| 1 | /* |
| 2 | * Copyright 2010 Google Inc. |
| 3 | * |
| 4 | * Use of this source code is governed by a BSD-style license that can be |
| 5 | * found in the LICENSE file. |
| 6 | */ |
| 7 | |
| 8 | #include "src/gpu/SkGr.h" |
| 9 | |
| 10 | #include "include/core/SkCanvas.h" |
| 11 | #include "include/core/SkColorFilter.h" |
| 12 | #include "include/core/SkData.h" |
| 13 | #include "include/core/SkPixelRef.h" |
| 14 | #include "include/effects/SkRuntimeEffect.h" |
| 15 | #include "include/gpu/GrContext.h" |
| 16 | #include "include/gpu/GrTypes.h" |
| 17 | #include "include/private/GrRecordingContext.h" |
| 18 | #include "include/private/SkIDChangeListener.h" |
| 19 | #include "include/private/SkImageInfoPriv.h" |
| 20 | #include "include/private/SkTemplates.h" |
| 21 | #include "src/core/SkAutoMalloc.h" |
| 22 | #include "src/core/SkBlendModePriv.h" |
| 23 | #include "src/core/SkColorSpacePriv.h" |
| 24 | #include "src/core/SkImagePriv.h" |
| 25 | #include "src/core/SkMaskFilterBase.h" |
| 26 | #include "src/core/SkMessageBus.h" |
| 27 | #include "src/core/SkMipMap.h" |
| 28 | #include "src/core/SkPaintPriv.h" |
| 29 | #include "src/core/SkResourceCache.h" |
| 30 | #include "src/core/SkTraceEvent.h" |
| 31 | #include "src/gpu/GrBitmapTextureMaker.h" |
| 32 | #include "src/gpu/GrCaps.h" |
| 33 | #include "src/gpu/GrColorSpaceXform.h" |
| 34 | #include "src/gpu/GrContextPriv.h" |
| 35 | #include "src/gpu/GrGpuResourcePriv.h" |
| 36 | #include "src/gpu/GrPaint.h" |
| 37 | #include "src/gpu/GrProxyProvider.h" |
| 38 | #include "src/gpu/GrRecordingContextPriv.h" |
| 39 | #include "src/gpu/GrTextureProxy.h" |
| 40 | #include "src/gpu/GrXferProcessor.h" |
| 41 | #include "src/gpu/effects/GrBicubicEffect.h" |
| 42 | #include "src/gpu/effects/GrPorterDuffXferProcessor.h" |
| 43 | #include "src/gpu/effects/GrSkSLFP.h" |
| 44 | #include "src/gpu/effects/GrXfermodeFragmentProcessor.h" |
| 45 | #include "src/gpu/effects/generated/GrClampFragmentProcessor.h" |
| 46 | #include "src/gpu/effects/generated/GrConstColorProcessor.h" |
| 47 | #include "src/image/SkImage_Base.h" |
| 48 | #include "src/shaders/SkShaderBase.h" |
| 49 | |
| 50 | GR_FP_SRC_STRING SKSL_DITHER_SRC = R"( |
| 51 | // This controls the range of values added to color channels |
| 52 | in int rangeType; |
| 53 | |
| 54 | void main(float2 p, inout half4 color) { |
| 55 | half value; |
| 56 | half range; |
| 57 | @switch (rangeType) { |
| 58 | case 0: |
| 59 | range = 1.0 / 255.0; |
| 60 | break; |
| 61 | case 1: |
| 62 | range = 1.0 / 63.0; |
| 63 | break; |
| 64 | default: |
| 65 | // Experimentally this looks better than the expected value of 1/15. |
| 66 | range = 1.0 / 15.0; |
| 67 | break; |
| 68 | } |
| 69 | @if (sk_Caps.integerSupport) { |
| 70 | // This ordered-dither code is lifted from the cpu backend. |
| 71 | uint x = uint(p.x); |
| 72 | uint y = uint(p.y); |
| 73 | uint m = (y & 1) << 5 | (x & 1) << 4 | |
| 74 | (y & 2) << 2 | (x & 2) << 1 | |
| 75 | (y & 4) >> 1 | (x & 4) >> 2; |
| 76 | value = half(m) * 1.0 / 64.0 - 63.0 / 128.0; |
| 77 | } else { |
| 78 | // Simulate the integer effect used above using step/mod. For speed, simulates a 4x4 |
