1 | /* |
2 | * Copyright 2017 Google Inc. |
3 | * |
4 | * Use of this source code is governed by a BSD-style license that can be |
5 | * found in the LICENSE file. |
6 | */ |
7 | |
8 | #include "src/gpu/ccpr/GrCCPathProcessor.h" |
9 | |
10 | #include "src/gpu/GrOnFlushResourceProvider.h" |
11 | #include "src/gpu/GrOpsRenderPass.h" |
12 | #include "src/gpu/GrTexture.h" |
13 | #include "src/gpu/GrTexturePriv.h" |
14 | #include "src/gpu/ccpr/GrCCPerFlushResources.h" |
15 | #include "src/gpu/glsl/GrGLSLFragmentShaderBuilder.h" |
16 | #include "src/gpu/glsl/GrGLSLGeometryProcessor.h" |
17 | #include "src/gpu/glsl/GrGLSLProgramBuilder.h" |
18 | #include "src/gpu/glsl/GrGLSLVarying.h" |
19 | |
20 | // Paths are drawn as octagons. Each point on the octagon is the intersection of two lines: one edge |
21 | // from the path's bounding box and one edge from its 45-degree bounding box. The selectors |
22 | // below indicate one corner from the bounding box, paired with a corner from the 45-degree bounding |
23 | // box. The octagon vertex is the point that lies between these two corners, found by intersecting |
24 | // their edges. |
25 | static constexpr float kOctoEdgeNorms[8*4] = { |
26 | // bbox // bbox45 |
27 | 0,0, 0,0, |
28 | 0,0, 1,0, |
29 | 1,0, 1,0, |
30 | 1,0, 1,1, |
31 | 1,1, 1,1, |
32 | 1,1, 0,1, |
33 | 0,1, 0,1, |
34 | 0,1, 0,0, |
35 | }; |
36 | |
37 | GR_DECLARE_STATIC_UNIQUE_KEY(gVertexBufferKey); |
38 | |
39 | sk_sp<const GrGpuBuffer> GrCCPathProcessor::FindVertexBuffer(GrOnFlushResourceProvider* onFlushRP) { |
40 | GR_DEFINE_STATIC_UNIQUE_KEY(gVertexBufferKey); |
41 | return onFlushRP->findOrMakeStaticBuffer(GrGpuBufferType::kVertex, sizeof(kOctoEdgeNorms), |
42 | kOctoEdgeNorms, gVertexBufferKey); |
43 | } |
44 | |
45 | static constexpr uint16_t kRestartStrip = 0xffff; |
46 | |
47 | static constexpr uint16_t kOctoIndicesAsStrips[] = { |
48 | 3, 4, 2, 0, 1, kRestartStrip, // First half. |
49 | 7, 0, 6, 4, 5 // Second half. |
50 | }; |
51 | |
52 | static constexpr uint16_t kOctoIndicesAsTris[] = { |
53 | // First half. |
54 | 3, 4, 2, |
55 | 4, 0, 2, |
56 | 2, 0, 1, |
57 | |
58 | // Second half. |
59 | 7, 0, 6, |
60 | 0, 4, 6, |
61 | 6, 4, 5, |
62 | }; |
63 | |
64 | GR_DECLARE_STATIC_UNIQUE_KEY(gIndexBufferKey); |
65 | |
66 | constexpr GrPrimitiveProcessor::Attribute GrCCPathProcessor::kInstanceAttribs[]; |
67 | constexpr GrPrimitiveProcessor::Attribute GrCCPathProcessor::kCornersAttrib; |
68 | |
69 | sk_sp<const GrGpuBuffer> GrCCPathProcessor::FindIndexBuffer(GrOnFlushResourceProvider* onFlushRP) { |
70 | GR_DEFINE_STATIC_UNIQUE_KEY(gIndexBufferKey); |
71 | if (onFlushRP->caps()->usePrimitiveRestart()) { |
72 | return onFlushRP->findOrMakeStaticBuffer(GrGpuBufferType::kIndex, |
73 | sizeof(kOctoIndicesAsStrips), kOctoIndicesAsStrips, |
74 | gIndexBufferKey); |
75 | } else { |
76 | return onFlushRP->findOrMakeStaticBuffer(GrGpuBufferType::kIndex, |
77 | sizeof(kOctoIndicesAsTris), kOctoIndicesAsTris, |
78 | gIndexBufferKey); |
79 | } |
80 | } |
81 | |
82 | GrCCPathProcessor::GrCCPathProcessor(CoverageMode coverageMode, const GrTexture* atlasTexture, |
83 | const GrSwizzle& swizzle, GrSurfaceOrigin atlasOrigin, |
84 | const SkMatrix& viewMatrixIfUsingLocalCoords) |
85 | : INHERITED(kGrCCPathProcessor_ClassID) |
86 | , fCoverageMode(coverageMode) |
87 | , fAtlasAccess(GrSamplerState::Filter::kNearest, atlasTexture->backendFormat(), swizzle) |
88 | , fAtlasDimensions(atlasTexture->dimensions()) |
89 | , fAtlasOrigin(atlasOrigin) { |
90 | // TODO: Can we just assert that atlas has GrCCAtlas::kTextureOrigin and remove fAtlasOrigin? |
91 | this->setInstanceAttributes(kInstanceAttribs, SK_ARRAY_COUNT(kInstanceAttribs)); |
92 | SkASSERT(this->instanceStride() == sizeof(Instance)); |
93 | |
94 | this->setVertexAttributes(&kCornersAttrib, 1); |
