igvn->type(x) is set to x->Value() already. | 
|---|
| 1534 | x->raise_bottom_type(t); | 
|---|
| 1535 | Node *y = igvn->apply_identity(x); | 
|---|
| 1536 | if (y != x) { | 
|---|
| 1537 | x = y; | 
|---|
| 1538 | } else { | 
|---|
| 1539 | y = igvn->hash_find_insert(x); | 
|---|
| 1540 | if (y) { | 
|---|
| 1541 | x = y; | 
|---|
| 1542 | } else { | 
|---|
| 1543 | // Else x is a new node we are keeping | 
|---|
| 1544 | // We do not need register_new_node_with_optimizer | 
|---|
| 1545 | // because set_type has already been called. | 
|---|
| 1546 | igvn->_worklist.push(x); | 
|---|
| 1547 | } | 
|---|
| 1548 | } | 
|---|
| 1549 | } | 
|---|
| 1550 | if (x != the_clone && the_clone != NULL) { | 
|---|
| 1551 | igvn->remove_dead_node(the_clone); | 
|---|
| 1552 | } | 
|---|
| 1553 | phi->set_req(i, x); | 
|---|
| 1554 | } | 
|---|
| 1555 | // Record Phi | 
|---|
| 1556 | igvn->register_new_node_with_optimizer(phi); | 
|---|
| 1557 | return phi; | 
|---|
| 1558 | } | 
|---|
| 1559 |  | 
|---|
| 1560 | //------------------------------Ideal------------------------------------------ | 
|---|
| 1561 | // If the load is from Field memory and the pointer is non-null, it might be possible to | 
|---|
| 1562 | // zero out the control input. | 
|---|
| 1563 | // If the offset is constant and the base is an object allocation, | 
|---|
| 1564 | // try to hook me up to the exact initializing store. | 
|---|
| 1565 | Node *LoadNode::Ideal(PhaseGVN *phase, bool can_reshape) { | 
|---|
| 1566 | Node* p = MemNode::Ideal_common(phase, can_reshape); | 
|---|
| 1567 | if (p)  return (p == NodeSentinel) ? NULL : p; | 
|---|
| 1568 |  | 
|---|
| 1569 | Node* ctrl    = in(MemNode::Control); | 
|---|
| 1570 | Node* address = in(MemNode::Address); | 
|---|
| 1571 | bool progress = false; | 
|---|
| 1572 |  | 
|---|
| 1573 | bool addr_mark = ((phase->type(address)->isa_oopptr() || phase->type(address)->isa_narrowoop()) && | 
|---|
| 1574 | phase->type(address)->is_ptr()->offset() == oopDesc::mark_offset_in_bytes()); | 
|---|
| 1575 |  | 
|---|
| 1576 | // Skip up past a SafePoint control.  Cannot do this for Stores because | 
|---|
| 1577 | // pointer stores & cardmarks must stay on the same side of a SafePoint. | 
|---|
| 1578 | if( ctrl != NULL && ctrl->Opcode() == Op_SafePoint && | 
|---|
| 1579 | phase->C->get_alias_index(phase->type(address)->is_ptr()) != Compile::AliasIdxRaw  && | 
|---|
| 1580 | !addr_mark ) { | 
|---|
| 1581 | ctrl = ctrl->in(0); | 
|---|
| 1582 | set_req(MemNode::Control,ctrl); | 
|---|
| 1583 | progress = true; | 
|---|
| 1584 | } | 
|---|
| 1585 |  | 
|---|
| 1586 | intptr_t ignore = 0; | 
|---|
| 1587 | Node*    base   = AddPNode::Ideal_base_and_offset(address, phase, ignore); | 
|---|
| 1588 | if (base != NULL | 
|---|
| 1589 | && phase->C->get_alias_index(phase->type(address)->is_ptr()) != Compile::AliasIdxRaw) { | 
|---|
| 1590 | // Check for useless control edge in some common special cases | 
|---|
| 1591 | if (in(MemNode::Control) != NULL | 
|---|
| 1592 | && can_remove_control() | 
|---|
| 1593 | && phase->type(base)->higher_equal(TypePtr::NOTNULL) | 
|---|
| 1594 | && all_controls_dominate(base, phase->C->start())) { | 
|---|
| 1595 | // A method-invariant, non-null address (constant or 'this' argument). | 
|---|
| 1596 | set_req(MemNode::Control, NULL); | 
|---|
| 1597 | progress = true; | 
|---|
| 1598 | } | 
|---|
| 1599 | } | 
|---|
| 1600 |  | 
|---|
| 1601 | Node* mem = in(MemNode::Memory); | 
|---|
| 1602 | const TypePtr *addr_t = phase->type(address)->isa_ptr(); | 
|---|
| 1603 |  | 
|---|
| 1604 | if (can_reshape && (addr_t != NULL)) { | 
|---|
| 1605 | // try to optimize our memory input | 
|---|
| 1606 | Node* opt_mem = MemNode::optimize_memory_chain(mem, addr_t, this, phase); | 
|---|
| 1607 | if (opt_mem != mem) { | 
|---|
| 1608 | set_req(MemNode::Memory, opt_mem); | 
|---|
| 1609 | if (phase->type( opt_mem ) == Type::TOP) return NULL; | 
|---|
| 1610 | return this; | 
|---|
| 1611 | } | 
|---|
| 1612 | const TypeOopPtr *t_oop = addr_t->isa_oopptr(); | 
|---|
| 1613 | if ((t_oop != NULL) && | 
|---|
| 1614 | (t_oop->is_known_instance_field() || | 
|---|
| 1615 | t_oop->is_ptr_to_boxed_value())) { | 
|---|
| 1616 | PhaseIterGVN *igvn = phase->is_IterGVN(); | 
|---|
| 1617 | if (igvn != NULL && igvn->_worklist.member(opt_mem)) { | 
|---|
| 1618 | // Delay this transformation until memory Phi is processed. | 
|---|
| 1619 | phase->is_IterGVN()->_worklist.push(this); | 
|---|
| 1620 | return NULL; | 
|---|
| 1621 | } | 
|---|
| 1622 | // Split instance field load through Phi. | 
|---|
| 1623 | Node* result = split_through_phi(phase); | 
|---|
| 1624 | if (result != NULL) return result; | 
|---|
| 1625 |  | 
|---|
| 1626 | if (t_oop->is_ptr_to_boxed_value()) { | 
|---|
| 1627 | Node* result = eliminate_autobox(phase); | 
|---|
| 1628 | if (result != NULL) return result; | 
|---|
| 1629 | } | 
|---|
| 1630 | } | 
|---|
| 1631 | } | 
|---|
| 1632 |  | 
|---|
| 1633 | // Is there a dominating load that loads the same value?  Leave | 
|---|
| 1634 | // anything that is not a load of a field/array element (like | 
|---|
| 1635 | // barriers etc.) alone | 
|---|
| 1636 | if (in(0) != NULL && !adr_type()->isa_rawptr() && can_reshape) { | 
|---|
| 1637 | for (DUIterator_Fast imax, i = mem->fast_outs(imax); i < imax; i++) { | 
|---|
| 1638 | Node *use = mem->fast_out(i); | 
|---|
| 1639 | if (use != this && | 
|---|
| 1640 | use->Opcode() == Opcode() && | 
|---|
| 1641 | use->in(0) != NULL && | 
|---|
| 1642 | use->in(0) != in(0) && | 
|---|
| 1643 | use->in(Address) == in(Address)) { | 
|---|
| 1644 | Node* ctl = in(0); | 
|---|
| 1645 | for (int i = 0; i < 10 && ctl != NULL; i++) { | 
|---|
| 1646 | ctl = IfNode::up_one_dom(ctl); | 
|---|
| 1647 | if (ctl == use->in(0)) { | 
|---|
| 1648 | set_req(0, use->in(0)); | 
|---|
| 1649 | return this; | 
|---|
| 1650 | } | 
|---|
| 1651 | } | 
|---|
| 1652 | } | 
|---|
| 1653 | } | 
|---|
| 1654 | } | 
|---|
| 1655 |  | 
|---|
| 1656 | // Check for prior store with a different base or offset; make Load | 
|---|
| 1657 | // independent.  Skip through any number of them.  Bail out if the stores | 
|---|
| 1658 | // are in an endless dead cycle and report no progress.  This is a key | 
|---|
| 1659 | // transform for Reflection.  However, if after skipping through the Stores | 
|---|
| 1660 | // we can't then fold up against a prior store do NOT do the transform as | 
|---|
| 1661 | // this amounts to using the 'Oracle' model of aliasing.  It leaves the same | 
|---|
| 1662 | // array memory alive twice: once for the hoisted Load and again after the | 
|---|
| 1663 | // bypassed Store.  This situation only works if EVERYBODY who does | 
|---|
| 1664 | // anti-dependence work knows how to bypass.  I.e. we need all | 
|---|
| 1665 | // anti-dependence checks to ask the same Oracle.  Right now, that Oracle is | 
|---|
| 1666 | // the alias index stuff.  So instead, peek through Stores and IFF we can | 
|---|
| 1667 | // fold up, do so. | 
|---|
| 1668 | Node* prev_mem = find_previous_store(phase); | 
|---|
| 1669 | if (prev_mem != NULL) { | 
|---|
| 1670 | Node* value = can_see_arraycopy_value(prev_mem, phase); | 
|---|
| 1671 | if (value != NULL) { | 
|---|
| 1672 | return value; | 
|---|
| 1673 | } | 
|---|
| 1674 | } | 
|---|
| 1675 | // Steps (a), (b):  Walk past independent stores to find an exact match. | 
|---|
| 1676 | if (prev_mem != NULL && prev_mem != in(MemNode::Memory)) { | 
|---|
| 1677 | // (c) See if we can fold up on the spot, but don't fold up here. | 
|---|
| 1678 | // Fold-up might require truncation (for LoadB/LoadS/LoadUS) or | 
|---|
| 1679 | // just return a prior value, which is done by Identity calls. | 
|---|
| 1680 | if (can_see_stored_value(prev_mem, phase)) { | 
|---|
| 1681 | // Make ready for step (d): | 
|---|
| 1682 | set_req(MemNode::Memory, prev_mem); | 
|---|
| 1683 | return this; | 
|---|
| 1684 | } | 
|---|
| 1685 | } | 
|---|
| 1686 |  | 
|---|
| 1687 | return progress ? this : NULL; | 
|---|
| 1688 | } | 
|---|
| 1689 |  | 
|---|
| 1690 | // Helper to recognize certain Klass fields which are invariant across | 
|---|
| 1691 | // some group of array types (e.g., int[] or all T[] where T < Object). | 
|---|
| 1692 | const Type* | 
|---|
| 1693 | LoadNode::load_array_final_field(const TypeKlassPtr *tkls, | 
|---|
| 1694 | ciKlass* klass) const { | 
|---|
| 1695 | if (tkls->offset() == in_bytes(Klass::modifier_flags_offset())) { | 
|---|
| 1696 | // The field is Klass::_modifier_flags.  Return its (constant) value. | 
|---|
| 1697 | // (Folds up the 2nd indirection in aClassConstant.getModifiers().) | 
|---|
| 1698 | assert(this->Opcode() == Op_LoadI, "must load an int from _modifier_flags"); | 
|---|
| 1699 | return TypeInt::make(klass->modifier_flags()); | 
|---|
| 1700 | } | 
|---|
| 1701 | if (tkls->offset() == in_bytes(Klass::access_flags_offset())) { | 
|---|
| 1702 | // The field is Klass::_access_flags.  Return its (constant) value. | 
|---|
| 1703 | // (Folds up the 2nd indirection in Reflection.getClassAccessFlags(aClassConstant).) | 
|---|
| 1704 | assert(this->Opcode() == Op_LoadI, "must load an int from _access_flags"); | 
|---|
| 1705 | return TypeInt::make(klass->access_flags()); | 
|---|
| 1706 | } | 
|---|
| 1707 | if (tkls->offset() == in_bytes(Klass::layout_helper_offset())) { | 
|---|
| 1708 | // The field is Klass::_layout_helper.  Return its constant value if known. | 
|---|
| 1709 | assert(this->Opcode() == Op_LoadI, "must load an int from _layout_helper"); | 
|---|
| 1710 | return TypeInt::make(klass->layout_helper()); | 
|---|
| 1711 | } | 
|---|
| 1712 |  | 
|---|
| 1713 | // No match. | 
|---|
| 1714 | return NULL; | 
|---|
| 1715 | } | 
|---|
| 1716 |  | 
|---|
| 1717 | //------------------------------Value----------------------------------------- | 
|---|
| 1718 | const Type* LoadNode::Value(PhaseGVN* phase) const { | 
|---|
| 1719 | // Either input is TOP ==> the result is TOP | 
|---|
| 1720 | Node* mem = in(MemNode::Memory); | 
|---|
| 1721 | const Type *t1 = phase->type(mem); | 
|---|
| 1722 | if (t1 == Type::TOP)  return Type::TOP; | 
|---|
| 1723 | Node* adr = in(MemNode::Address); | 
|---|
| 1724 | const TypePtr* tp = phase->type(adr)->isa_ptr(); | 
|---|
| 1725 | if (tp == NULL || tp->empty())  return Type::TOP; | 
|---|
| 1726 | int off = tp->offset(); | 
|---|
| 1727 | assert(off != Type::OffsetTop, "case covered by TypePtr::empty"); | 
|---|
| 1728 | Compile* C = phase->C; | 
|---|
| 1729 |  | 
|---|
| 1730 | // Try to guess loaded type from pointer type | 
|---|
| 1731 | if (tp->isa_aryptr()) { | 
|---|
| 1732 | const TypeAryPtr* ary = tp->is_aryptr(); | 
|---|
| 1733 | const Type* t = ary->elem(); | 
|---|
| 1734 |  | 
|---|
| 1735 | // Determine whether the reference is beyond the header or not, by comparing | 
|---|
| 1736 | // the offset against the offset of the start of the array's data. | 
|---|
| 1737 | // Different array types begin at slightly different offsets (12 vs. 16). | 
|---|
| 1738 | // We choose T_BYTE as an example base type that is least restrictive | 
|---|
| 1739 | // as to alignment, which will therefore produce the smallest | 
|---|
| 1740 | // possible base offset. | 
|---|
| 1741 | const int min_base_off = arrayOopDesc::base_offset_in_bytes(T_BYTE); | 
|---|
| 1742 | const bool  = (off >= min_base_off); | 
|---|
| 1743 |  | 
|---|
| 1744 | // Try to constant-fold a stable array element. | 
|---|
| 1745 | if (FoldStableValues && !is_mismatched_access() && ary->is_stable()) { | 
|---|
| 1746 | // Make sure the reference is not into the header and the offset is constant | 
|---|
| 1747 | ciObject* aobj = ary->const_oop(); | 
|---|
| 1748 | if (aobj != NULL && off_beyond_header && adr->is_AddP() && off != Type::OffsetBot) { | 
|---|
| 1749 | int stable_dimension = (ary->stable_dimension() > 0 ? ary->stable_dimension() - 1 : 0); | 
|---|
| 1750 | const Type* con_type = Type::make_constant_from_array_element(aobj->as_array(), off, | 
|---|
| 1751 | stable_dimension, | 
|---|
| 1752 | memory_type(), is_unsigned()); | 
|---|
| 1753 | if (con_type != NULL) { | 
|---|
| 1754 | return con_type; | 
|---|
| 1755 | } | 
|---|
| 1756 | } | 
|---|
| 1757 | } | 
|---|
| 1758 |  | 
|---|
| 1759 | // Don't do this for integer types. There is only potential profit if | 
|---|
| 1760 | // the element type t is lower than _type; that is, for int types, if _type is | 
|---|
| 1761 | // more restrictive than t.  This only happens here if one is short and the other | 
|---|
| 1762 | // char (both 16 bits), and in those cases we've made an intentional decision | 
|---|
| 1763 | // to use one kind of load over the other. See AndINode::Ideal and 4965907. | 
|---|
| 1764 | // Also, do not try to narrow the type for a LoadKlass, regardless of offset. | 
|---|
| 1765 | // | 
|---|
| 1766 | // Yes, it is possible to encounter an expression like (LoadKlass p1:(AddP x x 8)) | 
|---|
| 1767 | // where the _gvn.type of the AddP is wider than 8.  This occurs when an earlier | 
|---|
| 1768 | // copy p0 of (AddP x x 8) has been proven equal to p1, and the p0 has been | 
|---|
| 1769 | // subsumed by p1.  If p1 is on the worklist but has not yet been re-transformed, | 
|---|
| 1770 | // it is possible that p1 will have a type like Foo*[int+]:NotNull*+any. | 
|---|
| 1771 | // In fact, that could have been the original type of p1, and p1 could have | 
|---|
| 1772 | // had an original form like p1:(AddP x x (LShiftL quux 3)), where the | 
|---|
| 1773 | // expression (LShiftL quux 3) independently optimized to the constant 8. | 
|---|
| 1774 | if ((t->isa_int() == NULL) && (t->isa_long() == NULL) | 
|---|
| 1775 | && (_type->isa_vect() == NULL) | 
|---|
| 1776 | && Opcode() != Op_LoadKlass && Opcode() != Op_LoadNKlass) { | 
|---|
| 1777 | // t might actually be lower than _type, if _type is a unique | 
|---|
| 1778 | // concrete subclass of abstract class t. | 
|---|
| 1779 | if (off_beyond_header || off == Type::OffsetBot) {  // is the offset beyond the header? | 
|---|
| 1780 | const Type* jt = t->join_speculative(_type); | 
|---|
| 1781 | // In any case, do not allow the join, per se, to empty out the type. | 
|---|
| 1782 | if (jt->empty() && !t->empty()) { | 
|---|
| 1783 | // This can happen if a interface-typed array narrows to a class type. | 
|---|
| 1784 | jt = _type; | 
|---|
| 1785 | } | 
|---|
| 1786 | #ifdef ASSERT | 
|---|
| 1787 | if (phase->C->eliminate_boxing() && adr->is_AddP()) { | 
|---|
| 1788 | // The pointers in the autobox arrays are always non-null | 
|---|
| 1789 | Node* base = adr->in(AddPNode::Base); | 
|---|
| 1790 | if ((base != NULL) && base->is_DecodeN()) { | 
|---|
| 1791 | // Get LoadN node which loads IntegerCache.cache field | 
|---|
| 1792 | base = base->in(1); | 
|---|
| 1793 | } | 
|---|
| 1794 | if ((base != NULL) && base->is_Con()) { | 
|---|
| 1795 | const TypeAryPtr* base_type = base->bottom_type()->isa_aryptr(); | 
|---|
| 1796 | if ((base_type != NULL) && base_type->is_autobox_cache()) { | 
|---|
| 1797 | // It could be narrow oop | 
|---|
| 1798 | assert(jt->make_ptr()->ptr() == TypePtr::NotNull, "sanity"); | 
|---|
| 1799 | } | 
|---|
| 1800 | } | 
|---|
| 1801 | } | 
|---|
| 1802 | #endif | 
|---|
| 1803 | return jt; | 
|---|
| 1804 | } | 
|---|
| 1805 | } | 
|---|
| 1806 | } else if (tp->base() == Type::InstPtr) { | 
|---|
| 1807 | assert( off != Type::OffsetBot || | 
|---|
| 1808 | // arrays can be cast to Objects | 
|---|
| 1809 | tp->is_oopptr()->klass()->is_java_lang_Object() || | 
|---|
| 1810 | // unsafe field access may not have a constant offset | 
|---|
| 1811 | C->has_unsafe_access(), | 
|---|
| 1812 | "Field accesses must be precise"); | 
|---|
| 1813 | // For oop loads, we expect the _type to be precise. | 
|---|
| 1814 |  | 
|---|
| 1815 | // Optimize loads from constant fields. | 
|---|
| 1816 | const TypeInstPtr* tinst = tp->is_instptr(); | 
|---|
| 1817 | ciObject* const_oop = tinst->const_oop(); | 
|---|
| 1818 | if (!is_mismatched_access() && off != Type::OffsetBot && const_oop != NULL && const_oop->is_instance()) { | 
|---|
| 1819 | const Type* con_type = Type::make_constant_from_field(const_oop->as_instance(), off, is_unsigned(), memory_type()); | 
|---|
| 1820 | if (con_type != NULL) { | 
|---|
| 1821 | return con_type; | 
|---|
| 1822 | } | 
|---|
| 1823 | } | 
|---|
| 1824 | } else if (tp->base() == Type::KlassPtr) { | 
|---|
| 1825 | assert( off != Type::OffsetBot || | 
|---|
| 1826 | // arrays can be cast to Objects | 
|---|
| 1827 | tp->is_klassptr()->klass()->is_java_lang_Object() || | 
|---|
| 1828 | // also allow array-loading from the primary supertype | 
|---|
| 1829 | // array during subtype checks | 
|---|
| 1830 | Opcode() == Op_LoadKlass, | 
|---|
| 1831 | "Field accesses must be precise"); | 
|---|
| 1832 | // For klass/static loads, we expect the _type to be precise | 
|---|
| 1833 | } else if (tp->base() == Type::RawPtr && adr->is_Load() && off == 0) { | 
|---|
| 1834 | /* With mirrors being an indirect in the Klass* | 
|---|
| 1835 | * the VM is now using two loads. LoadKlass(LoadP(LoadP(Klass, mirror_offset), zero_offset)) | 
|---|
| 1836 | * The LoadP from the Klass has a RawPtr type (see LibraryCallKit::load_mirror_from_klass). | 
|---|
| 1837 | * | 
|---|
| 1838 | * So check the type and klass of the node before the LoadP. | 
|---|
| 1839 | */ | 
|---|
| 1840 | Node* adr2 = adr->in(MemNode::Address); | 
|---|
| 1841 | const TypeKlassPtr* tkls = phase->type(adr2)->isa_klassptr(); | 
|---|
| 1842 | if (tkls != NULL && !StressReflectiveCode) { | 
|---|
| 1843 | ciKlass* klass = tkls->klass(); | 
|---|
| 1844 | if (klass->is_loaded() && tkls->klass_is_exact() && tkls->offset() == in_bytes(Klass::java_mirror_offset())) { | 
|---|
| 1845 | assert(adr->Opcode() == Op_LoadP, "must load an oop from _java_mirror"); | 
|---|
| 1846 | assert(Opcode() == Op_LoadP, "must load an oop from _java_mirror"); | 
|---|
| 1847 | return TypeInstPtr::make(klass->java_mirror()); | 
|---|
| 1848 | } | 
|---|
| 1849 | } | 
|---|
| 1850 | } | 
|---|
| 1851 |  | 
|---|
| 1852 | const TypeKlassPtr *tkls = tp->isa_klassptr(); | 
|---|
| 1853 | if (tkls != NULL && !StressReflectiveCode) { | 
|---|
| 1854 | ciKlass* klass = tkls->klass(); | 
|---|
| 1855 | if (klass->is_loaded() && tkls->klass_is_exact()) { | 
|---|
| 1856 | // We are loading a field from a Klass metaobject whose identity | 
|---|
| 1857 | // is known at compile time (the type is "exact" or "precise"). | 
|---|
| 1858 | // Check for fields we know are maintained as constants by the VM. | 
|---|
| 1859 | if (tkls->offset() == in_bytes(Klass::super_check_offset_offset())) { | 
|---|
| 1860 | // The field is Klass::_super_check_offset.  Return its (constant) value. | 
|---|
| 1861 | // (Folds up type checking code.) | 
|---|
| 1862 | assert(Opcode() == Op_LoadI, "must load an int from _super_check_offset"); | 
|---|
| 1863 | return TypeInt::make(klass->super_check_offset()); | 
|---|
| 1864 | } | 
|---|
| 1865 | // Compute index into primary_supers array | 
|---|
| 1866 | juint depth = (tkls->offset() - in_bytes(Klass::primary_supers_offset())) / sizeof(Klass*); | 
|---|
| 1867 | // Check for overflowing; use unsigned compare to handle the negative case. | 
|---|
| 1868 | if( depth < ciKlass::primary_super_limit() ) { | 
|---|
| 1869 | // The field is an element of Klass::_primary_supers.  Return its (constant) value. | 
|---|
| 1870 | // (Folds up type checking code.) | 
|---|
| 1871 | assert(Opcode() == Op_LoadKlass, "must load a klass from _primary_supers"); | 
|---|
| 1872 | ciKlass *ss = klass->super_of_depth(depth); | 
|---|
| 1873 | return ss ? TypeKlassPtr::make(ss) : TypePtr::NULL_PTR; | 
|---|
| 1874 | } | 
|---|
| 1875 | const Type* aift = load_array_final_field(tkls, klass); | 
|---|
| 1876 | if (aift != NULL)  return aift; | 
|---|
| 1877 | } | 
|---|
| 1878 |  | 
|---|
| 1879 | // We can still check if we are loading from the primary_supers array at a | 
|---|
| 1880 | // shallow enough depth.  Even though the klass is not exact, entries less | 
|---|
| 1881 | // than or equal to its super depth are correct. | 
|---|
| 1882 | if (klass->is_loaded() ) { | 
|---|
| 1883 | ciType *inner = klass; | 
|---|
| 1884 | while( inner->is_obj_array_klass() ) | 
|---|
| 1885 | inner = inner->as_obj_array_klass()->base_element_type(); | 
|---|
| 1886 | if( inner->is_instance_klass() && | 
|---|
| 1887 | !inner->as_instance_klass()->flags().is_interface() ) { | 
|---|
| 1888 | // Compute index into primary_supers array | 
|---|
| 1889 | juint depth = (tkls->offset() - in_bytes(Klass::primary_supers_offset())) / sizeof(Klass*); | 
|---|
| 1890 | // Check for overflowing; use unsigned compare to handle the negative case. | 
|---|
| 1891 | if( depth < ciKlass::primary_super_limit() && | 
|---|
| 1892 | depth <= klass->super_depth() ) { // allow self-depth checks to handle self-check case | 
|---|
| 1893 | // The field is an element of Klass::_primary_supers.  Return its (constant) value. | 
|---|
| 1894 | // (Folds up type checking code.) | 
|---|
| 1895 | assert(Opcode() == Op_LoadKlass, "must load a klass from _primary_supers"); | 
|---|
| 1896 | ciKlass *ss = klass->super_of_depth(depth); | 
|---|
| 1897 | return ss ? TypeKlassPtr::make(ss) : TypePtr::NULL_PTR; | 
|---|
| 1898 | } | 
|---|
| 1899 | } | 
|---|
| 1900 | } | 
|---|
| 1901 |  | 
|---|
| 1902 | // If the type is enough to determine that the thing is not an array, | 
|---|
| 1903 | // we can give the layout_helper a positive interval type. | 
|---|
| 1904 | // This will help short-circuit some reflective code. | 
|---|
| 1905 | if (tkls->offset() == in_bytes(Klass::layout_helper_offset()) | 
|---|
| 1906 | && !klass->is_array_klass() // not directly typed as an array | 
|---|
| 1907 | && !klass->is_interface()  // specifically not Serializable & Cloneable | 
|---|
| 1908 | && !klass->is_java_lang_Object()   // not the supertype of all T[] | 
|---|
| 1909 | ) { | 
|---|
| 1910 | // Note:  When interfaces are reliable, we can narrow the interface | 
|---|
| 1911 | // test to (klass != Serializable && klass != Cloneable). | 
|---|
| 1912 | assert(Opcode() == Op_LoadI, "must load an int from _layout_helper"); | 
|---|
| 1913 | jint min_size = Klass::instance_layout_helper(oopDesc::header_size(), false); | 
|---|
| 1914 | // The key property of this type is that it folds up tests | 
|---|
| 1915 | // for array-ness, since it proves that the layout_helper is positive. | 
|---|
| 1916 | // Thus, a generic value like the basic object layout helper works fine. | 
|---|
| 1917 | return TypeInt::make(min_size, max_jint, Type::WidenMin); | 
|---|
| 1918 | } | 
|---|
| 1919 | } | 
|---|
| 1920 |  | 
|---|
| 1921 | // If we are loading from a freshly-allocated object, produce a zero, | 
|---|