| 79 | // dither pattern rather than an 8x8 one. |
| 80 | half4 modValues = mod(half4(half(p.x), half(p.y), half(p.x), half(p.y)), half4(2.0, 2.0, 4.0, 4.0)); |
| 81 | half4 stepValues = step(modValues, half4(1.0, 1.0, 2.0, 2.0)); |
| 82 | value = dot(stepValues, half4(8.0 / 16.0, 4.0 / 16.0, 2.0 / 16.0, 1.0 / 16.0)) - 15.0 / 32.0; |
| 83 | } |
| 84 | // For each color channel, add the random offset to the channel value and then clamp |
| 85 | // between 0 and alpha to keep the color premultiplied. |
| 86 | color = half4(clamp(color.rgb + value * range, 0.0, color.a), color.a); |
| 87 | } |
| 88 | )" ; |
| 89 | |
| 90 | void GrMakeKeyFromImageID(GrUniqueKey* key, uint32_t imageID, const SkIRect& imageBounds) { |
| 91 | SkASSERT(key); |
| 92 | SkASSERT(imageID); |
| 93 | SkASSERT(!imageBounds.isEmpty()); |
| 94 | static const GrUniqueKey::Domain kImageIDDomain = GrUniqueKey::GenerateDomain(); |
| 95 | GrUniqueKey::Builder builder(key, kImageIDDomain, 5, "Image" ); |
| 96 | builder[0] = imageID; |
| 97 | builder[1] = imageBounds.fLeft; |
| 98 | builder[2] = imageBounds.fTop; |
| 99 | builder[3] = imageBounds.fRight; |
| 100 | builder[4] = imageBounds.fBottom; |
| 101 | } |
| 102 | |
| 103 | //////////////////////////////////////////////////////////////////////////////// |
| 104 | |
| 105 | sk_sp<SkIDChangeListener> GrMakeUniqueKeyInvalidationListener(GrUniqueKey* key, |
| 106 | uint32_t contextID) { |
| 107 | class Listener : public SkIDChangeListener { |
| 108 | public: |
| 109 | Listener(const GrUniqueKey& key, uint32_t contextUniqueID) : fMsg(key, contextUniqueID) {} |
| 110 | |
| 111 | void changed() override { SkMessageBus<GrUniqueKeyInvalidatedMessage>::Post(fMsg); } |
| 112 | |
| 113 | private: |
| 114 | GrUniqueKeyInvalidatedMessage fMsg; |
| 115 | }; |
| 116 | |
| 117 | auto listener = sk_make_sp<Listener>(*key, contextID); |
| 118 | |
| 119 | // We stick a SkData on the key that calls invalidateListener in its destructor. |
| 120 | auto invalidateListener = [](const void* ptr, void* /*context*/) { |
| 121 | auto listener = reinterpret_cast<const sk_sp<Listener>*>(ptr); |
| 122 | (*listener)->markShouldDeregister(); |
| 123 | delete listener; |
| 124 | }; |
| 125 | auto data = SkData::MakeWithProc(new sk_sp<Listener>(listener), |
| 126 | sizeof(sk_sp<Listener>), |
| 127 | invalidateListener, |
| 128 | nullptr); |
| 129 | SkASSERT(!key->getCustomData()); |
| 130 | key->setCustomData(std::move(data)); |
| 131 | return std::move(listener); |
| 132 | } |
| 133 | |
| 134 | sk_sp<GrSurfaceProxy> GrCopyBaseMipMapToTextureProxy(GrRecordingContext* ctx, |
| 135 | GrSurfaceProxy* baseProxy, |
| 136 | GrSurfaceOrigin origin, |
| 137 | SkBudgeted budgeted) { |
| 138 | SkASSERT(baseProxy); |
| 139 | |
| 140 | if (!ctx->priv().caps()->isFormatCopyable(baseProxy->backendFormat())) { |
| 141 | return {}; |
| 142 | } |
| 143 | auto copy = GrSurfaceProxy::Copy(ctx, baseProxy, origin, GrMipMapped::kYes, |
| 144 | SkBackingFit::kExact, budgeted); |
| 145 | if (!copy) { |
| 146 | return {}; |
| 147 | } |
| 148 | SkASSERT(copy->asTextureProxy()); |
| 149 | return copy; |
| 150 | } |
| 151 | |
| 152 | GrSurfaceProxyView GrCopyBaseMipMapToView(GrRecordingContext* context, |