95 | this->setTextureSamplerCnt(1); |
96 | |
97 | if (!viewMatrixIfUsingLocalCoords.invert(&fLocalMatrix)) { |
98 | fLocalMatrix.setIdentity(); |
99 | } |
100 | } |
101 | |
102 | class GrCCPathProcessor::Impl : public GrGLSLGeometryProcessor { |
103 | public: |
104 | void onEmitCode(EmitArgs& args, GrGPArgs* gpArgs) override; |
105 | |
106 | private: |
107 | void setData(const GrGLSLProgramDataManager& pdman, const GrPrimitiveProcessor& primProc, |
108 | const CoordTransformRange& transformRange) override { |
109 | const auto& proc = primProc.cast<GrCCPathProcessor>(); |
110 | pdman.set2f(fAtlasAdjustUniform, |
111 | 1.0f / proc.fAtlasDimensions.fWidth, |
112 | 1.0f / proc.fAtlasDimensions.fHeight); |
113 | this->setTransformDataHelper(proc.fLocalMatrix, pdman, transformRange); |
114 | } |
115 | |
116 | GrGLSLUniformHandler::UniformHandle fAtlasAdjustUniform; |
117 | |
118 | typedef GrGLSLGeometryProcessor INHERITED; |
119 | }; |
120 | |
121 | GrGLSLPrimitiveProcessor* GrCCPathProcessor::createGLSLInstance(const GrShaderCaps&) const { |
122 | return new Impl(); |
123 | } |
124 | |
125 | void GrCCPathProcessor::drawPaths(GrOpFlushState* flushState, const GrPipeline& pipeline, |
126 | const GrSurfaceProxy& atlasProxy, |
127 | const GrCCPerFlushResources& resources, int baseInstance, |
128 | int endInstance, const SkRect& bounds) const { |
129 | const GrCaps& caps = flushState->caps(); |
130 | GrPrimitiveType primitiveType = caps.usePrimitiveRestart() |
131 | ? GrPrimitiveType::kTriangleStrip |
132 | : GrPrimitiveType::kTriangles; |
133 | int numIndicesPerInstance = caps.usePrimitiveRestart() |
134 | ? SK_ARRAY_COUNT(kOctoIndicesAsStrips) |
135 | : SK_ARRAY_COUNT(kOctoIndicesAsTris); |
136 | auto enablePrimitiveRestart = GrPrimitiveRestart(flushState->caps().usePrimitiveRestart()); |
137 | |
138 | GrRenderTargetProxy* rtProxy = flushState->proxy(); |
139 | GrProgramInfo programInfo(rtProxy->numSamples(), rtProxy->numStencilSamples(), |
140 | rtProxy->backendFormat(), flushState->writeView()->origin(), |
141 | &pipeline, this, primitiveType); |
142 | |
143 | flushState->bindPipelineAndScissorClip(programInfo, bounds); |
144 | flushState->bindTextures(*this, atlasProxy, pipeline); |
145 | flushState->bindBuffers(resources.indexBuffer(), resources.instanceBuffer(), |
146 | resources.vertexBuffer(), enablePrimitiveRestart); |
147 | flushState->drawIndexedInstanced(numIndicesPerInstance, 0, endInstance - baseInstance, |
148 | baseInstance, 0); |
149 | } |
150 | |
151 | void GrCCPathProcessor::Impl::onEmitCode(EmitArgs& args, GrGPArgs* gpArgs) { |
152 | using Interpolation = GrGLSLVaryingHandler::Interpolation; |
153 | |
154 | const GrCCPathProcessor& proc = args.fGP.cast<GrCCPathProcessor>(); |
155 | GrGLSLUniformHandler* uniHandler = args.fUniformHandler; |
156 | GrGLSLVaryingHandler* varyingHandler = args.fVaryingHandler; |
157 | bool isCoverageCount = (CoverageMode::kCoverageCount == proc.fCoverageMode); |
158 | |
159 | const char* atlasAdjust; |
160 | fAtlasAdjustUniform = uniHandler->addUniform( |
161 | nullptr, kVertex_GrShaderFlag, kFloat2_GrSLType, "atlas_adjust" , &atlasAdjust); |
162 | |
163 | varyingHandler->emitAttributes(proc); |
164 | |
165 | GrGLSLVarying texcoord((isCoverageCount) ? kFloat3_GrSLType : kFloat2_GrSLType); |
166 | varyingHandler->addVarying("texcoord" , &texcoord); |
167 | |
168 | GrGLSLVarying color(kHalf4_GrSLType); |
169 | varyingHandler->addPassThroughAttribute( |
170 | kInstanceAttribs[kColorAttribIdx], args.fOutputColor, Interpolation::kCanBeFlat); |
171 | |
172 | // The vertex shader bloats and intersects the devBounds and devBounds45 rectangles, in order to |
173 | // find an octagon that circumscribes the (bloated) path. |
174 | GrGLSLVertexBuilder* v = args.fVertBuilder; |
175 | |