| 1922 | // if the load is provably beyond the header of the object. | 
|---|
| 1923 | // (Also allow a variable load from a fresh array to produce zero.) | 
|---|
| 1924 | const TypeOopPtr *tinst = tp->isa_oopptr(); | 
|---|
| 1925 | bool is_instance = (tinst != NULL) && tinst->is_known_instance_field(); | 
|---|
| 1926 | bool is_boxed_value = (tinst != NULL) && tinst->is_ptr_to_boxed_value(); | 
|---|
| 1927 | if (ReduceFieldZeroing || is_instance || is_boxed_value) { | 
|---|
| 1928 | Node* value = can_see_stored_value(mem,phase); | 
|---|
| 1929 | if (value != NULL && value->is_Con()) { | 
|---|
| 1930 | assert(value->bottom_type()->higher_equal(_type), "sanity"); | 
|---|
| 1931 | return value->bottom_type(); | 
|---|
| 1932 | } | 
|---|
| 1933 | } | 
|---|
| 1934 |  | 
|---|
| 1935 | if (is_instance) { | 
|---|
| 1936 | // If we have an instance type and our memory input is the | 
|---|
| 1937 | // programs's initial memory state, there is no matching store, | 
|---|
| 1938 | // so just return a zero of the appropriate type | 
|---|
| 1939 | Node *mem = in(MemNode::Memory); | 
|---|
| 1940 | if (mem->is_Parm() && mem->in(0)->is_Start()) { | 
|---|
| 1941 | assert(mem->as_Parm()->_con == TypeFunc::Memory, "must be memory Parm"); | 
|---|
| 1942 | return Type::get_zero_type(_type->basic_type()); | 
|---|
| 1943 | } | 
|---|
| 1944 | } | 
|---|
| 1945 | return _type; | 
|---|
| 1946 | } | 
|---|
| 1947 |  | 
|---|
| 1948 | //------------------------------match_edge------------------------------------- | 
|---|
| 1949 | // Do we Match on this edge index or not?  Match only the address. | 
|---|
| 1950 | uint LoadNode::match_edge(uint idx) const { | 
|---|
| 1951 | return idx == MemNode::Address; | 
|---|
| 1952 | } | 
|---|
| 1953 |  | 
|---|
| 1954 | //--------------------------LoadBNode::Ideal-------------------------------------- | 
|---|
| 1955 | // | 
|---|
| 1956 | //  If the previous store is to the same address as this load, | 
|---|
| 1957 | //  and the value stored was larger than a byte, replace this load | 
|---|
| 1958 | //  with the value stored truncated to a byte.  If no truncation is | 
|---|
| 1959 | //  needed, the replacement is done in LoadNode::Identity(). | 
|---|
| 1960 | // | 
|---|
| 1961 | Node *LoadBNode::Ideal(PhaseGVN *phase, bool can_reshape) { | 
|---|
| 1962 | Node* mem = in(MemNode::Memory); | 
|---|
| 1963 | Node* value = can_see_stored_value(mem,phase); | 
|---|
| 1964 | if( value && !phase->type(value)->higher_equal( _type ) ) { | 
|---|
| 1965 | Node *result = phase->transform( new LShiftINode(value, phase->intcon(24)) ); | 
|---|
| 1966 | return new RShiftINode(result, phase->intcon(24)); | 
|---|
| 1967 | } | 
|---|
| 1968 | // Identity call will handle the case where truncation is not needed. | 
|---|
| 1969 | return LoadNode::Ideal(phase, can_reshape); | 
|---|
| 1970 | } | 
|---|
| 1971 |  | 
|---|
| 1972 | const Type* LoadBNode::Value(PhaseGVN* phase) const { | 
|---|
| 1973 | Node* mem = in(MemNode::Memory); | 
|---|
| 1974 | Node* value = can_see_stored_value(mem,phase); | 
|---|
| 1975 | if (value != NULL && value->is_Con() && | 
|---|
| 1976 | !value->bottom_type()->higher_equal(_type)) { | 
|---|
| 1977 | // If the input to the store does not fit with the load's result type, | 
|---|
| 1978 | // it must be truncated. We can't delay until Ideal call since | 
|---|
| 1979 | // a singleton Value is needed for split_thru_phi optimization. | 
|---|
| 1980 | int con = value->get_int(); | 
|---|
| 1981 | return TypeInt::make((con << 24) >> 24); | 
|---|
| 1982 | } | 
|---|
| 1983 | return LoadNode::Value(phase); | 
|---|
| 1984 | } | 
|---|
| 1985 |  | 
|---|
| 1986 | //--------------------------LoadUBNode::Ideal------------------------------------- | 
|---|
| 1987 | // | 
|---|
| 1988 | //  If the previous store is to the same address as this load, | 
|---|
| 1989 | //  and the value stored was larger than a byte, replace this load | 
|---|
| 1990 | //  with the value stored truncated to a byte.  If no truncation is | 
|---|
| 1991 | //  needed, the replacement is done in LoadNode::Identity(). | 
|---|
| 1992 | // | 
|---|
| 1993 | Node* LoadUBNode::Ideal(PhaseGVN* phase, bool can_reshape) { | 
|---|
| 1994 | Node* mem = in(MemNode::Memory); | 
|---|
| 1995 | Node* value = can_see_stored_value(mem, phase); | 
|---|
| 1996 | if (value && !phase->type(value)->higher_equal(_type)) | 
|---|
| 1997 | return new AndINode(value, phase->intcon(0xFF)); | 
|---|
| 1998 | // Identity call will handle the case where truncation is not needed. | 
|---|
| 1999 | return LoadNode::Ideal(phase, can_reshape); | 
|---|
| 2000 | } | 
|---|
| 2001 |  | 
|---|
| 2002 | const Type* LoadUBNode::Value(PhaseGVN* phase) const { | 
|---|
| 2003 | Node* mem = in(MemNode::Memory); | 
|---|
| 2004 | Node* value = can_see_stored_value(mem,phase); | 
|---|
| 2005 | if (value != NULL && value->is_Con() && | 
|---|
| 2006 | !value->bottom_type()->higher_equal(_type)) { | 
|---|
| 2007 | // If the input to the store does not fit with the load's result type, | 
|---|
| 2008 | // it must be truncated. We can't delay until Ideal call since | 
|---|
| 2009 | // a singleton Value is needed for split_thru_phi optimization. | 
|---|
| 2010 | int con = value->get_int(); | 
|---|
| 2011 | return TypeInt::make(con & 0xFF); | 
|---|
| 2012 | } | 
|---|
| 2013 | return LoadNode::Value(phase); | 
|---|
| 2014 | } | 
|---|
| 2015 |  | 
|---|
| 2016 | //--------------------------LoadUSNode::Ideal------------------------------------- | 
|---|
| 2017 | // | 
|---|
| 2018 | //  If the previous store is to the same address as this load, | 
|---|
| 2019 | //  and the value stored was larger than a char, replace this load | 
|---|
| 2020 | //  with the value stored truncated to a char.  If no truncation is | 
|---|
| 2021 | //  needed, the replacement is done in LoadNode::Identity(). | 
|---|
| 2022 | // | 
|---|
| 2023 | Node *LoadUSNode::Ideal(PhaseGVN *phase, bool can_reshape) { | 
|---|
| 2024 | Node* mem = in(MemNode::Memory); | 
|---|
| 2025 | Node* value = can_see_stored_value(mem,phase); | 
|---|
| 2026 | if( value && !phase->type(value)->higher_equal( _type ) ) | 
|---|
| 2027 | return new AndINode(value,phase->intcon(0xFFFF)); | 
|---|
| 2028 | // Identity call will handle the case where truncation is not needed. | 
|---|
| 2029 | return LoadNode::Ideal(phase, can_reshape); | 
|---|
| 2030 | } | 
|---|
| 2031 |  | 
|---|
| 2032 | const Type* LoadUSNode::Value(PhaseGVN* phase) const { | 
|---|
| 2033 | Node* mem = in(MemNode::Memory); | 
|---|
| 2034 | Node* value = can_see_stored_value(mem,phase); | 
|---|
| 2035 | if (value != NULL && value->is_Con() && | 
|---|
| 2036 | !value->bottom_type()->higher_equal(_type)) { | 
|---|
| 2037 | // If the input to the store does not fit with the load's result type, | 
|---|
| 2038 | // it must be truncated. We can't delay until Ideal call since | 
|---|
| 2039 | // a singleton Value is needed for split_thru_phi optimization. | 
|---|
| 2040 | int con = value->get_int(); | 
|---|
| 2041 | return TypeInt::make(con & 0xFFFF); | 
|---|
| 2042 | } | 
|---|
| 2043 | return LoadNode::Value(phase); | 
|---|
| 2044 | } | 
|---|
| 2045 |  | 
|---|
| 2046 | //--------------------------LoadSNode::Ideal-------------------------------------- | 
|---|
| 2047 | // | 
|---|
| 2048 | //  If the previous store is to the same address as this load, | 
|---|
| 2049 | //  and the value stored was larger than a short, replace this load | 
|---|
| 2050 | //  with the value stored truncated to a short.  If no truncation is | 
|---|
| 2051 | //  needed, the replacement is done in LoadNode::Identity(). | 
|---|
| 2052 | // | 
|---|
| 2053 | Node *LoadSNode::Ideal(PhaseGVN *phase, bool can_reshape) { | 
|---|
| 2054 | Node* mem = in(MemNode::Memory); | 
|---|
| 2055 | Node* value = can_see_stored_value(mem,phase); | 
|---|
| 2056 | if( value && !phase->type(value)->higher_equal( _type ) ) { | 
|---|
| 2057 | Node *result = phase->transform( new LShiftINode(value, phase->intcon(16)) ); | 
|---|
| 2058 | return new RShiftINode(result, phase->intcon(16)); | 
|---|
| 2059 | } | 
|---|
| 2060 | // Identity call will handle the case where truncation is not needed. | 
|---|
| 2061 | return LoadNode::Ideal(phase, can_reshape); | 
|---|
| 2062 | } | 
|---|
| 2063 |  | 
|---|
| 2064 | const Type* LoadSNode::Value(PhaseGVN* phase) const { | 
|---|
| 2065 | Node* mem = in(MemNode::Memory); | 
|---|
| 2066 | Node* value = can_see_stored_value(mem,phase); | 
|---|
| 2067 | if (value != NULL && value->is_Con() && | 
|---|
| 2068 | !value->bottom_type()->higher_equal(_type)) { | 
|---|
| 2069 | // If the input to the store does not fit with the load's result type, | 
|---|
| 2070 | // it must be truncated. We can't delay until Ideal call since | 
|---|
| 2071 | // a singleton Value is needed for split_thru_phi optimization. | 
|---|
| 2072 | int con = value->get_int(); | 
|---|
| 2073 | return TypeInt::make((con << 16) >> 16); | 
|---|
| 2074 | } | 
|---|
| 2075 | return LoadNode::Value(phase); | 
|---|
| 2076 | } | 
|---|
| 2077 |  | 
|---|
| 2078 | //============================================================================= | 
|---|
| 2079 | //----------------------------LoadKlassNode::make------------------------------ | 
|---|
| 2080 | // Polymorphic factory method: | 
|---|
| 2081 | Node* LoadKlassNode::make(PhaseGVN& gvn, Node* ctl, Node* mem, Node* adr, const TypePtr* at, const TypeKlassPtr* tk) { | 
|---|
| 2082 | // sanity check the alias category against the created node type | 
|---|
| 2083 | const TypePtr *adr_type = adr->bottom_type()->isa_ptr(); | 
|---|
| 2084 | assert(adr_type != NULL, "expecting TypeKlassPtr"); | 
|---|
| 2085 | #ifdef _LP64 | 
|---|
| 2086 | if (adr_type->is_ptr_to_narrowklass()) { | 
|---|
| 2087 | assert(UseCompressedClassPointers, "no compressed klasses"); | 
|---|
| 2088 | Node* load_klass = gvn.transform(new LoadNKlassNode(ctl, mem, adr, at, tk->make_narrowklass(), MemNode::unordered)); | 
|---|
| 2089 | return new DecodeNKlassNode(load_klass, load_klass->bottom_type()->make_ptr()); | 
|---|
| 2090 | } | 
|---|
| 2091 | #endif | 
|---|
| 2092 | assert(!adr_type->is_ptr_to_narrowklass() && !adr_type->is_ptr_to_narrowoop(), "should have got back a narrow oop"); | 
|---|
| 2093 | return new LoadKlassNode(ctl, mem, adr, at, tk, MemNode::unordered); | 
|---|
| 2094 | } | 
|---|
| 2095 |  | 
|---|
| 2096 | //------------------------------Value------------------------------------------ | 
|---|
| 2097 | const Type* LoadKlassNode::Value(PhaseGVN* phase) const { | 
|---|
| 2098 | return klass_value_common(phase); | 
|---|
| 2099 | } | 
|---|
| 2100 |  | 
|---|
| 2101 | // In most cases, LoadKlassNode does not have the control input set. If the control | 
|---|
| 2102 | // input is set, it must not be removed (by LoadNode::Ideal()). | 
|---|
| 2103 | bool LoadKlassNode::can_remove_control() const { | 
|---|
| 2104 | return false; | 
|---|
| 2105 | } | 
|---|
| 2106 |  | 
|---|
| 2107 | const Type* LoadNode::klass_value_common(PhaseGVN* phase) const { | 
|---|
| 2108 | // Either input is TOP ==> the result is TOP | 
|---|
| 2109 | const Type *t1 = phase->type( in(MemNode::Memory) ); | 
|---|
| 2110 | if (t1 == Type::TOP)  return Type::TOP; | 
|---|
| 2111 | Node *adr = in(MemNode::Address); | 
|---|
| 2112 | const Type *t2 = phase->type( adr ); | 
|---|
| 2113 | if (t2 == Type::TOP)  return Type::TOP; | 
|---|
| 2114 | const TypePtr *tp = t2->is_ptr(); | 
|---|
| 2115 | if (TypePtr::above_centerline(tp->ptr()) || | 
|---|
| 2116 | tp->ptr() == TypePtr::Null)  return Type::TOP; | 
|---|
| 2117 |  | 
|---|
| 2118 | // Return a more precise klass, if possible | 
|---|
| 2119 | const TypeInstPtr *tinst = tp->isa_instptr(); | 
|---|
| 2120 | if (tinst != NULL) { | 
|---|
| 2121 | ciInstanceKlass* ik = tinst->klass()->as_instance_klass(); | 
|---|
| 2122 | int offset = tinst->offset(); | 
|---|
| 2123 | if (ik == phase->C->env()->Class_klass() | 
|---|
| 2124 | && (offset == java_lang_Class::klass_offset_in_bytes() || | 
|---|
| 2125 | offset == java_lang_Class::array_klass_offset_in_bytes())) { | 
|---|
| 2126 | // We are loading a special hidden field from a Class mirror object, | 
|---|
| 2127 | // the field which points to the VM's Klass metaobject. | 
|---|
| 2128 | ciType* t = tinst->java_mirror_type(); | 
|---|
| 2129 | // java_mirror_type returns non-null for compile-time Class constants. | 
|---|
| 2130 | if (t != NULL) { | 
|---|
| 2131 | // constant oop => constant klass | 
|---|
| 2132 | if (offset == java_lang_Class::array_klass_offset_in_bytes()) { | 
|---|
| 2133 | if (t->is_void()) { | 
|---|
| 2134 | // We cannot create a void array.  Since void is a primitive type return null | 
|---|
| 2135 | // klass.  Users of this result need to do a null check on the returned klass. | 
|---|
| 2136 | return TypePtr::NULL_PTR; | 
|---|
| 2137 | } | 
|---|
| 2138 | return TypeKlassPtr::make(ciArrayKlass::make(t)); | 
|---|
| 2139 | } | 
|---|
| 2140 | if (!t->is_klass()) { | 
|---|
| 2141 | // a primitive Class (e.g., int.class) has NULL for a klass field | 
|---|
| 2142 | return TypePtr::NULL_PTR; | 
|---|
| 2143 | } | 
|---|
| 2144 | // (Folds up the 1st indirection in aClassConstant.getModifiers().) | 
|---|
| 2145 | return TypeKlassPtr::make(t->as_klass()); | 
|---|
| 2146 | } | 
|---|
| 2147 | // non-constant mirror, so we can't tell what's going on | 
|---|
| 2148 | } | 
|---|
| 2149 | if( !ik->is_loaded() ) | 
|---|
| 2150 | return _type;             // Bail out if not loaded | 
|---|
| 2151 | if (offset == oopDesc::klass_offset_in_bytes()) { | 
|---|
| 2152 | if (tinst->klass_is_exact()) { | 
|---|
| 2153 | return TypeKlassPtr::make(ik); | 
|---|
| 2154 | } | 
|---|
| 2155 | // See if we can become precise: no subklasses and no interface | 
|---|
| 2156 | // (Note:  We need to support verified interfaces.) | 
|---|
| 2157 | if (!ik->is_interface() && !ik->has_subklass()) { | 
|---|
| 2158 | //assert(!UseExactTypes, "this code should be useless with exact types"); | 
|---|
| 2159 | // Add a dependence; if any subclass added we need to recompile | 
|---|
| 2160 | if (!ik->is_final()) { | 
|---|
| 2161 | // %%% should use stronger assert_unique_concrete_subtype instead | 
|---|
| 2162 | phase->C->dependencies()->assert_leaf_type(ik); | 
|---|
| 2163 | } | 
|---|
| 2164 | // Return precise klass | 
|---|
| 2165 | return TypeKlassPtr::make(ik); | 
|---|
| 2166 | } | 
|---|
| 2167 |  | 
|---|
| 2168 | // Return root of possible klass | 
|---|
| 2169 | return TypeKlassPtr::make(TypePtr::NotNull, ik, 0/*offset*/); | 
|---|
| 2170 | } | 
|---|
| 2171 | } | 
|---|
| 2172 |  | 
|---|
| 2173 | // Check for loading klass from an array | 
|---|
| 2174 | const TypeAryPtr *tary = tp->isa_aryptr(); | 
|---|
| 2175 | if( tary != NULL ) { | 
|---|
| 2176 | ciKlass *tary_klass = tary->klass(); | 
|---|
| 2177 | if (tary_klass != NULL   // can be NULL when at BOTTOM or TOP | 
|---|
| 2178 | && tary->offset() == oopDesc::klass_offset_in_bytes()) { | 
|---|
| 2179 | if (tary->klass_is_exact()) { | 
|---|
| 2180 | return TypeKlassPtr::make(tary_klass); | 
|---|
| 2181 | } | 
|---|
| 2182 | ciArrayKlass *ak = tary->klass()->as_array_klass(); | 
|---|
| 2183 | // If the klass is an object array, we defer the question to the | 
|---|
| 2184 | // array component klass. | 
|---|
| 2185 | if( ak->is_obj_array_klass() ) { | 
|---|
| 2186 | assert( ak->is_loaded(), ""); | 
|---|
| 2187 | ciKlass *base_k = ak->as_obj_array_klass()->base_element_klass(); | 
|---|
| 2188 | if( base_k->is_loaded() && base_k->is_instance_klass() ) { | 
|---|
| 2189 | ciInstanceKlass* ik = base_k->as_instance_klass(); | 
|---|
| 2190 | // See if we can become precise: no subklasses and no interface | 
|---|
| 2191 | if (!ik->is_interface() && !ik->has_subklass()) { | 
|---|
| 2192 | //assert(!UseExactTypes, "this code should be useless with exact types"); | 
|---|
| 2193 | // Add a dependence; if any subclass added we need to recompile | 
|---|
| 2194 | if (!ik->is_final()) { | 
|---|
| 2195 | phase->C->dependencies()->assert_leaf_type(ik); | 
|---|
| 2196 | } | 
|---|
| 2197 | // Return precise array klass | 
|---|
| 2198 | return TypeKlassPtr::make(ak); | 
|---|
| 2199 | } | 
|---|
| 2200 | } | 
|---|
| 2201 | return TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/); | 
|---|
| 2202 | } else {                  // Found a type-array? | 
|---|
| 2203 | //assert(!UseExactTypes, "this code should be useless with exact types"); | 
|---|
| 2204 | assert( ak->is_type_array_klass(), ""); | 
|---|
| 2205 | return TypeKlassPtr::make(ak); // These are always precise | 
|---|
| 2206 | } | 
|---|
| 2207 | } | 
|---|
| 2208 | } | 
|---|
| 2209 |  | 
|---|
| 2210 | // Check for loading klass from an array klass | 
|---|
| 2211 | const TypeKlassPtr *tkls = tp->isa_klassptr(); | 
|---|
| 2212 | if (tkls != NULL && !StressReflectiveCode) { | 
|---|
| 2213 | ciKlass* klass = tkls->klass(); | 
|---|
| 2214 | if( !klass->is_loaded() ) | 
|---|
| 2215 | return _type;             // Bail out if not loaded | 
|---|
| 2216 | if( klass->is_obj_array_klass() && | 
|---|
| 2217 | tkls->offset() == in_bytes(ObjArrayKlass::element_klass_offset())) { | 
|---|
| 2218 | ciKlass* elem = klass->as_obj_array_klass()->element_klass(); | 
|---|
| 2219 | // // Always returning precise element type is incorrect, | 
|---|
| 2220 | // // e.g., element type could be object and array may contain strings | 
|---|
| 2221 | // return TypeKlassPtr::make(TypePtr::Constant, elem, 0); | 
|---|
| 2222 |  | 
|---|
| 2223 | // The array's TypeKlassPtr was declared 'precise' or 'not precise' | 
|---|
| 2224 | // according to the element type's subclassing. | 
|---|
| 2225 | return TypeKlassPtr::make(tkls->ptr(), elem, 0/*offset*/); | 
|---|
| 2226 | } | 
|---|
| 2227 | if( klass->is_instance_klass() && tkls->klass_is_exact() && | 
|---|
| 2228 | tkls->offset() == in_bytes(Klass::super_offset())) { | 
|---|
| 2229 | ciKlass* sup = klass->as_instance_klass()->super(); | 
|---|
| 2230 | // The field is Klass::_super.  Return its (constant) value. | 
|---|
| 2231 | // (Folds up the 2nd indirection in aClassConstant.getSuperClass().) | 
|---|
| 2232 | return sup ? TypeKlassPtr::make(sup) : TypePtr::NULL_PTR; | 
|---|
| 2233 | } | 
|---|
| 2234 | } | 
|---|
| 2235 |  | 
|---|
| 2236 | // Bailout case | 
|---|
| 2237 | return LoadNode::Value(phase); | 
|---|
| 2238 | } | 
|---|
| 2239 |  | 
|---|
| 2240 | //------------------------------Identity--------------------------------------- | 
|---|
| 2241 | // To clean up reflective code, simplify k.java_mirror.as_klass to plain k. | 
|---|
| 2242 | // Also feed through the klass in Allocate(...klass...)._klass. | 
|---|
| 2243 | Node* LoadKlassNode::Identity(PhaseGVN* phase) { | 
|---|
| 2244 | return klass_identity_common(phase); | 
|---|
| 2245 | } | 
|---|
| 2246 |  | 
|---|
| 2247 | Node* LoadNode::klass_identity_common(PhaseGVN* phase) { | 
|---|
| 2248 | Node* x = LoadNode::Identity(phase); | 
|---|
| 2249 | if (x != this)  return x; | 
|---|
| 2250 |  | 
|---|
| 2251 | // Take apart the address into an oop and and offset. | 
|---|
| 2252 | // Return 'this' if we cannot. | 
|---|
| 2253 | Node*    adr    = in(MemNode::Address); | 
|---|
| 2254 | intptr_t offset = 0; | 
|---|
| 2255 | Node*    base   = AddPNode::Ideal_base_and_offset(adr, phase, offset); | 
|---|
| 2256 | if (base == NULL)     return this; | 
|---|
| 2257 | const TypeOopPtr* toop = phase->type(adr)->isa_oopptr(); | 
|---|
| 2258 | if (toop == NULL)     return this; | 
|---|
| 2259 |  | 
|---|
| 2260 | // Step over potential GC barrier for OopHandle resolve | 
|---|
| 2261 | BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); | 
|---|
| 2262 | if (bs->is_gc_barrier_node(base)) { | 
|---|
| 2263 | base = bs->step_over_gc_barrier(base); | 
|---|
| 2264 | } | 
|---|
| 2265 |  | 
|---|
| 2266 | // We can fetch the klass directly through an AllocateNode. | 
|---|
| 2267 | // This works even if the klass is not constant (clone or newArray). | 
|---|
| 2268 | if (offset == oopDesc::klass_offset_in_bytes()) { | 
|---|
| 2269 | Node* allocated_klass = AllocateNode::Ideal_klass(base, phase); | 
|---|
| 2270 | if (allocated_klass != NULL) { | 
|---|
| 2271 | return allocated_klass; | 
|---|
| 2272 | } | 
|---|
| 2273 | } | 
|---|
| 2274 |  | 
|---|
| 2275 | // Simplify k.java_mirror.as_klass to plain k, where k is a Klass*. | 
|---|
| 2276 | // See inline_native_Class_query for occurrences of these patterns. | 
|---|
| 2277 | // Java Example:  x.getClass().isAssignableFrom(y) | 
|---|
| 2278 | // | 
|---|
| 2279 | // This improves reflective code, often making the Class | 
|---|
| 2280 | // mirror go completely dead.  (Current exception:  Class | 
|---|
| 2281 | // mirrors may appear in debug info, but we could clean them out by | 
|---|
| 2282 | // introducing a new debug info operator for Klass.java_mirror). | 
|---|
| 2283 |  | 
|---|
| 2284 | if (toop->isa_instptr() && toop->klass() == phase->C->env()->Class_klass() | 
|---|
| 2285 | && offset == java_lang_Class::klass_offset_in_bytes()) { | 
|---|
| 2286 | if (base->is_Load()) { | 
|---|
| 2287 | Node* base2 = base->in(MemNode::Address); | 
|---|
| 2288 | if (base2->is_Load()) { /* direct load of a load which is the OopHandle */ | 
|---|
| 2289 | Node* adr2 = base2->in(MemNode::Address); | 
|---|
| 2290 | const TypeKlassPtr* tkls = phase->type(adr2)->isa_klassptr(); | 
|---|
| 2291 | if (tkls != NULL && !tkls->empty() | 
|---|
| 2292 | && (tkls->klass()->is_instance_klass() || | 
|---|
| 2293 | tkls->klass()->is_array_klass()) | 
|---|
| 2294 | && adr2->is_AddP() | 
|---|
| 2295 | ) { | 
|---|
| 2296 | int mirror_field = in_bytes(Klass::java_mirror_offset()); | 
|---|
| 2297 | if (tkls->offset() == mirror_field) { | 
|---|
| 2298 | return adr2->in(AddPNode::Base); | 
|---|
| 2299 | } | 
|---|
| 2300 | } | 
|---|
| 2301 | } | 
|---|
| 2302 | } | 
|---|
| 2303 | } | 
|---|
| 2304 |  | 
|---|
| 2305 | return this; | 
|---|
| 2306 | } | 
|---|
| 2307 |  | 
|---|
| 2308 |  | 
|---|
| 2309 | //------------------------------Value------------------------------------------ | 
|---|
| 2310 | const Type* LoadNKlassNode::Value(PhaseGVN* phase) const { | 
|---|
| 2311 | const Type *t = klass_value_common(phase); | 
|---|
| 2312 | if (t == Type::TOP) | 
|---|
| 2313 | return t; | 
|---|
| 2314 |  | 
|---|
| 2315 | return t->make_narrowklass(); | 
|---|
| 2316 | } | 
|---|
| 2317 |  | 
|---|
| 2318 | //------------------------------Identity--------------------------------------- | 
|---|
| 2319 | // To clean up reflective code, simplify k.java_mirror.as_klass to narrow k. | 
|---|
| 2320 | // Also feed through the klass in Allocate(...klass...)._klass. | 
|---|
| 2321 | Node* LoadNKlassNode::Identity(PhaseGVN* phase) { | 
|---|