| 153 | GrSurfaceProxyView src, |
| 154 | SkBudgeted budgeted) { |
| 155 | auto origin = src.origin(); |
| 156 | auto swizzle = src.swizzle(); |
| 157 | auto* proxy = src.proxy(); |
| 158 | return {GrCopyBaseMipMapToTextureProxy(context, proxy, origin, budgeted), origin, swizzle}; |
| 159 | } |
| 160 | |
| 161 | GrSurfaceProxyView GrRefCachedBitmapView(GrRecordingContext* ctx, const SkBitmap& bitmap, |
| 162 | GrMipMapped mipMapped) { |
| 163 | GrBitmapTextureMaker maker(ctx, bitmap, GrImageTexGenPolicy::kDraw); |
| 164 | return maker.view(mipMapped); |
| 165 | } |
| 166 | |
| 167 | GrSurfaceProxyView GrMakeCachedBitmapProxyView(GrRecordingContext* context, |
| 168 | const SkBitmap& bitmap) { |
| 169 | if (!bitmap.peekPixels(nullptr)) { |
| 170 | return {}; |
| 171 | } |
| 172 | |
| 173 | GrBitmapTextureMaker maker(context, bitmap, GrImageTexGenPolicy::kDraw); |
| 174 | return maker.view(GrMipMapped::kNo); |
| 175 | } |
| 176 | |
| 177 | /////////////////////////////////////////////////////////////////////////////// |
| 178 | |
| 179 | SkPMColor4f SkColorToPMColor4f(SkColor c, const GrColorInfo& colorInfo) { |
| 180 | SkColor4f color = SkColor4f::FromColor(c); |
| 181 | if (auto* xform = colorInfo.colorSpaceXformFromSRGB()) { |
| 182 | color = xform->apply(color); |
| 183 | } |
| 184 | return color.premul(); |
| 185 | } |
| 186 | |
| 187 | SkColor4f SkColor4fPrepForDst(SkColor4f color, const GrColorInfo& colorInfo) { |
| 188 | if (auto* xform = colorInfo.colorSpaceXformFromSRGB()) { |
| 189 | color = xform->apply(color); |
| 190 | } |
| 191 | return color; |
| 192 | } |
| 193 | |
| 194 | /////////////////////////////////////////////////////////////////////////////// |
| 195 | |
| 196 | static inline bool blend_requires_shader(const SkBlendMode mode) { |
| 197 | return SkBlendMode::kDst != mode; |
| 198 | } |
| 199 | |
| 200 | #ifndef SK_IGNORE_GPU_DITHER |
| 201 | static inline int32_t dither_range_type_for_config(GrColorType dstColorType) { |
| 202 | switch (dstColorType) { |
| 203 | case GrColorType::kUnknown: |
| 204 | case GrColorType::kGray_8: |
| 205 | case GrColorType::kRGBA_8888: |
| 206 | case GrColorType::kRGB_888x: |
| 207 | case GrColorType::kRG_88: |
| 208 | case GrColorType::kBGRA_8888: |
| 209 | case GrColorType::kRG_1616: |
| 210 | case GrColorType::kRGBA_16161616: |
| 211 | case GrColorType::kRG_F16: |
| 212 | case GrColorType::kRGBA_8888_SRGB: |
| 213 | case GrColorType::kRGBA_1010102: |
| 214 | case GrColorType::kAlpha_F16: |
| 215 | case GrColorType::kRGBA_F32: |
| 216 | case GrColorType::kRGBA_F16: |
| 217 | case GrColorType::kRGBA_F16_Clamped: |
| 218 | case GrColorType::kAlpha_8: |
| 219 | case GrColorType::kAlpha_8xxx: |
| 220 | case GrColorType::kAlpha_16: |
| 221 | case GrColorType::kAlpha_F32xxx: |
| 222 | case GrColorType::kGray_8xxx: |
| 223 | case GrColorType::kRGB_888: |
| 224 | case GrColorType::kR_8: |
| 225 | case GrColorType::kR_16: |
| 226 | case GrColorType::kR_F16: |
| 227 | case GrColorType::kGray_F16: |
| 228 | return 0; |
| 229 | case GrColorType::kBGR_565: |
| 230 | return 1; |
| 231 | case GrColorType::kABGR_4444: |
| 232 | return 2; |
| 233 | } |
| 234 | SkUNREACHABLE; |
| 235 | } |
