| 1 | /* |
| 2 | * Copyright 2017 Google Inc. |
| 3 | * |
| 4 | * Use of this source code is governed by a BSD-style license that can be |
| 5 | * found in the LICENSE file. |
| 6 | */ |
| 7 | |
| 8 | #include "src/gpu/ccpr/GrCCPathProcessor.h" |
| 9 | |
| 10 | #include "src/gpu/GrOnFlushResourceProvider.h" |
| 11 | #include "src/gpu/GrOpsRenderPass.h" |
| 12 | #include "src/gpu/GrTexture.h" |
| 13 | #include "src/gpu/GrTexturePriv.h" |
| 14 | #include "src/gpu/ccpr/GrCCPerFlushResources.h" |
| 15 | #include "src/gpu/glsl/GrGLSLFragmentShaderBuilder.h" |
| 16 | #include "src/gpu/glsl/GrGLSLGeometryProcessor.h" |
| 17 | #include "src/gpu/glsl/GrGLSLProgramBuilder.h" |
| 18 | #include "src/gpu/glsl/GrGLSLVarying.h" |
| 19 | |
| 20 | // Paths are drawn as octagons. Each point on the octagon is the intersection of two lines: one edge |
| 21 | // from the path's bounding box and one edge from its 45-degree bounding box. The selectors |
| 22 | // below indicate one corner from the bounding box, paired with a corner from the 45-degree bounding |
| 23 | // box. The octagon vertex is the point that lies between these two corners, found by intersecting |
| 24 | // their edges. |
| 25 | static constexpr float kOctoEdgeNorms[8*4] = { |
| 26 | // bbox // bbox45 |
| 27 | 0,0, 0,0, |
| 28 | 0,0, 1,0, |
| 29 | 1,0, 1,0, |
| 30 | 1,0, 1,1, |
| 31 | 1,1, 1,1, |
| 32 | 1,1, 0,1, |
| 33 | 0,1, 0,1, |
| 34 | 0,1, 0,0, |
| 35 | }; |
| 36 | |
| 37 | GR_DECLARE_STATIC_UNIQUE_KEY(gVertexBufferKey); |
| 38 | |
| 39 | sk_sp<const GrGpuBuffer> GrCCPathProcessor::FindVertexBuffer(GrOnFlushResourceProvider* onFlushRP) { |
| 40 | GR_DEFINE_STATIC_UNIQUE_KEY(gVertexBufferKey); |
| 41 | return onFlushRP->findOrMakeStaticBuffer(GrGpuBufferType::kVertex, sizeof(kOctoEdgeNorms), |
| 42 | kOctoEdgeNorms, gVertexBufferKey); |
| 43 | } |
| 44 | |
| 45 | static constexpr uint16_t kRestartStrip = 0xffff; |
| 46 | |
| 47 | static constexpr uint16_t kOctoIndicesAsStrips[] = { |
| 48 | 3, 4, 2, 0, 1, kRestartStrip, // First half. |
| 49 | 7, 0, 6, 4, 5 // Second half. |
| 50 | }; |
| 51 | |
| 52 | static constexpr uint16_t kOctoIndicesAsTris[] = { |
| 53 | // First half. |
| 54 | 3, 4, 2, |
| 55 | 4, 0, 2, |
| 56 | 2, 0, 1, |
| 57 | |
| 58 | // Second half. |
| 59 | 7, 0, 6, |
| 60 | 0, 4, 6, |
| 61 | 6, 4, 5, |
| 62 | }; |
| 63 | |
| 64 | GR_DECLARE_STATIC_UNIQUE_KEY(gIndexBufferKey); |
| 65 | |
| 66 | constexpr GrPrimitiveProcessor::Attribute GrCCPathProcessor::kInstanceAttribs[]; |
| 67 | constexpr GrPrimitiveProcessor::Attribute GrCCPathProcessor::kCornersAttrib; |
| 68 | |
| 69 | sk_sp<const GrGpuBuffer> GrCCPathProcessor::FindIndexBuffer(GrOnFlushResourceProvider* onFlushRP) { |
| 70 | GR_DEFINE_STATIC_UNIQUE_KEY(gIndexBufferKey); |
| 71 | if (onFlushRP->caps()->usePrimitiveRestart()) { |
| 72 | return onFlushRP->findOrMakeStaticBuffer(GrGpuBufferType::kIndex, |
| 73 | sizeof(kOctoIndicesAsStrips), kOctoIndicesAsStrips, |
| 74 | gIndexBufferKey); |