| 2322 | Node *x = klass_identity_common(phase); | 
|---|
| 2323 |  | 
|---|
| 2324 | const Type *t = phase->type( x ); | 
|---|
| 2325 | if( t == Type::TOP ) return x; | 
|---|
| 2326 | if( t->isa_narrowklass()) return x; | 
|---|
| 2327 | assert (!t->isa_narrowoop(), "no narrow oop here"); | 
|---|
| 2328 |  | 
|---|
| 2329 | return phase->transform(new EncodePKlassNode(x, t->make_narrowklass())); | 
|---|
| 2330 | } | 
|---|
| 2331 |  | 
|---|
| 2332 | //------------------------------Value----------------------------------------- | 
|---|
| 2333 | const Type* LoadRangeNode::Value(PhaseGVN* phase) const { | 
|---|
| 2334 | // Either input is TOP ==> the result is TOP | 
|---|
| 2335 | const Type *t1 = phase->type( in(MemNode::Memory) ); | 
|---|
| 2336 | if( t1 == Type::TOP ) return Type::TOP; | 
|---|
| 2337 | Node *adr = in(MemNode::Address); | 
|---|
| 2338 | const Type *t2 = phase->type( adr ); | 
|---|
| 2339 | if( t2 == Type::TOP ) return Type::TOP; | 
|---|
| 2340 | const TypePtr *tp = t2->is_ptr(); | 
|---|
| 2341 | if (TypePtr::above_centerline(tp->ptr()))  return Type::TOP; | 
|---|
| 2342 | const TypeAryPtr *tap = tp->isa_aryptr(); | 
|---|
| 2343 | if( !tap ) return _type; | 
|---|
| 2344 | return tap->size(); | 
|---|
| 2345 | } | 
|---|
| 2346 |  | 
|---|
| 2347 | //-------------------------------Ideal--------------------------------------- | 
|---|
| 2348 | // Feed through the length in AllocateArray(...length...)._length. | 
|---|
| 2349 | Node *LoadRangeNode::Ideal(PhaseGVN *phase, bool can_reshape) { | 
|---|
| 2350 | Node* p = MemNode::Ideal_common(phase, can_reshape); | 
|---|
| 2351 | if (p)  return (p == NodeSentinel) ? NULL : p; | 
|---|
| 2352 |  | 
|---|
| 2353 | // Take apart the address into an oop and and offset. | 
|---|
| 2354 | // Return 'this' if we cannot. | 
|---|
| 2355 | Node*    adr    = in(MemNode::Address); | 
|---|
| 2356 | intptr_t offset = 0; | 
|---|
| 2357 | Node*    base   = AddPNode::Ideal_base_and_offset(adr, phase,  offset); | 
|---|
| 2358 | if (base == NULL)     return NULL; | 
|---|
| 2359 | const TypeAryPtr* tary = phase->type(adr)->isa_aryptr(); | 
|---|
| 2360 | if (tary == NULL)     return NULL; | 
|---|
| 2361 |  | 
|---|
| 2362 | // We can fetch the length directly through an AllocateArrayNode. | 
|---|
| 2363 | // This works even if the length is not constant (clone or newArray). | 
|---|
| 2364 | if (offset == arrayOopDesc::length_offset_in_bytes()) { | 
|---|
| 2365 | AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(base, phase); | 
|---|
| 2366 | if (alloc != NULL) { | 
|---|
| 2367 | Node* allocated_length = alloc->Ideal_length(); | 
|---|
| 2368 | Node* len = alloc->make_ideal_length(tary, phase); | 
|---|
| 2369 | if (allocated_length != len) { | 
|---|
| 2370 | // New CastII improves on this. | 
|---|
| 2371 | return len; | 
|---|
| 2372 | } | 
|---|
| 2373 | } | 
|---|
| 2374 | } | 
|---|
| 2375 |  | 
|---|
| 2376 | return NULL; | 
|---|
| 2377 | } | 
|---|
| 2378 |  | 
|---|
| 2379 | //------------------------------Identity--------------------------------------- | 
|---|
| 2380 | // Feed through the length in AllocateArray(...length...)._length. | 
|---|
| 2381 | Node* LoadRangeNode::Identity(PhaseGVN* phase) { | 
|---|
| 2382 | Node* x = LoadINode::Identity(phase); | 
|---|
| 2383 | if (x != this)  return x; | 
|---|
| 2384 |  | 
|---|
| 2385 | // Take apart the address into an oop and and offset. | 
|---|
| 2386 | // Return 'this' if we cannot. | 
|---|
| 2387 | Node*    adr    = in(MemNode::Address); | 
|---|
| 2388 | intptr_t offset = 0; | 
|---|
| 2389 | Node*    base   = AddPNode::Ideal_base_and_offset(adr, phase, offset); | 
|---|
| 2390 | if (base == NULL)     return this; | 
|---|
| 2391 | const TypeAryPtr* tary = phase->type(adr)->isa_aryptr(); | 
|---|
| 2392 | if (tary == NULL)     return this; | 
|---|
| 2393 |  | 
|---|
| 2394 | // We can fetch the length directly through an AllocateArrayNode. | 
|---|
| 2395 | // This works even if the length is not constant (clone or newArray). | 
|---|
| 2396 | if (offset == arrayOopDesc::length_offset_in_bytes()) { | 
|---|
| 2397 | AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(base, phase); | 
|---|
| 2398 | if (alloc != NULL) { | 
|---|
| 2399 | Node* allocated_length = alloc->Ideal_length(); | 
|---|
| 2400 | // Do not allow make_ideal_length to allocate a CastII node. | 
|---|
| 2401 | Node* len = alloc->make_ideal_length(tary, phase, false); | 
|---|
| 2402 | if (allocated_length == len) { | 
|---|
| 2403 | // Return allocated_length only if it would not be improved by a CastII. | 
|---|
| 2404 | return allocated_length; | 
|---|
| 2405 | } | 
|---|
| 2406 | } | 
|---|
| 2407 | } | 
|---|
| 2408 |  | 
|---|
| 2409 | return this; | 
|---|
| 2410 |  | 
|---|
| 2411 | } | 
|---|
| 2412 |  | 
|---|
| 2413 | //============================================================================= | 
|---|
| 2414 | //---------------------------StoreNode::make----------------------------------- | 
|---|
| 2415 | // Polymorphic factory method: | 
|---|
| 2416 | StoreNode* StoreNode::make(PhaseGVN& gvn, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val, BasicType bt, MemOrd mo) { | 
|---|
| 2417 | assert((mo == unordered || mo == release), "unexpected"); | 
|---|
| 2418 | Compile* C = gvn.C; | 
|---|
| 2419 | assert(C->get_alias_index(adr_type) != Compile::AliasIdxRaw || | 
|---|
| 2420 | ctl != NULL, "raw memory operations should have control edge"); | 
|---|
| 2421 |  | 
|---|
| 2422 | switch (bt) { | 
|---|
| 2423 | case T_BOOLEAN: val = gvn.transform(new AndINode(val, gvn.intcon(0x1))); // Fall through to T_BYTE case | 
|---|
| 2424 | case T_BYTE:    return new StoreBNode(ctl, mem, adr, adr_type, val, mo); | 
|---|
| 2425 | case T_INT:     return new StoreINode(ctl, mem, adr, adr_type, val, mo); | 
|---|
| 2426 | case T_CHAR: | 
|---|
| 2427 | case T_SHORT:   return new StoreCNode(ctl, mem, adr, adr_type, val, mo); | 
|---|
| 2428 | case T_LONG:    return new StoreLNode(ctl, mem, adr, adr_type, val, mo); | 
|---|
| 2429 | case T_FLOAT:   return new StoreFNode(ctl, mem, adr, adr_type, val, mo); | 
|---|
| 2430 | case T_DOUBLE:  return new StoreDNode(ctl, mem, adr, adr_type, val, mo); | 
|---|
| 2431 | case T_METADATA: | 
|---|
| 2432 | case T_ADDRESS: | 
|---|
| 2433 | case T_OBJECT: | 
|---|
| 2434 | #ifdef _LP64 | 
|---|
| 2435 | if (adr->bottom_type()->is_ptr_to_narrowoop()) { | 
|---|
| 2436 | val = gvn.transform(new EncodePNode(val, val->bottom_type()->make_narrowoop())); | 
|---|
| 2437 | return new StoreNNode(ctl, mem, adr, adr_type, val, mo); | 
|---|
| 2438 | } else if (adr->bottom_type()->is_ptr_to_narrowklass() || | 
|---|
| 2439 | (UseCompressedClassPointers && val->bottom_type()->isa_klassptr() && | 
|---|
| 2440 | adr->bottom_type()->isa_rawptr())) { | 
|---|
| 2441 | val = gvn.transform(new EncodePKlassNode(val, val->bottom_type()->make_narrowklass())); | 
|---|
| 2442 | return new StoreNKlassNode(ctl, mem, adr, adr_type, val, mo); | 
|---|
| 2443 | } | 
|---|
| 2444 | #endif | 
|---|
| 2445 | { | 
|---|
| 2446 | return new StorePNode(ctl, mem, adr, adr_type, val, mo); | 
|---|
| 2447 | } | 
|---|
| 2448 | default: | 
|---|
| 2449 | ShouldNotReachHere(); | 
|---|
| 2450 | return (StoreNode*)NULL; | 
|---|
| 2451 | } | 
|---|
| 2452 | } | 
|---|
| 2453 |  | 
|---|
| 2454 | StoreLNode* StoreLNode::make_atomic(Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val, MemOrd mo) { | 
|---|
| 2455 | bool require_atomic = true; | 
|---|
| 2456 | return new StoreLNode(ctl, mem, adr, adr_type, val, mo, require_atomic); | 
|---|
| 2457 | } | 
|---|
| 2458 |  | 
|---|
| 2459 | StoreDNode* StoreDNode::make_atomic(Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val, MemOrd mo) { | 
|---|
| 2460 | bool require_atomic = true; | 
|---|
| 2461 | return new StoreDNode(ctl, mem, adr, adr_type, val, mo, require_atomic); | 
|---|
| 2462 | } | 
|---|
| 2463 |  | 
|---|
| 2464 |  | 
|---|
| 2465 | //--------------------------bottom_type---------------------------------------- | 
|---|
| 2466 | const Type *StoreNode::bottom_type() const { | 
|---|
| 2467 | return Type::MEMORY; | 
|---|
| 2468 | } | 
|---|
| 2469 |  | 
|---|
| 2470 | //------------------------------hash------------------------------------------- | 
|---|
| 2471 | uint StoreNode::hash() const { | 
|---|
| 2472 | // unroll addition of interesting fields | 
|---|
| 2473 | //return (uintptr_t)in(Control) + (uintptr_t)in(Memory) + (uintptr_t)in(Address) + (uintptr_t)in(ValueIn); | 
|---|
| 2474 |  | 
|---|
| 2475 | // Since they are not commoned, do not hash them: | 
|---|
| 2476 | return NO_HASH; | 
|---|
| 2477 | } | 
|---|
| 2478 |  | 
|---|
| 2479 | //------------------------------Ideal------------------------------------------ | 
|---|
| 2480 | // Change back-to-back Store(, p, x) -> Store(m, p, y) to Store(m, p, x). | 
|---|
| 2481 | // When a store immediately follows a relevant allocation/initialization, | 
|---|
| 2482 | // try to capture it into the initialization, or hoist it above. | 
|---|
| 2483 | Node *StoreNode::Ideal(PhaseGVN *phase, bool can_reshape) { | 
|---|
| 2484 | Node* p = MemNode::Ideal_common(phase, can_reshape); | 
|---|
| 2485 | if (p)  return (p == NodeSentinel) ? NULL : p; | 
|---|
| 2486 |  | 
|---|
| 2487 | Node* mem     = in(MemNode::Memory); | 
|---|
| 2488 | Node* address = in(MemNode::Address); | 
|---|
| 2489 | // Back-to-back stores to same address?  Fold em up.  Generally | 
|---|
| 2490 | // unsafe if I have intervening uses...  Also disallowed for StoreCM | 
|---|
| 2491 | // since they must follow each StoreP operation.  Redundant StoreCMs | 
|---|
| 2492 | // are eliminated just before matching in final_graph_reshape. | 
|---|
| 2493 | { | 
|---|
| 2494 | Node* st = mem; | 
|---|
| 2495 | // If Store 'st' has more than one use, we cannot fold 'st' away. | 
|---|
| 2496 | // For example, 'st' might be the final state at a conditional | 
|---|
| 2497 | // return.  Or, 'st' might be used by some node which is live at | 
|---|
| 2498 | // the same time 'st' is live, which might be unschedulable.  So, | 
|---|
| 2499 | // require exactly ONE user until such time as we clone 'mem' for | 
|---|
| 2500 | // each of 'mem's uses (thus making the exactly-1-user-rule hold | 
|---|
| 2501 | // true). | 
|---|
| 2502 | while (st->is_Store() && st->outcnt() == 1 && st->Opcode() != Op_StoreCM) { | 
|---|
| 2503 | // Looking at a dead closed cycle of memory? | 
|---|
| 2504 | assert(st != st->in(MemNode::Memory), "dead loop in StoreNode::Ideal"); | 
|---|
| 2505 | assert(Opcode() == st->Opcode() || | 
|---|
| 2506 | st->Opcode() == Op_StoreVector || | 
|---|
| 2507 | Opcode() == Op_StoreVector || | 
|---|
| 2508 | phase->C->get_alias_index(adr_type()) == Compile::AliasIdxRaw || | 
|---|
| 2509 | (Opcode() == Op_StoreL && st->Opcode() == Op_StoreI) || // expanded ClearArrayNode | 
|---|
| 2510 | (Opcode() == Op_StoreI && st->Opcode() == Op_StoreL) || // initialization by arraycopy | 
|---|
| 2511 | (is_mismatched_access() || st->as_Store()->is_mismatched_access()), | 
|---|
| 2512 | "no mismatched stores, except on raw memory: %s %s", NodeClassNames[Opcode()], NodeClassNames[st->Opcode()]); | 
|---|
| 2513 |  | 
|---|
| 2514 | if (st->in(MemNode::Address)->eqv_uncast(address) && | 
|---|
| 2515 | st->as_Store()->memory_size() <= this->memory_size()) { | 
|---|
| 2516 | Node* use = st->raw_out(0); | 
|---|
| 2517 | phase->igvn_rehash_node_delayed(use); | 
|---|
| 2518 | if (can_reshape) { | 
|---|
| 2519 | use->set_req_X(MemNode::Memory, st->in(MemNode::Memory), phase->is_IterGVN()); | 
|---|
| 2520 | } else { | 
|---|
| 2521 | // It's OK to do this in the parser, since DU info is always accurate, | 
|---|
| 2522 | // and the parser always refers to nodes via SafePointNode maps. | 
|---|
| 2523 | use->set_req(MemNode::Memory, st->in(MemNode::Memory)); | 
|---|
| 2524 | } | 
|---|
| 2525 | return this; | 
|---|
| 2526 | } | 
|---|
| 2527 | st = st->in(MemNode::Memory); | 
|---|
| 2528 | } | 
|---|
| 2529 | } | 
|---|
| 2530 |  | 
|---|
| 2531 |  | 
|---|
| 2532 | // Capture an unaliased, unconditional, simple store into an initializer. | 
|---|
| 2533 | // Or, if it is independent of the allocation, hoist it above the allocation. | 
|---|
| 2534 | if (ReduceFieldZeroing && /*can_reshape &&*/ | 
|---|
| 2535 | mem->is_Proj() && mem->in(0)->is_Initialize()) { | 
|---|
| 2536 | InitializeNode* init = mem->in(0)->as_Initialize(); | 
|---|
| 2537 | intptr_t offset = init->can_capture_store(this, phase, can_reshape); | 
|---|
| 2538 | if (offset > 0) { | 
|---|
| 2539 | Node* moved = init->capture_store(this, offset, phase, can_reshape); | 
|---|
| 2540 | // If the InitializeNode captured me, it made a raw copy of me, | 
|---|
| 2541 | // and I need to disappear. | 
|---|
| 2542 | if (moved != NULL) { | 
|---|
| 2543 | // %%% hack to ensure that Ideal returns a new node: | 
|---|
| 2544 | mem = MergeMemNode::make(mem); | 
|---|
| 2545 | return mem;             // fold me away | 
|---|
| 2546 | } | 
|---|
| 2547 | } | 
|---|
| 2548 | } | 
|---|
| 2549 |  | 
|---|
| 2550 | return NULL;                  // No further progress | 
|---|
| 2551 | } | 
|---|
| 2552 |  | 
|---|
| 2553 | //------------------------------Value----------------------------------------- | 
|---|
| 2554 | const Type* StoreNode::Value(PhaseGVN* phase) const { | 
|---|
| 2555 | // Either input is TOP ==> the result is TOP | 
|---|
| 2556 | const Type *t1 = phase->type( in(MemNode::Memory) ); | 
|---|
| 2557 | if( t1 == Type::TOP ) return Type::TOP; | 
|---|
| 2558 | const Type *t2 = phase->type( in(MemNode::Address) ); | 
|---|
| 2559 | if( t2 == Type::TOP ) return Type::TOP; | 
|---|
| 2560 | const Type *t3 = phase->type( in(MemNode::ValueIn) ); | 
|---|
| 2561 | if( t3 == Type::TOP ) return Type::TOP; | 
|---|
| 2562 | return Type::MEMORY; | 
|---|
| 2563 | } | 
|---|
| 2564 |  | 
|---|
| 2565 | //------------------------------Identity--------------------------------------- | 
|---|
| 2566 | // Remove redundant stores: | 
|---|
| 2567 | //   Store(m, p, Load(m, p)) changes to m. | 
|---|
| 2568 | //   Store(, p, x) -> Store(m, p, x) changes to Store(m, p, x). | 
|---|
| 2569 | Node* StoreNode::Identity(PhaseGVN* phase) { | 
|---|
| 2570 | Node* mem = in(MemNode::Memory); | 
|---|
| 2571 | Node* adr = in(MemNode::Address); | 
|---|
| 2572 | Node* val = in(MemNode::ValueIn); | 
|---|
| 2573 |  | 
|---|
| 2574 | Node* result = this; | 
|---|
| 2575 |  | 
|---|
| 2576 | // Load then Store?  Then the Store is useless | 
|---|
| 2577 | if (val->is_Load() && | 
|---|
| 2578 | val->in(MemNode::Address)->eqv_uncast(adr) && | 
|---|
| 2579 | val->in(MemNode::Memory )->eqv_uncast(mem) && | 
|---|
| 2580 | val->as_Load()->store_Opcode() == Opcode()) { | 
|---|
| 2581 | result = mem; | 
|---|
| 2582 | } | 
|---|
| 2583 |  | 
|---|
| 2584 | // Two stores in a row of the same value? | 
|---|
| 2585 | if (result == this && | 
|---|
| 2586 | mem->is_Store() && | 
|---|
| 2587 | mem->in(MemNode::Address)->eqv_uncast(adr) && | 
|---|
| 2588 | mem->in(MemNode::ValueIn)->eqv_uncast(val) && | 
|---|
| 2589 | mem->Opcode() == Opcode()) { | 
|---|
| 2590 | result = mem; | 
|---|
| 2591 | } | 
|---|
| 2592 |  | 
|---|
| 2593 | // Store of zero anywhere into a freshly-allocated object? | 
|---|
| 2594 | // Then the store is useless. | 
|---|
| 2595 | // (It must already have been captured by the InitializeNode.) | 
|---|
| 2596 | if (result == this && | 
|---|
| 2597 | ReduceFieldZeroing && phase->type(val)->is_zero_type()) { | 
|---|
| 2598 | // a newly allocated object is already all-zeroes everywhere | 
|---|
| 2599 | if (mem->is_Proj() && mem->in(0)->is_Allocate()) { | 
|---|
| 2600 | result = mem; | 
|---|
| 2601 | } | 
|---|
| 2602 |  | 
|---|
| 2603 | if (result == this) { | 
|---|
| 2604 | // the store may also apply to zero-bits in an earlier object | 
|---|
| 2605 | Node* prev_mem = find_previous_store(phase); | 
|---|
| 2606 | // Steps (a), (b):  Walk past independent stores to find an exact match. | 
|---|
| 2607 | if (prev_mem != NULL) { | 
|---|
| 2608 | Node* prev_val = can_see_stored_value(prev_mem, phase); | 
|---|
| 2609 | if (prev_val != NULL && phase->eqv(prev_val, val)) { | 
|---|
| 2610 | // prev_val and val might differ by a cast; it would be good | 
|---|
| 2611 | // to keep the more informative of the two. | 
|---|
| 2612 | result = mem; | 
|---|
| 2613 | } | 
|---|
| 2614 | } | 
|---|
| 2615 | } | 
|---|
| 2616 | } | 
|---|
| 2617 |  | 
|---|
| 2618 | if (result != this && phase->is_IterGVN() != NULL) { | 
|---|
| 2619 | MemBarNode* trailing = trailing_membar(); | 
|---|
| 2620 | if (trailing != NULL) { | 
|---|
| 2621 | #ifdef ASSERT | 
|---|
| 2622 | const TypeOopPtr* t_oop = phase->type(in(Address))->isa_oopptr(); | 
|---|
| 2623 | assert(t_oop == NULL || t_oop->is_known_instance_field(), "only for non escaping objects"); | 
|---|
| 2624 | #endif | 
|---|
| 2625 | PhaseIterGVN* igvn = phase->is_IterGVN(); | 
|---|
| 2626 | trailing->remove(igvn); | 
|---|
| 2627 | } | 
|---|
| 2628 | } | 
|---|
| 2629 |  | 
|---|
| 2630 | return result; | 
|---|
| 2631 | } | 
|---|
| 2632 |  | 
|---|
| 2633 | //------------------------------match_edge------------------------------------- | 
|---|
| 2634 | // Do we Match on this edge index or not?  Match only memory & value | 
|---|
| 2635 | uint StoreNode::match_edge(uint idx) const { | 
|---|
| 2636 | return idx == MemNode::Address || idx == MemNode::ValueIn; | 
|---|
| 2637 | } | 
|---|
| 2638 |  | 
|---|
| 2639 | //------------------------------cmp-------------------------------------------- | 
|---|
| 2640 | // Do not common stores up together.  They generally have to be split | 
|---|
| 2641 | // back up anyways, so do not bother. | 
|---|
| 2642 | bool StoreNode::cmp( const Node &n ) const { | 
|---|
| 2643 | return (&n == this);          // Always fail except on self | 
|---|
| 2644 | } | 
|---|
| 2645 |  | 
|---|
| 2646 | //------------------------------Ideal_masked_input----------------------------- | 
|---|
| 2647 | // Check for a useless mask before a partial-word store | 
|---|
| 2648 | // (StoreB ... (AndI valIn conIa) ) | 
|---|
| 2649 | // If (conIa & mask == mask) this simplifies to | 
|---|
| 2650 | // (StoreB ... (valIn) ) | 
|---|
| 2651 | Node *StoreNode::Ideal_masked_input(PhaseGVN *phase, uint mask) { | 
|---|
| 2652 | Node *val = in(MemNode::ValueIn); | 
|---|
| 2653 | if( val->Opcode() == Op_AndI ) { | 
|---|
| 2654 | const TypeInt *t = phase->type( val->in(2) )->isa_int(); | 
|---|
| 2655 | if( t && t->is_con() && (t->get_con() & mask) == mask ) { | 
|---|
| 2656 | set_req(MemNode::ValueIn, val->in(1)); | 
|---|
| 2657 | return this; | 
|---|
| 2658 | } | 
|---|
| 2659 | } | 
|---|
| 2660 | return NULL; | 
|---|
| 2661 | } | 
|---|
| 2662 |  | 
|---|
| 2663 |  | 
|---|
| 2664 | //------------------------------Ideal_sign_extended_input---------------------- | 
|---|
| 2665 | // Check for useless sign-extension before a partial-word store | 
|---|
| 2666 | // (StoreB ... (RShiftI _ (LShiftI _ valIn conIL ) conIR) ) | 
|---|
| 2667 | // If (conIL == conIR && conIR <= num_bits)  this simplifies to | 
|---|
| 2668 | // (StoreB ... (valIn) ) | 
|---|
| 2669 | Node *StoreNode::Ideal_sign_extended_input(PhaseGVN *phase, int num_bits) { | 
|---|
| 2670 | Node *val = in(MemNode::ValueIn); | 
|---|
| 2671 | if( val->Opcode() == Op_RShiftI ) { | 
|---|
| 2672 | const TypeInt *t = phase->type( val->in(2) )->isa_int(); | 
|---|
| 2673 | if( t && t->is_con() && (t->get_con() <= num_bits) ) { | 
|---|
| 2674 | Node *shl = val->in(1); | 
|---|
| 2675 | if( shl->Opcode() == Op_LShiftI ) { | 
|---|
| 2676 | const TypeInt *t2 = phase->type( shl->in(2) )->isa_int(); | 
|---|
| 2677 | if( t2 && t2->is_con() && (t2->get_con() == t->get_con()) ) { | 
|---|
| 2678 | set_req(MemNode::ValueIn, shl->in(1)); | 
|---|
| 2679 | return this; | 
|---|
| 2680 | } | 
|---|
| 2681 | } | 
|---|
| 2682 | } | 
|---|
| 2683 | } | 
|---|
| 2684 | return NULL; | 
|---|
| 2685 | } | 
|---|
| 2686 |  | 
|---|
| 2687 | //------------------------------value_never_loaded----------------------------------- | 
|---|
| 2688 | // Determine whether there are any possible loads of the value stored. | 
|---|
| 2689 | // For simplicity, we actually check if there are any loads from the | 
|---|
| 2690 | // address stored to, not just for loads of the value stored by this node. | 
|---|
| 2691 | // | 
|---|
| 2692 | bool StoreNode::value_never_loaded( PhaseTransform *phase) const { | 
|---|
| 2693 | Node *adr = in(Address); | 
|---|
| 2694 | const TypeOopPtr *adr_oop = phase->type(adr)->isa_oopptr(); | 
|---|
| 2695 | if (adr_oop == NULL) | 
|---|
| 2696 | return false; | 
|---|
| 2697 | if (!adr_oop->is_known_instance_field()) | 
|---|
| 2698 | return false; // if not a distinct instance, there may be aliases of the address | 
|---|
| 2699 | for (DUIterator_Fast imax, i = adr->fast_outs(imax); i < imax; i++) { | 
|---|
| 2700 | Node *use = adr->fast_out(i); | 
|---|
| 2701 | if (use->is_Load() || use->is_LoadStore()) { | 
|---|
| 2702 | return false; | 
|---|
| 2703 | } | 
|---|
| 2704 | } | 
|---|
| 2705 | return true; | 
|---|
| 2706 | } | 
|---|
| 2707 |  | 
|---|
| 2708 | MemBarNode* StoreNode::trailing_membar() const { | 
|---|
| 2709 | if (is_release()) { | 
|---|
| 2710 | MemBarNode* trailing_mb = NULL; | 
|---|
| 2711 | for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) { | 
|---|
| 2712 | Node* u = fast_out(i); | 
|---|
| 2713 | if (u->is_MemBar()) { | 
|---|
| 2714 | if (u->as_MemBar()->trailing_store()) { | 
|---|
| 2715 | assert(u->Opcode() == Op_MemBarVolatile, ""); | 
|---|
| 2716 | assert(trailing_mb == NULL, "only one"); | 
|---|
| 2717 | trailing_mb = u->as_MemBar(); | 
|---|
| 2718 | #ifdef ASSERT | 
|---|
| 2719 | Node* leading = u->as_MemBar()->leading_membar(); | 
|---|
| 2720 | assert(leading->Opcode() == Op_MemBarRelease, "incorrect membar"); | 
|---|
| 2721 | assert(leading->as_MemBar()->leading_store(), "incorrect membar pair"); | 
|---|
| 2722 | assert(leading->as_MemBar()->trailing_membar() == u, "incorrect membar pair"); | 
|---|
| 2723 | #endif | 
|---|
| 2724 | } else { | 
|---|
| 2725 | assert(u->as_MemBar()->standalone(), ""); | 
|---|
| 2726 | } | 
|---|
| 2727 | } | 
|---|
| 2728 | } | 
|---|
| 2729 | return trailing_mb; | 
|---|
| 2730 | } | 
|---|
| 2731 | return NULL; | 
|---|
| 2732 | } | 
|---|
| 2733 |  | 
|---|
| 2734 |  | 
|---|
| 2735 | //============================================================================= | 
|---|
| 2736 | //------------------------------Ideal------------------------------------------ | 
|---|
| 2737 | // If the store is from an AND mask that leaves the low bits untouched, then | 
|---|
| 2738 | // we can skip the AND operation.  If the store is from a sign-extension | 