| 236 | #endif |
| 237 | |
| 238 | static inline bool skpaint_to_grpaint_impl(GrRecordingContext* context, |
| 239 | const GrColorInfo& dstColorInfo, |
| 240 | const SkPaint& skPaint, |
| 241 | const SkMatrix& viewM, |
| 242 | std::unique_ptr<GrFragmentProcessor>* shaderProcessor, |
| 243 | SkBlendMode* primColorMode, |
| 244 | GrPaint* grPaint) { |
| 245 | // Convert SkPaint color to 4f format in the destination color space |
| 246 | SkColor4f origColor = SkColor4fPrepForDst(skPaint.getColor4f(), dstColorInfo); |
| 247 | |
| 248 | GrFPArgs fpArgs(context, &viewM, skPaint.getFilterQuality(), &dstColorInfo); |
| 249 | |
| 250 | // Setup the initial color considering the shader, the SkPaint color, and the presence or not |
| 251 | // of per-vertex colors. |
| 252 | std::unique_ptr<GrFragmentProcessor> shaderFP; |
| 253 | if (!primColorMode || blend_requires_shader(*primColorMode)) { |
| 254 | fpArgs.fInputColorIsOpaque = origColor.isOpaque(); |
| 255 | if (shaderProcessor) { |
| 256 | shaderFP = std::move(*shaderProcessor); |
| 257 | } else if (const auto* shader = as_SB(skPaint.getShader())) { |
| 258 | shaderFP = shader->asFragmentProcessor(fpArgs); |
| 259 | if (!shaderFP) { |
| 260 | return false; |
| 261 | } |
| 262 | } |
| 263 | } |
| 264 | |
| 265 | // Set this in below cases if the output of the shader/paint-color/paint-alpha/primXfermode is |
| 266 | // a known constant value. In that case we can simply apply a color filter during this |
| 267 | // conversion without converting the color filter to a GrFragmentProcessor. |
| 268 | bool applyColorFilterToPaintColor = false; |
| 269 | if (shaderFP) { |
| 270 | if (primColorMode) { |
| 271 | // There is a blend between the primitive color and the shader color. The shader sees |
| 272 | // the opaque paint color. The shader's output is blended using the provided mode by |
| 273 | // the primitive color. The blended color is then modulated by the paint's alpha. |
| 274 | |
| 275 | // The geometry processor will insert the primitive color to start the color chain, so |
| 276 | // the GrPaint color will be ignored. |
| 277 | |
| 278 | SkPMColor4f shaderInput = origColor.makeOpaque().premul(); |
| 279 | shaderFP = GrFragmentProcessor::OverrideInput(std::move(shaderFP), shaderInput); |
| 280 | shaderFP = GrXfermodeFragmentProcessor::MakeFromSrcProcessor(std::move(shaderFP), |
| 281 | *primColorMode); |
| 282 | |
| 283 | // The above may return null if compose results in a pass through of the prim color. |
| 284 | if (shaderFP) { |
| 285 | grPaint->addColorFragmentProcessor(std::move(shaderFP)); |
| 286 | } |
| 287 | |
| 288 | // We can ignore origColor here - alpha is unchanged by gamma |
| 289 | float paintAlpha = skPaint.getColor4f().fA; |
| 290 | if (1.0f != paintAlpha) { |
| 291 | // No gamut conversion - paintAlpha is a (linear) alpha value, splatted to all |
| 292 | // color channels. It's value should be treated as the same in ANY color space. |
| 293 | grPaint->addColorFragmentProcessor(GrConstColorProcessor::Make( |
| 294 | { paintAlpha, paintAlpha, paintAlpha, paintAlpha }, |
| 295 | GrConstColorProcessor::InputMode::kModulateRGBA)); |
| 296 | } |
| 297 | } else { |