| 75 | } else { |
| 76 | return onFlushRP->findOrMakeStaticBuffer(GrGpuBufferType::kIndex, |
| 77 | sizeof(kOctoIndicesAsTris), kOctoIndicesAsTris, |
| 78 | gIndexBufferKey); |
| 79 | } |
| 80 | } |
| 81 | |
| 82 | GrCCPathProcessor::GrCCPathProcessor(CoverageMode coverageMode, const GrTexture* atlasTexture, |
| 83 | const GrSwizzle& swizzle, GrSurfaceOrigin atlasOrigin, |
| 84 | const SkMatrix& viewMatrixIfUsingLocalCoords) |
| 85 | : INHERITED(kGrCCPathProcessor_ClassID) |
| 86 | , fCoverageMode(coverageMode) |
| 87 | , fAtlasAccess(GrSamplerState::Filter::kNearest, atlasTexture->backendFormat(), swizzle) |
| 88 | , fAtlasDimensions(atlasTexture->dimensions()) |
| 89 | , fAtlasOrigin(atlasOrigin) { |
| 90 | // TODO: Can we just assert that atlas has GrCCAtlas::kTextureOrigin and remove fAtlasOrigin? |
| 91 | this->setInstanceAttributes(kInstanceAttribs, SK_ARRAY_COUNT(kInstanceAttribs)); |
| 92 | SkASSERT(this->instanceStride() == sizeof(Instance)); |
| 93 | |
| 94 | this->setVertexAttributes(&kCornersAttrib, 1); |
| 95 | this->setTextureSamplerCnt(1); |
| 96 | |
| 97 | if (!viewMatrixIfUsingLocalCoords.invert(&fLocalMatrix)) { |
| 98 | fLocalMatrix.setIdentity(); |
| 99 | } |
| 100 | } |
| 101 | |
| 102 | class GrCCPathProcessor::Impl : public GrGLSLGeometryProcessor { |
| 103 | public: |
| 104 | void onEmitCode(EmitArgs& args, GrGPArgs* gpArgs) override; |
| 105 | |
| 106 | private: |
| 107 | void setData(const GrGLSLProgramDataManager& pdman, const GrPrimitiveProcessor& primProc, |
| 108 | const CoordTransformRange& transformRange) override { |
| 109 | const auto& proc = primProc.cast<GrCCPathProcessor>(); |
| 110 | pdman.set2f(fAtlasAdjustUniform, |
| 111 | 1.0f / proc.fAtlasDimensions.fWidth, |
| 112 | 1.0f / proc.fAtlasDimensions.fHeight); |
| 113 | this->setTransformDataHelper(proc.fLocalMatrix, pdman, transformRange); |
| 114 | } |
| 115 | |
| 116 | GrGLSLUniformHandler::UniformHandle fAtlasAdjustUniform; |
| 117 | |
| 118 | typedef GrGLSLGeometryProcessor INHERITED; |
| 119 | }; |
| 120 | |
| 121 | GrGLSLPrimitiveProcessor* GrCCPathProcessor::createGLSLInstance(const GrShaderCaps&) const { |
| 122 | return new Impl(); |
| 123 | } |
| 124 | |
| 125 | void GrCCPathProcessor::drawPaths(GrOpFlushState* flushState, const GrPipeline& pipeline, |
| 126 | const GrSurfaceProxy& atlasProxy, |
| 127 | const GrCCPerFlushResources& resources, int baseInstance, |
| 128 | int endInstance, const SkRect& bounds) const { |
| 129 | const GrCaps& caps = flushState->caps(); |
| 130 | GrPrimitiveType primitiveType = caps.usePrimitiveRestart() |
| 131 | ? GrPrimitiveType::kTriangleStrip |
| 132 | : GrPrimitiveType::kTriangles; |
| 133 | int numIndicesPerInstance = caps.usePrimitiveRestart() |
| 134 | ? SK_ARRAY_COUNT(kOctoIndicesAsStrips) |
| 135 | : SK_ARRAY_COUNT(kOctoIndicesAsTris); |
| 136 | auto enablePrimitiveRestart = GrPrimitiveRestart(flushState->caps().usePrimitiveRestart()); |
| 137 | |
| 138 | GrRenderTargetProxy* rtProxy = flushState->proxy(); |