|---|
| 2739 | // (a left shift, then right shift) we can skip both. | 
|---|
| 2740 | Node *StoreBNode::Ideal(PhaseGVN *phase, bool can_reshape){ | 
|---|
| 2741 | Node *progress = StoreNode::Ideal_masked_input(phase, 0xFF); | 
|---|
| 2742 | if( progress != NULL ) return progress; | 
|---|
| 2743 |  | 
|---|
| 2744 | progress = StoreNode::Ideal_sign_extended_input(phase, 24); | 
|---|
| 2745 | if( progress != NULL ) return progress; | 
|---|
| 2746 |  | 
|---|
| 2747 | // Finally check the default case | 
|---|
| 2748 | return StoreNode::Ideal(phase, can_reshape); | 
|---|
| 2749 | } | 
|---|
| 2750 |  | 
|---|
| 2751 | //============================================================================= | 
|---|
| 2752 | //------------------------------Ideal------------------------------------------ | 
|---|
| 2753 | // If the store is from an AND mask that leaves the low bits untouched, then | 
|---|
| 2754 | // we can skip the AND operation | 
|---|
| 2755 | Node *StoreCNode::Ideal(PhaseGVN *phase, bool can_reshape){ | 
|---|
| 2756 | Node *progress = StoreNode::Ideal_masked_input(phase, 0xFFFF); | 
|---|
| 2757 | if( progress != NULL ) return progress; | 
|---|
| 2758 |  | 
|---|
| 2759 | progress = StoreNode::Ideal_sign_extended_input(phase, 16); | 
|---|
| 2760 | if( progress != NULL ) return progress; | 
|---|
| 2761 |  | 
|---|
| 2762 | // Finally check the default case | 
|---|
| 2763 | return StoreNode::Ideal(phase, can_reshape); | 
|---|
| 2764 | } | 
|---|
| 2765 |  | 
|---|
| 2766 | //============================================================================= | 
|---|
| 2767 | //------------------------------Identity--------------------------------------- | 
|---|
| 2768 | Node* StoreCMNode::Identity(PhaseGVN* phase) { | 
|---|
| 2769 | // No need to card mark when storing a null ptr | 
|---|
| 2770 | Node* my_store = in(MemNode::OopStore); | 
|---|
| 2771 | if (my_store->is_Store()) { | 
|---|
| 2772 | const Type *t1 = phase->type( my_store->in(MemNode::ValueIn) ); | 
|---|
| 2773 | if( t1 == TypePtr::NULL_PTR ) { | 
|---|
| 2774 | return in(MemNode::Memory); | 
|---|
| 2775 | } | 
|---|
| 2776 | } | 
|---|
| 2777 | return this; | 
|---|
| 2778 | } | 
|---|
| 2779 |  | 
|---|
| 2780 | //============================================================================= | 
|---|
| 2781 | //------------------------------Ideal--------------------------------------- | 
|---|
| 2782 | Node *StoreCMNode::Ideal(PhaseGVN *phase, bool can_reshape){ | 
|---|
| 2783 | Node* progress = StoreNode::Ideal(phase, can_reshape); | 
|---|
| 2784 | if (progress != NULL) return progress; | 
|---|
| 2785 |  | 
|---|
| 2786 | Node* my_store = in(MemNode::OopStore); | 
|---|
| 2787 | if (my_store->is_MergeMem()) { | 
|---|
| 2788 | Node* mem = my_store->as_MergeMem()->memory_at(oop_alias_idx()); | 
|---|
| 2789 | set_req(MemNode::OopStore, mem); | 
|---|
| 2790 | return this; | 
|---|
| 2791 | } | 
|---|
| 2792 |  | 
|---|
| 2793 | return NULL; | 
|---|
| 2794 | } | 
|---|
| 2795 |  | 
|---|
| 2796 | //------------------------------Value----------------------------------------- | 
|---|
| 2797 | const Type* StoreCMNode::Value(PhaseGVN* phase) const { | 
|---|
| 2798 | // Either input is TOP ==> the result is TOP | 
|---|
| 2799 | const Type *t = phase->type( in(MemNode::Memory) ); | 
|---|
| 2800 | if( t == Type::TOP ) return Type::TOP; | 
|---|
| 2801 | t = phase->type( in(MemNode::Address) ); | 
|---|
| 2802 | if( t == Type::TOP ) return Type::TOP; | 
|---|
| 2803 | t = phase->type( in(MemNode::ValueIn) ); | 
|---|
| 2804 | if( t == Type::TOP ) return Type::TOP; | 
|---|
| 2805 | // If extra input is TOP ==> the result is TOP | 
|---|
| 2806 | t = phase->type( in(MemNode::OopStore) ); | 
|---|
| 2807 | if( t == Type::TOP ) return Type::TOP; | 
|---|
| 2808 |  | 
|---|
| 2809 | return StoreNode::Value( phase ); | 
|---|
| 2810 | } | 
|---|
| 2811 |  | 
|---|
| 2812 |  | 
|---|
| 2813 | //============================================================================= | 
|---|
| 2814 | //----------------------------------SCMemProjNode------------------------------ | 
|---|
| 2815 | const Type* SCMemProjNode::Value(PhaseGVN* phase) const | 
|---|
| 2816 | { | 
|---|
| 2817 | return bottom_type(); | 
|---|
| 2818 | } | 
|---|
| 2819 |  | 
|---|
| 2820 | //============================================================================= | 
|---|
| 2821 | //----------------------------------LoadStoreNode------------------------------ | 
|---|
| 2822 | LoadStoreNode::LoadStoreNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at, const Type* rt, uint required ) | 
|---|
| 2823 | : Node(required), | 
|---|
| 2824 | _type(rt), | 
|---|
| 2825 | _adr_type(at), | 
|---|
| 2826 | _has_barrier(false) | 
|---|
| 2827 | { | 
|---|
| 2828 | init_req(MemNode::Control, c  ); | 
|---|
| 2829 | init_req(MemNode::Memory , mem); | 
|---|
| 2830 | init_req(MemNode::Address, adr); | 
|---|
| 2831 | init_req(MemNode::ValueIn, val); | 
|---|
| 2832 | init_class_id(Class_LoadStore); | 
|---|
| 2833 | } | 
|---|
| 2834 |  | 
|---|
| 2835 | uint LoadStoreNode::ideal_reg() const { | 
|---|
| 2836 | return _type->ideal_reg(); | 
|---|
| 2837 | } | 
|---|
| 2838 |  | 
|---|
| 2839 | bool LoadStoreNode::result_not_used() const { | 
|---|
| 2840 | for( DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++ ) { | 
|---|
| 2841 | Node *x = fast_out(i); | 
|---|
| 2842 | if (x->Opcode() == Op_SCMemProj) continue; | 
|---|
| 2843 | return false; | 
|---|
| 2844 | } | 
|---|
| 2845 | return true; | 
|---|
| 2846 | } | 
|---|
| 2847 |  | 
|---|
| 2848 | MemBarNode* LoadStoreNode::trailing_membar() const { | 
|---|
| 2849 | MemBarNode* trailing = NULL; | 
|---|
| 2850 | for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) { | 
|---|
| 2851 | Node* u = fast_out(i); | 
|---|
| 2852 | if (u->is_MemBar()) { | 
|---|
| 2853 | if (u->as_MemBar()->trailing_load_store()) { | 
|---|
| 2854 | assert(u->Opcode() == Op_MemBarAcquire, ""); | 
|---|
| 2855 | assert(trailing == NULL, "only one"); | 
|---|
| 2856 | trailing = u->as_MemBar(); | 
|---|
| 2857 | #ifdef ASSERT | 
|---|
| 2858 | Node* leading = trailing->leading_membar(); | 
|---|
| 2859 | assert(support_IRIW_for_not_multiple_copy_atomic_cpu || leading->Opcode() == Op_MemBarRelease, "incorrect membar"); | 
|---|
| 2860 | assert(leading->as_MemBar()->leading_load_store(), "incorrect membar pair"); | 
|---|
| 2861 | assert(leading->as_MemBar()->trailing_membar() == trailing, "incorrect membar pair"); | 
|---|
| 2862 | #endif | 
|---|
| 2863 | } else { | 
|---|
| 2864 | assert(u->as_MemBar()->standalone(), "wrong barrier kind"); | 
|---|
| 2865 | } | 
|---|
| 2866 | } | 
|---|
| 2867 | } | 
|---|
| 2868 |  | 
|---|
| 2869 | return trailing; | 
|---|
| 2870 | } | 
|---|
| 2871 |  | 
|---|
| 2872 | uint LoadStoreNode::size_of() const { return sizeof(*this); } | 
|---|
| 2873 |  | 
|---|
| 2874 | //============================================================================= | 
|---|
| 2875 | //----------------------------------LoadStoreConditionalNode-------------------- | 
|---|
| 2876 | LoadStoreConditionalNode::LoadStoreConditionalNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex ) : LoadStoreNode(c, mem, adr, val, NULL, TypeInt::BOOL, 5) { | 
|---|
| 2877 | init_req(ExpectedIn, ex ); | 
|---|
| 2878 | } | 
|---|
| 2879 |  | 
|---|
| 2880 | //============================================================================= | 
|---|
| 2881 | //-------------------------------adr_type-------------------------------------- | 
|---|
| 2882 | const TypePtr* ClearArrayNode::adr_type() const { | 
|---|
| 2883 | Node *adr = in(3); | 
|---|
| 2884 | if (adr == NULL)  return NULL; // node is dead | 
|---|
| 2885 | return MemNode::calculate_adr_type(adr->bottom_type()); | 
|---|
| 2886 | } | 
|---|
| 2887 |  | 
|---|
| 2888 | //------------------------------match_edge------------------------------------- | 
|---|
| 2889 | // Do we Match on this edge index or not?  Do not match memory | 
|---|
| 2890 | uint ClearArrayNode::match_edge(uint idx) const { | 
|---|
| 2891 | return idx > 1; | 
|---|
| 2892 | } | 
|---|
| 2893 |  | 
|---|
| 2894 | //------------------------------Identity--------------------------------------- | 
|---|
| 2895 | // Clearing a zero length array does nothing | 
|---|
| 2896 | Node* ClearArrayNode::Identity(PhaseGVN* phase) { | 
|---|
| 2897 | return phase->type(in(2))->higher_equal(TypeX::ZERO)  ? in(1) : this; | 
|---|
| 2898 | } | 
|---|
| 2899 |  | 
|---|
| 2900 | //------------------------------Idealize--------------------------------------- | 
|---|
| 2901 | // Clearing a short array is faster with stores | 
|---|
| 2902 | Node *ClearArrayNode::Ideal(PhaseGVN *phase, bool can_reshape) { | 
|---|
| 2903 | // Already know this is a large node, do not try to ideal it | 
|---|
| 2904 | if (!IdealizeClearArrayNode || _is_large) return NULL; | 
|---|
| 2905 |  | 
|---|
| 2906 | const int unit = BytesPerLong; | 
|---|
| 2907 | const TypeX* t = phase->type(in(2))->isa_intptr_t(); | 
|---|
| 2908 | if (!t)  return NULL; | 
|---|
| 2909 | if (!t->is_con())  return NULL; | 
|---|
| 2910 | intptr_t raw_count = t->get_con(); | 
|---|
| 2911 | intptr_t size = raw_count; | 
|---|
| 2912 | if (!Matcher::init_array_count_is_in_bytes) size *= unit; | 
|---|
| 2913 | // Clearing nothing uses the Identity call. | 
|---|
| 2914 | // Negative clears are possible on dead ClearArrays | 
|---|
| 2915 | // (see jck test stmt114.stmt11402.val). | 
|---|
| 2916 | if (size <= 0 || size % unit != 0)  return NULL; | 
|---|
| 2917 | intptr_t count = size / unit; | 
|---|
| 2918 | // Length too long; communicate this to matchers and assemblers. | 
|---|
| 2919 | // Assemblers are responsible to produce fast hardware clears for it. | 
|---|
| 2920 | if (size > InitArrayShortSize) { | 
|---|
| 2921 | return new ClearArrayNode(in(0), in(1), in(2), in(3), true); | 
|---|
| 2922 | } | 
|---|
| 2923 | Node *mem = in(1); | 
|---|
| 2924 | if( phase->type(mem)==Type::TOP ) return NULL; | 
|---|
| 2925 | Node *adr = in(3); | 
|---|
| 2926 | const Type* at = phase->type(adr); | 
|---|
| 2927 | if( at==Type::TOP ) return NULL; | 
|---|
| 2928 | const TypePtr* atp = at->isa_ptr(); | 
|---|
| 2929 | // adjust atp to be the correct array element address type | 
|---|
| 2930 | if (atp == NULL)  atp = TypePtr::BOTTOM; | 
|---|
| 2931 | else              atp = atp->add_offset(Type::OffsetBot); | 
|---|
| 2932 | // Get base for derived pointer purposes | 
|---|
| 2933 | if( adr->Opcode() != Op_AddP ) Unimplemented(); | 
|---|
| 2934 | Node *base = adr->in(1); | 
|---|
| 2935 |  | 
|---|
| 2936 | Node *zero = phase->makecon(TypeLong::ZERO); | 
|---|
| 2937 | Node *off  = phase->MakeConX(BytesPerLong); | 
|---|
| 2938 | mem = new StoreLNode(in(0),mem,adr,atp,zero,MemNode::unordered,false); | 
|---|
| 2939 | count--; | 
|---|
| 2940 | while( count-- ) { | 
|---|
| 2941 | mem = phase->transform(mem); | 
|---|
| 2942 | adr = phase->transform(new AddPNode(base,adr,off)); | 
|---|
| 2943 | mem = new StoreLNode(in(0),mem,adr,atp,zero,MemNode::unordered,false); | 
|---|
| 2944 | } | 
|---|
| 2945 | return mem; | 
|---|
| 2946 | } | 
|---|
| 2947 |  | 
|---|
| 2948 | //----------------------------step_through---------------------------------- | 
|---|
| 2949 | // Return allocation input memory edge if it is different instance | 
|---|
| 2950 | // or itself if it is the one we are looking for. | 
|---|
| 2951 | bool ClearArrayNode::step_through(Node** np, uint instance_id, PhaseTransform* phase) { | 
|---|
| 2952 | Node* n = *np; | 
|---|
| 2953 | assert(n->is_ClearArray(), "sanity"); | 
|---|
| 2954 | intptr_t offset; | 
|---|
| 2955 | AllocateNode* alloc = AllocateNode::Ideal_allocation(n->in(3), phase, offset); | 
|---|
| 2956 | // This method is called only before Allocate nodes are expanded | 
|---|
| 2957 | // during macro nodes expansion. Before that ClearArray nodes are | 
|---|
| 2958 | // only generated in PhaseMacroExpand::generate_arraycopy() (before | 
|---|
| 2959 | // Allocate nodes are expanded) which follows allocations. | 
|---|
| 2960 | assert(alloc != NULL, "should have allocation"); | 
|---|
| 2961 | if (alloc->_idx == instance_id) { | 
|---|
| 2962 | // Can not bypass initialization of the instance we are looking for. | 
|---|
| 2963 | return false; | 
|---|
| 2964 | } | 
|---|
| 2965 | // Otherwise skip it. | 
|---|
| 2966 | InitializeNode* init = alloc->initialization(); | 
|---|
| 2967 | if (init != NULL) | 
|---|
| 2968 | *np = init->in(TypeFunc::Memory); | 
|---|
| 2969 | else | 
|---|
| 2970 | *np = alloc->in(TypeFunc::Memory); | 
|---|
| 2971 | return true; | 
|---|
| 2972 | } | 
|---|
| 2973 |  | 
|---|
| 2974 | //----------------------------clear_memory------------------------------------- | 
|---|
| 2975 | // Generate code to initialize object storage to zero. | 
|---|
| 2976 | Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest, | 
|---|
| 2977 | intptr_t start_offset, | 
|---|
| 2978 | Node* end_offset, | 
|---|
| 2979 | PhaseGVN* phase) { | 
|---|
| 2980 | intptr_t offset = start_offset; | 
|---|
| 2981 |  | 
|---|
| 2982 | int unit = BytesPerLong; | 
|---|
| 2983 | if ((offset % unit) != 0) { | 
|---|
| 2984 | Node* adr = new AddPNode(dest, dest, phase->MakeConX(offset)); | 
|---|
| 2985 | adr = phase->transform(adr); | 
|---|
| 2986 | const TypePtr* atp = TypeRawPtr::BOTTOM; | 
|---|
| 2987 | mem = StoreNode::make(*phase, ctl, mem, adr, atp, phase->zerocon(T_INT), T_INT, MemNode::unordered); | 
|---|
| 2988 | mem = phase->transform(mem); | 
|---|
| 2989 | offset += BytesPerInt; | 
|---|
| 2990 | } | 
|---|
| 2991 | assert((offset % unit) == 0, ""); | 
|---|
| 2992 |  | 
|---|
| 2993 | // Initialize the remaining stuff, if any, with a ClearArray. | 
|---|
| 2994 | return clear_memory(ctl, mem, dest, phase->MakeConX(offset), end_offset, phase); | 
|---|
| 2995 | } | 
|---|
| 2996 |  | 
|---|
| 2997 | Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest, | 
|---|
| 2998 | Node* start_offset, | 
|---|
| 2999 | Node* end_offset, | 
|---|
| 3000 | PhaseGVN* phase) { | 
|---|
| 3001 | if (start_offset == end_offset) { | 
|---|
| 3002 | // nothing to do | 
|---|
| 3003 | return mem; | 
|---|
| 3004 | } | 
|---|
| 3005 |  | 
|---|
| 3006 | int unit = BytesPerLong; | 
|---|
| 3007 | Node* zbase = start_offset; | 
|---|
| 3008 | Node* zend  = end_offset; | 
|---|
| 3009 |  | 
|---|
| 3010 | // Scale to the unit required by the CPU: | 
|---|
| 3011 | if (!Matcher::init_array_count_is_in_bytes) { | 
|---|
| 3012 | Node* shift = phase->intcon(exact_log2(unit)); | 
|---|
| 3013 | zbase = phase->transform(new URShiftXNode(zbase, shift) ); | 
|---|
| 3014 | zend  = phase->transform(new URShiftXNode(zend,  shift) ); | 
|---|
| 3015 | } | 
|---|
| 3016 |  | 
|---|
| 3017 | // Bulk clear double-words | 
|---|
| 3018 | Node* zsize = phase->transform(new SubXNode(zend, zbase) ); | 
|---|
| 3019 | Node* adr = phase->transform(new AddPNode(dest, dest, start_offset) ); | 
|---|
| 3020 | mem = new ClearArrayNode(ctl, mem, zsize, adr, false); | 
|---|
| 3021 | return phase->transform(mem); | 
|---|
| 3022 | } | 
|---|
| 3023 |  | 
|---|
| 3024 | Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest, | 
|---|
| 3025 | intptr_t start_offset, | 
|---|
| 3026 | intptr_t end_offset, | 
|---|
| 3027 | PhaseGVN* phase) { | 
|---|
| 3028 | if (start_offset == end_offset) { | 
|---|
| 3029 | // nothing to do | 
|---|
| 3030 | return mem; | 
|---|
| 3031 | } | 
|---|
| 3032 |  | 
|---|
| 3033 | assert((end_offset % BytesPerInt) == 0, "odd end offset"); | 
|---|
| 3034 | intptr_t done_offset = end_offset; | 
|---|
| 3035 | if ((done_offset % BytesPerLong) != 0) { | 
|---|
| 3036 | done_offset -= BytesPerInt; | 
|---|
| 3037 | } | 
|---|
| 3038 | if (done_offset > start_offset) { | 
|---|
| 3039 | mem = clear_memory(ctl, mem, dest, | 
|---|
| 3040 | start_offset, phase->MakeConX(done_offset), phase); | 
|---|
| 3041 | } | 
|---|
| 3042 | if (done_offset < end_offset) { // emit the final 32-bit store | 
|---|
| 3043 | Node* adr = new AddPNode(dest, dest, phase->MakeConX(done_offset)); | 
|---|
| 3044 | adr = phase->transform(adr); | 
|---|
| 3045 | const TypePtr* atp = TypeRawPtr::BOTTOM; | 
|---|
| 3046 | mem = StoreNode::make(*phase, ctl, mem, adr, atp, phase->zerocon(T_INT), T_INT, MemNode::unordered); | 
|---|
| 3047 | mem = phase->transform(mem); | 
|---|
| 3048 | done_offset += BytesPerInt; | 
|---|
| 3049 | } | 
|---|
| 3050 | assert(done_offset == end_offset, ""); | 
|---|
| 3051 | return mem; | 
|---|
| 3052 | } | 
|---|
| 3053 |  | 
|---|
| 3054 | //============================================================================= | 
|---|
| 3055 | MemBarNode::MemBarNode(Compile* C, int alias_idx, Node* precedent) | 
|---|
| 3056 | : MultiNode(TypeFunc::Parms + (precedent == NULL? 0: 1)), | 
|---|
| 3057 | _adr_type(C->get_adr_type(alias_idx)), _kind(Standalone) | 
|---|
| 3058 | #ifdef ASSERT | 
|---|
| 3059 | , _pair_idx(0) | 
|---|
| 3060 | #endif | 
|---|
| 3061 | { | 
|---|
| 3062 | init_class_id(Class_MemBar); | 
|---|
| 3063 | Node* top = C->top(); | 
|---|
| 3064 | init_req(TypeFunc::I_O,top); | 
|---|
| 3065 | init_req(TypeFunc::FramePtr,top); | 
|---|
| 3066 | init_req(TypeFunc::ReturnAdr,top); | 
|---|
| 3067 | if (precedent != NULL) | 
|---|
| 3068 | init_req(TypeFunc::Parms, precedent); | 
|---|
| 3069 | } | 
|---|
| 3070 |  | 
|---|
| 3071 | //------------------------------cmp-------------------------------------------- | 
|---|
| 3072 | uint MemBarNode::hash() const { return NO_HASH; } | 
|---|
| 3073 | bool MemBarNode::cmp( const Node &n ) const { | 
|---|
| 3074 | return (&n == this);          // Always fail except on self | 
|---|
| 3075 | } | 
|---|
| 3076 |  | 
|---|
| 3077 | //------------------------------make------------------------------------------- | 
|---|
| 3078 | MemBarNode* MemBarNode::make(Compile* C, int opcode, int atp, Node* pn) { | 
|---|
| 3079 | switch (opcode) { | 
|---|
| 3080 | case Op_MemBarAcquire:     return new MemBarAcquireNode(C, atp, pn); | 
|---|
| 3081 | case Op_LoadFence:         return new LoadFenceNode(C, atp, pn); | 
|---|
| 3082 | case Op_MemBarRelease:     return new MemBarReleaseNode(C, atp, pn); | 
|---|
| 3083 | case Op_StoreFence:        return new StoreFenceNode(C, atp, pn); | 
|---|
| 3084 | case Op_MemBarAcquireLock: return new MemBarAcquireLockNode(C, atp, pn); | 
|---|
| 3085 | case Op_MemBarReleaseLock: return new MemBarReleaseLockNode(C, atp, pn); | 
|---|
| 3086 | case Op_MemBarVolatile:    return new MemBarVolatileNode(C, atp, pn); | 
|---|
| 3087 | case Op_MemBarCPUOrder:    return new MemBarCPUOrderNode(C, atp, pn); | 
|---|
| 3088 | case Op_OnSpinWait:        return new OnSpinWaitNode(C, atp, pn); | 
|---|
| 3089 | case Op_Initialize:        return new InitializeNode(C, atp, pn); | 
|---|
| 3090 | case Op_MemBarStoreStore:  return new MemBarStoreStoreNode(C, atp, pn); | 
|---|
| 3091 | default: ShouldNotReachHere(); return NULL; | 
|---|
| 3092 | } | 
|---|
| 3093 | } | 
|---|
| 3094 |  | 
|---|
| 3095 | void MemBarNode::remove(PhaseIterGVN *igvn) { | 
|---|
| 3096 | if (outcnt() != 2) { | 
|---|
| 3097 | return; | 
|---|
| 3098 | } | 
|---|
| 3099 | if (trailing_store() || trailing_load_store()) { | 
|---|
| 3100 | MemBarNode* leading = leading_membar(); | 
|---|
| 3101 | if (leading != NULL) { | 
|---|
| 3102 | assert(leading->trailing_membar() == this, "inconsistent leading/trailing membars"); | 
|---|
| 3103 | leading->remove(igvn); | 
|---|
| 3104 | } | 
|---|
| 3105 | } | 
|---|
| 3106 | igvn->replace_node(proj_out(TypeFunc::Memory), in(TypeFunc::Memory)); | 
|---|
| 3107 | igvn->replace_node(proj_out(TypeFunc::Control), in(TypeFunc::Control)); | 
|---|
| 3108 | } | 
|---|
| 3109 |  | 
|---|
| 3110 | //------------------------------Ideal------------------------------------------ | 
|---|
| 3111 | // Return a node which is more "ideal" than the current node.  Strip out | 
|---|
| 3112 | // control copies | 
|---|
| 3113 | Node *MemBarNode::Ideal(PhaseGVN *phase, bool can_reshape) { | 
|---|
| 3114 | if (remove_dead_region(phase, can_reshape)) return this; | 
|---|
| 3115 | // Don't bother trying to transform a dead node | 
|---|
| 3116 | if (in(0) && in(0)->is_top()) { | 
|---|
| 3117 | return NULL; | 
|---|
| 3118 | } | 
|---|
| 3119 |  | 
|---|
| 3120 | bool progress = false; | 
|---|
| 3121 | // Eliminate volatile MemBars for scalar replaced objects. | 
|---|
| 3122 | if (can_reshape && req() == (Precedent+1)) { | 
|---|
| 3123 | bool eliminate = false; | 
|---|
| 3124 | int opc = Opcode(); | 
|---|
| 3125 | if ((opc == Op_MemBarAcquire || opc == Op_MemBarVolatile)) { | 
|---|
| 3126 | // Volatile field loads and stores. | 
|---|
| 3127 | Node* my_mem = in(MemBarNode::Precedent); | 
|---|
| 3128 | // The MembarAquire may keep an unused LoadNode alive through the Precedent edge | 
|---|
| 3129 | if ((my_mem != NULL) && (opc == Op_MemBarAcquire) && (my_mem->outcnt() == 1)) { | 
|---|
| 3130 | // if the Precedent is a decodeN and its input (a Load) is used at more than one place, | 
|---|
| 3131 | // replace this Precedent (decodeN) with the Load instead. | 
|---|
| 3132 | if ((my_mem->Opcode() == Op_DecodeN) && (my_mem->in(1)->outcnt() > 1))  { | 
|---|
| 3133 | Node* load_node = my_mem->in(1); | 
|---|
| 3134 | set_req(MemBarNode::Precedent, load_node); | 
|---|
| 3135 | phase->is_IterGVN()->_worklist.push(my_mem); | 
|---|
| 3136 | my_mem = load_node; | 
|---|
| 3137 | } else { | 
|---|
| 3138 | assert(my_mem->unique_out() == this, "sanity"); | 
|---|
| 3139 | del_req(Precedent); | 
|---|
| 3140 | phase->is_IterGVN()->_worklist.push(my_mem); // remove dead node later | 
|---|
| 3141 | my_mem = NULL; | 
|---|
| 3142 | } | 
|---|
| 3143 | progress = true; | 
|---|
| 3144 | } | 
|---|
| 3145 | if (my_mem != NULL && my_mem->is_Mem()) { | 
|---|
| 3146 | const TypeOopPtr* t_oop = my_mem->in(MemNode::Address)->bottom_type()->isa_oopptr(); | 
|---|
| 3147 | // Check for scalar replaced object reference. | 
|---|
| 3148 | if( t_oop != NULL && t_oop->is_known_instance_field() && | 
|---|
| 3149 | t_oop->offset() != Type::OffsetBot && | 
|---|
| 3150 | t_oop->offset() != Type::OffsetTop) { | 
|---|
| 3151 | eliminate = true; | 
|---|
| 3152 | } | 
|---|
| 3153 | } | 
|---|
| 3154 | } else if (opc == Op_MemBarRelease) { | 
|---|
| 3155 | // Final field stores. | 
|---|
| 3156 | Node* alloc = AllocateNode::Ideal_allocation(in(MemBarNode::Precedent), phase); | 
|---|
| 3157 | if ((alloc != NULL) && alloc->is_Allocate() && | 
|---|
| 3158 | alloc->as_Allocate()->does_not_escape_thread()) { | 
|---|
| 3159 | // The allocated object does not escape. | 
|---|
| 3160 | eliminate = true; | 
|---|
| 3161 | } | 
|---|
| 3162 | } | 
|---|
| 3163 | if (eliminate) { | 