| 298 | // The shader's FP sees the paint *unpremul* color |
| 299 | SkPMColor4f origColorAsPM = { origColor.fR, origColor.fG, origColor.fB, origColor.fA }; |
| 300 | grPaint->setColor4f(origColorAsPM); |
| 301 | grPaint->addColorFragmentProcessor(std::move(shaderFP)); |
| 302 | } |
| 303 | } else { |
| 304 | if (primColorMode) { |
| 305 | // There is a blend between the primitive color and the paint color. The blend considers |
| 306 | // the opaque paint color. The paint's alpha is applied to the post-blended color. |
| 307 | SkPMColor4f opaqueColor = origColor.makeOpaque().premul(); |
| 308 | auto processor = GrConstColorProcessor::Make(opaqueColor, |
| 309 | GrConstColorProcessor::InputMode::kIgnore); |
| 310 | processor = GrXfermodeFragmentProcessor::MakeFromSrcProcessor(std::move(processor), |
| 311 | *primColorMode); |
| 312 | if (processor) { |
| 313 | grPaint->addColorFragmentProcessor(std::move(processor)); |
| 314 | } |
| 315 | |
| 316 | grPaint->setColor4f(opaqueColor); |
| 317 | |
| 318 | // We can ignore origColor here - alpha is unchanged by gamma |
| 319 | float paintAlpha = skPaint.getColor4f().fA; |
| 320 | if (1.0f != paintAlpha) { |
| 321 | // No gamut conversion - paintAlpha is a (linear) alpha value, splatted to all |
| 322 | // color channels. It's value should be treated as the same in ANY color space. |
| 323 | grPaint->addColorFragmentProcessor(GrConstColorProcessor::Make( |
| 324 | { paintAlpha, paintAlpha, paintAlpha, paintAlpha }, |
| 325 | GrConstColorProcessor::InputMode::kModulateRGBA)); |
| 326 | } |
| 327 | } else { |
| 328 | // No shader, no primitive color. |
| 329 | grPaint->setColor4f(origColor.premul()); |
| 330 | applyColorFilterToPaintColor = true; |
| 331 | } |
| 332 | } |
| 333 | |
| 334 | SkColorFilter* colorFilter = skPaint.getColorFilter(); |
| 335 | if (colorFilter) { |
| 336 | if (applyColorFilterToPaintColor) { |
| 337 | SkColorSpace* dstCS = dstColorInfo.colorSpace(); |
| 338 | grPaint->setColor4f(colorFilter->filterColor4f(origColor, dstCS, dstCS).premul()); |
| 339 | } else { |
| 340 | auto cfFP = colorFilter->asFragmentProcessor(context, dstColorInfo); |
| 341 | if (cfFP) { |
| 342 | grPaint->addColorFragmentProcessor(std::move(cfFP)); |
| 343 | } else { |
| 344 | return false; |
| 345 | } |
| 346 | } |
| 347 | } |
| 348 | |
| 349 | SkMaskFilterBase* maskFilter = as_MFB(skPaint.getMaskFilter()); |
| 350 | if (maskFilter) { |
| 351 | // We may have set this before passing to the SkShader. |
| 352 | fpArgs.fInputColorIsOpaque = false; |
| 353 | if (auto mfFP = maskFilter->asFragmentProcessor(fpArgs)) { |
| 354 | grPaint->addCoverageFragmentProcessor(std::move(mfFP)); |
| 355 | } |
| 356 | } |
| 357 | |
| 358 | // When the xfermode is null on the SkPaint (meaning kSrcOver) we need the XPFactory field on |
| 359 | // the GrPaint to also be null (also kSrcOver). |
| 360 | SkASSERT(!grPaint->getXPFactory()); |
| 361 | if (!skPaint.isSrcOver()) { |
| 362 | grPaint->setXPFactory(SkBlendMode_AsXPFactory(skPaint.getBlendMode())); |
| 363 | } |
| 364 | |
| 365 | #ifndef SK_IGNORE_GPU_DITHER |
| 366 | GrColorType ct = dstColorInfo.colorType(); |
| 367 | if (SkPaintPriv::ShouldDither(skPaint, GrColorTypeToSkColorType(ct)) && |