| 139 | GrProgramInfo programInfo(rtProxy->numSamples(), rtProxy->numStencilSamples(), |
| 140 | rtProxy->backendFormat(), flushState->writeView()->origin(), |
| 141 | &pipeline, this, primitiveType); |
| 142 | |
| 143 | flushState->bindPipelineAndScissorClip(programInfo, bounds); |
| 144 | flushState->bindTextures(*this, atlasProxy, pipeline); |
| 145 | flushState->bindBuffers(resources.indexBuffer(), resources.instanceBuffer(), |
| 146 | resources.vertexBuffer(), enablePrimitiveRestart); |
| 147 | flushState->drawIndexedInstanced(numIndicesPerInstance, 0, endInstance - baseInstance, |
| 148 | baseInstance, 0); |
| 149 | } |
| 150 | |
| 151 | void GrCCPathProcessor::Impl::onEmitCode(EmitArgs& args, GrGPArgs* gpArgs) { |
| 152 | using Interpolation = GrGLSLVaryingHandler::Interpolation; |
| 153 | |
| 154 | const GrCCPathProcessor& proc = args.fGP.cast<GrCCPathProcessor>(); |
| 155 | GrGLSLUniformHandler* uniHandler = args.fUniformHandler; |
| 156 | GrGLSLVaryingHandler* varyingHandler = args.fVaryingHandler; |
| 157 | bool isCoverageCount = (CoverageMode::kCoverageCount == proc.fCoverageMode); |
| 158 | |
| 159 | const char* atlasAdjust; |
| 160 | fAtlasAdjustUniform = uniHandler->addUniform( |
| 161 | nullptr, kVertex_GrShaderFlag, kFloat2_GrSLType, "atlas_adjust" , &atlasAdjust); |
| 162 | |
| 163 | varyingHandler->emitAttributes(proc); |
| 164 | |
| 165 | GrGLSLVarying texcoord((isCoverageCount) ? kFloat3_GrSLType : kFloat2_GrSLType); |
| 166 | varyingHandler->addVarying("texcoord" , &texcoord); |
| 167 | |
| 168 | GrGLSLVarying color(kHalf4_GrSLType); |
| 169 | varyingHandler->addPassThroughAttribute( |
| 170 | kInstanceAttribs[kColorAttribIdx], args.fOutputColor, Interpolation::kCanBeFlat); |
| 171 | |
| 172 | // The vertex shader bloats and intersects the devBounds and devBounds45 rectangles, in order to |
| 173 | // find an octagon that circumscribes the (bloated) path. |
| 174 | GrGLSLVertexBuilder* v = args.fVertBuilder; |
| 175 | |
| 176 | // Are we clockwise? (Positive wind => nonzero fill rule.) |
| 177 | // Or counter-clockwise? (negative wind => even/odd fill rule.) |
| 178 | v->codeAppendf("float wind = sign(devbounds.z - devbounds.x);" ); |
| 179 | |
| 180 | // Find our reference corner from the device-space bounding box. |
| 181 | v->codeAppendf("float2 refpt = mix(devbounds.xy, devbounds.zw, corners.xy);" ); |
| 182 | |
| 183 | // Find our reference corner from the 45-degree bounding box. |
| 184 | v->codeAppendf("float2 refpt45 = mix(devbounds45.xy, devbounds45.zw, corners.zw);" ); |
| 185 | // Transform back to device space. |
| 186 | v->codeAppendf("refpt45 *= float2x2(+1, +1, -wind, +wind) * .5;" ); |
| 187 | |
| 188 | // Find the normals to each edge, then intersect them to find our octagon vertex. |
| 189 | v->codeAppendf("float2x2 N = float2x2(" |
| 190 | "corners.z + corners.w - 1, corners.w - corners.z, " |
| 191 | "corners.xy*2 - 1);" ); |