|---|
| 3164 | // Replace MemBar projections by its inputs. | 
|---|
| 3165 | PhaseIterGVN* igvn = phase->is_IterGVN(); | 
|---|
| 3166 | remove(igvn); | 
|---|
| 3167 | // Must return either the original node (now dead) or a new node | 
|---|
| 3168 | // (Do not return a top here, since that would break the uniqueness of top.) | 
|---|
| 3169 | return new ConINode(TypeInt::ZERO); | 
|---|
| 3170 | } | 
|---|
| 3171 | } | 
|---|
| 3172 | return progress ? this : NULL; | 
|---|
| 3173 | } | 
|---|
| 3174 |  | 
|---|
| 3175 | //------------------------------Value------------------------------------------ | 
|---|
| 3176 | const Type* MemBarNode::Value(PhaseGVN* phase) const { | 
|---|
| 3177 | if( !in(0) ) return Type::TOP; | 
|---|
| 3178 | if( phase->type(in(0)) == Type::TOP ) | 
|---|
| 3179 | return Type::TOP; | 
|---|
| 3180 | return TypeTuple::MEMBAR; | 
|---|
| 3181 | } | 
|---|
| 3182 |  | 
|---|
| 3183 | //------------------------------match------------------------------------------ | 
|---|
| 3184 | // Construct projections for memory. | 
|---|
| 3185 | Node *MemBarNode::match( const ProjNode *proj, const Matcher *m ) { | 
|---|
| 3186 | switch (proj->_con) { | 
|---|
| 3187 | case TypeFunc::Control: | 
|---|
| 3188 | case TypeFunc::Memory: | 
|---|
| 3189 | return new MachProjNode(this,proj->_con,RegMask::Empty,MachProjNode::unmatched_proj); | 
|---|
| 3190 | } | 
|---|
| 3191 | ShouldNotReachHere(); | 
|---|
| 3192 | return NULL; | 
|---|
| 3193 | } | 
|---|
| 3194 |  | 
|---|
| 3195 | void MemBarNode::set_store_pair(MemBarNode* leading, MemBarNode* trailing) { | 
|---|
| 3196 | trailing->_kind = TrailingStore; | 
|---|
| 3197 | leading->_kind = LeadingStore; | 
|---|
| 3198 | #ifdef ASSERT | 
|---|
| 3199 | trailing->_pair_idx = leading->_idx; | 
|---|
| 3200 | leading->_pair_idx = leading->_idx; | 
|---|
| 3201 | #endif | 
|---|
| 3202 | } | 
|---|
| 3203 |  | 
|---|
| 3204 | void MemBarNode::set_load_store_pair(MemBarNode* leading, MemBarNode* trailing) { | 
|---|
| 3205 | trailing->_kind = TrailingLoadStore; | 
|---|
| 3206 | leading->_kind = LeadingLoadStore; | 
|---|
| 3207 | #ifdef ASSERT | 
|---|
| 3208 | trailing->_pair_idx = leading->_idx; | 
|---|
| 3209 | leading->_pair_idx = leading->_idx; | 
|---|
| 3210 | #endif | 
|---|
| 3211 | } | 
|---|
| 3212 |  | 
|---|
| 3213 | MemBarNode* MemBarNode::trailing_membar() const { | 
|---|
| 3214 | ResourceMark rm; | 
|---|
| 3215 | Node* trailing = (Node*)this; | 
|---|
| 3216 | VectorSet seen(Thread::current()->resource_area()); | 
|---|
| 3217 | Node_Stack multis(0); | 
|---|
| 3218 | do { | 
|---|
| 3219 | Node* c = trailing; | 
|---|
| 3220 | uint i = 0; | 
|---|
| 3221 | do { | 
|---|
| 3222 | trailing = NULL; | 
|---|
| 3223 | for (; i < c->outcnt(); i++) { | 
|---|
| 3224 | Node* next = c->raw_out(i); | 
|---|
| 3225 | if (next != c && next->is_CFG()) { | 
|---|
| 3226 | if (c->is_MultiBranch()) { | 
|---|
| 3227 | if (multis.node() == c) { | 
|---|
| 3228 | multis.set_index(i+1); | 
|---|
| 3229 | } else { | 
|---|
| 3230 | multis.push(c, i+1); | 
|---|
| 3231 | } | 
|---|
| 3232 | } | 
|---|
| 3233 | trailing = next; | 
|---|
| 3234 | break; | 
|---|
| 3235 | } | 
|---|
| 3236 | } | 
|---|
| 3237 | if (trailing != NULL && !seen.test_set(trailing->_idx)) { | 
|---|
| 3238 | break; | 
|---|
| 3239 | } | 
|---|
| 3240 | while (multis.size() > 0) { | 
|---|
| 3241 | c = multis.node(); | 
|---|
| 3242 | i = multis.index(); | 
|---|
| 3243 | if (i < c->req()) { | 
|---|
| 3244 | break; | 
|---|
| 3245 | } | 
|---|
| 3246 | multis.pop(); | 
|---|
| 3247 | } | 
|---|
| 3248 | } while (multis.size() > 0); | 
|---|
| 3249 | } while (!trailing->is_MemBar() || !trailing->as_MemBar()->trailing()); | 
|---|
| 3250 |  | 
|---|
| 3251 | MemBarNode* mb = trailing->as_MemBar(); | 
|---|
| 3252 | assert((mb->_kind == TrailingStore && _kind == LeadingStore) || | 
|---|
| 3253 | (mb->_kind == TrailingLoadStore && _kind == LeadingLoadStore), "bad trailing membar"); | 
|---|
| 3254 | assert(mb->_pair_idx == _pair_idx, "bad trailing membar"); | 
|---|
| 3255 | return mb; | 
|---|
| 3256 | } | 
|---|
| 3257 |  | 
|---|
| 3258 | MemBarNode* MemBarNode::leading_membar() const { | 
|---|
| 3259 | ResourceMark rm; | 
|---|
| 3260 | VectorSet seen(Thread::current()->resource_area()); | 
|---|
| 3261 | Node_Stack regions(0); | 
|---|
| 3262 | Node* leading = in(0); | 
|---|
| 3263 | while (leading != NULL && (!leading->is_MemBar() || !leading->as_MemBar()->leading())) { | 
|---|
| 3264 | while (leading == NULL || leading->is_top() || seen.test_set(leading->_idx)) { | 
|---|
| 3265 | leading = NULL; | 
|---|
| 3266 | while (regions.size() > 0 && leading == NULL) { | 
|---|
| 3267 | Node* r = regions.node(); | 
|---|
| 3268 | uint i = regions.index(); | 
|---|
| 3269 | if (i < r->req()) { | 
|---|
| 3270 | leading = r->in(i); | 
|---|
| 3271 | regions.set_index(i+1); | 
|---|
| 3272 | } else { | 
|---|
| 3273 | regions.pop(); | 
|---|
| 3274 | } | 
|---|
| 3275 | } | 
|---|
| 3276 | if (leading == NULL) { | 
|---|
| 3277 | assert(regions.size() == 0, "all paths should have been tried"); | 
|---|
| 3278 | return NULL; | 
|---|
| 3279 | } | 
|---|
| 3280 | } | 
|---|
| 3281 | if (leading->is_Region()) { | 
|---|
| 3282 | regions.push(leading, 2); | 
|---|
| 3283 | leading = leading->in(1); | 
|---|
| 3284 | } else { | 
|---|
| 3285 | leading = leading->in(0); | 
|---|
| 3286 | } | 
|---|
| 3287 | } | 
|---|
| 3288 | #ifdef ASSERT | 
|---|
| 3289 | Unique_Node_List wq; | 
|---|
| 3290 | wq.push((Node*)this); | 
|---|
| 3291 | uint found = 0; | 
|---|
| 3292 | for (uint i = 0; i < wq.size(); i++) { | 
|---|
| 3293 | Node* n = wq.at(i); | 
|---|
| 3294 | if (n->is_Region()) { | 
|---|
| 3295 | for (uint j = 1; j < n->req(); j++) { | 
|---|
| 3296 | Node* in = n->in(j); | 
|---|
| 3297 | if (in != NULL && !in->is_top()) { | 
|---|
| 3298 | wq.push(in); | 
|---|
| 3299 | } | 
|---|
| 3300 | } | 
|---|
| 3301 | } else { | 
|---|
| 3302 | if (n->is_MemBar() && n->as_MemBar()->leading()) { | 
|---|
| 3303 | assert(n == leading, "consistency check failed"); | 
|---|
| 3304 | found++; | 
|---|
| 3305 | } else { | 
|---|
| 3306 | Node* in = n->in(0); | 
|---|
| 3307 | if (in != NULL && !in->is_top()) { | 
|---|
| 3308 | wq.push(in); | 
|---|
| 3309 | } | 
|---|
| 3310 | } | 
|---|
| 3311 | } | 
|---|
| 3312 | } | 
|---|
| 3313 | assert(found == 1 || (found == 0 && leading == NULL), "consistency check failed"); | 
|---|
| 3314 | #endif | 
|---|
| 3315 | if (leading == NULL) { | 
|---|
| 3316 | return NULL; | 
|---|
| 3317 | } | 
|---|
| 3318 | MemBarNode* mb = leading->as_MemBar(); | 
|---|
| 3319 | assert((mb->_kind == LeadingStore && _kind == TrailingStore) || | 
|---|
| 3320 | (mb->_kind == LeadingLoadStore && _kind == TrailingLoadStore), "bad leading membar"); | 
|---|
| 3321 | assert(mb->_pair_idx == _pair_idx, "bad leading membar"); | 
|---|
| 3322 | return mb; | 
|---|
| 3323 | } | 
|---|
| 3324 |  | 
|---|
| 3325 | //===========================InitializeNode==================================== | 
|---|
| 3326 | // SUMMARY: | 
|---|
| 3327 | // This node acts as a memory barrier on raw memory, after some raw stores. | 
|---|
| 3328 | // The 'cooked' oop value feeds from the Initialize, not the Allocation. | 
|---|
| 3329 | // The Initialize can 'capture' suitably constrained stores as raw inits. | 
|---|
| 3330 | // It can coalesce related raw stores into larger units (called 'tiles'). | 
|---|
| 3331 | // It can avoid zeroing new storage for memory units which have raw inits. | 
|---|
| 3332 | // At macro-expansion, it is marked 'complete', and does not optimize further. | 
|---|
| 3333 | // | 
|---|
| 3334 | // EXAMPLE: | 
|---|
| 3335 | // The object 'new short[2]' occupies 16 bytes in a 32-bit machine. | 
|---|
| 3336 | //   ctl = incoming control; mem* = incoming memory | 
|---|
| 3337 | // (Note:  A star * on a memory edge denotes I/O and other standard edges.) | 
|---|
| 3338 | // First allocate uninitialized memory and fill in the header: | 
|---|
| 3339 | //   alloc = (Allocate ctl mem* 16 #short[].klass ...) | 
|---|
| 3340 | //   ctl := alloc.Control; mem* := alloc.Memory* | 
|---|
| 3341 | //   rawmem = alloc.Memory; rawoop = alloc.RawAddress | 
|---|
| 3342 | // Then initialize to zero the non-header parts of the raw memory block: | 
|---|
| 3343 | //   init = (Initialize alloc.Control alloc.Memory* alloc.RawAddress) | 
|---|
| 3344 | //   ctl := init.Control; mem.SLICE(#short[*]) := init.Memory | 
|---|
| 3345 | // After the initialize node executes, the object is ready for service: | 
|---|
| 3346 | //   oop := (CheckCastPP init.Control alloc.RawAddress #short[]) | 
|---|
| 3347 | // Suppose its body is immediately initialized as {1,2}: | 
|---|
| 3348 | //   store1 = (StoreC init.Control init.Memory (+ oop 12) 1) | 
|---|
| 3349 | //   store2 = (StoreC init.Control store1      (+ oop 14) 2) | 
|---|
| 3350 | //   mem.SLICE(#short[*]) := store2 | 
|---|
| 3351 | // | 
|---|
| 3352 | // DETAILS: | 
|---|
| 3353 | // An InitializeNode collects and isolates object initialization after | 
|---|
| 3354 | // an AllocateNode and before the next possible safepoint.  As a | 
|---|
| 3355 | // memory barrier (MemBarNode), it keeps critical stores from drifting | 
|---|
| 3356 | // down past any safepoint or any publication of the allocation. | 
|---|
| 3357 | // Before this barrier, a newly-allocated object may have uninitialized bits. | 
|---|
| 3358 | // After this barrier, it may be treated as a real oop, and GC is allowed. | 
|---|
| 3359 | // | 
|---|
| 3360 | // The semantics of the InitializeNode include an implicit zeroing of | 
|---|
| 3361 | // the new object from object header to the end of the object. | 
|---|
| 3362 | // (The object header and end are determined by the AllocateNode.) | 
|---|
| 3363 | // | 
|---|
| 3364 | // Certain stores may be added as direct inputs to the InitializeNode. | 
|---|
| 3365 | // These stores must update raw memory, and they must be to addresses | 
|---|
| 3366 | // derived from the raw address produced by AllocateNode, and with | 
|---|
| 3367 | // a constant offset.  They must be ordered by increasing offset. | 
|---|
| 3368 | // The first one is at in(RawStores), the last at in(req()-1). | 
|---|
| 3369 | // Unlike most memory operations, they are not linked in a chain, | 
|---|
| 3370 | // but are displayed in parallel as users of the rawmem output of | 
|---|
| 3371 | // the allocation. | 
|---|
| 3372 | // | 
|---|
| 3373 | // (See comments in InitializeNode::capture_store, which continue | 
|---|
| 3374 | // the example given above.) | 
|---|
| 3375 | // | 
|---|
| 3376 | // When the associated Allocate is macro-expanded, the InitializeNode | 
|---|
| 3377 | // may be rewritten to optimize collected stores.  A ClearArrayNode | 
|---|
| 3378 | // may also be created at that point to represent any required zeroing. | 
|---|
| 3379 | // The InitializeNode is then marked 'complete', prohibiting further | 
|---|
| 3380 | // capturing of nearby memory operations. | 
|---|
| 3381 | // | 
|---|
| 3382 | // During macro-expansion, all captured initializations which store | 
|---|
| 3383 | // constant values of 32 bits or smaller are coalesced (if advantageous) | 
|---|
| 3384 | // into larger 'tiles' 32 or 64 bits.  This allows an object to be | 
|---|
| 3385 | // initialized in fewer memory operations.  Memory words which are | 
|---|
| 3386 | // covered by neither tiles nor non-constant stores are pre-zeroed | 
|---|
| 3387 | // by explicit stores of zero.  (The code shape happens to do all | 
|---|
| 3388 | // zeroing first, then all other stores, with both sequences occurring | 
|---|
| 3389 | // in order of ascending offsets.) | 
|---|
| 3390 | // | 
|---|
| 3391 | // Alternatively, code may be inserted between an AllocateNode and its | 
|---|
| 3392 | // InitializeNode, to perform arbitrary initialization of the new object. | 
|---|
| 3393 | // E.g., the object copying intrinsics insert complex data transfers here. | 
|---|
| 3394 | // The initialization must then be marked as 'complete' disable the | 
|---|
| 3395 | // built-in zeroing semantics and the collection of initializing stores. | 
|---|
| 3396 | // | 
|---|
| 3397 | // While an InitializeNode is incomplete, reads from the memory state | 
|---|
| 3398 | // produced by it are optimizable if they match the control edge and | 
|---|
| 3399 | // new oop address associated with the allocation/initialization. | 
|---|
| 3400 | // They return a stored value (if the offset matches) or else zero. | 
|---|
| 3401 | // A write to the memory state, if it matches control and address, | 
|---|
| 3402 | // and if it is to a constant offset, may be 'captured' by the | 
|---|
| 3403 | // InitializeNode.  It is cloned as a raw memory operation and rewired | 
|---|
| 3404 | // inside the initialization, to the raw oop produced by the allocation. | 
|---|
| 3405 | // Operations on addresses which are provably distinct (e.g., to | 
|---|
| 3406 | // other AllocateNodes) are allowed to bypass the initialization. | 
|---|
| 3407 | // | 
|---|
| 3408 | // The effect of all this is to consolidate object initialization | 
|---|
| 3409 | // (both arrays and non-arrays, both piecewise and bulk) into a | 
|---|
| 3410 | // single location, where it can be optimized as a unit. | 
|---|
| 3411 | // | 
|---|
| 3412 | // Only stores with an offset less than TrackedInitializationLimit words | 
|---|
| 3413 | // will be considered for capture by an InitializeNode.  This puts a | 
|---|
| 3414 | // reasonable limit on the complexity of optimized initializations. | 
|---|
| 3415 |  | 
|---|
| 3416 | //---------------------------InitializeNode------------------------------------ | 
|---|
| 3417 | InitializeNode::InitializeNode(Compile* C, int adr_type, Node* rawoop) | 
|---|
| 3418 | : MemBarNode(C, adr_type, rawoop), | 
|---|
| 3419 | _is_complete(Incomplete), _does_not_escape(false) | 
|---|
| 3420 | { | 
|---|
| 3421 | init_class_id(Class_Initialize); | 
|---|
| 3422 |  | 
|---|
| 3423 | assert(adr_type == Compile::AliasIdxRaw, "only valid atp"); | 
|---|
| 3424 | assert(in(RawAddress) == rawoop, "proper init"); | 
|---|
| 3425 | // Note:  allocation() can be NULL, for secondary initialization barriers | 
|---|
| 3426 | } | 
|---|
| 3427 |  | 
|---|
| 3428 | // Since this node is not matched, it will be processed by the | 
|---|
| 3429 | // register allocator.  Declare that there are no constraints | 
|---|
| 3430 | // on the allocation of the RawAddress edge. | 
|---|
| 3431 | const RegMask &InitializeNode::in_RegMask(uint idx) const { | 
|---|
| 3432 | // This edge should be set to top, by the set_complete.  But be conservative. | 
|---|
| 3433 | if (idx == InitializeNode::RawAddress) | 
|---|
| 3434 | return *(Compile::current()->matcher()->idealreg2spillmask[in(idx)->ideal_reg()]); | 
|---|
| 3435 | return RegMask::Empty; | 
|---|
| 3436 | } | 
|---|
| 3437 |  | 
|---|
| 3438 | Node* InitializeNode::memory(uint alias_idx) { | 
|---|
| 3439 | Node* mem = in(Memory); | 
|---|
| 3440 | if (mem->is_MergeMem()) { | 
|---|
| 3441 | return mem->as_MergeMem()->memory_at(alias_idx); | 
|---|
| 3442 | } else { | 
|---|
| 3443 | // incoming raw memory is not split | 
|---|
| 3444 | return mem; | 
|---|
| 3445 | } | 
|---|
| 3446 | } | 
|---|
| 3447 |  | 
|---|
| 3448 | bool InitializeNode::is_non_zero() { | 
|---|
| 3449 | if (is_complete())  return false; | 
|---|
| 3450 | remove_extra_zeroes(); | 
|---|
| 3451 | return (req() > RawStores); | 
|---|
| 3452 | } | 
|---|
| 3453 |  | 
|---|
| 3454 | void InitializeNode::set_complete(PhaseGVN* phase) { | 
|---|
| 3455 | assert(!is_complete(), "caller responsibility"); | 
|---|
| 3456 | _is_complete = Complete; | 
|---|
| 3457 |  | 
|---|
| 3458 | // After this node is complete, it contains a bunch of | 
|---|
| 3459 | // raw-memory initializations.  There is no need for | 
|---|
| 3460 | // it to have anything to do with non-raw memory effects. | 
|---|
| 3461 | // Therefore, tell all non-raw users to re-optimize themselves, | 
|---|
| 3462 | // after skipping the memory effects of this initialization. | 
|---|
| 3463 | PhaseIterGVN* igvn = phase->is_IterGVN(); | 
|---|
| 3464 | if (igvn)  igvn->add_users_to_worklist(this); | 
|---|
| 3465 | } | 
|---|
| 3466 |  | 
|---|
| 3467 | // convenience function | 
|---|
| 3468 | // return false if the init contains any stores already | 
|---|
| 3469 | bool AllocateNode::maybe_set_complete(PhaseGVN* phase) { | 
|---|
| 3470 | InitializeNode* init = initialization(); | 
|---|
| 3471 | if (init == NULL || init->is_complete())  return false; | 
|---|
| 3472 | init->remove_extra_zeroes(); | 
|---|
| 3473 | // for now, if this allocation has already collected any inits, bail: | 
|---|
| 3474 | if (init->is_non_zero())  return false; | 
|---|
| 3475 | init->set_complete(phase); | 
|---|
| 3476 | return true; | 
|---|
| 3477 | } | 
|---|
| 3478 |  | 
|---|
| 3479 | void InitializeNode::() { | 
|---|
| 3480 | if (req() == RawStores)  return; | 
|---|
| 3481 | Node* zmem = zero_memory(); | 
|---|
| 3482 | uint fill = RawStores; | 
|---|
| 3483 | for (uint i = fill; i < req(); i++) { | 
|---|
| 3484 | Node* n = in(i); | 
|---|
| 3485 | if (n->is_top() || n == zmem)  continue;  // skip | 
|---|
| 3486 | if (fill < i)  set_req(fill, n);          // compact | 
|---|
| 3487 | ++fill; | 
|---|
| 3488 | } | 
|---|
| 3489 | // delete any empty spaces created: | 
|---|
| 3490 | while (fill < req()) { | 
|---|
| 3491 | del_req(fill); | 
|---|
| 3492 | } | 
|---|
| 3493 | } | 
|---|
| 3494 |  | 
|---|
| 3495 | // Helper for remembering which stores go with which offsets. | 
|---|
| 3496 | intptr_t InitializeNode::get_store_offset(Node* st, PhaseTransform* phase) { | 
|---|
| 3497 | if (!st->is_Store())  return -1;  // can happen to dead code via subsume_node | 
|---|
| 3498 | intptr_t offset = -1; | 
|---|
| 3499 | Node* base = AddPNode::Ideal_base_and_offset(st->in(MemNode::Address), | 
|---|
| 3500 | phase, offset); | 
|---|
| 3501 | if (base == NULL)     return -1;  // something is dead, | 
|---|
| 3502 | if (offset < 0)       return -1;  //        dead, dead | 
|---|
| 3503 | return offset; | 
|---|
| 3504 | } | 
|---|
| 3505 |  | 
|---|
| 3506 | // Helper for proving that an initialization expression is | 
|---|
| 3507 | // "simple enough" to be folded into an object initialization. | 
|---|
| 3508 | // Attempts to prove that a store's initial value 'n' can be captured | 
|---|
| 3509 | // within the initialization without creating a vicious cycle, such as: | 
|---|
| 3510 | //     { Foo p = new Foo(); p.next = p; } | 
|---|
| 3511 | // True for constants and parameters and small combinations thereof. | 
|---|
| 3512 | bool InitializeNode::detect_init_independence(Node* n, int& count) { | 
|---|
| 3513 | if (n == NULL)      return true;   // (can this really happen?) | 
|---|
| 3514 | if (n->is_Proj())   n = n->in(0); | 
|---|
| 3515 | if (n == this)      return false;  // found a cycle | 
|---|
| 3516 | if (n->is_Con())    return true; | 
|---|
| 3517 | if (n->is_Start())  return true;   // params, etc., are OK | 
|---|
| 3518 | if (n->is_Root())   return true;   // even better | 
|---|
| 3519 |  | 
|---|
| 3520 | Node* ctl = n->in(0); | 
|---|
| 3521 | if (ctl != NULL && !ctl->is_top()) { | 
|---|
| 3522 | if (ctl->is_Proj())  ctl = ctl->in(0); | 
|---|
| 3523 | if (ctl == this)  return false; | 
|---|
| 3524 |  | 
|---|
| 3525 | // If we already know that the enclosing memory op is pinned right after | 
|---|
| 3526 | // the init, then any control flow that the store has picked up | 
|---|
| 3527 | // must have preceded the init, or else be equal to the init. | 
|---|
| 3528 | // Even after loop optimizations (which might change control edges) | 
|---|
| 3529 | // a store is never pinned *before* the availability of its inputs. | 
|---|
| 3530 | if (!MemNode::all_controls_dominate(n, this)) | 
|---|
| 3531 | return false;                  // failed to prove a good control | 
|---|
| 3532 | } | 
|---|
| 3533 |  | 
|---|
| 3534 | // Check data edges for possible dependencies on 'this'. | 
|---|
| 3535 | if ((count += 1) > 20)  return false;  // complexity limit | 
|---|
| 3536 | for (uint i = 1; i < n->req(); i++) { | 
|---|
| 3537 | Node* m = n->in(i); | 
|---|
| 3538 | if (m == NULL || m == n || m->is_top())  continue; | 
|---|
| 3539 | uint first_i = n->find_edge(m); | 
|---|
| 3540 | if (i != first_i)  continue;  // process duplicate edge just once | 
|---|
| 3541 | if (!detect_init_independence(m, count)) { | 
|---|
| 3542 | return false; | 
|---|
| 3543 | } | 
|---|
| 3544 | } | 
|---|
| 3545 |  | 
|---|
| 3546 | return true; | 
|---|
| 3547 | } | 
|---|
| 3548 |  | 
|---|
| 3549 | // Here are all the checks a Store must pass before it can be moved into | 
|---|
| 3550 | // an initialization.  Returns zero if a check fails. | 
|---|
| 3551 | // On success, returns the (constant) offset to which the store applies, | 
|---|
| 3552 | // within the initialized memory. | 
|---|
| 3553 | intptr_t InitializeNode::can_capture_store(StoreNode* st, PhaseTransform* phase, bool can_reshape) { | 
|---|
| 3554 | const int FAIL = 0; | 
|---|
| 3555 | if (st->req() != MemNode::ValueIn + 1) | 
|---|
| 3556 | return FAIL;                // an inscrutable StoreNode (card mark?) | 
|---|
| 3557 | Node* ctl = st->in(MemNode::Control); | 
|---|
| 3558 | if (!(ctl != NULL && ctl->is_Proj() && ctl->in(0) == this)) | 
|---|
| 3559 | return FAIL;                // must be unconditional after the initialization | 
|---|
| 3560 | Node* mem = st->in(MemNode::Memory); | 
|---|
| 3561 | if (!(mem->is_Proj() && mem->in(0) == this)) | 
|---|
| 3562 | return FAIL;                // must not be preceded by other stores | 
|---|
| 3563 | Node* adr = st->in(MemNode::Address); | 
|---|
| 3564 | intptr_t offset; | 
|---|
| 3565 | AllocateNode* alloc = AllocateNode::Ideal_allocation(adr, phase, offset); | 
|---|
| 3566 | if (alloc == NULL) | 
|---|
| 3567 | return FAIL;                // inscrutable address | 
|---|
| 3568 | if (alloc != allocation()) | 
|---|
| 3569 | return FAIL;                // wrong allocation!  (store needs to float up) | 
|---|
| 3570 | int size_in_bytes = st->memory_size(); | 
|---|
| 3571 | if ((size_in_bytes != 0) && (offset % size_in_bytes) != 0) { | 
|---|
| 3572 | return FAIL;                // mismatched access | 
|---|
| 3573 | } | 
|---|
| 3574 | Node* val = st->in(MemNode::ValueIn); | 
|---|
| 3575 | int complexity_count = 0; | 
|---|
| 3576 | if (!detect_init_independence(val, complexity_count)) | 
|---|
| 3577 | return FAIL;                // stored value must be 'simple enough' | 
|---|
| 3578 |  | 
|---|
| 3579 | // The Store can be captured only if nothing after the allocation | 
|---|