| 368 | grPaint->numColorFragmentProcessors() > 0) { |
| 369 | int32_t ditherRange = dither_range_type_for_config(ct); |
| 370 | if (ditherRange >= 0) { |
| 371 | static auto effect = std::get<0>(SkRuntimeEffect::Make(SkString(SKSL_DITHER_SRC))); |
| 372 | auto ditherFP = GrSkSLFP::Make(context, effect, "Dither" , |
| 373 | SkData::MakeWithCopy(&ditherRange, sizeof(ditherRange))); |
| 374 | if (ditherFP) { |
| 375 | grPaint->addColorFragmentProcessor(std::move(ditherFP)); |
| 376 | } |
| 377 | } |
| 378 | } |
| 379 | #endif |
| 380 | if (GrColorTypeClampType(dstColorInfo.colorType()) == GrClampType::kManual) { |
| 381 | if (grPaint->numColorFragmentProcessors()) { |
| 382 | grPaint->addColorFragmentProcessor(GrClampFragmentProcessor::Make(false)); |
| 383 | } else { |
| 384 | auto color = grPaint->getColor4f(); |
| 385 | grPaint->setColor4f({SkTPin(color.fR, 0.f, 1.f), |
| 386 | SkTPin(color.fG, 0.f, 1.f), |
| 387 | SkTPin(color.fB, 0.f, 1.f), |
| 388 | SkTPin(color.fA, 0.f, 1.f)}); |
| 389 | } |
| 390 | } |
| 391 | return true; |
| 392 | } |
| 393 | |
| 394 | bool SkPaintToGrPaint(GrRecordingContext* context, const GrColorInfo& dstColorInfo, |
| 395 | const SkPaint& skPaint, const SkMatrix& viewM, GrPaint* grPaint) { |
| 396 | return skpaint_to_grpaint_impl(context, dstColorInfo, skPaint, viewM, nullptr, nullptr, |
| 397 | grPaint); |
| 398 | } |
| 399 | |
| 400 | /** Replaces the SkShader (if any) on skPaint with the passed in GrFragmentProcessor. */ |
| 401 | bool SkPaintToGrPaintReplaceShader(GrRecordingContext* context, |
| 402 | const GrColorInfo& dstColorInfo, |
| 403 | const SkPaint& skPaint, |
| 404 | std::unique_ptr<GrFragmentProcessor> shaderFP, |
| 405 | GrPaint* grPaint) { |
| 406 | if (!shaderFP) { |
| 407 | return false; |
| 408 | } |
| 409 | return skpaint_to_grpaint_impl(context, dstColorInfo, skPaint, SkMatrix::I(), &shaderFP, |
| 410 | nullptr, grPaint); |
| 411 | } |
| 412 | |
| 413 | /** Ignores the SkShader (if any) on skPaint. */ |
| 414 | bool SkPaintToGrPaintNoShader(GrRecordingContext* context, |
| 415 | const GrColorInfo& dstColorInfo, |
| 416 | const SkPaint& skPaint, |
| 417 | GrPaint* grPaint) { |
| 418 | // Use a ptr to a nullptr to to indicate that the SkShader is ignored and not replaced. |
| 419 | std::unique_ptr<GrFragmentProcessor> nullShaderFP(nullptr); |
| 420 | return skpaint_to_grpaint_impl(context, dstColorInfo, skPaint, SkMatrix::I(), &nullShaderFP, |
| 421 | nullptr, grPaint); |
| 422 | } |
| 423 | |
| 424 | /** Blends the SkPaint's shader (or color if no shader) with a per-primitive color which must |
| 425 | be setup as a vertex attribute using the specified SkBlendMode. */ |
| 426 | bool SkPaintToGrPaintWithXfermode(GrRecordingContext* context, |
| 427 | const GrColorInfo& dstColorInfo, |
| 428 | const SkPaint& skPaint, |
| 429 | const SkMatrix& viewM, |
| 430 | SkBlendMode primColorMode, |
| 431 | GrPaint* grPaint) { |
| 432 | return skpaint_to_grpaint_impl(context, dstColorInfo, skPaint, viewM, nullptr, &primColorMode, |
| 433 | grPaint); |
| 434 | } |
| 435 | |
| 436 | bool SkPaintToGrPaintWithTexture(GrRecordingContext* context, |
| 437 | const GrColorInfo& dstColorInfo, |