176 | // Are we clockwise? (Positive wind => nonzero fill rule.) |
177 | // Or counter-clockwise? (negative wind => even/odd fill rule.) |
178 | v->codeAppendf("float wind = sign(devbounds.z - devbounds.x);" ); |
179 | |
180 | // Find our reference corner from the device-space bounding box. |
181 | v->codeAppendf("float2 refpt = mix(devbounds.xy, devbounds.zw, corners.xy);" ); |
182 | |
183 | // Find our reference corner from the 45-degree bounding box. |
184 | v->codeAppendf("float2 refpt45 = mix(devbounds45.xy, devbounds45.zw, corners.zw);" ); |
185 | // Transform back to device space. |
186 | v->codeAppendf("refpt45 *= float2x2(+1, +1, -wind, +wind) * .5;" ); |
187 | |
188 | // Find the normals to each edge, then intersect them to find our octagon vertex. |
189 | v->codeAppendf("float2x2 N = float2x2(" |
190 | "corners.z + corners.w - 1, corners.w - corners.z, " |
191 | "corners.xy*2 - 1);" ); |
192 | v->codeAppendf("N = float2x2(wind, 0, 0, 1) * N;" ); |
193 | v->codeAppendf("float2 K = float2(dot(N[0], refpt), dot(N[1], refpt45));" ); |
194 | v->codeAppendf("float2 octocoord = K * inverse(N);" ); |
195 | |
196 | // Round the octagon out to ensure we rasterize every pixel the path might touch. (Positive |
197 | // bloatdir means we should take the "ceil" and negative means to take the "floor".) |
198 | // |
199 | // NOTE: If we were just drawing a rect, ceil/floor would be enough. But since there are also |
200 | // diagonals in the octagon that cross through pixel centers, we need to outset by another |
201 | // quarter px to ensure those pixels get rasterized. |
202 | v->codeAppendf("float2 bloatdir = (0 != N[0].x) " |
203 | "? float2(N[0].x, N[1].y)" |
204 | ": float2(N[1].x, N[0].y);" ); |
205 | v->codeAppendf("octocoord = (ceil(octocoord * bloatdir - 1e-4) + 0.25) * bloatdir;" ); |
206 | v->codeAppendf("float2 atlascoord = octocoord + float2(dev_to_atlas_offset);" ); |
207 | |
208 | // Convert to atlas coordinates in order to do our texture lookup. |
209 | if (kTopLeft_GrSurfaceOrigin == proc.fAtlasOrigin) { |
210 | v->codeAppendf("%s.xy = atlascoord * %s;" , texcoord.vsOut(), atlasAdjust); |
211 | } else { |
212 | SkASSERT(kBottomLeft_GrSurfaceOrigin == proc.fAtlasOrigin); |
213 | v->codeAppendf("%s.xy = float2(atlascoord.x * %s.x, 1 - atlascoord.y * %s.y);" , |
214 | texcoord.vsOut(), atlasAdjust, atlasAdjust); |
215 | } |
216 | if (isCoverageCount) { |
217 | v->codeAppendf("%s.z = wind * .5;" , texcoord.vsOut()); |
218 | } |
219 | |
220 | gpArgs->fPositionVar.set(kFloat2_GrSLType, "octocoord" ); |
221 | this->emitTransforms(v, varyingHandler, uniHandler, gpArgs->fPositionVar, proc.fLocalMatrix, |
222 | args.fFPCoordTransformHandler); |
223 | |
224 | // Fragment shader. |
225 | GrGLSLFPFragmentBuilder* f = args.fFragBuilder; |
226 | |
227 | // Look up coverage in the atlas. |
228 | f->codeAppendf("half coverage = " ); |
229 | f->appendTextureLookup(args.fTexSamplers[0], SkStringPrintf("%s.xy" , texcoord.fsIn()).c_str()); |
230 | f->codeAppendf(".a;" ); |
231 | |
232 | if (isCoverageCount) { |
233 | f->codeAppendf("coverage = abs(coverage);" ); |
234 | |
235 | // Scale coverage count by .5. Make it negative for even-odd paths and positive for |
236 | // winding ones. Clamp winding coverage counts at 1.0 (i.e. min(coverage/2, .5)). |
237 | f->codeAppendf("coverage = min(abs(coverage) * half(%s.z), .5);" , texcoord.fsIn()); |
238 | |
239 | // For negative values, this finishes the even-odd sawtooth function. Since positive |
240 | // (winding) values were clamped at "coverage/2 = .5", this only undoes the previous |
241 | // multiply by .5. |
242 | f->codeAppend ("coverage = 1 - abs(fract(coverage) * 2 - 1);" ); |
243 | } |
244 | |
245 | f->codeAppendf("%s = half4(coverage);" , args.fOutputCoverage); |
246 | } |
247 | |