| 3580 | // and before the Store is using the memory location that the store | 
|---|
| 3581 | // overwrites. | 
|---|
| 3582 | bool failed = false; | 
|---|
| 3583 | // If is_complete_with_arraycopy() is true the shape of the graph is | 
|---|
| 3584 | // well defined and is safe so no need for extra checks. | 
|---|
| 3585 | if (!is_complete_with_arraycopy()) { | 
|---|
| 3586 | // We are going to look at each use of the memory state following | 
|---|
| 3587 | // the allocation to make sure nothing reads the memory that the | 
|---|
| 3588 | // Store writes. | 
|---|
| 3589 | const TypePtr* t_adr = phase->type(adr)->isa_ptr(); | 
|---|
| 3590 | int alias_idx = phase->C->get_alias_index(t_adr); | 
|---|
| 3591 | ResourceMark rm; | 
|---|
| 3592 | Unique_Node_List mems; | 
|---|
| 3593 | mems.push(mem); | 
|---|
| 3594 | Node* unique_merge = NULL; | 
|---|
| 3595 | for (uint next = 0; next < mems.size(); ++next) { | 
|---|
| 3596 | Node *m  = mems.at(next); | 
|---|
| 3597 | for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) { | 
|---|
| 3598 | Node *n = m->fast_out(j); | 
|---|
| 3599 | if (n->outcnt() == 0) { | 
|---|
| 3600 | continue; | 
|---|
| 3601 | } | 
|---|
| 3602 | if (n == st) { | 
|---|
| 3603 | continue; | 
|---|
| 3604 | } else if (n->in(0) != NULL && n->in(0) != ctl) { | 
|---|
| 3605 | // If the control of this use is different from the control | 
|---|
| 3606 | // of the Store which is right after the InitializeNode then | 
|---|
| 3607 | // this node cannot be between the InitializeNode and the | 
|---|
| 3608 | // Store. | 
|---|
| 3609 | continue; | 
|---|
| 3610 | } else if (n->is_MergeMem()) { | 
|---|
| 3611 | if (n->as_MergeMem()->memory_at(alias_idx) == m) { | 
|---|
| 3612 | // We can hit a MergeMemNode (that will likely go away | 
|---|
| 3613 | // later) that is a direct use of the memory state | 
|---|
| 3614 | // following the InitializeNode on the same slice as the | 
|---|
| 3615 | // store node that we'd like to capture. We need to check | 
|---|
| 3616 | // the uses of the MergeMemNode. | 
|---|
| 3617 | mems.push(n); | 
|---|
| 3618 | } | 
|---|
| 3619 | } else if (n->is_Mem()) { | 
|---|
| 3620 | Node* other_adr = n->in(MemNode::Address); | 
|---|
| 3621 | if (other_adr == adr) { | 
|---|
| 3622 | failed = true; | 
|---|
| 3623 | break; | 
|---|
| 3624 | } else { | 
|---|
| 3625 | const TypePtr* other_t_adr = phase->type(other_adr)->isa_ptr(); | 
|---|
| 3626 | if (other_t_adr != NULL) { | 
|---|
| 3627 | int other_alias_idx = phase->C->get_alias_index(other_t_adr); | 
|---|
| 3628 | if (other_alias_idx == alias_idx) { | 
|---|
| 3629 | // A load from the same memory slice as the store right | 
|---|
| 3630 | // after the InitializeNode. We check the control of the | 
|---|
| 3631 | // object/array that is loaded from. If it's the same as | 
|---|
| 3632 | // the store control then we cannot capture the store. | 
|---|
| 3633 | assert(!n->is_Store(), "2 stores to same slice on same control?"); | 
|---|
| 3634 | Node* base = other_adr; | 
|---|
| 3635 | assert(base->is_AddP(), "should be addp but is %s", base->Name()); | 
|---|
| 3636 | base = base->in(AddPNode::Base); | 
|---|
| 3637 | if (base != NULL) { | 
|---|
| 3638 | base = base->uncast(); | 
|---|
| 3639 | if (base->is_Proj() && base->in(0) == alloc) { | 
|---|
| 3640 | failed = true; | 
|---|
| 3641 | break; | 
|---|
| 3642 | } | 
|---|
| 3643 | } | 
|---|
| 3644 | } | 
|---|
| 3645 | } | 
|---|
| 3646 | } | 
|---|
| 3647 | } else { | 
|---|
| 3648 | failed = true; | 
|---|
| 3649 | break; | 
|---|
| 3650 | } | 
|---|
| 3651 | } | 
|---|
| 3652 | } | 
|---|
| 3653 | } | 
|---|
| 3654 | if (failed) { | 
|---|
| 3655 | if (!can_reshape) { | 
|---|
| 3656 | // We decided we couldn't capture the store during parsing. We | 
|---|
| 3657 | // should try again during the next IGVN once the graph is | 
|---|
| 3658 | // cleaner. | 
|---|
| 3659 | phase->C->record_for_igvn(st); | 
|---|
| 3660 | } | 
|---|
| 3661 | return FAIL; | 
|---|
| 3662 | } | 
|---|
| 3663 |  | 
|---|
| 3664 | return offset;                // success | 
|---|
| 3665 | } | 
|---|
| 3666 |  | 
|---|
| 3667 | // Find the captured store in(i) which corresponds to the range | 
|---|
| 3668 | // [start..start+size) in the initialized object. | 
|---|
| 3669 | // If there is one, return its index i.  If there isn't, return the | 
|---|
| 3670 | // negative of the index where it should be inserted. | 
|---|
| 3671 | // Return 0 if the queried range overlaps an initialization boundary | 
|---|
| 3672 | // or if dead code is encountered. | 
|---|
| 3673 | // If size_in_bytes is zero, do not bother with overlap checks. | 
|---|
| 3674 | int InitializeNode::captured_store_insertion_point(intptr_t start, | 
|---|
| 3675 | int size_in_bytes, | 
|---|
| 3676 | PhaseTransform* phase) { | 
|---|
| 3677 | const int FAIL = 0, MAX_STORE = BytesPerLong; | 
|---|
| 3678 |  | 
|---|
| 3679 | if (is_complete()) | 
|---|
| 3680 | return FAIL;                // arraycopy got here first; punt | 
|---|
| 3681 |  | 
|---|
| 3682 | assert(allocation() != NULL, "must be present"); | 
|---|
| 3683 |  | 
|---|
| 3684 | // no negatives, no header fields: | 
|---|
| 3685 | if (start < (intptr_t) allocation()->minimum_header_size())  return FAIL; | 
|---|
| 3686 |  | 
|---|
| 3687 | // after a certain size, we bail out on tracking all the stores: | 
|---|
| 3688 | intptr_t ti_limit = (TrackedInitializationLimit * HeapWordSize); | 
|---|
| 3689 | if (start >= ti_limit)  return FAIL; | 
|---|
| 3690 |  | 
|---|
| 3691 | for (uint i = InitializeNode::RawStores, limit = req(); ; ) { | 
|---|
| 3692 | if (i >= limit)  return -(int)i; // not found; here is where to put it | 
|---|
| 3693 |  | 
|---|
| 3694 | Node*    st     = in(i); | 
|---|
| 3695 | intptr_t st_off = get_store_offset(st, phase); | 
|---|
| 3696 | if (st_off < 0) { | 
|---|
| 3697 | if (st != zero_memory()) { | 
|---|
| 3698 | return FAIL;            // bail out if there is dead garbage | 
|---|
| 3699 | } | 
|---|
| 3700 | } else if (st_off > start) { | 
|---|
| 3701 | // ...we are done, since stores are ordered | 
|---|
| 3702 | if (st_off < start + size_in_bytes) { | 
|---|
| 3703 | return FAIL;            // the next store overlaps | 
|---|
| 3704 | } | 
|---|
| 3705 | return -(int)i;           // not found; here is where to put it | 
|---|
| 3706 | } else if (st_off < start) { | 
|---|
| 3707 | if (size_in_bytes != 0 && | 
|---|
| 3708 | start < st_off + MAX_STORE && | 
|---|
| 3709 | start < st_off + st->as_Store()->memory_size()) { | 
|---|
| 3710 | return FAIL;            // the previous store overlaps | 
|---|
| 3711 | } | 
|---|
| 3712 | } else { | 
|---|
| 3713 | if (size_in_bytes != 0 && | 
|---|
| 3714 | st->as_Store()->memory_size() != size_in_bytes) { | 
|---|
| 3715 | return FAIL;            // mismatched store size | 
|---|
| 3716 | } | 
|---|
| 3717 | return i; | 
|---|
| 3718 | } | 
|---|
| 3719 |  | 
|---|
| 3720 | ++i; | 
|---|
| 3721 | } | 
|---|
| 3722 | } | 
|---|
| 3723 |  | 
|---|
| 3724 | // Look for a captured store which initializes at the offset 'start' | 
|---|
| 3725 | // with the given size.  If there is no such store, and no other | 
|---|
| 3726 | // initialization interferes, then return zero_memory (the memory | 
|---|
| 3727 | // projection of the AllocateNode). | 
|---|
| 3728 | Node* InitializeNode::find_captured_store(intptr_t start, int size_in_bytes, | 
|---|
| 3729 | PhaseTransform* phase) { | 
|---|
| 3730 | assert(stores_are_sane(phase), ""); | 
|---|
| 3731 | int i = captured_store_insertion_point(start, size_in_bytes, phase); | 
|---|
| 3732 | if (i == 0) { | 
|---|
| 3733 | return NULL;                // something is dead | 
|---|
| 3734 | } else if (i < 0) { | 
|---|
| 3735 | return zero_memory();       // just primordial zero bits here | 
|---|
| 3736 | } else { | 
|---|
| 3737 | Node* st = in(i);           // here is the store at this position | 
|---|
| 3738 | assert(get_store_offset(st->as_Store(), phase) == start, "sanity"); | 
|---|
| 3739 | return st; | 
|---|
| 3740 | } | 
|---|
| 3741 | } | 
|---|
| 3742 |  | 
|---|
| 3743 | // Create, as a raw pointer, an address within my new object at 'offset'. | 
|---|
| 3744 | Node* InitializeNode::make_raw_address(intptr_t offset, | 
|---|
| 3745 | PhaseTransform* phase) { | 
|---|
| 3746 | Node* addr = in(RawAddress); | 
|---|
| 3747 | if (offset != 0) { | 
|---|
| 3748 | Compile* C = phase->C; | 
|---|
| 3749 | addr = phase->transform( new AddPNode(C->top(), addr, | 
|---|
| 3750 | phase->MakeConX(offset)) ); | 
|---|
| 3751 | } | 
|---|
| 3752 | return addr; | 
|---|
| 3753 | } | 
|---|
| 3754 |  | 
|---|
| 3755 | // Clone the given store, converting it into a raw store | 
|---|
| 3756 | // initializing a field or element of my new object. | 
|---|
| 3757 | // Caller is responsible for retiring the original store, | 
|---|
| 3758 | // with subsume_node or the like. | 
|---|
| 3759 | // | 
|---|
| 3760 | // From the example above InitializeNode::InitializeNode, | 
|---|
| 3761 | // here are the old stores to be captured: | 
|---|
| 3762 | //   store1 = (StoreC init.Control init.Memory (+ oop 12) 1) | 
|---|
| 3763 | //   store2 = (StoreC init.Control store1      (+ oop 14) 2) | 
|---|
| 3764 | // | 
|---|
| 3765 | // Here is the changed code; note the extra edges on init: | 
|---|
| 3766 | //   alloc = (Allocate ...) | 
|---|
| 3767 | //   rawoop = alloc.RawAddress | 
|---|
| 3768 | //   rawstore1 = (StoreC alloc.Control alloc.Memory (+ rawoop 12) 1) | 
|---|
| 3769 | //   rawstore2 = (StoreC alloc.Control alloc.Memory (+ rawoop 14) 2) | 
|---|
| 3770 | //   init = (Initialize alloc.Control alloc.Memory rawoop | 
|---|
| 3771 | //                      rawstore1 rawstore2) | 
|---|
| 3772 | // | 
|---|
| 3773 | Node* InitializeNode::capture_store(StoreNode* st, intptr_t start, | 
|---|
| 3774 | PhaseTransform* phase, bool can_reshape) { | 
|---|
| 3775 | assert(stores_are_sane(phase), ""); | 
|---|
| 3776 |  | 
|---|
| 3777 | if (start < 0)  return NULL; | 
|---|
| 3778 | assert(can_capture_store(st, phase, can_reshape) == start, "sanity"); | 
|---|
| 3779 |  | 
|---|
| 3780 | Compile* C = phase->C; | 
|---|
| 3781 | int size_in_bytes = st->memory_size(); | 
|---|
| 3782 | int i = captured_store_insertion_point(start, size_in_bytes, phase); | 
|---|
| 3783 | if (i == 0)  return NULL;     // bail out | 
|---|
| 3784 | Node* prev_mem = NULL;        // raw memory for the captured store | 
|---|
| 3785 | if (i > 0) { | 
|---|
| 3786 | prev_mem = in(i);           // there is a pre-existing store under this one | 
|---|
| 3787 | set_req(i, C->top());       // temporarily disconnect it | 
|---|
| 3788 | // See StoreNode::Ideal 'st->outcnt() == 1' for the reason to disconnect. | 
|---|
| 3789 | } else { | 
|---|
| 3790 | i = -i;                     // no pre-existing store | 
|---|
| 3791 | prev_mem = zero_memory();   // a slice of the newly allocated object | 
|---|
| 3792 | if (i > InitializeNode::RawStores && in(i-1) == prev_mem) | 
|---|
| 3793 | set_req(--i, C->top());   // reuse this edge; it has been folded away | 
|---|
| 3794 | else | 
|---|
| 3795 | ins_req(i, C->top());     // build a new edge | 
|---|
| 3796 | } | 
|---|
| 3797 | Node* new_st = st->clone(); | 
|---|
| 3798 | new_st->set_req(MemNode::Control, in(Control)); | 
|---|
| 3799 | new_st->set_req(MemNode::Memory,  prev_mem); | 
|---|
| 3800 | new_st->set_req(MemNode::Address, make_raw_address(start, phase)); | 
|---|
| 3801 | new_st = phase->transform(new_st); | 
|---|
| 3802 |  | 
|---|
| 3803 | // At this point, new_st might have swallowed a pre-existing store | 
|---|
| 3804 | // at the same offset, or perhaps new_st might have disappeared, | 
|---|
| 3805 | // if it redundantly stored the same value (or zero to fresh memory). | 
|---|
| 3806 |  | 
|---|
| 3807 | // In any case, wire it in: | 
|---|
| 3808 | phase->igvn_rehash_node_delayed(this); | 
|---|
| 3809 | set_req(i, new_st); | 
|---|
| 3810 |  | 
|---|
| 3811 | // The caller may now kill the old guy. | 
|---|
| 3812 | DEBUG_ONLY(Node* check_st = find_captured_store(start, size_in_bytes, phase)); | 
|---|
| 3813 | assert(check_st == new_st || check_st == NULL, "must be findable"); | 
|---|
| 3814 | assert(!is_complete(), ""); | 
|---|
| 3815 | return new_st; | 
|---|
| 3816 | } | 
|---|
| 3817 |  | 
|---|
| 3818 | static bool store_constant(jlong* tiles, int num_tiles, | 
|---|
| 3819 | intptr_t st_off, int st_size, | 
|---|
| 3820 | jlong con) { | 
|---|
| 3821 | if ((st_off & (st_size-1)) != 0) | 
|---|
| 3822 | return false;               // strange store offset (assume size==2**N) | 
|---|
| 3823 | address addr = (address)tiles + st_off; | 
|---|
| 3824 | assert(st_off >= 0 && addr+st_size <= (address)&tiles[num_tiles], "oob"); | 
|---|
| 3825 | switch (st_size) { | 
|---|
| 3826 | case sizeof(jbyte):  *(jbyte*) addr = (jbyte) con; break; | 
|---|
| 3827 | case sizeof(jchar):  *(jchar*) addr = (jchar) con; break; | 
|---|
| 3828 | case sizeof(jint):   *(jint*)  addr = (jint)  con; break; | 
|---|
| 3829 | case sizeof(jlong):  *(jlong*) addr = (jlong) con; break; | 
|---|
| 3830 | default: return false;        // strange store size (detect size!=2**N here) | 
|---|
| 3831 | } | 
|---|
| 3832 | return true;                  // return success to caller | 
|---|
| 3833 | } | 
|---|
| 3834 |  | 
|---|
| 3835 | // Coalesce subword constants into int constants and possibly | 
|---|
| 3836 | // into long constants.  The goal, if the CPU permits, | 
|---|
| 3837 | // is to initialize the object with a small number of 64-bit tiles. | 
|---|
| 3838 | // Also, convert floating-point constants to bit patterns. | 
|---|
| 3839 | // Non-constants are not relevant to this pass. | 
|---|
| 3840 | // | 
|---|
| 3841 | // In terms of the running example on InitializeNode::InitializeNode | 
|---|
| 3842 | // and InitializeNode::capture_store, here is the transformation | 
|---|
| 3843 | // of rawstore1 and rawstore2 into rawstore12: | 
|---|
| 3844 | //   alloc = (Allocate ...) | 
|---|
| 3845 | //   rawoop = alloc.RawAddress | 
|---|
| 3846 | //   tile12 = 0x00010002 | 
|---|
| 3847 | //   rawstore12 = (StoreI alloc.Control alloc.Memory (+ rawoop 12) tile12) | 
|---|
| 3848 | //   init = (Initialize alloc.Control alloc.Memory rawoop rawstore12) | 
|---|
| 3849 | // | 
|---|
| 3850 | void | 
|---|
| 3851 | InitializeNode::coalesce_subword_stores(intptr_t , | 
|---|
| 3852 | Node* size_in_bytes, | 
|---|
| 3853 | PhaseGVN* phase) { | 
|---|
| 3854 | Compile* C = phase->C; | 
|---|
| 3855 |  | 
|---|
| 3856 | assert(stores_are_sane(phase), ""); | 
|---|
| 3857 | // Note:  After this pass, they are not completely sane, | 
|---|
| 3858 | // since there may be some overlaps. | 
|---|
| 3859 |  | 
|---|
| 3860 | int old_subword = 0, old_long = 0, new_int = 0, new_long = 0; | 
|---|
| 3861 |  | 
|---|
| 3862 | intptr_t ti_limit = (TrackedInitializationLimit * HeapWordSize); | 
|---|
| 3863 | intptr_t size_limit = phase->find_intptr_t_con(size_in_bytes, ti_limit); | 
|---|
| 3864 | size_limit = MIN2(size_limit, ti_limit); | 
|---|
| 3865 | size_limit = align_up(size_limit, BytesPerLong); | 
|---|
| 3866 | int num_tiles = size_limit / BytesPerLong; | 
|---|
| 3867 |  | 
|---|
| 3868 | // allocate space for the tile map: | 
|---|
| 3869 | const int small_len = DEBUG_ONLY(true ? 3 :) 30; // keep stack frames small | 
|---|
| 3870 | jlong  tiles_buf[small_len]; | 
|---|
| 3871 | Node*  nodes_buf[small_len]; | 
|---|
| 3872 | jlong  inits_buf[small_len]; | 
|---|
| 3873 | jlong* tiles = ((num_tiles <= small_len) ? &tiles_buf[0] | 
|---|
| 3874 | : NEW_RESOURCE_ARRAY(jlong, num_tiles)); | 
|---|
| 3875 | Node** nodes = ((num_tiles <= small_len) ? &nodes_buf[0] | 
|---|
| 3876 | : NEW_RESOURCE_ARRAY(Node*, num_tiles)); | 
|---|
| 3877 | jlong* inits = ((num_tiles <= small_len) ? &inits_buf[0] | 
|---|
| 3878 | : NEW_RESOURCE_ARRAY(jlong, num_tiles)); | 
|---|
| 3879 | // tiles: exact bitwise model of all primitive constants | 
|---|
| 3880 | // nodes: last constant-storing node subsumed into the tiles model | 
|---|
| 3881 | // inits: which bytes (in each tile) are touched by any initializations | 
|---|
| 3882 |  | 
|---|
| 3883 | //// Pass A: Fill in the tile model with any relevant stores. | 
|---|
| 3884 |  | 
|---|
| 3885 | Copy::zero_to_bytes(tiles, sizeof(tiles[0]) * num_tiles); | 
|---|
| 3886 | Copy::zero_to_bytes(nodes, sizeof(nodes[0]) * num_tiles); | 
|---|
| 3887 | Copy::zero_to_bytes(inits, sizeof(inits[0]) * num_tiles); | 
|---|
| 3888 | Node* zmem = zero_memory(); // initially zero memory state | 
|---|
| 3889 | for (uint i = InitializeNode::RawStores, limit = req(); i < limit; i++) { | 
|---|
| 3890 | Node* st = in(i); | 
|---|
| 3891 | intptr_t st_off = get_store_offset(st, phase); | 
|---|
| 3892 |  | 
|---|
| 3893 | // Figure out the store's offset and constant value: | 
|---|
| 3894 | if (st_off < header_size)             continue; //skip (ignore header) | 
|---|
| 3895 | if (st->in(MemNode::Memory) != zmem)  continue; //skip (odd store chain) | 
|---|
| 3896 | int st_size = st->as_Store()->memory_size(); | 
|---|
| 3897 | if (st_off + st_size > size_limit)    break; | 
|---|
| 3898 |  | 
|---|
| 3899 | // Record which bytes are touched, whether by constant or not. | 
|---|
| 3900 | if (!store_constant(inits, num_tiles, st_off, st_size, (jlong) -1)) | 
|---|
| 3901 | continue;                 // skip (strange store size) | 
|---|
| 3902 |  | 
|---|
| 3903 | const Type* val = phase->type(st->in(MemNode::ValueIn)); | 
|---|
| 3904 | if (!val->singleton())                continue; //skip (non-con store) | 
|---|
| 3905 | BasicType type = val->basic_type(); | 
|---|
| 3906 |  | 
|---|
| 3907 | jlong con = 0; | 
|---|
| 3908 | switch (type) { | 
|---|
| 3909 | case T_INT:    con = val->is_int()->get_con();  break; | 
|---|
| 3910 | case T_LONG:   con = val->is_long()->get_con(); break; | 
|---|
| 3911 | case T_FLOAT:  con = jint_cast(val->getf());    break; | 
|---|
| 3912 | case T_DOUBLE: con = jlong_cast(val->getd());   break; | 
|---|
| 3913 | default:                              continue; //skip (odd store type) | 
|---|
| 3914 | } | 
|---|
| 3915 |  | 
|---|
| 3916 | if (type == T_LONG && Matcher::isSimpleConstant64(con) && | 
|---|
| 3917 | st->Opcode() == Op_StoreL) { | 
|---|
| 3918 | continue;                 // This StoreL is already optimal. | 
|---|
| 3919 | } | 
|---|
| 3920 |  | 
|---|
| 3921 | // Store down the constant. | 
|---|
| 3922 | store_constant(tiles, num_tiles, st_off, st_size, con); | 
|---|
| 3923 |  | 
|---|
| 3924 | intptr_t j = st_off >> LogBytesPerLong; | 
|---|
| 3925 |  | 
|---|
| 3926 | if (type == T_INT && st_size == BytesPerInt | 
|---|
| 3927 | && (st_off & BytesPerInt) == BytesPerInt) { | 
|---|
| 3928 | jlong lcon = tiles[j]; | 
|---|
| 3929 | if (!Matcher::isSimpleConstant64(lcon) && | 
|---|
| 3930 | st->Opcode() == Op_StoreI) { | 
|---|
| 3931 | // This StoreI is already optimal by itself. | 
|---|
| 3932 | jint* intcon = (jint*) &tiles[j]; | 
|---|
| 3933 | intcon[1] = 0;  // undo the store_constant() | 
|---|
| 3934 |  | 
|---|
| 3935 | // If the previous store is also optimal by itself, back up and | 
|---|
| 3936 | // undo the action of the previous loop iteration... if we can. | 
|---|
| 3937 | // But if we can't, just let the previous half take care of itself. | 
|---|
| 3938 | st = nodes[j]; | 
|---|
| 3939 | st_off -= BytesPerInt; | 
|---|
| 3940 | con = intcon[0]; | 
|---|
| 3941 | if (con != 0 && st != NULL && st->Opcode() == Op_StoreI) { | 
|---|
| 3942 | assert(st_off >= header_size, "still ignoring header"); | 
|---|
| 3943 | assert(get_store_offset(st, phase) == st_off, "must be"); | 
|---|
| 3944 | assert(in(i-1) == zmem, "must be"); | 
|---|
| 3945 | DEBUG_ONLY(const Type* tcon = phase->type(st->in(MemNode::ValueIn))); | 
|---|
| 3946 | assert(con == tcon->is_int()->get_con(), "must be"); | 
|---|
| 3947 | // Undo the effects of the previous loop trip, which swallowed st: | 
|---|
| 3948 | intcon[0] = 0;        // undo store_constant() | 
|---|
| 3949 | set_req(i-1, st);     // undo set_req(i, zmem) | 
|---|
| 3950 | nodes[j] = NULL;      // undo nodes[j] = st | 
|---|
| 3951 | --old_subword;        // undo ++old_subword | 
|---|
| 3952 | } | 
|---|
| 3953 | continue;               // This StoreI is already optimal. | 
|---|
| 3954 | } | 
|---|
| 3955 | } | 
|---|
| 3956 |  | 
|---|
| 3957 | // This store is not needed. | 
|---|
| 3958 | set_req(i, zmem); | 
|---|
| 3959 | nodes[j] = st;              // record for the moment | 
|---|
| 3960 | if (st_size < BytesPerLong) // something has changed | 
|---|
| 3961 | ++old_subword;        // includes int/float, but who's counting... | 
|---|
| 3962 | else  ++old_long; | 
|---|
| 3963 | } | 
|---|
| 3964 |  | 
|---|
| 3965 | if ((old_subword + old_long) == 0) | 
|---|
| 3966 | return;                     // nothing more to do | 
|---|
| 3967 |  | 
|---|
| 3968 | //// Pass B: Convert any non-zero tiles into optimal constant stores. | 
|---|
| 3969 | // Be sure to insert them before overlapping non-constant stores. | 
|---|
| 3970 | // (E.g., byte[] x = { 1,2,y,4 }  =>  x[int 0] = 0x01020004, x[2]=y.) | 
|---|
| 3971 | for (int j = 0; j < num_tiles; j++) { | 
|---|
| 3972 | jlong con  = tiles[j]; | 
|---|
| 3973 | jlong init = inits[j]; | 
|---|
| 3974 | if (con == 0)  continue; | 
|---|
| 3975 | jint con0,  con1;           // split the constant, address-wise | 
|---|
| 3976 | jint init0, init1;          // split the init map, address-wise | 
|---|
| 3977 | { union { jlong con; jint intcon[2]; } u; | 
|---|
| 3978 | u.con = con; | 
|---|
| 3979 | con0  = u.intcon[0]; | 
|---|
| 3980 | con1  = u.intcon[1]; | 
|---|
| 3981 | u.con = init; | 
|---|
| 3982 | init0 = u.intcon[0]; | 
|---|
| 3983 | init1 = u.intcon[1]; | 
|---|
| 3984 | } | 
|---|
| 3985 |  | 
|---|
| 3986 | Node* old = nodes[j]; | 
|---|
| 3987 | assert(old != NULL, "need the prior store"); | 
|---|
| 3988 | intptr_t offset = (j * BytesPerLong); | 
|---|
| 3989 |  | 
|---|
| 3990 | bool split = !Matcher::isSimpleConstant64(con); | 
|---|
| 3991 |  | 
|---|
| 3992 | if (offset < header_size) { | 
|---|
| 3993 | assert(offset + BytesPerInt >= header_size, "second int counts"); | 
|---|
| 3994 | assert(*(jint*)&tiles[j] == 0, "junk in header"); | 
|---|
| 3995 | split = true;             // only the second word counts | 
|---|
| 3996 | // Example:  int a[] = { 42 ... } | 
|---|
| 3997 | } else if (con0 == 0 && init0 == -1) { | 
|---|
| 3998 | split = true;             // first word is covered by full inits | 
|---|
| 3999 | // Example:  int a[] = { ... foo(), 42 ... } | 
|---|
| 4000 | } else if (con1 == 0 && init1 == -1) { | 
|---|
| 4001 | split = true;             // second word is covered by full inits | 
|---|
| 4002 | // Example:  int a[] = { ... 42, foo() ... } | 