| 192 | v->codeAppendf("N = float2x2(wind, 0, 0, 1) * N;" ); |
| 193 | v->codeAppendf("float2 K = float2(dot(N[0], refpt), dot(N[1], refpt45));" ); |
| 194 | v->codeAppendf("float2 octocoord = K * inverse(N);" ); |
| 195 | |
| 196 | // Round the octagon out to ensure we rasterize every pixel the path might touch. (Positive |
| 197 | // bloatdir means we should take the "ceil" and negative means to take the "floor".) |
| 198 | // |
| 199 | // NOTE: If we were just drawing a rect, ceil/floor would be enough. But since there are also |
| 200 | // diagonals in the octagon that cross through pixel centers, we need to outset by another |
| 201 | // quarter px to ensure those pixels get rasterized. |
| 202 | v->codeAppendf("float2 bloatdir = (0 != N[0].x) " |
| 203 | "? float2(N[0].x, N[1].y)" |
| 204 | ": float2(N[1].x, N[0].y);" ); |
| 205 | v->codeAppendf("octocoord = (ceil(octocoord * bloatdir - 1e-4) + 0.25) * bloatdir;" ); |
| 206 | v->codeAppendf("float2 atlascoord = octocoord + float2(dev_to_atlas_offset);" ); |
| 207 | |
| 208 | // Convert to atlas coordinates in order to do our texture lookup. |
| 209 | if (kTopLeft_GrSurfaceOrigin == proc.fAtlasOrigin) { |
| 210 | v->codeAppendf("%s.xy = atlascoord * %s;" , texcoord.vsOut(), atlasAdjust); |
| 211 | } else { |
| 212 | SkASSERT(kBottomLeft_GrSurfaceOrigin == proc.fAtlasOrigin); |
| 213 | v->codeAppendf("%s.xy = float2(atlascoord.x * %s.x, 1 - atlascoord.y * %s.y);" , |
| 214 | texcoord.vsOut(), atlasAdjust, atlasAdjust); |
| 215 | } |
| 216 | if (isCoverageCount) { |
| 217 | v->codeAppendf("%s.z = wind * .5;" , texcoord.vsOut()); |
| 218 | } |
| 219 | |
| 220 | gpArgs->fPositionVar.set(kFloat2_GrSLType, "octocoord" ); |
| 221 | this->emitTransforms(v, varyingHandler, uniHandler, gpArgs->fPositionVar, proc.fLocalMatrix, |
| 222 | args.fFPCoordTransformHandler); |
| 223 | |
| 224 | // Fragment shader. |
| 225 | GrGLSLFPFragmentBuilder* f = args.fFragBuilder; |
| 226 | |
| 227 | // Look up coverage in the atlas. |
| 228 | f->codeAppendf("half coverage = " ); |
| 229 | f->appendTextureLookup(args.fTexSamplers[0], SkStringPrintf("%s.xy" , texcoord.fsIn()).c_str()); |
| 230 | f->codeAppendf(".a;" ); |
| 231 | |
| 232 | if (isCoverageCount) { |
| 233 | f->codeAppendf("coverage = abs(coverage);" ); |
| 234 | |
| 235 | // Scale coverage count by .5. Make it negative for even-odd paths and positive for |
| 236 | // winding ones. Clamp winding coverage counts at 1.0 (i.e. min(coverage/2, .5)). |
| 237 | f->codeAppendf("coverage = min(abs(coverage) * half(%s.z), .5);" , texcoord.fsIn()); |
| 238 | |
| 239 | // For negative values, this finishes the even-odd sawtooth function. Since positive |
| 240 | // (winding) values were clamped at "coverage/2 = .5", this only undoes the previous |
| 241 | // multiply by .5. |
| 242 | f->codeAppend ("coverage = 1 - abs(fract(coverage) * 2 - 1);" ); |
| 243 | } |
| 244 | |
| 245 | f->codeAppendf("%s = half4(coverage);" , args.fOutputCoverage); |
| 246 | } |
| 247 | |