| 438 | const SkPaint& paint, |
| 439 | const SkMatrix& viewM, |
| 440 | std::unique_ptr<GrFragmentProcessor> fp, |
| 441 | bool textureIsAlphaOnly, |
| 442 | GrPaint* grPaint) { |
| 443 | std::unique_ptr<GrFragmentProcessor> shaderFP; |
| 444 | if (textureIsAlphaOnly) { |
| 445 | if (const auto* shader = as_SB(paint.getShader())) { |
| 446 | shaderFP = shader->asFragmentProcessor( |
| 447 | GrFPArgs(context, &viewM, paint.getFilterQuality(), &dstColorInfo)); |
| 448 | if (!shaderFP) { |
| 449 | return false; |
| 450 | } |
| 451 | std::unique_ptr<GrFragmentProcessor> fpSeries[] = { std::move(shaderFP), std::move(fp) }; |
| 452 | shaderFP = GrFragmentProcessor::RunInSeries(fpSeries, 2); |
| 453 | } else { |
| 454 | shaderFP = GrFragmentProcessor::MakeInputPremulAndMulByOutput(std::move(fp)); |
| 455 | } |
| 456 | } else { |
| 457 | if (paint.getColor4f().isOpaque()) { |
| 458 | shaderFP = GrFragmentProcessor::OverrideInput(std::move(fp), SK_PMColor4fWHITE, false); |
| 459 | } else { |
| 460 | shaderFP = GrFragmentProcessor::MulChildByInputAlpha(std::move(fp)); |
| 461 | } |
| 462 | } |
| 463 | |
| 464 | return SkPaintToGrPaintReplaceShader(context, dstColorInfo, paint, std::move(shaderFP), |
| 465 | grPaint); |
| 466 | } |
| 467 | |
| 468 | //////////////////////////////////////////////////////////////////////////////////////////////// |
| 469 | |
| 470 | GrSamplerState::Filter GrSkFilterQualityToGrFilterMode(int imageWidth, int imageHeight, |
| 471 | SkFilterQuality paintFilterQuality, |
| 472 | const SkMatrix& viewM, |
| 473 | const SkMatrix& localM, |
| 474 | bool sharpenMipmappedTextures, |
| 475 | bool* doBicubic) { |
| 476 | *doBicubic = false; |
| 477 | if (imageWidth <= 1 && imageHeight <= 1) { |
| 478 | return GrSamplerState::Filter::kNearest; |
| 479 | } |
| 480 | switch (paintFilterQuality) { |
| 481 | case kNone_SkFilterQuality: |
| 482 | return GrSamplerState::Filter::kNearest; |
| 483 | case kLow_SkFilterQuality: |
| 484 | return GrSamplerState::Filter::kBilerp; |
| 485 | case kMedium_SkFilterQuality: { |
| 486 | SkMatrix matrix; |
| 487 | matrix.setConcat(viewM, localM); |
| 488 | // With sharp mips, we bias lookups by -0.5. That means our final LOD is >= 0 until the |
| 489 | // computed LOD is >= 0.5. At what scale factor does a texture get an LOD of 0.5? |
| 490 | // |
| 491 | // Want: 0 = log2(1/s) - 0.5 |
| 492 | // 0.5 = log2(1/s) |
| 493 | // 2^0.5 = 1/s |
| 494 | // 1/2^0.5 = s |
| 495 | // 2^0.5/2 = s |
| 496 | SkScalar mipScale = sharpenMipmappedTextures ? SK_ScalarRoot2Over2 : SK_Scalar1; |
| 497 | if (matrix.getMinScale() < mipScale) { |
| 498 | return GrSamplerState::Filter::kMipMap; |
| 499 | } else { |
| 500 | // Don't trigger MIP level generation unnecessarily. |
| 501 | return GrSamplerState::Filter::kBilerp; |
| 502 | } |
| 503 | } |
| 504 | case kHigh_SkFilterQuality: { |
| 505 | SkMatrix matrix; |
| 506 | matrix.setConcat(viewM, localM); |
| 507 | GrSamplerState::Filter textureFilterMode; |
| 508 | *doBicubic = GrBicubicEffect::ShouldUseBicubic(matrix, &textureFilterMode); |
| 509 | return textureFilterMode; |
| 510 | } |
| 511 | } |
| 512 | SkUNREACHABLE; |
| 513 | } |
| 514 | |