|---|
| 4003 | } | 
|---|
| 4004 |  | 
|---|
| 4005 | // Here's a case where init0 is neither 0 nor -1: | 
|---|
| 4006 | //   byte a[] = { ... 0,0,foo(),0,  0,0,0,42 ... } | 
|---|
| 4007 | // Assuming big-endian memory, init0, init1 are 0x0000FF00, 0x000000FF. | 
|---|
| 4008 | // In this case the tile is not split; it is (jlong)42. | 
|---|
| 4009 | // The big tile is stored down, and then the foo() value is inserted. | 
|---|
| 4010 | // (If there were foo(),foo() instead of foo(),0, init0 would be -1.) | 
|---|
| 4011 |  | 
|---|
| 4012 | Node* ctl = old->in(MemNode::Control); | 
|---|
| 4013 | Node* adr = make_raw_address(offset, phase); | 
|---|
| 4014 | const TypePtr* atp = TypeRawPtr::BOTTOM; | 
|---|
| 4015 |  | 
|---|
| 4016 | // One or two coalesced stores to plop down. | 
|---|
| 4017 | Node*    st[2]; | 
|---|
| 4018 | intptr_t off[2]; | 
|---|
| 4019 | int  nst = 0; | 
|---|
| 4020 | if (!split) { | 
|---|
| 4021 | ++new_long; | 
|---|
| 4022 | off[nst] = offset; | 
|---|
| 4023 | st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp, | 
|---|
| 4024 | phase->longcon(con), T_LONG, MemNode::unordered); | 
|---|
| 4025 | } else { | 
|---|
| 4026 | // Omit either if it is a zero. | 
|---|
| 4027 | if (con0 != 0) { | 
|---|
| 4028 | ++new_int; | 
|---|
| 4029 | off[nst]  = offset; | 
|---|
| 4030 | st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp, | 
|---|
| 4031 | phase->intcon(con0), T_INT, MemNode::unordered); | 
|---|
| 4032 | } | 
|---|
| 4033 | if (con1 != 0) { | 
|---|
| 4034 | ++new_int; | 
|---|
| 4035 | offset += BytesPerInt; | 
|---|
| 4036 | adr = make_raw_address(offset, phase); | 
|---|
| 4037 | off[nst]  = offset; | 
|---|
| 4038 | st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp, | 
|---|
| 4039 | phase->intcon(con1), T_INT, MemNode::unordered); | 
|---|
| 4040 | } | 
|---|
| 4041 | } | 
|---|
| 4042 |  | 
|---|
| 4043 | // Insert second store first, then the first before the second. | 
|---|
| 4044 | // Insert each one just before any overlapping non-constant stores. | 
|---|
| 4045 | while (nst > 0) { | 
|---|
| 4046 | Node* st1 = st[--nst]; | 
|---|
| 4047 | C->copy_node_notes_to(st1, old); | 
|---|
| 4048 | st1 = phase->transform(st1); | 
|---|
| 4049 | offset = off[nst]; | 
|---|
| 4050 | assert(offset >= header_size, "do not smash header"); | 
|---|
| 4051 | int ins_idx = captured_store_insertion_point(offset, /*size:*/0, phase); | 
|---|
| 4052 | guarantee(ins_idx != 0, "must re-insert constant store"); | 
|---|
| 4053 | if (ins_idx < 0)  ins_idx = -ins_idx;  // never overlap | 
|---|
| 4054 | if (ins_idx > InitializeNode::RawStores && in(ins_idx-1) == zmem) | 
|---|
| 4055 | set_req(--ins_idx, st1); | 
|---|
| 4056 | else | 
|---|
| 4057 | ins_req(ins_idx, st1); | 
|---|
| 4058 | } | 
|---|
| 4059 | } | 
|---|
| 4060 |  | 
|---|
| 4061 | if (PrintCompilation && WizardMode) | 
|---|
| 4062 | tty->print_cr( "Changed %d/%d subword/long constants into %d/%d int/long", | 
|---|
| 4063 | old_subword, old_long, new_int, new_long); | 
|---|
| 4064 | if (C->log() != NULL) | 
|---|
| 4065 | C->log()->elem( "comment that='%d/%d subword/long to %d/%d int/long'", | 
|---|
| 4066 | old_subword, old_long, new_int, new_long); | 
|---|
| 4067 |  | 
|---|
| 4068 | // Clean up any remaining occurrences of zmem: | 
|---|
| 4069 | remove_extra_zeroes(); | 
|---|
| 4070 | } | 
|---|
| 4071 |  | 
|---|
| 4072 | // Explore forward from in(start) to find the first fully initialized | 
|---|
| 4073 | // word, and return its offset.  Skip groups of subword stores which | 
|---|
| 4074 | // together initialize full words.  If in(start) is itself part of a | 
|---|
| 4075 | // fully initialized word, return the offset of in(start).  If there | 
|---|
| 4076 | // are no following full-word stores, or if something is fishy, return | 
|---|
| 4077 | // a negative value. | 
|---|
| 4078 | intptr_t InitializeNode::find_next_fullword_store(uint start, PhaseGVN* phase) { | 
|---|
| 4079 | int       int_map = 0; | 
|---|
| 4080 | intptr_t  int_map_off = 0; | 
|---|
| 4081 | const int FULL_MAP = right_n_bits(BytesPerInt);  // the int_map we hope for | 
|---|
| 4082 |  | 
|---|
| 4083 | for (uint i = start, limit = req(); i < limit; i++) { | 
|---|
| 4084 | Node* st = in(i); | 
|---|
| 4085 |  | 
|---|
| 4086 | intptr_t st_off = get_store_offset(st, phase); | 
|---|
| 4087 | if (st_off < 0)  break;  // return conservative answer | 
|---|
| 4088 |  | 
|---|
| 4089 | int st_size = st->as_Store()->memory_size(); | 
|---|
| 4090 | if (st_size >= BytesPerInt && (st_off % BytesPerInt) == 0) { | 
|---|
| 4091 | return st_off;            // we found a complete word init | 
|---|
| 4092 | } | 
|---|
| 4093 |  | 
|---|
| 4094 | // update the map: | 
|---|
| 4095 |  | 
|---|
| 4096 | intptr_t this_int_off = align_down(st_off, BytesPerInt); | 
|---|
| 4097 | if (this_int_off != int_map_off) { | 
|---|
| 4098 | // reset the map: | 
|---|
| 4099 | int_map = 0; | 
|---|
| 4100 | int_map_off = this_int_off; | 
|---|
| 4101 | } | 
|---|
| 4102 |  | 
|---|
| 4103 | int subword_off = st_off - this_int_off; | 
|---|
| 4104 | int_map |= right_n_bits(st_size) << subword_off; | 
|---|
| 4105 | if ((int_map & FULL_MAP) == FULL_MAP) { | 
|---|
| 4106 | return this_int_off;      // we found a complete word init | 
|---|
| 4107 | } | 
|---|
| 4108 |  | 
|---|
| 4109 | // Did this store hit or cross the word boundary? | 
|---|
| 4110 | intptr_t next_int_off = align_down(st_off + st_size, BytesPerInt); | 
|---|
| 4111 | if (next_int_off == this_int_off + BytesPerInt) { | 
|---|
| 4112 | // We passed the current int, without fully initializing it. | 
|---|
| 4113 | int_map_off = next_int_off; | 
|---|
| 4114 | int_map >>= BytesPerInt; | 
|---|
| 4115 | } else if (next_int_off > this_int_off + BytesPerInt) { | 
|---|
| 4116 | // We passed the current and next int. | 
|---|
| 4117 | return this_int_off + BytesPerInt; | 
|---|
| 4118 | } | 
|---|
| 4119 | } | 
|---|
| 4120 |  | 
|---|
| 4121 | return -1; | 
|---|
| 4122 | } | 
|---|
| 4123 |  | 
|---|
| 4124 |  | 
|---|
| 4125 | // Called when the associated AllocateNode is expanded into CFG. | 
|---|
| 4126 | // At this point, we may perform additional optimizations. | 
|---|
| 4127 | // Linearize the stores by ascending offset, to make memory | 
|---|
| 4128 | // activity as coherent as possible. | 
|---|
| 4129 | Node* InitializeNode::complete_stores(Node* rawctl, Node* rawmem, Node* rawptr, | 
|---|
| 4130 | intptr_t , | 
|---|
| 4131 | Node* size_in_bytes, | 
|---|
| 4132 | PhaseGVN* phase) { | 
|---|
| 4133 | assert(!is_complete(), "not already complete"); | 
|---|
| 4134 | assert(stores_are_sane(phase), ""); | 
|---|
| 4135 | assert(allocation() != NULL, "must be present"); | 
|---|
| 4136 |  | 
|---|
| 4137 | remove_extra_zeroes(); | 
|---|
| 4138 |  | 
|---|
| 4139 | if (ReduceFieldZeroing || ReduceBulkZeroing) | 
|---|
| 4140 | // reduce instruction count for common initialization patterns | 
|---|
| 4141 | coalesce_subword_stores(header_size, size_in_bytes, phase); | 
|---|
| 4142 |  | 
|---|
| 4143 | Node* zmem = zero_memory();   // initially zero memory state | 
|---|
| 4144 | Node* inits = zmem;           // accumulating a linearized chain of inits | 
|---|
| 4145 | #ifdef ASSERT | 
|---|
| 4146 | intptr_t first_offset = allocation()->minimum_header_size(); | 
|---|
| 4147 | intptr_t last_init_off = first_offset;  // previous init offset | 
|---|
| 4148 | intptr_t last_init_end = first_offset;  // previous init offset+size | 
|---|
| 4149 | intptr_t last_tile_end = first_offset;  // previous tile offset+size | 
|---|
| 4150 | #endif | 
|---|
| 4151 | intptr_t zeroes_done = header_size; | 
|---|
| 4152 |  | 
|---|
| 4153 | bool do_zeroing = true;       // we might give up if inits are very sparse | 
|---|
| 4154 | int  big_init_gaps = 0;       // how many large gaps have we seen? | 
|---|
| 4155 |  | 
|---|
| 4156 | if (UseTLAB && ZeroTLAB)  do_zeroing = false; | 
|---|
| 4157 | if (!ReduceFieldZeroing && !ReduceBulkZeroing)  do_zeroing = false; | 
|---|
| 4158 |  | 
|---|
| 4159 | for (uint i = InitializeNode::RawStores, limit = req(); i < limit; i++) { | 
|---|
| 4160 | Node* st = in(i); | 
|---|
| 4161 | intptr_t st_off = get_store_offset(st, phase); | 
|---|
| 4162 | if (st_off < 0) | 
|---|
| 4163 | break;                    // unknown junk in the inits | 
|---|
| 4164 | if (st->in(MemNode::Memory) != zmem) | 
|---|
| 4165 | break;                    // complicated store chains somehow in list | 
|---|
| 4166 |  | 
|---|
| 4167 | int st_size = st->as_Store()->memory_size(); | 
|---|
| 4168 | intptr_t next_init_off = st_off + st_size; | 
|---|
| 4169 |  | 
|---|
| 4170 | if (do_zeroing && zeroes_done < next_init_off) { | 
|---|
| 4171 | // See if this store needs a zero before it or under it. | 
|---|
| 4172 | intptr_t zeroes_needed = st_off; | 
|---|
| 4173 |  | 
|---|
| 4174 | if (st_size < BytesPerInt) { | 
|---|
| 4175 | // Look for subword stores which only partially initialize words. | 
|---|
| 4176 | // If we find some, we must lay down some word-level zeroes first, | 
|---|
| 4177 | // underneath the subword stores. | 
|---|
| 4178 | // | 
|---|
| 4179 | // Examples: | 
|---|
| 4180 | //   byte[] a = { p,q,r,s }  =>  a[0]=p,a[1]=q,a[2]=r,a[3]=s | 
|---|
| 4181 | //   byte[] a = { x,y,0,0 }  =>  a[0..3] = 0, a[0]=x,a[1]=y | 
|---|
| 4182 | //   byte[] a = { 0,0,z,0 }  =>  a[0..3] = 0, a[2]=z | 
|---|
| 4183 | // | 
|---|
| 4184 | // Note:  coalesce_subword_stores may have already done this, | 
|---|
| 4185 | // if it was prompted by constant non-zero subword initializers. | 
|---|
| 4186 | // But this case can still arise with non-constant stores. | 
|---|
| 4187 |  | 
|---|
| 4188 | intptr_t next_full_store = find_next_fullword_store(i, phase); | 
|---|
| 4189 |  | 
|---|
| 4190 | // In the examples above: | 
|---|
| 4191 | //   in(i)          p   q   r   s     x   y     z | 
|---|
| 4192 | //   st_off        12  13  14  15    12  13    14 | 
|---|
| 4193 | //   st_size        1   1   1   1     1   1     1 | 
|---|
| 4194 | //   next_full_s.  12  16  16  16    16  16    16 | 
|---|
| 4195 | //   z's_done      12  16  16  16    12  16    12 | 
|---|
| 4196 | //   z's_needed    12  16  16  16    16  16    16 | 
|---|
| 4197 | //   zsize          0   0   0   0     4   0     4 | 
|---|
| 4198 | if (next_full_store < 0) { | 
|---|
| 4199 | // Conservative tack:  Zero to end of current word. | 
|---|
| 4200 | zeroes_needed = align_up(zeroes_needed, BytesPerInt); | 
|---|
| 4201 | } else { | 
|---|
| 4202 | // Zero to beginning of next fully initialized word. | 
|---|
| 4203 | // Or, don't zero at all, if we are already in that word. | 
|---|
| 4204 | assert(next_full_store >= zeroes_needed, "must go forward"); | 
|---|
| 4205 | assert((next_full_store & (BytesPerInt-1)) == 0, "even boundary"); | 
|---|
| 4206 | zeroes_needed = next_full_store; | 
|---|
| 4207 | } | 
|---|
| 4208 | } | 
|---|
| 4209 |  | 
|---|
| 4210 | if (zeroes_needed > zeroes_done) { | 
|---|
| 4211 | intptr_t zsize = zeroes_needed - zeroes_done; | 
|---|
| 4212 | // Do some incremental zeroing on rawmem, in parallel with inits. | 
|---|
| 4213 | zeroes_done = align_down(zeroes_done, BytesPerInt); | 
|---|
| 4214 | rawmem = ClearArrayNode::clear_memory(rawctl, rawmem, rawptr, | 
|---|
| 4215 | zeroes_done, zeroes_needed, | 
|---|
| 4216 | phase); | 
|---|
| 4217 | zeroes_done = zeroes_needed; | 
|---|
| 4218 | if (zsize > InitArrayShortSize && ++big_init_gaps > 2) | 
|---|
| 4219 | do_zeroing = false;   // leave the hole, next time | 
|---|
| 4220 | } | 
|---|
| 4221 | } | 
|---|
| 4222 |  | 
|---|
| 4223 | // Collect the store and move on: | 
|---|
| 4224 | st->set_req(MemNode::Memory, inits); | 
|---|
| 4225 | inits = st;                 // put it on the linearized chain | 
|---|
| 4226 | set_req(i, zmem);           // unhook from previous position | 
|---|
| 4227 |  | 
|---|
| 4228 | if (zeroes_done == st_off) | 
|---|
| 4229 | zeroes_done = next_init_off; | 
|---|
| 4230 |  | 
|---|
| 4231 | assert(!do_zeroing || zeroes_done >= next_init_off, "don't miss any"); | 
|---|
| 4232 |  | 
|---|
| 4233 | #ifdef ASSERT | 
|---|
| 4234 | // Various order invariants.  Weaker than stores_are_sane because | 
|---|
| 4235 | // a large constant tile can be filled in by smaller non-constant stores. | 
|---|
| 4236 | assert(st_off >= last_init_off, "inits do not reverse"); | 
|---|
| 4237 | last_init_off = st_off; | 
|---|
| 4238 | const Type* val = NULL; | 
|---|
| 4239 | if (st_size >= BytesPerInt && | 
|---|
| 4240 | (val = phase->type(st->in(MemNode::ValueIn)))->singleton() && | 
|---|
| 4241 | (int)val->basic_type() < (int)T_OBJECT) { | 
|---|
| 4242 | assert(st_off >= last_tile_end, "tiles do not overlap"); | 
|---|
| 4243 | assert(st_off >= last_init_end, "tiles do not overwrite inits"); | 
|---|
| 4244 | last_tile_end = MAX2(last_tile_end, next_init_off); | 
|---|
| 4245 | } else { | 
|---|
| 4246 | intptr_t st_tile_end = align_up(next_init_off, BytesPerLong); | 
|---|
| 4247 | assert(st_tile_end >= last_tile_end, "inits stay with tiles"); | 
|---|
| 4248 | assert(st_off      >= last_init_end, "inits do not overlap"); | 
|---|
| 4249 | last_init_end = next_init_off;  // it's a non-tile | 
|---|
| 4250 | } | 
|---|
| 4251 | #endif //ASSERT | 
|---|
| 4252 | } | 
|---|
| 4253 |  | 
|---|
| 4254 | remove_extra_zeroes();        // clear out all the zmems left over | 
|---|
| 4255 | add_req(inits); | 
|---|
| 4256 |  | 
|---|
| 4257 | if (!(UseTLAB && ZeroTLAB)) { | 
|---|
| 4258 | // If anything remains to be zeroed, zero it all now. | 
|---|
| 4259 | zeroes_done = align_down(zeroes_done, BytesPerInt); | 
|---|
| 4260 | // if it is the last unused 4 bytes of an instance, forget about it | 
|---|
| 4261 | intptr_t size_limit = phase->find_intptr_t_con(size_in_bytes, max_jint); | 
|---|
| 4262 | if (zeroes_done + BytesPerLong >= size_limit) { | 
|---|
| 4263 | AllocateNode* alloc = allocation(); | 
|---|
| 4264 | assert(alloc != NULL, "must be present"); | 
|---|
| 4265 | if (alloc != NULL && alloc->Opcode() == Op_Allocate) { | 
|---|
| 4266 | Node* klass_node = alloc->in(AllocateNode::KlassNode); | 
|---|
| 4267 | ciKlass* k = phase->type(klass_node)->is_klassptr()->klass(); | 
|---|
| 4268 | if (zeroes_done == k->layout_helper()) | 
|---|
| 4269 | zeroes_done = size_limit; | 
|---|
| 4270 | } | 
|---|
| 4271 | } | 
|---|
| 4272 | if (zeroes_done < size_limit) { | 
|---|
| 4273 | rawmem = ClearArrayNode::clear_memory(rawctl, rawmem, rawptr, | 
|---|
| 4274 | zeroes_done, size_in_bytes, phase); | 
|---|
| 4275 | } | 
|---|
| 4276 | } | 
|---|
| 4277 |  | 
|---|
| 4278 | set_complete(phase); | 
|---|
| 4279 | return rawmem; | 
|---|
| 4280 | } | 
|---|
| 4281 |  | 
|---|
| 4282 |  | 
|---|
| 4283 | #ifdef ASSERT | 
|---|
| 4284 | bool InitializeNode::stores_are_sane(PhaseTransform* phase) { | 
|---|
| 4285 | if (is_complete()) | 
|---|
| 4286 | return true;                // stores could be anything at this point | 
|---|
| 4287 | assert(allocation() != NULL, "must be present"); | 
|---|
| 4288 | intptr_t last_off = allocation()->minimum_header_size(); | 
|---|
| 4289 | for (uint i = InitializeNode::RawStores; i < req(); i++) { | 
|---|
| 4290 | Node* st = in(i); | 
|---|
| 4291 | intptr_t st_off = get_store_offset(st, phase); | 
|---|
| 4292 | if (st_off < 0)  continue;  // ignore dead garbage | 
|---|
| 4293 | if (last_off > st_off) { | 
|---|
| 4294 | tty->print_cr( "*** bad store offset at %d: "INTX_FORMAT " > "INTX_FORMAT, i, last_off, st_off); | 
|---|
| 4295 | this->dump(2); | 
|---|
| 4296 | assert(false, "ascending store offsets"); | 
|---|
| 4297 | return false; | 
|---|
| 4298 | } | 
|---|
| 4299 | last_off = st_off + st->as_Store()->memory_size(); | 
|---|
| 4300 | } | 
|---|
| 4301 | return true; | 
|---|
| 4302 | } | 
|---|
| 4303 | #endif //ASSERT | 
|---|
| 4304 |  | 
|---|
| 4305 |  | 
|---|
| 4306 |  | 
|---|
| 4307 |  | 
|---|
| 4308 | //============================MergeMemNode===================================== | 
|---|
| 4309 | // | 
|---|
| 4310 | // SEMANTICS OF MEMORY MERGES:  A MergeMem is a memory state assembled from several | 
|---|
| 4311 | // contributing store or call operations.  Each contributor provides the memory | 
|---|
| 4312 | // state for a particular "alias type" (see Compile::alias_type).  For example, | 
|---|
| 4313 | // if a MergeMem has an input X for alias category #6, then any memory reference | 
|---|
| 4314 | // to alias category #6 may use X as its memory state input, as an exact equivalent | 
|---|
| 4315 | // to using the MergeMem as a whole. | 
|---|
| 4316 | //   Load<6>( MergeMem(<6>: X, ...), p ) <==> Load<6>(X,p) | 
|---|
| 4317 | // | 
|---|
| 4318 | // (Here, the <N> notation gives the index of the relevant adr_type.) | 
|---|
| 4319 | // | 
|---|
| 4320 | // In one special case (and more cases in the future), alias categories overlap. | 
|---|
| 4321 | // The special alias category "Bot" (Compile::AliasIdxBot) includes all memory | 
|---|
| 4322 | // states.  Therefore, if a MergeMem has only one contributing input W for Bot, | 
|---|
| 4323 | // it is exactly equivalent to that state W: | 
|---|
| 4324 | //   MergeMem(<Bot>: W) <==> W | 
|---|
| 4325 | // | 
|---|
| 4326 | // Usually, the merge has more than one input.  In that case, where inputs | 
|---|
| 4327 | // overlap (i.e., one is Bot), the narrower alias type determines the memory | 
|---|
| 4328 | // state for that type, and the wider alias type (Bot) fills in everywhere else: | 
|---|
| 4329 | //   Load<5>( MergeMem(<Bot>: W, <6>: X), p ) <==> Load<5>(W,p) | 
|---|
| 4330 | //   Load<6>( MergeMem(<Bot>: W, <6>: X), p ) <==> Load<6>(X,p) | 
|---|
| 4331 | // | 
|---|
| 4332 | // A merge can take a "wide" memory state as one of its narrow inputs. | 
|---|
| 4333 | // This simply means that the merge observes out only the relevant parts of | 
|---|
| 4334 | // the wide input.  That is, wide memory states arriving at narrow merge inputs | 
|---|
| 4335 | // are implicitly "filtered" or "sliced" as necessary.  (This is rare.) | 
|---|
| 4336 | // | 
|---|
| 4337 | // These rules imply that MergeMem nodes may cascade (via their <Bot> links), | 
|---|
| 4338 | // and that memory slices "leak through": | 
|---|
| 4339 | //   MergeMem(<Bot>: MergeMem(<Bot>: W, <7>: Y)) <==> MergeMem(<Bot>: W, <7>: Y) | 
|---|
| 4340 | // | 
|---|
| 4341 | // But, in such a cascade, repeated memory slices can "block the leak": | 
|---|
| 4342 | //   MergeMem(<Bot>: MergeMem(<Bot>: W, <7>: Y), <7>: Y') <==> MergeMem(<Bot>: W, <7>: Y') | 
|---|
| 4343 | // | 
|---|
| 4344 | // In the last example, Y is not part of the combined memory state of the | 
|---|
| 4345 | // outermost MergeMem.  The system must, of course, prevent unschedulable | 
|---|
| 4346 | // memory states from arising, so you can be sure that the state Y is somehow | 
|---|
| 4347 | // a precursor to state Y'. | 
|---|
| 4348 | // | 
|---|
| 4349 | // | 
|---|
| 4350 | // REPRESENTATION OF MEMORY MERGES: The indexes used to address the Node::in array | 
|---|
| 4351 | // of each MergeMemNode array are exactly the numerical alias indexes, including | 
|---|
| 4352 | // but not limited to AliasIdxTop, AliasIdxBot, and AliasIdxRaw.  The functions | 
|---|
| 4353 | // Compile::alias_type (and kin) produce and manage these indexes. | 
|---|
| 4354 | // | 
|---|
| 4355 | // By convention, the value of in(AliasIdxTop) (i.e., in(1)) is always the top node. | 
|---|
| 4356 | // (Note that this provides quick access to the top node inside MergeMem methods, | 
|---|
| 4357 | // without the need to reach out via TLS to Compile::current.) | 
|---|
| 4358 | // | 
|---|
| 4359 | // As a consequence of what was just described, a MergeMem that represents a full | 
|---|
| 4360 | // memory state has an edge in(AliasIdxBot) which is a "wide" memory state, | 
|---|
| 4361 | // containing all alias categories. | 
|---|
| 4362 | // | 
|---|
| 4363 | // MergeMem nodes never (?) have control inputs, so in(0) is NULL. | 
|---|
| 4364 | // | 
|---|
| 4365 | // All other edges in(N) (including in(AliasIdxRaw), which is in(3)) are either | 
|---|
| 4366 | // a memory state for the alias type <N>, or else the top node, meaning that | 
|---|
| 4367 | // there is no particular input for that alias type.  Note that the length of | 
|---|
| 4368 | // a MergeMem is variable, and may be extended at any time to accommodate new | 
|---|
| 4369 | // memory states at larger alias indexes.  When merges grow, they are of course | 
|---|
| 4370 | // filled with "top" in the unused in() positions. | 
|---|
| 4371 | // | 
|---|
| 4372 | // This use of top is named "empty_memory()", or "empty_mem" (no-memory) as a variable. | 
|---|
| 4373 | // (Top was chosen because it works smoothly with passes like GCM.) | 
|---|
| 4374 | // | 
|---|
| 4375 | // For convenience, we hardwire the alias index for TypeRawPtr::BOTTOM.  (It is | 
|---|
| 4376 | // the type of random VM bits like TLS references.)  Since it is always the | 
|---|
| 4377 | // first non-Bot memory slice, some low-level loops use it to initialize an | 
|---|
| 4378 | // index variable:  for (i = AliasIdxRaw; i < req(); i++). | 
|---|
| 4379 | // | 
|---|
| 4380 | // | 
|---|
| 4381 | // ACCESSORS:  There is a special accessor MergeMemNode::base_memory which returns | 
|---|
| 4382 | // the distinguished "wide" state.  The accessor MergeMemNode::memory_at(N) returns | 
|---|
| 4383 | // the memory state for alias type <N>, or (if there is no particular slice at <N>, | 
|---|
| 4384 | // it returns the base memory.  To prevent bugs, memory_at does not accept <Top> | 
|---|
| 4385 | // or <Bot> indexes.  The iterator MergeMemStream provides robust iteration over | 
|---|
| 4386 | // MergeMem nodes or pairs of such nodes, ensuring that the non-top edges are visited. | 
|---|
| 4387 | // | 
|---|
| 4388 | // %%%% We may get rid of base_memory as a separate accessor at some point; it isn't | 
|---|
| 4389 | // really that different from the other memory inputs.  An abbreviation called | 
|---|
| 4390 | // "bot_memory()" for "memory_at(AliasIdxBot)" would keep code tidy. | 
|---|
| 4391 | // | 
|---|
| 4392 | // | 
|---|
| 4393 | // PARTIAL MEMORY STATES:  During optimization, MergeMem nodes may arise that represent | 
|---|
| 4394 | // partial memory states.  When a Phi splits through a MergeMem, the copy of the Phi | 
|---|
| 4395 | // that "emerges though" the base memory will be marked as excluding the alias types | 
|---|
| 4396 | // of the other (narrow-memory) copies which "emerged through" the narrow edges: | 
|---|
| 4397 | // | 
|---|
| 4398 | //   Phi<Bot>(U, MergeMem(<Bot>: W, <8>: Y)) | 
|---|
| 4399 | //     ==Ideal=>  MergeMem(<Bot>: Phi<Bot-8>(U, W), Phi<8>(U, Y)) | 
|---|
| 4400 | // | 
|---|
| 4401 | // This strange "subtraction" effect is necessary to ensure IGVN convergence. | 
|---|
| 4402 | // (It is currently unimplemented.)  As you can see, the resulting merge is | 
|---|
| 4403 | // actually a disjoint union of memory states, rather than an overlay. | 
|---|
| 4404 | // | 
|---|
| 4405 |  | 
|---|
| 4406 | //------------------------------MergeMemNode----------------------------------- | 
|---|
| 4407 | Node* MergeMemNode::make_empty_memory() { | 
|---|
| 4408 | Node* empty_memory = (Node*) Compile::current()->top(); | 
|---|
| 4409 | assert(empty_memory->is_top(), "correct sentinel identity"); | 
|---|
| 4410 | return empty_memory; | 
|---|
| 4411 | } | 
|---|
| 4412 |  | 
|---|
| 4413 | MergeMemNode::MergeMemNode(Node *new_base) : Node(1+Compile::AliasIdxRaw) { | 
|---|
| 4414 | init_class_id(Class_MergeMem); | 
|---|
| 4415 | // all inputs are nullified in Node::Node(int) | 
|---|
| 4416 | // set_input(0, NULL);  // no control input | 
|---|
| 4417 |  | 
|---|
| 4418 | // Initialize the edges uniformly to top, for starters. | 
|---|
| 4419 | Node* empty_mem = make_empty_memory(); | 
|---|
| 4420 | for (uint i = Compile::AliasIdxTop; i < req(); i++) { | 
|---|
| 4421 | init_req(i,empty_mem); | 
|---|
| 4422 | } | 
|---|
| 4423 | assert(empty_memory() == empty_mem, ""); | 
|---|
| 4424 |  | 
|---|
| 4425 | if( new_base != NULL && new_base->is_MergeMem() ) { | 
|---|
| 4426 | MergeMemNode* mdef = new_base->as_MergeMem(); | 
|---|
| 4427 | assert(mdef->empty_memory() == empty_mem, "consistent sentinels"); | 
|---|
| 4428 | for (MergeMemStream mms(this, mdef); mms.next_non_empty2(); ) { | 
|---|
| 4429 | mms.set_memory(mms.memory2()); | 
|---|
| 4430 | } | 
|---|
| 4431 | assert(base_memory() == mdef->base_memory(), ""); | 
|---|
| 4432 | } else { | 
|---|
| 4433 | set_base_memory(new_base); | 
|---|
| 4434 | } | 
|---|
| 4435 | } | 
|---|
| 4436 |  | 
|---|
| 4437 | // Make a new, untransformed MergeMem with the same base as 'mem'. | 
|---|
| 4438 | // If mem is itself a MergeMem, populate the result with the same edges. | 
|---|
| 4439 | MergeMemNode* MergeMemNode::make(Node* mem) { | 
|---|
| 4440 | return new MergeMemNode(mem); | 
|---|
| 4441 | } | 
|---|
| 4442 |  | 
|---|
| 4443 | //------------------------------cmp-------------------------------------------- | 
|---|
| 4444 | uint MergeMemNode::hash() const { return NO_HASH; } | 
|---|
| 4445 | bool MergeMemNode::cmp( const Node &n ) const { | 
|---|
| 4446 | return (&n == this);          // Always fail except on self | 
|---|
| 4447 | } | 
|---|
| 4448 |  | 
|---|
| 4449 | //------------------------------Identity--------------------------------------- | 
|---|
| 4450 | Node* MergeMemNode::Identity(PhaseGVN* phase) { | 
|---|
| 4451 | // Identity if this merge point does not record any interesting memory | 
|---|
| 4452 | // disambiguations. | 
|---|
| 4453 | Node* base_mem = base_memory(); | 
|---|
| 4454 | Node* empty_mem = empty_memory(); | 
|---|
| 4455 | if (base_mem != empty_mem) {  // Memory path is not dead? | 
|---|
| 4456 | for (uint i = Compile::AliasIdxRaw; i < req(); i++) { | 
|---|
| 4457 | Node* mem = in(i); | 
|---|
| 4458 | if (mem != empty_mem && mem != base_mem) { | 
|---|
| 4459 | return this;            // Many memory splits; no change | 
|---|
| 4460 | } | 
|---|
| 4461 | } | 
|---|
| 4462 | } | 
|---|
| 4463 | return base_mem;              // No memory splits; ID on the one true input | 
|---|
| 4464 | } | 
|---|
| 4465 |  | 
|---|
| 4466 | //------------------------------Ideal------------------------------------------ | 
|---|
| 4467 | // This method is invoked recursively on chains of MergeMem nodes | 
|---|
| 4468 | Node *MergeMemNode::Ideal(PhaseGVN *phase, bool can_reshape) { | 
|---|
| 4469 | // Remove chain'd MergeMems | 
|---|
| 4470 | // | 
|---|
| 4471 | // This is delicate, because the each "in(i)" (i >= Raw) is interpreted | 
|---|
| 4472 | // relative to the "in(Bot)".  Since we are patching both at the same time, | 
|---|
| 4473 | // we have to be careful to read each "in(i)" relative to the old "in(Bot)", | 
|---|
| 4474 | // but rewrite each "in(i)" relative to the new "in(Bot)". | 
|---|
| 4475 | Node *progress = NULL; | 
|---|
| 4476 |  | 
|---|
| 4477 |  | 
|---|
| 4478 | Node* old_base = base_memory(); | 
|---|
| 4479 | Node* empty_mem = empty_memory(); | 
|---|
| 4480 | if (old_base == empty_mem) | 
|---|
| 4481 | return NULL; // Dead memory path. | 
|---|
| 4482 |  | 
|---|
| 4483 | MergeMemNode* old_mbase; | 
|---|
| 4484 | if (old_base != NULL && old_base->is_MergeMem()) | 
|---|
| 4485 | old_mbase = old_base->as_MergeMem(); | 
|---|
| 4486 | else | 
|---|
| 4487 | old_mbase = NULL; | 
|---|
| 4488 | Node* new_base = old_base; | 
|---|
| 4489 |  | 
|---|
| 4490 | // simplify stacked MergeMems in base memory | 
|---|
| 4491 | if (old_mbase)  new_base = old_mbase->base_memory(); | 
|---|
| 4492 |  | 
|---|
| 4493 | // the base memory might contribute new slices beyond my req() | 
|---|
| 4494 | if (old_mbase)  grow_to_match(old_mbase); | 
|---|
| 4495 |  | 
|---|
| 4496 | // Look carefully at the base node if it is a phi. | 
|---|
| 4497 | PhiNode* phi_base; | 
|---|
| 4498 | if (new_base != NULL && new_base->is_Phi()) | 
|---|
| 4499 | phi_base = new_base->as_Phi(); | 
|---|
| 4500 | else | 
|---|
| 4501 | phi_base = NULL; | 
|---|
| 4502 |  | 
|---|
| 4503 | Node*    phi_reg = NULL; | 
|---|
| 4504 | uint     phi_len = (uint)-1; | 
|---|
| 4505 | if (phi_base != NULL && !phi_base->is_copy()) { | 
|---|
| 4506 | // do not examine phi if degraded to a copy | 
|---|
| 4507 | phi_reg = phi_base->region(); | 
|---|
| 4508 | phi_len = phi_base->req(); | 
|---|
| 4509 | // see if the phi is unfinished | 
|---|
| 4510 | for (uint i = 1; i < phi_len; i++) { | 
|---|
| 4511 | if (phi_base->in(i) == NULL) { | 
|---|
| 4512 | // incomplete phi; do not look at it yet! | 
|---|
| 4513 | phi_reg = NULL; | 
|---|
| 4514 | phi_len = (uint)-1; | 
|---|
| 4515 | break; | 
|---|
| 4516 | } | 
|---|
| 4517 | } | 
|---|
| 4518 | } | 
|---|
| 4519 |  | 
|---|
| 4520 | // Note:  We do not call verify_sparse on entry, because inputs | 
|---|
| 4521 | // can normalize to the base_memory via subsume_node or similar | 
|---|
| 4522 | // mechanisms.  This method repairs that damage. | 
|---|
| 4523 |  | 
|---|
| 4524 | assert(!old_mbase || old_mbase->is_empty_memory(empty_mem), "consistent sentinels"); | 
|---|
| 4525 |  | 
|---|
| 4526 | // Look at each slice. | 
|---|
| 4527 | for (uint i = Compile::AliasIdxRaw; i < req(); i++) { | 
|---|
| 4528 | Node* old_in = in(i); | 
|---|
| 4529 | // calculate the old memory value | 
|---|
| 4530 | Node* old_mem = old_in; | 
|---|
| 4531 | if (old_mem == empty_mem)  old_mem = old_base; | 
|---|
| 4532 | assert(old_mem == memory_at(i), ""); | 
|---|
| 4533 |  | 
|---|
| 4534 | // maybe update (reslice) the old memory value | 
|---|
| 4535 |  | 
|---|
| 4536 | // simplify stacked MergeMems | 
|---|
| 4537 | Node* new_mem = old_mem; | 
|---|
| 4538 | MergeMemNode* old_mmem; | 
|---|
| 4539 | if (old_mem != NULL && old_mem->is_MergeMem()) | 
|---|
| 4540 | old_mmem = old_mem->as_MergeMem(); | 
|---|
| 4541 | else | 
|---|
| 4542 | old_mmem = NULL; | 
|---|
| 4543 | if (old_mmem == this) { | 
|---|
| 4544 | // This can happen if loops break up and safepoints disappear. | 
|---|
| 4545 | // A merge of BotPtr (default) with a RawPtr memory derived from a | 
|---|
| 4546 | // safepoint can be rewritten to a merge of the same BotPtr with | 
|---|
| 4547 | // the BotPtr phi coming into the loop.  If that phi disappears | 
|---|
| 4548 | // also, we can end up with a self-loop of the mergemem. | 
|---|
| 4549 | // In general, if loops degenerate and memory effects disappear, | 
|---|
| 4550 | // a mergemem can be left looking at itself.  This simply means | 
|---|
| 4551 | // that the mergemem's default should be used, since there is | 
|---|
| 4552 | // no longer any apparent effect on this slice. | 
|---|
| 4553 | // Note: If a memory slice is a MergeMem cycle, it is unreachable | 
|---|
| 4554 | //       from start.  Update the input to TOP. | 
|---|
| 4555 | new_mem = (new_base == this || new_base == empty_mem)? empty_mem : new_base; | 
|---|
| 4556 | } | 
|---|
| 4557 | else if (old_mmem != NULL) { | 
|---|
| 4558 | new_mem = old_mmem->memory_at(i); | 
|---|
| 4559 | } | 
|---|
| 4560 | // else preceding memory was not a MergeMem | 
|---|
| 4561 |  | 
|---|
| 4562 | // replace equivalent phis (unfortunately, they do not GVN together) | 
|---|
| 4563 | if (new_mem != NULL && new_mem != new_base && | 
|---|
| 4564 | new_mem->req() == phi_len && new_mem->in(0) == phi_reg) { | 
|---|
| 4565 | if (new_mem->is_Phi()) { | 
|---|
| 4566 | PhiNode* phi_mem = new_mem->as_Phi(); | 
|---|
| 4567 | for (uint i = 1; i < phi_len; i++) { | 
|---|
| 4568 | if (phi_base->in(i) != phi_mem->in(i)) { | 
|---|
| 4569 | phi_mem = NULL; | 
|---|
| 4570 | break; | 
|---|
| 4571 | } | 
|---|
| 4572 | } | 
|---|
| 4573 | if (phi_mem != NULL) { | 
|---|
| 4574 | // equivalent phi nodes; revert to the def | 
|---|
| 4575 | new_mem = new_base; | 
|---|
| 4576 | } | 
|---|
| 4577 | } | 
|---|
| 4578 | } | 
|---|
| 4579 |  | 
|---|
| 4580 | // maybe store down a new value | 
|---|
| 4581 | Node* new_in = new_mem; | 
|---|
| 4582 | if (new_in == new_base)  new_in = empty_mem; | 
|---|
| 4583 |  | 
|---|
| 4584 | if (new_in != old_in) { | 
|---|
| 4585 | // Warning:  Do not combine this "if" with the previous "if" | 
|---|
| 4586 | // A memory slice might have be be rewritten even if it is semantically | 
|---|
| 4587 | // unchanged, if the base_memory value has changed. | 
|---|
| 4588 | set_req(i, new_in); | 
|---|
| 4589 | progress = this;          // Report progress | 
|---|
| 4590 | } | 
|---|
| 4591 | } | 
|---|
| 4592 |  | 
|---|
| 4593 | if (new_base != old_base) { | 
|---|
| 4594 | set_req(Compile::AliasIdxBot, new_base); | 
|---|
| 4595 | // Don't use set_base_memory(new_base), because we need to update du. | 
|---|
| 4596 | assert(base_memory() == new_base, ""); | 
|---|
| 4597 | progress = this; | 
|---|
| 4598 | } | 
|---|
| 4599 |  | 
|---|
| 4600 | if( base_memory() == this ) { | 
|---|
| 4601 | // a self cycle indicates this memory path is dead | 
|---|
| 4602 | set_req(Compile::AliasIdxBot, empty_mem); | 
|---|
| 4603 | } | 
|---|
| 4604 |  | 
|---|
| 4605 | // Resolve external cycles by calling Ideal on a MergeMem base_memory | 
|---|
| 4606 | // Recursion must occur after the self cycle check above | 
|---|
| 4607 | if( base_memory()->is_MergeMem() ) { | 
|---|
| 4608 | MergeMemNode *new_mbase = base_memory()->as_MergeMem(); | 
|---|
| 4609 | Node *m = phase->transform(new_mbase);  // Rollup any cycles | 
|---|
| 4610 | if( m != NULL && | 
|---|
| 4611 | (m->is_top() || | 
|---|
| 4612 | (m->is_MergeMem() && m->as_MergeMem()->base_memory() == empty_mem)) ) { | 
|---|
| 4613 | // propagate rollup of dead cycle to self | 
|---|
| 4614 | set_req(Compile::AliasIdxBot, empty_mem); | 
|---|
| 4615 | } | 
|---|
| 4616 | } | 
|---|
| 4617 |  | 
|---|
| 4618 | if( base_memory() == empty_mem ) { | 
|---|
| 4619 | progress = this; | 
|---|
| 4620 | // Cut inputs during Parse phase only. | 
|---|
| 4621 | // During Optimize phase a dead MergeMem node will be subsumed by Top. | 
|---|
| 4622 | if( !can_reshape ) { | 
|---|
| 4623 | for (uint i = Compile::AliasIdxRaw; i < req(); i++) { | 
|---|
| 4624 | if( in(i) != empty_mem ) { set_req(i, empty_mem); } | 
|---|
| 4625 | } | 
|---|
| 4626 | } | 
|---|
| 4627 | } | 
|---|
| 4628 |  | 
|---|
| 4629 | if( !progress && base_memory()->is_Phi() && can_reshape ) { | 
|---|
| 4630 | // Check if PhiNode::Ideal's "Split phis through memory merges" | 
|---|
| 4631 | // transform should be attempted. Look for this->phi->this cycle. | 
|---|
| 4632 | uint merge_width = req(); | 
|---|
| 4633 | if (merge_width > Compile::AliasIdxRaw) { | 
|---|
| 4634 | PhiNode* phi = base_memory()->as_Phi(); | 
|---|
| 4635 | for( uint i = 1; i < phi->req(); ++i ) {// For all paths in | 
|---|
| 4636 | if (phi->in(i) == this) { | 
|---|
| 4637 | phase->is_IterGVN()->_worklist.push(phi); | 
|---|
| 4638 | break; | 
|---|
| 4639 | } | 
|---|
| 4640 | } | 
|---|
| 4641 | } | 
|---|
| 4642 | } | 
|---|
| 4643 |  | 
|---|
| 4644 | assert(progress || verify_sparse(), "please, no dups of base"); | 
|---|
| 4645 | return progress; | 
|---|
| 4646 | } | 
|---|
| 4647 |  | 
|---|
| 4648 | //-------------------------set_base_memory------------------------------------- | 
|---|
| 4649 | void MergeMemNode::set_base_memory(Node *new_base) { | 
|---|
| 4650 | Node* empty_mem = empty_memory(); | 
|---|
| 4651 | set_req(Compile::AliasIdxBot, new_base); | 
|---|
| 4652 | assert(memory_at(req()) == new_base, "must set default memory"); | 
|---|
| 4653 | // Clear out other occurrences of new_base: | 
|---|
| 4654 | if (new_base != empty_mem) { | 
|---|
| 4655 | for (uint i = Compile::AliasIdxRaw; i < req(); i++) { | 
|---|
| 4656 | if (in(i) == new_base)  set_req(i, empty_mem); | 
|---|
| 4657 | } | 
|---|
| 4658 | } | 
|---|
| 4659 | } | 
|---|
| 4660 |  | 
|---|
| 4661 | //------------------------------out_RegMask------------------------------------ | 
|---|
| 4662 | const RegMask &MergeMemNode::out_RegMask() const { | 
|---|
| 4663 | return RegMask::Empty; | 
|---|
| 4664 | } | 
|---|
| 4665 |  | 
|---|
| 4666 | //------------------------------dump_spec-------------------------------------- | 
|---|
| 4667 | #ifndef PRODUCT | 
|---|
| 4668 | void MergeMemNode::dump_spec(outputStream *st) const { | 
|---|
| 4669 | st->print( " {"); | 
|---|
| 4670 | Node* base_mem = base_memory(); | 
|---|
| 4671 | for( uint i = Compile::AliasIdxRaw; i < req(); i++ ) { | 
|---|
| 4672 | Node* mem = (in(i) != NULL) ? memory_at(i) : base_mem; | 
|---|
| 4673 | if (mem == base_mem) { st->print( " -"); continue; } | 
|---|
| 4674 | st->print( " N%d:", mem->_idx ); | 
|---|
| 4675 | Compile::current()->get_adr_type(i)->dump_on(st); | 
|---|
| 4676 | } | 
|---|
| 4677 | st->print( " }"); | 
|---|
| 4678 | } | 
|---|
| 4679 | #endif // !PRODUCT | 
|---|
| 4680 |  | 
|---|
| 4681 |  | 
|---|
| 4682 | #ifdef ASSERT | 
|---|
| 4683 | static bool might_be_same(Node* a, Node* b) { | 
|---|
| 4684 | if (a == b)  return true; | 
|---|
| 4685 | if (!(a->is_Phi() || b->is_Phi()))  return false; | 
|---|
| 4686 | // phis shift around during optimization | 
|---|
| 4687 | return true;  // pretty stupid... | 
|---|
| 4688 | } | 
|---|
| 4689 |  | 
|---|
| 4690 | // verify a narrow slice (either incoming or outgoing) | 
|---|
| 4691 | static void verify_memory_slice(const MergeMemNode* m, int alias_idx, Node* n) { | 
|---|
| 4692 | if (!VerifyAliases)                return;  // don't bother to verify unless requested | 
|---|
| 4693 | if (VMError::is_error_reported())  return;  // muzzle asserts when debugging an error | 
|---|
| 4694 | if (Node::in_dump())               return;  // muzzle asserts when printing | 
|---|
| 4695 | assert(alias_idx >= Compile::AliasIdxRaw, "must not disturb base_memory or sentinel"); | 
|---|
| 4696 | assert(n != NULL, ""); | 
|---|
| 4697 | // Elide intervening MergeMem's | 
|---|
| 4698 | while (n->is_MergeMem()) { | 
|---|
| 4699 | n = n->as_MergeMem()->memory_at(alias_idx); | 
|---|
| 4700 | } | 
|---|
| 4701 | Compile* C = Compile::current(); | 
|---|
| 4702 | const TypePtr* n_adr_type = n->adr_type(); | 
|---|
| 4703 | if (n == m->empty_memory()) { | 
|---|
| 4704 | // Implicit copy of base_memory() | 
|---|
| 4705 | } else if (n_adr_type != TypePtr::BOTTOM) { | 
|---|
| 4706 | assert(n_adr_type != NULL, "new memory must have a well-defined adr_type"); | 
|---|
| 4707 | assert(C->must_alias(n_adr_type, alias_idx), "new memory must match selected slice"); | 
|---|
| 4708 | } else { | 
|---|
| 4709 | // A few places like make_runtime_call "know" that VM calls are narrow, | 
|---|
| 4710 | // and can be used to update only the VM bits stored as TypeRawPtr::BOTTOM. | 
|---|
| 4711 | bool expected_wide_mem = false; | 
|---|
| 4712 | if (n == m->base_memory()) { | 
|---|
| 4713 | expected_wide_mem = true; | 
|---|
| 4714 | } else if (alias_idx == Compile::AliasIdxRaw || | 
|---|
| 4715 | n == m->memory_at(Compile::AliasIdxRaw)) { | 
|---|
| 4716 | expected_wide_mem = true; | 
|---|
| 4717 | } else if (!C->alias_type(alias_idx)->is_rewritable()) { | 
|---|
| 4718 | // memory can "leak through" calls on channels that | 
|---|
| 4719 | // are write-once.  Allow this also. | 
|---|
| 4720 | expected_wide_mem = true; | 
|---|
| 4721 | } | 
|---|
| 4722 | assert(expected_wide_mem, "expected narrow slice replacement"); | 
|---|
| 4723 | } | 
|---|
| 4724 | } | 
|---|
| 4725 | #else // !ASSERT | 
|---|
| 4726 | #define verify_memory_slice(m,i,n) (void)(0)  // PRODUCT version is no-op | 
|---|
| 4727 | #endif | 
|---|
| 4728 |  | 
|---|
| 4729 |  | 
|---|
| 4730 | //-----------------------------memory_at--------------------------------------- | 
|---|
| 4731 | Node* MergeMemNode::memory_at(uint alias_idx) const { | 
|---|
| 4732 | assert(alias_idx >= Compile::AliasIdxRaw || | 
|---|
| 4733 | alias_idx == Compile::AliasIdxBot && Compile::current()->AliasLevel() == 0, | 
|---|
| 4734 | "must avoid base_memory and AliasIdxTop"); | 
|---|
| 4735 |  | 
|---|
| 4736 | // Otherwise, it is a narrow slice. | 
|---|
| 4737 | Node* n = alias_idx < req() ? in(alias_idx) : empty_memory(); | 
|---|
| 4738 | Compile *C = Compile::current(); | 
|---|
| 4739 | if (is_empty_memory(n)) { | 
|---|
| 4740 | // the array is sparse; empty slots are the "top" node | 
|---|
| 4741 | n = base_memory(); | 
|---|
| 4742 | assert(Node::in_dump() | 
|---|
| 4743 | || n == NULL || n->bottom_type() == Type::TOP | 
|---|
| 4744 | || n->adr_type() == NULL // address is TOP | 
|---|
| 4745 | || n->adr_type() == TypePtr::BOTTOM | 
|---|
| 4746 | || n->adr_type() == TypeRawPtr::BOTTOM | 
|---|
| 4747 | || Compile::current()->AliasLevel() == 0, | 
|---|
| 4748 | "must be a wide memory"); | 
|---|
| 4749 | // AliasLevel == 0 if we are organizing the memory states manually. | 
|---|
| 4750 | // See verify_memory_slice for comments on TypeRawPtr::BOTTOM. | 
|---|
| 4751 | } else { | 
|---|
| 4752 | // make sure the stored slice is sane | 
|---|
| 4753 | #ifdef ASSERT | 
|---|
| 4754 | if (VMError::is_error_reported() || Node::in_dump()) { | 
|---|
| 4755 | } else if (might_be_same(n, base_memory())) { | 
|---|
| 4756 | // Give it a pass:  It is a mostly harmless repetition of the base. | 
|---|
| 4757 | // This can arise normally from node subsumption during optimization. | 
|---|
| 4758 | } else { | 
|---|
| 4759 | verify_memory_slice(this, alias_idx, n); | 
|---|
| 4760 | } | 
|---|
| 4761 | #endif | 
|---|
| 4762 | } | 
|---|
| 4763 | return n; | 
|---|
| 4764 | } | 
|---|
| 4765 |  | 
|---|
| 4766 | //---------------------------set_memory_at------------------------------------- | 
|---|
| 4767 | void MergeMemNode::set_memory_at(uint alias_idx, Node *n) { | 
|---|
| 4768 | verify_memory_slice(this, alias_idx, n); | 
|---|
| 4769 | Node* empty_mem = empty_memory(); | 
|---|
| 4770 | if (n == base_memory())  n = empty_mem;  // collapse default | 
|---|
| 4771 | uint need_req = alias_idx+1; | 
|---|
| 4772 | if (req() < need_req) { | 
|---|
| 4773 | if (n == empty_mem)  return;  // already the default, so do not grow me | 
|---|
| 4774 | // grow the sparse array | 
|---|
| 4775 | do { | 
|---|
| 4776 | add_req(empty_mem); | 
|---|
| 4777 | } while (req() < need_req); | 
|---|
| 4778 | } | 
|---|
| 4779 | set_req( alias_idx, n ); | 
|---|
| 4780 | } | 
|---|
| 4781 |  | 
|---|
| 4782 |  | 
|---|
| 4783 |  | 
|---|
| 4784 | //--------------------------iteration_setup------------------------------------ | 
|---|
| 4785 | void MergeMemNode::iteration_setup(const MergeMemNode* other) { | 
|---|
| 4786 | if (other != NULL) { | 
|---|
| 4787 | grow_to_match(other); | 
|---|
| 4788 | // invariant:  the finite support of mm2 is within mm->req() | 
|---|
| 4789 | #ifdef ASSERT | 
|---|
| 4790 | for (uint i = req(); i < other->req(); i++) { | 
|---|
| 4791 | assert(other->is_empty_memory(other->in(i)), "slice left uncovered"); | 
|---|
| 4792 | } | 
|---|
| 4793 | #endif | 
|---|
| 4794 | } | 
|---|
| 4795 | // Replace spurious copies of base_memory by top. | 
|---|
| 4796 | Node* base_mem = base_memory(); | 
|---|
| 4797 | if (base_mem != NULL && !base_mem->is_top()) { | 
|---|
| 4798 | for (uint i = Compile::AliasIdxBot+1, imax = req(); i < imax; i++) { | 
|---|
| 4799 | if (in(i) == base_mem) | 
|---|
| 4800 | set_req(i, empty_memory()); | 
|---|
| 4801 | } | 
|---|
| 4802 | } | 
|---|
| 4803 | } | 
|---|
| 4804 |  | 
|---|
| 4805 | //---------------------------grow_to_match------------------------------------- | 
|---|
| 4806 | void MergeMemNode::grow_to_match(const MergeMemNode* other) { | 
|---|
| 4807 | Node* empty_mem = empty_memory(); | 
|---|
| 4808 | assert(other->is_empty_memory(empty_mem), "consistent sentinels"); | 
|---|
| 4809 | // look for the finite support of the other memory | 
|---|
| 4810 | for (uint i = other->req(); --i >= req(); ) { | 
|---|
| 4811 | if (other->in(i) != empty_mem) { | 
|---|
| 4812 | uint new_len = i+1; | 
|---|
| 4813 | while (req() < new_len)  add_req(empty_mem); | 
|---|
| 4814 | break; | 
|---|
| 4815 | } | 
|---|
| 4816 | } | 
|---|
| 4817 | } | 
|---|
| 4818 |  | 
|---|
| 4819 | //---------------------------verify_sparse------------------------------------- | 
|---|
| 4820 | #ifndef PRODUCT | 
|---|
| 4821 | bool MergeMemNode::verify_sparse() const { | 
|---|
| 4822 | assert(is_empty_memory(make_empty_memory()), "sane sentinel"); | 
|---|
| 4823 | Node* base_mem = base_memory(); | 
|---|
| 4824 | // The following can happen in degenerate cases, since empty==top. | 
|---|
| 4825 | if (is_empty_memory(base_mem))  return true; | 
|---|
| 4826 | for (uint i = Compile::AliasIdxRaw; i < req(); i++) { | 
|---|
| 4827 | assert(in(i) != NULL, "sane slice"); | 
|---|
| 4828 | if (in(i) == base_mem)  return false;  // should have been the sentinel value! | 
|---|
| 4829 | } | 
|---|
| 4830 | return true; | 
|---|
| 4831 | } | 
|---|
| 4832 |  | 
|---|
| 4833 | bool MergeMemStream::match_memory(Node* mem, const MergeMemNode* mm, int idx) { | 
|---|
| 4834 | Node* n; | 
|---|
| 4835 | n = mm->in(idx); | 
|---|
| 4836 | if (mem == n)  return true;  // might be empty_memory() | 
|---|
| 4837 | n = (idx == Compile::AliasIdxBot)? mm->base_memory(): mm->memory_at(idx); | 
|---|
| 4838 | if (mem == n)  return true; | 
|---|
| 4839 | while (n->is_Phi() && (n = n->as_Phi()->is_copy()) != NULL) { | 
|---|
| 4840 | if (mem == n)  return true; | 
|---|
| 4841 | if (n == NULL)  break; | 
|---|
| 4842 | } | 
|---|
| 4843 | return false; | 
|---|
| 4844 | } | 
|---|
| 4845 | #endif // !PRODUCT | 
|---|
| 4846 |  | 
|---|